WorldWideScience

Sample records for equatorial ionospheric irregularities

  1. Magnetic storm effect on the occurrence of ionospheric irregularities at an equatorial station in the African sector

    Directory of Open Access Journals (Sweden)

    Olushola Abel Oladipo

    2014-01-01

    Full Text Available Large-scale ionospheric irregularities usually measured by GPS TEC fluctuation indices are regular occurrence at the equatorial region shortly after sunset around solar maximum. Magnetic storm can trigger or inhibit the generation of these irregularities depending on the local time the main phase of a particular storm occurs. We studied the effect of nine (9 distinct storms on the occurrence of ionospheric irregularities at Fraceville in Gabon (Lat = −1.63˚, Long = 13.55˚, dip lat. = −15.94˚, an equatorial station in the African sector. These storms occurred between November 2001 and September 2002. We used TEC fluctuation indices (i.e. ROTI and ROTIAVE estimated from 30 s interval Rinex data and also we used the storm indices (i.e. Dst, dDst/dt, and IMF BZ to predict the likely effect of each storm on the irregularities occurrence at this station. The results obtained showed that most of the storms studied inhibited ionospheric irregularities. Only one out of all the storms studied (i.e. September 4, 2002 storms with the main phase on the night of September 7-8 triggered post-midnight ionospheric irregularities. There are two of the storms during which ionospheric irregularities were observed. However, these may not be solely attributed to the storms event because the level of irregularities observed during these two storms is comparable to that observed during previous days before the storms. For this station and for the storms investigated, it seems like a little modification to the use of Aarons categories in terms of the local time the maximum negative Dst occurs could lead to a better prediction. However, it would require investigating many storms during different level of solar activities and at different latitudes to generalize this modification.

  2. Backscatter measurements of 11-cm equatorial spread-F irregularities

    International Nuclear Information System (INIS)

    Tsunoda, R.T.

    1980-01-01

    In the equatorial F-region ionosphere, a turbulent cascade process has been found to exist that extends from irregularity spatial wavelengths longer than tens of kilometers down to wavelengths as short as 36 cm. To investigate the small-scale regime of wavelengths less than 36 cm, an equatorial radar experiment was conducted using a frequency of 1320 MHz that corresponds to an irregularity wavelength of 11 cm. The first observations of radar backscatter from 11-cm field-aligned irregularities (FAI) are described. These measurements extend the spatial wavelength regime of F-region FAI to lengths that approach both electron gyroradius and the Debye length. Agreement of these results with the theory of high-frequency drift waves suggests that these observations may be unique to the equatorial ionosphere. That is, the requirement of low electron densities for which the theroy calls may preclude the existence of 11-cm FAI elsewhere in the F-region ionosphere, except in equatorial plasma bubbles

  3. Short-term magnetic field alignment variations of equatorial ionospheric irregularities

    International Nuclear Information System (INIS)

    Johnson, A.L.

    1988-01-01

    The ionospheric irregularities that cause equatorial scintillation are elongated along the north-south magnetic field lines. During a 1981 field campaign at Ascension Island, 250-MHz receivers were spaced from 300 m to 1.6 km along the field lines, and the signals received from the Marisat satellite were cross correlated. Data collected during eight nights of fading showed a linear relationship between fading rate and cross correlation. The alignment of the antennas was adjusted to give a zero time lag between the widely spaced receivers with a measurement accuracy of 0.03 s. Since the average irregularity velocity was 125 m/s, this time accuracy translated to an angular measurement accuracy of 0.1 deg. During a 4-hour period of nightly fading, occasional differences in time of arrival were noted that corresponded to a tilt in the north-south alignment of + or - 1 deg. Data from several nights of fading were analyzed, and each night exhibited the same variance in the north-south irregularity alignment. It is postulated that the shift in the measured peak correlation may have been caused by patches of irregularities at different altitudes where the magnetic field lines have a slightly different direction. 13 references

  4. VHF and UHF radar observations of equatorial F region ionospheric irregularities and background densities

    Science.gov (United States)

    Towle, D. M.

    1980-02-01

    A series of measurements of the properties of equatorial ionospheric irregularities were made at Kwajalein, Marshall Islands (M.I.) in August 1977 and July-August 1978. These measurements, sponsored by the Defense Nuclear Agency (DNA), involved coordinated ground-based and in situ sensors. The ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR), operated by Lincoln Laboratory, obtained backscatter and transmission data during five nights in August 1977 and eight nights in July-August 1978. This report describes the ALTAIR data from the night of August 11, 1978, which yield direct quantitative measurements of 1-m and 3/8-m irregularities and of plasma depleted regions. These plasma depleted regions, previously predicted on the basis of theoretical analysis and in situ data, were observed during the decay phase and not the generative phase of the field-aligned irregularities.

  5. Possible ionospheric preconditioning by shear flow leading to equatorial spread F

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2005-10-01

    Full Text Available Vertical shear in the zonal plasma drift speed is apparent in incoherent and coherent scatter radar observations of the bottomside F region ionosphere made at Jicamarca from about 1600–2200 LT. The relative importance of the factors controlling the shear, which include competition between the E and F region dynamos as well as vertical currents driven in the E and F regions at the dip equator, is presently unknown. Bottom-type scattering layers arise in strata where the neutral and plasma drifts differ widely, and periodic structuring of irregularities within the layers is telltale of intermediate-scale waves in the bottomside. These precursor waves appear to be able to seed ionospheric interchange instabilities and initiate full-blown equatorial spread F. The seed or precursor waves may be generated by a collisional shear instability. However, assessing the viability of shear instability requires measurements of the same parameters needed to understand shear flow quantitatively - thermospheric neutral wind and off-equatorial conductivity profiles. Keywords. Ionosphere (Equatorial ionosphere; ionospheric irregularities – Space plasma physics (Waves and instabilities

  6. Geomagnetic storm effects on the occurrences of ionospheric irregularities over the African equatorial/low-latitude region

    Science.gov (United States)

    Amaechi, P. O.; Oyeyemi, E. O.; Akala, A. O.

    2018-04-01

    The study investigated the effects of intense geomagnetic storms of 2015 on the occurrences of large scale ionospheric irregularities over the African equatorial/low-latitude region. Four major/intense geomagnetic storms of 2015 were analyzed for this study. These storms occurred on 17th March 2015 (-229 nT), 22nd June 2015 (-204 nT), 7th October 2015 (-124 nT), and 20th December 2015 (-170 nT). Total Electron Content (TEC) data obtained from five African Global Navigation Satellite Systems (GNSS) stations, grouped into eastern and western sectors were used to derive the ionospheric irregularities proxy indices, e.g., rate of change of TEC (ROT), ROT index (ROTI) and ROTI daily average (ROTIAVE). These indices were characterized alongside with the disturbance storm time (Dst), the Y component of the Interplanetary Electric Field (IEFy), polar cap (PC) index and the H component of the Earth's magnetic field from ground-based magnetometers. Irregularities manifested in the form of fluctuations in TEC. Prompt penetration of electric field (PPEF) and disturbance dynamo electric field (DDEF) modulated the behaviour of irregularities during the main and recovery phases of the geomagnetic storms. The effect of electric field over both sectors depends on the local time of southward turning of IMF Bz. Consequently, westward electric field inhibited irregularities during the main phase of March and October 2015 geomagnetic storms, while for the June 2015 storm, eastward electric field triggered weak irregularities over the eastern sector. The effect of electric field on irregularities during December 2015 storm was insignificant. During the recovery phase of the storms, westward DDEF suppressed irregularities.

  7. Equatorial Ionospheric Irregularities Study from ROCSAT Data

    Science.gov (United States)

    2017-10-20

    UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Ionospheric irregularity/scintillation occurrences can be caused by external driving ...Academia Sinica, Taipei, Taiwan e-mail: chliu2@gate.sinica.edu.tw phone :886-3-4227151x34757 CoPI: Shin-Yi Su Institution: National Central...University, Chung-Li, Taiwan e-mail: sysu@csrsr.ncu.edu.tw phone :886-3-4227151x57643 CoPI: Lung-Chi Tsai Institution: National Central University, Chung-Li

  8. Ionospheric Storm Effects and Equatorial Plasma Irregularities During the 17-18 March 2015 Event

    Science.gov (United States)

    Zhou, Yun-Liang; Luhr, Hermann; Xiong, Chao; Pfaff, Robert F.

    2016-01-01

    The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (E (sub m)). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/pre-noon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the post-sunset sector. As a response to a short-lived decline of E (sub m), EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 hours. Only after the onset of recovery phase does EPI activity start again in the post-midnight sector, lasting more than 7 hours

  9. Investigating the Role of Gravity Wave on Equatorial Ionospheric Irregularities using SABER and C/NOFS Satellites Observations

    Science.gov (United States)

    Nigussie, M.; Damtie, B.; Moldwin, M.; Yizengaw, E.; Tesema, F.; Tebabal, A.

    2017-12-01

    Theoretical simulations have shown that gravity wave (GW) seeded perturbations amplified by Rayleigh-Taylor Instability (RTI) results in ESF (equatorial spread F); however, there have been limited observational studies using simultaneous observations of GW and ionospheric parameters. In this paper, for the fist time, simultaneous atmospheric temperature perturbation profiles that are due to GWs obtained from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board the TIMED satellite and equatorial in -situ ion density and vertical plasma drift velocity observations with and without ESF activity obtained from C/NOFS satellites are used to investigate the effect of GW on the generation of ESF. The horizontal and vertical wavelengths of ionospheric oscillations and GWs respectively have been estimated applying wavelet transforms. Cross wavelet analysis has also been applied between two closely observed profiles of temperature perturbations to estimate the horizontal wavelength of the GWs. Moreover, vertically propagating GWs that dissipate energy at the upper atmosphere have been investigated using spectral analysis compared with theoretical results. The analysis show that when the ion density shows strong post sunset irregularity between 20 and 24 LT, vertically upward drift velocities increase between 17 and 19 LT, but it becomes vertically downward when the ion density shows smooth variation. The horizontal wavelengths estimated from C/NOFS and SABER observations show excellent agreement when ion density observations show strong fluctuations; otherwise, they have poor agreement. It is also found that altitude profiles of potential energy of GW increases up to 90 km and then decreases significantly. It is found that the vertical wavelength of GW, corresponding to the dominant spectral power, ranges from about 7 km to 20 km regardless of the situation of the ionosphere; however, GWs with vertical wavelengths between 100 m to 1 km are found to

  10. Radar Observations of 8.3-m scale equatorial spread F irregularities over Trivandrum

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2004-03-01

    Full Text Available In this paper, we present observations of equatorial spread F (ESF irregularities made using a newly installed 18MHz radar located at Trivandrum. We characterize the morphology and the spectral parameters of the 8.3-m ESF irregularities which are found to be remarkably different from that observed so extensively at the 3-m scale size. We also present statistical results of the irregularities in the form of percentage occurrence of the echoes and spectral parameters (SNR, Doppler velocity, Spectral width. The Doppler spectra are narrower, less structured and less variable in time as compared to those observed for 3-m scale size. We have never observed the ESF irregularity velocities to be supersonic here unlike those at Jicamarca, and the velocities are found to be within ±200ms–1. The spectral widths are found to be less than 150ms–1. Hence, the velocities and spectral width both are smaller than those reported for 3-m scale size. The velocities and spectral widths are further found to be much smaller than those of the American sector. These observations are compared with those reported elsewhere and discussed in the light of present understanding on the ESF irregularities at different wavelengths. Key words. Ionoshphere (equatorial ionosphere, plasma waves and instabilities; ionospheric irregularities

  11. Occurrence and zonal drifts of small-scale ionospheric irregularities over an equatorial station during solar maximum - Magnetic quiet and disturbed conditions

    Science.gov (United States)

    Muella, M. T. A. H.; de Paula, E. R.; Kantor, I. J.; Rezende, L. F. C.; Smorigo, P. F.

    2009-06-01

    A statistical study of L-band amplitude scintillations and zonal drift velocity of Fresnel-scale ionospheric irregularities is presented. Ground-based global positioning system (GPS) data acquired at the equatorial station of São Luís (2.33°S, 44.21°W, dip latitude 1.3°S), Brazil, during the solar maximum period from March 2001 to February 2002 are used in the analysis. The variation of scintillations and irregularity drift velocities with local time, season and magnetic activity are reported. The results reveal that for the near overhead ionosphere (satellite elevation angle >45°) a broad maximum in the occurrence of scintillation is seen from October to February. In general, weak scintillations (S 4 90%) during equinox (March-April; September-October) and December solstice (November-February) quiet time conditions and, many of the scintillations, occurred during pre-midnight hours. The mean zonal velocities of the irregularities are seen to be ˜30 m s -1 larger near December solstice, while during the equinoctial period the velocities decay faster and the scintillations tend to cease earlier. On geomagnetically disturbed nights, scintillation activity seems to be strongly affected by the prompt penetration of magnetospheric electric fields and disturbance dynamo effects. On disturbed days, during the equinox and December solstice seasons, the scintillations tend to be suppressed in the pre-midnight hours, whereas during June solstice months (May-August) the effect is opposite. In the post-midnight period, the mostly marked increase in the scintillation occurrence is observed during the equinox months. The results show that during disturbed conditions only one type of storm (when the main phase maximum takes place during the daytime hours) agrees with the Aarons' description, that is the suppression of L-band scintillations in the first recovery phase night. The results also reveal that the storm-time irregularity drifts become more spread in velocity and

  12. Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms

    Directory of Open Access Journals (Sweden)

    L. Z. Biktash

    2004-09-01

    Full Text Available The equatorial ionosphere parameters, Kp, Dst, AU and AL indices characterized contribution of different magnetospheric and ionospheric currents to the H-component of geomagnetic field are examined to test the geomagnetic activity effect on the generation of ionospheric irregularities producing VLF scintillations. According to the results of the current statistical studies, one can predict near 70% of scintillations from Aarons' criteria using the Dst index, which mainly depicts the magnetospheric ring current field. To amplify Aarons' criteria or to propose new criteria for predicting scintillation characteristics is the question. In the present phase of the experimental investigations of electron density irregularities in the ionosphere new ways are opened up because observations in the interaction between the solar wind - magnetosphere - ionosphere during magnetic storms have progressed greatly. According to present view, the intensity of the electric fields and currents at the polar regions, as well as the magnetospheric ring current intensity, are strongly dependent on the variations of the interplanetary magnetic field. The magnetospheric ring current cannot directly penetrate the equatorial ionosphere and because of this difficulties emerge in explaining its relation to scintillation activity. On the other hand, the equatorial scintillations can be observed in the absence of the magnetospheric ring current. It is shown that in addition to Aarons' criteria for the prediction of the ionospheric scintillations, models can be used to explain the relationship between the equatorial ionospheric parameters, h'F, foF2, and the equatorial geomagnetic variations with the polar ionosphere currents and the solar wind.

  13. Spatial relationship of 1-meter equatorial spread-F irregularities and depletions in total electron content

    International Nuclear Information System (INIS)

    Tsunoda, R.T.; Towle, D.M.

    1979-01-01

    An experiment was conducted at Kwajalein Atoll, Marshall Islands to investigate the spatial relationship of 1-m equatorial spread-F irregularities to total electron content (TEC) depletions. A high-power radar was operated (1) in a backscatter scan mode to spatially map the distribution of 1-m irregularities, and (2) in a dual-frequency, satellite-track mode to obtain the longitudinal TEC variations. We show that radar backscatter ''plumes'' found in the disturbed, nighttime equatorial ionosphere are longitudinally coincident with TEC depletions. We suggest that the TEC depletions are probably due to the presence of plasma ''bubbles'' in the equatorial F layer

  14. Radar Observations of 8.3-m scale equatorial spread F irregularities over Trivandrum

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2004-03-01

    Full Text Available In this paper, we present observations of equatorial spread F (ESF irregularities made using a newly installed 18MHz radar located at Trivandrum. We characterize the morphology and the spectral parameters of the 8.3-m ESF irregularities which are found to be remarkably different from that observed so extensively at the 3-m scale size. We also present statistical results of the irregularities in the form of percentage occurrence of the echoes and spectral parameters (SNR, Doppler velocity, Spectral width. The Doppler spectra are narrower, less structured and less variable in time as compared to those observed for 3-m scale size. We have never observed the ESF irregularity velocities to be supersonic here unlike those at Jicamarca, and the velocities are found to be within ±200ms–1. The spectral widths are found to be less than 150ms–1. Hence, the velocities and spectral width both are smaller than those reported for 3-m scale size. The velocities and spectral widths are further found to be much smaller than those of the American sector. These observations are compared with those reported elsewhere and discussed in the light of present understanding on the ESF irregularities at different wavelengths.

    Key words. Ionoshphere (equatorial ionosphere, plasma waves and instabilities; ionospheric irregularities

  15. Post-midnight equatorial irregularity distributions and vertical drift velocity variations during solstices

    Science.gov (United States)

    Su, S.-Y.; Liu, C. H.; Chao, C.-K.

    2018-04-01

    Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.

  16. Propagation and scattering of electromagnetic waves by the ionospheric irregularities

    International Nuclear Information System (INIS)

    Ho, A.Y.; Kuo, S.P.; Lee, M.C.

    1993-01-01

    The problem of wave propagation and scattering in the ionosphere is particularly important in the areas of communications, remote-sensing and detection. The ionosphere is often perturbed with coherently structured (quasiperiodic) density irregularities. Experimental observations suggest that these irregularities could give rise to significant ionospheric effect on wave propagation such as causing spread-F of the probing HF sounding signals and scintillation of beacon satellite signals. It was show by the latter that scintillation index S 4 ∼ 0.5 and may be as high as 0.8. In this work a quasi-particle theory is developed to study the scintillation phenomenon. A Wigner distribution function for the wave intensity in the (k,r) space is introduced and its governing equation is derived with an effective collision term giving rise to the attenuation and scattering of the wave. This kinetic equation leads to a hierarchy of moment equations in r space. This systems of equations is then truncated to the second moment which is equivalent to assuming a cold quasi-particle distribution In this analysis, the irregularities are modeled as a two dimensional density modulation on an uniform background plasma. The analysis shows that this two dimensional density grating, effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then contributes to the scintillation of the beacon satellite signals. Using the proper plasma parameters and equatorial measured data of irregularities, it is shown that the scintillation index defined by S4=( 2 >- 2 )/ 2 where stands for spatial average over an irregularity wavelength is in the range of the experimentally detected values

  17. Nighttime ionospheric D region: Equatorial and nonequatorial

    Science.gov (United States)

    Thomson, Neil R.; McRae, Wayne M.

    2009-08-01

    Nighttime ionospheric D region parameters are found to be generally well modeled by the traditional H‧ and β as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. New comparisons with nonequatorial, mainly all-sea VLF path observations reported over several decades are shown to be consistent with the previously determined height H‧ ˜ 85.0 km and sharpness β ˜ 0.63 km-1. These paths include NPM (Hawaii) to Washington, D. C., Omega Hawaii and NLK (Seattle) to Japan, NWC (N.W. Australia) to Madagascar, and NBA (Panama) to Colorado. In marked contrast, transequatorial path observations (even when nearly all-sea) are found to be often not well modeled: for example, for Omega Japan and JJI (Japan) to Dunedin, New Zealand, the observed amplitudes are markedly lower than those which would be expected from H‧ ˜ 85.0 km and β ˜ 0.63 km-1, or any other realistic values of H‧ and β. Other transequatorial observations compared with modeling include NWC to Japan, Omega Hawaii to Dunedin, and NPM (Hawaii) to Dunedin. It is suggested that the effects of irregularities in the equatorial electrojet may extend down into the nighttime D region and so account for the observed equatorial VLF perturbations through scattering or mode conversion.

  18. Ionospheric irregularities at low latitudes in the American sector

    International Nuclear Information System (INIS)

    Nakamura, Y.

    1981-10-01

    A detailed analysis of the atomic oxigem airglow emission at the wavelength of 6300 A observed at Cachoeira Paulista (22 0 41'S, 45 0 00'W) shows that intensity perturbations frequently occur and propagate from north to south and from west to east. Such irregularities originated in the ionospheric F region and occur essencially during the premidnight period. These perturbations have a high frequency of occurrence during spring and summer and are rare during winter and fall. The disturbances are correlated with range type spread F detected over Cachoeira Paulista, and have characteristics similar to equatorial ionospheric plasma bubbles (i.e., similar seazonal variation, time of occurrence, ionogram signatures, direction and speed of propagation, etc.). A numerical simulation is carried out for the generation and evolution of ionospheric bubbles based on the theory of the collisional Rayleigh-Taylor instability for the equatorial and Cachoeira Paulista regions. Also a study was made of the, evolution of the bubble as a function of the electron density profile and as a function of the amplitude of the initial density perturbation. Assuming the electron density profile perturbed by the bubble, the [OI] 6300 A intensity was calculated for various latitudes arbitrarily taken within the photometer scanning range. The bubble was assumed to be aligned with the Earth's magnetic field and extending from higher altitudes at the equatorial region down to be arbitrary height of 150 Km at which a negligible conductivity is assumed. It was also assumed that the bubble was moving upwards with the velocity of 120 m/s, which in turn was estimated from initial numerical simulation results. The airglow calculation results show that as the bubble goes up, the disturbances in the airglow intensity propagate from north to south, in accord with observed experimental results. (Author) [pt

  19. New Model for Ionospheric Irregularities at Mars

    Science.gov (United States)

    Keskinen, M. J.

    2018-03-01

    A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.

  20. Rocket in situ observation of equatorial plasma irregularities in the region between E and F layers over Brazil

    Directory of Open Access Journals (Sweden)

    S. Savio Odriozola

    2017-03-01

    Full Text Available A two-stage VS-30 Orion rocket was launched from the equatorial rocket launching station in Alcântara, Brazil, on 8 December 2012 soon after sunset (19:00 LT, carrying a Langmuir probe operating alternately in swept and constant bias modes. At the time of launch, ground equipment operated at equatorial stations showed rapid rise in the base of the F layer, indicating the pre-reversal enhancement of the F region vertical drift and creating ionospheric conditions favorable for the generation of plasma bubbles. Vertical profiles of electron density estimated from Langmuir probe data showed wave patterns and small- and medium-scale plasma irregularities in the valley region (100–300 km during the rocket upleg and downleg. These irregularities resemble those detected by the very high frequency (VHF radar installed at Jicamarca and so-called equatorial quasi-periodic echoes. We present evidence suggesting that these observations could be the first detection of this type of irregularity made by instruments onboard a rocket.

  1. Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding

    Science.gov (United States)

    Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.

    2018-01-01

    The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.

  2. Collisional Rayleigh-Taylor instability and shear-flow in equatorial Spread-F plasma

    Directory of Open Access Journals (Sweden)

    N. Chakrabarti

    2003-05-01

    Full Text Available Collisional Rayleigh-Taylor (RT instability is considered in the bottom side of the equatorial F-region. By a novel nonmodal calculation it is shown that for an applied shear flow in equilibrium, the growth of the instability is considerably reduced. Finite but small amounts of diffusion enhances the stabilization process. The results may be relevant to the observations of long-lived irregularities at the bottom-side of the F-layer.Key words. Ionosphere (ionospheric irregularities, equatorial ionosphere, plasma waves and instabilities

  3. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1997-10-01

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  4. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  5. Role of parametric decay instabilities in generating ionospheric irregularities

    International Nuclear Information System (INIS)

    Kuo, S.P.; Cheo, B.R.; Lee, M.C.

    1983-01-01

    We show that purely growing instabilities driven by the saturation spectrum of parametric decay instabilities can produce a broad spectrum of ionospheric irregularities. The threshold field Vertical BarE/sub th/Vertical Bar of the instabilities decreases with the scale lengths lambda of the ionospheric irregularities as Vertical BarE/sub th/Vertical Barproportionallambda -2 in the small-scale range ( -2 with scale lengths larger than a few kilometers. The excitation of kilometer-scale irregularities is strictly restricted by the instabilities themselves and by the spatial inhomogeneity of the medium. These results are drawn from the analyses of four-wave interaction. Ion-neutral collisions impose no net effect on the instabilities when the excited ionospheric irregularities have a field-aligned nature

  6. DEMETER Observations of Equatorial Plasma Depletions and Related Ionospheric Phenomena

    Science.gov (United States)

    Berthelier, J.; Malingre, M.; Pfaff, R.; Jasperse, J.; Parrot, M.

    2008-12-01

    population of super-thermal ionospheric ions with a density of about 2-3% of the thermal ion population. The super- thermal ions appeared to be heated to temperatures of a few eV at times when LH turbulence and monochromatic wave packets are observed while the temperature of the core ion population is not affected. High time resolution plasma density measurements show the presence of strong small scale plasma irregularities in the depletions that scatter the high amplitude whistler waves and may lead to the development of strong LH turbulence and of monochromatic wave packets. The ensuing interaction between these waves and the ambient ions may lead to the formation of a super-thermal tail in the ion distribution function. Ion acceleration by LH turbulence and solitary waves is a commonly observed phenomenon along auroral magnetic field lines but, to our knowledge, this is the first time that a similar process has been observed in the equatorial ionosphere. These findings exemplify a novel coupling mechanism between the troposphere and the ionosphere: Under highly disturbed conditions at times of magnetic storms, part of the energy released by lightning and radiated as whistlers can dissipate in the equatorial ionosphere and produce super-thermal ion populations.

  7. Multi-technique investigations of storm-time ionospheric irregularities over the São Luís equatorial station in Brazil

    Directory of Open Access Journals (Sweden)

    E. R. de Paula

    2004-11-01

    Full Text Available On 11 April 2001, a large magnetic storm occurred with SSC at 13:43 UT, and Dst reached below -200nT after two southward Bz excursions. The Kp index during this storm reached 8 and remained high (>4 for about 21h, and the São Luís magnetometer H component presented simultaneous oscillations and decreased substantially relative to the previous magnetically quiet days. This storm triggered strong ionospheric irregularities, as observed by a recently installed 30MHz coherent scatter radar, a digisonde, and a GPS scintillation receiver, all operating at the São Luís equatorial station (2.33° S, 44° W, dip latitude 1.3° S. The ionospheric conditions and the characteristics of the ionospheric irregularities observed by these instruments are presented and discussed. The VHF radar RTI (Range Time Intensity echoes and their power spectra and spectral width for the storm night 11-12 April 2001, were used to analyse the nature and dynamics of the plasma irregularities and revealed the coexistence of many structures in the altitudinal range of 400-1200km, some locally generated and others that drifted from other longitudinal sectors. The radar data also revealed that the plumes had periodic eastward and westward zonal velocities after 22:20 UT, when well-developed quiet-time plumes typically drift eastward. Another interesting new observation is that the F-layer remained anomalously high throughout the 11-12 April 2001 storm night (21:00 UT to 09:00 UT next day (the LT at São Luís is UT -3h, as indicated by the digisonde parameters hmF2 and h'F, which is a condition favourable for spread F generation and maintenance. The AE auroral index showed enhancements (followed by decreases that are indicative of magnetospheric convection enhancements at about 15:00 UT, 20:00 UT and 22:00 UT on 11 April 2001 and at 00:20 UT (small amplitude on 12 April 2001, associated with many Bz fluctuations, including clear two southward incursions that gave rise

  8. Bottomside sinusoidal irregularities in the equatorial F region

    Science.gov (United States)

    Valladares, C. E.; Hanson, W. B.; Mcclure, J. P.; Cragin, B. L.

    1983-01-01

    By using the Ogo 6 satellite, McClure and Hanson (1973) have discovered sinusoidal irregularities in the equatorial F region ion number density. In the present investigation, a description is provided of the properties of a distinct category of sinusoidal irregularities found in equatorial data from the AE-C and AE-E satellites. The observed scale sizes vary from about 300 m to 3 km in the direction perpendicular to B, overlapping with and extending the range observed by using Ogo 6. Attention is given to low and high resolution data, a comparison with Huancayo ionograms, the confinement of 'bottomside sinusoidal' (BSS) irregularities essentially to the bottomside of the F layer, spectral characteristics, and BSS, scintillation, and ionosonde observations.

  9. Ionospheric research at INPE

    International Nuclear Information System (INIS)

    Abdu, M.A.

    1984-01-01

    Ionosphere investigations at INPE are mainly concerned with the problems of equatorial and tropical ionospheres and their electrodynamic coupling with the high latitude ionosphere. Present research objectives include investigations in the following specific areas: equatorial ionospheric plasma dynamics; plasma irregularity generation and morphology, and effects on space borne radar operations; ionospheric response to disturbance dynamo and magnetospheric electric fields; aeronomic effcts of charged particle precipitation in the magnetic anomaly, etc. These problems are being investigated using experimental datacollected from ionospheric diagnostic instruments being operated at different locations in Brazil. These instruments are: ionosondes, VHF electronic polarimeters, L-band scintillation receivers, airglow photometers, riometers and VLF receivers. A brief summary of the research activities and some recnet results will be presented. (Author) [pt

  10. A Review of Ionospheric Scintillation Models.

    Science.gov (United States)

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  11. Application of Wuhan Ionospheric Oblique Backscattering Sounding System (WIOBSS) for the investigation of midlatitude ionospheric irregularities

    Science.gov (United States)

    Wang, Jin; Zhou, Xiaoming; Qiao, Lei; Gong, Wanlin

    2018-03-01

    An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.

  12. Characteristics of low latitude ionospheric E-region irregularities ...

    Indian Academy of Sciences (India)

    154°E, dip angle = 37.3°, sub-ionospheric dip = 34°) have been analyzed to study the behaviour of ionospheric E-region irregularities during the active solar and magnetic periods. The autocorrelation functions, power spectral densities, signal de-correlation times are computed to study the temporal features of ionospheric ...

  13. Geomagnetic storms and electric fields in the equatorial ionosphere

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1977-01-01

    Using direct measurements of equatorial electric field during a geomagnetic storm it is shown that the large decrease in the field observed near the dip equator is due to the reversal of the equatorial electrojet current. This is caused by the imposition of an additional westward electric field on the equatorial ionosphere which was originated by the interaction of solar wind with the interplanetary magnetic field. (author)

  14. Time and latitudinal distribution of the ionospheric irregularities in Brazil, through the VHF-scintillation and ionogram data analysis

    International Nuclear Information System (INIS)

    Nelson, O.R.

    1984-01-01

    Equatorial ionospheric irregularity distribution morphology, and dynamics, and the dynamics of the ambient ionosphere were investigated. Spread F data from ionograms over Fortaleza (4 0 S; 38 0 O) and Cachoeira Paulista (22,7 0 S; 45 0 O), and simultaneous VHF scintillations of geoestationary satellite beacon received over Natal (5,6 0 S; 33,7 0 O) were used to determine the irregularity local time versus seasonal distribution, over the equatorial and low latitude location, during the solar activity maximum as well as minimum epochs. Concept of flux tube alignment properties of the transequatorial plasma bubbles were used to determine statistical features of the plasma bubble rise velocities. Calculations of plasma bubble rise velocities were then carried out for different solar activity epochs and compared with prereversal enhancement amplitude in the F-layer vertical rise velocities, for the same epochs. Using theoretical considerations on the development of plasma bubble based on flux tube integrated properties, the observed dependence of the plasma bubble rise velocities and the F-region dynamo electric field has been analysed to estimate the average ionizations depletions in the plasma bubble. Possible causes for the lack of correlation often observed between bubble rise velocities and F-Layer velocities also are discussed. (Author) [pt

  15. Multi-technique investigations of storm-time ionospheric irregularities over the São Luís equatorial station in Brazil

    Directory of Open Access Journals (Sweden)

    E. R. de Paula

    2004-11-01

    Full Text Available On 11 April 2001, a large magnetic storm occurred with SSC at 13:43 UT, and Dst reached below -200nT after two southward Bz excursions. The Kp index during this storm reached 8 and remained high (>4 for about 21h, and the São Luís magnetometer H component presented simultaneous oscillations and decreased substantially relative to the previous magnetically quiet days. This storm triggered strong ionospheric irregularities, as observed by a recently installed 30MHz coherent scatter radar, a digisonde, and a GPS scintillation receiver, all operating at the São Luís equatorial station (2.33° S, 44° W, dip latitude 1.3° S. The ionospheric conditions and the characteristics of the ionospheric irregularities observed by these instruments are presented and discussed. The VHF radar RTI (Range Time Intensity echoes and their power spectra and spectral width for the storm night 11-12 April 2001, were used to analyse the nature and dynamics of the plasma irregularities and revealed the coexistence of many structures in the altitudinal range of 400-1200km, some locally generated and others that drifted from other longitudinal sectors. The radar data also revealed that the plumes had periodic eastward and westward zonal velocities after 22:20 UT, when well-developed quiet-time plumes typically drift eastward. Another interesting new observation is that the F-layer remained anomalously high throughout the 11-12 April 2001 storm night (21:00 UT to 09:00 UT next day (the LT at São Luís is UT -3h, as indicated by the digisonde parameters hmF2 and h'F, which is a condition favourable for spread F generation and maintenance. The AE auroral index showed enhancements (followed by decreases that are indicative of magnetospheric convection enhancements at about 15:00 UT, 20:00 UT and 22:00 UT on 11 April 2001 and at 00:20 UT (small amplitude on 12 April 2001, associated with many

  16. Observations of the F-region ionospheric irregularities in the South American sector during the October 2003 "Halloween Storms"

    Directory of Open Access Journals (Sweden)

    Y. Sahai

    2009-12-01

    Full Text Available The response of the ionospheric F-region in the South American sector during the super geomagnetic storms on 29 and 30 October 2003 is studied in the present investigation. In this paper, we present ionospheric sounding observations during the period 29–31 October 2003 obtained at Palmas (a near equatorial location and Sao Jose dos Campos (a location under the southern crest of the equatorial ionospheric anomaly, Brazil, along with observations during the period 27–31 October 2003 from a chain of GPS stations covering the South American sector from Imperatriz, Brazil, to Rio Grande, Argentina. Also, complementary observations that include sequences of all-sky images of the OI 777.4 and 630.0 nm emissions observed at El Leoncito, Argentina, on the nights of 28–29 (geomagnetically quiet night and 29–30 (geomagnetically disturbed night October 2003, and ion densities observed in the South American sector by the DMSP F13, F14 and F15 satellites orbiting at about 800 km on 29 and 30 October 2003 are presented. In addition, global TEC maps derived from GPS observations collected from the global GPS network of International GPS Service (IGS are presented, showing widespread and drastic TEC changes during the different phases of the geomagnetic disturbances. The observations indicate that the equatorial ionospheric irregularities or plasma bubbles extend to the Argentinean station Rawson (geom. Lat. 33.1° S and map at the magnetic equator at an altitude of about 2500 km.

  17. Systematic study of intermediate-scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations

    Directory of Open Access Journals (Sweden)

    Hermann eLühr

    2014-03-01

    Full Text Available Equatorial spread-F ionospheric plasma irregularities on the night-side, commonly called equatorial plasma bubbles (EPB, include electron density variations over a wide range of spatial scales. Here we focus on intermediate-scale structures ranging from 100 m to 10 km, which play an important role in the evolution of EPBs. High-resolution CHAMP magnetic field measurements sampled along north-south track at 50 Hz are interpreted in terms of diamagnetic effect for illustrating the details of electron density variations. We provide the first comprehensive study on intermediate-scale density structures associated with EPBs, covering a whole solar cycle from 2000 to 2010. The large number of detected events, almost 9000, allows us to draw a detailed picture of the plasma fine structure. The occurrence of intermediate-scale events is strongly favoured by high solar flux. During times of F10.7 < 100 sfu practically no events were observed. The longitudinal distribution of our events with respect to season or local time agrees well with that of the EPBs, qualifying the fine structure as a common feature, but the occurrence rates are smaller by a factor of 4 during the period 2000-2005. Largest amplitude electron density variations appear at the poleward boundaries of plasma bubbles. Above the dip-equator recorded amplitudes are small and fall commonly below our resolution. Events can generally be found at local times between 19 and 24 LT, with a peak lasting from 20 to 22 LT. The signal spectrum can be approximated by a power law. Over the frequency range 1 – 25 Hz we observe spectral indices between -1.4 and -2.6 with peak occurrence rates around -1.9. There is a weak dependence observed of the spectral index on local time. Towards later hours the spectrum becomes shallower. Similarly for the latitude dependence, there is a preference of shallower spectra for latitudes poleward of the ionisation anomaly crest. Our data suggest that the generation of

  18. Plasma Irregularity Production in the Polar Cap F-Region Ionosphere

    Science.gov (United States)

    Lamarche, Leslie

    Plasma in the Earth's ionosphere is highly irregular on scales ranging between a few centimeters and hundreds of kilometers. Small-scale irregularities or plasma waves can scatter radio waves resulting in a loss of signal for navigation and communication networks. The polar region is particularly susceptible to strong disturbances due to its direct connection with the Sun's magnetic field and energetic particles. In this thesis, factors that contribute to the production of decameter-scale plasma irregularities in the polar F region ionosphere are investigated. Both global and local control of irregularity production are studied, i.e. we consider global solar control through solar illumination and solar wind as well as much more local control by plasma density gradients and convection electric field. In the first experimental study, solar control of irregularity production is investigated using the Super Dual Auroral Radar Network (SuperDARN) radar at McMurdo, Antarctica. The occurrence trends for irregularities are analyzed statistically and a model is developed that describes the location of radar echoes within the radar's field-of-view. The trends are explained through variations in background plasma density with solar illumination affecting radar beam propagation. However, it is found that the irregularity occurrence during the night is higher than expected from ray tracing simulations based on a standard ionospheric density model. The high occurrence at night implies an additional source of plasma density and it is proposed that large-scale density enhancements called polar patches may be the source of this density. Additionally, occurrence maximizes around the terminator due to different competing irregularity production processes that favor a more or less sunlit ionosphere. The second study is concerned with modeling irregularity characteristics near a large-scale density gradient reversal, such as those expected near polar patches, with a particular focus on

  19. Measurements of electron density irregularities in the ionosphere of Jupiter by Pioneer 10

    International Nuclear Information System (INIS)

    Woo, R.; Yang, F.

    1976-01-01

    In this paper we demonstrate that when the frequency spectrum of the log amplitude fluctuations is used, the radio occultation experiment is a powerful tool for detecting, identifying, and studying ionospheric irregularities. Analysis of the Pioneer 10 radio occultation measurements reveals that the Jovian ionosphere possesses electron density irregularities which are very similar to those found in the earth's ionosphere. This is the first time such irregularities have been found in a planetary ionosphere other than that of earth. The Pioneer 10 results indicate that the spatial wave number spectrum of the electron density irregularities is close to the Kolmogorov spectrum and that the outer scale size is greater than the Fresnel size (6.15 km). This type of spectrum suggests that the irregularities are probably produced by the turbulent dissipation of irregularities larger than the outer scale size

  20. The Equatorial Scintillations and Space Weather Effects on its Generation during Geomagnetic Storms

    Science.gov (United States)

    Biktash, Lilia

    Great diversity of the ionospheric phenomena leads to a variety of irregularity types with spatial size from many thousands of kilometers to few centimeters and lifetimes from days to fractions of second. Since the ionosphere strongly influences the propagation of radio waves, signal distortions caused by these irregularities affect short-wave transmissions on Earth, transiono-spheric satellite communications and navigation. In this work the solar wind and the equatorial ionosphere parameters, Kp, Dst, AU, AL indices characterized contribution of different mag-netospheric and ionospheric currents to the H-component of geomagnetic field are examined to test the space weather effect on the generation of ionospheric irregularities producing VLF scintillations. According to the results of the current statistical studies, one can predict scintil-lations from Aarons' criteria using the Dst index, which mainly depicts the magnetospheric ring current field. To amplify Aarons' criteria or to propose new criteria for predicting scintillation characteristics is the question. In the present phase of the experimental investigations of elec-tron density irregularities in the ionosphere new ways are opened up because observations in the interaction between the solar wind -magnetosphere -ionosphere during magnetic storms have progressed greatly. We have examined scintillation relation to magnetospheric and ionospheric currents and show that the factor, which presents during magnetic storms to fully inhibit scin-tillation, is the positive Bz-component of the IMF. During the positive Bz IMF F layer cannot raise altitude where scintillations are formed. The auroral indices and Kp do better for the prediction of the ionospheric scintillations at the equator. The interplanetary magnetic field data and models can be used to explain the relationship between the equatorial ionospheric parameters, h'F, foF2, and the equatorial geomagnetic variations with the polar ionosphere cur-rents and

  1. Irregular ionization and scintillation of the ionosphere in equator region

    International Nuclear Information System (INIS)

    Shinno, Kenji

    1974-01-01

    The latest studies on the scintillation in satellite communication and its related irregularities of ionosphere are reviewed. They were made clear by means of spread-F, the direct measurement with scientific satellites, VHF radar observation, and radio wave propagation in equator region. The fundamental occurrence mechanism may be instability of plasma caused by the interaction of movement of neutral atmosphere and magnetic field. Comparison of the main characteristics of scintillation, namely the dependence on region, solar activity, season, local time, geomagnetic activity, movement in ionosphere, scattering source, frequency and transmission mode, was made and the correlation among spread-F, TEP and scintillation was summarized. The latest principal studies were the observations made by Intelsat and by ATS. Scintillation of Syncom-3 and Intelsat-II-F2 and spread-F by ionosphere observation were compared by Huang. It is reasonable to consider that the occurrence of scintillation is caused by the irregularities in ionosphere which are particular in equator region, because of the similar characteristics of spread-F and VHF propagation in the equator region. These three phenomena may occur in relation to the irregularities of ionosphere. Interpretation of spread-F and the abnormal propagation wave across the equator are given. The study using VHF radar and the movement of irregular ionization by the direct observation with artificial satellites are reviewd. (Iwakiri, K.)

  2. Examining the Electric Fields of the Evening Equatorial Ionosphere When the Solar Terminator is Aligned and Not Aligned with the Magnetic Meridian

    Science.gov (United States)

    Eccles, J. V.

    2014-12-01

    The electric field structure of the equatorial ionosphere near sunset has implications on the development of plasma irregularities. The details of the development of the electric fields are examined using a global ionosphere-electrodynamics model. The results of simulations of simplified conditions show the influence of the arrangement of the solar terminator with the magnetic meridian. The relationships of the Curl-Free mechanism, the Hall Current Divergence mechanism, and the role of the Equatorial Electorjet region control the magnitude and timing of the Prereversal Enhancement of the zonal electric field as well as its altitude profile above the F region bottomside. Realistic conditions for 'equinox' and 'solstice' solar terminator arrangments are presented. The stability of the low-latitude ionosphere has a demonstrated relationship with the solar terminator alignment [Tsunoda, JGR, 1981]. The profile of the vertical and zonal electric field below the bottomside is then examined using the global model to explore the controlling elements of the electric field structure and the growth rates of the Rayleigh-Taylor instability and Collisional Shear instability.Tsunoda, R. T. (1985), Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity, J. Geophys. Res., 90(A1),447-456, doi:10.1029/JA090iA01p00447.

  3. Bottom-type scattering layers and equatorial spread F

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2004-12-01

    Full Text Available Jicamarca radar observations of bottom-type coherent scattering layers in the post-sunset bottomside F-region ionosphere are presented and analyzed. The morphology of the primary waves seen in radar images of the layers supports the hypothesis of kudeki+bhattacharyya-1999 that wind-driven gradient drift instabilities are operating. In one layer event when topside spread F did not occur, irregularities were distributed uniformly in space throughout the layers. In another event when topside spread F did eventually occur, the irregularities within the pre-existing bottom-type layers were horizontally clustered, with clusters separated by about 30km. The same horizontal periodicity was evident in the radar plumes and large-scale irregularities that emerged later in the event. We surmise that horizontal periodicity in bottom-type layer irregularity distribution is indicative of large-scale horizontal waves in the bottomside F-region that may serve as seed waves for large-scale Rayleigh Taylor instabilities. Key words. Ionosphere (equatorial ionosphere; ionospheric irregularties; plasma waves and instabilities

  4. Equatorial electrojet as part of the global circuit: a case-study from the IEEY

    Directory of Open Access Journals (Sweden)

    A. T. Kobea

    1998-06-01

    Full Text Available Geomagnetic storm-time variations often occur coherently at high latitude and the day-side dip equator where they affect the normal eastward Sq field. This paper presents an analysis of ground magnetic field and ionospheric electrodynamic data related to the geomagnetic storm which occured on 27 May 1993 during the International Equatorial Electrojet Year (IEEY experiment. This storm-signature analysis on the auroral, mid-latitude and equatorial ground field and ionospheric electrodynamic data leads to the identification of a sensitive response of the equatorial electrojet (EEJ to large-scale auroral return current: this response consists in a change of the eastward electric field during the pre-sunrise hours (0400-0600 UT coherently to the high-, mid-, and equatorial-latitude H decrease and the disappearance of the EEJ irregularities between the time-interval 0800-0950 UT. Subsequent to the change in h'F during pre-sunrise hours, the observed foF2 increase revealed an enhancement of the equatorial ionization anomaly (EIA caused by the high-latitude penetrating electric field. The strengthening of these irregularities attested by the Doppler frequency increase tracks the H component at the equator which undergoes a rapid increase around 0800 UT. The ∆H variations observed at the equator are the sum of the following components: SR, DP, DR, DCF and DT.Keywords. Equatorial electrojet · Magnetosphere-ionosphere interactions · Electric fields and currents · Auroral ionosphere · Ionospheric disturbances

  5. Study of midlatitude ionospheric irregularities and E- and F-region coupling based on rocket and radar observations from Japan

    Science.gov (United States)

    Yamamoto, M.

    2015-12-01

    We have been studying ionspheric irregularities in mid-latitude region by using radars, sounding rockets, etc. The mid-latitude ionosphere was considered much stable than those in the equatorial or polar region in the past, but our studies for years have revealed that there are much active variabilities. We found variety of wave-like structures that are specific in the mid-latitudes. One of the phenomena is quasi-periodic echoes (QP echoes) first observed by the MU radar that reflects horizontal plasma-density structures associated to sporadic-E layers. Another phenomenon is medium-scale traveling ionospheric disturbance (MSTID) in the F-region. In the generation mechanism we think that Ionospheric E- and F-region coupling process is important. In this presentation, we will discuss nature of mid-latitude ionosphere based on our observations; the MU radar, sounding rocket campaigns of SEEK-1/2, and recent MSTID rocket experiment from JAXA Uchinoura Space Center in July 2013.

  6. Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring

    Science.gov (United States)

    Su, Yang

    This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross

  7. Spatial irregularities in Jupiter's upper ionosphere observed by Voyager radio occultations

    Science.gov (United States)

    Hinson, D. P.; Tyler, G. L.

    1982-01-01

    Radio scintillations (at 3.6 and 13 cm) produced by scattering from ionospheric irregularities during the Voyager occultations are interpreted using a weak-scattering theory. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yield estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. It is shown that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.

  8. Preface: The International Reference Ionosphere (IRI) at equatorial latitudes

    Science.gov (United States)

    Reinisch, Bodo; Bilitza, Dieter

    2017-07-01

    This issue of Advances in Space Research includes papers that report and discuss improvements of the International Reference Ionosphere (IRI). IRI is the international standard for the representation of the plasma in Earth's ionosphere and recognized as such by the Committee on Space Research (COSPAR), the International Union of Radio Science (URSI), the International Telecommunication Union (ITU), and the International Standardization Organization (ISO). As requested, particularly by COSPAR and URSI, IRI is an empirical model relying on most of the available and reliable ground and space observations of the ionosphere. As new data become available and as older data sources are fully exploited the IRI model undergoes improvement cycles to stay as close to the existing data record as possible. The latest episode of this process is documented in the papers included in this issue using data from the worldwide network of ionosondes, from a few of the incoherent scatter radars, from the Alouette and ISIS topside sounders, and from the Global Navigation Satellite Systems (GNSS). The focus of this issue is on the equatorial and low latitude region that is of special importance for ionospheric physics because it includes the largest densities and steep density gradients in the double hump latitudinal structure, the Equatorial Ionization Anomaly (EIA), which is characteristic for this region.

  9. The growth and decay of equatorial backscatter plumes

    Science.gov (United States)

    Tsunoda, R. T.

    1980-02-01

    During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.

  10. Equatorial electrojet as part of the global circuit: a case-study from the IEEY

    Directory of Open Access Journals (Sweden)

    A. T. Kobea

    Full Text Available Geomagnetic storm-time variations often occur coherently at high latitude and the day-side dip equator where they affect the normal eastward Sq field. This paper presents an analysis of ground magnetic field and ionospheric electrodynamic data related to the geomagnetic storm which occured on 27 May 1993 during the International Equatorial Electrojet Year (IEEY experiment. This storm-signature analysis on the auroral, mid-latitude and equatorial ground field and ionospheric electrodynamic data leads to the identification of a sensitive response of the equatorial electrojet (EEJ to large-scale auroral return current: this response consists in a change of the eastward electric field during the pre-sunrise hours (0400-0600 UT coherently to the high-, mid-, and equatorial-latitude H decrease and the disappearance of the EEJ irregularities between the time-interval 0800-0950 UT. Subsequent to the change in h'F during pre-sunrise hours, the observed foF2 increase revealed an enhancement of the equatorial ionization anomaly (EIA caused by the high-latitude penetrating electric field. The strengthening of these irregularities attested by the Doppler frequency increase tracks the H component at the equator which undergoes a rapid increase around 0800 UT. The ∆H variations observed at the equator are the sum of the following components: SR, DP, DR, DCF and DT.

    Keywords. Equatorial electrojet · Magnetosphere-ionosphere interactions · Electric fields and currents · Auroral ionosphere · Ionospheric disturbances

  11. Effects of the equatorial ionosphere on L-band Earth-space transmissions

    Science.gov (United States)

    Smith, Ernest K.; Flock, Warren L.

    1993-01-01

    Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.

  12. Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India

    Directory of Open Access Journals (Sweden)

    R. Sridharan

    Full Text Available The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N, India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii significant increase in h' F immediately following the eclipse and (iii distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.

    Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities

  13. Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India

    Directory of Open Access Journals (Sweden)

    R. Sridharan

    2002-12-01

    Full Text Available The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N, India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii significant increase in h' F immediately following the eclipse and (iii distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities

  14. Equatorial ionospheric electric fields during the November 2004 magnetic storm

    OpenAIRE

    Fejer, Bela G.; Jensen, J. W.; Kikuchi, T.; Abdu, M. A.; Chau, J. L.

    2007-01-01

    [1] We use radar measurements from the Jicamarca Radio Observatory, magnetometer observations from the Pacific sector and ionosonde data from Brazil to study equatorial ionospheric electric fields during the November 2004 geomagnetic storm. Our data show very large eastward and westward daytime electrojet current perturbations with lifetimes of about an hour (indicative of undershielding and overshielding prompt penetration electric fields) in the Pacific equatorial region during the November...

  15. Influence of Ionospheric Irregularities on GNSS Remote Sensing

    Directory of Open Access Journals (Sweden)

    M. V. Tinin

    2015-01-01

    Full Text Available We have used numerical simulation to study the effects of ionospheric irregularities on accuracy of global navigation satellite system (GNSS measurements, using ionosphere-free (in atmospheric research and geometry-free (in ionospheric research dual-frequency phase combinations. It is known that elimination of these effects from multifrequency GNSS measurements is handi-capped by diffraction effects during signal propagation through turbulent ionospheric plasma with the inner scale being smaller than the Fresnel radius. We demonstrated the possibility of reducing the residual ionospheric error in dual-frequency GNSS remote sensing in ionosphere-free combination by Fresnel inversion. The inversion parameter, the distance to the virtual screen, may be selected from the minimum of amplitude fluctuations. This suggests the possibility of improving the accuracy of GNSS remote sensing in meteorology. In the study of ionospheric disturbances with the aid of geometry-free combination, the Fresnel inversion eliminates only the third-order error. To eliminate the random TEC component which, like the measured average TEC, is the first-order correction, we should use temporal filtering (averaging.

  16. Characteristics of ionospheric irregularities causing scintillations at VHF/UHF

    International Nuclear Information System (INIS)

    Vats, H.O.; Deshpande, M.R.; Rastogi, R.G.

    1978-01-01

    Some properties of ionization irregularities using amplitude scintillation records of radio beacons from ATS-6 (phase II) at Ootacamund, India have been investigated. For the estimation of scale-size and strength of the irregularities a simple diffraction model has been used which explains only weak and moderate equatorial scintillation observations. It was found that the scale sizes of day time E-region irregularities are smaller than those in the F-region during night time in addition, irregularities are generated initially at large scale sizes which later break up into smaller scale sizes

  17. Features of highly structured equatorial plasma irregularities deduced from CHAMP observations

    Science.gov (United States)

    Xiong, C.; Lühr, H.; Ma, S. Y.; Stolle, C.; Fejer, B. G.

    2012-08-01

    In this study five years of CHAMP (Challenging Mini-satellite Payload) fluxgate magnetometer (FGM) data is used to investigate the characteristics of Equatorial Plasma Bubbles (EPBs). We filtered the FGM data by using band-passes with four different cut-off periods to get the EPBs with different maximum spatial scale sizes in the meridional plane ranging from 76-608 km. Associated with the EPB observations at about 400 km, the typical altitude of CHAMP during the year 2000-2005, we also investigate the post-sunset equatorial vertical plasma drift data from ROCSAT-1 (Republic of China Satellite 1). Since the height of the F-layer is highly correlated with the vertical plasma drift and solar flux, we sorted the ROCSAT-1 data into different groups by F10.7. From the integrated vertical drift we have estimated the post-sunset uplift of the ionosphere. By comparing the properties of EPB occurrence for different scale sizes with the global distribution of plasma vertical uplift, we have found that EPBs reaching higher altitudes are more structured than those which are sampled by CHAMP near the top side of the depleted fluxtube. Such a result is in accord with 3-D model simulations (Aveiro and Hysell, 2010). Small-scale EPB structures are observed by CHAMP when the irregularities reach apex heights of 800 km and more. Such events are encountered primarily in the Brazilian sector during the months around November, when the post-sunset vertical plasma drift is high.

  18. The Plasma Environment Associated With Equatorial Ionospheric Irregularities

    Science.gov (United States)

    Smith, Jonathon M.; Heelis, R. A.

    2018-02-01

    We examine the density structure of equatorial depletions referred to here as equatorial plasma bubbles (EPBs). Data recorded by the Ion Velocity Meter as part of the Coupled Ion Neutral Dynamics Investigation (CINDI) aboard the Communication/Navigation Outage Forecasting System (C/NOFS) satellite are used to study EPBs from 1600 to 0600 h local time at altitudes from 350 to 850 km. The data are taken during the 7 years from 2008 to 2014, more than one half of a magnetic solar cycle, that include solar minimum and a moderate solar maximum. Using a rolling ball algorithm, EPBs are identified by profiles in the plasma density, each having a depth measured as the percent change between the background and minimum density (ΔN/N). During solar moderate activity bubbles observed in the topside postsunset sector are more likely to have large depths compared to those observed in the topside postmidnight sector. Large bubble depths can be observed near 350 km in the bottomside F region in the postsunset period. Conversely at solar minimum the distribution of depths is similar in the postsunset and postmidnight sectors in all longitude sectors. Deep bubbles are rarely observed in the topside postsunset sector and never in the bottomside above 400 km in altitude. We suggest that these features result from the vertical drift of the plasma for these two solar activity levels. These drift conditions affect both the background density in which bubbles are embedded and the growth rate of perturbations in the bottomside where bubbles originate.

  19. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    International Nuclear Information System (INIS)

    Erickson, W.C.; Mahoney, M.J.; Jacobson, A.R.; Knowles, S.H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities. 10 references

  20. Is there a hole in the topside, equatorial ionosphere?

    Directory of Open Access Journals (Sweden)

    D. Gallagher

    Full Text Available A paper in 2000 (Huba, 2000 found a depression in electron density in the topside ionosphere near the magnetic equator, based on the SAMI-2 physical ionospheric model. The model showed, for the first time, the formation of a hole in electron density in the altitude range 1500–2500 km at geomagnetic equatorial latitudes. The model produced the hole because of transhemispheric O+ flows that collisionally couple to H+, transporting it to lower altitudes, and thereby reducing the electron density at high altitudes. At that time and until now, no published observations have been reported to confirm or refute this numerical result. Recent, new analysis of Dynamics Explorer 1 Retarding Ion Mass Spectrometer measurements provides the first tentative experimental support for this model result. Keywords: Ionosphere, Topside, Magnetic equator, Plasmasphere

  1. Long wavelength irregularities in the equatorial electrojet

    OpenAIRE

    Kudeki, E.; Farley, D. T.; Fejer, Bela G.

    1982-01-01

    We have used the radar interferometer technique at Jicamarca to study in detail irregularities with wavelengths of a few kilometers generated in the unstable equatorial electrojet plasma during strong type 1 conditions. In-situ rocket observations of the same instability process are discussed in a companion paper. These large scale primary waves travel essentially horizontally and have large amplitudes. The vertical electron drift velocities driven by the horizontal wave electric fields reach...

  2. Electric Field and Plasma Density Observations of Irregularities and Plasma Instabilities in the Low Latitude Ionosphere Gathered by the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.

    2012-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field

  3. Global scale ionospheric irregularities associated with thunderstorm activity

    International Nuclear Information System (INIS)

    Pulinets, Sergey A.; Depuev, Victor H.

    2003-01-01

    The potential difference near 280 kV exists between ground and ionosphere. This potential difference is generated by thunderstorm discharges all over the world, and return current closes the circuit in the areas of fair weather (so-called fair weather current). The model calculations and experimental measurements clearly demonstrate non-uniform latitude-longitude distribution of electric field within the atmosphere. The recent calculations show that the strong large scale vertical atmospheric electric field can penetrate into the ionosphere and create large scale irregularities of the electron concentration. To check this the global distributions of thunderstorm activity obtained with the satellite monitoring for different seasons were compared with the global distributions of ionosphere critical frequency (which is equivalent to peak electron concentration) obtained with the help of satellite topside sounding. The similarity of the obtained global distributions clearly demonstrates the effects of thunderstorm electric fields onto the Earth's ionosphere. (author)

  4. Features of highly structured equatorial plasma irregularities deduced from CHAMP observations

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2012-08-01

    Full Text Available In this study five years of CHAMP (Challenging Mini-satellite Payload fluxgate magnetometer (FGM data is used to investigate the characteristics of Equatorial Plasma Bubbles (EPBs. We filtered the FGM data by using band-passes with four different cut-off periods to get the EPBs with different maximum spatial scale sizes in the meridional plane ranging from 76–608 km. Associated with the EPB observations at about 400 km, the typical altitude of CHAMP during the year 2000–2005, we also investigate the post-sunset equatorial vertical plasma drift data from ROCSAT-1 (Republic of China Satellite 1. Since the height of the F-layer is highly correlated with the vertical plasma drift and solar flux, we sorted the ROCSAT-1 data into different groups by F10.7. From the integrated vertical drift we have estimated the post-sunset uplift of the ionosphere. By comparing the properties of EPB occurrence for different scale sizes with the global distribution of plasma vertical uplift, we have found that EPBs reaching higher altitudes are more structured than those which are sampled by CHAMP near the top side of the depleted fluxtube. Such a result is in accord with 3-D model simulations (Aveiro and Hysell, 2010. Small-scale EPB structures are observed by CHAMP when the irregularities reach apex heights of 800 km and more. Such events are encountered primarily in the Brazilian sector during the months around November, when the post-sunset vertical plasma drift is high.

  5. Artificial periodic irregularities in the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    M. T. Rietveld

    1996-12-01

    Full Text Available Artificial periodic irregularities (API are produced in the ionospheric plasma by a powerful standing electromagnetic wave reflected off the F region. The resulting electron-density irregularities can scatter other high-frequency waves if the Bragg scattering condition is met. Such measurements have been performed at mid-latitudes for two decades and have been developed into a useful ionospheric diagnostic technique. We report here the first measurements from a high-latitude station, using the EISCAT heating facility near Tromsø, Norway. Both F-region and lower-altitude ionospheric echoes have been obtained, but the bulk of the data has been in the E and D regions with echoes extending down to 52-km altitude. Examples of API are shown, mainly from the D region, together with simultaneous VHF incoherent-scatter-radar (ISR data. Vertical velocities derived from the rate of phase change during the irregularity decay are shown and compared with velocities derived from the ISR. Some of the API-derived velocities in the 75–115-km height range appear consistent with vertical neutral winds as shown by their magnitudes and by evidence of gravity waves, while other data in the 50–70-km range show an unrealistically large bias. For a comparison with ISR data it has proved difficult to get good quality data sets overlapping in height and time. The initial comparisons show some agreement, but discrepancies of several metres per second do not yet allow us to conclude that the two techniques are measuring the same quantity. The irregularity decay time-constants between about 53 and 70 km are compared with the results of an advanced ion-chemistry model, and height profiles of recorded signal power are compared with model estimates in the same altitude range. The calculated amplitude shows good agreement with the data in that the maximum occurs at about the same height as that of the measured amplitude. The calculated time-constant agrees very well with the

  6. Quiet Time Depression of the Equatorial Electrojet and Dynamics of the F-layer Ionosphere

    Science.gov (United States)

    Khadka, S.; Valladares, C. E.; Doherty, P.

    2017-12-01

    The depression of the equatorial electrojet (EEJ) is marked by a westward current due to streaming movement of laterally limited (±3°) charged particles in the ionospheric E region during the day along the magnetic equator. It is a complex low-latitude phenomenon and driven by various sources of electric fields associated with global neutral wind, solar tidal force, Interplanetary magnetic Field (IMF), etc. This unique physical property of the equatorial ionosphere holds a great promise for sorting out the governing mechanism of the dayside ionospheric electrodynamics and the onset of the enigmatic plasma structures in the ionospheric layers. Present study provides an overview of the special sequence of the longitudinal, seasonal, and occurrence rate variability of the depression of the EEJ, including its temporal variation, using data from an excellent chain of magnetic and ionospheric observatories along the low-latitude regions. A case and statistical study of the geomagnetically quiet time depression of EEJ strengths is presented using a pair of magnetometers, one located at the dip equator and another off the dip equator (±6° to ±9° away) in the American low-latitude regions. The significance of the variability of the depression of the EEJ current observed in the scenario of vertical drifts, sporadic E-layer, the equatorial F region plasma fountain, and height of the peak ionization in the F-layer, as well as GPS-TEC distributions, will be investigated.

  7. Spatial irregularities in Jupiter's upper ionosphere observed by voyager radio occultations

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, D.P.; Tyler, G.L.

    1982-07-01

    Dual frequency radio occultation experiments carried out with Voyagers 1 and 2 provided data on the spatial irregularities in Jupiter's ionosphere at four different locations. Sample spectra of weak fluctuations in amplitude and phase of the 3.6-cm and 13-cm wavelength radio signals can be interpreted by using the theory for scattering from an anisotropic power law phase screen. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yielded estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. Equipment limitations and the method of analysis constrain the observations to irregularities of approximate size 1--200 km. No evidence of the inner or outer scale of the irregularities was found. For length scales in the range given, the three-dimensional spatial spectrum obeys a power law with exponent varying from -3.0 to -3.7, and the root mean square fractional variations in electron density are 1--15%. All observed irregularities appear to be anisotropic with axial ratios between 2:1 and 10:1. Ionospheric parameters vary with altitude and latitude. We conclude that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.

  8. Rayleigh-Taylor and wind-driven instabilities of the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Straus, J.M.

    1979-01-01

    We have made a thorough re-examination of the Rayleigh-Taylor instability in the nighttime equatorial ionosphere from approx.100 km to the bottomside F region. We have taken into account explicitly the following effects which have been ignored by other workers in various combinations: (1) The eastward drift of the ionosphere caused by the nighttime polarization electric field, (2) the eastward nighttime neutral wind, and (3) recombination in the F and E regions. We found that, well below the bottomside F region, the Rayleigh-Taylor mode can be unstable and is driven by an eastward neutral wind rather than by gravitational drift. Formation of ionospheric bubbles below the bottomside F region is consistent with the observation of lower ionospheric ions in F region ionospheric holes; furthermore, seasonal and shorter term variations in spread-F occurrence may be associated with variations in the neutral wind and polarization electric field

  9. A study on ionospheric scintillation near the EIA crest in relation to equatorial electrodynamics

    Science.gov (United States)

    Chatterjee, S.; Chakraborty, S. K.; Veenadhari, B.; Banola, S.

    2014-02-01

    Equatorial electrojet (EEJ) data, which are considered as a proxy index of equatorial electric field, are analyzed in conjunction with equatorial ionosonde, total electron content (TEC) and scintillation data near the equatorial ionization anomaly (EIA) crest for the equinoctial months of high solar activity years (2011-2012) to identify any precursor index of postsunset evolution of equatorial electron density irregularities and subsequent occurrence of scintillation near the northern EIA crest. Only geomagnetically quiet and normal electrojet days are considered. The diurnal profiles of EEJ on the scintillation days exhibit a secondary enhancement in the afternoon to presunset hours following diurnal peaks. A series of electrodynamical processes conducive for generation of irregularities emerge following secondary enhancement of EEJ. Latitudinal profile of TEC exhibits resurgence in EIA structure around the postsunset period. Diurnal TEC profile near the EIA crest resembles postsunset secondary enhancement on the days with afternoon enhancement in EEJ. Occurrence of equatorial spread F and postsunset scintillation near the EIA crest seems to follow the secondary enhancement events in EEJ. Both the magnitude and duration of enhanced EEJ are found to be important for postsunset intensification of EIA structure and subsequent occurrence of equatorial irregularities. A critical value combining the two may be considered an important precursor for postsunset occurrence of scintillation near the EIA crest. The results are validated using archived data for the years 1989-1990 and explained in terms of modulation effects of enhanced equatorial fountain.

  10. Scintillations associated with bottomside sinusoidal irregularities in the equatorial F region

    Science.gov (United States)

    Basu, S.; Basu, S.; Valladares, C. E.; Dasgupta, A.; Whitney, H. E.

    1986-01-01

    Multisatellite scintillation observations and spaced receiver drift measurements are presented for a category of equatorial F region plasma irregularities characterized by nearly sinusoidal waveforms in the ion number density. The observations were made at Huancayo, Peru, and the measurements at Ancon, Peru, associated with irregularities observed by the Atmospheric-Explorer-E satellite on a few nights in December 1979. Utilizing ray paths to various geostationary satellites, it was found that the irregularities grow and decay almost simultaneously in long-lived patches extending at least 1000 km in the east-west direction.

  11. Global scale ionospheric irregularities associated with thunderstorm activity

    CERN Document Server

    Pulinets, S A

    2002-01-01

    The potential difference near 280 kV exists between ground and ionosphere. This potential difference is generated by thunderstorm discharges all over the world, and return current closes the circuit in the areas of fair weather (so-called fair weather current). The model calculations and experimental measurements clearly demonstrate non-uniform latitude-longitude distribution of electric field within the atmosphere. The recent calculations show that the strong large scale vertical atmospheric electric field can penetrate into the ionosphere and create large scale irregularities of the electron concentration. To check this the global distributions of thunderstorm activity obtained with the satellite monitoring for different seasons were compared with the global distributions of ionosphere critical frequency (which is equivalent to peak electron concentration) obtained with the help of satellite topside sounding. The similarity of the obtained global distributions clearly demonstrates the effects of thunderstor...

  12. Observations in equatorial anomaly region of total electron content enhancements and depletions

    Directory of Open Access Journals (Sweden)

    N. Dashora

    2005-10-01

    Full Text Available A GSV 4004A GPS receiver has been operational near the crest of the equatorial anomaly at Udaipur, India for some time now. The receiver provides the line-of-sight total electron content (TEC, the phase and amplitude scintillation index, σφ and S4, respectively. This paper presents the first results on the nighttime TEC depletions associated with the equatorial spread F in the Indian zone. The TEC depletions are found to be very well correlated with the increased S4 index. A new feature of low-latitude TEC is also reported, concerning the observation of isolated and localized TEC enhancements in the nighttime low-latitude ionosphere. The TEC enhancements are not correlated with the S4 index. The TEC enhancements have also been observed along with the TEC depletions. The TEC enhancements have been interpreted as the manifestation of the plasma density enhancements reported by Le et al. (2003.

    Keywords. Ionosphere (Equatorial ionosphere; Ionospheric irregularities

  13. Radar observation of the equatorial counter-electrojet

    International Nuclear Information System (INIS)

    Hanuise, C.; Crochet, M.; Gouin, P.; Ogubazghi, Ghebrebrhan

    1979-01-01

    Electron drift velocity in the equatorial electrojet has been measured for a few years by coherent radar techniques in Africa. For the first time such measurements were performed during a strong reversal of the ionospheric current dubbed 'counter-electrojet'. These observations agree with the theories of the plasma instabilities at the origin of the electron density irregularities giving the radar echoes

  14. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  15. Broadband Ionospheric Scintillation Measurements from Space

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  16. Correlation analysis between the occurrence of ionospheric scintillation at the magnetic equator and at the southern peak of the Equatorial Ionization Anomaly

    Science.gov (United States)

    de Lima, G. R. T.; Stephany, S.; de Paula, E. R.; Batista, I. S.; Abdu, M. A.; Rezende, L. F. C.; Aquino, M. G. S.; Dutra, A. P. S.

    2014-06-01

    Ionospheric scintillation refers to amplitude and phase fluctuations in radio signals due to electron density irregularities associated to structures named ionospheric plasma bubbles. The phenomenon is more pronounced around the magnetic equator where, after sunset, plasma bubbles of varying sizes and density depletions are generated by plasma instability mechanisms. The bubble depletions are aligned along Earth's magnetic field lines, and they develop vertically upward over the magnetic equator so that their extremities extend in latitude to north and south of the dip equator. Over Brazil, developing bubbles can extend to the southern peak of the Equatorial Ionization Anomaly, where high levels of ionospheric scintillation are common. Scintillation may seriously affect satellite navigation systems, such as the Global Navigation Satellite Systems. However, its effects may be mitigated by using a predictive model derived from a collection of extended databases on scintillation and its associated variables. This work proposes the use of a classification and regression decision tree to perform a study on the correlation between the occurrence of scintillation at the magnetic equator and that at the southern peak of the equatorial anomaly. Due to limited size of the original database, a novel resampling heuristic was applied to generate new training instances from the original ones in order to improve the accuracy of the decision tree. The correlation analysis presented in this work may serve as a starting point for the eventual development of a predictive model suitable for operational use.

  17. Temporal and Spatial Characterization of GPS Fading From Ionospheric Irregularities Under Low latitude

    Science.gov (United States)

    De Paula, E. R.; Moraes, A. D. O.; Vani, B. C.; Sobral, J. H. A.; Abdu, M. A.; Galera Monico, J. F.

    2017-12-01

    The ionosphere over the peak of the anomaly represents a treat for navigation systems based on GNSS. Brazilian territory is mostly under this harsh layer for satellite communication in general and in particular for navigation, like GPS users, where their receivers tracking performance are damaged under scintillation conditions. Ionospheric scintillation is responsible for significant degradation in the accuracy of navigation and positioning. Phase shifts accompanied by amplitude fades significantly degrades the signal-to-noise ratio of the received signal disrupting the channel and loosing navigation performance. The stronger the scintillations are, more difficulty will be for the GNSS receiver tracking loops to recover the phase and code replicas. These phenomena under specific geophysical conditions may severely affect the system availability and positioning. In this work the temporal characteristics of amplitude scintillation will be analyzed at the three available GPS frequencies, L1, L2C and L5. Aspect like fading duration and depth will be evaluated and compared among the three available frequencies for the current solar cycle. This work will use GPS scintillation data recorded during six months of data during 2014 to 2015 at three stations under Brazilian territory located near the southern crest of the equatorial ionization anomaly. The analysis will be performed focusing on the fading profile of the three frequencies comparing how the fading of those signals behave statistically between them. Aspects like loss of lock, spatial orientation between the signal across the ionospheric irregularity will also be discussed showing how much more susceptible the new frequencies might be in comparison to the widely used and studied L1 frequency.

  18. Relation of decorrelated transionospheric GPS signal fluctuations from two stations in the northern anomaly crest region with equatorial ionospheric dynamics

    Science.gov (United States)

    Paul, K. S.; Paul, A.

    2017-05-01

    The ionosphere around the northern crest of the equatorial ionization anomaly (EIA) and beyond exhibits rapid temporal as well as spatial development of ionization density irregularities during postsunset hours. A GPS campaign was conducted during September 2012 and April 2013 from the Institute of Radio Physics and Electronics, Calcutta (22.58°N, 88.38°E geographic; magnetic dip: 32°N), and North Bengal University (NBU), Siliguri (26.72°N, 88.39°E geographic, magnetic dip: 39.49°N) in India in order to assess and quantify differences, if any, in the nature of carrier to noise ratio (C/N0) fluctuations observed on the same satellite link around the same time interval from these stations. Significant decorrelation of the received signals was found when tracking the same satellite vehicle (SV) link from these stations during periods of scintillations. Low values of correlation coefficient of C/N0 at L1 frequency recorded on the same SV link at these two stations were found to correspond with high irregularity characteristic velocities. North-south spatial displacement rates of the impact of ionospheric irregularities were calculated based on coordinated GPS observations which followed an increasing trend with irregularity characteristic velocities measured at VHF. Values of characteristic velocities in excess of 36 m/s were also found to result in large receiver position deviations 3.5-4.0 m during periods of scintillations. Information related to time lag associated with occurrence of scintillations on the same SV link observed from two stations could be useful for improving performance of transionospheric satellite-based position determination techniques.

  19. Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet

    Science.gov (United States)

    Cole, Keith D.

    1993-01-01

    The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.

  20. Nonlinearly coupled dynamics of irregularities in the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Atul, J.K., E-mail: jkatulphysics@gmail.com [Department of Physics, College of Commerce under Magadh University, Patna 800020 (India); Sarkar, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India); Singh, S.K. [Department of Physics, College of Commerce under Magadh University, Patna 800020 (India)

    2016-04-01

    Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed. - Highlights: • Nonlinear influence of Farley Buneman mode on the Gradient drift mode, is investigated. • Electron collision frequency and density gradient scale length get modified. • A new quasimode gets excited due to the competition between these modes. • It seems to be important for modelling of Equatorial Electrojet current system.

  1. Nonlinearly coupled dynamics of irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Atul, J.K.; Sarkar, S.; Singh, S.K.

    2016-01-01

    Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed. - Highlights: • Nonlinear influence of Farley Buneman mode on the Gradient drift mode, is investigated. • Electron collision frequency and density gradient scale length get modified. • A new quasimode gets excited due to the competition between these modes. • It seems to be important for modelling of Equatorial Electrojet current system.

  2. Ionospheric topside sounding.

    Science.gov (United States)

    Calvert, W

    1966-10-14

    Over the past few years, the satellite topside sounders have significantly contributed to the understanding of the upper ionosphere. A great quantity of radio echo data has been accumulated, from which the ionospheric electrondensity distribution can be determined. The topside measurements of electron density essentially agree with similar measurements from the ground, except for an occasional 10-percent discrepancy near the peak of the ionosphere. While horizontal non-uniformity is a likely cause, this discrepancy has not yet been adequately explained. The electron-density scale heights measured at a constant altitude indicate both a higher temperature and a heavier mean ion mass at high latitudes. At low latitudes the topside measurements have shown the detailed latitudinal structure of the equatorial anomaly, demonstrating control by the geomagnetic field. A variety of electron-density irregularities have been studied. Most are greatly elongated along the magnetic field, and produce echoes either by lateral scattering, if they are thin, or by longitudinal ducting, if they are thick. Some of the thick irregularities are continuous between the hemispheres and support conjugate echo propagation. The topside sounders have revealed the complex structure of the ionosphere near the auroral zone and at higher latitudes. At night an east-west trough of greatly reduced electron density occurs equatorward of the auroral zone. At the auroral zone itself the electron density is high and quite variable, both in space and time. The electron density at the polar cap within the auroral zone is often uniform and smooth. Ionospheric irregularities are common in the area of the trough and the auroral zone. Among other satellites, the topside sounders have been used in various plasma studies involving the excitation and propagation of waves. These studies suggest that the ionosphere is an appropriate region for future plasma physics investigations, especially with rocket and

  3. Dependence on zenith angle of the strength of 3-meter equatorial electrojet irregularities

    International Nuclear Information System (INIS)

    Ierkic, H.M.; Fejer, B.G.; Farley, D.T.

    1980-01-01

    Radar measurements in Peru were used to deduce the zenith angle dependence of the scattering cross section of plasma irregularities generated by instabilities in the equatorial electrojet. The irregularities probed by the 50 MHz Jicamarca radar had a wavelength of 3m. The cross section for the type 2 irregularities was isotopic in the plane perpendicular to the magnetic field, while the cross section for the stronger type 1 irregularities varied with zenith angle at a rate of approximately 0.3 dB/degree; the horizontally traveling waves were more than 100 times stronger than those traveling vertically

  4. ARCAD3-SAFARI coordinated study of auroral and polar F-region ionospheric irregularities

    International Nuclear Information System (INIS)

    Villain, J.P.; Hanuise, C.; Beghin, C.

    1985-01-01

    Simultaneous observations of F-region ionospheric irregularities have been performed with the SAFARI ground based HF radars and the ISOPROBE experiment on board the AUREOL-3 satellite. Among seven orbits during which the satellite trajectory was directly in the radar beam or in the vicinity, four of them have been analysed in detail. The spectral power of the electron density variations ΔNe/Ne has been calculated for wavelengths between 20 m and 1 km from the ISOPROBE high time resolution thermal plasma measurements. One spectrum is obtained every 1.2 sec., which corresponds to about 10 km along the satellite trajectory. The SAFARI experiment is a set of two HF coherent radars located at Lycksele (Sweden) and Oulu (Finland). These radars are sensitive to F-region ionospheric irregularities of 10 m wavelength in the polar and auroral ionosphere. The phase velocity of the irregularities obtained from the Doppler spectrum is related to the ambient plasma drift. The presence of echoes observed with the SAFARI radars is compared with the spectral power of the electron density variations deduced from the ISOPROBE in-situ measurements. A good agreement is found between the two sets of observations and a numerical value of the spectral power corresponding to detection of echoes by the radar is given. A synoptical view of the event is given and interpreted according to the existing theories on plasma irregularities

  5. Letter to the editor: Electric field fluctuations (25-35 min in the midnight dip equatorial ionosphere

    Directory of Open Access Journals (Sweden)

    J. Hanumath Sastri

    2000-02-01

    Full Text Available Measurements with a HF Doppler sounder at Kodaikanal (10.2°N, 77.5°E, geomagnetic latitude 0.8°N showed conspicuous quasi-periodic fluctuations (period 25-35 min in F region vertical plasma drift, Vz in the interval 0047-0210 IST on the night of 23/24 December, 1991 (Ap = 14, Kp < 4-. The fluctuations in F region vertical drift are found to be coherent with variations in Bz (north-south component of interplanetary magnetic field (IMF, in geomagnetic H/X components at high-mid latitude locations both in the sunlit and dark hemispheres and near the dayside dip equator, suggestive of DP2 origin. But the polarity of the electric field fluctuations at the midnight dip equator (eastward is the same as the dayside equator inferred from magnetic variations, contrary to what is expected of equatorial DP2. The origin of the coherent occurrence of equatorial electric field fluctuations in the DP2 range of the same sign in the day and night hemispheres is unclear and merits further investigations.Key words: Ionosphere (electric fields and currents; equatorial ionosphere; ionosphere-magnetosphere interactions

  6. Equatorial F-region plasma depletion drifts: latitudinal and seasonal variations

    Directory of Open Access Journals (Sweden)

    A. A. Pimenta

    2003-12-01

    Full Text Available The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation, and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles. The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude, Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7° S region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991 to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented and discussed.Key words. Ionosphere (ionosphere-atmosphere interactions; ionospheric irregularities; instruments and techniques

  7. Influence of Ionospheric Weather on GNSS Radio Occultation Signals

    Science.gov (United States)

    Yue, X.; Schreiner, W. S.; Pedatella, N. M.; Kuo, Y. H.

    2016-12-01

    Transient loss of lock (LOL) is one of the key space weather effects on the Global Navigation Satellite System (GNSS). Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) observations during 2007-2011, we have analyzed the signal cycle slip (CS) occurrence comprehensively and its correlation to the ionospheric weather phenomena such as sporadic E (Es), equatorial F region irregularity (EFI), and the ionospheric equatorial ionization anomaly (EIA). The high vertical resolution of RO observations enables us to distinguish the CS resulting from different ionospheric layers clearly on a global scale. In the E layer, the CS is dominated by the Es occurrence, while in the F layer, the CS is mainly related to the EIA and EFI at low and equatorial latitudes. In the polar region, the CS is primarily related to polar cap electron density gradients. The overall average CS (> 6 cycles) occurrence is 23% per occultation, with the E (50-150 km) and F (150-600 km) layers contributing 8.3% and 14.7%, respectively. Awareness of the effect of the ionospheric weather on the CS of the low-Earth-orbit (LEO)-based GNSS signal could be beneficial to a variety of applications, including the LEO-based GNSS data processing and the corresponding hardware/firmware design.

  8. Drift velocities of 150-km Field-Aligned Irregularities observed by the Equatorial Atmosphere Radar

    Directory of Open Access Journals (Sweden)

    Yuichi Otsuka

    2013-11-01

    Full Text Available Between 130 and 170 km altitude in the daytime ionosphere, the so-called 150-km field-aligned irregularities (FAIs have been observed since the 1960s at equatorial regions with several very high frequency (VHF radars. We report statistical results of 150-km FAI drift velocities on a plane perpendicular to the geomagnetic field, acquired by analyzing the Doppler velocities of 150-km FAIs observed with the Equatorial Atmosphere Radar (EAR at Kototabang, Indonesia during the period from Aug. 2007 to Oct. 2009. We found that the southward/upward perpendicular drift velocity of the 150-km FAIs tends to decrease in the afternoon and that this feature is consistent with that of F-region plasma drift velocities over the magnetic equator. The zonal component of the 150-km FAI drift velocity is westward and decreases with time, whereas the F-region plasma drift velocity observed with the incoherent scatter radar at Jicamarca, Peru, which is westward, reaches a maximum at about noon. The southward/upward and zonal drift velocities of the 150-km FAIs are smaller than that of the F-region plasma drift velocity by approximately 3 m/s and 25 m/s, respectively, on average. The large difference between the 150-km FAI and F-region plasma drift velocities may not arise from a difference in the magnetic latitudes at which their electric fields are generated. Electric fields generated at the altitude at which the 150-km FAIs occur may not be negligible.

  9. Long wavelength irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Kudeki, E.; Farley, D.T.; Fejer, B.G.

    1982-01-01

    We have used the radar interferometer technique at Jicamarca to study in detail irregularities with wavelengths of a few kilometers generated in the unstable equatorial electrojet plasma during strong type 1 conditions. In-situ rocket observations of the same instability process are discussed in a companion paper. These large scale primary waves travel essentially horizontally and have large amplitudes. The vertical electron drift velocities driven by the horizontal wave electric fields reach or exceed the ion-acoustic velocity even though the horizontal phase velocity of the wave is considerably smaller. A straightforward extension to the long wavelength regime of the usual linear theory of the electrojet instability explains this and several other observed features of these dominant primary waves

  10. Daily observations of the development of the ionospheric equatorial anomaly by means of differential Doppler shift method

    International Nuclear Information System (INIS)

    Huang, Y.N.; Cheng, K.; Chen, S.W.

    1987-01-01

    The differential Doppler frequency shifts observed by receiving coherent radio signals at frequencies of 150 and 400 MHz transmitted from the polar orbiting satellites of U.S. Navy Navigation Satellite System have been used to deduce the latitudinal variations of the ionospheric total electron content (TEC) near the ionospheric equatorial anomaly crest region. All latitudinal variations of TEC thus obtained for each passage of an NNSS satellite are used to construct daily contour plots of TEC in a latitude versus local time coordinates. It has been shown that these contour plot of TEC can be used to investigate the behavior of TEC around equatorial anomaly crest region. Some results are presented and discussed. 18 references

  11. Numerical Simulation of the Time Evolution of Small-Scale Irregularities in the F-Layer Ionospheric Plasma

    Directory of Open Access Journals (Sweden)

    O. V. Mingalev

    2011-01-01

    Full Text Available Dynamics of magnetic field-aligned small-scale irregularities in the electron concentration, existing in the F-layer ionospheric plasma, is investigated with the help of a mathematical model. The plasma is assumed to be a rarefied compound consisting of electrons and positive ions and being in a strong, external magnetic field. In the applied model, kinetic processes in the plasma are simulated by using the Vlasov-Poisson system of equations. The system of equations is numerically solved applying a macroparticle method. The time evolution of a plasma irregularity, having initial cross-section dimension commensurable with a Debye length, is simulated during the period sufficient for the irregularity to decay completely. The results of simulation indicate that the small-scale irregularity, created initially in the F-region ionosphere, decays accomplishing periodic damped vibrations, with the process being collisionless.

  12. Equatorial F-region plasma depletion drifts: latitudinal and seasonal variations

    Directory of Open Access Journals (Sweden)

    A. A. Pimenta

    Full Text Available The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation, and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles. The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude, Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7° S region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991 to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented

  13. Japan contribution to studies of low-latitude and equatorial ionosphere over Southeast Asia

    Science.gov (United States)

    Yamamoto, M.; Ishii, M.; Otsuka, Y.; Shiokawa, K.; Saito, A.; Tsuda, T.; Fukao, S.

    2008-12-01

    A dense observation network to study ionosphere is deployed over Southeast Asian countries of Indonesia, Thailand, and Vietnam. The Equatorial Atmosphere Radar (EAR) at Kototabang, Indonesia is the center facility, and supporting instruments, i.e., an ionosonde, a VHF ionosphere radar, an optical imager, a GPS scintillation receiver, a magnetometer, a meteor radar, etc. are collocated. NICT operates the ionosonde network SEALION (South East Asian Low-latitude IOnosonde Network) that meridionally extends from the EAR site to Chumphong and Chiang Mai in Thailand, and two more sites (Baq Liu and Phy Thuy) in Vietnam. Additional facilities are an MF radar at Pameungpeuk, Indonesia, and an optical imager at Darwin, Australia. We have been observing plasma bubbles since 2001, that, for example, contributed clarification of time- spatial structures of the phenomena, their relationship to the pre-reversal enhancement, control of bubble occurrence by the meridional winds, etc. We are starting studies of their seeding by means of atmospheric waves that propages from the lower atmosphere, too. In 2008, Nagoya University will soon install three Fabry-Perot interferometers at the EAR site, Chiang Mai, and Darwin. We also have a plan to install digital beacon receivers in some of these sites. Next research program that follows CPEA (Coupling Processes in the Equatorial Atmosphere, 2001-2007) is under planning now. Our main facilities cover ± 10° of geomagnetic latitude, where the magnetic declination is relatively small, and the geomagnetic equator is in the geographic northern hemisphere. We will review our achievements, and show on-going efforts and future plans. Collaboration with the C/NOFS satellite, and comparisons to results from the American sector should be beneficial for global-scale understanding of the equatorial ionosphere/atmosphere.

  14. Ionospheric scintillation observations over Kenyan region - Preliminary results

    Science.gov (United States)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  15. A global climatology for equatorial plasma bubbles in the topside ionosphere

    Directory of Open Access Journals (Sweden)

    L. C. Gentile

    2006-03-01

    Full Text Available We have developed a global climatology of equatorial plasma bubble (EPB occurrence based on evening sector plasma density measurements from polar-orbiting Defense Meteorological Satellite Program (DMSP spacecraft during 1989-2004. EPBs are irregular plasma density depletions in the post-sunset ionosphere that degrade communication and navigation signals. More than 14400 EPBs were identified in ~134000 DMSP orbits. DMSP observations basically agree with Tsunoda's (1985 hypothesis that EPB rates peak when the terminator is aligned with the Earth's magnetic field, but there are also unpredicted offsets in many longitude sectors. We present an updated climatology for the full database from 1989-2004 along with new plots for specific phases of the solar cycle: maximum 1989-1992 and 1999-2002, minimum 1994-1997, and transition years 1993, 1998, and 2003. As expected, there are significant differences between the climatologies for solar maximum and minimum and between the two solar maximum phases as well. We also compare DMSP F12, F14, F15, and F16 observations at slightly different local times during 2000-2004 to examine local time effects on EPB rates. The global climatologies developed using the DMSP EPB database provide an environmental context for the long-range prediction tools under development for the Communication/Navigation Outage Forecasting System (C/NOFS mission.

  16. Relationship between vertical ExB drift and F2-layer characteristics in the equatorial ionosphere at solar minimum conditions

    Science.gov (United States)

    Oyekola, Oyedemi S.

    2012-07-01

    Equatorial and low-latitude electrodynamics plays a dominant role in determining the structure and dynamics of the equatorial and low-latitude ionospheric F-region. Thus, they constitute essential input parameters for quantitative global and regional modeling studies. In this work, hourly median value of ionosonde measurements namely, peak height F2-layer (hmF2), F2-layer critical frequency (foF2) and propagation factor M(3000)F2 made at near equatorial dip latitude, Ouagadougou, Burkina Faso (12oN, 1.5oW; dip: 1.5oN) and relevant F2-layer parameters such as thickness parameter (Bo), electron temperature (Te), ion temperature (Ti), total electron content (TEC) and electron density (Ne, at the fixed altitude of 300 km) provided by the International Reference Ionosphere (IRI) model for the longitude of Ouagadougou are contrasted with the IRI vertical drift model to explore in detail the monthly climatological behavior of equatorial ionosphere and the effects of equatorial vertical plasma drift velocities on the diurnal structure of F2-layer parameters. The analysis period covers four months representative of solstitial and equinoctial seasonal periods during solar minimum year of 1987 for geomagnetically quiet-day. We show that month-by-month morphological patterns between vertical E×B drifts and F2-layer parameters range from worst to reasonably good and are largely seasonally dependent. A cross-correlation analysis conducted between equatorial drift and F2-layer characteristics yield statistically significant correlations for equatorial vertical drift and IRI-Bo, IRI-Te and IRI-TEC, whereas little or no acceptable correlation is obtained with observational evidence. Assessment of the association between measured foF2, hmF2 and M(3000)F2 illustrates consistent much more smaller correlation coefficients with no systematic linkage. In general, our research indicates strong departure from simple electrodynamically controlled behavior.

  17. Observational study of ionospheric irregularities and GPS scintillations associated with the 2012 tropical cyclone Tembin passing Hong Kong

    Science.gov (United States)

    Yang, Zhe; Liu, Zhizhao

    2016-05-01

    This study presents the ionospheric responses observed in Hong Kong to a Typhoon, namely, Tembin, from the aspects of the occurrence of ionospheric irregularities and scintillations, using Global Positioning System (GPS) observations from a ground-based GPS scintillation monitoring station in Hong Kong and from GPS receivers on board the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. The ionospheric irregularities and scintillations are characterized by the rate of total electron content variation index (ROTI) and the amplitude scintillation index S4, respectively. The typhoon Tembin formed over the western North Pacific during 18-30 August 2012 and approached Hong Kong during 24-27 August 2012 with the closest distance 290 km from Hong Kong at around 17 universal time (UT) on 25 August 2012. The ground-based observations indicate that in the nighttime period of 20:00-02:00 local time (LT = UT + 8 h) on 26 August when Tembin passed closely to Hong Kong, the ionospheric irregularities and scintillations of GPS signals were observed in the south of Hong Kong, over the area of 13°N ~ 23°N in latitude and 110°E ~ 120°E in longitude. From the COSMIC observations, it shows that the number of radio occultation scintillation events peaks on 26 August 2012 during the passage of Tembin. Without the presence of strong geomagnetic or solar activity, it is suspected that gravity waves might be generated in the lower atmosphere and likely seed the formation of ionospheric plasma irregularities. This work for the first time from Hong Kong observes the sign of coupling between the lower atmosphere and ionosphere in a tropical cyclone event, combining both ground- and space-based GPS observation data.

  18. New advantages of the combined GPS and GLONASS observations for high-latitude ionospheric irregularities monitoring: case study of June 2015 geomagnetic storm

    Science.gov (United States)

    Cherniak, Iurii; Zakharenkova, Irina

    2017-05-01

    Monitoring, tracking and nowcasting of the ionospheric plasma density disturbances using dual-frequency measurements of the Global Positioning System (GPS) signals are effectively carried out during several decades. Recent rapid growth and modernization of the ground-based segment gives an opportunity to establish a great database consisting of more than 6000 stations worldwide which provide GPS signals measurements with an open access. Apart of the GPS signals, at least two-third of these stations receive simultaneously signals transmitted by another Global Navigation Satellite System (GNSS)—the Russian system GLONASS. Today, GLONASS signal measurements are mainly used in navigation and geodesy only and very rarely for ionosphere research. We present the first results demonstrating advantages of using several independent but compatible GNSS systems like GPS and GLONASS for improvement of the permanent monitoring of the high-latitude ionospheric irregularities. For the first time, the high-resolution two-dimensional maps of ROTI perturbation were made using not only GPS but also GLONASS measurements. We extend the use of the ROTI maps for analyzing ionospheric irregularities distribution. We demonstrate that the meridional slices of the ROTI maps can be effectively used to study the occurrence and temporal evolution of the ionospheric irregularities. The meridional slices of the geographical sectors with a high density of the GPS and GLONASS measurements can represent spatio-temporal dynamics of the intense ionospheric plasma density irregularities with very high resolution, and they can be effectively used for detailed study of the space weather drivers on the processes of the ionospheric irregularities generation, development and their lifetimes. Using a representative database of 5800 ground-based GNSS stations located worldwide, we have investigated the occurrence of the high-latitude ionospheric plasma density irregularities during the geomagnetic storm of

  19. The equatorial F-layer: progress and puzzles

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    Full Text Available This work reviews some aspects of the ionospheric F-layer in the vicinity of the geomagnetic equator. Starting with a historical introduction, brief summaries are given of the physics that makes the equatorial ionosphere so interesting, concentrating on the large-scale structure rather than the smaller-scale instability phenomena. Several individual topics are then discussed, including eclipse effects, the asymmetries of the `equatorial trough', variations with longitude, the semiannual variation, the effects of the global thermospheric circulation, and finally the equatorial neutral thermosphere, including `superrotation' and possible topographic influences.

    Keyword: Ionosphere (equatorial ionosphere

  20. Predicting ionospheric scintillation: Recent advancements and future challenges

    Science.gov (United States)

    Carter, B. A.; Currie, J. L.; Terkildsen, M.; Bouya, Z.; Parkinson, M. L.

    2017-12-01

    Society greatly benefits from space-based infrastructure and technology. For example, signals from Global Navigation Satellite Systems (GNSS) are used across a wide range of industrial sectors; including aviation, mining, agriculture and finance. Current trends indicate that the use of these space-based technologies is likely to increase over the coming decades as the global economy becomes more technology-dependent. Space weather represents a key vulnerability to space-based technology, both in terms of the space environment effects on satellite infrastructure and the influence of the ionosphere on the radio signals used for satellite communications. In recent decades, the impact of the ionosphere on GNSS signals has re-ignited research interest into the equatorial ionosphere, particularly towards understanding Equatorial Plasma Bubbles (EPBs). EPBs are a dominant source of nighttime plasma irregularities in the low-latitude ionosphere, which can cause severe scintillation on GNSS signals and subsequent degradation on GNSS product quality. Currently, ionospheric scintillation event forecasts are not being routinely released by any space weather prediction agency around the world, but this is likely to change in the near future. In this contribution, an overview of recent efforts to develop a global ionospheric scintillation prediction capability within Australia will be given. The challenges in understanding user requirements for ionospheric scintillation predictions will be discussed. Next, the use of ground- and space-based datasets for the purpose of near-real time ionospheric scintillation monitoring will be explored. Finally, some modeling that has shown significant promise in transitioning towards an operational ionospheric scintillation forecasting system will be discussed.

  1. Investigations of equatorial ionosphere nighttime mode conversion at VLF

    Science.gov (United States)

    Hildebrand, Verne

    1993-05-01

    VLF Radiowave propagation provides one of the few viable tools for exploring the properties of the lower D-region ionosphere. Conversely, VLF communications coverage analysis and prediction is directly dependent on the quality of models for the D-region ionosphere. The VLF Omega navigation signals are an excellent and under-utilized resource for conducting D-region research in direct support of VLF communications. Stations are well placed for investigating polar, mid latitude, and equatorial phenomena. Much can be learned by fully utilizing the very stable signals radiated at five frequencies, available from each of the eight transmitters, and taking full advantage of modal structure. While the Omega signals, 10.2 to 13.6 kHz, are well below the VLF communications band, we contend that much of the knowledge gained on D-region characteristics can be directly applied at the higher frequencies. The opportunity offered by Omega needs to be exploited. With the Global Positioning System (GPS) coming onboard as the prime means for global navigation, pressure is mounting to phase out Omega. In this paper we describe how we are using Omega along with computer codes of full wave VLF propagation, provided to us by the U.S. Naval Ocean Systems Center (NOSC), for ionosphere research and by example illustrate the potential for other investigations.

  2. Four-peak longitudinal distribution of the equatorial plasma bubbles observed in the topside ionosphere: Possible troposphere tide influence

    Science.gov (United States)

    Sidorova, L. N.; Filippov, S. V.

    2018-03-01

    In this paper we consider an idea of the troposphere tide influence on the character of the longitudinal variations in the distribution of the equatorial plasma bubbles (EPBs) observed in the topside ionosphere. For this purpose, the obtained EPB longitudinal patterns were compared with the thermosphere and ionosphere characteristics having the prominent "wave-like" longitudinal structures with wave number 4, which are uniquely associated with the influence of the troposphere DE3 tides. The characteristics of the equatorial mass density anomaly (EMA), equatorial ionization anomaly (EIA), zonal wind and pre-reversal E × B drift enhancement (PRE) were used for comparison. The equinox seasons during high solar activity were under consideration. It was obtained that the longitudinal patterns of the EMA and zonal wind show the surprising similarity with the EPB distributions (R ≅ 0.8, R ≅ 0.72). On the other hand, the resemblance with the ionosphere characteristics (EIA, PRE) is rather faint (R ≅ 0.37, R ≅ 0.12). It was shown that the thermosphere zonal winds are the most possible transfer mediator of the troposphere DE3 tide influence. The most successful moment for the transfer of the troposphere DE3 tide energy takes place in the beginning of the EPB production, namely, during the seed perturbation development.

  3. Simulation studies on the tomographic reconstruction of the equatorial and low-latitude ionosphere in the context of the Indian tomography experiment: CRABEX

    Directory of Open Access Journals (Sweden)

    S. V. Thampi

    2004-11-01

    Full Text Available Equatorial ionosphere poses a challenge to any algorithm that is used for tomographic reconstruction because of the phenomena like the Equatorial Ionization Anomaly (EIA and Equatorial Spread F (ESF. Any tomographic reconstruction of ionospheric density distributions in the equatorial region is not acceptable if it does not image these phenomena, which exhibit large spatial and temporal variability, to a reasonable accuracy. The accuracy of the reconstructed image generally depends on many factors, such as the satellite-receiver configuration, the ray path modelling, grid intersections and finally, the reconstruction algorithm. The present simulation study is performed to examine these in the context of the operational Coherent Radio Beacon Experiment (CRABEX network just commenced in India. The feasibility of using this network for the studies of the equatorial and low-latitude ionosphere over Indian longitudes has been investigated through simulations. The electron density distributions that are characteristic of EIA and ESF are fed into various simulations and the reconstructed tomograms are investigated in terms of their reproducing capabilities. It is seen that, with the present receiver chain existing from 8.5° N to 34° N, it would be possible to obtain accurate images of EIA and the plasma bubbles. The Singular Value Decomposition (SVD algorithm has been used for the inversion procedure in this study. As is known, by the very nature of ionospheric tomography experiments, the received data contain various kinds of errors, like the measurement and discretization errors. The sensitivity of the inversion algorithm, SVD in the present case, to these errors has also been investigated and quantified.

  4. Features of highly structured equatorial plasma irregularities deduced from CHAMP observations

    DEFF Research Database (Denmark)

    Xiong, C.; Luhr, H.; Ma, S. Y.

    2012-01-01

    In this study five years of CHAMP (Challenging Mini-satellite Payload) fluxgate magnetometer (FGM) data is used to investigate the characteristics of Equatorial Plasma Bubbles (EPBs). We filtered the FGM data by using bandpasses with four different cut-off periods to get the EPBs with different......). Since the height of the F-layer is highly correlated with the vertical plasma drift and solar flux, we sorted the ROCSAT-1 data into different groups by F10.7. From the integrated vertical drift we have estimated the post-sunset uplift of the ionosphere. By comparing the properties of EPB occurrence...

  5. Main Ionospheric Trough and Equatorial Ionization Anomaly During Substorms With the Different UT Onset Moments

    Science.gov (United States)

    Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.

    2007-05-01

    In the given work the numerical calculation results of ionospheric effects of four modeling substorms which have begun in 00, 06, 12 and 18 UT are presented. Calculations are executed on the basis of Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP), developed in WD IZMIRAN, added by the new block of calculation of electric fields in the ionosphere of the Earth for vernal equinox conditions in the minimum of solar activity. In calculations we considered superposition of magnetospheric convection electric field (at set potential differences through polar caps and field aligned currents of the second zone with taking into account of particle precipitation) and dynamo field generated by thermospheric winds without taking into account the tides. It is shown, that in the given statement of problem the substorms cause strong positive disturbances in F-region of ionosphere in night sector. Negative disturbances are much less and arise, mainly, at night in the middle and low latitudes. During substorms longitudinal extent of main ionospheric trough increases. The substorm beginning in 18 UT, causes negative disturbances in high latitudes except for a southern polar cap. Besides there is "stratification" of the main ionospheric trough. As a result in southern hemisphere the additional high-latitude trough which is absent in quiet conditions is formed. "Stratification" of the main ionospheric trough occurs in northern hemisphere at 6 hours after the beginning of the substorm. These "stratifications" are consequence non-stationary magnetospheric convection. Distinction between these events consists that "stratification" in a southern hemisphere occurs in active phase of substorm, and in northern hemisphere in recovery phase. During a substorm beginning in 00 UT, foF2 increases in all northern polar cap. Positive disturbances of foF2 in the equatorial anomaly region cause all presented substorms, except for a substorm beginning in 18 UT

  6. Equatorial Ionospheric Anomaly (EIA) and comparison with IRI model during descending phase of solar activity (2005-2009)

    Science.gov (United States)

    Kumar, Sanjay; Singh, A. K.; Lee, Jiyun

    2014-03-01

    The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005-2009 only except during the deep solar minimum year 2007-2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during

  7. Post-midnight occurrence of equatorial plasma bubbles

    Science.gov (United States)

    Ajith, K. K.; Otsuka, Yuichi; Yamamoto, Mamoru; Yokoyama, Tatsuhiro; Tulasiram, S.

    2016-07-01

    The equatorial plasma bubbles (EPBs)/equatorial spread F (ESF) irregularities are an important topic of space weather interest because of their impact on transionospheric radio communications, satellite-based navigation and augmentation systems. This local plasma depleted structures develop at the bottom side F layer through Rayleigh-Taylor instability and rapidly grow to topside ionosphere via polarization electric fields within them. The steep vertical gradients due to quick loss of bottom side ionization and rapid uplift of equatorial F layer via prereversal enhancement (PRE) of zonal electric field makes the post-sunset hours as the most preferred local time for the formation of EPBs. However, there is a different class of irregularities that occurs during the post-midnight hours of June solstice reported by the previous studies. The occurrence of these post-midnight EPBs maximize during the low solar activity periods. The growth characteristics and the responsible mechanism for the formation of these post-midnight EPBs are not yet understood. Using the rapid beam steering ability of 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang (0.2°S geographic latitude, 100.3°E geographic longitude, and 10.4°S geomagnetic latitude), Indonesia, the spatial and temporal evolution of equatorial plasma bubbles (EPBs) were examined to classify the evolutionary-type EPBs from those which formed elsewhere and drifted into the field of view of radar. The responsible mechanism for the genesis of summer time post-midnight EPBs were discussed in light of growth rate of Rayleigh-Taylor instability using SAMI2 model.

  8. Numerical simulations of type II gradient drift irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Ferch, R.L.; Sudan, R.N.

    1977-01-01

    Two-dimensional numerical studies of the development of type II irregularities in the equatorial electrojet have been carried out using a method similar to that of McDonald et al., (1974) except that ion inertia has been neglected. This simplification is shown to be a valid approximation whenever the electron drift velocity is small in comparison with the ion acoustic velocity and the values of the other parameters are those appropriate for the equatorial E layer. This code enables us to follow the development of quasi-steady state turbulence from appropriate initial pertubations. The two-dimensional turbulent spectrum of electron density perturbations excited is studied both for the case of devlopment from initial perturbations and for the case of a continuously pumped single driving wave

  9. Some new features of electron density irregularities over SHAR during strong spread F

    Directory of Open Access Journals (Sweden)

    S. Raizada

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip latitude 5.5°N to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150-300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165-178 km, in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200-330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms-1. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.

    Key words: Ionosphere (equatorial ionosphere; ionospheric irregularities - Radio science (ionospheric physics

  10. Some new features of electron density irregularities over SHAR during strong spread F

    Directory of Open Access Journals (Sweden)

    S. Raizada

    2000-02-01

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip latitude 5.5°N to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150-300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165-178 km, in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200-330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms-1. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.Key words: Ionosphere (equatorial ionosphere; ionospheric irregularities - Radio science (ionospheric physics

  11. Response of equatorial, low- and mid-latitude F-region in the American sector during the intense geomagnetic storm on 24-25 October 2011

    Science.gov (United States)

    de Jesus, R.; Sahai, Y.; Fagundes, P. R.; de Abreu, A. J.; Brunini, C.; Gende, M.; Bittencourt, J. A.; Abalde, J. R.; Pillat, V. G.

    2013-07-01

    In this paper, we present and discuss the response of the ionospheric F-region in the American sector during the intense geomagnetic storm which occurred on 24-25 October 2011. In this investigation ionospheric sounding data obtained of 23, 24, 25, and 26 October 2011 at Puerto Rico (United States), Jicamarca (Peru), Palmas, São José dos Campos (Brazil), and Port Stanley, are presented. Also, the GPS observations obtained at 12 stations in the equatorial, low-, mid- and high-mid-latitude regions in the American sector are presented. During the fast decrease of Dst (about ˜54 nT/h between 23:00 and 01:00 UT) on the night of 24-25 October (main phase), there is a prompt penetration of electric field of magnetospheric origin resulting an unusual uplifting of the F region at equatorial stations. On the night of 24-25 October 2011 (recovery phase) equatorial, low- and mid-latitude stations show h'F variations much larger than the average variations possibly associated with traveling ionospheric disturbances (TIDs) caused by Joule heating at high latitudes. The foF2 variations at mid-latitude stations and the GPS-VTEC observations at mid- and low-latitude stations show a positive ionospheric storm on the night of 24-25 October, possibly due to changes in the large-scale wind circulation. The foF2 observations at mid-latitude station and the GPS-VTEC observations at mid- and high-mid-latitude stations show a negative ionospheric storm on the night of 24-25 October, probably associated with an increase in the density of molecular nitrogen. During the daytime on 25 October, the variations in foF2 at mid-latitude stations show large negative ionospheric storm, possibly due to changes in the O/N2 ratio. On the night of 24-25, ionospheric plasma bubbles (equatorial irregularities that extended to the low- and mid-latitude regions) are observed at equatorial, low- and mid-latitude stations. Also, on the night of 25-26, ionospheric plasma bubbles are observed at equatorial

  12. On the how latitude scanning photometer signatures of equatorial ionosphere plasma bubbles

    International Nuclear Information System (INIS)

    Abdu, M.A.; Sobral, J.H.A.; Nakamura, Y.

    1985-01-01

    Meridional and east-west scan 6300 (angstrom) night airglow photometer are being extensively used at the low latitude station Cachoeira Paulista (23 0 S 45 0 W, dip latitude 14 0 ), Brazil, for investigation of trans-equatorial ionospheric plasma bubble dynamics. The zonal velocities of the flux aligned plasma bubbles can be determined, in a straingforward way, from the east-west displacement of the airglow intensity valleys observed by the east-west scan photometer. On the other hand, the determination of the other velocity component of the plasma bubble motion (namely, vertical motion in the equatorial plane) has to be based on the meridional propagation of the airglow valleys observed by the meriodinal scan photometer. Such determinatios of the bubbles vertical rise velocity should, however, involved considerations on different bubble parameters such as, for exemple, the phase of the bubble event (whether growth, mature or decay phase), the limited east-west extension, and the often observed westward tilt of the bubble. In this brief report there were condidered in some detail, possible influences of these different factors on the interpretation of low latitude scanning photometer data to infer trans-equatorial plasma bubble dynamics. (author) [pt

  13. Effects of transionospheric signal decorrelation on Global Navigation Satellite Systems (GNSS) performance studied from irregularity dynamics around the northern crest of the EIA

    Science.gov (United States)

    Das, T.; Roy, B.; Paul, A.

    2014-10-01

    Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S4 and Position Dilution of Precision during periods of GPS scintillations (S4 > 0.3) for February-April 2011, August-October 2011, and February-April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S4 at L band during February-April 2011, and validation of measured S4 and predicted values performed during August-October 2011 and February-April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive.

  14. The intermediate layers and associated tidal motions observed by a digisonde in the equatorial anomaly region

    Directory of Open Access Journals (Sweden)

    C.-C. Lee

    2003-04-01

    Full Text Available This investigation presents an initial attempt to analyze a full year of daily ionosonde observations relevant to the determination of plasma densities, tidal structures, and ion transports in the equatorial anomaly region of the lower ionosphere. Particular focus is on the intermediate layers, their seasonal and diurnal variations, and cause-effect relationships. The ionogram database was recorded using a digisonde portable sounder (DPS at National Central University (NCU, 24 °58' N, 121°11' E during 1996. Statistical results indicate that the intermediate layers appear primarily during the daytime of the spring/winter months. The monthly median height characteristics reveal that the layers descend from high to low altitudes and different tidal motions control the layers in different months. Generally, the semi-diurnal and quarter-diurnal tides, which cause ionization convergence, are mainly in the spring/winter and summer/autumn months, respectively. Variations in the electron densities of the layers also indicate that the density increases could result from a great number of molecular and metallic ions. Furthermore, a novel approach to ionogram presentation is introduced to investigate the intermediate layers. This approach allows the DPS to characterize the detailed daily information of the intermediate layers.Key words. Ionosphere (equatorial ionosphere; ionosphere-atmosphere interactions; ionospheric irregularities

  15. Penetration of ELF currents and electromagnetic fields into the Earth's equatorial ionosphere

    Science.gov (United States)

    Eliasson, B.; Papadopoulos, K.

    2009-10-01

    The penetration of extremely low frequency (ELF) transient electromagnetic fields and associated currents in the Earth's equatorial E-region plasma is studied theoretically and numerically. In the low-frequency regime, the plasma dynamics of the E-region is characterized by helicon waves since the ions are viscously coupled to neutrals while the electrons remain mobile. For typical equatorial E-region parameters, the plasma is magnetically insulated from penetration of very long timescale magnetic fields by a thin diffusive sheath. Wave penetration driven by a vertically incident pulse localized in space and time leads to both vertical penetration and the triggering of ELF helicon/whistler waves that carry currents obliquely to the magnetic field lines. The study presented here may have relevance for ELF wave generation by lightning discharges and seismic activity and can lead to new concepts in ELF/ULF injection in the earth-ionosphere waveguide.

  16. Understanding the Unique Equatorial Density Irregularities

    Science.gov (United States)

    2015-04-01

    research, 55, 184-198, 2015. • Tesema, F., B. Damtie, M. Nigussie, The response of the ionosphere to intense geomagnetic storms in 2012 using GPS-TEC...Approved for public release; distribution is unlimited. fountain effect between 1000 to 1500 UT, which could be due to strong pre- reversal enhancement of...investigate different ionospheric phenomena such as the effect of the geomagnetic disturbance on the distribution of the low latitude ionospheric electron

  17. On some peculiarities of production of ionospheric equatorial bubbles in zones with increased recombination

    International Nuclear Information System (INIS)

    Vepreva, M.N.; Sazonov, S.V.

    1991-01-01

    Numerical study of dynamics of electromagnetic disturbances of equatorial ionosphere F region which are longitudinal ones relative to B geomagnetic field and occur due to Rayleigh-Taylor and gradient-drift instability activity in zones with increased recombination, is conducted. Arbitrary initial disturbance is determined to be delivered mainly into the first space mode of resonator formed by B force line plunge in high-conducting E layer. Oscillation condition is studied

  18. New Opportunities for Remote Sensing Ionospheric Irregularities by Fitting Scintillation Spectra

    Science.gov (United States)

    Carrano, C. S.; Rino, C. L.; Groves, K. M.

    2017-12-01

    In a recent paper, we presented a phase screen theory for the spectrum of intensity scintillations when the refractive index irregularities follow a two-component power law [Carrano and Rino, DOI: 10.1002/2015RS005903]. More recently we have investigated the inverse problem, whereby phase screen parameters are inferred from scintillation time series. This is accomplished by fitting the spectrum of intensity fluctuations with a parametrized theoretical model using Maximum Likelihood (ML) methods. The Markov-Chain Monte-Carlo technique provides a-posteriori errors and confidence intervals. The Akaike Information Criterion (AIC) provides justification for the use of one- or two-component irregularity models. We refer to this fitting as Irregularity Parameter Estimation (IPE) since it provides a statistical description of the irregularities from the scintillations they produce. In this talk, we explore some new opportunities for remote sensing ionospheric irregularities afforded by IPE. Statistical characterization of irregularities and the plasma bubbles in which they are embedded provides insight into the development of the underlying instability. In a companion paper by Rino et al., IPE is used to interpret scintillation due to simulated EPB structure. IPE can be used to reconcile multi-frequency scintillation observations and to construct high fidelity scintillation simulation tools. In space-to-ground propagation scenarios, for which an estimate of the distance to the scattering region is available a-priori, IPE enables retrieval of zonal irregularity drift. In radio occultation scenarios, the distance to the irregularities is generally unknown but IPE enables retrieval of Fresnel frequency. A geometric model for the effective scan velocity maps Fresnel frequency to Fresnel scale, yielding the distance to the irregularities. We demonstrate this approach by geolocating irregularities observed by the CORISS instrument onboard the C/NOFS satellite.

  19. Observations of unusual pre-dawn response of the equatorial F-region during geomagnetic disturbances

    Science.gov (United States)

    Lima, W.; Becker-Guedes, F.; Fagundes, P.; Sahai, Y.; Abalde, J.; Pillat, V.

    It is known that the disturbed solar wind-magnetosphere interactions have important effects on equatorial and low-latitude ionospheric electrodynamics. The response of equatorial ionosphere during storm-time is an important aspect of space weather studies. It has been observed that during geomagnetic disturbances both suppression as well as generation of equatorial spread-F (ESF) or plasma irregularities takes place. However, the mechanism(s) associated with the generation of ESF still needs further investigations. This work reports some unusual events of pre-dawn occurrence of ionospheric F-region satellite traces followed by spread-F and cusp-like spread-F from ionospheric sounding observations carried out by a Canadian Advanced Digital Ionosonde (CADI) localized at Palmas (10.2°, 48.2°W, dip latitude 5.7°S), Brazil during 2002, every 5 minutes. For the present work we have scaled and analyzed the ionospheric sounding data for three events (April 20, September 04 and 08, 2002), which are associated with geomagnetic disturbances. In the events studied, the ionograms show the occurrence of satellite trace followed by cusp-like spread. The cusp like features move up in frequency and height and finally attain the F-layer peak value (foF2) and then disappear. They had duration of about 30 min and always occurred in the early morning hours. Our studies involved seven geomagnetic disturbances as well as quiet days during the year 2002, but only on these three occasions we observed these features. We present and discuss these observations in this paper and suggest possible mechanisms for the occurrence of these unusual features.

  20. VHF Scintillation in an Artificially Heated Ionosphere

    Science.gov (United States)

    Suszcynsky, D. M.; Layne, J.; Light, M. E.; Pigue, M. J.; Rivera, L.

    2017-12-01

    As part of an ongoing project to characterize very-high-frequency (VHF) radio wave propagation through structured ionospheres, Los Alamos National Laboratory has been conducting a set of experiments to measure the scintillation effects of VHF transmissions under a variety of ionospheric conditions. Previous work (see 2015 Fall AGU poster by D. Suszcynsky et al.) measured the S4 index and ionospheric coherence bandwidth in the 32 - 44 MHz frequency range under naturally scintillated conditions in the equatorial region at Kwajalein Atoll during three separate campaigns centered on the 2014 and 2015 equinoxes. In this paper, we will present preliminary results from the February and September, 2017 High Altitude Auroral Research Project (HAARP) Experimental Campaigns where we are attempting to make these measurements under more controlled conditions using the HAARP ionospheric heater in a twisted-beam mode. Two types of measurements are made by transmitting VHF signals through the heated ionospheric volume to the Radio Frequency Propagation (RFProp) satellite experiment. The S4 scintillation index is determined by measuring the power fluctuations of a 135-MHz continuous wave signal and the ionospheric coherence bandwidth is simultaneously determined by measuring the delay spread of a frequency-modulated continuous wave (FMCW) signal in the 130 - 140 MHz frequency range. Additionally, a spatial Fourier transform of the CW time series is used to calculate the irregularity spectral density function. Finally, the temporal evolution of the time series is used to characterize spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities. All results are compared to theory and scaled for comparison to the 32 - 44 MHz Kwajalein measurements.

  1. Development of intermediate-scale structure at different altitudes within an equatorial plasma bubble: Implications for L-band scintillations

    Science.gov (United States)

    Bhattacharyya, A.; Kakad, B.; Gurram, P.; Sripathi, S.; Sunda, S.

    2017-01-01

    An important aspect of the development of intermediate-scale length (approximately hundred meters to few kilometers) irregularities in an equatorial plasma bubble (EPB) that has not been considered in the schemes to predict the occurrence pattern of L-band scintillations in low-latitude regions is how these structures develop at different heights within an EPB as it rises in the postsunset equatorial ionosphere due to the growth of the Rayleigh-Taylor instability. Irregularities at different heights over the dip equator map to different latitudes, and their spectrum as well as the background electron density determine the strength of L-band scintillations at different latitudes. In this paper, VHF and L-band scintillations recorded at different latitudes together with theoretical modeling of the scintillations are used to study the implications of this structuring of EPBs on the occurrence and strength of L-band scintillations at different latitudes. Theoretical modeling shows that while S4 index for scintillations on a VHF signal recorded at an equatorial station may be >1, S4 index for scintillations on a VHF signal recorded near the crest of the equatorial ionization anomaly (EIA) generally does not exceed the value of 1 because the intermediate-scale irregularity spectrum at F layer peak near the EIA crest is shallower than that found in the equatorial F layer peak. This also explains the latitudinal distribution of L-band scintillations. Thus, it is concluded that there is greater structuring of an EPB on the topside of the equatorial F region than near the equatorial F layer peak.

  2. Combined radar observations of equatorial electrojet irregularities at Jicamarca

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2007-03-01

    Full Text Available Daytime equatorial electrojet plasma irregularities were investigated using five distinct radar diagnostics at Jicamarca including range-time-intensity (RTI mapping, Faraday rotation, radar imaging, oblique scattering, and multiple-frequency scattering using the new AMISR prototype UHF radar. Data suggest the existence of plasma density striations separated by 3–5 km and propagating slowly downward. The striations may be caused by neutral atmospheric turbulence, and a possible scenario for their formation is discussed. The Doppler shifts of type 1 echoes observed at VHF and UHF frequencies are compared and interpreted in light of a model of Farley Buneman waves based on kinetic ions and fluid electrons with thermal effects included. Finally, the up-down and east-west asymmetries evident in the radar observations are described and quantified.

  3. The Occurrence of Small-scale Irregularities in the Mid-latitude Ionosphere from SuperDARN HF Radar Observations

    Science.gov (United States)

    Ruohoniemi, J. M.; Baker, J. B.; Maimaiti, M.; Oksavik, K.; Erickson, P. J.; Scales, W.; Eltrass, A.

    2017-12-01

    The mid-latitude radars of the SuperDARN network routinely observe backscatter from nighttime decameter-scale F region irregularities at latitudes well equatorward of the auroral boundary. This Sub-Auroral Ionospheric Scatter (SAIS) is strongly distinguished from auroral and SAPS backscatter by low Doppler velocities ( tens m/s) and stable, long-lived ( hours) occurrence in discrete events that are extended in both latitude and longitude. Statistical and event studies of SAIS with the SuperDARN radars indicate that the subauroral F region ionosphere is replete with irregularities during events, at least poleward of the 50° Λ horizon of the North American mid-latitude radars, and that radar observation of SAIS backscatter is then primarily limited by the magnetic aspect condition. Joint experiments with incoherent scatter radar have furnished sets of plasma measurements suitable for testing theories of plasma instability. Modeling work stimulated by the observations has explored the temperature-gradient instability (TGI) and the gradient drift instability (GDI) as possible sources of the irregularities. In this talk we review the findings on the occurrence of the SAIS category of mid-latitude F region irregularities, summarize the results of the modeling work, and discuss future research directions.

  4. Propagation of gravity waves and spread F in the low-latitude ionosphere over Tucumán, Argentina, by continuous Doppler sounding: First results

    Czech Academy of Sciences Publication Activity Database

    Chum, Jaroslav; Bonomi, F. A. M.; Fišer, Jiří; Cabrera, M. A.; Ezquer, R. G.; Burešová, Dalia; Laštovička, Jan; Baše, Jiří; Hruška, František; Molina, M. G.; Ise, J. E.; Cangemi, J. I.; Šindelářová, Tereza

    2014-01-01

    Roč. 119, č. 8 (2014), s. 6954-6965 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/12/2440; GA ČR GP13-09778P Institutional support: RVO:68378289 Keywords : low latitude ionosphere * Ionospheric irregularities * equatorial spread F * gravity waves * scintillation * remote sensing * Doppler sounding Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.426, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020184/abstract

  5. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  6. Equatorial westward electrojet impacting equatorial ionization anomaly development during the 6 April 2000 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2013-11-01

    investigate the forward plasma fountain and the equatorial ionosphere in the topside region during the 6 April 2000 superstorm in the Australian sector at ~0900 LT. Space- and ground-based multi-instrument measurements, Coupled Thermosphere-Ionosphere-Plasmasphere Electrodynamics (CTIPe) simulations, and field-aligned observations comprise our results. These reveal an unusual storm development during which the eastward prompt penetration electric (E) field (PPEF) developed and operated under the continuous effects of the westward disturbance dynamo E-field (DDEF) while large-scale traveling ionospheric disturbances (TIDs) traveled equatorward and generated strong equatorward wind surges. We have identified the eastward PPEF by the superfountain effect causing the equatorial ionization anomaly (EIA)'s development with crests situated at ~±28°N (geomagnetic) in the topside ionosphere at ~840 km altitude. The westward DDEF's occurrence is confirmed by mapping the "anti-Sq" current system wherein the equatorial westward current created a weak long-lasting westward electrojet event. Line plots of vertical drift data tracked large-scale TIDs. Four scenarios, covering ~3.5 h in universal time, demonstrate that the westward DDEF became superimposed on the eastward PPEF. As these E-fields of different origins became mapped into the F region, they could interact. Consequently, the eastward PPEF-related equatorial upward E × B drift became locally reduced by up to 75 m/s near the dip equator by the westward DDEF-related equatorial downward E × B drift. Meanwhile, the EIA displayed a better development as equatorial wind surges, reproduced by CTIPe, increased from 501 to 629 m/s, demonstrating the crucial role of mechanical wind effects keeping plasma density high.

  7. Spread F – an old equatorial aeronomy problem finally resolved?

    Directory of Open Access Journals (Sweden)

    R. F. Woodman

    2009-05-01

    Full Text Available One of the oldest scientific topics in Equatorial Aeronomy is related to Spread-F. It includes all our efforts to understand the physical mechanisms responsible for the existence of ionospheric F-region irregularities, the spread of the traces in a night-time equatorial ionogram – hence its name – and all other manifestations of the same. It was observed for the first time as an abnormal ionogram in Huancayo, about 70 years ago. But only recently are we coming to understand the physical mechanisms responsible for its occurrence and its capricious day to day variability. Several additional techniques have been used to reveal the spatial and temporal characteristics of the F-region irregularities responsible for the phenomenon. Among them we have, in chronological order, radio star scintillations, trans-equatorial radio propagation, satellite scintillations, radar backscatter, satellite and rocket in situ measurements, airglow, total electron content techniques using the propagation of satellite radio signals and, recently, radar imaging techniques. Theoretical efforts are as old as the observations. Nevertheless, 32 years after their discovery, Jicamarca radar observations showed that none of the theories that had been put forward could explain them completely. The observations showed that irregularities were detected at altitudes that were stable according to the mechanisms proposed. A breakthrough came a few years later, again from Jicamarca, by showing that some of the "stable" regions had become unstable by the non-linear propagation of the irregularities from the unstable to the stable region of the ionosphere in the form of bubbles of low density plasma. A problem remained, however; the primary instability mechanism proposed, an extended (generalized Rayleigh-Taylor instability, was too slow to explain the rapid development seen by the observations. Gravity waves in the neutral background have been proposed as a seeding mechanism to

  8. The postsunset vertical plasma drift during geomagnetic storms and its effects on the generation of equatorial spread F

    Science.gov (United States)

    Huang, C.

    2017-12-01

    We will present two distinct phenomena related to the postsunset vertical plasma drift and equatorial spread F (ESF) observed by the Communication/Navigation Outage Forecasting System satellite over six years. The first phenomenon is the behavior of the prereversal enhancement (PRE) of the vertical plasma drift during geomagnetic storms. Statistically, storm-time disturbance dynamo electric fields cause the PRE to decrease from 30 to 0 m/s when Dst changes from -60 to -100 nT, but the PRE does not show obvious variations when Dst varies from 0 to -60 nT. The observations show that the storm activities affect the evening equatorial ionosphere only for Dst correlated with the PRE and that the occurrence of small-amplitude ESF irregularities does not show a clear pattern at low solar activity but is anti-correlated with large-amplitude irregularities and the PRE at moderate solar activity. That is, the months and longitudes with high occurrence probability of large-amplitude irregularities are exactly those with low occurrence probability of small-amplitude irregularities, and vice versa. The generation of large-amplitude ESF irregularities is controlled by the PRE, and the generation of small-amplitude ESF irregularities may be caused by gravity waves and other disturbances, rather than by the PRE.

  9. Application of small-size antennas for estimation of angles of arrival of HF signals scattered by ionospheric irregularities

    Science.gov (United States)

    Guo, Qiang; Galushko, Volodymyr G.; Zalizovski, Andriy V.; Kashcheyev, Sergiy B.; Zheng, Yu

    2018-05-01

    A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network.

  10. An Investigation of the Ionospheric Disturbances Due to the 2014 Sudden Stratospheric Warming Events Over Brazilian Sector

    Science.gov (United States)

    de Jesus, R.; Batista, I. S.; Jonah, O. F.; de Abreu, A. J.; Fagundes, P. R.; Venkatesh, K.; Denardini, C. M.

    2017-11-01

    The present study investigates the ionospheric F region response in the Brazilian sector due to sudden stratospheric warming (SSW) events of 2014. The data used for this work are obtained from GPS receivers and magnetometer measurements during day of year (DOY) 01 to 120, 2014 at different stations in the equatorial and low-latitude regions in the Brazilian sector. In addition, the data obtained from Communication/Navigation Outage Forecasting System satellites during DOY 01 to 75 of 2014 are used. The main novelty of this research is that, during the 2014 SSW events, daytime vertical total electron content (VTEC) shows a strong increase on the order of about 23% and 11% over the equatorial and low-latitude regions, respectively. We also observed that the nighttime VTEC (SSW days) is increased by 8% and 33% over equatorial and low-latitude regions, respectively. The magnetometer measurements show a strong counterelectrojet during the SSW days. The results show an amplification of the 0.5 day and 2-16 day periods in the VTEC and equatorial electrojet during the SSWs. The occurrences of ionospheric irregularities during the SSW events are around 84% and 53% in the equatorial and low-latitude regions, respectively, which is less frequent when compared with those during the pre-SSW periods.

  11. An empirical model of ionospheric total electron content (TEC) near the crest of the equatorial ionization anomaly (EIA)

    Science.gov (United States)

    Hajra, Rajkumar; Chakraborty, Shyamal Kumar; Tsurutani, Bruce T.; DasGupta, Ashish; Echer, Ezequiel; Brum, Christiano G. M.; Gonzalez, Walter D.; Sobral, José Humberto Andrade

    2016-07-01

    We present a geomagnetic quiet time (Dst > -50 nT) empirical model of ionospheric total electron content (TEC) for the northern equatorial ionization anomaly (EIA) crest over Calcutta, India. The model is based on the 1980-1990 TEC measurements from the geostationary Engineering Test Satellite-2 (ETS-2) at the Haringhata (University of Calcutta, India: 22.58° N, 88.38° E geographic; 12.09° N, 160.46° E geomagnetic) ionospheric field station using the technique of Faraday rotation of plane polarized VHF (136.11 MHz) signals. The ground station is situated virtually underneath the northern EIA crest. The monthly mean TEC increases linearly with F10.7 solar ionizing flux, with a significantly high correlation coefficient (r = 0.89-0.99) between the two. For the same solar flux level, the TEC values are found to be significantly different between the descending and ascending phases of the solar cycle. This ionospheric hysteresis effect depends on the local time as well as on the solar flux level. On an annual scale, TEC exhibits semiannual variations with maximum TEC values occurring during the two equinoxes and minimum at summer solstice. The semiannual variation is strongest during local noon with a summer-to-equinox variability of ~50-100 TEC units. The diurnal pattern of TEC is characterized by a pre-sunrise (0400-0500 LT) minimum and near-noon (1300-1400 LT) maximum. Equatorial electrodynamics is dominated by the equatorial electrojet which in turn controls the daytime TEC variation and its maximum. We combine these long-term analyses to develop an empirical model of monthly mean TEC. The model is validated using both ETS-2 measurements and recent GNSS measurements. It is found that the present model efficiently estimates the TEC values within a 1-σ range from the observed mean values.

  12. An empirical model of ionospheric total electron content (TEC near the crest of the equatorial ionization anomaly (EIA

    Directory of Open Access Journals (Sweden)

    Hajra Rajkumar

    2016-01-01

    Full Text Available We present a geomagnetic quiet time (Dst > −50 nT empirical model of ionospheric total electron content (TEC for the northern equatorial ionization anomaly (EIA crest over Calcutta, India. The model is based on the 1980–1990 TEC measurements from the geostationary Engineering Test Satellite-2 (ETS-2 at the Haringhata (University of Calcutta, India: 22.58° N, 88.38° E geographic; 12.09° N, 160.46° E geomagnetic ionospheric field station using the technique of Faraday rotation of plane polarized VHF (136.11 MHz signals. The ground station is situated virtually underneath the northern EIA crest. The monthly mean TEC increases linearly with F10.7 solar ionizing flux, with a significantly high correlation coefficient (r = 0.89–0.99 between the two. For the same solar flux level, the TEC values are found to be significantly different between the descending and ascending phases of the solar cycle. This ionospheric hysteresis effect depends on the local time as well as on the solar flux level. On an annual scale, TEC exhibits semiannual variations with maximum TEC values occurring during the two equinoxes and minimum at summer solstice. The semiannual variation is strongest during local noon with a summer-to-equinox variability of ~50–100 TEC units. The diurnal pattern of TEC is characterized by a pre-sunrise (0400–0500 LT minimum and near-noon (1300–1400 LT maximum. Equatorial electrodynamics is dominated by the equatorial electrojet which in turn controls the daytime TEC variation and its maximum. We combine these long-term analyses to develop an empirical model of monthly mean TEC. The model is validated using both ETS-2 measurements and recent GNSS measurements. It is found that the present model efficiently estimates the TEC values within a 1-σ range from the observed mean values.

  13. On the Nocturnal Downward and Westward Equatorial Ionospheric Plasma Drifts During the 17 March 2015 Geomagnetic Storm

    Science.gov (United States)

    Bagiya, Mala S.; Vichare, Geeta; Sinha, A. K.; Sripathi, S.

    2018-02-01

    During quiet period, the nocturnal equatorial ionospheric plasma drifts eastward in the zonal direction and downward in the vertical direction. This quiet time drift pattern could be understood through dynamo processes in the nighttime equatorial ionosphere. The present case study reports the nocturnal simultaneous occurrence of the vertically downward and zonally westward plasma drifts over the Indian latitudes during the geomagnetic storm of 17 March 2015. After 17:00 UT ( 22:10 local time), the vertical plasma drift became downward and coincided with the westward zonal drift, a rarely observed feature of low latitude plasma drifts. The vertical drift turned upward after 18:00 UT, while the zonal drift became eastward. We mainly emphasize here the distinct bipolar type variations of vertical and zonal plasma drifts observed around 18:00 UT. We explain the vertical plasma drift in terms of the competing effects between the storm time prompt penetration and disturbance dynamo electric fields. Whereas, the westward drift is attributed to the storm time local electrodynamical changes mainly through the disturbance dynamo field in addition to the vertical Pedersen current arising from the spatial (longitudinal) gradient of the field aligned Pedersen conductivity.

  14. Equatorial dynamics observed by rocket, radar, and satellite during the CADRE/MALTED campaign 1. Programmatics and small-scale fluctuations

    Science.gov (United States)

    Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.

    1997-11-01

    In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alca‸ntara rocket site in northeastern Brazil as part of the International Guará Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3°S) and magnetic (~0.5°S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50

  15. Equatorial Dynamics Observed by Rocket, Radar, and Satellite During the CADRE/MALTED Campaign. 1; Programmatics and small-scale fluctuations

    Science.gov (United States)

    Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.

    1997-01-01

    In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alcantara rocket site in northeastern Brazil as part of the International Guard Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3 deg S) and magnetic (approx. 0.5 deg S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the

  16. Observations of Pc5 micropulsation-related electric field oscillations in equatorial ionosphere

    Science.gov (United States)

    Reddy, C. A.; Ravindran, Sudha; Viswanathan, K. S.; Murthy, B. V. Krishna; Rao, D. R. K.; Araki, T.

    1994-01-01

    A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5 deg N, 77 deg E, 0.5 deg N dip angle) recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (A(sub p) = 161). Simultaneous 100-n T-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6 deg N gm) and at Narsarsuaq, Greenland (70.6 deg N gm). Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730-1900 IST (1200-1330 UT), the amplitude of the electric field oscillation in the equatorial electrojet (EEJ) is 0.1-0.25 mV/m and it increases with height, while it is about 1.0 mV/m in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brofelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the assoicated ionospheric electric field penetrating from high latitudes to the magnetic equator.

  17. Post sunset equatorial spread-F at Kwajalein and interplanetary magnetic field

    Science.gov (United States)

    Rastogi, R. G.; Chandra, H.; Janardhan, P.; Reinisch, B. W.; Bisoi, Susanta Kumar

    2017-10-01

    We connect the time sequence of changes in the IMF-Bz to the development of spread-F at an equatorial station Kwajalein on three different nights in November 2004, one during a geomagnetic quiet period and other two during geomagnetic disturbed periods. The chosen days show clear and smooth variations of IMF-Bz without any large fluctuations thereby enabling one to correlate changes in equatorial spread-F with corresponding changes in IMF-Bz. It is shown that a slow and continuous increase in the IMF-Bz over a duration of few hours has a similar effect on the equatorial ionosphere as of a sudden northward turning of the IMF-Bz in causing an electric field through the polar region and then to the equator. We conclude that the Spread-F at equatorial and low latitudes are due to echoes from ionization irregularities that arise due to the plasma instabilities generated by an eastward electric field on the large plasma density gradient in or below the base of the F-layer during any period of the night time along with the gravity driven Rayleigh-Taylor instability.

  18. Space Weather Research in the Equatorial Region: A Philosophical Reinforcement

    Science.gov (United States)

    Chukwuma, Victor; Odunaike, Rasaki; Laoye, John

    Investigations using radio waves reflected from the ionosphere, at high-and mid-latitudes indicate that ionospheric absorption can strongly increase following geomagnetic storms; which appears to suggest some definite relationship between ionospheric radio wave absorption and geomagnetic storms at these latitudes. However, corresponding earlier studies in the equatorial region did not appear to show any explicit relationship between ionospheric radio wave absorption and geomagnetic storm activity. This position appeared acceptable to the existing scientific paradigm, until in an act of paradigm shift, by a change of storm selection criteria, some more recent space weather investigations in the low latitudes showed that ionospheric radio wave absorption in the equatorial region clearly increases after intense storms. Given that these results in the equatorial region stood against the earlier results, this paper presently attempts to highlight their philosophical underpinning and posit that they constitute a scientific statement.

  19. Spread F occurrence and drift under the crest of the equatorial ionization anomaly from continuous Doppler sounding and FORMOSAT-3/COSMIC scintillation data

    Czech Academy of Sciences Publication Activity Database

    Chum, Jaroslav; Liu, J.-Y.; Chen, S.-P.; Cabrera, M. A.; Laštovička, Jan; Baše, Jiří; Burešová, Dalia; Fišer, Jiří; Hruška, František; Ezquer, R.

    2016-01-01

    Roč. 68, č. 1 (2016), č. článku 56. ISSN 1880-5981 R&D Projects: GA ČR(CZ) GC15-07281J; GA ČR(CZ) GAP209/12/2440 Grant - others:Akademie věd České republiky(CZ) M100421201 Institutional support: RVO:68378289 Keywords : ionospheric irregularities * equatorial spread F * plasma bubbles * equatorial ionization anomaly * remote sensing * Doppler sounding * GPS signal occultation and scintillation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.243, year: 2016 http:// earth -planets-space.springeropen.com/articles/10.1186/s40623-016-0433-1

  20. Irregularities of ionospheric VTEC during lightning activity over Antarctic Peninsula

    International Nuclear Information System (INIS)

    Suparta, W; Wan Mohd Nor, W N A

    2017-01-01

    This paper investigates the irregularities of vertical total electron content (VTEC) during lightning activity and geomagnetic quiet days over Antarctic Peninsula in year 2014. During the lightning event, the ionosphere may be disturbed which may cause disruption in the radio signal. Thus, it is important to understand the influence of lightning on VTEC in the study of upper-lower interaction. The lightning data is obtained from World Wide Lightning Location Network (WWLLN) and the VTEC data has analyzed from Global Positioning System (GPS) for O’Higgins (OHI3), Palmer (PALV), and Rothera (ROTH). The results demonstrate the VTEC variation of ∼0.2 TECU during low lightning activity which could be caused by energy dissipation through lightning discharges from troposphere into the thermosphere. (paper)

  1. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Directory of Open Access Journals (Sweden)

    Marques Haroldo Antonio

    2018-01-01

    Full Text Available GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP, where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  2. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Science.gov (United States)

    Marques, Haroldo Antonio; Marques, Heloísa Alves Silva; Aquino, Marcio; Veettil, Sreeja Vadakke; Monico, João Francisco Galera

    2018-02-01

    GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  3. Observations of Pc5 micropulsation-related electric field oscillations in the equatorial ionosphere

    Directory of Open Access Journals (Sweden)

    C. A. Reddy

    1994-05-01

    Full Text Available A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5°N, 77°E, 0.5°N dip angle recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (Ap=161. Simultaneous 100-nT-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6°N gm and at Narsarsuaq, Greenland (70.6°N gm. Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730-1900 IST (1200-1330 UT, the amplitude of the electric field oscillation in the equatorial electrojet (EEJ is 0.1-0.25 mV m-1 and it increases with height, while it is about 1.0 mV m-1 in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brorfelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the associated ionospheric electric field penetrating from high latitudes to the magnetic equator.

  4. Space weather and the Earth ionosphere from auroral zone to equator

    Science.gov (United States)

    Biktash, L.

    2007-08-01

    Space weather conditions, geomagnetic variations, virtual ionospheric height and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We examine the solar wind conditions and the auroral equatorial ionosphere response to illustrate what kind of solar wind parameters during the geomagnetic storms leads to short-term variations of the critical frequency foF2 and virtual height at the Earth ionosphere from the auroral zone to the equator. Model simulations as disturbed ionospheric wind dynamo do not allow explaining a significant part of the experimental data. Additional investigations of the ionospheric characteristics are required to clear up the origin of the short-term equatorial ionospheric variations. The critical frequency foF2 and virtual heights observed by the ionosondes are good indicators of the true layer heights and electron concentration and may provide information about the equatorial ionosphere dynamics. Intensive magnetospheric and ionospheric currents during geomagnetic storms disturb the quiet ionosphere and cause the observed short-term variations of the ionospheric characteristics. The ionosheric wind dynamo is considered as an important and the main mechanism in generation of ionospheric electric currents and fields. The disturbed ionospheric wind dynamo can be the generator of the equatorial ionospheric electric currents during geomagnetic storms in the aftermath of strong auroral heating. The magnetospheric electric field directly penetrating into the low-latitude ionosphere can be another source of electric field. During disturbed space weather conditions magnetospheric electric fields disturb the auroral ionosphere forming auroral electrojets and by the high-latitude electric field and termospheric disturbances can penetrate to the equatorial ionosphere. That is the reason the equatorial ionospheric electric field variations like geomagnetic variations are complex

  5. Cooling in the Post-Sunrise Equatorial Topside Ionosphere During the 22-23 June 2015 Superstorm

    Science.gov (United States)

    Stoneback, R.; Hairston, M. R.; Coley, W. R.; Heelis, R. A.

    2015-12-01

    During the recovery phase of the 22-23 June 2015 superstorm multiple DMSP spacecraft observed two separate and short-lived (~ 30 minutes) events of localized cooling in the topside equatorial ionosphere (~840 km) in the post-sunrise region (between 6:15 and 7:30 local time). The ion temperatures dropped from the nominal 2000-3000° observed in these regions to 1000 to 1500°. This cooling effect was not observed on the corresponding duskside equatorial crossings of the DMSP spacecraft during this storm. Further, these cooling events do not normally occur during major storms; no such phenomenon was observed by DMSP during the March 2015 superstorm. Flow data from DMSP and the CINDI instruments on the C/NOFS spacecraft indicate these cooling events are associated with short-lived vertical flows bringing up cooler plasma from lower altitudes. The two cooling events correspond to large northward turnings of the IMF during the storm and these are being explored as a possible trigger mechanism.

  6. Equatorial plasma bubbles in the ionosphere over Eritrea: occurrence and drift speed

    Directory of Open Access Journals (Sweden)

    R. H. Wiens

    2006-07-01

    Full Text Available An all-sky imager was installed in Asmara, Eritrea (15.4° N, 38.9° E, 7° N dip and used to monitor the OI 630-nm nightglow. Nine months of data were studied between September 2001 and May 2002, a time including the recent maximum in the solar activity cycle. Equatorial plasma bubbles (EPBs were recorded on 63% of nights with adequate viewing conditions. The station location within view of the equatorial ionization anomaly and with a magnetic declination near zero makes it an excellent test case for comparison with satellite studies of the seasonal variation of EPBs with longitude. The imager was accompanied by two Cornell GPS scintillation monitors, and the amplitude scintillation data are compared to the all-sky data. GPS scintillations indicate the beginning of EPBs, but die out sooner in the post-midnight period than the larger scale EPBs. Both phenomena exhibit clear occurrence maxima around the equinoxes. Ionospheric zonal drift speeds have been deduced from EPB and GPS scintillation pattern movement. Average near-midnight EPB drift speeds are between 100 and 120 m/s most months, with the GPS scintillation speeds being about the same. A winter drift speed maximum is evident in both EPB and GPS scintillation monthly means.

  7. An investigation of ionospheric upper transition height variations at low and equatorial latitudes deduced from combined COSMIC and C/NOFS measurements

    Science.gov (United States)

    Yang, Changjun; Zhao, Biqiang; Zhu, Jie; Yue, Xinan; Wan, Weixing

    2017-10-01

    In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an α-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E × B) drift in the equatorial ionosphere.

  8. Equatorial electrojet and its response to external electromagnetic effects

    Science.gov (United States)

    Bespalov, P. A.; Savina, O. N.

    2012-09-01

    In the quiet low-latitude Earth's ionosphere, a sufficiently developed current system that is responsible for the Sq magnetic-field variations is formed in quiet Sun days under the action of tidal streams. The density of the corresponding currents is maximum in the midday hours at the equatorial latitudes, where the so-called equatorial electrojet is formed. In this work, we discuss the nature of the equatorial electrojet. This paper studies the value of its response to external effects. First of all, it is concerned with estimating the possibility of using the equatorial electrojet for generating low-frequency electromagnetic signals during periodic heating of the ionosphere by the heating-facility radiation. The equatorial electrojet can also produce electrodynamic response to the natural atmospheric processes, e.g., an acoustic-gravity wave.

  9. A study of evolution/suppression parameters of equatorial postsunset plasma instability

    Directory of Open Access Journals (Sweden)

    O. S. Oyekola

    2009-01-01

    Full Text Available Evening equatorial pre-reversal vertical ion E×B drift (VZP and the peak of the ionospheric F2 maximum altitude (hmF2P of the postsunset equatorial F-layer, which are the essential parameters requisite for the generation or inhibition of postsunset bottomside equatorial irregularities were deduced from ionosonde observations made in the Africa region (Ouagadougou: ~3° N dip latitude between January 1987 and December 1990 for solar activity minimum, medium, and maxima (F10.7=85, 141, 214, and 190, respectively for quiet geomagnetic conditions. We investigate variations of evening equatorial pre-reversal drift and the corresponding altitude at four levels of solar activity. Our observations show strong variations with solar variability. Correlation analysis between these parameters indicates that the correlation coefficient value between hmF2P versus VZP decreases considerably with increasing solar flux value. There seems to be no significant link between these parameters under high solar activity, especially for solar intensity F10.7>200 units. We conclude that meridional neutral wind in the F-region contributes substantially to the variations of the pre-reversal vertical plasma drifts enhancement and the peak hmF2, particularly the electrodynamics during twilight high solar flux conditions.

  10. Bottomside sinusoidal irregularities in the equatorial F region. II - Cross-correlation and spectral analysis

    Science.gov (United States)

    Cragin, B. L.; Hanson, W. B.; Mcclure, J. P.; Valladares, C. E.

    1985-01-01

    Equatorial bottomside sinusoidal (BSS) irregularities have been studied by applying techniques of cross-correlation and spectral analysis to the Atmosphere Explorer data set. The phase of the cross-correlations of the plasma number density is discussed and the two drift velocity components observed using the retarding potential analyzer and ion drift meter on the satellite are discussed. Morphology is addressed, presenting the geographical distributions of the occurrence of BSS events for the equinoxes and solstices. Physical processes including the ion Larmor flux, interhemispheric plasma flows, and variations in the lower F region Pedersen conductivity are invoked to explain the findings.

  11. A comparative study on chaoticity of equatorial/low latitude ionosphere over Indian subcontinent during geomagnetically quiet and disturbed periods

    Directory of Open Access Journals (Sweden)

    K. Unnikrishnan

    2010-12-01

    Full Text Available In the present study, the latitudinal aspect of chaotic behaviour of ionosphere during quiet and storm periods are analyzed and compared by using GPS TEC time series measured at equatorial trough, crest and outside crest stations over Indian subcontinent, by employing the chaotic quantifiers like Lyapunov exponent (LE, correlation dimension (CD, entropy and nonlinear prediction error (NPE. It is observed that the values of LE are low for storm periods compared to those of quiet periods for all the stations considered here. The lowest value of LE is observed at the trough station, Agatti (2.38° N, Geomagnetically, and highest at crest station, Mumbai (10.09° N, Geomagnetically for both quiet and storm periods. The values of correlation dimension computed for TEC time series are in the range 2.23–2.74 for quiet period, which indicate that equatorial ionosphere may be described with three variables during quiet period. But the crest station Mumbai shows a higher value of CD (3.373 during storm time, which asserts that four variables are necessary to describe the system during storm period. The values of non linear prediction error (NPE are lower for Agatti (2.38° N, Geomagnetically and Jodhpur (18.3° N, Geomagnetically, during storm period, compared to those of quiet period, mainly because of the predominance of non linear aspects during storm periods The surrogate data test is carried out and on the basis of the significance of difference of the original data and surrogates for various aspects, the surrogate data test rejects the null hypothesis that the time series of TEC during storm and quiet times represent a linear stochastic process. It is also observed that using state space model, detrended TEC can be predicted, which reasonably reproduces the observed data. Based on the values of the above quantifiers, the features of chaotic behaviour of equatorial trough crest and outside the crest regions of ionosphere during geomagnetically

  12. The D1 parameter for the equatorial F1 region

    International Nuclear Information System (INIS)

    Adeniyi, J.O.; Radicella, S.M.

    2002-01-01

    This work is a contribution to the effort at improving the representation of the F1 equatorial ionospheric region in the International Reference Ionosphere (IRI) model. The D1 parameter has been proposed for describing the F1 layer. We have therefore produced a maiden table of D1 parameter for an equatorial station. Diurnal and seasonal effects were considered. (author)

  13. In-Situ Measurement of Ionospheric E-Region Plasma Irregularities over Taiwan

    Directory of Open Access Journals (Sweden)

    Chi-Kuang Chao

    2012-01-01

    Full Text Available One ion trap (IT and one retarding potential analyzer (RPA onboard the Taiwan Sounding Rocket V (SR-V were launched to measure ionospheric plasma irregularities on 18 January 2006. After the fairing separated, voltage readings (VG1 of the first grid (G1 in the IT indicated abnormally high negative voltages appeared at the upleg between 83.7 and 120.1 km altitude for 19.7 seconds. It is postulated G1 had temporarily shorted out with the other two grids. Such the anomaly in the VG1 brought out the expansion of a plasma sheath around opening of the IT. More ions were attracted into the collector. Remarkable ion currents detected by the IT led to malfunctions of the RPA simultaneously. In this article, laboratory simulations and the International Reference Ionosphere model are performed to evaluate scale factors for the IT to the anomaly. The calibrated total ion concentration profile at the upleg indicates a peak density of the Es layer at 93.0 km altitude of about 6.9 × 103 # cm-3 with a thickness of 3.4 km. It is very similar to that at the downleg. It implies that the SR-V might encounter the same Es layer twice in a distance of 150 km away.

  14. Observations of Pc5 micropulsation-related electric field oscillations in the equatorial ionosphere

    Directory of Open Access Journals (Sweden)

    C. A. Reddy

    Full Text Available A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5°N, 77°E, 0.5°N dip angle recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (Ap=161. Simultaneous 100-nT-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6°N gm and at Narsarsuaq, Greenland (70.6°N gm. Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730-1900 IST (1200-1330 UT, the amplitude of the electric field oscillation in the equatorial electrojet (EEJ is 0.1-0.25 mV m-1 and it increases with height, while it is about 1.0 mV m-1 in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brorfelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the associated ionospheric electric field penetrating from high latitudes to the magnetic equator.

  15. A modelling study of the post-sunset formation of plasma temperature troughs in the equatorial topside ionosphere

    International Nuclear Information System (INIS)

    Bailey, G.J.; Moffett, R.J.; Simmons, P.A.; Footitt, R.J.

    1986-01-01

    Results of model calculations are used to study the post-sunset development of plasma temperature troughs along tubes of plasma at equatorial latitudes. The calculations show that for about 90 minutes after sunset the ion field-aligned velocities are directed poleward in both hemispheres even though the meridional neutral air wind blows from the summer hemisphere to the winter hemisphere. After about 90 minutes the ion field-aligned velocities become directed from the summer hemisphere to the winter hemisphere in both hemispheres. As time advances plasma temperature troughs are formed along the tubes of plasma. Initially the plasma temperature troughs increase in depth, but because in the calculations the tubes of plasma are taken to be moving towards the Earth, the plasma temperature troughs then decrease in depth. At sunspot maximum the plasma temperature troughs are deep and narrow in dip latitude; at sunspot minimum they are shallow and wide. It is shown that the ion field-aligned velocities and the depth of the plasma temperature troughs are extremely sensitive to the neutral atomic hydrogen concentration, especially when the topside ionosphere is dominated by O + . Indications are that the MSIS-83 sunspot maximum concentrations of neutral atomic hydrogen in the topside ionosphere at equatorial latitudes are too low by a factor of about 2. The neutral atomic hydrogen concentration determines whether the transequatorial O + flow is a subsonic ''breeze'' or a supersonic ''wind''

  16. The relationship between small-scale and large-scale ionospheric electron density irregularities generated by powerful HF electromagnetic waves at high latitudes

    Directory of Open Access Journals (Sweden)

    E. D. Tereshchenko

    2006-11-01

    Full Text Available Satellite radio beacons were used in June 2001 to probe the ionosphere modified by a radio beam produced by the EISCAT high-power, high-frequency (HF transmitter located near Tromsø (Norway. Amplitude scintillations and variations of the phase of 150- and 400-MHz signals from Russian navigational satellites passing over the modified region were observed at three receiver sites. In several papers it has been stressed that in the polar ionosphere the thermal self-focusing on striations during ionospheric modification is the main mechanism resulting in the formation of large-scale (hundreds of meters to kilometers nonlinear structures aligned along the geomagnetic field (magnetic zenith effect. It has also been claimed that the maximum effects caused by small-scale (tens of meters irregularities detected in satellite signals are also observed in the direction parallel to the magnetic field. Contrary to those studies, the present paper shows that the maximum in amplitude scintillations does not correspond strictly to the magnetic zenith direction because high latitude drifts typically cause a considerable anisotropy of small-scale irregularities in a plane perpendicular to the geomagnetic field resulting in a deviation of the amplitude-scintillation peak relative to the minimum angle between the line-of-sight to the satellite and direction of the geomagnetic field lines. The variance of the logarithmic relative amplitude fluctuations is considered here, which is a useful quantity in such studies. The experimental values of the variance are compared with model calculations and good agreement has been found. It is also shown from the experimental data that in most of the satellite passes a variance maximum occurs at a minimum in the phase fluctuations indicating that the artificial excitation of large-scale irregularities is minimum when the excitation of small-scale irregularities is maximum.

  17. The F-Region Equatorial Ionospheric Electrodynamics Drifts ...

    African Journals Online (AJOL)

    The ionospheric plasma drift is one of the most essential parameters for understanding the dynamics of ionospheric F-region. F-region electromagnetic drifts are calculated for three seasonal conditions from ionosonde observations acquired during quiet period of a typical year of high and low solar activity at Ibadan (7.4oN, ...

  18. Low and Mid-Latitude Ionospheric Irregularities Studies Using TEC and Radio Scintillation Data from the CITRIS Radio Beacon Receiver in Low-Earth-Orbit

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Huba, J.; Krall, J.; Roddy, P. A.

    2009-12-01

    Unique data on ionospheric plasma irregularities from the Naval Research Laboratory (NRL) CITRIS (Scintillation and TEC Receiver in Space) instrument will be presented. CITRIS is a multi-band receiver that recorded TEC (Total Electron Content) and radio scintillations from Low-Earth Orbit (LEO) on STPSat1. The 555+/5 km altitude 35° inclination orbit covers low and mid-latitudes. The measurements require propagation from a transmitter to a receiver through the F-region plasma. CITRIS used both 1) satellite beacons in LEO, such as the NRL CERTO (Coherent Electromagnetic Radio TOmography) beacons and 2) the global network of ground-based DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) beacons. The TEC measurements allow for tracking of ionospheric disturbances and irregularities while the measurements of scintillations can simultaneously characterize their effects. CITRIS was operated in a complementary fashion with the C/NOFS (Communication/Navigations Outages Forecasting System) satellite during most of its first year of operations. C/NOFS carries a three-frequency 150/400/1067 MHz CERTO beacon and is dedicated to the study of Spread-F. In the case of Spread-F, ionospheric irregularities start with large scale size density gradients (100s of km) and cascade through complex processes to short scale sizes (10s of meters). It is typically the 100m-1km scale features that harm communication and navigation systems through scintillations. A multi-sensor approach is needed to completely understand this complex system, such as, the combination of CITRIS remote radio sensing and C/NOFS in-situ data. Several types of irregularities have been studied including Spread-F and the newly discovered dawn-side depletions. Comparisons with the physics based SAMI3 model are being performed to help our understanding of the morphology of the irregularities.

  19. Unique Capabilities of the Situational Awareness Sensor Suite for the ISS (SASSI) Mission Concept to Study the Equatorial Ionosphere

    Science.gov (United States)

    Habash Krause, L.; Gilchrist, B. E.; Minow, J. I.; Gallagher, D. L.; Hoegy, W. R.; Coffey, V. N.; Willis, E. M.

    2014-12-01

    We present an overview of a mission concept named Situational Awareness Sensor Suite for the ISS (SASSI) with a special focus here on low-latitude ionospheric plasma turbulence measurements relevant to equatorial spread-F. SASSI is a suite of sensors that improves Space Situational Awareness for the ISS local space environment, as well as unique ionospheric measurements and support active plasma experiments on the ISS. As such, the mission concept has both operational and basic research objectives. We will describe two compelling measurement techniques enabled by SASSI's unique mission architecture. That is, SASSI provides new abilities to 1) measure space plasma potentials in low Earth orbit over ~100 m relative to a common potential, and 2) to investigate multi-scale ionospheric plasma turbulence morphology simultaneously of both ~ 1 cm and ~ 10 m scale lengths. The first measurement technique will aid in the distinction of vertical drifts within equatorial plasma bubbles from the vertical motions of the bulk of the layer due to zonal electric fields. The second will aid in understanding ionospheric plasma turbulence cascading in scale sizes that affect over the horizon radar. During many years of ISS operation, we have conducted effective (but not perfect) human and robotic extravehicular activities within the space plasma environment surrounding the ISS structure. However, because of the complexity of the interaction between the ISS and the space environment, there remain important sources of unpredictable environmental situations that affect operations. Examples of affected systems include EVA safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, there is no substitute for real-time monitoring. SASSI is being designed to deploy and operate a suite of low-cost, medium/high-TRL plasma sensors on

  20. Study of the Equatorial and Low-Latitude Electrodynamic and Ionospheric Disturbances During the 22-23 June 2015 Geomagnetic Storm Using Ground-Based and Spaceborne Techniques

    Science.gov (United States)

    Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; Coïsson, P.; Hairston, M. R.; Coley, W. R.

    2018-03-01

    We use a set of ground-based instruments (Global Positioning System receivers, ionosondes, magnetometers) along with data of multiple satellite missions (Swarm, C/NOFS, DMSP, GUVI) to analyze the equatorial and low-latitude electrodynamic and ionospheric disturbances caused by the geomagnetic storm of 22-23 June 2015, which is the second largest storm in the current solar cycle. Our results show that at the beginning of the storm, the equatorial electrojet (EEJ) and the equatorial zonal electric fields were largely impacted by the prompt penetration electric fields (PPEF). The PPEF were first directed eastward and caused significant ionospheric uplift and positive ionospheric storm on the dayside, and downward drift on the nightside. Furthermore, about 45 min after the storm commencement, the interplanetary magnetic field (IMF) Bz component turned northward, leading to the EEJ changing sign to westward, and to overall decrease of the vertical total electron content (VTEC) and electron density on the dayside. At the end of the main phase of the storm, and with the second long-term IMF Bz southward turn, we observed several oscillations of the EEJ, which led us to conclude that at this stage of the storm, the disturbance dynamo effect was already in effect, competing with the PPEF and reducing it. Our analysis showed no significant upward or downward plasma motion during this period of time; however, the electron density and the VTEC drastically increased on the dayside (over the Asian region). We show that this second positive storm was largely influenced by the disturbed thermospheric conditions.

  1. Ionospheric irregularities in periods of meteorological disturbances

    Science.gov (United States)

    Borchevkina, O. P.; Karpov, I. V.

    2017-09-01

    The results of observations of the total electron content (TEC) in periods of storm disturbances of meteorological situation are presented in the paper. The observational results have shown that a passage of a meteorological storm is accompanied by a substantial decrease in values of TEC and critical frequencies of the ionospheric F2 region. The decreases in values of these ionospheric parameters reach 50% and up to 30% in TEC and critical frequency of the F2 layer, respectively, as compared to meteorologically quiet days. Based on qualitative analysis, it is found that the processes related to formation of local regions of thermospheric heating due to a dissipation of AGW coming into the upper atmosphere from the region of the meteorological disturbance in the lower atmosphere are a possible cause of these ionospheric disturbances.

  2. Low-latitude ionospheric disturbances associated with earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Depueva, A.; Rotanova, N. [Russian Academy of Sciences, Inst. of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Moscow (Russian Federation)

    2001-04-01

    Topside electron density measured on satellite board was analysed. It was shown that before the two considered earthquakes with their epicenters located at low and equatorial latitudes the stable modification of the ionosphere both at and above the height of the F-layer peak was observed. Electron density gradually decreased and its spatial distribution looked like a funnel located either immediately over the epicenter or from its one side. Electron density irregularities of 300-500 km size in a meridional direction also occurred side by side with aforesaid background large-scale depletions. For detection of local structures of more than 1000 km extent, the method of natural orthogonal component expansion was applied; spectra of smaller scale inhomogeneities were investigated by means of the Blackman-Tukey method. A proposal is made for observed experimental data interpretation.

  3. Modeling the Electrodynamics of the Low-Latitude Ionosphere

    National Research Council Canada - National Science Library

    Wohlwend, Christian S

    2008-01-01

    .... This two-part study focused on the gravity wave seeding mechanism of equatorial plasma depletions in the ionosphere and the associated-equatorial spread F, as well as the differences between a two...

  4. Severe ionosphere disturbances caused by the sudden response of evening subequatorial ionospheres to geomagnetic storms

    International Nuclear Information System (INIS)

    Tanaka, T.

    1981-01-01

    By monitoring C band beacon signals from geostationary satellites in Japan, we have observed anomalously strong ionospheric scintillations several times during three years from 1978 to 1980. These severe scinitillations occur associated with geomagnetic storms and accompany sudden and intense ionospheric perturbations in the low-latiude region. Through the analysis of these phenomena we have identified a new type of ionospheric disturbances characterized by intensifications of equatorial anomalies and successive severe ionospheric scintillations that extend to the C band range. The events occur only during a limited local time interval after the sunset, when storm time decreases of midlatitude geomagnetic fields in the same meridan take place during the same time interval. From the viewpoint of ionospheric storms, these disturbances precede the occurrence of midlatitude negative phases and storm time depressions of equatorial anomalies to indicate that the cause of the events is different from distrubed thermospheric circulations. The timing and magnitude of substorms at high-latitudes not always correlate with the events. We have concluded that the phenomena are closely related with penetrations toward low-latitudes of electric fields owing to the partial closure of asymmetrical ring currents

  5. Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2009-07-01

    Full Text Available On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs. The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (Pt and collapse (Pc of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF.

  6. Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography

    Science.gov (United States)

    Bahcivan, H.; Leveque, K.; Doe, R. A.

    2013-12-01

    The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can

  7. ARCAD3-SAFARI coordinated study of auroral and polar F-region ionospheric irregularities

    International Nuclear Information System (INIS)

    Villain, J.P.; Hanuise, C.

    1986-01-01

    Simultaneous observations of F-region ionospheric irregularities have been performed with the SAFARI ground-based HF radars and the ISOPROBE experiment on board the AUREOL-3 satellite. Among seven orbits during which the satellite trajectory was directly in the radar beam or in the vicinity, four of them have been analyzed in detail. The spectral power of the electron density variations ΔNsub(e)/Nsub(e) has been calculated for wavelengths between 20 m and 1 km from the isoprobe high time resolution thermal plasma measurements. One spectrum is obtained every 1.2 s, a time which corresponds to about 10 km along the satellite trajectory. The presence of echoes observed in the F-region with the SAFARI radars is compared with the spectral power of the electron density variations deduced from the ISOPROBE ''in situ'' measurements. A good agreement is found between the two sets of observations and a numerical value of the spectral power corresponding to detection of echoes by the radar is given. A synoptical view of the event is given and interpreted according to the existing theories of plasma irregularities

  8. A study of evolution/suppression parameters of equatorial postsunset plasma instability

    Directory of Open Access Journals (Sweden)

    O. S. Oyekola

    2009-01-01

    Full Text Available Evening equatorial pre-reversal vertical ion E×B drift (VZP and the peak of the ionospheric F2 maximum altitude (hmF2P of the postsunset equatorial F-layer, which are the essential parameters requisite for the generation or inhibition of postsunset bottomside equatorial irregularities were deduced from ionosonde observations made in the Africa region (Ouagadougou: ~3° N dip latitude between January 1987 and December 1990 for solar activity minimum, medium, and maxima (F10.7=85, 141, 214, and 190, respectively for quiet geomagnetic conditions. We investigate variations of evening equatorial pre-reversal drift and the corresponding altitude at four levels of solar activity. Our observations show strong variations with solar variability. Correlation analysis between these parameters indicates that the correlation coefficient value between hmF2P versus VZP decreases considerably with increasing solar flux value. There seems to be no significant link between these parameters under high solar activity, especially for solar intensity F10.7>200 units. We conclude that meridional neutral wind in the F-region contributes substantially to the variations of the pre-reversal vertical plasma drifts enhancement and the peak hmF2, particularly the electrodynamics during twilight high solar flux conditions.

  9. Magnetic-field-aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Tsunoda, R.T.

    1980-01-01

    Measurements of both incoherent-scatter (IS) and backscatter from field-aligned irregularities (FAI) were made in 1978 with ALTAIR, a fully-steerable high-power radar, to investigate the magnetic-field-aligned characteristics of equatorial plasma bubbles. By operating the radar in a latitude-scan IS mode it was possible to map the location and percentage depletion of plasma bubbles as a function of altitude. By showing that backscatter from FAI is spatially collocated with the upper wall of plasma bubbles it was possible to use the spatial displacement of a field aligned backscatter region to estimate the upward bubble velocity. Besides showing that plasma bubbles are indeed aligned along magnetic field lines, this data set is used to show that a plasma bubble with a percentage depletion of as much as 90% does not have as large an upward velocity as predicted by two-dimensional models. Instead, the inferred bubble velocity is shown to be in better agreement with the bubble velocity predicted by theoretical models using flux-integrated values of electron density and Pedersen conductivity. The need to use flux-tube-integrated values when comparing theory and observation is further stressed by the presence of a non-uniform latitudinal distribution of electron density (i.e. the equatorial anomaly) that was found in the latitude-scan data. (author)

  10. Multiple frequency radar observations of high-latitude E region irregularities in the HF modified ionosphere

    International Nuclear Information System (INIS)

    Noble, S.T.; Djuth, F.T.; Jost, R.J.

    1987-01-01

    In September 1983, experiments were conducted in Scandinavia using the high-power heating facility near Tromso, Norway. The purpose of the HF ionospheric modification experiments was to investigate the behavior of artificially produced E region irregularities at auroral latitudes. The majority of observations were made with backscatter radars operating at 46.9 and 143.8 MHz, but limited observations were also made at 21.4 and 140.0 MHz. These radars are sensitive to irregularities having scale lengths of between 1 and 7 m across the geomagnetic field lines. The growth and decay of the irregularities are scale length dependent with the shorter lengths growing and dissipating more rapidly than the longer lengths (e-folding growth times = 10 1 --10 2 ms; decay times = 10 2 --10 3 ms). During periods of full power ordinary mode heating, irregularities having peak cross sections of 10 4 m 2 at 46.9 MHz and 10 5 m 2 at 143.8 MHz are observed. However, the cross sections normally measured are 1 to 2 orders of magnitude smaller than the peak values. The cross sections are nonlinearly dependent on the HF power and begin to saturate at levels greater than 50--75 percent of full power. Past E and F region data from Arecibo are used in conjunction with the Tromso measurements to ascertain the relative roles played by various mechanisms in exciting irregularities. In the E region, the results tend to favor those instability processes which operate at the upper hybrid resonance level (e.g., thermal parametric and resonance instabilities) over those that operate at the reflection level (e.g., parametric decay instability). However, it is likely that anyh of the mechanisms studied could at times contribute to irregularity production in the E regions

  11. Multiscale Modeling of Ionospheric Irregularities

    Science.gov (United States)

    2014-10-22

    numerical simulations of ionospheric plasma density structures associated with nonlinear evolution of the Rayleigh-Taylor (RT) instabilities in...model was developed to resolve the transport pat- terns of plasma density coupled with neutral atmospheric dynamics. Inclusion of neutral dynamics in...trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. Keywords

  12. The reconciliation of an F-region irregularity model with sunspot-cycle variations in spread-F occurrence

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1974-11-01

    A recently proposed means of combining models of ionospheric F-layer peak electron density and irregularity incremental electron density (ΔN) so as to simulate the global occurrence probability of the frequency spreading component of spread-F is discussed. This procedure is then used to model experimental spread-F occurrence results. It is found possible to readily simulate the sunspot-maximum results, independently of season, with only small adjustments to the amplitudes of the empirical expressions used to ΔN in the several latitude regimes. However, at sunspot minimum and for each season, the ΔN model requires modification in the equatorial and mid-latitude regions of high irregularity incidence, before successful simulations of the spread-F data can be obtained. These modifications, which include a broadening of the equatorial region and a polewards shift to the mid-latitude region with decreasing sunspot number, are discussed in detail. It is concluded that the scintillation data base, from which the original ΔN model derives, is not sufficiently representative with regard to sunspot number and magnetic index. The use of the spread-F adaptation of the ΔN model, as well as its original scintillation version, to rectify these failings of the ΔN model are also discussed. (author)

  13. Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2009-07-01

    Full Text Available On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs. The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (Pt and collapse (Pc of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF.

  14. On the response of the equatorial and low latitude ionospheric regions in the Indian sector to the large magnetic disturbance of 29 October 2003

    Directory of Open Access Journals (Sweden)

    G. Manju

    2009-06-01

    Full Text Available The present paper investigates the response of the equatorial and low latitude ionosphere over the Indian longitudes to the events on 29 October 2003 using ionosonde data at Trivandrum (8.5° N (0.5° N geomagnetic, 77° E and SHAR (13.7° N (5.7° N geomagnetic, 80.2° E, ground-based magnetometer data from Trivandrum and Total Electron Content (TEC derived from GPS data at the locations of Ahmedabad (23° N (15° N geomagnetic, 72° E, Jodhpur (26.3° N (18.3° N geomagnetic, 73° E and Delhi (28° N (20° N geomagnetic, 77° E. Following the storm sudden commencement, the TEC at all the three stations showed an overall enhancement in association with episodes of inter-planetary electric field penetration. Interestingly, real ionospheric height profiles derived using the ionosonde data at both Trivandrum and SHAR showed significant short-term excursions and recoveries. In the post noon sector, these features are more pronounced over SHAR, an off equatorial station, than those over Trivandrum indicating the increased effects of neutral winds.

  15. Detection of radiation from a heated and modulated equatorial electrojet current system

    International Nuclear Information System (INIS)

    Lunnen, R.J.; Lee, H.S.; Ferraro, A.J.; Collins, T.W.

    1984-01-01

    In May 1983, ionospheric heating experiments were conducted using the very high frequency radar facility at Lima, Peru. Experiments involving high frequency heating of the ionosphere were successfully conducted during 1982 at Islote, Puerto Rico. These local experiments had characterized the signal radiated from a heated and modulated ionospheric current system near the mid-latitudes. A long-path signal had also been received in September 1982 at Salinas, Puerto Rico from a mid-day equatorial electrojet, heated and modulated by the Jicamarca facility. The authors have investigated the characteristics of the local signal that would be radiated from a strong equatorial electrojet when heated and modulated, and report here that at the geomagnetic equator they were similar to, but less intense than, those observed at Arecibo, Puerto Rico due to parameter differences. This radiation is believed to be the first detected from a heated and modulated equatorial electrojet current system in the Western Hemisphere. (author)

  16. Occurrence of Equatorial Plasma Bubbles during Intense Magnetic Storms

    Directory of Open Access Journals (Sweden)

    Chao-Song Huang

    2011-01-01

    Full Text Available An important issue in low-latitude ionospheric space weather is how magnetic storms affect the generation of equatorial plasma bubbles. In this study, we present the measurements of the ion density and velocity in the evening equatorial ionosphere by the Defense Meteorological Satellite Program (DMSP satellites during 22 intense magnetic storms. The DMSP measurements show that deep ion density depletions (plasma bubbles are generated after the interplanetary magnetic field (IMF turns southward. The time delay between the IMF southward turning and the first DMSP detection of plasma depletions decreases with the minimum value of the IMF Bz, the maximum value of the interplanetary electric field (IEF Ey, and the magnitude of the Dst index. The results of this study provide strong evidence that penetration electric field associated with southward IMF during the main phase of magnetic storms increases the generation of equatorial plasma bubbles in the evening sector.

  17. Equatorial Scintillation Study at Ilorin and Nsukka, Nigeria during Year 2011-2012

    Science.gov (United States)

    Akala, A.

    2017-12-01

    This study presents GNSS scintillations over Ilorin (8.48 oN, 4.54 oE, and mag lat: 1.83oS) and Nsukka (6.84 oN, 7.37 oE, and mag lat: 2.94oS), Nigeria during year 2011-2012. The two stations are located within the inner flank of the equatorial ionization anomaly. Firstly, we investigated the climatology of equatorial scintillations at the two stations. We suppressed multipath effects on the data by imposing a 300 elevation masking on the data. In addition, we investigated scintillation occurrences at the two locations on a satellite-by-satellite basis at varying elevation angles. The source of scintillation records at low-elevation angle is attributed to multipath, while that at high-elevation angle is attributed to ionospheric irregularities. Seasonally, scintillations recorded highest occurrences during March equinox, and the least during June solstice. The trend of scintillations, at both low- and high-elevation angles at the two stations were almost the same. EGNOS satellites signals scintillated at the two locations during the time intervals when GPS satellites signals experienced scintillations. These results could support the development of scintillation models for equatorial Africa, and could also be of benefit to GPS and EGNOS service providers and designers, with a view to providing robust services for GNSS user community in Africa.

  18. Contribution of storm time substorms to the prompt electric field disturbances in the equatorial ionosphere

    International Nuclear Information System (INIS)

    Hui, Debrup; Chakrabarty, D.; Sekar, R.; Reeves, G. D.

    2017-01-01

    This study tries to bring out the fact that storm time substorms can compete and at times significantly contribute to the geomagnetically disturbed time prompt penetration electric field effects on low and equatorial latitudes. Observations of unusual equatorial plasma drift data from Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere during two space weather events show that substorms can induce both eastward and westward penetration electric fields under steady southward interplanetary magnetic field (IMF B z ) conditions. During the first event on 2 January 2005, the enhancement of the daytime eastward electric field over Jicamarca due to substorm is found to be comparable with the Sq and interplanetary electric field (IEFy) generated electric fields combined. During the second event on 19 August 2006, the substorm is seen to weaken the daytime eastward field thereby inducing a westward field in spite of the absence of northward turning of IMF B z (overshielding). The westward electric field perturbation in the absence of any overshielding events is observationally sparse and contrary to the earlier results. Further, the substorm-induced field is found to be strong enough to compete or almost nullify the effects of storm time IEFy fields. This study also shows quantitatively that at times substorm contribution to the disturbed time prompt electric fields can be significant and thus should be taken into consideration in evaluating penetration events over low latitudes.

  19. Plasma instabilities multifrequency study in equatorial electrojet

    International Nuclear Information System (INIS)

    Hanuise, C.

    1983-01-01

    In this thesis, multifrequential HF coherent radar results are presented, in the field plasma instabilities in equatorial electrojet. In a first part, characteristics of the irregularities observed either at the 3 meter wavelength by VHF radars, either at other wavelengths during pinpoint experiments, or in-situ by probe rockets are recalled. Theoretical studies progressed and are presented, at the same time with these experimental observations: instability linear theory, non linear theories, HF radar specificity, and problems associated to HF waves propagation and refraction in ionosphere. Original experimental results from Ethiopia are gathered in the second part. Plasma instability has been studied in different geophysical conditions and Doppler spectra characteristics are presented for each one of them. These characteristics are completely different according to the various cases; they are also different according to wether observations are made during the day in normal conditions (electric field pointed to the east at the equator) or in counter-electrojet conditions (electric field pointed to the west). The last part is concerned with theoretical interpretation of the previous results. A comprehensive view of the instability physical mechanisms, according to the geophysical conditions encountered, has been allowed by our results, VHF radar measurements at Jicamarca, or in situ probe measurements on the whole. Irregularities study has been limited to the E region [fr

  20. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  1. The Role of Hydromagnetic Waves in the Magnetosphere and the Ionosphere

    Science.gov (United States)

    1988-05-01

    ionospheric heating ex- ( MINIX ) was carried out recently by the Kyoto Uni- periments [Stubbe and Kopka, 198! Stubbe et al., versity group in Japan to...ionospheric irregularities and other predicted netosphere with growth times of a few minutes. Our phenomena could not be produced in MINIX be- work...ionosphere: Project- HF produced electron density irregularities in the polar iono- MINIX for future solar power satellite, paper presented at 21st

  2. Investigation on equatorial ionospheric profiles and IRI model

    International Nuclear Information System (INIS)

    Adeniyi, J.O.

    1996-01-01

    Ionospheric profiles below the F2 peak ionisation density are compared with those of the International Reference Ionosphere (IRI). The data used are those of Ibadan (Lat. 7.4 deg N, Long. 3.9 E). The IRI model gives a much thinner bottomside F region ionisation density than what is observed experimentally, in winter; both at high and low solar activity. Similar departures are observed in the summer of both solar epoch but on a reduced scale. The closet agreement occurs during the March equinox of high solar activity. (author). 3 refs, 4 figs

  3. Ionospheric effects on DInSAR measurements of interseismic deformation in China

    Science.gov (United States)

    Gong, W.; Shan, X.; Song, X.; Liao, H.; Meyer, F. J.

    2017-12-01

    Interseismic deformation signals are small ground displacement that is critical to monitor the strain accumulates of major faults to foresee the potential seismic hazard. Accurate measurements of surface deformation could help recognize and interpret even subtle displacement and to give a better understanding of active fault behavior. However, the value and applicability of InSAR for inter-seismic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations (atmospheric disturbance), both reducing the sensitivity and accuracy of the technique. Ionospheric signal, a major part of atmospheric disturbance in InSAR, is related to the density of free electrons along the ray path, thus, that is dependent on the SAR signal frequency. Ionosphere induced phase distortions can lead to azimuth/range defocusing, geometry distortions and interferometric phase distortions. Some ionosphere phenomenon have been reported more severe at equatorial region and polar zones, e.g., ionosphere irregularity, while for middle latitude regions like West China it has not been thoroughly analyzed. Thus, this study is focus on the evaluation of ionosphere impacts in middle latitude zone, and its impacts in monitoring interseismic deformation in West China. The outcome would be useful to provide an empiric prior error condition of ionosphere disturbance, which can further benefit InSAR result interpretation and geophysical inversion, as well as the SAR data arrangement in future operational-(cloud) InSAR processing system. The study focus on two parts: 1. We will analyze the temporal-spatial variation of ionosphere and its magnitude at middle latitude zone, and investigate its impacts to current satellite SAR (C-band (Sentinel-1) and L-band (ALOS2) dataset) in earthquake-related deformation studies, especially inter-seismic study. 2. Ionosphere phase patterns at mid latitudes is typically small and the structure is compatibly smooth. This

  4. Features of High-Latitude Ionospheric Irregularities Development as Revealed by Ground-Based GPS Observations, Satellite-Borne GPS Observations and Satellite In Situ Measurements over the Territory of Russia during the Geomagnetic Storm on March 17-18, 2015

    Science.gov (United States)

    Zakharenkova, I. E.; Cherniak, Iu. V.; Shagimuratov, I. I.; Klimenko, M. V.

    2018-01-01

    The dynamic picture of the response of the high- and mid-latitude ionosphere to the strong geomagnetic disturbances on March 17-18, 2015, has been studied with ground-based and satellite observations, mainly, by transionospheric measurements of delays of GPS (Global Positioning System) signals. The advantages of the joint use of ground-based GPS measurements and GPS measurements on board of the Swarm Low-Earth-Orbit satellite mission for monitoring of the appearance of ionospheric irregularities over the territory of Russia are shown for the first time. The results of analysis of ground-based and space-borne GPS observations, as well as satellite, in situ measurements, revealed large-scale ionospheric plasma irregularities observed over the territory of Russia in the latitude range of 50°-85° N during the main phase of the geomagnetic storm. The most intense ionospheric irregularities were detected in the auroral zone and in the region of the main ionospheric trough (MIT). It has been found that sharp changes in the phase of the carrier frequency of the navigation signal from all tracked satellites were recorded at all GPS stations located to the North from 55° MLAT. The development of a deep MIT was related to dynamic processes in the subauroral ionosphere, in particular, with electric fields of the intense subauroral polarization stream. Analysis of the electron and ion density values obtained by instruments on board of the Swarm and DMSP satellites showed that the zone of highly structured auroral ionosphere extended at least to heights of 850-900 km.

  5. Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet

    Science.gov (United States)

    Yamazaki, Yosuke; Stolle, Claudia; Matzka, Jürgen; Siddiqui, Tarique A.; Lühr, Hermann; Alken, Patrick

    2017-12-01

    The atmospheric lunar tide is one known source of ionospheric variability. The subject received renewed attention as recent studies found a link between stratospheric sudden warmings and amplified lunar tidal perturbations in the equatorial ionosphere. There is increasing evidence from ground observations that the lunar tidal influence on the ionosphere depends on longitude. We use magnetic field measurements from the CHAMP satellite during July 2000 to September 2010 and from the two Swarm satellites during November 2013 to February 2017 to determine, for the first time, the complete seasonal-longitudinal climatology of the semidiurnal lunar tidal variation in the equatorial electrojet intensity. Significant longitudinal variability is found in the amplitude of the lunar tidal variation, while the longitudinal variability in the phase is small. The amplitude peaks in the Peruvian sector (˜285°E) during the Northern Hemisphere winter and equinoxes, and in the Brazilian sector (˜325°E) during the Northern Hemisphere summer. There are also local amplitude maxima at ˜55°E and ˜120°E. The longitudinal variation is partly due to the modulation of ionospheric conductivities by the inhomogeneous geomagnetic field. Another possible cause of the longitudinal variability is neutral wind forcing by nonmigrating lunar tides. A tidal spectrum analysis of the semidiurnal lunar tidal variation in the equatorial electrojet reveals the dominance of the westward propagating mode with zonal wave number 2 (SW2), with secondary contributions by westward propagating modes with zonal wave numbers 3 (SW3) and 4 (SW4). Eastward propagating waves are largely absent from the tidal spectrum. Further study will be required for the relative importance of ionospheric conductivities and nonmigrating lunar tides.

  6. The streaming-trapped ion interface in the equatorial inner magnetosphere

    Science.gov (United States)

    Lin, J.; Horwitz, J. L.; Gallagher, D.; Pollock, C. J.

    1994-01-01

    Spacecraft measurements of core ions on L=4-7 field-lines typically show trapped ion distributions near the magnetic equator, and frequently indicate field-aligned ion streams at higher latitudes. The nature of the transition between them may indicate both the microphysics of hot-cold plasma interactions and overall consequences for core plasma evolution. We have undertaken a statistical analysis and characterization of this interface and its relation to the equatorial region of the inner magnetosphere. In this analysis, we have characterized such features as the equatorial ion flux anisotropy, the penetration of field-aligned ionospheric streams into the equatorial region, the scale of the transition into trapped ion populations, and the transition latitude. We found that most transition latitudes occur within 13 deg of the equator. The typical values of equatorial ion anisotropies are consistent with bi-Maxwellian temperature ratios of T(sub perpendicular)/T(sub parallel) in the range of 3-5. The latitudinal scales for the edges of the trapped ion populations display a rather strong peak in the 2-3 deg range. We also found that there is a trend for the penetration ratio, the anisotropy half width, and the transition scale length to decrease with a higher equatorial ion anisotropy. We may interpret these features in terms of Liouville mapping of equatorially trapped ions and the reflection of the incoming ionospheric ion streams from the equatorial potential peaks associated with such trapped ions.

  7. Typical disturbances of the daytime equatorial F region observed with a high-resolution HF radar

    Directory of Open Access Journals (Sweden)

    E. Blanc

    1998-06-01

    Full Text Available HF radar measurements were performed near the magnetic equator in Africa (Korhogo 9°24'63''N–5°37'38''W during the International Equatorial Electrojet Year (1993–1994. The HF radar is a high-resolution zenithal radar. It gives ionograms, Doppler spectra and echo parameters at several frequencies simultaneously. This paper presents a comparative study of the daytime ionospheric structures observed during 3 days selected as representative of different magnetic conditions, given by magnetometer measurements. Broad Doppler spectra, large echo width, and amplitude fluctuations revealed small-scale instability processes up to the F-region peak. The height variations measured at different altitudes showed gravity waves and larger-scale disturbances related to solar daytime influence and equatorial electric fields. The possibility of retrieving the ionospheric electric fields from these Doppler or height variation measurements in the presence of the other possible equatorial ionospheric disturbances is discussed.

  8. Ionospheric response to a recurrent magnetic storm during an event of High Speed Stream in October 2016.

    Science.gov (United States)

    Nicoli Candido, C. M.; Resende, L.; Becker-Guedes, F.; Batista, I. S.

    2017-12-01

    In this work we investigate the response of the low latitude ionosphere to recurrent geomagnetic activity caused by events of High speed streams (HSSs)/Corotating Interaction Regions (CIRs) during the low descending phase of solar activity in the solar cycle 24. Intense magnetic field regions called Corotating Interaction Regions or CIRs are created by the interaction of fast streams and slow streams ejected by long duration coronal holes in Sun. This interaction leads to an increase in the mean interplanetary magnetic field (IMF) which causes moderate and recurrent geomagnetic activity when interacts with the Earth's magnetosphere. The ionosphere can be affected by these phenomena by several ways, such as an increase (or decrease) of the plasma ionization, intensification of plasma instabilities during post-sunset/post-midnight hours and subsequent development of plasma irregularities/spread-F, as well as occurrence of plasma scintillation. Therefore, we investigate the low latitude ionospheric response during moderate geomagnetic storm associated to an event of High Speed Stream occurred during decreasing phase of solar activity in 2016. An additional ionization increasing is observed in Es layer during the main peak of the geomagnetic storm. We investigate two possible different mechanisms that caused these extras ionization: the role of prompt penetration of interplanetary electric field, IEFEy at equatorial region, and the energetic electrons precipitation on the E and F layers variations. Finally, we used data from Digisondes installed at equatorial region, São Luís, and at conjugate points in Brazilian latitudes, Boa Vista and Cachoeira Paulista. We analyzed the ionospheric parameters such as the critical frequency of F layer, foF2, the F layer peak height, hmF2, the F layer bottomside, h'F, the blanketing frequency of sporadic layer, fbEs, the virtual height of Es layer h'Es and the top frequency of the Es layer ftEs during this event.

  9. Low-latitude scintillation occurrences around the equatorial anomaly crest over Indonesia

    Directory of Open Access Journals (Sweden)

    P. Abadi

    2014-01-01

    Full Text Available We investigated low-latitude ionospheric scintillation in Indonesia using two GPS receivers installed at Bandung (107.6° E, 6.9° S; magnetic latitude 17.5° S and Pontianak (109.3° E, 0.02° S; magnetic latitude 8.9° S. This study aimed to characterise climatological and directional ionospheric scintillation occurrences, which are useful not only for the physics of ionospheric irregularities but also for practical use in GNSS (global navigation satellite system-based navigation. We used the deployed instrument's amplitude scintillation (S4 index data from 2009, 2010, and 2011; the yearly SSN (sunspot-smoothed numbers were 3.1, 16.5, and 55.9, respectively. In summary, (1 scintillation occurrences in the post-sunset period (18:00–01:00 LT during equinox months (plasma bubble season at the two sites can be ascribed to the plasma bubble; (2 using directional analyses of the two sites, we found that the distribution of scintillation occurrences is generally concentrated between the two sites, indicating the average location of the EIA (equatorial ionisation anomaly crest; (3 scintillation occurrence enhancements for the two sites in field-aligned directions are herein reported for the first time by ground-based observation in a low-latitude region; (4 distribution of scintillation occurrences at Pontianak are concentrated in the southern sky, especially in the southwest direction, which is very likely associated with the plasma bubble tilted westward with increasing latitude; and (5 scintillation occurrence in the post-midnight period in the non-plasma-bubble season is the most intriguing variable occurring between the two sites (i.e. post-midnight scintillations are observed more at Bandung than Pontianak. Most of the post-midnight scintillations observed at Bandung are concentrated in the northern sky, with low elevation angles. This might be due to the amplitude of irregularities in certain directions, which may be effectively enhanced by

  10. Study of electromagnetic wave scattering by periodic density irregularities in plasma

    International Nuclear Information System (INIS)

    Lyle, R.; Kuo, S.P.; Huang, J.

    1995-01-01

    A quasi-particle approach is used to formulate wave propagation and scattering in a periodically structured plasma. The theory is then applied to study the effect of bottomside sinusoidal (BSS) irregularities on the propagation of beacon satellites signals through the ionosphere. In this approach, the radio wave is treated as a distribution of quasi-particles described by a Wigner distribution function governed by a transport equation. The irregularities providing the collisional effect are modeled as a two dimensional density modulation on a uniform background plasma. The present work generalizes the previous work by including the spectral bandwidth (Δk/k) effect of the spatially periodic irregularities on the transionospheric signal propagation. The collision of quasi-particles with the irregularities modifies the quasi-particle distribution and give rise to the wave scattering phenomenon. The multiple scattering process is generally considered in this deterministic analysis of radio wave scattering off the ionospheric density irregularities. The analysis shows that this two dimensional density grating effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then results in the scintillation of the beacon satellite signals

  11. Multiscale modeling and nested simulations of three-dimensional ionospheric plasmas: Rayleigh–Taylor turbulence and nonequilibrium layer dynamics at fine scales

    International Nuclear Information System (INIS)

    Mahalov, Alex

    2014-01-01

    Multiscale modeling and high resolution three-dimensional simulations of nonequilibrium ionospheric dynamics are major frontiers in the field of space sciences. The latest developments in fast computational algorithms and novel numerical methods have advanced reliable forecasting of ionospheric environments at fine scales. These new capabilities include improved physics-based predictive modeling, nesting and implicit relaxation techniques that are designed to integrate models of disparate scales. A range of scales, from mesoscale to ionospheric microscale, are included in a 3D modeling framework. Analyses and simulations of primary and secondary Rayleigh–Taylor instabilities in the equatorial spread F (ESF), the response of the plasma density to the neutral turbulent dynamics, and wave breaking in the lower region of the ionosphere and nonequilibrium layer dynamics at fine scales are presented for coupled systems (ions, electrons and neutral winds), thus enabling studies of mesoscale/microscale dynamics for a range of altitudes that encompass the ionospheric E and F layers. We examine the organizing mixing patterns for plasma flows, which occur due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology and the extracted scintillation-producing irregularities that indicate a generation of ionospheric density gradients, due to the accumulation of plasma. The scintillation effects in propagation, through strongly inhomogeneous ionospheric media, are induced by trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. (paper)

  12. Zonal asymmetry of daytime 150-km echoes observed by Equatorial Atmosphere Radar in Indonesia

    Directory of Open Access Journals (Sweden)

    T. Yokoyama

    2009-03-01

    Full Text Available Multi-beam observations of the daytime ionospheric E-region irregularities and the so-called 150-km echoes with the 47-MHz Equatorial Atmosphere Radar (EAR in West Sumatra, Indonesia (0.20° S, 100.32° E, 10.36° S dip latitude are presented. 150-km echoes have been frequently observed by the EAR, and their characteristics are basically the same as the equatorial ones, except for an intriguing zonal asymmetry; stronger echoes in lower altitudes in the east directions, and weaker echoes in higher altitudes in the west. The highest occurrence is seen at 5.7° east with respect to the magnetic meridian, and the altitude gradually increases as viewing from the east to west. Arc structures which return backscatter echoes are proposed to explain the asymmetry. While the strength of radar echoes below 105 km is uniform within the wide coverage of azimuthal directions, the upper E-region (105–120 km echoes also show a different type of zonal asymmetry, which should be generated by an essentially different mechanism from the lower E-region and 150-km echoes.

  13. A study of transient variations in the Earth's electromagnetic field at equatorial electrojet latitudes in western Africa (Mali and the Ivory Coast

    Directory of Open Access Journals (Sweden)

    J. Vassal

    1998-06-01

    electromagnetic diurnal variation is consequently impossible to perform. In the case of irregular variations, the source effect related to the equatorial electrojet is also discussed. A Gaussian model of equatorial electrojet was considered, and apparent resistivities were computed for two models of stratified Earth corresponding to the average resistive structure of the two tectonic provinces crossed by the profile: a sedimentary basin and a cratonic shield. The apparent resistivity curves were found to depend significantly on both the model used and the distance to the center of the electrojet. These numerical results confirm the existence of a daytime source effect related to the equatorial electrojet. Furthermore, we show that the results account for the observed differences between daytime and night-time apparent resistivity curves. In particular, it was shown that electromagnetic probing of the Earth using the classical Cagniard-Tikhonov magnetotelluric method is impossible with daytime recordings made at dip latitude stations.Key words. Electromagnetics (Transient and time do- main Geomagnetism and paleomagnetism (geomagne- tic induction Ionosphere (equatorial ionosphere

  14. A New 50 MHz Phased-Array Radar on Pohnpei: A Fresh Perspective on Equatorial Plasma Bubbles

    Science.gov (United States)

    Tsunoda, R. T.

    2014-12-01

    A new, phased-array antenna-steering capability has recently been added to an existing 50-MHz radar on Pohnpei, Federated States of Micronesia, in the central Pacific region. This radar, which we refer to as PAR-50, is capable of scanning in the vertical east-west plane, ±60° about the zenith. The alignment in the magnetic east-west direction allows detection of radar backscatter from small-scale irregularities that develop in the equatorial ionosphere, including those associated with equatorial plasma bubbles (EPBs). The coverage, about ±800 km in zonal distance, at an altitude of 500 km, is essentially identical to that provided by ALTAIR, a fully-steerable incoherent-scatter radar, which has been used in a number of studies of EPBs. Unlike ALTAIR, which has only been operated for several hours on a handful of selected nights, the PAR-50 has already been operated continuously, while performing repeated scans, since April 2014. In this presentation, we describe the PAR-50, then, compare it to ALTAIR and the Equatorial Atmospheric Radar (EAR); the latter is the only other phased-array system in use for equatorial studies. We then assess what we have learned about EPBs from backscatter radar measurements, and discuss how the PAR-50 can provide a fresh perspective to our understanding. Clearly, the ability to sort out the space-time ambiguities in EPB development from sequences of spatial maps of EPBs is crucial to our understanding of how EPBs develop.

  15. Detection and Characterization of Equatorial Scintillation for Real-Time Operational Support

    National Research Council Canada - National Science Library

    McNeil, W

    1997-01-01

    The Phillips Laboratory Scintillation Network Decision Aid (PL-SCINDA) is a software tool which uses real-time data from remote sites to model ionospheric plasma depletions in the equatorial region...

  16. Performance evaluation of GPS receiver under equatorial scintillation

    Directory of Open Access Journals (Sweden)

    Alison de Oliveira Moraes

    2009-06-01

    Full Text Available Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS. This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received.

  17. Distributed sensing of ionospheric irregularities with a GNSS receiver array

    Science.gov (United States)

    Su, Yang; Datta-Barua, Seebany; Bust, Gary S.; Deshpande, Kshitija B.

    2017-08-01

    We present analysis methods for studying the structuring and motion of ionospheric irregularities at the subkilometer scale sizes that produce L band scintillations. Spaced-receiver methods are used for Global Navigation Satellite System (GNSS) receivers' phase measurements over approximately subkilometer to kilometer length baselines for the first time. The quantities estimated by these techniques are plasma drift velocity, diffraction anisotropy magnitude and orientation, and characteristic velocity. Uncertainties are quantified by ensemble simulation of noise on the phase signals carried through to the observations of the spaced-receiver linear system. These covariances are then propagated through to uncertainties on drifts through linearization about the estimated values of the state. Five receivers of SAGA, the Scintillation Auroral Global Positioning System (GPS) Array, provide 100 Hz power and phase data for each channel at L1 frequency. The array is sited in the auroral zone at Poker Flat Research Range, Alaska. A case study of a single scintillating satellite observed by the array is used to demonstrate the spaced-receiver and uncertainty estimation process. A second case study estimates drifts as measured by multiple scintillating channels. These scintillations are correlated with auroral activity, based on all-sky camera images. Measurements and uncertainty estimates made over a 30 min period are compared to a collocated incoherent scatter radar and show good agreement in horizontal drift speed and direction during periods of scintillation for which the characteristic velocity is less than the drift velocity.

  18. Westward equatorial electrojet during daytime hours. [relation to geomagnetic horizontal field depression

    Science.gov (United States)

    Rastogi, R. G.

    1974-01-01

    The phenomenon of the depression of the geomagnetic horizontal field during the daytime hours of magnetically quiet days at equatorial stations is described. These events are generally seen around 0700 and 1600 LT, being more frequent during the evening than the morning hours. The evening events are more frequent during periods of low solar activity and in the longitude region of weak equatorial electrojet currents. The latitudinal extent of the phenomenon is limited to the normal equatorial electrojet region, and on some occasions the phenomenon is not seen at both stations, separated by only a few hours in longitude. During such an event, the latitudinal profile of the geomagnetic vertical field across the equator is reversed, the ionospheric drift near the equator is reversed toward the east, the q type of sporadic E layer is completely absent, and the height of the peak ionization in the F2 region is decreased. It is suggested that these effects are caused by a narrow band of current flowing westward in the E region of the ionosphere and within the latitude region of the normal equatorial electrojet, due to the reversal of the east-west electrostatic field at low latitudes.

  19. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983

  20. West African equatorial ionospheric parameters climatology based on Ouagadougou ionosonde station data from June 1966 to February 1998

    Directory of Open Access Journals (Sweden)

    F. Ouattara

    2009-06-01

    Full Text Available This study is the first which gives the climatology of West African equatorial ionosphere by using Ouagadougou station through three solar cycles. It has permitted to show the complete morphology of ionosphere parameters by analyzing yearly variation, solar cycle and geomagnetic activity, seasonal evolution and diurnal development. This work shows that almost all ionospheric parameters have 11-year solar cycle evolution. Seasonal variation shows that only foF2 exhibits annual, winter and semiannual anomaly. foF2 seasonal variation has permitted us to identify and characterize solar events effects on F2 layer in this area. In fact (1 during quiet geomagnetic condition foF2 presents winter and semiannual anomalies asymmetric peaks in March/April and October. (2 The absence of winter anomaly and the presence of equinoctial peaks are the most visible effects of fluctuating activity in foF2 seasonal time profiles. (3 Solar wind shock activity does not modify the profile of foF2 but increases ionization. (4 The absence of asymmetry peaks, the location of the peaks in March and October and the increase of ionization characterize recurrent storm activity. F1 layers shows increasing trend from cycle 20 to cycle 21. Moreover, E layer parameters seasonal variations exhibit complex structure. It seems impossible to detect fluctuating activity effect in E layer parameters seasonal variations but shock activity and wind stream activity act to decrease E layer ionization. It can be seen from Es layer parameters seasonal variations that wind stream activity effect is fairly independent of solar cycle. E and Es layers critical frequencies and virtual heights diurnal variations let us see the effects of the greenhouse gases in these layers.

  1. Time dependent response of equatorial ionospheric electric fieldsto magnetospheric disturbances

    OpenAIRE

    Fejer, Bela G.; Scherliess, L.

    1995-01-01

    We use extensive radar measurements of F region vertical plasma drifts and auroral electrojet indices to determine the storm time dependence of equatorial zonal electric fields. These disturbance drifts result from the prompt penetration of high latitude electric fields and from the dynamo action of storm time winds which produce largest perturbations a few hours after the onset of magnetic activity. The signatures of the equatorial disturbance electric fields change significantly depending o...

  2. Relationship between ionospheric plasma bubble occurrence and lightning strikes over the Amazon region

    Directory of Open Access Journals (Sweden)

    J. Sousasantos

    2018-03-01

    Full Text Available The vertical coupling between the troposphere and the ionosphere presents some remarkable features. Under intense tropospheric convection, gravity waves may be generated, and once they reach the ionosphere, these waves may seed instabilities and spread F and equatorial plasma bubble events may take place. Additionally, there is a close association between severe tropospheric convection and lightning strikes. In this work an investigation covering an equinox period (September–October during the deep solar minimum (2009 presents the relation between lightning strike activity and spread F (equatorial plasma bubble detected over a low-latitude Brazilian region. The results show a considerable correlation between these two phenomena. The common element in the center of this conformity seems to be the gravity waves. Once gravity waves and lightning strikes share the same source (intense tropospheric convection and the effects of such gravity waves in the ionosphere include the seeding of instabilities according to the gravity waves magnitude, the monitoring of the lightning strike activity seems to offer some information about the subsequent development of spread F over the equatorial region.

  3. Relationship between ionospheric plasma bubble occurrence and lightning strikes over the Amazon region

    Science.gov (United States)

    Sousasantos, Jonas; Sobral, José Humberto Andrade; Alam Kherani, Esfhan; Magalhães Fares Saba, Marcelo; Rodolfo de Campos, Diovane

    2018-03-01

    The vertical coupling between the troposphere and the ionosphere presents some remarkable features. Under intense tropospheric convection, gravity waves may be generated, and once they reach the ionosphere, these waves may seed instabilities and spread F and equatorial plasma bubble events may take place. Additionally, there is a close association between severe tropospheric convection and lightning strikes. In this work an investigation covering an equinox period (September-October) during the deep solar minimum (2009) presents the relation between lightning strike activity and spread F (equatorial plasma bubble) detected over a low-latitude Brazilian region. The results show a considerable correlation between these two phenomena. The common element in the center of this conformity seems to be the gravity waves. Once gravity waves and lightning strikes share the same source (intense tropospheric convection) and the effects of such gravity waves in the ionosphere include the seeding of instabilities according to the gravity waves magnitude, the monitoring of the lightning strike activity seems to offer some information about the subsequent development of spread F over the equatorial region.

  4. Remote sensing of the ionosphere using satellite radio beacons

    International Nuclear Information System (INIS)

    Davies, Kenneth

    1991-01-01

    Since the launch of Sputnik I in 1957, satellite radio beacons have been used to measure the total electron content of the ionosphere. A review of the role of satellite beacons in studies of the vertical and spatial structure of the total electron content and on the occurrence of plasma irregularities, both of which affect transionospheric radio signals, is presented. Measurements of Faraday rotation and time of flight give information on the topside of the ionosphere and on the protonosphere. Morphological studies show that the slab thickness of the ionosphere depends on the solar index but is approximately independent of geographical location. Scintillation of amplitude, phase, polarization, and angle provide information on plasma irregularity occurrence in space and time. (author). 23 refs., 16 figs ., 4 tabs

  5. Equatorial E Region Electric Fields and Sporadic E Layer Responses to the Recovery Phase of the November 2004 Geomagnetic Storm

    Science.gov (United States)

    Moro, J.; Resende, L. C. A.; Denardini, C. M.; Xu, J.; Batista, I. S.; Andrioli, V. F.; Carrasco, A. J.; Batista, P. P.; Schuch, N. J.

    2017-12-01

    Equatorial E region electric fields (EEFs) inferred from coherent radar data, sporadic-E (Es) layers observed from a digital ionosonde data, and modeling results are used to study the responses of the equatorial E region over São Luís (SLZ, 2.3°S, 44.2°W, -7° dip angle), Brazil, during the super storm of November 2004. The EEF is presented in terms of the zonal (Ey) and vertical (Ez) components in order to analyze the corresponding characteristics of different types of Es seen in ionograms and simulated with the E region ionospheric model. We bring out the variabilities of Ey and Ez components with storm time changes in the equatorial E region. In addition, some aspects of the electric fields and Es behavior in three cases of weak, very weak, and strong Type II occurrences during the recovery phase of the geomagnetic storm are discussed. The connection between the enhanced occurrence and suppressions of the Type II irregularities and the q-type Es (Esq) controlled by electric fields, with the development or disruption of the blanketing sporadic E (Esb) layers produced by wind shear mechanism, is also presented. The mutual presence of Esq along with the Esb occurrences is a clear indicator of the secular drift of the magnetic equator and hence that of the equatorial electrojet (EEJ) over SLZ. The results show evidence about the EEJ and Es layer electrodynamics and coupling during geomagnetic disturbance time electric fields.

  6. A study of transient variations in the Earth's electromagnetic field at equatorial electrojet latitudes in western Africa (Mali and the Ivory Coast

    Directory of Open Access Journals (Sweden)

    J. Vassal

    dip equator latitudes with the electromagnetic diurnal variation is consequently impossible to perform. In the case of irregular variations, the source effect related to the equatorial electrojet is also discussed. A Gaussian model of equatorial electrojet was considered, and apparent resistivities were computed for two models of stratified Earth corresponding to the average resistive structure of the two tectonic provinces crossed by the profile: a sedimentary basin and a cratonic shield. The apparent resistivity curves were found to depend significantly on both the model used and the distance to the center of the electrojet. These numerical results confirm the existence of a daytime source effect related to the equatorial electrojet. Furthermore, we show that the results account for the observed differences between daytime and night-time apparent resistivity curves. In particular, it was shown that electromagnetic probing of the Earth using the classical Cagniard-Tikhonov magnetotelluric method is impossible with daytime recordings made at dip latitude stations.

    Key words. Electromagnetics (Transient and time do- main Geomagnetism and paleomagnetism (geomagne- tic induction Ionosphere (equatorial ionosphere

  7. Continuous day-time time series of E-region equatorial electric fields derived from ground magnetic observatory data

    Science.gov (United States)

    Alken, P.; Chulliat, A.; Maus, S.

    2012-12-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays an important role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF. However, there are limited sources of direct EEF measurements with full temporal and spatial coverage of the equatorial ionosphere. In this work, we propose a method of estimating a continuous day-time time series of the EEF at any longitude, provided there is a pair of ground magnetic observatories in the region which can accurately track changes in the strength of the EEJ. First, we derive a climatological unit latitudinal current profile from direct overflights of the CHAMP satellite and use delta H measurements from the ground observatory pair to determine the magnitude of the current. The time series of current profiles is then inverted for the EEF by solving the governing electrodynamic equations. While this method has previously been applied and validated in the Peruvian sector, in this work we demonstrate the method using a pair of magnetometers in Africa (Samogossoni, SAM, 0.18 degrees magnetic latitude and Tamanrasset, TAM, 11.5 degrees magnetic latitude) and validate the resulting EEF values against the CINDI ion velocity meter (IVM) instrument on the C/NOFS satellite. We find a very good 80% correlation with C/NOFS IVM measurements and a root-mean-square difference of 9 m/s in vertical drift velocity. This technique can be extended to any pair of ground observatories which can capture the day-time strength of the EEJ. We plan to apply this work to more observatory pairs around the globe and distribute real-time equatorial electric field values to the community.

  8. Impact of Sudden Stratospheric Warming of 2009 on the Equatorial and Low-Latitude Ionosphere of the Indian Longitudes: A Case Study

    Science.gov (United States)

    Yadav, Sneha; Pant, Tarun K.; Choudhary, R. K.; Vineeth, C.; Sunda, Surendra; Kumar, K. K.; Shreedevi, P. R.; Mukherjee, S.

    2017-10-01

    Using the equatorial electrojet (EEJ)-induced surface magnetic field and total electron content (TEC) measurements, we investigated the impact of the sudden stratospheric warming (SSW) of January 2009 on the equatorial electrodynamics and low-latitude ionosphere over the Indian longitudes. Results indicate that the intensity of EEJ and the TEC over low latitudes (extending up to 30°N) exhibit significant perturbations during and after the SSW peak. One of the interesting features is the deviation of EEJ and TEC from the normal quiet time behavior well before the onset of the SSW. This is found to coincide with the beginning of enhanced planetary wave (PW) activity over high latitudes. The substantial amplification of the semidiurnal perturbation after the SSW peak is seen to be coinciding with the onset of new and full moons. The response of TEC to SSW is found to be latitude dependent as the near-equatorial (NE) stations show the semidiurnal perturbation only after the SSW peak. Another notable feature is the presence of reduced ionization in the night sector over the NE and low-latitude regions, appearing as an "ionization hole," well after the SSW peak. The investigation revealed the existence of a quasi 16 day wave in the TEC over low latitudes similar to the one present in the EEJ strength. These results have been discussed in the light of changes in the dynamical background because of enhanced PW activity during SSW, which creates favorable conditions for the amplification of lunar tides, and their subsequent interaction with the lower thermospheric tidal fields.

  9. Analytical study of nighttime scintillations using GPS at low latitude station Bhopal

    Energy Technology Data Exchange (ETDEWEB)

    Maski, Kalpana, E-mail: k-maski@rediffmail.com [Department of Physics, Regional Institute of Education, Bhopal (India); Vijay, S. K. [Institute for Excellence in Higher Education, Bhopal (India)

    2015-07-31

    Sporadically structured ionosphere (i.e. in-homogeneities in refractive index) can cause fluctuations (due to refraction effects) on the radio signal that is passing through it. These fluctuations are called ionospheric scintillations. Low latitude region is suitable for studying these scintillations. The influence of the ionosphere on the propagation of the radio wave becomes very marked with reference to communication or navigational radio system at very low frequency (VLF) to a high frequency (HF), which operate over the distances of 1000 km or more. Radio wave communication at different frequencies depends on structure of the ionosphere. With the advent of the artificial satellites, they are used as a prime mode of radio wave communication. Some natural perturbation termed as irregularities, are present in the form of electron density of the ionosphere that cause disruption in the radio and satellite communications. Therefore the study of the ionospheric irregularities is of practical importance, if one wishes to understand the upper atmosphere completely. In order to make these communications uninterrupted the knowledge of irregularities, which are present in the ionosphere are very important. These irregularities can be located and estimated with the help of Ionospheric TEC and Scintillation. Scintillation is generally confined to nighttime hours, particularly around equatorial and low latitudes.

  10. Phase calibration approaches for radar interferometry and imaging configurations: equatorial spread F results

    Directory of Open Access Journals (Sweden)

    J. L. Chau

    2008-08-01

    Full Text Available In recent years, more and more radar systems with multiple-receiver antennas are being used to study the atmospheric and ionospheric irregularities with either interferometric and/or imaging configurations. In such systems, one of the major challenges is to know the phase offsets between the different receiver channels. Such phases are intrinsic to the system and are due to different cable lengths, filters, attenuators, amplifiers, antenna impedance, etc. Moreover, such phases change as function of time, on different time scales, depending on the specific installation. In this work, we present three approaches using natural targets (radio stars, meteor-head and meteor trail echoes that allow either an absolute or relative phase calibration. In addition, we present the results of using an artificial source (radio beacon for a continuous calibration that complements the previous approaches. These approaches are robust and good alternatives to other approaches, e.g. self-calibration techniques using known data features, or for multiple-receiver configurations constantly changing their receiving elements. In order to show the good performance of the proposed phase calibration techniques, we present new radar imaging results of equatorial spread F (ESF irregularities. Finally we introduce a new way to represent range-time intensity (RTI maps color coded with the Doppler information. Such modified map allows the identification and interpretation of geophysical phenomena, previously hidden in conventional RTI maps, e.g. the time and altitude of occurrence of ESF irregularities pinching off from the bottomside and their respective Doppler velocity.

  11. Proton flux under radiation belts: near-equatorial zone

    International Nuclear Information System (INIS)

    Grigoryan, O.R.; Panasyuk, M.I.; Petrov, A.N.; Kudela, K.

    2005-01-01

    In this work the features of low-energy proton flux increases in near-equatorial region (McIlvein parameter L th the proton flux (with energy from tens keV up to several MeV) increases are registering regularly. However modern proton flux models (for example AP8 model) works at L>1.15 only and does not take into account near-equatorial protons. These fluxes are not too big, but the investigation of this phenomenon is important in scope of atmosphere-ionosphere connections and mechanisms of particles transport in magnetosphere. In according to double charge-exchange model the proton flux in near-equatorial region does not depend on geomagnetic local time (MLT) and longitude. However the Azur satellite data and Kosmos-484, MIR station and Active satellite data revealed the proton flux dependence on longitude. The other feature of near-equatorial proton flux is the dependence on geomagnetic local time revealed in the Sampex satellite experiment and other experiments listed above. In this work the dependences on MLT and longitude are investigated using the Active satellite (30-500 keV) and Sampex satellite (>800 keV). This data confirms that main sources of near-equatorial protons are radiation belts and ring current. The other result is that near-equatorial protons are quasi-trapped. The empirical proton flux dependences on L, B at near-equatorial longitudes are presented. (author)

  12. Significance of scatter radar studies of E and F region irregularities at high latitudes

    International Nuclear Information System (INIS)

    Greenwald, R.A.

    1983-01-01

    This chapter considers the mechanisms by which electron density irregularities may be generated in the high latitude ionosphere and the techniques through which they are observed with ground base radars. The capabilities of radars used for studying these irregularities are compared with the capabilities of radars used for incoherent scatter measurements. The use of irregularity scatter techniques for dynamic studies of larger scale structured phenomena is discussed. Topics considered include E-region irregularities, observations with auroral radars, plasma drifts associated with a westward travelling surge, and ionospheric plasma motions associated with resonant waves. It is shown why high latitude F-region irregularity studies must be made in the HF frequency band (3-30 MHz). The joint use of the European Incoherent Scatter Association (EISCAT), STARE and SAFARI facilities is examined, and it is concluded that the various techniques will enhance each other and provide a better understanding of the various processes being studied

  13. Large-scale irregularities of the winter polar topside ionosphere according to data from Swarm satellites

    Science.gov (United States)

    Lukianova, R. Yu.; Bogoutdinov, Sh. R.

    2017-11-01

    An analysis of the electron density measurements ( Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle ( F 10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm-3. Two years later, at F 10.7 = 100, Ne 5 × 104 cm-3 and Ne 2.5 × 104 cm-3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn ( B y y generation of large-scale irregularities in the polar ionosphere.

  14. Seismo-Ionospheric Coupling as Intensified EIA Observed by Satellite Electron Density and GPS-TEC Data

    Science.gov (United States)

    Ryu, K.; Jangsoo, C.; Kim, S. G.; Jeong, K. S.; Parrot, M.; Pulinets, S. A.; Oyama, K. I.

    2014-12-01

    Examples of intensified EIA features temporally and spatially related to large earthquakes observed by satellites and GPS-TEC are introduced. The precursory, concurrent, and ex-post enhancements of EIA represented by the equatorial electron density, which are thought to be related to the M8.7 Northern Sumatra earthquake of March 2005, the M8.0 Pisco earthquake of August 2007, and the M7.9 Wenchuan Earthquake of 12 May 2008, are shown with space weather condition. Based on the case studies, statistical analysis on the ionospheric electron density data measured by the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions satellite (DEMETER) over a period of 2005-2010 was executed in order to investigate the correlation between seismic activity and equatorial plasma density variations. To simplify the analysis, three equatorial regions with frequent earthquakes were selected and then one-dimensional time series analysis between the daily seismic activity indices and the EIA intensity indices were performed for each region with excluding the possible effects from the geomagnetic and solar activity. The statistically significant values of the lagged cross-correlation function, particularly in the region with minimal effects of longitudinal asymmetry, indicate that some of the very large earthquakes with M > 7.0 in the low latitude region can accompany observable seismo-ionospheric coupling phenomena in the form of EIA enhancements, even though the seismic activity is not the most significant driver of the equatorial ionospheric evolution. The physical mechanisms of the seismo-ionospheric coupling to explain the observation and the possibility of earthquake prediction using the EIA intensity variation are discussed.

  15. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    Science.gov (United States)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of

  16. Characterization of Nightside Mid-latitude Irregularities Observed with the Blackstone SuperDARN Radar

    Science.gov (United States)

    Ruohoniemi, J. M.; Ribeiro, A. J.; Baker, J. B.; Greenwald, R. A.; Newell, P. T.

    2009-12-01

    The new mid-latitude SuperDARN radars at Wallops Island and Blackstone observe strong coherent backscattering on an almost nightly basis from latitudes that appear to be subauroral. One study has demonstrated an excellent correlation with the occurrence of density and temperature gradients within the ionospheric projection of the plasmapause (Greenwald et al., Geophys. Res. Lett. [2006]). We have processed all the data collected with the Blackstone radar since its inception in February 2008 for a characterization of the occurrence and properties of ‘plasmapause’ scatter. We have determined the local time and Kp dependencies of the activity and the relation of the spatial distribution of the irregularities to magnetospheric boundaries and ionospheric density gradients. We establish that the irregularities are a feature of the quiet-time subauroral ionosphere and provide a valuable diagnostic of the electric fields in the inner magnetosphere.

  17. A Topside Equatorial Ionospheric Density and Composition Climatology During and After Extreme Solar Minimum

    Science.gov (United States)

    Klenzing, J. H.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R. F.; Rowland, D. E.

    2011-01-01

    During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth's ionosphere and thermosphere when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Climatological altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the C/NOFS satellite to characterize the shape of the top side ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. [2009], here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.

  18. Understanding Transient Forcing with Plasma Instability Model, Ionospheric Propagation Model and GNSS Observations

    Science.gov (United States)

    Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.

    2017-12-01

    Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical

  19. Sporadic-E associated with the Leonid meteor shower event of November 1998 over low and equatorial latitudes

    Directory of Open Access Journals (Sweden)

    H. Chandra

    2001-01-01

    Full Text Available Rapid radio soundings were made over Ahmedabad, a low latitude station during the period 16–20 November 1998 to study the sporadic-E layer associated with the Leonid shower activity using the KEL Aerospace digital ionosonde. Hourly ionograms for the period 11 November to 24 November were also examined during the years from 1994 to 1998. A distinct increase in sporadic-E layer occurrence is noticed on 17, 18 and 19 November from 1996 to 1998. The diurnal variations  of  f0Es and fbEs also show significantly enhanced values for the morning hours of 18 and 19 November 1998. The ionograms clearly show strong sporadic-E reflections at times of peak shower activity with multiple traces in the altitude range of 100–140 km in few ionograms. Sporadic-E layers with multiple structures in altitude are also seen in some of the ionograms (quarter hourly at Thumba, situated near the magnetic equator. Few of ionograms recorded at Kodaikanal, another equatorial station, also show sporadic- E reflections in spite of the transmitter power being significantly lower. These new results highlighting the effect of intense meteor showers in the equatorial and low latitude E-region are presented.Key words. Ionosphere (equatorial ionosphere – Radio science (ionospheric physics

  20. Full Polarimetric Synthetic Aperture Radar (SAR) Data for ionosphere observation - A comparative study

    Science.gov (United States)

    Mohanty, S.; Singh, G.

    2017-12-01

    Ionosphere, predominantly, govern the propagation of radio waves, especially at L-band and lower frequencies. Small-scale, rapid fluctuations in the electron density, termed as scintillation phenomenon, cause rapid variations in signal amplitude and phase. Scintillation studies have been done using ground-based radio transmitter and beacon GPS signals. In this work, attempt has been made to utilize full polarimetric synthetic aperture radar (SAR) satellite signal at L-band (1.27 GHz) to develop a new measurement index for SAR signal intensity fluctuation. Datasets acquired from Japan's latest Advanced Land Observation Satellite (ALOS)-2 over the Indian subcontinent on two different dates, with varying ionospheric activities, have been utilized to compare the index. A 20% increase in the index values for a scintillation-affected day has been observed. The result coincides with the nature of ionospheric scintillation pattern typically observed over the equatorial belt. Total electron content values, for the two dates of acquisition, obtained from freely available Ionosphere Exchange (IONEX) data have been used to validate the varying ionospheric activities as well as the trend in index results. Another interesting finding of the paper is the demarcation of the equatorial anomaly belt. The index values are comparatively higher at these latitudes on a scintillation-affected day. Furthermore, the SAR signal intensity fluctuation index has great potential in being used as a preliminary measurement index to identify low frequency SAR data affected by ionospheric scintillation.

  1. Study of the behaviour of the equatorial ionization anomaly (EIA) during solar flares

    Science.gov (United States)

    Aggarwal, Malini; Astafyeva, Elvira

    2014-05-01

    A solar flare occurring in the sun's chromosphere is observed in various wavebands (radio to x-rays). The response of the solar flare which causes sudden changes in the earth's ionosphere is not yet well understood though investigations suggested that its impact depends on the size and location of occurrence of solar flare on sun. Considering this, we have carried an investigation to study the response of two strong and gradual solar flares: 2 Apr 2001 (X20, limb) and 7 Feb 2010 (M6.4, disk) on the earth's equatorial-low latitude regions using multi-technique observations of satellite and ground-based instruments. We found a weakening of strength of equatorial ionization anomaly (EIA) in total electron content during both the flares as observed by TOPEX, JASON-1 and JASON-2 altimeter measurements. The H component of the geomagnetic field also shows a sudden change at equatorial and low latitude stations in the sunlit hemisphere during the flare. The observations of ionosonde at low-latitudes indicate a strong absorption of higher-frequency radio signals. The detail response of these flare on EIA of the earth's ionosphere will be presented and discussed.

  2. Distributions of TEC Fluctuations and Losses of Lock Associated with Equatorial Plasma Bubbles

    Science.gov (United States)

    Nakata, H.; Kikuchi, H.; Tsugawa, T.; Otsuka, Y.; Takano, T.; Shimakura, S.; Shiokawa, K.; Ogawa, T.

    2009-12-01

    Equatorial plasma bubbles (EPBs) are local depletions of the electron density in the ionosphere. Due to field-aligned irregularities (FAIs) with various spatial scales, EPBs affect wide-band radio waves and cause scintillations in GPS navigation system. Strong scintillation can cause a GPS receiver to lose lock on GPS signals because of rapid variations of signal amplitude and phase, and limit the availability of carrier phase measurements. Since the scintillation is caused by Fresnel diffraction, the spatial scale of FAIs that causes the scintillation of GPS signals is about 2-300 m. Therefore, loss of phase lock (LOL) on GPS signals is a reference of hundred-meter-scale FAIs. As EPBs are also associated with fluctuations of the total electron content (TEC), the enhancement of Rate of TEC change index (ROTI) occurs around EPBs. Assuming that the altitude of the ionosphere is about 400 km, the velocity of the pierce point of the GPS radio wave at the ionospheric altitude is approximately 70 m/s around the zenith. Thus, ROTI averaged during 5 minutes is a reference of ten-kilometer-scale fluctuations. In this study, we analyzed LOL and 5-min. ROTI associated with EPBs to examine the spatial and temporal scales of electron density disturbances associated with EPBs. We selected 11 EPBs from 630-nm airglow images obtained by all-sky imager at Sata, Japan, in 2001. LOL and ROTI are obtained from GPS data from GPS Earth Observation Network (GEONET) of Japan, which consists of more than 1000 GPS receivers. As a result, it is shown that both LOL and the enhancement of ROTI are observed in 8 events out of 11 events. The distributions of LOL are approximately consistent with the areas in which the ionospheric electron density is depleted. The enhancements of ROTI are observed in the vicinities of EPBs. The enhancement of ROTI expands especially in the west side of EPBs. After the EPBs pass through, therefore, LOLs are vanished but the enhancements of ROTI last a while. This

  3. Variations of TEC near the Indian Equatorial Ionospheric anomaly (EIA) stations by GPS measurements during descending phase of solar activity (2005 -2009)

    Science.gov (United States)

    Kumar, Sanjay; Singh, Abhay Kumar

    The dual frequency Global Positioning System (GPS) data recorded at Varanasi (geographic latitude 250, 16 N longitude 820, 59 E) and Kanpur (geographic latitude 260, 30 N longitude 800, 12 E) stations, near the equatorial ionosphere anomaly (EIA) in India, have been analyzed to retrieve total electron content (TEC). The daily peak value of vertical total electron content (VTEC) has been utilized to study the variability of EIA. Present paper studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on EIA. It has been found that EIA yield their maximum values during the equinox months and minimum during summer and winter. The correlations of EIA with solar as well as geomagnetic indices have been also discussed. Key words: Total electron contents (TECs), EIA, GPS.

  4. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    International Nuclear Information System (INIS)

    Yizengaw, Endawoke; Carter, Brett A.

    2017-01-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K p >3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  5. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Yizengaw, Endawoke [Boston College, Chestnut Hill, MA (United States). Inst. for Scientific Research; Carter, Brett A. [RMIT Univ., Melbourne, VIC (Australia). SPACE Research Centre

    2017-07-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K{sub p}>3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  6. Instabilities associated with the equatorial spread-F phenomenon and their north-south asymmetry

    International Nuclear Information System (INIS)

    Beghin, C.; Pandey, R.; Roux, D.

    1985-01-01

    Six North to South passes of AUREOL/ARCAD 3 satellite through the equatorial electron density depletion at variable altitude between 400 and 550 km, at night, during a two weeks period, exhibit a similar feature in plasma density irregularities which are thought to be associated with spread F phenomenon. The irregularities are found to be quasi-sinusoidal with a scale size of about 2 km along the satellite trajectory and occur only on the Northern edge of the equatorial electron density depletion. This implies a violation of the generally believed principle of conjugate mapping for those wavelengths. These observations are analysed and discussed in terms of different known generation mechanisms

  7. Spatial correlations in intense ionospheric scintillations - comparison between numerical computation and observation

    International Nuclear Information System (INIS)

    Kumagai, H.

    1987-01-01

    The spatial correlations in intense ionospheric scintillations were analyzed by comparing numerical results with observational ones. The observational results were obtained by spaced-receiver scintillation measurements of VHF satellite radiowave. The numerical computation was made by using the fourth-order moment equation with fairly realistic ionospheric irregularity models, in which power-law irregularities with spectral index 4, both thin and thick slabs, and both isotropic and anisotropic irregularities, were considered. Evolution of the S(4) index and the transverse correlation function was computed. The numerical result that the transverse correlation distance decreases with the increase in S(4) was consistent with that obtained in the observation, suggesting that multiple scattering plays an important role in the intense scintillations observed. The anisotropy of irregularities proved to act as if the density fluctuation increased. This effect, as well as the effect of slab thickness, was evaluated by the total phase fluctuations that the radiowave experienced in the slab. On the basis of the comparison, the irregularity height and electron-density fluctuation which is necessary to produce a particular strength of scintillation were estimated. 30 references

  8. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions

    Science.gov (United States)

    Idrus, Intan Izafina; Abdullah, Mardina; Hasbi, Alina Marie; Husin, Asnawi; Yatim, Baharuddin

    2013-09-01

    This paper presents the first results of large-scale traveling ionospheric disturbances (LSTIDs) observation during two moderate magnetic storm events on 28 May 2011 (SYM-H∼ -94 nT and Dst∼-80 nT) and 6 August 2011 (SYM-H∼-126 nT and Dst∼-113 nT) over the high-latitude region in Russia, Sweden, Norway, Iceland and Greenland and equatorial region in the Peninsular Malaysia using vertical total electron content (VTEC) from the Global Positioning System (GPS) observations measurement. The propagation of the LSTID signatures in the GPS TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTIDs were found to propagate both equatorward and poleward directions during these two events. The results showed that the LSTIDs propagated faster at high-latitude region with an average phase velocity of 1074.91 m/s than Peninsular Malaysia with an average phase velocity of 604.84 m/s. The LSTIDs at the high-latitude region have average periods of 150 min whereas the ones observed over Peninsular Malaysia have average periods of 115 min. The occurrences of these LSTIDs were also found to be the subsequent effects of substorm activities in the auroral region. To our knowledge, this is the first result of observation of LSTIDs over Peninsular Malaysia during the 24th solar cycle.

  9. The ionospheric response in the Brazilian sector during the super geomagnetic storm on 20 November 2003

    Directory of Open Access Journals (Sweden)

    F. Becker-Guedes

    2007-05-01

    Full Text Available A very intense geomagnetic storm (superstorm began with storm sudden commencement (SSC at 08:03 UT on 20 November 2003, as a result of the coronal mass ejection (CME by sunspot 484 hurled into space on 18 November 2003. The geomagnetic storm attained |Dst|max=472 nT at 20:00 UT (20 November. In this paper we present the simultaneous ionospheric sounding observations, using the Canadian Advanced Digital Ionosondes (CADIs, carried out from Palmas (PAL; 10.2° S, 48.2° W; dip latitude 5.5° S; a near equatorial station and São José dos Campos (SJC; 23.2° S, 45.9° W; dip latitude 17.6° S; station located under the crest of equatorial ionospheric anomaly, Brazil. In addition, total electron content (TEC measurements from several GPS receiving stations in the Brazilian sector during this storm are presented. The simultaneous ionospheric sounding observations carried out at SJC and PAL, and TEC observations on 3 consecutive days viz., 19 November (quiet, 20 November (disturbed and 21 November (recovery phase are presented. Salient features from the ionospheric observations in the Brazilian sector during the superstorm are discussed. The difference in the observed ionospheric response at the two stations (PAL and SJC is considerable. This is not surprising given that PAL is close to the magnetic equator and SJC is near the crest of the equatorial ionospheric anomaly (EIA. It should be pointed out that soon after the SSC (about 4 h later, the F-region critical frequency (foF2, the F-region peak height (hpF2, and variations of virtual heights at different frequencies (iso-frequency plots all show wavelike oscillations of the F-region during daytime at both the ionospheric sounding stations. Unusual rapid uplifting of F-region at PAL was observed during both the main and recovery phases of the storm.

  10. The ionospheric response in the Brazilian sector during the super geomagnetic storm on 20 November 2003

    Directory of Open Access Journals (Sweden)

    F. Becker-Guedes

    2007-05-01

    Full Text Available A very intense geomagnetic storm (superstorm began with storm sudden commencement (SSC at 08:03 UT on 20 November 2003, as a result of the coronal mass ejection (CME by sunspot 484 hurled into space on 18 November 2003. The geomagnetic storm attained |Dst|max=472 nT at 20:00 UT (20 November. In this paper we present the simultaneous ionospheric sounding observations, using the Canadian Advanced Digital Ionosondes (CADIs, carried out from Palmas (PAL; 10.2° S, 48.2° W; dip latitude 5.5° S; a near equatorial station and São José dos Campos (SJC; 23.2° S, 45.9° W; dip latitude 17.6° S; station located under the crest of equatorial ionospheric anomaly, Brazil. In addition, total electron content (TEC measurements from several GPS receiving stations in the Brazilian sector during this storm are presented. The simultaneous ionospheric sounding observations carried out at SJC and PAL, and TEC observations on 3 consecutive days viz., 19 November (quiet, 20 November (disturbed and 21 November (recovery phase are presented. Salient features from the ionospheric observations in the Brazilian sector during the superstorm are discussed. The difference in the observed ionospheric response at the two stations (PAL and SJC is considerable. This is not surprising given that PAL is close to the magnetic equator and SJC is near the crest of the equatorial ionospheric anomaly (EIA. It should be pointed out that soon after the SSC (about 4 h later, the F-region critical frequency (foF2, the F-region peak height (hpF2, and variations of virtual heights at different frequencies (iso-frequency plots all show wavelike oscillations of the F-region during daytime at both the ionospheric sounding stations. Unusual rapid uplifting of F-region at PAL was observed during both the main and recovery phases of the storm.

  11. Ionospheric effects during severe space weather events seen in ionospheric service data products

    Science.gov (United States)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  12. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2017-04-01

    Full Text Available It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ. The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998–2014 of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian have been analyzed. All observations performed during magnetically active periods (Kp>3 have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  13. Features of 3–7-day planetary-wave-type oscillations in F-layer vertical drift and equatorial spread F observed over two low-latitude stations in China

    Directory of Open Access Journals (Sweden)

    Z. Zhu

    2017-06-01

    Full Text Available Recent studies on the equatorial atmosphere–ionosphere coupling system have shown that planetary-wave-type oscillations, as an important seeding mechanism for equatorial spread F (ESF, play an important role in ESF irregularity development and its day-to-day variability in the equatorial latitudes. In this study, ionosonde virtual height and ESF measurements over Sanya (18.4° N, 109.6° E; 12.8° N dip latitude and meteor radar neutral-wind measurements over Fuke (19.5° N, 109.1° E; 14° N dip latitude during 2013 are used to investigate the features of planetary-wave-type oscillations in both the lower atmosphere and the ionosphere and their possible influences on ESF occurrence under the weak solar maximum year. The ∼ 3-day and ∼ 7-day planetary-wave-type oscillations have been observed in the neutral zonal winds and the time rate of change in F-layer virtual heights. According to the propagation characteristics, the 3-day and 7-day planetary-wave-type oscillations are basically recognized as ultrafast and fast Kelvin waves, respectively. With increasing heights, the 3-day wave oscillations are gradually amplified, while the 7-day wave oscillations are generally constant. By performing a cross-wavelet transform on the onsets of ESF and the vertical drifts of the F layer, we found that there are simultaneously occurring 7-day and 3-day common wave oscillations between them. The 7-day waves are mainly in the inversion phase, while the 3-day waves are mostly in an in-phase state, indicating that the 7-day waves may play a main role in ESF initiation. Approximate delays of 6 days for the 7-day waves and 5 days for the 3-day waves in their propagation upward from the lower atmosphere to the ionosphere are evaluated with wavelet power spectrum analysis. The estimated upward velocities from these time delays provide consistent evidence that the 7-day and 3-day waves propagate vertically upward with typical Kelvin wave

  14. F-region ionospheric perturbations in the low-latitude ionosphere during the geomagnetic storm of 25-27 August 1987

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    2004-11-01

    Full Text Available We have presented a comparison between the modeled NmF2 and hmF2, and NmF2 and hmF2 which were observed at the equatorial anomaly crest and close to the geomagnetic equator simultaneously by the Akita, Kokubunji, Yamagawa, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders and by the middle and upper atmosphere (MU radar (34.85° N, 136.10° E during the 25-27 August 1987 geomagnetically storm-time period at low solar activity near 201°, geomagnetic longitude. A comparison between the electron and ion temperatures measured by the MU radar and those produced by the model of the ionosphere and plasmasphere is presented. The corrections of the storm-time zonal electric field, EΛ, from 16:30 UT to 21:00 UT on 25 August bring the modeled and measured hmF2 into reasonable agreement. In both hemispheres, the meridional neutral wind, W, taken from the HWW90 wind model and the NRLMSISE-00 neutral temperature, Tn, and densities are corrected so that the model results agree with the ionospheric sounders and MU radar observations. The geomagnetic latitude variations in NmF2 on 26 August differ significantly from those on 25 and 27 August. The equatorial plasma fountain undergoes significant inhibition on 26 August. This suppression of the equatorial anomaly on 26 August is not due to a reduction in the meridional component of the plasma drift perpendicular to the geomagnetic field direction, but is due to the action of storm-time changes in neutral winds and densities on the plasma fountain process. The asymmetry in W determines most of the north-south asymmetry in hmF2 and NmF2 on 25 and 27 August between about 01:00-01:30 UT and about 14:00 UT when the equatorial anomaly exists in the ionosphere, while asymmetries in W, Tn, and neutral densities relative to the geomagnetic equator are responsible for the north-south asymmetry in NmF2 and hmF2 on 26 August. A theory of the primary mechanisms causing the morning and evening peaks in the electron

  15. An observational study on the Strength and Movement of EIA in the Indian zone - Results from the Indian Tomography Experiment (CRABEX)

    Science.gov (United States)

    Thampi, S. V.; Devasia, C. V.; Ravindran, S.; Pant, T. K.; Sridharan, R.

    To investigate the equatorial ionospheric processes like the Equatorial Ionization Anomaly (EIA) and Equatorial Spread F and their inter relationships, a network of five stations receiving the 150 and 400 MHz transmissions from the Low Earth Orbiting Satellites (LEOs) covering the region from Trivandrum (8.5°N, Dip ˜0.3N°) to New Delhi (28°N, Dip ˜20°N) is set up along the 77-78°E longitude. The receivers measure the relative phase of 150 MHz with respect to 400 MHz, which is proportional to the slant relative Total Electron Content (TEC) along the line of sight. These simultaneous TEC measurements are inverted to obtain the tomographic image of the latitudinal distribution of electron densities in the meridional plane. The inversion is done using the Algebraic Reconstruction Technique (ART). In this paper, the tomographic images of the equatorial ionosphere along the 77-78° E meridians are presented. The images indicate the movement of the anomaly crest, as well as the strength of EIA at various local times, which in turn control the over all electrodynamics of the evening time ionosphere, favoring the occurrence of Equatorial Spread F (ESF) irregularities. These features are discussed in detail under varying geophysical conditions. The results of the sensitivity analysis of the inversion algorithm using model ionospheres are also presented.

  16. Analysis of Mid-Latitude Plasma Density Irregularities in the Presence of Finite Larmor Radius Effects

    Science.gov (United States)

    Sotnikov, V. I.; Kim, T. C.; Mishin, E. V.; Kil, H.; Kwak, Y. S.; Paraschiv, I.

    2017-12-01

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At mid-latitudes the source of F-region Field Aligned Irregularities (FAI) is yet to be determined. They can be created in enhanced subauroral flow channels (SAI/SUBS), where strong gradients of electric field, density and plasma temperature are present. Another important source of FAI is connected with Medium-scale travelling ionospheric disturbances (MSTIDs). Related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. This approach allows to resolve density irregularities on the meter scale. A numerical code in C language to solve the derived nonlinear equations for analysis of interchange and flow velocity shear instabilities in the ionosphere was developed. This code will be used to analyze competition between interchange and Kelvin-Helmholtz instabilities in the mid-latitude region. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ data obtained during the 2016 Daejeon (Korea) and MU (Japan) radar campaign and data collected simultaneously by the Swarm satellites passed over Korea and Japan. PA approved #: 88ABW-2017-3641

  17. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2006-07-01

    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  18. Propagation Diagnostic Simulations Using High-Resolution Equatorial Plasma Bubble Simulations

    Science.gov (United States)

    Rino, C. L.; Carrano, C. S.; Yokoyama, T.

    2017-12-01

    In a recent paper, under review, equatorial-plasma-bubble (EPB) simulations were used to conduct a comparative analysis of the EPB spectra characteristics with high-resolution in-situ measurements from the C/NOFS satellite. EPB realizations sampled in planes perpendicular to magnetic field lines provided well-defined EPB structure at altitudes penetrating both high and low-density regions. The average C/NOFS structure in highly disturbed regions showed nearly identical two-component inverse-power-law spectral characteristics as the measured EPB structure. This paper describes the results of PWE simulations using the same two-dimensional cross-field EPB realizations. New Irregularity Parameter Estimation (IPE) diagnostics, which are based on two-dimensional equivalent-phase-screen theory [A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results, by Charles Carrano and Charles Rino, DOI: 10.1002/2015RS005903], have been successfully applied to extract two-component inverse-power-law parameters from measured intensity spectra. The EPB simulations [Low and Midlatitude Ionospheric Plasma DensityIrregularities and Their Effects on Geomagnetic Field, by Tatsuhiro Yokoyama and Claudia Stolle, DOI 10.1007/s11214-016-0295-7] have sufficient resolution to populate the structure scales (tens of km to hundreds of meters) that cause strong scintillation at GPS frequencies. The simulations provide an ideal geometry whereby the ramifications of varying structure along the propagation path can be investigated. It is well known path-integrated one-dimensional spectra increase the one-dimensional index by one. The relation requires decorrelation along the propagation path. Correlated structure would be interpreted as stochastic total-electron-content (TEC). The simulations are performed with unmodified structure. Because the EPB structure is confined to the central region of the sample planes, edge effects are minimized. Consequently

  19. A review of recent results on spread F theory

    International Nuclear Information System (INIS)

    Ossakow, S.L.

    1979-01-01

    Ionospheric Spread F was discovered some four decades ago. Yet only in the past few years has significant progress been made in the theoretical explanation of such phenomena. In particular, considerable effort has been expended to explain equatorial Spread F and the attendant satellite signal propagation scintillation phenomena. The present review dwells mainly in this low latitude area. The various linear plasma instabilities thought to initiate equatorial Spread F are discussed. Recent theoretical and numerical simulation studies of the nonlinear evolution of the collisional Rayleigh-Taylor instability in equatorial Spread F are reviewed. Also, analytical studies of rising equatorial Spread F bubbles in the collisional and collisionless Rayleigh-Taylor regime are discussed, as well as the nohlinear saturation of instabilities in these two regimes. Current theories on very small scale (< approx 10 meters) size irregularities observed by radar backscatter during equatorial Spread F and their relation to the larger wavelength scintillation causing irregularities are discussed. Application of turbulence theory to equatorial Spread F phenomena is reviewed. Remaining problems to be dealt with at equatorial latitudes are summarized. (Auth.)

  20. Long term ionospheric electron content variations over Delhi

    Directory of Open Access Journals (Sweden)

    J. K. Gupta

    Full Text Available Ionospheric electron content (IEC observed at Delhi (geographic co-ordinates: 28.63°N, 77.22°E; geomagnetic co-ordinates: 19.08°N, 148.91°E; dip Latitude 24.8°N, India, for the period 1975–80 and 1986–89 belonging to an ascending phase of solar activity during first halves of solar cycles 21 and 22 respectively have been used to study the diurnal, seasonal, solar and magnetic activity variations. The diurnal variation of seasonal mean of IEC on quiet days shows a secondary peak comparable to the daytime peak in equinox and winter in high solar activity. IECmax (daytime maximum value of IEC, one per day shows winter anomaly only during high solar activity at Delhi. Further, IECmax shows positive correlation with F10.7 up to about 200 flux units at equinox and 240 units both in winter and summer; for greater F10.7 values, IECmax is substantially constant in all the seasons. IECmax and magnetic activity (Ap are found to be positively correlated in summer in high solar activity. Winter IECmax shows positive correlation with Ap in low solar activity and negative correlation in high solar activity in both the solar cycles. In equinox IECmax is independent of Ap in both solar cycles in low solar activity. A study of day-to-day variations in IECmax shows single day and alternate day abnormalities, semi-annual and annual variations controlled by the equatorial electrojet strength, and 27-day periodicity attributable to the solar rotation.

    Key words: Ionosphere (equatorial ionosphere · Magnetospheric physics (magnetosphere · ionosphere interactions · Radio science (ionospheric physics

  1. Sporadic-E associated with the Leonid meteor shower event of November 1998 over low and equatorial latitudes

    Directory of Open Access Journals (Sweden)

    H. Chandra

    Full Text Available Rapid radio soundings were made over Ahmedabad, a low latitude station during the period 16–20 November 1998 to study the sporadic-E layer associated with the Leonid shower activity using the KEL Aerospace digital ionosonde. Hourly ionograms for the period 11 November to 24 November were also examined during the years from 1994 to 1998. A distinct increase in sporadic-E layer occurrence is noticed on 17, 18 and 19 November from 1996 to 1998. The diurnal variations 
    of  f0Es and fbEs also show significantly enhanced values for the morning hours of 18 and 19 November 1998. The ionograms clearly show strong sporadic-E reflections at times of peak shower activity with multiple traces in the altitude range of 100–140 km in few ionograms. Sporadic-E layers with multiple structures in altitude are also seen in some of the ionograms (quarter hourly at Thumba, situated near the magnetic equator. Few of ionograms recorded at Kodaikanal, another equatorial station, also show sporadic- E reflections in spite of the transmitter power being significantly lower. These new results highlighting the effect of intense meteor showers in the equatorial and low latitude E-region are presented.

    Key words. Ionosphere (equatorial ionosphere – Radio science (ionospheric physics

  2. Magnetic field orientations in Saturn's upper ionosphere inferred from Voyager radio occultations

    Science.gov (United States)

    Hinson, D. P.

    1984-01-01

    The radio scintillations observed during occultations of Voyagers 1 and 2 by Saturn are analyzed to determine the morphology of plasma irregularities and hence the magnetic field orientation in Saturn's upper atmosphere. The measurement techniques, the weak scattering theory, and the method used to relate the observed radio scintillations to physical properties of the ionospheric irregularities are briefly described. Results on the spatial characteristics of the irregularities are presented, and the magnetic field orientation in Saturn's ionosphere is inferred. Although the occultation measurements generally confirm the accuracy of the Saturnian magnetic field model of Connerney et al. (1982), it is found that a small adjustment of the coefficients in that model's zonal harmonic expansion would remove the discrepancy between the model predictions and the measurements. A strategy for obtaining improved measurements of Saturn's magnetic field from radio occultation observations of scintillations and Faraday rotation using an orbiting spacecraft is briefly discussed.

  3. Validation of measured poleward TEC gradient using multi-station GPS with Artificial Neural Network based TEC model in low latitude region for developing predictive capability of ionospheric scintillation

    Science.gov (United States)

    Sur, D.; Paul, A.

    2017-12-01

    The equatorial ionosphere shows sharp diurnal and latitudinal Total Electron Content (TEC) variations over a major part of the day. Equatorial ionosphere also exhibits intense post-sunset ionospheric irregularities. Accurate prediction of TEC in these low latitudes is not possible from standard ionospheric models. An Artificial Neural Network (ANN) based Vertical TEC (VTEC) model has been designed using TEC data in low latitude Indian longitude sector for accurate prediction of VTEC. GPS TEC data from the stations Calcutta (22.58°N, 88.38°E geographic, magnetic dip 32°), Baharampore (24.09°N, 88.25°E geographic, magnetic dip 35°) and Siliguri (26.72°N, 88.39°E geographic; magnetic dip 40°) are used as training dataset for the duration of January 2007-September 2011. Poleward VTEC gradients from northern EIA crest to region beyond EIA crest have been calculated from measured VTEC and compared with that obtained from ANN based VTEC model. TEC data from Calcutta and Siliguri are used to compute VTEC gradients during April 2013 and August-September 2013. It has been observed that poleward VTEC gradient computed from ANN based TEC model has shown good correlation with measured values during vernal and autumnal equinoxes of high solar activity periods of 2013. Possible correlation between measured poleward TEC gradients and post-sunset scintillations (S4 ≥ 0.4) from northern crest of EIA has been observed in this paper. From the observation, a suitable threshold poleward VTEC gradient has been proposed for possible occurrence of post-sunset scintillations at northern crest of EIA along 88°E longitude. Poleward VTEC gradients obtained from ANN based VTEC model are used to forecast possible ionospheric scintillation after post-sunset period using the threshold value. It has been observed that these predicted VTEC gradients obtained from ANN based VTEC model can forecast post-sunset L-band scintillation with an accuracy of 67% to 82% in this dynamic low latitude

  4. Longitudinal Ionospheric Variability Observed by LITES on the ISS

    Science.gov (United States)

    Stephan, A. W.; Finn, S. C.; Cook, T.; Geddes, G.; Chakrabarti, S.; Budzien, S. A.

    2017-12-01

    The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an imaging spectrograph designed to measure altitude profiles (150-350 km) of extreme- and far-ultraviolet airglow emissions that originate from photochemical processes in the ionosphere and thermosphere. During the daytime, LITES observes the bright O+ 83.4 nm emission from which the ionospheric profile can be inferred. At night, recombination emissions at 91.1 and 135.6 nm provide a direct measure of the electron content along the line of sight. LITES was launched and installed on the International Space Station (ISS) in late February 2017 where it has been operating along with the highly complementary GPS Radio Occultation and Ultraviolet Photometry - Colocated (GROUP-C) experiment. We will present some of the first observations from LITES in April 2017 that show longitudinal patterns in ionospheric density and the daily variability in those patterns. LITES vertical imaging from a vantage point near 410 km enables a particularly unique perspective on the altitude of the ionospheric peak density at night that can complement and inform other ground- and space-based measurements, and track the longitude-altitude variability that is reflective of changes in equatorial electrodynamics.

  5. Gravity wave control on ESF day-to-day variability: An empirical approach

    Science.gov (United States)

    Aswathy, R. P.; Manju, G.

    2017-06-01

    The gravity wave control on the daily variation in nighttime ionization irregularity occurrence is studied using ionosonde data for the period 2002-2007 at magnetic equatorial location Trivandrum. Recent studies during low solar activity period have revealed that the seed perturbations should have the threshold amplitude required to trigger equatorial spread F (ESF), at a particular altitude and that this threshold amplitude undergoes seasonal and solar cycle changes. In the present study, the altitude variation of the threshold seed perturbations is examined for autumnal equinox of different years. Thereafter, a unique empirical model, incorporating the electrodynamical effects and the gravity wave modulation, is developed. Using the model the threshold curve for autumnal equinox season of any year may be delineated if the solar flux index (F10.7) is known. The empirical model is validated using the data for high, moderate, and low solar epochs in 2001, 2004, and 1995, respectively. This model has the potential to be developed further, to forecast ESF incidence, if the base height of ionosphere is in the altitude region where electrodynamics controls the occurrence of ESF. ESF irregularities are harmful for communication and navigation systems, and therefore, research is ongoing globally to predict them. In this context, this study is crucial for evolving a methodology to predict communication as well as navigation outages.Plain Language SummaryThe manifestation of nocturnal ionospheric irregularities at magnetic equatorial regions poses a major hazard for communication and navigation systems. It is therefore essential to arrive at prediction methodologies for these irregularities. The present study puts forth a novel empirical model which, using only solar flux index, successfully differentiates between days with and without nocturnal ionization irregularity occurrence. The model-derived curve is obtained such that the days with and without occurrence of

  6. Ionospheric Response to the Magnetic Storm of 22 June 2015

    Science.gov (United States)

    Mansilla, Gustavo A.

    2018-03-01

    A global study is made of the response of the total electron content of the ionosphere (TEC) to the geomagnetic storm occurred on 22 June 2015 (one of the strongest geomagnetic storms of the current Solar Cycle 24). Using data from 44 sites, a hemispheric comparison is made by considering high latitudes (> 50°), middle latitudes (30°-50°) and low latitudes (30°N-30°S). The main features observed were: increases in TEC at high latitudes prior to the storm main phase, a considerable asymmetry of TEC response at middle and low latitudes of the Northern Hemisphere and the Southern Hemisphere and decreases at equatorial latitudes. The long duration enhancements in TEC were well correlated with increases in the O/N2 ratio but decreases in TEC had not associated decreases in the O/N2 ratio as occur with the decreases in the electron density. Besides, prompt penetration electric fields can play an important role in the equatorial and low-latitude ionosphere during main phase of the storm.

  7. Characteristics of low-latitude ionospheric depletions and enhancements during solar minimum

    Science.gov (United States)

    Haaser, R. A.; Earle, G. D.; Heelis, R. A.; Klenzing, J.; Stoneback, R.; Coley, W. R.; Burrell, A. G.

    2012-10-01

    Under the waning solar minimum conditions during 2009 and 2010, the Ion Velocity Meter, part of the Coupled Ion Neutral Dynamics Investigation aboard the Communication/Navigation Outage Forecasting System satellite, is used to measure in situ nighttime ion densities and drifts at altitudes between 400 and 550 km during the hours 21:00-03:00 solar local time. A new approach to detecting and classifying well-formed ionospheric plasma depletions and enhancements (bubbles and blobs) with scale sizes between 50 and 500 km is used to develop geophysical statistics for the summer, winter, and equinox seasons during the quiet solar conditions. Some diurnal and seasonal geomagnetic distribution characteristics confirm previous work on equatorial irregularities and scintillations, while other elements reveal new behaviors that will require further investigation before they may be fully understood. Events identified in the study reveal very different and often opposite behaviors of bubbles and blobs during solar minimum. In particular, more bubbles demonstrating deeper density fluctuations and faster perturbation plasma drifts typically occur earlier near the magnetic equator, while blobs of similar magnitude occur more often far away from the geomagnetic equator closer to midnight.

  8. Effect of small-scale ionospheric variability on GNSS radio occultation data quality

    Science.gov (United States)

    Verkhoglyadova, O. P.; Mannucci, A. J.; Ao, C. O.; Iijima, B. A.; Kursinski, E. R.

    2015-09-01

    Global Navigation Satellite Systems (GNSS) radio occultation (RO) measurements are sensitive to thin ionization layers and small-scale ionosphere structures. To evaluate error bounds and possible biases in atmospheric retrievals, we characterized ionospheric irregularities encountered in the affected profiles by analyzing the L1 signal-to-noise ratio (SNR) variability at E layer altitudes (from 90 km to 130 km). New metrics to analyze statistical effects of small-scale ionospheric irregularities on refractivity retrievals are proposed. We analyzed refractivity (N) retrievals with Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) ROs in 2011. Using refractivity from European Centre for Medium-Range Weather Forecasts (ECMWF) analysis (NECMWF) as the reference data set, we studied statistical properties of the fractional refractivity bias (ΔN) defined by the difference (NECMWF - N)/NECMWF and averaged in the altitude range from 20 to 25 km for each individual profile. We found that (1) persistently larger variability of the L1 SNR as measured by the interquartile range (IQR) existed when the occultation tangent point was in the 90 km to 110 km altitude range than at higher E layer altitudes; (2) the upper limits on the fractional refractivity bias for COSMIC ROs are 0.06% (for daytime local time), 0.1% (for nighttime local time), and ~0.01% (for all local times); (3) distributions of ΔN are non-Gaussian (leptokurtic); (4) latitudinal distributions of small and large ΔN for different levels of ionospheric variability show large tails (NECMWF > N) occurring around the Himalaya and the Andes regions, which are possibly due to biases in ECMWF analysis. We conclude that the refractivity bias due to small-scale irregularities is small below 25 km altitude and can be neglected.

  9. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    ionosphere using IRI-Plas-G software. One of the outstanding features of IONOLAB-RAY is the opportunity of Global Ionospheric Map-Total Electron Content (GIM-TEC) assimilation. This feature enables more realistic representation of ionosphere, especially for the times when ionosphere deviates from the generalized models, such as during geomagnetic storms. This feature is critical to examine the effect of ionosphere on satellite signals under ionospheric storm conditions. In this study TURKSAT satellite data is used to compare the results of IONOLAB-RAY and evaluate the effect of ionosphere. TURKSAT is one of the world's leading companies providing all sorts of satellite communications through the satellites of TURKSAT as well as the other satellites. Providing services for voice, data, internet, TV, and radio broadcasting through the satellites across a wide area extending from Europe to Asia. The latest satellite of TURKSAT, namely Turksat 4B was launched on October 2015, before that various versions of TURKSAT satellites are launched since 1994. In the future enlargement of broadcasting area towards equatorial region is aimed, where the ionospheric anomalies and storms are highly expected. In the future this study can be applied to the satellite signals in equatorial regions and effects of ionosphere especially under storm conditions can be discussed. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  10. Application of TaiWan Ionosphere Model to Single-Frequency Ionospheric Delay Correction for GPS Static Position Positioning

    Science.gov (United States)

    Macalalad, E. P.; Tsai, L.; Wu, J.

    2011-12-01

    Ionospheric delay is one of the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges can vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. This effect can be practically removed using dual-frequency receivers. However, these types of receivers are very expensive and thus, impractical for most users. Therefore, for single-frequency receivers, ionosphere is usually modeled to attempt to remove this effect analytically. Numerous ionosphere models have been introduced in the past. Some of which are the Klobuchar (or broadcast) model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, another model, called the TaiWan Ionosphere Model (TWIM) was used to correct this effect. TWIM is a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, was used to calculate ionospheric delay for GPS single-frequency positioning. The ne profiles were used to calculate the slant TEC (STEC) between a receiver and each GPS satellite and correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to calculate the position of the receiver. Observations were made in a low-latitude location near one of the peaks of the equatorial anomaly. It was shown that TEC maps generated using TWIM exhibited detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models. That is, on the average, the horizontal accuracy, represented by the circular error probable (CEP), distance RMS (DRMS) and twice the DRMS (2DRMS), were better by 15-18% as compared with the CEP, DRMS and 2DRMS of uncorrected, Klobuchar and GIM. Moreover

  11. Variability in equatorial B0 and B1

    International Nuclear Information System (INIS)

    Adeniyi, J.O.; Radicella, S.M.

    2002-01-01

    Variability of ionospheric profile parameters B0 and B1, below the F2 peak is investigated for an equatorial station at two levels of solar activities. The whole 24 hours of the day and the four seasons of the year are covered. Absolute and relative variability indices were utilized in the study. Some evidences of correlations of variability index and profiles parameters were observed. Daytime values of relative variability in B1 at solar minimum were found to be greater than those of solar maximum. (author)

  12. Review of radio-frequency, nonlinear effects on the ionosphere

    International Nuclear Information System (INIS)

    Gordon, W.E.; Duncan, L.M.

    1983-01-01

    Modification of the ionosphere by high power radio waves in the megahertz band has been intensively investigated over the past two decades. This research has yielded advances in aeronomy, geophysics, and plasma physics with applications to radio communication and has provided a fruitful interaction of radio theorists and experimentalists. There being almost no linear effects of powerful radio waves on the ionosphere, we concentrate on the nonlinear effects. To put the subject in perspective we trace its history beginning in the early 1930s and highlight the important events up to the late 1960s. We then shift to a phenomenological approach and deal in order with ohmic heating, parametric instabilities, self-focusing and kilometer-scale irregularities, meter-scale irregularities, and a collection of recently discovered effects. We conclude with the observation that stronger international cooperation would benefit this research, and describe a list of promising, difficult challenges

  13. A survey of plasma irregularities as seen by the midlatitude Blackstone SuperDARN radar

    Science.gov (United States)

    Ribeiro, A. J.; Ruohoniemi, J. M.; Baker, J. B. H.; Clausen, L. B. N.; Greenwald, R. A.; Lester, M.

    2012-02-01

    The Super Dual Auroral Radar Network (SuperDARN) is a chain of HF radars that monitor plasma dynamics in the ionosphere. In recent years, SuperDARN has expanded to midlatitudes in order to provide enhanced coverage during geomagnetically active periods. A new type of backscatter from F region plasma irregularities with low Doppler velocity has been frequently observed on the nightside during quiescent conditions. Using three years of data from the Blackstone, VA radar, we have implemented a method for extracting this new type of backscatter from routine observations. We have statistically characterized the occurrence properties of the Sub Auroral Ionospheric Scatter (SAIS) events, including the latitudinal relationships to the equatorward edge of the auroral oval and the ionospheric projection of the plasmapause. We find that the backscatter is confined to local night, occurs on ≈70% of nights, is fixed in geomagnetic latitude, and is equatorward of both the auroral region and the plasmapause boundary. We conclude that SAIS irregularities are observed within a range of latitudes that is conjugate to the inner magnetosphere (plasmasphere).

  14. GNSS Derived Ionospheric TEC Observed Through Different TEC Calibration Techniques in the Brazilian Sector

    Science.gov (United States)

    Becker-Guedes, F.; Carmo, C. S.; Camargo, P. O.; Monico, J. F. G.; Nicoli Candido, C. M.

    2017-12-01

    Global Navigation Satellite System (GNSS) is becoming a reliable tool for use in air navigation systems. Its use as the main technology for determination of airplanes positioning has various economic and logistic benefits but it depends strongly on the ionospheric layer influences. The Brazilian sector ionosphere, mainly over the equatorial ionization anomaly (EIA), presents remarkable errors in the GNSS signal as compared to North America and Europe. In order to study the total electron content latitudinal variation of the Brazilian ionosphere we used a pair of GNSS receivers on the ground, one located in the equatorial region (Sao Luis) and other in the southern crest of the EIA (Cachoeira Paulista), to collect the GNSS observables and calculate the vertical TEC using different methods that has proven to work well to describe the ionospheric behavior in the North America and in Europe. We compared this results with a modified Nagoya TEC calculation method used by the EMBRACE (Estudo e Monitoramento BRAsileiro do Clima Espacial - Brazilian Study and Monitoring of Space Weather) program. This work intends to follow the performance of different TEC tuning methods to evaluate the spurious effects of the ionospheric EIA gradients in the TEC determination under typical conditions of the low-latitudes ionosphere in the Brazilian sector. The calculated TEC under different solar cycle conditions, geomagnetic activity, and seasonal variations show deviations in the performance of each method and stress the importance of well adjust the GNSS observations to local conditions in order to optimize the TEC evaluation. This study contributes to a better understanding of local GNSS signal errors in the global intent of offering conditions to improve the accuracy, integrity, availability, and continuity requirements for the use of GNSS for air navigation in South America.

  15. The effect of longitudinal conductance variations on the ionospheric prompt penetration electric fields

    Science.gov (United States)

    Sazykin, S.; Wolf, R.; Spiro, R.; Fejer, B.

    Ionospheric prompt penetration electric fields of magnetospheric origin, together with the atmospheric disturbance dynamo, represent the most important parameters controlling the storm-time dynamics of the low and mid-latitude ionosphere. These prompt penetration fields result from the disruption of region-2 field-aligned shielding currents during geomagnetically disturbed conditions. Penetration electric fields con- trol, to a large extent, the generation and development of equatorial spread-F plasma instabilities as well as other dynamic space weather phenomena in the ionosphere equatorward of the auroral zone. While modeling studies typically agree with average patterns of prompt penetration fields, experimental results suggest that longitudinal variations of the ionospheric con- ductivities play a non-negligible role in controlling spread-F phenomena, an effect that has not previously been modeled. We present first results of modeling prompt pene- tration electric fields using a version of the Rice Convection Model (RCM) that allows for longitudinal variations in the ionospheric conductance tensor. The RCM is a first- principles numerical ionosphere-magnetosphere coupling model that solves for the electric fields, field-aligned currents, and particle distributions in the ionosphere and inner/middle magnetosphere. We compare these new theoretical results with electric field observations.

  16. Ionospheric effects at low latitudes during the March 22, 1979, geomagnetic storm

    International Nuclear Information System (INIS)

    Fesen, C.G.; Crowley, G.; Roble, R.G.

    1989-01-01

    This paper investigates the response of the equatorial ionosphere to the neutral atmosphere perturbations produced by the magnetic storm of March 22, 1979. A numerical model of the equatorial ionosphere is used to calculate the maximum electron densities and F layer heights associated with a storm-perturbed neutral atmosphere and circulation model. Possible electric field perturbations due to the storm are ignored. The neutral atmosphere and dynamics are simulated by the National Center for Atmospheric Research thermospheric general circulation model (TGCM) for the storm day of March 22, 1979, and the preceding quiet day. The most striking feature of the TGCM storm day simulations is the presence of waves in the neutral composition, wind, and temperature fields which propagate from high latitudes to the equator. The TGCM-calculated fields for the two days are input into a low-latitude ionosphere model which calculates n max and h max between ±20 degree dip latitude. The calculated nighttime 6300-angstrom airglow emission and the altitude profiles of electron concentration are also highly perturbed by the storm. Examination of ionosonde data for March 22, 1979, shows remarkable agreement between the measured and predicted changes in f 0 F 2 and h max near 140 degree W. Poorer agreement near 70 degree W may be due to the neglect of electric field perturbations and the approximations inherent in the modeling. The results of these simulations indicate that the major factor influencing the storm time ionospheric behavior in this case is the neutral wind

  17. Ionosphere dynamics over the Southern Hemisphere during the 31 March 2001 severe magnetic storm using multi-instrument measurement data

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2005-03-01

    Full Text Available The effects of the 31 March 2001 severe magnetic storm on the Southern Hemisphere ionosphere have been studied using ground-based and satellite measurements. The prime goal of this comprehensive study is to track the ionospheric response from high-to-low latitude to obtain a clear understanding of storm-time ionospheric change. The study uses a combination of ionospheric Total Electron Content (TEC obtained from GPS signal group delay and phase advance measurements, ionosonde data, and data from satellite in-situ measurements, such as the Defense Metrological Satellite Program (DMSP, TOPographic EXplorer (TOPEX, and solar wind data from the Advanced Composition Explorer (ACE. A chain of Global Positioning System (GPS stations near the 150° E meridian has been used to give comprehensive latitude coverage extending from the cusp to the equatorial region. A tomographic inversion algorithm has been applied to the GPS TEC measurements to obtain maps of the latitudinal structure of the ionospheric during this severe magnetic storm period, enabling both the spatial and temporal response of the ionosphere to be studied. Analysis of data from several of the instruments indicates that a strong density enhancement occurred at mid-latitudes at 11:00 UT on 31 March 2001 and was followed by equatorward propagating large-scale Travelling Ionospheric Disturbances (TIDs. The tomographic reconstruction revealed important features in ionospheric structure, such as quasi-wave formations extending finger-like to higher altitudes. The most pronounced ionospheric effects of the storm occurred at high- and mid-latitudes, where strong positive disturbances occurred during the storm main phase, followed by a long lasting negative storm effect during the recovery phase. Relatively minor storm effects occurred in the equatorial region.

  18. A modern trans-ionospheric propagation sensing system

    Science.gov (United States)

    Bishop, G. J.; Klobuchar, J. A.; Ronn, A. E.; Bedard, M. G.

    1989-09-01

    One of the most important potential problems with modern military systems which utilize spacecraft is the effect of the ionosphere on the radio signals which pass to and from the spacecraft. Such systems include active communications and navigation satellites as well as both ground-based and potential space-based ranging systems. The major effects the ionosphere can have on such systems are the additional time delay the electrons in the earth's ionosphere add to the free space path delay, the short term rate of change of this additional delay, amplitude scintillation or fading effects the signal encounters due to irregularities in the ionosphere, and Faraday rotation of linearly polarized radio waves transmitted through the ionosphere. While some of these effects were studied adequate models of these effects on military systems still do not exist. A modern trans-ionospheric sensing system, called TISS, is being procured which will consist of a number of stations located throughout the world, making real time measurements of the time delay of the ionosphere, and its rate of change, as well as amplitude scintillation, along several different viewing directions from each station. These trans-ionospheric measurements will be used to allow models, which currently provide only monthly propagation parameters. The real-time specifications of these parameters can then be used as decision aids in both the tactical and the strategic military environments. The TISS will include first order artificial intelligence design to aid in gathering the most appropriate sets of available real-time trans-ionospheric propagation data, and will communicate these data sets to the Air Weather Service Forecasting Center where they will be tailored to specific military customers.

  19. Increases of equatorial total electron content (TEC) during magnetic storms

    International Nuclear Information System (INIS)

    Yeboah-Amankwah, D.

    1976-01-01

    This paper is a report on the analysis of equatorial electron content, TEC, during magnetic storms. Storms between 1969 and 1972 have been examined as part of an on-going study of TEC morphology during magnetically disturbed days. The published magnetic Ksup(p) indices and TEC data from the Legon abservatory have been employed. The general picture arising from the analysis is that the total electron content of the ionosphere is significantly enhanced during magnetic storms. (author)

  20. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2006-07-01

    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  1. On a new process for cusp irregularity production

    Directory of Open Access Journals (Sweden)

    H. C. Carlson

    2008-09-01

    Full Text Available Two plasma instability mechanisms were thought until 2007 to dominate the formation of plasma irregularities in the F region high latitude and polar ionosphere; the gradient-drift driven instability, and the velocity-shear driven instability. The former mechanism was accepted as accounting for plasma structuring in polar cap patches, the latter for plasma structuring in polar cap sun aligned arcs. Recent work has established the need to replace this view of the past two decades with a new patch plasma structuring process (not a new mechanism, whereby shear-driven instabilities first rapidly structure the entering plasma, after which gradient drift instabilities build on these large "seed" irregularities. Correct modeling of cusp and early polar cap patch structuring will not be accomplished without allowing for this compound process. This compound process explains several previously unexplained characteristics of cusp and early polar cap patch irregularities. Here we introduce additional data, coincident in time and space, to extend that work to smaller irregularity scale sizes and relate it to the structured cusp current system.

  2. Simultaneous observations at different altitudes of ionospheric backscatter in the eastward electrojet

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    1998-01-01

    Full Text Available A common feature of evening near-range ionospheric backscatter in the CUTLASS Iceland radar field of view is two parallel, approximately L-shell-aligned regions of westward flow which are attributed to irregularities in the auroral eastward electrojet region of the ionosphere. These backscatter channels are separated by approximately 100–200 km in range. The orientation of the CUTLASS Iceland radar beams and the zonally aligned nature of the flow allows an approximate determination of flow angle to be made without the necessity of bistatic measurements. The two flow channels have different azimuthal variations in flow velocity and spectral width. The nearer of the two regions has two distinct spectral signatures. The eastern beams detect spectra with velocities which saturate at or near the ion-acoustic speed, and have low spectral widths (less than 100 m s–1, while the western beams detect lower velocities and higher spectral widths (above 200 m s–1. The more distant of the two channels has only one spectral signature with velocities above the ion-acoustic speed and high spectral widths. The spectral characteristics of the backscatter are consistent with E-region scatter in the nearer channel and upper-E-region or F-region scatter in the further channel. Temporal variations in the characteristics of both channels support current theories of E-region turbulent heating and previous observations of velocity-dependent backscatter cross-section. In future, observations of this nature will provide a powerful tool for the investigation of simultaneous E- and F-region irregularity generation under similar (nearly co-located or magnetically conjugate electric field conditions.Key words. Auroral ionosphere · Ionospheric irregularities · Plasma convection

  3. Assimilative Modeling of Ionospheric Disturbances with FORMOSAT-3/COSMIC and Ground-Based GPS Measurements

    Directory of Open Access Journals (Sweden)

    Xiaoqing Pi

    2009-01-01

    Full Text Available The four-dimensional Global Assimilative Ionospheric Model (GAIM is applied to a study of ionospheric disturbances. The investigation is focused on disturbance features, particularly in the altitude and latitude dimensions, at low latitudes during a geomagnetic storm on 7 August 2006, under solar minimum conditions. The modeling of storm-time ionospheric state (electron density is conducted by assimilating an unprecedented volume of line-of-sight TEC data collected by the Global Positioning System (GPS occultation receivers on board six FORMOSAT-3/COSMIC satellites and geodetic-quality GPS receivers at two hundred globally-distributed ground tracking stations.With a band-limited Kalman filter technique to update the ionospheric state, the assimilative modeling reveals a pronounced enhancement in the equatorial anomaly in the East Asia sector during dusk and evening hours. The disturbance characteristics, obtained by comparing with the quiet conditions prior to the storm also modeled in this study through data assimilation, include lifted F layer and reduced electron density in the equatorial region, enhanced density at the magnetically conjugate anomaly latitudes, and tilted feature of density increase towards higher altitudes at lower latitudes. The characteristics are attributed to the enhanced plasma fountain effect driven by an enhanced eastward zonal electric field. These results enable us to distinguish the storm-time electric field perturbations clearly from other sources during the storm. The possible origins of electric field perturbations are also discussed, including penetration of the magnetospheric electric field and wind dynamo disturbances.

  4. The effect of vibrationally excited nitrogen on the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    B. Jenkins

    1997-11-01

    Full Text Available The first five vibrationally excited states of molecular nitrogen have been included in the Sheffield University plasmasphere ionosphere model. Vibrationally excited molecular nitrogen reacts much more strongly with atomic oxygen ions than ground-state nitrogen; this means that more O+ ions are converted to NO+ ions, which in turn combine with the electrons to give reduced electron densities. Model calculations have been carried out to investigate the effect of including vibrationally excited molecular nitrogen on the low-latitude ionosphere. In contrast to mid-latitudes, a reduction in electron density is seen in all seasons during solar maximum, the greatest effect being at the location of the equatorial trough.

  5. Evidence and effects of a wave-driven nonlinear current in the equatorial electrojet

    Directory of Open Access Journals (Sweden)

    M. Oppenheim

    1997-07-01

    Full Text Available Ionospheric two-stream waves and gradient-drift waves nonlinearly drive a large-scale (D.C. current in the E-region ionosphere. This current flows parallel to, and with a comparable magnitude to, the fundamental Pedersen current. Evidence for the existence and magnitude of wave-driven currents derives from a theoretical understanding of E-region waves, supported by a series of nonlinear 2D simulations of two-stream waves and by data collected by rocket instruments in the equatorial electrojet. Wave-driven currents will modify the large-scale dynamics of the equatorial electrojet during highly active periods. A simple model shows how a wave-driven current appreciably reduces the horizontally flowing electron current of the electrojet. This reduction may account for the observation that type-I radar echoes almost always have a Doppler velocity close to the acoustic speed, and also for the rocket observation that electrojet regions containing gradient-drift waves do not appear also to contain horizontally propagating two-stream waves. Additionally, a simple model of a gradient-drift instability shows that wave-driven currents can cause nonsinusoidal electric fields similar to those measured in situ.

  6. The Vector Electric Field Instrument on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Kujawski, J.; Uribe, P.; Bromund, K.; Fourre, R.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; McCarthy, M.; hide

    2008-01-01

    We provide an overview of the Vector Electric Field Instrument (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA GSFC instrument designed 1) to investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) to determine the electric fields associated with abrupt, large amplitude, density depletions and 3) to quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions or Equatorial Spread-F. The VEFI instrument includes a vector electric field double probe detector, a Langmuir trigger probe, a flux gate magnetometer, a lightning detector and associated electronics. The heart of the instrument is the set of double probe detectors designed to measure DC and AC electric fields using 6 identical, mutually orthogonal, deployable 9.5 m booms tipped with 10 cm diameter spheres containing embedded preamplifiers. A description of the instrument and its sensors will be presented. If available, representative measurements will be provided.

  7. Variations of ionospheric plasma concentration in the region of the main ionospheric through during the magnetic storm on 18-19.12, 1978 in relation to interplanetary magnetic field variations

    International Nuclear Information System (INIS)

    Gdalevich, G.L.; Eliseev, A.Yu.; Kolomijtsev, O.P.; Afonin, V.V.; Ozerov, V.D.; Soboleva, T.N.

    1986-01-01

    The variations of ion concentration in the region of the main ionospheric trough at the height approximately 500 km during the storm on 18-19, 12, 1978 are considered by data from ''Kosmos-900'' satellite. Three These changes in ion density are compared with variations of interplanetary medium parameters, in particular with Ey=-VBz, with the component of the interplanetary electric field. The comparison results are discussed. Exact correlation of ionospheric disturbance development with variations of interplanetary medium parameters is observed. This effect is expressed in the evening section both in the high and mean latitudes and it is obv ously caused by magnetosphere rearrangement in the region of the minimum pole trough, and on the equatorial wall - by convection field penetration to the mean latitude. The movement of the equatorial boundary of diffusion precipitations, which is much responsible for formation of the polar trough wall, corresponds to the boundary movement of corotating and convective plasma or to the last closed equipotentiality. But some delay of the precipitation boundary due to the responsiveness of precipitation processes is observed on the recovery phase

  8. Spatial correlation of the ionsphere total electron content at the equatorial anomaly crest

    International Nuclear Information System (INIS)

    Huang, Y.

    1984-01-01

    The spatial correlation of the ionospheric total electron content (TEC) at the equatorial anomaly crest was studied by recording Faraday rotation angle of the ETS-II geostationary satellite at Lunping and Kaohsiung whose subionospheric points are located at 23.0 0 N, 121.0 0 N, and 20.9 0 N, 121.1 0 E, respectively, and are about 280 km apart. The results show that the spatial correlation of TEC at the equatorial crest region is smaller than that at other places. The day-to-day variabilities of TEC differences between two subionospheric points are quite large. The day-to-day variabilities of the fountain effect seem to play an important role

  9. Spectral classification of medium-scale high-latitude F region plasma density irregularities

    International Nuclear Information System (INIS)

    Singh, M.; Rodriguez, P.; Szuszczewicz, E.P.; Sachs Freeman Associates, Bowie, MD)

    1985-01-01

    The high-latitude ionosphere represents a highly structured plasma. Rodriguez and Szuszczewicz (1984) reported a wide range of plasma density irregularities (150 km to 75 m) at high latitudes near 200 km. They have shown that the small-scale irregularities (7.5 km to 75 m) populated the dayside oval more often than the other phenomenological regions. It was suggested that in the lower F region the chemical recombination is fast enough to remove small-scale irregularities before convection can transport them large distances, leaving structured particle precipitation as the dominant source term for irregularities. The present paper provides the results of spectral analyses of pulsed plasma probe data collected in situ aboard the STP/S3-4 satellite during the period March-September 1978. A quantitative description of irregularity spectra in the high-latitude lower F region plasma density is given. 22 references

  10. Fast-PPP assessment in European and equatorial region near the solar cycle maximum

    Science.gov (United States)

    Rovira-Garcia, Adria; Juan, José Miguel; Sanz, Jaume

    2014-05-01

    The Fast Precise Point Positioning (Fast-PPP) is a technique to provide quick high-accuracy navigation with ambiguity fixing capability, thanks to an accurate modelling of the ionosphere. Indeed, once the availability of real-time precise satellite orbits and clocks is granted to users, the next challenge is the accuracy of real-time ionospheric corrections. Several steps had been taken by gAGE/UPC to develop such global system for precise navigation. First Wide-Area Real-Time Kinematics (WARTK) feasibility studies enabled precise relative continental navigation using a few tens of reference stations. Later multi-frequency and multi-constellation assessments in different ionospheric scenarios, including maximum solar-cycle conditions, were focussed on user-domain performance. Recently, a mature evolution of the technique consists on a dual service scheme; a global Precise Point Positioning (PPP) service, together with a continental enhancement to shorten convergence. A end to end performance assessment of the Fast-PPP technique is presented in this work, focussed in Europe and in the equatorial region of South East Asia (SEA), both near the solar cycle maximum. The accuracy of the Central Processing Facility (CPF) real-time precise satellite orbits and clocks is respectively, 4 centimetres and 0.2 nanoseconds, in line with the accuracy of the International GNSS Service (IGS) analysis centres. This global PPP service is enhanced by the Fast-PPP by adding the capability of global undifferenced ambiguity fixing thanks to the fractional part of the ambiguities determination. The core of the Fast-PPP is the capability to compute real-time ionospheric determinations with accuracies at the level or better than 1 Total Electron Content Unit (TECU), improving the widely-accepted Global Ionospheric Maps (GIM), with declared accuracies of 2-8 TECU. This large improvement in the modelling accuracy is achieved thanks to a two-layer description of the ionosphere combined with

  11. Concurrent study of bottomside spread F and plasma bubble events in the equatorial ionosphere during solar maximum using digisonde and ROCSAT-1

    Directory of Open Access Journals (Sweden)

    C.-C. Lee

    2005-12-01

    Full Text Available Data from the Jicamarca digisonde and the ROCSAT-1 satellite are employed to study the equatorial ionosphere on the west side of South America during April 1999-March 2000 for the concurrent bottomside spread F (BSSF and plasma bubble events. This study, using digisonde and ROCSAT-1 concurrently, is the first attempt to investigate the equatorial spread F. Results show that BSSF and plasma bubble observations appear frequently respectively in the summer (January, February, November, and December and in the equinoctial (March, April, September, and October months, respectively, but are both rarely observed in the winter (May-August months. The upward drift velocity during the concurrent BSSF and bubble observations has been determined to study the driving mechanism. This analysis shows that large vertical drift velocities favor BSSF and bubble formations in the equinoctial and summer months. Conversely, the smaller upward velocities during the winter months cause fewer BSSF and bubble occurrences. For the geomagnetic effect, the BSSF/bubble occurrence decreases with an increasing Kp value in the equinoctial months, but no such correlation is found for the summer and winter months. Moreover, the anti-correlations between Kp and dh'F/dt are apparent in the equinoctial months, but not in the summer and winter months. These results indicate that in the equinoctial months the BSSF/bubble generations and the pre-reversal drift velocity can be suppressed by geomagnetic activity, because the disturbance dynamo effects could have decreased the eastward electric field near sunset. However, BSSF and bubble occurrences may not be suppressed by the geomagnetic activity in the summer and winter months.

  12. The topside ionospheric effective scale heights (HT) derived with ROCSAT-1 and ground-based Ionosonde observations at equatorial and mid-latitude stations

    Science.gov (United States)

    Ram Sudarsanam, Tulasi; Su, Shin-Yi; Liu, C. H.; Reinisch, Bodo

    In this study, we propose the assimilation of topside in situ electron density data from ROCSAT-1 satellite along with the ionosonde measurements for accurate determination of topside iono-spheric effective scale heights (HT) using -Chapman function. The reconstructed topside elec-tron density profiles using these scale heights exhibit an excellent similitude with Jicamarca Incoherent Scatter Radar (ISR) profiles, and are much better representations than the existing methods of Reinisch-Huang method and/or the empirical IRI-2007 model. The main advan-tage with this method is that it allows the precise determination of the effective scale height (HT) and the topside electron density profiles at a dense network of ionosonde/digisonde sta-tions where no ISR facilities are available. The demonstration of the method is applied by investigating the diurnal, seasonal and solar activity variations of HT over the dip-equatorial station Jicamarca and the mid-latitude station Grahamstown. The diurnal variation of scale heights over Jicamarca consistently exhibits a morning time descent followed by a minimum around 0700-0800 LT and a pronounced maximum at noon during all the seasons of both high and moderate solar activity periods. Further, the scale heights exhibit a secondary maximum during the post-sunset hours of equinoctial and summer months, whereas the post-sunset peak is absent during the winter months. These typical features are further investigated using the topside ion properties obtained by ROCSAT-1 as well as SAMI2 model simulations. The re-sults consistently indicate that the diurnal variation of the effective scale height (HT) does not closely follow the plasma temperature variation and at equatorial latitudes is largely controlled by the vertical ExB drift.

  13. Ionospheric TEC Weather Map Over South America

    Science.gov (United States)

    Takahashi, H.; Wrasse, C. M.; Denardini, C. M.; Pádua, M. B.; de Paula, E. R.; Costa, S. M. A.; Otsuka, Y.; Shiokawa, K.; Monico, J. F. Galera; Ivo, A.; Sant'Anna, N.

    2016-11-01

    Ionospheric weather maps using the total electron content (TEC) monitored by ground-based Global Navigation Satellite Systems (GNSS) receivers over South American continent, TECMAP, have been operationally produced by Instituto Nacional de Pesquisas Espaciais's Space Weather Study and Monitoring Program (Estudo e Monitoramento Brasileiro de Clima Especial) since 2013. In order to cover the whole continent, four GNSS receiver networks, (Rede Brasileiro de Monitoramento Contínuo) RBMC/Brazilian Institute for Geography and Statistics, Low-latitude Ionospheric Sensor Network, International GNSS Service, and Red Argentina de Monitoreo Satelital Continuo, in total 140 sites, have been used. TECMAPs with a time resolution of 10 min are produced in 12 h time delay. Spatial resolution of the map is rather low, varying between 50 and 500 km depending on the density of the observation points. Large day-to-day variabilities of the equatorial ionization anomaly have been observed. Spatial gradient of TEC from the anomaly trough (total electron content unit, 1 TECU = 1016 el m-2 (TECU) 80) causes a large ionospheric range delay in the GNSS positioning system. Ionospheric plasma bubbles, their seeding and development, could be monitored. This plasma density (spatial and temporal) variability causes not only the GNSS-based positioning error but also radio wave scintillations. Monitoring of these phenomena by TEC mapping becomes an important issue for space weather concern for high-technology positioning system and telecommunication.

  14. Combined TOPEX/Poseidon TEC and ionosonde observations of negative low-latitude ionospheric storms

    Directory of Open Access Journals (Sweden)

    K. J. W. Lynn

    2004-09-01

    Full Text Available Ionospheric storms showing a strong depression in daytime foF2 values were sought which penetrated to low-latitudes, as identified by vertical ionosondes operating at Darwin and Townsville over the period 1992-1998. The 32 storms thus identified showed a seasonal occurrence peaking near the equinoxes with a bias to the summer side. Of these storms, three (27 March 1995, 25 October 1997, 8 November 1997 combined Australian and South East Asian ionosonde observations with local afternoon TOPEX/Poseidon measurements of TEC. The equatorial anomaly is usually well developed at this time of day and consequently these storms were chosen for detailed study. The TOPEX/Poseidon satellite provided vertical profiles of the ionosphere across both hemispheres, thus allowing the totality of storm behaviour to be observed for the first time at low-latitudes and related directly to the ionosonde observations. The three storms were remarkably consistent in their behaviour, the negative ionospheric storm day followed some 24-36h after the beginning of a magnetic storm and the development of the equatorial anomaly was suppressed. However, the suppression of the equatorial anomaly was not the main cause of the strong depression in foF2 observed by the Southern Hemisphere ionosondes. The latter was associated with an additional bite-out in both TEC and foF2 that occurred on the southern side of the magnetic equator. None of the three storms produced any major negative disturbance outside the range of normal variability of TEC and foF2 at the northern latitude sites for which data was available, despite the absence of the anomaly. The satellite measurements show the strength of the anomaly to be highly variable from day-to-day and anomaly peaks are frequently not present even on magnetically quiet days. Thus, an absence of anomaly peaks is contained within the normal variability of non-storm days. The north-south asymmetry and seasonal occurrence are consistent with

  15. Analysis of ionospheric vertical total electron content before the 1 April 2014 Mw 8.2 Chile earthquake

    Science.gov (United States)

    Jiang, Weiping; Ma, Yifang; Zhou, Xiaohui; Li, Zhao; An, Xiangdong; Wang, Kaihua

    2017-11-01

    This paper studies ionospheric vertical total electron content (VTEC) variations before the 1 April 2014 Mw 8.2 Chile earthquake. VTEC derived from 14 global positioning system (GPS) stations and global ionospheric map (GIM) were used to analyze ionospheric variations before the earthquake using the sliding interquartile range method, and the results showed that significant positive VTEC anomalies occurred on 28 March. To explore possible causes of these anomalies, effects of solar and geomagnetic activities were examined, and VTEC variations during 17 March to 31 March in 2009-2013 were cross-compared. Also, VTEC for a full year before the earthquake was investigated. The results indicated that the anomalies were weakly associated with high solar activities and geomagnetic storms and that the anomalies were not normal seasonal and diurnal variations. An analysis of the spatial distribution of the observed anomalies was also presented, and it demonstrated that the anomalies specifically appeared around the epicenter on 28 March. We suggest that the observed anomalies may be associated with the subsequent Chile earthquake. Equatorial anomaly variations were analyzed to discuss the possible physical mechanism, and results showed that the equatorial anomaly unusually increased on 28 March, which indicates that anomalous electric fields generated in the earthquake preparation area and the meridional wind are possible causes of the observed ionospheric anomalies.

  16. Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes

    Science.gov (United States)

    Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.

    2017-12-01

    The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.

  17. Simultaneous observations at different altitudes of ionospheric backscatter in the eastward electrojet

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available A common feature of evening near-range ionospheric backscatter in the CUTLASS Iceland radar field of view is two parallel, approximately L-shell-aligned regions of westward flow which are attributed to irregularities in the auroral eastward electrojet region of the ionosphere. These backscatter channels are separated by approximately 100–200 km in range. The orientation of the CUTLASS Iceland radar beams and the zonally aligned nature of the flow allows an approximate determination of flow angle to be made without the necessity of bistatic measurements. The two flow channels have different azimuthal variations in flow velocity and spectral width. The nearer of the two regions has two distinct spectral signatures. The eastern beams detect spectra with velocities which saturate at or near the ion-acoustic speed, and have low spectral widths (less than 100 m s–1, while the western beams detect lower velocities and higher spectral widths (above 200 m s–1. The more distant of the two channels has only one spectral signature with velocities above the ion-acoustic speed and high spectral widths. The spectral characteristics of the backscatter are consistent with E-region scatter in the nearer channel and upper-E-region or F-region scatter in the further channel. Temporal variations in the characteristics of both channels support current theories of E-region turbulent heating and previous observations of velocity-dependent backscatter cross-section. In future, observations of this nature will provide a powerful tool for the investigation of simultaneous E- and F-region irregularity generation under similar (nearly co-located or magnetically conjugate electric field conditions.

    Key words. Auroral ionosphere · Ionospheric irregularities · Plasma convection

  18. Ionospheric Caustics in Solar Radio Observations

    Science.gov (United States)

    Koval, A.; Chen, Y.; Stanislavsky, A.

    2016-12-01

    The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.

  19. Lunar and solar daily variations of ionospheric electron content at Delhi

    International Nuclear Information System (INIS)

    Bhuyan, P.K.; Tyagi, T.R.

    1986-01-01

    Ionospheric electron content measurements obtained at Delhi during the period 1975-1980 have been analysed by the Chapman-Miller method to compute lunar and solar daily variations. The results show that the magnitude of the lunar harmonic components is about one-tenth that of the solar harmonic components. Significant seasonal and solar cycle variations were observed for both the lunar and the solar terms. The lunar semi-diurnal component, the most significant term, can be explained as due to the additional 'fountain' effect caused by the lunar semi-diurnal variation of the electric field at the equatorial region. The lunar semi-diurnal variations were found to have significant oceanic and ionospheric components. (author)

  20. Construction of theoretical F-spread ionogams from scattering in the HF band from field-aligned irregularities

    International Nuclear Information System (INIS)

    Powers, W.J.

    1985-01-01

    The scattering and propagation of electromagnetic fields in the ionosphere for the HF band is considered. Particular attention is given to scattering at the geomagnetic equator from irregularities of ionization density that are aligned along the earth's magnetic field and that have lengths that are much greater than a Fresnel scale. Perpendicular to the earth's magnetic field the irregularities are assumed to be isotropic with scale lengths (wavelengths /(2π)) extending from an inner scale equal to the ionic gyroradius to an outer scale on the order of the scale height of the ionosphere. Primary emphasis is placed on the weak scattering of pulses from field-aligned irregularities embedded in the night time F-layer, with application to explaining F-spread ionograms. The average ionization density of the night time F-layer is assumed to be well modeled by a parabolic layer. Assuming that the effects of the earth's magnetic field and collisions can be neglected, an approximate dyadic Green's function is derived and utilized in the determination of the incident and singly scattered fields

  1. Global and Seasonal Scintillation Morphology in the Equatorial Region Derived from ROCSAT-1 In-situ Data

    Directory of Open Access Journals (Sweden)

    Yen-Hung Liu

    2012-01-01

    Full Text Available The global/seasonal distributions of the scintillation occurrence rate are obtained from the in-situ density measurement of the ROCSAT-1 using a modified procedure reported by Wernik et al. (2007. A least-squares curve fitting in the optimal trust region is used to obtain the spectral slope for the density irregularity structure and the outer scale of the scintillation. The distribution of the S4 index for the weak scintillation (S4 < 0.3 is almost identical to that of the equatorial irregularity distribution reported in the literature. However, as the scintillation becomes stronger (0.3 < S4 < 0.6, the latitudinal distribution moves to the equatorial ionization anomaly (EIA region. In addition, the distributions of the outer scale values that are useful for the study of the physical evolution of the irregularity structure are also obtained. The occurrence distribution of scintillation activity with several parameters such as dip-latitude, longitude, local time, solar activity, and geomagnetic activity during different seasons are presented and discussed in this paper.

  2. Electrodynamics of the magnetosphere-ionosphere coupling in the nightside subauroral zone

    International Nuclear Information System (INIS)

    Streltsov, A.V.; Foster, J.C.

    2004-01-01

    Results from a numerical study of the oscillations of the electric field measured by the Millstone Hill incoherent scatter radar in the E-layer of the nightside subauroral ionosphere during the geomagnetic storm of May 25, 2000 are presented. The frequencies of these oscillations correspond to the discrete frequencies of geomagnetic pulsations usually attributed to the field line resonances or global cavity modes at a high-latitude auroral zone, but they are well below the fundamental eigenfrequency of the subauroral magnetosphere. It is shown that these oscillations can be interpreted as an ionospheric footprint of the surface Alfven waves generated at the equatorial magnetosphere on a steep transverse gradient in the background plasma density associated with the inner edge of the plasmapause developed during strong geomagnetic storms/substorms. This density gradient together with the ionospheric Pedersen conductivity defines the location and amplitude of the electric field in the E-layer: the amplitude of the field is proportional to the amplitude of the density inhomogeneity and inversely proportional to its scale-size and the ionospheric conductivity. Interaction of the large amplitude perpendicular electric field with the low-conducting ionosphere can cause the ionospheric feedback instability, which leads to the formation of small-scale, intense structures in the electric field and the parallel current density in the subauroral magnetosphere

  3. Theory of ionospheric heating experiments

    International Nuclear Information System (INIS)

    Cragin, B.L.

    1975-01-01

    A brief description of the F region ionospheric heating experiments is given including some historical notes and a brief summary of the observations. A theory for the phenomenon of ''artificial spread F'' is presented. The explanation is in terms of scattering by approximately field-aligned, large scale ionization density irregularities, which are produced by a thermal version of the stimulated Brillouin scattering instability in which the heating wave decays into another electromagnetic wave and an electrostatic wave of very low frequency. This thermal instability differs from conventional stimulated Brillouin scattering in that the low frequency wave is driven by differential heating in the interference pattern of the two electromagnetic waves, rather than by the usual ponderomotive force. Some aspects of the theory of the phenomenon of ''wide-band attenuation'' or ''anomalous absorption'' of a probing electromagnetic wave. Some general results from the theory of wave propagation in a random medium are used to derive equations describing the absorption of a probing electromagnetic wave due to scattering (by large scale irregularities) into new electromagnetic waves or (by small scale irregularities) into electron plasma oscillations

  4. Ionospheric foF2 at EIA region: comparison between observations and IRI model

    Science.gov (United States)

    Chuo, Y. J.; Lee, C. C.

    We have used data from an equatorial ionization anomaly area station in the western Pacific region to study the monthly variability of foF2 Diurnal seasonal and solar activity effects were investigated The data established by this study are proposed as valid input values for the development of URSI and CCIR options for the International Reference Ionosphere

  5. Zonal drifts of ionospheric irregularities at temperate latitude in the Indian region

    Directory of Open Access Journals (Sweden)

    S. Kumar

    1995-07-01

    Full Text Available The systematic time differences observed in the onset of postsunset VHF scintillations recorded simultaneously at Ujjain (Geogr. lat. 23.2°N, Geogr. long. 75.6°E and Bhopal (Geogr. lat. 23.2°N, Geogr. long. 77.6°E, situated at the peak of the anomaly crest in the Indian region, have been analysed to determine the zonal drifts of scintillation-producing irregularities. The method is based on the assumption that the horizontal movement of irregularities does not change while crossing the F-region cross-over points of these stations. The calculated velocities of irregularities indicate an eastward drift decreasing from about 180 m s–1 to 55 m s–1 during the course of night. In the premidnight period, the drifts are reduced under the magnetically disturbed conditions. The average east-west extension of irregularites is found to be in the range of 200–500 km.

  6. Investigation of sporadic solar radiowave radiation and Earth ionosphere parameters on the ''Interkosmos-Kopernik 500'' satellite

    International Nuclear Information System (INIS)

    Aksenov, V.I.; Artem'eva, u.M.; Komrakov, G.P.; Skrebkova, L.A.

    1982-01-01

    Results of investigations into inhomogeneities of electron concentration obtained in 1973 by means of '' the Interkosmos-Kopernik-500'' satellite are presented. A high-frequency impedance probe installed at the satellite (3.1 and 15 MHz working frequencies) provided measurement of the electron concentration in ionosphere in the ranges from 10 3 to 1.8x10 6 cm -3 and of its inhomogeneities of sizes from 0.5 to 100 km having relative fluctuations ΔN/N >= 3x10 -4 . Probability P of appearance of the electron concentration inhomogeneities with relative fluctuations √ (ΔN/N) 2 >= 0.2% at altitudes of 200-1500 km changes within the limits from 2 to 60-70% for middle and equatorial latitudes. The highest probability of the inhomogeneity appearance in the summer hemisphere (northern hemispere) is observed above the maximum of F 2 stratum. Values P at 400-1500 km altitudes at night-time increase from equatorial latitudes to middle ones. At Ksub(p) 2 at altitudes H > 400 km in the northern (summer) hemisphere are mainly lower than in the southern (winter). During the periods of increased geomagnetic activity (Ksub(p) > 3) the probabilities of the inhomogeneity appearance for the latitudes (middle and equatorial) under investigation change insignificantly as a whole. Power character of the inhomogeneous structures spectra at the altitudes of the F region and partially outer ionosphere at middle, low and equatorial latitudes of the northern and southern hemispheres is their common characteristic feature

  7. Nonlinear oscillation regime of electromagnetic disturbances in the equatorial F region

    International Nuclear Information System (INIS)

    Sazonov, S.V.

    1990-01-01

    Nonlinear oscillation regime of electromagnetic dicturbances within equatorial ionosphere F-region resulted from Rayleigh-Taylor instability, gradient-drift instability and recombination processes is investigated on the basis of two-liquid quasihydrodynamics equations. It is shown, that at positive linear increment the oscillations are developing in regime with aggregation and are terminated by increment the effect of threshold destabilization, when under certain initial conditions underlgoes oscillation nonlinear swinging, resulting, as well, in bubble formation in contrast to small damping oscillations, is detected

  8. Obtaining Networked Scintillation and Total Electron Content Data Across Africa and Asia: Partnering with the IHY/UNBSSI Developing Nations Program

    Science.gov (United States)

    Groves, K. M.; Basu, S.; Erickson, T.; Sunanda, B.; David, B.

    2005-12-01

    Under the Scintillation Network Decision Aid (SCINDA) project, scientists at the Air Force Research Laboratory (AFRL) have developed a sensor network for the purpose of monitoring low-latitude ionospheric total electron content (TEC) and scintillations associated with equatorial Spread F. In addition to monitoring GPS scintillations, TEC and VHF scintillations, the sensor package measures ionospheric drifts when irregularities are present providing important data on vertical electric fields in the F-region .The network currently consists of twelve stations distributed around the globe and the data have been used to conduct numerous studies on the characteristics and climatology of equatorial scintillation, including the impacts of magnetic storms on the equatorial ionosphere. Notably absent from the existing network are observing sites in Africa where both satellite observations and limited historical data sets suggest significant scintillation activity, though the detailed behavior and longitudinal variations across the continent are largely unknown. The latter aspect, in particular, is of great interest because of substantial changes in the orientation of the geomagnetic field in extreme West Africa that transition to a more uniform field geometry spanning the rest of the continent. Understanding the effects of these changes on scintillation climatology will provide new insights into the processes that trigger equatorial Spread F and assist researchers in developing improved forecasts of such activity. AFRL aims to establish 5-8 monitoring sites across equatorial Africa in collaboration with host nations participating in the United Nations Basic Space Science Initiative during the IHY period. In addition to expanding scientific opportunities, it is hoped that these sites will lead to greater awareness of the significant space weather issues impacting Africa and result in enhanced international collaboration between both African and non-African scientists

  9. Complex analysis of the ionospheric response to operation of ``Progress'' cargo spacecraft according to the data of GNSS receivers in Baikal region

    Science.gov (United States)

    Ishin, Artem; Voeykov, Sergey; Perevalova, Natalia; Khakhinov, Vitaliy

    2017-12-01

    As a part of the Plasma-Progress and Radar-Progress space experiments conducted from 2006 to 2014, effects of the Progress spacecraft engines on the ionosphere have been studied using data from Global Navigation Satellite System (GNSS) receivers. 72 experiments have been carried out. All these experiments were based on data from the International GNSS Service (IGS) to record ionospheric plasma irregularities caused by engine operation. 35 experiments used data from the ISTP SB RAS network SibNet. The analysis of the spatio-temporal structure of total electron content (TEC) variations has shown that the problem of identifying the TEC response to engine operation is complicated by a number of factors: 1) the engine effect on ionospheric plasma is strongly localized in space and has a relatively low intensity; 2) a small number of satellite-receiver radio rays due to the limited number of GNSS stations, particularly before 2013; 3) a potential TEC response is masked with background ionospheric disturbances of various intensities. However, TEC responses are identified with certainty when a satellite-receiver radio ray crosses a disturbed region within minutes after the impact. TEC responses have been registered in 7 experiments (10 % of cases). The amplitude of ionospheric response (0.3-0.16 TECU) exceeded the background TEC variations (~0.25 TECU) several times. The TEC data indicate that the ionospheric irregularity lifetime is from 4 to 10 minutes. According to the estimates we made, the transverse size of irregularities is from 12 to 30 km.

  10. Dual Hemisphere Investigations of Ionospheric Irregularities that Disrupt Radio Communications and Navigation

    Science.gov (United States)

    2016-07-25

    view achieved by a " fish -eye" lens. Moreover, we located these instruments at sites that share a common geomagnetic fie ld line- called conjugate...15JA021965, 2016. Park, J. , C. Martinis, H. Luhr, R. Pfaff, and Y.-S. Kwak, Hemispheric asymmetry in transition from equatorial plasma bubble to blob

  11. Drift motions of small-scale irregularities in the high-latitude F region: An experimental comparison with plasma drift motions

    International Nuclear Information System (INIS)

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Villain, J.P.; McCready, M.A.

    1987-01-01

    On the evening of January 6, 1986, coordinated observations were carried out with the Johns Hopkins University Applied Physics Laboratory HF coherent scatter radar at Goose Bay, Labrador, and the SRI International incoherent scatter radar at Sondre Stromfjord, Greenland. The common field of view comprised a section of high-latitude F region ionosphere centered on the great circle plane between the radar sites. Over a 40-min period, the HF radar observed strong backscatter from small-scale (13.9 m) field-aligned irregularities. The bulk line-of-sight drift velocity of the irregularities is deduced from the backscatter data. The returns collected simultaneously with the incoherent scatter radar are processed for estimates of the mean line-of-sight ion velocity. Approximately 100 distinct comparisons are possible between the two sets of velocity estimates. Reversals exceeding 1,000 m/s are present in both. In this paper, the authors demonstrate a correspondence between the measured irregularity and ion drifts that is consistent with the supposition that the motion of the irregularities is dominated by convective drift of the ambient plasma. This indicates that the small-scale irregularities detected by HF radars in the high-latitude F region can serve as tracers of ionospheric convective drift

  12. Concurrent study of bottomside spread F and plasma bubble events in the equatorial ionosphere during solar maximum using digisonde and ROCSAT-1

    Directory of Open Access Journals (Sweden)

    C.-C. Lee

    2005-12-01

    Full Text Available Data from the Jicamarca digisonde and the ROCSAT-1 satellite are employed to study the equatorial ionosphere on the west side of South America during April 1999-March 2000 for the concurrent bottomside spread F (BSSF and plasma bubble events. This study, using digisonde and ROCSAT-1 concurrently, is the first attempt to investigate the equatorial spread F. Results show that BSSF and plasma bubble observations appear frequently respectively in the summer (January, February, November, and December and in the equinoctial (March, April, September, and October months, respectively, but are both rarely observed in the winter (May-August months. The upward drift velocity during the concurrent BSSF and bubble observations has been determined to study the driving mechanism. This analysis shows that large vertical drift velocities favor BSSF and bubble formations in the equinoctial and summer months. Conversely, the smaller upward velocities during the winter months cause fewer BSSF and bubble occurrences. For the geomagnetic effect, the BSSF/bubble occurrence decreases with an increasing Kp value in the equinoctial months, but no such correlation is found for the summer and winter months. Moreover, the anti-correlations between Kp and dh'F/dt are apparent in the equinoctial months, but not in the summer and winter months. These results indicate that in the equinoctial months the BSSF/bubble generations and the pre-reversal drift velocity can be suppressed by geomagnetic activity, because the disturbance dynamo effects could have decreased the eastward electric field near sunset. However, BSSF and bubble occurrences may not be suppressed by the geomagnetic activity in the summer and winter months.

  13. Equatorial spread F studies using SAMI3 with two-dimensional and three-dimensional electrostatics

    Directory of Open Access Journals (Sweden)

    H. C. Aveiro

    2013-12-01

    Full Text Available This letter presents a study of equatorial F region irregularities using the NRL SAMI3/ESF model, comparing results using a two-dimensional (2-D and a three-dimensional (3-D electrostatic potential solution. For the 3-D potential solution, two cases are considered for parallel plasma transport: (1 transport based on the parallel ambipolar field, and (2 transport based on the parallel electric field. The results show that the growth rate of the generalized Rayleigh–Taylor instability is not affected by the choice of the potential solution. However, differences are observed in the structures of the irregularities between the 2-D and 3-D solutions. Additionally, the plasma velocity along the geomagnetic field computed using the full 3-D solution shows complex structures that are not captured by the simplified model. This points out that only the full 3-D model is able to fully capture the complex physics of the equatorial F region.

  14. Lunar Tidal Effects in the Electrodynamics of the Low-Latitude Ionosphere

    OpenAIRE

    Tracy, Brian David

    2013-01-01

    We used extensive measurements made by the Jicamarca Unattended Long-Term Investigations of the Ionosphere and Atmosphere (JULIA) and Incoherent Scatter Radar (ISR) systems at Jicamarca, Peru during geomagnetic quiet conditions to determine the climatologies of lunar tidal effects on equatorial vertical plasma drifts. We use, for the first time, the expectation maximization (EM) algorithm to derive the amplitudes and phases of the semimonthly and monthly lunar tidal perturbations. Our result...

  15. Experimental Evidence on the Dependence of the Standard GPS Phase Scintillation Index on the Ionospheric Plasma Drift Around Noon Sector of the Polar Ionosphere

    Science.gov (United States)

    Wang, Y.; Zhang, Q.-H.; Jayachandran, P. T.; Moen, J.; Xing, Z.-Y.; Chadwick, R.; Ma, Y.-Z.; Ruohoniemi, J. M.; Lester, M.

    2018-03-01

    First experimental proof of a clear and strong dependence of the standard phase scintillation index (σφ) derived using Global Positioning System measurements on the ionospheric plasma flow around the noon sector of polar ionosphere is presented. σφ shows a strong linear dependence on the plasma drift speed measured by the Super Dual Auroral Radar Network radars, whereas the amplitude scintillation index (S4) does not. This observed dependence can be explained as a consequence of Fresnel frequency dependence of the relative drift and the used constant cutoff frequency (0.1 Hz) to detrend the data for obtaining standard σφ. The lack of dependence of S4 on the drift speed possibly eliminates the plasma instability mechanism(s) involved as a cause of the dependence. These observations further confirm that the standard phase scintillation index is much more sensitive to plasma flow; therefore, utmost care must be taken when identifying phase scintillation (diffractive phase variations) from refractive (deterministic) phase variations, especially in the polar region where the ionospheric plasma drift is much larger than in equatorial and midlatitude regions.

  16. 22 July 2009 total solar eclipse induced gravity waves in ionosphere as inferred from GPS observations over EIA

    Science.gov (United States)

    Kumar, K. Vijay; Maurya, Ajeet K.; Kumar, Sanjay; Singh, Rajesh

    2016-11-01

    In the present contribution we investigate the variation in the Global Positioning System (GPS) derived ionospheric Total Electron Content (TEC) over Equatorial Ionization Anomaly (EIA) region on the rare occasional astronomical phenomenon of total solar eclipse of 22 July 2009. The aim is to study and identify the wave like structure enumerated due to solar eclipse induced gravity waves in the F-region ionosphere altitude. The work is aimed to understand features of horizontal and vertical variation of atmospheric gravity waves (AGWs) properties over the Equatorial Ionization Anomaly (EIA) region in Indian low latitude region. The ionospheric observations is from the site of Allahabad (lat 25.4° N; lon. 81.9° E; dip 38.6° N) located at the fringe of eclipse totality path. The estimated vertical electron density profile from FORMOSAT-3/COSMIC GPS-RO satellite, considering all the satellite line of sight around the time of eclipse totality shows maximum depletion of 43%. The fast fourier transform and wavelet transform of GPS DTEC data from Allahabad station (Allahabad: lat 25.4 N; lon. 81.9 E) shows the presence of periodic waves of ∼20 to 45 min and ∼70 to 90 min period at F-region altitude. The shorter period correspond to the sunrise time morning terminator and longer period can be associated with solar eclipse generated AGWs. The most important result obtained is that our results along with previous result for wave like signatures in D-region ionosphere from Allahabad station show that AGWs generated by sunrise time terminator have similarity in the D and F region of the ionosphere but solar eclipse induced AGWs show higher period in the F-region compared to D-region ionosphere.

  17. Space weather: Modeling and forecasting ionospheric

    International Nuclear Information System (INIS)

    Calzadilla Mendez, A.

    2008-01-01

    Full text: Space weather is the set of phenomena and interactions that take place in the interplanetary medium. It is regulated primarily by the activity originating in the Sun and affects both the artificial satellites that are outside of the protective cover of the Earth's atmosphere as the rest of the planets in the solar system. Among the phenomena that are of great relevance and impact on Earth are the auroras and geomagnetic storms , these are a direct result of irregularities in the flow of the solar wind and the interplanetary magnetic field . Given the high complexity of the physical phenomena involved (magnetic reconnection , particle inlet and ionizing radiation to the atmosphere) one of the great scientific challenges today is to forecast the state of plasmatic means either the interplanetary medium , the magnetosphere and ionosphere , for their importance to the development of various human activities such as radio , global positioning , navigation, etc. . It briefly address some of the international ionospheric modeling methods and contributions and participation that currently has the space group of the Institute of Geophysics Geophysics and Astronomy (IGA) in these activities of modeling and forecasting ionospheric. (author)

  18. Equatorial F region neutral winds and shears near sunset measured with chemical release techniques

    Science.gov (United States)

    Kiene, A.; Larsen, M. F.; Kudeki, E.

    2015-10-01

    The period near sunset is a dynamic and critical time for the daily development of the equatorial nighttime ionosphere and the instabilities that occur there. It is during these hours that the preconditions necessary for the later development of Equatorial Spread F (ESF) plasma instabilities occur. The neutral dynamics of the sunset ionosphere are also of critical importance to the generation of currents and electric fields; however, the behavior of the neutrals is experimentally understood primarily through very limited single-altitude measurements or measurements that provide weighted altitude means of the winds as a function of time. To date, there have been very few vertically resolved neutral wind measurements in the F region at sunset. We present two sets of sounding rocket chemical release measurements, one from a launch in the Marshall Islands on Kwajalein atoll and one from Alcantara, Brazil. Analysis of the release motions has yielded vertically resolved neutral wind profiles that show both the mean horizontal winds and the vertical shears in the winds. In both experiments, we observe significant vertical gradients in the zonal wind that are unexpected by classical assumptions about the behavior of the neutral wind at these altitudes at sunset near the geomagnetic equator.

  19. Sudden post-midnight decrease in equatorial F-region electron densities associated with severe magnetic storms

    Directory of Open Access Journals (Sweden)

    D. R. Lakshmi

    1997-03-01

    Full Text Available A detailed analysis of the responses of the equatorial ionosphere to a large number of severe magnetic storms shows the rapid and remarkable collapse of F-region ionisation during post-midnight hours; this is at variance with the presently accepted general behaviour of the low-latitude ionosphere during magnetic storms. This paper discusses such responses as seen in the ionosonde data at Kodaikanal (Geomagn. Lat. 0.6 N. It is also observed that during magnetic storm periods the usual increase seen in the h'F at Kodaikanal during sunset hours is considerably suppressed and these periods are also characterised by increased foF2 values. It is suggested that the primary process responsible for these dramatic pre- and post-midnight changes in foF2 during magnetic storms could be due to changes in the magnitude as well as in the direction of usual equatorial electric fields. During the post-midnight periods the change in electric-field direction from westward to eastward for a short period causes an upward E × B plasma drift resulting in increased h'F and decreased electron densities in the equatorial region. In addition, it is also suggested that the enhanced storm-induced meridional winds in the thermosphere, from the poles towards the equator, may also cause the decreases in electron density seen during post-midnight hours by spatially transporting the F-region ionisation southwards away from Kodaikanal. The paper also includes a discussion on the effects of such decreases in ionisation on low-latitude HF communications.

  20. A modeling study of ionospheric F2-region storm effects at low geomagnetic latitudes during 17-22 March 1990

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    2006-05-01

    Full Text Available We have presented a comparison between the modeled NmF2 and hmF2, and NmF2 and hmF2, which were observed in the low-latitude ionosphere simultaneously by the Kokubunji, Yamagawa, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders, by the middle and upper atmosphere (MU radar during 17-22 March 1990, and by the Arecibo radar for the time period of 20-22 March 1990. A comparison between the electron and ion temperatures measured by the MU and Arecibo radars and those produced by the model of the ionosphere and plasmasphere is presented. The empirical zonal electric field, the meridional neutral wind taken from the HWM90 wind model, and the NRLMSISE-00 neutral temperature and densities are corrected so that the model results agree reasonably with the ionospheric sounder observations, and the MU and Arecibo radar data. It is proved that the nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess (1997 or Scherliess and Fejer (1999, in combination with the corrected wind-induced plasma drift along magnetic field lines, provides the development of the nighttime enhancements in NmF2 observed over Manila during 17-22 March 1990. As a result, the new physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator includes the nighttime weakening of the equatorial zonal electric field and equatorward nighttime plasma drift along magnetic field lines caused by neutral wind in the both geomagnetic hemispheres. It is found that the latitudinal positions of the crests depend on the E×B drift velocity and on the neutral wind velocity. The relative role of the main mechanisms of the equatorial anomaly suppression observed during geomagnetic storms is studied for the first time in terms of storm-time variations of the model crest-to-trough ratios of the equatorial anomaly. During most of the studied time period, a total contribution from

  1. Studying Peculiarities of Ionospheric Response to the 2015 March 17-19 Geomagnetic Storm in East Asia: Observations and Simulation

    Science.gov (United States)

    Romanova, Elena; Zherebtsov, Gelii; Polekh, Nelya; Wang, Xiao; Wang, Guojun; Zolotukhina, Nina; Shi, Jiankui

    2016-07-01

    We report results of the research into effects of the strong geomagnetic storm in the ionosphere of high, middle, and low latitudes on March 17-19, 2015. The research relies on measurements made at the network of ionospheric stations located near the 120°E meridian. The analysis of experimental data has revealed that at the beginning of the main storm phase the equatorial wall of the main ionospheric trough (MIT) shifted towards geographic latitudes 58-60°N, which caused negative disturbances in subauroral latitudes and positive disturbances in middle latitudes. Further displacement of the MIT equatorial wall towards a geographic latitude of 52° N led to a decrease in the F2-layer critical frequency (foF2) up to 2 MHz in middle latitudes during evening and night hours, and to the appearance of sporadic layers in these latitudes due to energetic particle precipitation. Such phenomena are largely specific to the subauroral ionosphere. During the recovery storm phase on March 18, 2015 during daylight hours, negative disturbances were recorded at all the stations. Since prolonged negative disturbances are usually associated with a reduction in the ratio of concentrations of atomic oxygen and molecular nitrogen [O]/[N2] which is transported by disturbed thermospheric wind from auroral latitudes to middle and low ones, we analyzed measurements of [O]/[N2], made by GUVI (Global Ultraviolet Imager, http://guvi.jhuapl.edu/site/gallery/guvi-galleryl3on2.shtml), during this storm. The storm appeared to be characterized by very low values of [O]/[N2] which were recorded in the longitude sector 60 - 150°E up to 15°N on March 18. The discovered peculiarities of the ionospheric response to the storm were interpreted using a theoretical model of ionosphere-plasmosphere coupling developed at ISTP SB RAS. The simulation showed that the displacement of MIT equatorial wall resulted in foF2 variations similar to those observed during the main storm phase in subauroral and middle

  2. Wideband satellite phase coherent beacon observations at auroral and equatorial latitudes - A review

    International Nuclear Information System (INIS)

    Rino, C.L.; Livingston, R.C.; Cousins, M.D.; Fair, B.C.

    1978-01-01

    This paper presents a brief review of some of the principal results from the first two years of operation of the Wideband satellite which transmits phase-coherent signals from S-band to VHF. The auroral zone data show narrow regions of enhanced scintillation well equatorward of the discrete aurora. Such enhancements can be explained as a purely geometrical effect if the irregularities within the major precipitation regions have a sheet-like structure. Evidence of a localized irregularity source at the poleward boundary of the plasma trough is also found. Model computations are discussed and applied to the interpretation of equatorial data

  3. Investigation of Ionospheric Spatial Gradients for Gagan Error Correction

    Science.gov (United States)

    Chandra, K. Ravi

    In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. The national tasks include, establishment of major space systems such as Indian National Satellites (INSAT) for communication, television broadcasting and meteorological services, Indian Remote Sensing Satellites (IRS), etc. Apart from these, to cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross-sectional area in the line of site direction between the satellite and the user on the earth, i.e. Total Electron Content (TEC). In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating and identifying ionospheric spatial gradients inmultiple viewing directions. In this paper amongst the satellite signals arriving in multipledirections,Vertical ionospheric gradients (σVIG) are calculated, inturn spatial ionospheric gradients are identified. In addition, estimated temporal gradients, i.e. rate of TEC Index is also compared. These aspects which contribute to errors can be treated for improved GAGAN system performance.

  4. Effects of High-Latitude Forcing Uncertainty on the Low-Latitude and Midlatitude Ionosphere

    Science.gov (United States)

    Pedatella, N. M.; Lu, G.; Richmond, A. D.

    2018-01-01

    Ensemble simulations are performed using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) in order to understand the role of high-latitude forcing uncertainty on the low-latitude and midlatitude ionosphere response to the April 2010 geomagnetic storm. The ensemble is generated by perturbing either the high-latitude electric potential or auroral energy flux in the assimilative mapping for ionosphere electrodynamics (AMIE). Simulations with perturbed high-latitude electric potential result in substantial intraensemble variability in the low-latitude and midlatitude ionosphere response to the geomagnetic storm, and the ensemble standard deviation for the change in NmF2 reaches 50-100% of the mean change. Such large intraensemble variability is not seen when perturbing the auroral energy flux. In this case, the effects of the forcing uncertainty are primarily confined to high latitudes. We therefore conclude that the specification of high-latitude electric fields is an important source of uncertainty when modeling the low-latitude and midlatitude ionosphere response to a geomagnetic storm. A multiple linear regression analysis of the results indicates that uncertainty in the storm time changes in the equatorial electric fields, neutral winds, and neutral composition can all contribute to the uncertainty in the ionosphere electron density. The results of the present study provide insight into the possible uncertainty in simulations of the low-latitude and midlatitude ionosphere response to geomagnetic storms due to imperfect knowledge of the high-latitude forcing.

  5. Climatology of GNPs ionospheric scintillation at high and mid latitudes under different solar activity conditions

    International Nuclear Information System (INIS)

    Spogli, L.; Alfonsi, L.; De Franceschi, G.; Romano, V.; Aquino, M.H.O.; Dodson, A.

    2010-01-01

    We analyze data of ionospheric scintillation over North European regions for the same period (October to November) of two different years (2003 and 2008), characterized by different geomagnetic conditions. The work aims to develop a scintillation climatology of the high- and mid-latitude ionosphere, analyzing the behaviour of the scintillation occurrence as a function of the magnetic local time (MLT) and of the altitude adjusted corrected magnetic latitude (M lat), to characterize scintillation scenarios under different solar activity conditions. The results shown herein are obtained merging observations from a network of GISTMs (GPS Ionospheric Scintillation and TEC Monitor) located over a wide range of latitudes in the northern hemisphere. Our findings confirm the associations of the occurrence of the ionospheric irregularities with the expected position of the auroral oval and of the ionospheric trough walls and show the contribution of the polar cap patches even under solar minimum conditions.

  6. Relation of zonal plasma drift and wind in the equatorial F region as derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    J. Park

    2013-06-01

    Full Text Available In this paper we estimate zonal plasma drift in the equatorial ionospheric F region without counting on ion drift meters. From June 2001 to June 2004 zonal plasma drift velocity is estimated from electron, neutral, and magnetic field observations of Challenging Mini-satellite Payload (CHAMP in the 09:00–20:00 LT sector. The estimated velocities are validated against ion drift measurements by the Republic of China Satellite-1/Ionospheric Plasma and Electrodynamics Instrument (ROCSAT-1/IPEI during the same period. The correlation between the CHAMP (altitude ~ 400 km estimates and ROCSAT-1 (altitude ~ 600 km observations is reasonably high (R ≈ 0.8. The slope of the linear regression is close to unity. However, the maximum westward drift and the westward-to-eastward reversal occur earlier for CHAMP estimates than for ROCSAT-1 measurements. In the equatorial F region both zonal wind and plasma drift have the same direction. Both generate vertical currents but with opposite signs. The wind effect (F region wind dynamo is generally larger in magnitude than the plasma drift effect (Pedersen current generated by vertical E field, thus determining the direction of the F region vertical current.

  7. Letter to the Editor UHF electromagnetic emission stimulated by HF pumping of the ionosphere

    Directory of Open Access Journals (Sweden)

    S. M. Grach

    2002-10-01

    Full Text Available UHF electromagnetic emission (with a frequency near 600 MHz from the F-region of the ionosphere pumped by an HF powerful radio wave is revealed. Possible mechanisms of the emission excitation, such as plasma mode con-version, scattering or Earth thermal noise emission off the plasma density irregularities, bremsstrahlung and excitation of high Rydberg states of the neutral particles by the accelerated electrons are discussed.Key words. Ionosphere (active experiments; wave-particle interactions – Solar physics, astrophysics, and astronomy (radio emissions

  8. Letter to the Editor UHF electromagnetic emission stimulated by HF pumping of the ionosphere

    Directory of Open Access Journals (Sweden)

    E. N. Sergeev

    Full Text Available UHF electromagnetic emission (with a frequency near 600 MHz from the F-region of the ionosphere pumped by an HF powerful radio wave is revealed. Possible mechanisms of the emission excitation, such as plasma mode con-version, scattering or Earth thermal noise emission off the plasma density irregularities, bremsstrahlung and excitation of high Rydberg states of the neutral particles by the accelerated electrons are discussed.Key words. Ionosphere (active experiments; wave-particle interactions – Solar physics, astrophysics, and astronomy (radio emissions

  9. Linear theory of the Rayleigh-Taylor instability in the equatorial ionsophere

    International Nuclear Information System (INIS)

    Russel, D.A.; Ott, E.

    1979-01-01

    We present a liner theory of the Rayleigh-Taylor instability in the equatorial ionosphere. For a purely exponential density profile, we find that no unstable eigenmode solutions exist. For a particular model ionosphere with an F peak, unstable eigenmode solutions exist only for sufficiently small horizontal wave numbers. In the later case, purely exponential growth at a rate identical to that for the sharp boundary instability is found. To clarify the situation in the case that eigenmodes do not exist, we solve the initial value problem for the linearized ion equation of motion in the long time asymptotic limit. Ion inertia and ion-neutral collisions are included. Assuming straight magnetic field lines, we find that when eigenmodes do not exist the growth of the response to an impulse is slower than exponential viz, t=/sup -1/2/ exp (γ/sup t/) below the F peak and t/sup -3/2/ exp(γ/sup t/) above the peak; and we determine γ

  10. Discovery of Suprathermal Ionospheric Origin Fe+ in and Near Earth's Magnetosphere

    Science.gov (United States)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-11-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been discovered in and near Earth's 9-30 RE equatorial magnetosphere using 21 years of Geotail STICS (suprathermal ion composition spectrometer) data. Its detection is enhanced during higher geomagnetic and solar activity levels. Fe+, rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions, might derive from one or all three candidate lower-energy sources: (a) ionospheric outflow of Fe+ escaped from ion layers near 100 km altitude, (b) charge exchange of nominal solar wind iron, Fe+≥7, in Earth's exosphere, or (c) inner source pickup Fe+ carried by the solar wind, likely formed by solar wind Fe interaction with near-Sun interplanetary dust particles. Earth's semipermanent ionospheric Fe+ layers derive from tons of interplanetary dust particles entering Earth's atmosphere daily, and Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data when possible Fe+2 ions are not masked by other ions, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source. Contemporaneous Earth flyby and cruise data from charge-energy-mass spectrometer on the Cassini spacecraft, a functionally identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Consequently, we suggest that ionospheric Fe+ constitutes at least a significant portion of Earth's suprathermal Fe+, comparable to the situation at Saturn where suprathermal Fe+ is also likely of ionospheric origin.

  11. Observation of total electron content and irregularities in electron density using GHz band radiowaves emitted from satellite

    International Nuclear Information System (INIS)

    Ogawa, Tadahiko; Fujita, Masaharu; Awaka, Jun.

    1978-01-01

    The experiments to investigate the influence of troposphere on millimeter and sub-millimeter wave propagation were carried out, using the engineering test satellite -- 2 (ETS-2) which became the Japanese first stationary satellite and carries the transmitter emitting beacon waves of 1.7, 11.5 and 34.5 GHz coherent each other. By these experiments, it was found that the waves of 1.7 and 11.5 GHz were affected by the ionosphere. The measurement of total electron content using GHz band waves was the first trial in the world, and is capable of grasping its change with higher accuracy than conventional methods. Scintillation of 1.7 GHz is mainly the phenomenon during night, and it was revealed that it has a peak at 22.30 local time and occurred through the radiowave scattering owing to the irregularities of the ionosphere. It is also suggested that some plasma instability is generated in the place where electron density gradient in the ionosphere is large, and the irregularities of fine scale are produced, assuming from GHz band scintillations at the time of magnetic storm. The relations among wave number spectrum, scintillation frequency spectrum and S4 index (statistical quantity to give estimate for scintillation amplitude) can be derived by the weak scattering theory (Simple scattering theory). As seen above, the diagnosis of plasma disturbances in the ionosphere is feasible by the simultaneous observations of total electron content and scintillation. (Wakatsuki, Y.)

  12. Rocket studies of plasma turbulence in the equatorial and auroral electrojets

    International Nuclear Information System (INIS)

    Pfaff, R.F. Jr.

    1986-01-01

    Rocket observations of plasma turbulence in the equatorial and auroral electrojets have been studied in detail. Intense electric field and plasma density fluctuations characterize the collisional two-stream and gradient drift instabilities, showing a marked spectral differentiation with respect to height consistent with changes in the local sources of free energy. The interpretation of the frequencies and amplitudes of irregularities detected by in-situ probes travelling at comparable speeds to the waves is discussed in detail. Observations from three rockets in the daytime equatorial electrojet during strong, mild, and weak currents show that the linear theory accounts for the general height and wavelength domains of the irregularities. In the strong case, laminar two-stream waves were observed where the current was strongest and the density gradient was stable. The data suggest phase velocities that were comparable to the electron drift velocity (∼500 m/s) and peak wavelengths (2-3 m) that agree with kinetic theory. Vertically propagating waves observed here may have been generated by mode coupling. Where the gradient was unstable, large amplitude, kilometer scale waves dominated, although the linear gradient drift growth rate peaks at a few hundred meters. The amplitudes (10-15 mV/m) of these horizontal waves were strong enough to drive vertical two-stream waves

  13. Ionosphere Scintillation at Low and High Latitudes (Modelling vs Measurement)

    Science.gov (United States)

    Béniguel, Yannick

    2016-04-01

    This paper will address the problem of scintillations characteristics, focusing on the parameters of interest for a navigation system. Those parameters are the probabilities of occurrence of simultaneous fading, the bubbles surface at IPP level, the cycle slips and the fades duration statistics. The scintillation characteristics obtained at low and high latitudes will be compared. These results correspond to the data analysis performed after the ESA Monitor ionosphere measurement campaign [1], [2]. A second aspect of the presentation will be the modelling aspect. It has been observed that the phase scintillation dominates at high latitudes while the intensity scintillation dominates at low latitudes. The way it can be reproduced and implemented in a propagation model (e.g. GISM model [3]) will be presented. Comparisons of measurements with results obtained by modelling will be presented on some typical scenarios. References [1] R. Prieto Cerdeira, Y. Beniguel, "The MONITOR project: architecture, data and products", Ionospheric Effects Symposium, Alexandria (Va), May 2011 [2] Y. Béniguel, R Orus-Perez , R. Prieto-Cerdeira , S. Schlueter , S. Scortan, A. Grosu "MONITOR 2: ionospheric monitoring network in support to SBAS and other GNSS and scientific purposes", IES Conference, Alexandria (Va), May 2015-05-22 [3] Y. Béniguel, P. Hamel, "A Global Ionosphere Scintillation Propagation Model for Equatorial Regions", Journal of Space Weather Space Climate, 1, (2011), doi: 10.1051/swsc/2011004

  14. First results of registering ionospheric disturbances obtained with SibNet network of GNSS receivers in active space experiments

    Science.gov (United States)

    Ishin, Artem; Perevalova, Natalia; Voeykov, Sergey; Khakhinov, Vitaliy

    2017-12-01

    Global and regional networks of GNSS receivers have been successfully used for geophysical research for many years; the number of continuous GNSS stations in the world is steadily growing. The article presents the first results of the use of a new regional network of GNSS stations (SibNet) in active space experiments. The Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS) has established this network in the South Baikal region. We describe in detail SibNet, characteristics of receivers in use, parameters of antennas and methods of their installation. We also present the general structure of observation site and the plot of coverage of the receiver operating zone at 50-55° latitudes by radio paths. It is shown that the selected location of receivers allows us to detect ionospheric irregularities of various scales. The purpose of the active space experiments was to reveal and record parameters of the ionospheric irregu larities caused by effects from jet streams of Progress cargo spacecraft. The mapping technique enabled us to identify weak, vertically localized ionospheric irregularities and associate them with the Progress spacecraft engine impact. Thus, it has been shown that SibNet deployed in the Southern Baikal region is an effective instrument for monitoring ionospheric conditions.

  15. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  16. The climatology of low-latitude ionospheric densities and zonal drifts from IMAGE-FUV.

    Science.gov (United States)

    Immel, T. J.; Sagawa, E.; Frey, H. U.; Mende, S. B.; Patel, J.

    2004-12-01

    The IMAGE satellite was the first dedicated to magnetospheric imaging, but has also provided numerous images of the nightside ionosphere with its Far-Ultraviolet (FUV) spectrographic imager. Nightside emissions of O I at 135.6-nm originating away from the aurora are due to recombination of ionospheric O+, and vary in intensity with (O+)2. IMAGE-FUV, operating in a highly elliptical orbit with apogee at middle latitudes and >7 Re altitude, measures this emission globally with 100-km resolution. During each 14.5 hour orbit, IMAGE-FUV is able to monitor nightside ionospheric densities for up to 6-7 hours. Hundreds of low-latitude ionospheric bubbles, their development and drift speed, and a variety of other dynamical variations in brightness and morphology of the equatorial anomalies have been observed during this mission. Furthermore, the average global distribution of low-latitude ionospheric plasma densities can be determined in 3 days. Imaging data collected from February through June of 2002 are used to compile a dataset containing a variety of parameters (e.g., latitude and brightness of peak plasma density, zonal bubble drift speed) which can be drawn from for climatological studies. Recent results indicate that the average ground speed of low-latitude zonal plasma drifts vary with longitude by up to 50%, and that a periodic variation in ionospheric densities with longitude suggests the influence of a lower-thermospheric non-migrating tide with wave number = 4 on ionospheric densities. An excellent correlation between zonal drift speed and the magnetic storm index Dst is also found.

  17. Analysis of temporal-longitudinal-latitudinal characteristics in the global ionosphere based on tensor rank-1 decomposition

    Science.gov (United States)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Combining analyses of spatial and temporal characteristics of the ionosphere is of great significance for scientific research and engineering applications. Tensor decomposition is performed to explore the temporal-longitudinal-latitudinal characteristics in the ionosphere. Three-dimensional tensors are established based on the time series of ionospheric vertical total electron content maps obtained from the Centre for Orbit Determination in Europe. To obtain large-scale characteristics of the ionosphere, rank-1 decomposition is used to obtain U^{(1)}, U^{(2)}, and U^{(3)}, which are the resulting vectors for the time, longitude, and latitude modes, respectively. Our initial finding is that the correspondence between the frequency spectrum of U^{(1)} and solar variation indicates that rank-1 decomposition primarily describes large-scale temporal variations in the global ionosphere caused by the Sun. Furthermore, the time lags between the maxima of the ionospheric U^{(2)} and solar irradiation range from 1 to 3.7 h without seasonal dependence. The differences in time lags may indicate different interactions between processes in the magnetosphere-ionosphere-thermosphere system. Based on the dataset displayed in the geomagnetic coordinates, the position of the barycenter of U^{(3)} provides evidence for north-south asymmetry (NSA) in the large-scale ionospheric variations. The daily variation in such asymmetry indicates the influences of solar ionization. The diurnal geomagnetic coordinate variations in U^{(3)} show that the large-scale EIA (equatorial ionization anomaly) variations during the day and night have similar characteristics. Considering the influences of geomagnetic disturbance on ionospheric behavior, we select the geomagnetic quiet GIMs to construct the ionospheric tensor. The results indicate that the geomagnetic disturbances have little effect on large-scale ionospheric characteristics.

  18. Nonlinear Rayleigh-Taylor instability in partially ionized plasma and the equatorial spread - F

    International Nuclear Information System (INIS)

    Jain, R.K.; Das, A.C.

    1978-01-01

    The nonlinear evolution of the collisional gravitation induced Rayleigh-Taylor (R-T) instability in the equatorial F region is investigated taking into account the finite Larmor radius (FLR) effects and the complete ion inertial term in ion equation of motion. A special class of coherent weakly nonlinear modes as solutions to the wave equation describing R-T instability driven modes is obtained. The leading nonlinear effects in the wave equation are found to appear through Vsub(L), the ion diamagnetic drift which essentially gives the FLR corrections. It is shown that the R-T modes in the equatorial F region can evolve into coherent, nonlinear, almost sinusoidal, stationary wave structures. These structures are found to travel with a constant phase velocity and to have slightly distorted sinusoidal shapes. These results seem to have a good agreement with many of the recent rocket and satellite observations of the equatorial spread F irregularities. (author)

  19. On the origin of ionospheric sublayers in the lower thermosphere

    Energy Technology Data Exchange (ETDEWEB)

    Shirke, J S; Sridharan, R

    1979-11-01

    Some properties are examined of ionospheric sublayers usually two in number originating at sunrise in the lower thermosphere. The formation of the sublayers is found to be nearly global in nature though they are quickly transported upward over the dip-equatorial region as a result of vertical drifts existing there. The ionization associated with the layers once formed appears to remain constant for over several hours while the ambient ionization exhibits a solar zenith angle dependence. The sublayers at equatorial and low latitudes are often found capable of yielding echoes of radio waves transmitted from ground of frequencies much larger than corresponding to the ambient plasma density. This is shown to be due to generation of gradient type instabilities in these sublayers. The generation of the sublayers themselves is shown to be consistent with the concept of ionization at sunrise of neutral constituents deposited overnight from micrometeorites in the lower thermosphere.

  20. The Southern Hemisphere and equatorial region ionization response for a 22 September 1999 severe magnetic storm

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2004-09-01

    Full Text Available The ionospheric storm evolution process was monitored during the 22 September 1999 magnetic storm over the Australian eastern region, through measurements of the ionospheric Total Electron Content (TEC from seven Global Positioning Systems (GPS stations. The spatial and temporal variations of the ionosphere were analysed as a time series of TEC maps. Results of our analysis show that the main ionospheric effect of the storm under consideration are: the long lasting negative storm effect during a magnetic storm at mid-latitude regions; the strong, positive disturbances during the storm's main phase at auroral latitude regions; the effects of storm-induced equatorward directed wind causing a positive disturbance at high and mid-latitude stations with appropriate time shift between higher and lower latitudes; daytime poleward movement of depleted plasma that causes temporary suppression of the equatorial anomaly during the start of the storm recovery phase; and prompt penetration of eastward electric fields to ionospheric altitudes and the production of nearly simultaneous TEC enhancement at all latitudes. In general, we found dominant negative disturbance over mid and high latitudes and positive disturbance at low latitudes. A comparison of storm-time behaviour of TEC determined from GPS satellites, and foF2 derived from ionosondes at a range of latitudes, showed reasonable agreement between the two independent measurements.

  1. Complexities of the storm-time characteristics of ionospheric total electron content

    International Nuclear Information System (INIS)

    Kane, R.P.

    1982-01-01

    The complexities of the storm-time variations of the ionospheric total electron content are briefly reviewed. It is suggested that large variations from storm to storm may be due to irregular flows from the auroral region towards equator. A proper study of such flows needs an elaborate network of TEC measuring instruments. The need of planning and organizing such a network is emphasized

  2. Impact of the Lower Atmosphere on the Ionosphere Response to a Geomagnetic Superstorm

    Science.gov (United States)

    Pedatella, N. M.

    2016-12-01

    Numerical simulations in the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) are performed to elucidate the impacts of lower atmosphere forcing on the ionosphere response to a geomagnetic superstorm. In particular, how the ionosphere variability due to the October 2003 Halloween storm would be different if it occurred in January coincident with a major sudden stratosphere warming (SSW) event is investigated. The TIE-GCM simulations reveal that the E x B vertical drift velocity and total electron content (TEC) respond differently to the geomagnetic disturbance when the lower atmosphere forcing is representative of SSW conditions compared to climatological lower atmosphere forcing conditions. Notably, the storm time variations in the E x B vertical drift velocity differ when the effects of the SSW are considered, and this is in part due to effects of the SSW on the equatorial ionosphere being potentially misinterpreted as being of geomagnetic origin. Differences in the TEC response to the geomagnetic storm can be up to 100% ( 30 TECU) of the storm induced TEC change, and the temporal variability of the TEC during the storm recovery phase is considerably different if SSW effects are considered. The results demonstrate that even during periods of extreme geomagnetic forcing it is important to consider the effects of lower atmosphere forcing on the ionosphere variability.

  3. Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations

    Science.gov (United States)

    Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.

    2017-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.

  4. Investigation of a strong positive ionospheric storm during geomagnetic disturbances occurred in the Brazilian sector

    Science.gov (United States)

    de Abreu, A. J.; Sahai, Y.; Fagundes, P. R.; de Jesus, R.; Bittencourt, J. A.; Pillat, V. G.

    2012-12-01

    In this paper, we have investigated the responses of the ionospheric F region at equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 15-16 May 2005. The geomagnetic storm reached a minimum Dst of -263 nT at 0900 UT on 15 May. In this paper, we present vertical total electron content (vTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations obtained at Belém (BELE), Brasília (BRAZ), Presidente Prudente (UEPP), and Porto Alegre (POAL), Brazil, during the period 14-17 May 2005. Also, we present ionospheric parameters h'F, hpF2, and foF2, using the Canadian Advanced Digital Ionosonde (CADI) obtained at Palmas (PAL) and São José dos Campos (SJC), Brazil, for the same period. The super geomagnetic storm has fast decrease in the Dst index soon after SSC at 0239 UT on 15 May. It is a good possibility of prompt penetration of electric field of magnetospheric origin resulting in uplifting of the F region. The vTEC observations show a trough at BELE and a crest above UEPP, soon after SSC, indicating strengthening of nighttime equatorial anomaly. During the daytime on 15 and 16 May, in the recovery phase, the variations in foF2 at SJC and the vTEC observations, particularly at BRAZ, UEPP, and POAL, show large positive ionospheric storm. There is ESF on the all nights at PAL, in the post-midnight (UT) sector, and phase fluctuations only on the night of 14-15 May at BRAZ, after the SSC. No phase fluctuations are observed at the equatorial station BELE and low latitude stations (BRAZ, UEPP, and POAL) at all other times. This indicates that the plasma bubbles are generated and confined on this magnetically disturbed night only up to the low magnetic latitude and drifted possibly to west.

  5. Satellite and ground measurements of latitude distribution of upper ionosphere parameters in the region of the main trough of ionization

    International Nuclear Information System (INIS)

    Filippov, V.M.; Alekseev, V.N.; Afonin, V.V.

    1988-01-01

    Results of simultaneous complex measurements of subauroral ionosphere structure at observations of charged-particle precipitation at Interkosmos-19 satellite, electron concentration and temperature at Kosmos-900 satellite, ionosphere parameters and plasma convection at Zhigansk (L∼4) and Jakutsk (L∼3) stations and 630.0 mm line luminescence by scanning photometer at Zhigansk station, carried out on the 26 - 27.03.1979, are presented. It is found, that the through polar edge is formed by low-energy electron precipitations in diffuse auroral zone. It is confirmed by spatial coincidence of diffuse precipitations equatorial boundary, determined by satellite and ground optical measurements, with the ionization main through polar edge, determined by ground ionospherical observation and satellite measurements Ne at Kosmos-900 satellite. Results of these complex experiments show as well, that one of the main mechanisms of main ionospherical through formation may be plasma convection peculiarities within F region at subauroral zone widthes

  6. The generation of post noon F3 layers over the dip equatorial location of Thiruvananthapuram- A new perspective

    Science.gov (United States)

    Mridula, N.; Pant, Tarun Kumar

    2018-05-01

    In the present paper, occurrence of post noon F3 layers over Thiruvananthapuram (8.5°N; 77°E; dip latitude ∼ 1.5 °N), a dip equatorial station in India have been investigated. F3 layers that occur beyond 13 IST and as observed using ground based ionosonde, for the years 2004-2008 have been studied. Our analysis shows that post noon F3 layers occur mostly on CEJ days around 16 IST to 18 IST. It is found that the time of the ionospheric E-region electric field reversal as inferred from collocated ground based magnetometer observations plays a crucial role in the generation of post noon F3 layers. In fact an early reversal of electric field emerged to be the necessary condition for the formation of post noon F3 layers. A time delay of three to 4 h is observed between the electric field reversal and the formation of F3 layer. It is proposed that this early reversal causes enhanced ionization over dip equatorial region, providing an additional ion drag to the flow of thermospheric zonal wind. This leads to accumulation of more ionization and neutrals culminating in the generation of post noon F3 layers as in the case of pre noon F3 layers. These results reveal that the generation of post noon F3 layers over the dip equatorial region is a natural consequence of the variability associated with the spatio-temporal evolution of EIA and prevailing thermospheric and ionospheric dynamics, and adds a new perspective to the present understanding.

  7. Theory of the current-driven ion cyclotron instability in the bottomside ionosphere

    International Nuclear Information System (INIS)

    Satyanarayana, P.; Chaturvedi, P.K.; Keskinen, M.J.; Huba, J.D.; Ossakow, S.L.

    1985-01-01

    A theory of the current-driven electrostatic ion cyclotron (EIC) instability in the collisional bottomside ionosphere is presented. It is found that electron collisions are destabilizing and are crucial for the excitation of the EIC instability in the collisional bottomside ionosphere. Furthermore, the growth rates of the ion cyclotron instability in the bottomside ionosphere maximize for k/sub perpendicular/ rho/sub i/> or =1, where 2π/k/sub perpendicular/ is the mode scale size perpendicular to the magnetic field and rho/sub i/ the ion gyroradius. Realistic plasma density and temperature profiles typical of the high-latitude ionosphere are used to compute the altitude dependence of the linear growth rate of the maximally growing modes and critical drift velocity of the EIC instability. The maximally growing modes correspond to observed tens of meter size irregularities, and the threshold drift velocity required for the excitation of EIC instability is lower for heavier ions (NO + , O + ) than that for the lighter ions (H + ). Dupree's resonance-broadening theory is used to estimate nonlinear saturated amplitudes for the ion cyclotron instability in the high-latitude ionosphere. Comparison with experimental observations is also made. It is conjectured that the EIC instability in the bottomside ionosphere could be a source of transversely accelerated heavier ions and energetic heavy-ion conic distributions at higher altitudes

  8. Isolated ionospheric disturbances as deduced from global GPS network

    Directory of Open Access Journals (Sweden)

    E. L. Afraimovich

    2004-01-01

    Full Text Available We investigate an unusual class of medium-scale traveling ionospheric disturbances of the nonwave type, isolated ionospheric disturbances (IIDs that manifest themselves in total electron content (TEC variations in the form of single aperiodic negative TEC disturbances of a duration of about 10min (the total electron content spikes, TECS. The data were obtained using the technology of global detection of ionospheric disturbances using measurements of TEC variations from a global network of receivers of the GPS. For the first time, we present the TECS morphology for 170 days in 1998–2001. The total number of TEC series, with a duration of each series of about 2.3h (2h18m, exceeded 850000. It was found that TECS are observed in no more than 1–2% of the total number of TEC series mainly in the nighttime in the spring and autumn periods. The TECS amplitude exceeds the mean value of the "background" TEC variation amplitude by a factor of 5–10 as a minimum. TECS represent a local phenomenon with a typical radius of spatial correlation not larger than 500km. The IID-induced TEC variations are similar in their amplitude, form and duration to the TEC response to shock-acoustic waves (SAW generated during rocket launchings and earthquakes. However, the IID propagation velocity is less than the SAW velocity (800–1000m/s and are most likely to correspond to the velocity of background medium-scale acoustic-gravity waves, on the order of 100–200m/s. Key words. Ionosphere (ionospheric irregularities, instruments and techniques - Radio science (ionospheric propagation

  9. An investigation of ionospheric F region response in the Brazilian sector to the super geomagnetic storm of May 2005

    Science.gov (United States)

    de Abreu, A. J.; Sahai, Y.; Fagundes, P. R.; de Jesus, R.; Bittencourt, J. A.; Pillat, V. G.

    2011-10-01

    In this paper, we have investigated the responses of the ionospheric F region at equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 15-16 May 2005. The geomagnetic storm reached a minimum Dst of -263 nT at 0900 UT on 15 May. In this paper, we present vertical total electron content (vTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations obtained at Belém, Brasília, Presidente Prudente, and Porto Alegre, Brazil, during the period 14-17 May 2005. Also, we present ionospheric parameters h'F, hpF2, and foF2, using the Canadian Advanced Digital Ionosonde (CADI) obtained at Palmas and São José dos Campos, Brazil, for the same period. The super geomagnetic storm has fast decrease in the Dst index soon after SSC at 0239 UT on 15 May. It is a good possibility of prompt penetration of electric field of magnetospheric origin resulting in uplifting of the F region. The vTEC observations show a trough at BELE and a crest above UEPP, soon after SSC, indicating strengthening of nighttime equatorial anomaly. During the daytime on 15 and 16 May, in the recovery phase, the variations in foF2 at SJC and the vTEC observations, particularly at BRAZ, UEPP, and POAL, show large positive ionospheric storm. There is ESF on the all nights at PAL, in the post-midnight (UT) sector, and phase fluctuations only on the night of 14-15 May at BRAZ, after the SSC. No phase fluctuations are observed at the equatorial station BELE and low latitude stations (BRAZ, UEPP, and POAL) at all other times. This indicates that the plasma bubbles are generated and confined on this magnetically disturbed night only up to the low magnetic latitude and drifted possibly to west.

  10. Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia

    Directory of Open Access Journals (Sweden)

    G. Li

    2009-01-01

    Full Text Available The dependence of plasma bubble occurrence in the eveningside ionosphere, with magnetic activity during the period years 2001–2004, is studied here based on the TEC observations gathered by ground-based GPS receivers which are located in the equatorial and low-latitude regions in East Asia. The observed plasma bubbles consist of the plasma-bubble events in the equatorial (stations GUAM, PIMO and KAYT, and low-latitude regions (stations WUHN, DAEJ and SHAO. It is shown that most equatorial plasma-bubble events commence at 20:00 LT, and may last for >60 min. The magnetic activity appears to suppress the generation of equatorial plasma bubbles with a time delay of more than 3 h (4–9 h. While in the low-latitude regions, most plasma-bubble events commence at about 23:00 LT and last for <45 min. The best correlation between Kp and low-latitude plasma-bubble occurrence is found with an 8–9 h delay, a weak correlation exists for time delays of 6–7 h. This probably indicates that over 3 h delayed disturbance dynamo electric fields obviously inhibit the development of plasma bubbles in the pre-midnight sector.

  11. Theory of HF induced turbulence in the ionosphere: Status and challenges

    Science.gov (United States)

    Dubois, D. F.

    In the past five years the combination of new theoretical concepts and computer simulations along with dramatically improved observational diagnostics appear to have led to a detailed, quantitative, understanding of the properties of the Langmuir turbulence induced in the unpreconditioned ionosphere at Arecibo during the first tens of milliseconds following the turn-on of the HF heater. This is the only observational regime in which the initial ionospheric conditions are known to a high level of confidence. The so called strong Langmuir turbulence (SLT) theory predicts observed features in this early time heating which are completely at odds with the prediction of the traditional weak turbulence approximation. The understanding of the observed signatures for times greater than say 30-50 ms following the onset of heating at Arecibo is still incomplete. The same is apparently true for the observations at Tromso where the unique predictions of SLT theory are not so clearly observed. Density irregularities, induced by heating at Arecibo and perhaps present in the ambient ionosphere at Tromso, appear to control the properties of the turbulence. The proper description of the coexistence of Langmuir turbulence with various density irregularities and accounting for the turbulent modification of the electron velocity distribution are challenges for the theory. In this paper the author reviews, starting from the Vlasov-Poisson equations, the fundamental basis of the reduced models used to describe SLT and suggest improvements to the standard model including a new local quasi linear theory for the treatment of hot electron acceleration and transit time damping or burnout of collapsing Langmuir cavitons.

  12. Ionospheric oscillations caused by geomagnetic Pi2 pulsations and their observations by multipoint continuous Doppler sounding; first results

    Czech Academy of Sciences Publication Activity Database

    Chum, Jaroslav; Hruška, František; Burešová, Dalia; Šindelářová, Tereza; Hejda, Pavel; Bochníček, Josef

    2009-01-01

    Roč. 44, č. 6 (2009), s. 667-676 ISSN 0273-1177 R&D Projects: GA ČR GA205/07/1367; GA ČR GA205/06/0875; GA AV ČR 1QS300120506; GA AV ČR IAA300420603 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z30120515 Keywords : Magnetosphere–ionosphere interactions * Ionosphere irregularities * Geomagnetic pulsations * Doppler sounding * Magneto-hydrodynamic (ULF) waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.079, year: 2009

  13. Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse

    Science.gov (United States)

    Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.

    2018-05-01

    The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.

  14. Latitude-dependent delay in the responses of the equatorial electrojet and Sq currents to X-class solar flares

    Science.gov (United States)

    Nogueira, Paulo A. B.; Abdu, Mangalathayil A.; Souza, Jonas R.; Denardini, Clezio M.; Barbosa Neto, Paulo F.; Serra de Souza da Costa, João P.; Silva, Ana P. M.

    2018-01-01

    We have analyzed low-latitude ionospheric current responses to two intense (X-class) solar flares that occurred on 13 May 2013 and 11 March 2015. Sudden intensifications, in response to solar flare radiation impulses, in the Sq and equatorial electrojet (EEJ) currents, as detected by magnetometers over equatorial and low-latitude sites in South America, are studied. In particular we show for the first time that a 5 to 8 min time delay is present in the peak effect in the EEJ, with respect that of Sq current outside the magnetic equator, in response to the flare radiation enhancement. The Sq current intensification peaks close to the flare X-ray peak, while the EEJ peak occurs 5 to 8 min later. We have used the Sheffield University Plasmasphere-Ionosphere Model at National Institute for Space Research (SUPIM-INPE) to simulate the E-region conductivity enhancement as caused by the flare enhanced solar extreme ultraviolet (EUV) and soft X-rays flux. We propose that the flare-induced enhancement in neutral wind occurring with a time delay (with respect to the flare radiation) could be responsible for a delayed zonal electric field disturbance driving the EEJ, in which the Cowling conductivity offers enhanced sensitivity to the driving zonal electric field.

  15. Wave and plasma measurements and GPS diagnostics of the main ionospheric trough as a hybrid method used for Space Weather purposes

    Directory of Open Access Journals (Sweden)

    H. Rothkaehl

    2008-02-01

    Full Text Available The region of the main ionospheric trough is a unique region of the ionosphere, where different types of waves and instabilities can be generated. This region of the ionosphere acts like a lens, focusing a variety of indicators from the equator of plasmapause and local ionospheric plasma. This paper reports the results of monitoring the mid-latitude trough structure, dynamics and wave activity. For these purposes, the data gathered by the currently-operating DEMETER satellite and past diagnostics located on IK-19, Apex, and MAGION-3 spacecraft, as well as TEC measurements were used. A global-time varying picture of the ionospheric trough was reconstructed using the sequence of wave spectra registered and plasma measurements in the top-side ionosphere. The authors present the wave activity from ULF frequency band to the HF frequency detected inside the trough region and discuss its properties during geomagnetic disturbances. It is thought that broadband emissions are correlated with low frequency radiation, which is excited by the wave-particle interaction in the equatorial plasmapause and moves to the ionosphere along the geomagnetic field line. In the ionosphere, the suprathermal electrons can interact with these electrostatic waves and excite electron acoustic waves or HF longitudinal plasma waves. Furthermore, the electron density trough can provide useful data on the magnetosphere ionosphere dynamics and morphology and, in consequence, can be used for Space Weather purposes.

  16. LION: A dynamic computer model for the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Bittencourt

    2007-11-01

    Full Text Available A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and

  17. LION: A dynamic computer model for the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Bittencourt

    2007-11-01

    Full Text Available A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and geomagnetic equators. The model runs in a normal personal computer (PC and generates color maps illustrating the

  18. Origin of short-period (30-300 s) Doppler frequency fluctuations of lower F region reflections in the equatorial electrojet region

    International Nuclear Information System (INIS)

    Sastri, J.H.; Ramesh, K.B.; Rao, J.V.S.V.; Somayajulu, V.V.

    1991-01-01

    Measurements of phase path P of lower F-region reflections at normal incidence at Kodaikanal revealed the ubiquitous presence of 30-300-s quasi-sinusoidal variations in the time rate of change of phase path, P (Doppler frequency shift) during day time. A study is made of the influence of the irregularities in the equatorial electrojet on the P fluctuations using simultaneous observations of F-region phase path at Kodaikanal and of equatorial electrojet with the VHF-backscatter radar at Thumba. It is shown that the spectral content of the Doppler fluctuations (quantified in terms of variance, sigma squared computed from P time series synthesized through FFT exp -1 (FFT) in the chosen period bands, 30-300 s/30-120 s of the FFT of original P times series) bears a significant positive linear relationship to the horizontal phase velocity of electrojet irregularities (3-m scale size) on a hourly basis. This result is in consonance with earlier findings (Sastri et al., 1990) of a significant linear relationship of sigma squared to the electrojet strength (estimated from H-field data) and a practical cessation of the P fluctuations at times of disappearance of Esq on ionograms (partial/complete counterelectrojet). The present work substantiates the interpretation that the short-period Doppler-frequency fluctuations are due to phase-path changes imposed on lower F region reflections by the refractive-index variations associated with the convective motions of plasma density irregularities (type I and II) in the daytime equatorial electrojet. 49 refs

  19. Coherent backscatter radar imaging in Brazil: large-scale waves in the bottomside F-region at the onset of equatorial spread F

    Directory of Open Access Journals (Sweden)

    F. S. Rodrigues

    2008-10-01

    Full Text Available The 30 MHz coherent backscatter radar located at the equatorial observatory in São Luís, Brazil (2.59° S, 44.21° W, −2.35° dip lat has been upgraded to perform coherent backscatter radar imaging. The wide field-of-view of this radar makes it well suited for radar imaging studies of ionospheric irregularities. Radar imaging observations were made in support to the spread F Experiment (SpreadFEx campaign. This paper describes the system and imaging technique and presents results from a bottom-type layer that preceded fully-developed radar plumes on 25 October 2005. The radar imaging technique was able to resolve decakilometric structures within the bottom-type layer. These structures indicate the presence of large-scale waves (~35 km in the bottomside F-region with phases that are alternately stable and unstable to wind-driven gradient drift instabilities. The observations suggest that these waves can also cause the initial perturbation necessary to initiate the Generalized Rayleigh-Taylor instability leading to spread F. The electrodynamic conditions and the scale length of the bottom-type layer structures suggest that the waves were generated by the collisional shear instability. These results indicate that monitoring bottom-type layers may provide helpful diagnostics for spread F forecasting.

  20. Simultaneous observations of ESF irregularities over Indian region using radar and GPS

    Directory of Open Access Journals (Sweden)

    S. Sripathi

    2008-10-01

    Full Text Available In this paper, we present simultaneous observations of temporal and spatial variability of total electron content (TEC and GPS amplitude scintillations on L1 frequency (1.575 GHz during the time of equatorial spread F (ESF while the MST radar (53 MHz located at Gadanki (13.5° N, 79.2° E, Dip latitude 6.3° N, a low latitude station, made simultaneous observations. In particular, the latitudinal and longitudinal extent of TEC and L-band scintillations was studied in the Indian region for different types of ESF structures observed using the MST radar during the low solar activity period of 2004 and 2005. Simultaneous radar and GPS observations during severe ESF events in the pre-midnight hour reveal that significant GPS L band scintillations, depletions in TEC, and the double derivative of the TEC index (DROTI, which is a measure of fluctuations in TEC, obtained at low latitudes coincide with the appearance of radar echoes at Gadanki. As expected, when the irregularities reach higher altitudes as seen in the radar map during pre-midnight periods, strong scintillations on an L-band signal are observed at higher latitudes. Conversely, when radar echoes are confined to only lower altitudes, weak scintillations are found and their latitudinal extent is small. During magnetically quiet periods, we have recorded plume type radar echoes during a post-midnight period that is devoid of L-band scintillations. Using spectral slopes and cross-correlation index of the VHF scintillation observations, we suggest that these irregularities could be "dead" or "fossil" bubbles which are just drifting in from west. This scenario is consistent with the observations where suppression of pre-reversal enhancement (PRE in the eastward electric field is indicated by ionosonde observations of the height of equatorial F layer and also occurrence of low spectral width in the radar observations relative to pre-midnight period. However, absence of L-band scintillations during

  1. An investigation of the ionospheric F region near the EIA crest in India using OI 777.4 and 630.0 nm nightglow observations

    Directory of Open Access Journals (Sweden)

    N. Parihar

    2018-05-01

    Full Text Available Simultaneous observations of OI 777.4 and OI 630.0 nm nightglow emissions were carried at a low-latitude station, Allahabad (25.5° N, 81.9° E; geomag. lat.  ∼  16.30° N, located near the crest of the Appleton anomaly in India during September–December 2009. This report attempts to study the F region of ionosphere using airglow-derived parameters. Using an empirical approach put forward by Makela et al. (2001, firstly, we propose a novel technique to calibrate OI 777.4 and 630.0 nm emission intensities using Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3 electron density profiles. Next, the electron density maximum (Nm and its height (hmF2 of the F layer have been derived from the information of two calibrated intensities. Nocturnal variation of Nm showed the signatures of the retreat of the equatorial ionization anomaly (EIA and the midnight temperature maximum (MTM phenomenon that are usually observed in the equatorial and low-latitude ionosphere. Signatures of gravity waves with time periods in the range of 0.7–3.0 h were also seen in Nm and hmF2 variations. Sample Nm and hmF2 maps have also been generated to show the usefulness of this technique in studying ionospheric processes.

  2. Observations of ionospheric electric fields above atmospheric weather systems

    Science.gov (United States)

    Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.

    1994-01-01

    We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.

  3. Faith in a seed: on the origins of equatorial plasma bubbles

    Directory of Open Access Journals (Sweden)

    J. M. Retterer

    2014-05-01

    Full Text Available Our faith in the seeds of equatorial plasma irregularities holds that there will generally always be density perturbations sufficient to provide the seeds for irregularity development whenever the Rayleigh–Taylor instability is active. When the duration of the time of the Rayleigh–Taylor instability is short, however, the magnitude of the seed perturbations can make a difference in whether the irregularities have a chance to grow to a strength at which the nonlinear development of plumes occurs. In addition, the character of the resulting irregularities reflects the characteristics of the initial seed density perturbation, e.g., their strength, spacing, and, to some extent, their spatial scales, and it is important to know the seeds to help determine the structure of the developed irregularities. To this end, we describe the climatology of daytime and early-evening density irregularities that can serve as seeds for later development of plumes, as determined from the Planar Langmuir Probe (PLP plasma density measurements on the C/NOFS (Communication and Navigation Outage Forecast System satellite mission, presenting their magnitude as a function of altitude, latitude, longitude, local time, season, and phase in the solar cycle (within the C/NOFS observation era. To examine some of the consequences of these density perturbations, they are used as initial conditions for the PBMOD PBMOD (Retterer, 2010a 3-D irregularity model to follow their potential development into larger-amplitude irregularities, plumes, and radio scintillation. "Though I do not believe that a pla[sma bubble] will spring up where no seed has been, I have great faith in a seed. Convince me that you have a seed there, and I am prepared to expect wonders." – Henry David Thoreau

  4. An Ionosphere/Magnetosphere Coupling Current System Located in the Gap Between Saturn and its Rings

    Science.gov (United States)

    Khurana, K. K.; Dougherty, M. K.; Cao, H.; Hunt, G. J.; Provan, G.

    2017-12-01

    The Grand Finale Orbits of the Cassini spacecraft traversed through Saturn's D ring and brought the spacecraft to within 3000 km of Saturn's cloud tops. The closest approaches (CA) were near the equatorial plane of Saturn and were distributed narrowly around the local noon. The difference field (observations - internal field - magnetospheric ring current field) obtained from the Grand Finale orbits show persistent residual fields centered around the CA which diminish at higher latitudes on field lines that connect to the ring. Modeling of this perturbation in terms of internal harmonics shows that the perturbation is not of internal origin but is produced by external currents that couple the ionosphere to the magnetosphere. The sense of the current system suggests that the southern feet of the field lines in the ionosphere lead their northern footprints. We show that the observed field perturbations are consistent with a meridional Pedersen current whose strength is 1 MA/radian, i.e. comparable in strength to the Planetary-period-oscillation related current systems observed in the auroral zone. We show that the implied Lorentz force in the ionosphere extracts momentum from the faster moving southern ionosphere and passes it on to the northern ionosphere. We discuss several ideas for generating this current system. In particular, we highlight a mechanism that involves shears in the neutral winds in the thermospheric region to generate the observed magnetic field.

  5. Study of ionospheric disturbances over the China mid- and low-latitude region with GPS observations

    Science.gov (United States)

    Ning, Yafei; Tang, Jun

    2018-01-01

    Ionospheric disturbances constitute the main restriction factor for precise positioning techniques based on global positioning system (GPS) measurements. Simultaneously, GPS observations are widely used to determine ionospheric disturbances with total electron content (TEC). In this paper, we present an analysis of ionospheric disturbances over China mid- and low-latitude area before and during the magnetic storm on 17 March 2015. The work analyses the variation of magnetic indices, the amplitude of ionospheric irregularities observed with four arrays of GPS stations and the influence of geomagnetic storm on GPS positioning. The results show that significant ionospheric TEC disturbances occurred between 10:30 and 12:00 UT during the main phase of the large storm, and the static position reliability for this period are little affected by these disturbances. It is observed that the positive and negative disturbances propagate southward along the meridian from mid-latitude to low-latitude regions. The propagation velocity is from about 200 to 700 m s-1 and the amplitude of ionospheric disturbances is from about 0.2 to 0.9 TECU min-1. Moreover, the position dilution of precession (PDOP) with static precise point positioning (PPP) on storm and quiet days is 1.8 and 0.9 cm, respectively. This study is based on the analysis of ionospheric variability with differential rate of vertical TEC (DROVT) and impact of ionospheric storm on positioning with technique of GPS PPP.

  6. Turbulence characteristics inside ionospheric small-scale expanding structures observed with SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    R. André

    2003-08-01

    Full Text Available Unusual structures characterized by a very high-velocity divergence have been observed in the high-latitude F-region with SuperDARN radars (André et al., 2000. These structures have been interpreted as due to local demagnetization of the plasma in the ionospheric F-region, during very specific geophysical conditions. In this study, the collective wave scattering theory is used to characterize the decameter-scale turbulence (l approx 15 m inside the structures. The distribution function of the diffusion coefficient is modified when the structures are generated, suggesting that two regimes of turbulence coexist. A temporal analysis decorrelates the two regimes and gives access to the dynamics associated with the structures. It is shown that a high turbulent regime precedes the plasma demagnetization and should be related to an energy deposition. Then a second regime appears when the plasma is demagnetized and disappears simultaneously with the structures. This study is the first application of the collective wave scattering theory to a specific geophysical event.Key words. Ionosphere (auroral ionosphere; ionospheric irregularities – Space plasma physics (turbulence

  7. Sub-kilometer Simulation of Equatorial Plasma Bubble and Comparison with Satellite Observations

    Science.gov (United States)

    Yokoyama, T.; Pfaff, R. F., Jr.; Stolle, C.; Su, S. Y.

    2016-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPB from a space weather point of view. The development of EPB is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPB which shows very turbulent internal structures such as bifurcation and pinching. Recent upgrade of the HIRB model has made it possible to conduct the simulation with sub-kilometer grid spacing. The simulation results can be compared with various in situ satellite observations such as plasma drift velocity, plasma density, magnetic field, and their structures and power spectra, e.g. from the C/NOFS, ROCSAT, CHAMP, or Swarm missions. Our initial results show encouraging agreement between model results and observational data.

  8. Ionospheric Anomalies of the 2011 Tohoku Earthquake with Multiple Observations during Magnetic Storm Phase

    Science.gov (United States)

    Liu, Yang

    2017-04-01

    Ionospheric anomalies linked with devastating earthquakes have been widely investigated by scientists. It was confirmed that GNSS TECs suffered from drastically increase or decrease in some diurnal periods prior to the earthquakes. Liu et al (2008) applied a TECs anomaly calculation method to analyze M>=5.9 earthquakes in Indonesia and found TECs decadence within 2-7 days prior to the earthquakes. Nevertheless, strong TECs enhancement was observed before M8.0 Wenchuan earthquake (Zhao et al 2008). Moreover, the ionospheric plasma critical frequency (foF2) has been found diminished before big earthquakes (Pulinets et al 1998; Liu et al 2006). But little has been done regarding ionospheric irregularities and its association with earthquake. Still it is difficult to understand real mechanism between ionospheric anomalies activities and its precursor for the huge earthquakes. The M9.0 Tohoku earthquake, happened on 11 March 2011, at 05:46 UT time, was recognized as one of the most dominant events in related research field (Liu et al 2011). A median geomagnetic disturbance also occurred accompanied with the earthquake, which makes the ionospheric anomalies activities more sophisticated to study. Seismic-ionospheric disturbance was observed due to the drastic activities of earth. To further address the phenomenon, this paper investigates different categories of ionospheric anomalies induced by seismology activity, with multiple data sources. Several GNSS ground data were chosen along epicenter from IGS stations, to discuss the spatial-temporal correlations of ionospheric TECs in regard to the distance of epicenter. We also apply GIM TEC maps due to its global coverage to find diurnal differences of ionospheric anomalies compared with geomagnetic quiet day in the same month. The results in accordance with Liu's conclusions that TECs depletion occurred at days quite near the earthquake day, however the variation of TECs has special regulation contrast to the normal quiet

  9. The method of characteristic for nonlinear generalized Rayleigh-Taylor instability associated with equatorial spread F: An analytical approach

    International Nuclear Information System (INIS)

    Sekar, R.; Kherani, E.A.

    2002-01-01

    An analytical method is presented for the nonlinear generalized Rayleigh-Taylor instability occurring over the night-time equatorial F region of the terrestrial ionosphere. The time and spatial domain characteristic methods are adopted to describe the evolutions of plasma density and particle flux, respectively. The analysis efficiently describes the known nonlinear features of instability as suggested by many numerical simulations. The existence of shock or steepened structures and their dynamics are discussed by studying the evolution of the characteristics

  10. Wave and plasma measurements and GPS diagnostics of the main ionospheric trough as a hybrid method used for Space Weather purposes

    Directory of Open Access Journals (Sweden)

    H. Rothkaehl

    2008-02-01

    Full Text Available The region of the main ionospheric trough is a unique region of the ionosphere, where different types of waves and instabilities can be generated. This region of the ionosphere acts like a lens, focusing a variety of indicators from the equator of plasmapause and local ionospheric plasma. This paper reports the results of monitoring the mid-latitude trough structure, dynamics and wave activity. For these purposes, the data gathered by the currently-operating DEMETER satellite and past diagnostics located on IK-19, Apex, and MAGION-3 spacecraft, as well as TEC measurements were used. A global-time varying picture of the ionospheric trough was reconstructed using the sequence of wave spectra registered and plasma measurements in the top-side ionosphere. The authors present the wave activity from ULF frequency band to the HF frequency detected inside the trough region and discuss its properties during geomagnetic disturbances. It is thought that broadband emissions are correlated with low frequency radiation, which is excited by the wave-particle interaction in the equatorial plasmapause and moves to the ionosphere along the geomagnetic field line. In the ionosphere, the suprathermal electrons can interact with these electrostatic waves and excite electron acoustic waves or HF longitudinal plasma waves.

    Furthermore, the electron density trough can provide useful data on the magnetosphere ionosphere dynamics and morphology and, in consequence, can be used for Space Weather purposes.

  11. High Resolution Reconstruction of the Ionosphere for SAR Applications

    Science.gov (United States)

    Minkwitz, David; Gerzen, Tatjana; Hoque, Mainul

    2014-05-01

    Caused by ionosphere's strong impact on radio signal propagation, high resolution and highly accurate reconstructions of the ionosphere's electron density distribution are demanded for a large number of applications, e.g. to contribute to the mitigation of ionospheric effects on Synthetic Aperture Radar (SAR) measurements. As a new generation of remote sensing satellites the TanDEM-L radar mission is planned to improve the understanding and modelling ability of global environmental processes and ecosystem change. TanDEM-L will operate in L-band with a wavelength of approximately 24 cm enabling a stronger penetration capability compared to X-band (3 cm) or C-band (5 cm). But accompanied by the lower frequency of the TanDEM-L signals the influence of the ionosphere will increase. In particular small scale irregularities of the ionosphere might lead to electron density variations within the synthetic aperture length of the TanDEM-L satellite and in turn might result into blurring and azimuth pixel shifts. Hence the quality of the radar image worsens if the ionospheric effects are not mitigated. The Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) aims in the preparation of the HGF centres and the science community for the utilisation and integration of the TanDEM-L products into the study of the Earth's system. One significant point thereby is to cope with the mentioned ionospheric effects. Therefore different strategies towards achieving this objective are pursued: the mitigation of the ionospheric effects based on the radar data itself, the mitigation based on external information like global Total Electron Content (TEC) maps or reconstructions of the ionosphere and the combination of external information and radar data. In this presentation we describe the geostatistical approach chosen to analyse the behaviour of the ionosphere and to provide a high resolution 3D electron density reconstruction. As first step the horizontal structure of

  12. Equatorial storm sudden commencements and interplanetary magnetic field

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1980-01-01

    A comparison is made of the signatures of interplanetary (IP) shocks in the B and theta plots of interplanetary magnetic field (IMF) data of satellites Explorer 33, 34 and 35 and in the H magnetograms at ground observatories within the equatorial electrojet belt, Huancayo, Addis Ababa and Trivandrum associated with major storm sudden commencements during 1967-70. The IP shocks showing sudden increase of the scalar value of IMF, i.e. B without any change of the latitude theta or with the southward turning of theta, were followed by a purely positive sudden increase of H, at any of the magnetic observatories, either on the dayside or the nightside of the earth. The IP shocks identified by a sudden increase of B and with the northward turning of the latitude theta (positive ΔBsub(z)) were associated with purely positive sudden commencement (SC) at the observatories in the nightside, but at the equatorial observatories in the dayside of the earth the signature of the shock was a SC in H with a preliminary negative impulse followed by the main positive excursion (SC-+). It is suggested that the SCs in H at low latitudes are composed of two effects, viz. (i) one due to hydromagnetic pressure on the magnetosphere by the solar plasma and (ii) the other due to the induced electric field associated with the solar wind velocity, V and the Z-component of the IP magnetic field (E = - V x Bsub(z)). The effect of magnetosphere electric field is faster than the effect due to the compression of the magnetosphere by the impinging solar plasma. The negative impulse of SC-+ at low latitude is seen at stations close to the dip equator and only during daytime due to the existence of high ionospheric conductivities in the equatorial electrojet region. (author)

  13. On the Accuracy of the Conjugation of High-Orbit Satellites with Small-Scale Regions in the Ionosphere

    Science.gov (United States)

    Safargaleev, V. V.; Safargaleeva, N. N.

    2018-03-01

    The degree of uncertainty that arises when mapping high-orbit satellites of the Cluster type into the ionosphere using three geomagnetic field models (T89, T98, and T01) has been estimated. Studies have shown that uncertainty is minimal in situations when a satellite in the daytime is above the equatorial plane of the magnetosphere at the distance of no more than 5 R E from the Earth's surface and is projected into the ionosphere of the northern hemisphere. In this case, the dimensions of the uncertainty region are about 50 km, and the arbitrariness of the choice of the model for projecting does not play a decisive role in organizing satellite support based on optical observations when studying such large-scale phenomena as, e.g., WTS, as well as heating experiments at the EISCAT heating facility for the artificial modification of the ionosphere and the generation of artificial fluctuations in the VLF band. In all other cases, the uncertainty in determining the position of the base of the field line on which the satellite is located is large, and additional information is required to correctly compare the satellite with the object in the ionosphere.

  14. Magnetosphere and ionosphere response to a positive-negative pulse pair of solar wind dynamic pressure

    Science.gov (United States)

    Tian, A.; Degeling, A. W.

    2017-12-01

    Simulations and observations had shown that single positive/negative solar wind dynamic pressure pulse would excite geomagnetic impulsive events along with ionosphere and/or magnetosphere vortices which are connected by field aligned currents(FACs). In this work, a large scale ( 9min) magnetic hole event in solar wind provided us with the opportunity to study the effects of positive-negative pulse pair (△p/p 1) on the magnetosphere and ionosphere. During the magnetic hole event, two traveling convection vortices (TCVs, anti-sunward) first in anticlockwise then in clockwise rotation were detected by geomagnetic stations located along the 10:30MLT meridian. At the same time, another pair of ionospheric vortices azimuthally seen up to 3 MLT first in clockwise then in counter-clockwise rotation were also appeared in the afternoon sector( 14MLT) and centered at 75 MLAT without obvious tailward propagation feature. The duskside vortices were also confirmed in SuperDARN radar data. We simulated the process of magnetosphere struck by a positive-negative pulse pair and it shows that a pair of reversed flow vortices in the magnetosphere equatorial plane appeared which may provide FACs for the vortices observed in ionosphere. Dawn dusk asymmetry of the vortices as well as the global geomagnetism perturbation characteristics were also discussed.

  15. Characteristics and sources of the electron density irregularities in the mid latitude E and Fregions

    Science.gov (United States)

    2017-05-10

    and has since been monitoring the occurrence of field-aligned irregularities ( FAIs ) in the northern middle latitudes. We investigated the...characteristics and occurrence climatology of the FAIs in the middle latitude E- and F-region ionosphere using the Daejeon VHF radar data. Depending on the...sunset and post-sunrise periods. The F-region FAIs in the mid-latitude are bounded to occur during the nighttime between local sunset and sunrise [J

  16. Equatorial 150 km echoes and daytime F region vertical plasma drifts in the Brazilian longitude sector

    Directory of Open Access Journals (Sweden)

    F. S. Rodrigues

    2013-10-01

    Full Text Available Previous studies showed that conventional coherent backscatter radar measurements of the Doppler velocity of the so-called 150 km echoes can provide an alternative way of estimating ionospheric vertical plasma drifts during daytime hours (Kudeki and Fawcett, 1993; Chau and Woodman, 2004. Using observations made by a small, low-power 30 MHz coherent backscatter radar located in the equatorial site of São Luís (2.59° S, 44.21° W; −2.35° dip lat, we were able to detect and monitor the occurrence of 150 km echoes in the Brazilian sector. Using these measurements we estimated the local time variation of daytime vertical ionospheric drifts in the eastern American sector. Here, we present a few interesting cases of 150 km-echoes observations made by the São Luís radar and estimates of the diurnal variation of vertical drifts. These cases exemplify the variability of the vertical drifts in the Brazilian sector. Using same-day 150 km-echoes measurements made at the Jicamarca Radio Observatory in Peru, we also demonstrate the variability of the equatorial vertical drifts across the American sector. In addition to first estimates of the absolute vertical plasma drifts in the eastern American (Brazilian sector, we also present observations of abnormal drifts detected by the São Luís radar associated with the 2009 major sudden stratospheric warming event.

  17. First Results From the Ionospheric Extension of WACCM-X During the Deep Solar Minimum Year of 2008

    Science.gov (United States)

    Liu, Jing; Liu, Hanli; Wang, Wenbin; Burns, Alan G.; Wu, Qian; Gan, Quan; Solomon, Stanley C.; Marsh, Daniel R.; Qian, Liying; Lu, Gang; Pedatella, Nicholas M.; McInerney, Joe M.; Russell, James M.; Schreiner, William S.

    2018-02-01

    New ionosphere and electrodynamics modules have been incorporated in the thermosphere and ionosphere eXtension of the Whole Atmosphere Community Climate Model (WACCM-X), in order to self-consistently simulate the coupled atmosphere-ionosphere system. The first specified dynamics WACCM-X v.2.0 results are compared with several data sets, and with the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM), during the deep solar minimum year. Comparisons with Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite of temperature and zonal wind in the lower thermosphere show that WACCM-X reproduces the seasonal variability of tides remarkably well, including the migrating diurnal and semidiurnal components and the nonmigrating diurnal eastward propagating zonal wavenumber 3 component. There is overall agreement between WACCM-X, TIE-GCM, and vertical drifts observed by the Communication/Navigation Outage Forecast System (C/NOFS) satellite over the magnetic equator, but apparent discrepancies also exist. Both model results are dominated by diurnal variations, while C/NOFS observed vertical plasma drifts exhibit strong temporal variations. The climatological features of ionospheric peak densities and heights (NmF2 and hmF2) from WACCM-X are in general agreement with the results derived from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) data, although the WACCM-X predicted NmF2 values are smaller, and the equatorial ionization anomaly crests are closer to the magnetic equator compared to COSMIC and ionosonde observations. This may result from the excessive mixing in the lower thermosphere due to the gravity wave parameterization. These data-model comparisons demonstrate that WACCM-X can capture the dynamic behavior of the coupled atmosphere and ionosphere in a climatological sense.

  18. Low latitude ionosphere-thermosphere dynamics studies with inosonde chain in Southeast Asia

    Directory of Open Access Journals (Sweden)

    T. Maruyama

    2007-07-01

    Full Text Available An ionosonde network consisting of a meridional chain and an equatorial pair was established in the Southeast Asian area. Three of four ionosondes are along the magnetic meridian of 100° E; two are close to the magnetic conjugate points in Northern Thailand and West Sumatra, Indonesia, and the other is near the magnetic equator in the Malay Peninsula, Thailand. The fourth ionosonde is also near the magnetic equator in Vietnam but separated by about 6.3° towards east from the meridional chain. For a preliminary data analysis, nighttime ionospheric height variations at the three stations of the meridional chain were examined. The results demonstrate that the coordination of the network has a great potential for studying ionosphere/thermosphere dynamics. Through the assistance of model calculations, thermospheric neutral winds were inferred and compared with the HWM93 empirical thermospheric wind model. Higher-order wind variations that are not represented in the empirical model were found.

  19. Rocket observation of electron density irregularities in the lower E region

    International Nuclear Information System (INIS)

    Watanabe, Yuzo; Nakamura, Yoshiharu; Amemiya, Hiroshi.

    1990-01-01

    Local ionospheric electron density irregularities in the scale size of 3 m to 300 m have been measured on the ascending path from 74 km to 93 km by a fix biased Langmuir probe on board the S-310-16 sounding rocket. The rocket was launched at 22:40:00 on February 1, 1986 from Kagoshima Space Center in Japan. It is found from frequency analysis of the data that the spectral index of the irregularities is 0.9 to 1.8 and the irregularity amplitude is 1 to 15 %. The altitude where the amplitude reaches its maximum is 88 km. The generation mechanism of these irregularities is explained by the neutral turbulence theory, which indicates that the spectral index is 5/3 and has been confirmed by a chemical release experiment using rockets over India to be valid up to about 110 km. From frequency analysis of the data observed during the descent in the lower E region, we have found that the rocket-wake effect becomes larger when the probe is situated near the edge of the rocket-wake, and that this is also the case even when the rocket-wake effect does not clearly appear in the DC current signal which approximately changes in proportion to the electron density, where the probe is completely situated inside the rocket-wake region. (author)

  20. Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events

    Directory of Open Access Journals (Sweden)

    S. Sridharan

    2009-11-01

    Full Text Available The present study demonstrates the relationship between the high latitude northern hemispheric major sudden stratospheric warming (SSW events and the reversal in the afternoon equatorial electrojet (EEJ, often called the counter-electrojet (CEJ, during the winter months of 1998–1999, 2001–2002, 2003–2004 and 2005–2006. As the EEJ current system is driven by tidal winds, an investigation of tidal variabilities in the MF radar observed zonal winds during the winters of 1998–1999 and 2005–2006 at 88 km over Tirunelveli, a site close to the magnetic equator, shows that there is an enhancement of semi-diurnal tidal amplitude during the days of a major SSW event and a suppression of the same immediately after the event. The significance of the present results lies in demonstrating the latitudinal coupling between the high latitude SSW phenomenon and the equatorial ionospheric current system with clear evidence for major SSW events influencing the day-to-day variability of the CEJ.

  1. Report on the HAARP 2008 Winter Campaign Focusing on Artificial Ionospheric Irregularities

    Science.gov (United States)

    2008-07-31

    Figure Bl. Magnetic field variations recorded by the fluxgate magnetometer 30 Figure B2. Composite ionogram showing the variation of the reflection...variation was monitored by the Fluxgate Magnetometer . The density irregularities were monitored by the Ionosonde. 20:00 Preliminary Results The...magnetic field variations in three directions (H, D, and Z) recorded by the fluxgate magnetometer from UTC 20:00 to 04:00 are shown in the plots of

  2. Irregular HF radio propagation on a subauroral path during magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2006-08-01

    Full Text Available The impact of the main ionospheric trough, sporadic structures, gradients and inhomogeneities of the subpolar ionosphere during substorms on the signal amplitude, azimuthal angles of arrival, and propagation modes for the radio path Ottawa (Canada-St. Petersburg (Russia was considered. This subauroral path with the length of about 6600 km has approximately an east-west orientation. The main goals are to carry out numerical modeling of radio propagation for the path and to compare the model calculations with experimental results. Wave absorption and effects of focusing and divergence of rays were taken into consideration in the radio wave modeling process. The following basic results were obtained: The signal amplitude increases by 20–30 dB 1–1.5 h before the substorm expansion phase onset. At the same time the signal azimuth deviates towards north of the great circle arc for the propagation path. Compared with quiet periods there are effects due to irregularities and gradients in the area of the polar edge of the main ionospheric trough on the passing signals. Propagation mechanisms also change during substorms. The growth of signal amplitude before the substorm can be physically explained by both a decrease of the F2-layer ionization and a growth of the F2-layer height that leads to a decrease of the signal field divergence and to a drop of the collision frequency. Ionospheric gradients are also important. This increase of signal level prior to a substorm could be used for forecasting of space weather disturbed conditions.

  3. The Seismo-Generated Electric Field Probed by the Ionospheric Ion Velocity

    Science.gov (United States)

    (Tiger) Liu, Jann-Yenq

    2017-04-01

    The ion density, ion temperature, and the ion velocity probed by IPEI (ionospheric Plasma and Electrodynamics Instrument) onboard ROCSAT (i.e. FORMOSAT-1), and the global ionospheric map (GIM) of the total electron content (TEC) derived from measurements of ground-based GPS receivers are employed to study seismo-ionospheric precursors (SIPs) of the 31 March 2002 M6.8 Earthquake in Taiwan. The GIM TEC and ROCSAT/IPEI ion density significantly decrease specifically over the epicenter area 1-5 days before the earthquake, which suggests that the associated SIPs have observed. The ROCSAT/IPEI ion temperature reveals no significant changes before and after the earthquake, while the latitude-time-TEC plots extracted from the GIMs along the Taiwan longitude illustrate that the equatorial ionization anomaly significantly weakens and moves equatorward, which indicates that the daily dynamo electric field has been disturbed and cancelled by possible seismo-generated electric field on 2 days before (29 March) the earthquake. Here, for the first time a vector parameter of ion velocity is employed to study SIPs. It is found that ROCSAT/IPEI ion velocity becomes significantly downward, which confirms that a westward electric field of about 0.91mV/m generated during the earthquake preparation period being essential 1-5 days before the earthquake. Liu, J. Y., and C. K. Chao (2016), An observing system simulation experiment for FORMOSAT-5/AIP detecting seismo-ionospheric precursors, Terrestrial Atmospheric and Oceanic Sciences, DOI: 10.3319/TAO.2016.07.18.01(EOF5).

  4. Midlatitude ionospheric changes to four great geomagnetic storms of solar cycle 23 in Southern and Northern Hemispheres

    Czech Academy of Sciences Publication Activity Database

    Matamba, T. M.; Habarulema, J. B.; Burešová, Dalia

    2016-01-01

    Roč. 14, č. 12 (2016), s. 1155-1171 ISSN 1542-7390 R&D Projects: GA ČR(CZ) GAP209/12/2440 Institutional support: RVO:68378289 Keywords : total electron-content * traveling atmospheric disturbances * November 2004 superstorms * magnetic storm s * interplanetary origins * equatorial ionosphere * neutral composition * physical-mechanism * middle latitudes * content response Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.581, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016SW001516/abstract

  5. Extreme changes in the dayside ionosphere during a Carrington-type magnetic storm

    Directory of Open Access Journals (Sweden)

    Mannucci Anthony J.

    2012-06-01

    Full Text Available It is shown that during the 30 October 2003 superstorm, dayside O+ ions were uplifted to DMSP altitudes (~850 km. Peak densities were ~9 × 105 cm−3 during the magnetic storm main phase (peak Dst = −390 nT. By comparison the 1–2 September 1859 Carrington magnetic storm (peak Dst estimated at −1760 nT was considerably stronger. We investigate the impact of this storm on the low- to mid-latitude ionosphere using a modified version of the NRL SAMI2 ionospheric code. It is found that the equatorial region (LAT = 0° ± 15° is swept free of plasma within 15 min (or less of storm onset. The plasma is swept to higher altitudes and higher latitudes due to E × B convection associated with the prompt penetration electric field. Equatorial Ionization Anomaly (EIA O+ density enhancements are found to be located within the broad range of latitudes ~ ± (25°–40° at ~500–900 km altitudes. Densities within these peaks are ~6 × 106 oxygen ions-cm−3 at ~700 km altitude, approximately +600% quiet time values. The oxygen ions at the top portions (850–1000 km of uplifted EIAs will cause strong low-altitude satellite drag. Calculations are currently being performed on possible uplift of oxygen neutrals by ion-neutral coupling to understand if there might be further significant satellite drag forces present.

  6. Excitation of planetary electromagnetic waves in the inhomogeneous ionosphere

    Directory of Open Access Journals (Sweden)

    Yu. Rapoport

    2014-04-01

    Full Text Available In this paper we develop a new method for the analysis of excitation and propagation of planetary electromagnetic waves (PEMW in the ionosphere of the Earth. The nonlinear system of equations for PEMW, valid for any height, from D to F regions, including intermediate altitudes between D and E and between E and F regions, is derived. In particular, we have found the system of nonlinear one-fluid MHD equations in the β-plane approximation valid for the ionospheric F region (Aburjania et al., 2003a, 2005. The series expansion in a "small" (relative to the local geomagnetic field non-stationary magnetic field has been applied only at the last step of the derivation of the equations. The small mechanical vertical displacement of the media is taken into account. We have shown that obtained equations can be reduced to the well-known system with Larichev–Reznik vortex solution in the equatorial region (see e.g. Aburjania et al., 2002. The excitation of planetary electromagnetic waves by different initial perturbations has been investigated numerically. Some means for the PEMW detection and data processing are discussed.

  7. Global-scale Observations of the Limb and Disk (GOLD): Science Implementation

    Science.gov (United States)

    Solomon, S. C.; McClintock, W. E.; Eastes, R.; Anderson, D. N.; Andersson, L.; Burns, A. G.; Codrescu, M.; Daniell, R. E.; England, S.; Eparvier, F. G.; Evans, J. S.; Krywonos, A.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Woods, T. N.

    2017-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) is a NASA mission of opportunity that will image the Earth's thermosphere and ionosphere from geostationary orbit. GOLD will investigate how the thermosphere-ionosphere (T-I) system responds to geomagnetic storms, solar radiation, and upward propagating tides and how the structure of the equatorial ionosphere influences the formation and evolution of equatorial plasma density irregularities. GOLD consists of a pair of identical imaging spectrographs that will measure airglow emissions at far-ultraviolet wavelengths from 132 to 162 nm. On the disk, temperature and composition will be determined during the day using emissions from molecular nitrogen Lyman-Birge-Hopfield (LBH) band and atomic oxygen 135.6 nm, and electron density will be derived at night from 135.6 nm emission. On the limb, exospheric temperature will be derived from LBH emission profiles, and molecular oxygen density will be measured using stellar occultations. This presentation describes the GOLD mission science implementation including the as-built instrument performance and the planned observing scenario. It also describes the results of simulations performed by the GOLD team to validate that the measured instrument performance and observing plan will return adequate data to address the science objectives of the mission.

  8. Subduing the earth: The ionosphere inclusive (Inaugural Lecture)

    International Nuclear Information System (INIS)

    Adeniyi, J.O.

    2007-12-01

    The study of the ionosphere is basically relevant to radio propagation. Radio propagation via the ionosphere is a fascinating and important means of long-distance radio communication. Thousands of governmental, private and commercial operators use the ionosphere every day for broadcasting and making contacts over vast distances all over the world. In order to use the upper atmosphere which supports medium and high frequency radio communication effectively, a knowledge of the behaviours of this medium is of uttermost importance. This knowledge helps to determine when to listen, the best frequencies to use and where signals might come from. In fact, the knowledge of the conditions and what each radio band might produce are valuable for any radio operator. The most important feature of the ionosphere in terms of radio communications is its ability to refract radio waves. It is this feature that makes broadcasting around the globe possible. In the use of higher frequencies, particularly satellite communication, the effects of propagation in this medium has to be taken into account for effective performance. The atmosphere can be divided into a variety of different layers according to their properties. The following topics are described in detail in this lecture: the equatorial ionosphere; investigating the ionosphere from the ground station; high frequency radio communication; navigational satellite systems. The University of Ibadan, Nigeria used to be in the forefront of ionospheric studies in the past because it housed an ionosonde for over twenty years. The Ministry of Communication used to give a support for part of the running cost of that observatory and there was a periodic publication of data from the observatory sent to that ministry from time to time. The Ibadan observatory has closed down for over twenty years now because the equipment is no longer functional since it has outlived its life span and there is no replacement. In the whole of the West African

  9. Probing ionospheric structures using the LOFAR radio telescope

    Science.gov (United States)

    Mevius, M.; van der Tol, S.; Pandey, V. N.; Vedantham, H. K.; Brentjens, M. A.; de Bruyn, A. G.; Abdalla, F. B.; Asad, K. M. B.; Bregman, J. D.; Brouw, W. N.; Bus, S.; Chapman, E.; Ciardi, B.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Iliev, I. T.; Jelić, V.; Kazemi, S.; Koopmans, L. V. E.; Noordam, J. E.; Offringa, A. R.; Patil, A. H.; van Weeren, R. J.; Wijnholds, S.; Yatawatta, S.; Zaroubi, S.

    2016-07-01

    LOFAR is the LOw-Frequency Radio interferometer ARray located at midlatitude (52°53'N). Here we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show that LOFAR is able to determine differential ionospheric total electron content values with an accuracy better than 0.001 total electron content unit = 1016m-2 over distances ranging between 1 and 100 km. For all observations the power law behavior of the phase structure function is confirmed over a long range of baseline lengths, between 1 and 80 km, with a slope that is, in general, larger than the 5/3 expected for pure Kolmogorov turbulence. The measured average slope is 1.89 with a one standard deviation spread of 0.1. The diffractive scale, i.e., the length scale where the phase variance is 1rad2, is shown to be an easily obtained single number that represents the ionospheric quality of a radio interferometric observation. A small diffractive scale is equivalent to high phase variability over the field of view as well as a short time coherence of the signal, which limits calibration and imaging quality. For the studied observations the diffractive scales at 150 MHz vary between 3.5 and 30 km. A diffractive scale above 5 km, pertinent to about 90% of the observations, is considered sufficient for the high dynamic range imaging needed for the LOFAR epoch of reionization project. For most nights the ionospheric irregularities were anisotropic, with the structures being aligned with the Earth magnetic field in about 60% of the observations.

  10. A numerical model of ionospheric convection derived from field-aligned currents and the corresponding conductivity

    International Nuclear Information System (INIS)

    Blomberg, L.G.; Marklund, G.T.

    1991-08-01

    A numerical model for the calculation of ionospheric convection patterns from given distributions of field-aligned current and ionospheric conductivity is described. The model includes a coupling between the conductivity and the field-aligned current, so that the conductivity peaks in regions of upward current, as is usually observed by measurements. The model is very flexible in that the input distributions, the field-aligned current and the conductivity, have been parametrized in a convenient way. From the primary model output, namely the ionospheric electrostatic potential (or convection) in the corotating frame, a number of other quantities can be computed. These include; the potential in the inertial frame (the transformation takes into account the non-alignment of the Earths magnetic and geographic axes), the potential in the magnetospheric equatorial plane (projected using either a dipole magnetic field model or the Tsyganenko-Usmanov model, and the assumption of either vanishing parallel electric field or a proportionality between parallel potential and upward field-aligned current), the distribution of ionospheric (horizontal) current, and the Joule heating in the ionosphere. This model has been used together with a new snapshot technique to calculate the high-latitude potential distribution prevailing during a particular event by combining information from global auroral images and local measurements of fields and particles. The model potential variation along the satellite orbit was found to be in excellent agreement with that calculated from the measured electric field. The model has also been used to study some fundamental properties of the electrodynamics of the high-latitude ionosphere. The results of these different applications of the model have been published separately. (au) (39 refs.)

  11. A new ionospheric storm scale based on TEC and foF2 statistics

    Science.gov (United States)

    Nishioka, Michi; Tsugawa, Takuya; Jin, Hidekatsu; Ishii, Mamoru

    2017-01-01

    In this paper, we propose the I-scale, a new ionospheric storm scale for general users in various regions in the world. With the I-scale, ionospheric storms can be classified at any season, local time, and location. Since the ionospheric condition largely depends on many factors such as solar irradiance, energy input from the magnetosphere, and lower atmospheric activity, it had been difficult to scale ionospheric storms, which are mainly caused by solar and geomagnetic activities. In this study, statistical analysis was carried out for total electron content (TEC) and F2 layer critical frequency (foF2) in Japan for 18 years from 1997 to 2014. Seasonal, local time, and latitudinal dependences of TEC and foF2 variabilities are excluded by normalizing each percentage variation using their statistical standard deviations. The I-scale is defined by setting thresholds to the normalized numbers to seven categories: I0, IP1, IP2, IP3, IN1, IN2, and IN3. I0 represents a quiet state, and IP1 (IN1), IP2 (IN2), and IP3 (IN3) represent moderate, strong, and severe positive (negative) storms, respectively. The proposed I-scale can be used for other locations, such as polar and equatorial regions. It is considered that the proposed I-scale can be a standardized scale to help the users to assess the impact of space weather on their systems.

  12. Investigation of Ionospheric Disturbances Using Radio and Optical Observations in South-East Asia -- The Initial Results of the ASI and FPI Observations in Chiang Mai, Thailand

    Science.gov (United States)

    Kubota, M.; Nagatsuma, T.; Otsuka, Y.; Shiokawa, K.; Komonjinda, S.; Komolmis, T.; Somboon, E.; Tsugawa, T.; Maruyama, T.; Murata, K. T.

    2010-12-01

    For the purpose of monitoring and forecasting equatorial ionospheric disturbances, SEALION (SouthEast Asia Low-latitude IOnospheric Network) has been developed since 2003 as a cooperation project by National Institute of Information and Communications Technology (NICT), King Mongkut's Institute of Technology Ladkrabang (KMITL) in Thailand, Chiang Mai University (CMU) in Thailand, National Institute of Aeronautics and Space (LAPAN) in Indonesia, Hanoi Institute of Geophysics (HIG), Vietnamese Academy of Science and Technology in Vietnam, Center for Space Science and Applied Research (CSSAR), Chinese Academy of Sciences in China, Kyoto University in Japan, and Solar-Terrestrial Environment Laboratory (STEL), Nagoya University in Japan. SEALION consists of five ionosondes, four GPS receivers, two GPS scintillation monitors, and a magnetometer. As a part of this project, we newly installed an all-sky imager (ASI) and a Fabry-Perot Interferometer (FPI) at Sirindhorn observatory in Chiang Mai (18.8N, 98.9E, Dip lat. 13.1), Thailand. This site is located near conjugate to EAR site in Kototabang, Indonesia. One of main targets of the ASI observation is the large-scale wave structure (LSWS) with wavelengths of 100-1000 km. The LSWS is thought to be connected to the generation mechanism of equatorial plasma bubbles (EPB). The optical observations in Chiang Mai started in February 2010, and we have detected several ionospheric disturbance events with these instruments In this paper, we will show the initial results of the optical observations from Sirindhorn observatory, and discuss the features of ionospheric disturbances in Southeast Asia.

  13. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes

    International Nuclear Information System (INIS)

    Proelss, G.W.

    1993-01-01

    The author looks for a correlation between two different atmospheric effects. They are a positive atmospheric storm (an anomalous increase in the F2 region ionization density), observed at middle latitudes, and the geomagnetic activity effect (the anomalous changes of temperature and gas density seen in the thermosphere), observed at low latitudes. A temporal correlation is sought to test the argument that both of these effects are the result of travelling atmospheric disturbances (TAD). A TAD is a pulselike atmospheric wave thought to be generated by substorm activity, and to propagate with high velocity (600 m/s) from polar latitudes toward equatorial latitudes. The author looks at data from five separate events correlating magnetic, ionospheric, and neutral atmospheric measurements. The conclusion is that there is a positive correlation between magnetic substorm activity at high latitudes, and positive ionospheric storms at middle latitudes and geomagnetic activity at low latitudes. The time correlations are consistent with high propagation speeds between these events. The author also presents arguments which indicate that the middle latitude positive ionospheric storms are not the result of electric field effects

  14. F2 layer characteristics and electrojet strength over an equatorial station

    Science.gov (United States)

    Adebesin, B. O.; Adeniyi, J. O.; Adimula, I. A.; Reinisch, B. W.; Yumoto, K.

    2013-09-01

    The data presented in this work describes the diurnal and seasonal variation in hmF2, NmF2, and the electrojet current strength over an African equatorial station during a period of low solar activity. The F2 region horizontal magnetic element H revealed that the Solar quiet Sq(H) daily variation rises from early morning period to maximum around local noon and falls to lower values towards evening. The F2 ionospheric current responsible for the magnetic field variations is inferred to build up at the early morning hours, attaining maximum strength around 1200 LT. The Sq variation across the entire months was higher during the daytime than nighttime. This is ascribed to the variability of the ionospheric parameters like conductivity and winds structure in this region. Seasonal daytime electrojet (EEJ) current strength for June solstice, March and September equinoxes, respectively had peak values ranging within 27-35 nT (at 1400 LT) , 30-40 nT (at 1200 LT) and 35-45 nT (at 1500 LT). The different peak periods of the EEJ strength were attributed to the combined effects of the peak electron density and electric field. Lastly, the EEJ strength was observed to be higher during the equinoxes than the solstice period.

  15. The structure of mid- and high-latitude ionosphere during September 1999 storm event obtained from GPS observations

    Directory of Open Access Journals (Sweden)

    I. I. Shagimuratov

    Full Text Available TEC data, obtained from over 60 GPS stations, were used to study the ionospheric effects of the 12–16 September 1999 magnetic storm over Europe. The spatial and temporal changes of the ionosphere were analysed as a time series of TEC maps, which present 15 min averages of TEC. The data set consisting of GPS observations, collected by a dense network of European stations, with sampling rate of 30 s, enable the creation of TEC maps with high spatial and temporal resolution. The storm included the positive as well as the negative phase. The positive phase took place during the first storm day of 12 September 1999. The short-lived daytime TEC enhancement was observed at all latitudes. The maximal enhancement reached a factor of 1.3–1.5. On the second and third days, the negative phase of the storm developed. The TEC decrease was registered regardless of time of the day. The TEC depression exceeded 70% relative to quiet days. On the following days (15 and 16 September, a significant daytime enhancement of TEC was observed once again. The complex occurrence of the ionospheric storm was probably related to the features of development of the magnetic storm. We found out that during the storm the large and medium-scale irregularities developed in the high-latitude ionosphere. The multi-stations technique, employed to create TEC maps, was particularly successful while studying the mid-latitude ionospheric trough. We found out that the essential changes of TEC during the storm, which were registered at the auroral and sub-auroral ionosphere, were connected with the effect of the trough and its dynamics, which depends on geomagnetic activity.

    Key words. Ionosphere (ionospheric disturbances; auroral ionosphere; mid-latitude ionosphere

  16. Source locations for impulsive electric signals seen in the night ionosphere of Venus

    Science.gov (United States)

    Russell, C. T.; Von Dornum, M.; Scarf, F. L.

    1989-01-01

    A mapping of the rate of occurrence of impulsive VLF noise bursts in Venus' dark low altitude ionosphere, which increases rapidly with decreasing altitude, as a function of latitude and longitude indicates enhanced occurrence rates over Atla. In a 30-sec observing period, there are impulsive signals 70 percent of the time at 160 km in the region of maximum occurrence; the occurrence rates, moreover, increase with decreasing latitude, so that the equatorial rate is of the order of 1.6 times that at 30 deg latitude. These phenomena are in keeping with lightning-generated wave sources.

  17. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    2002-11-01

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  18. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  19. Equatorial Guinea.

    Science.gov (United States)

    1989-03-01

    Equatorial Guinea is situated on the Gulf of Guinea along the west African coast between Cameroon and Gabon. The people are predominantly of Bantu origin. The country's ties with Spain are significant; in 1959, it became the Spanish Equatorial region ruled by Spain's commissioner general. Recent political developments in Equatorial Guinea include the formation of the Democratic Party for Equatorial Guinea in July of 1987 and the formation of a 60-member unicameral Chamber of Representatives of the People in 1983. Concerning the population, 83% of the people are Catholic and the official language is Spanish. Poverty and serious health, education and sanitary problems exist. There is no adequate hospital and few trained physicians, no dentists, and no opticians. Malaria is endemic and immunization for yellow fever is required for entrance into the country. The water is not potable and many visitors to the country bring bottled water. The tropical climate of Equatorial Guinea provides the climate for the country's largest exports and source of economy; cacao, wood and coffee. Although the country, as a whole, has progressed towards developing a participatory political system, there are still problems of governmental corruption in the face of grave health and welfare conditions. In recent years, the country has received assistance from the World Bank and the United States to aid in its development.

  20. Validation of the α-μ Model of the Power Spectral Density of GPS Ionospheric Amplitude Scintillation

    Directory of Open Access Journals (Sweden)

    Kelias Oliveira

    2014-01-01

    Full Text Available The α-μ model has become widely used in statistical analyses of radio channels, due to the flexibility provided by its two degrees of freedom. Among several applications, it has been used in the characterization of low-latitude amplitude scintillation, which frequently occurs during the nighttime of particular seasons of high solar flux years, affecting radio signals that propagate through the ionosphere. Depending on temporal and spatial distributions, ionospheric scintillation may cause availability and precision problems to users of global navigation satellite systems. The present work initially stresses the importance of the flexibility provided by α-μ model in comparison with the limitations of a single-parameter distribution for the representation of first-order statistics of amplitude scintillation. Next, it focuses on the statistical evaluation of the power spectral density of ionospheric amplitude scintillation. The formulation based on the α-μ model is developed and validated using experimental data obtained in São José dos Campos (23.1°S; 45.8°W; dip latitude 17.3°S, Brazil, located near the southern crest of the ionospheric equatorial ionization anomaly. These data were collected between December 2001 and January 2002, a period of high solar flux conditions. The results show that the proposed model fits power spectral densities estimated from field data quite well.

  1. First in situ measurement of electric field fluctuations during strong spread F in the Indian zone

    Directory of Open Access Journals (Sweden)

    H. S. S. Sinha

    2000-05-01

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip 14°N along with other experiments, as a part of equatorial spread F (ESF campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160-190 km, 210-257 km and 290-330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km, in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210-257 km showed a tendency to become slightly flatter (spectral index n = -2.1 ± 0.7 as compared to the valley region (n = -3.6 ± 0.8 and the region below the F peak (n = -2.8 ± 0.5. Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160-330 km region.Keywords: Ionosphere (Electric fields and currents; ionospheric irregularities; Radio science (ionospheric physics

  2. Climatology of GPS signal loss observed by Swarm satellites

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2018-04-01

    Full Text Available By using 3-year global positioning system (GPS measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.

  3. Climatology of GPS signal loss observed by Swarm satellites

    Science.gov (United States)

    Xiong, Chao; Stolle, Claudia; Park, Jaeheung

    2018-04-01

    By using 3-year global positioning system (GPS) measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT) and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL) widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.

  4. Multistation digisonde observations of equatorial spread F in South America

    Directory of Open Access Journals (Sweden)

    B. W. Reinisch

    2004-09-01

    Full Text Available Directional ionogram and F-region drift observations were conducted at seven digisonde stations in South America during the COPEX campaign from October to December 2002. Five stations in Brazil, one in Argentina, and one in Peru, monitored the ionosphere across the continent to study the onset and development of F-region density depletions that cause equatorial spread F (ESF. New ionosonde techniques quantitatively describe the prereversal uplifting of the F layer at the magnetic equator and the eastward motion of the depletions over the stations. Three of the Brazilian stations were located along a field line with a 350-km apex over the equator to investigate the relation of the occurrence of ESF and the presence of sporadic E-layers at the two E-region intersections of the field line. No simple correlation was found.

  5. Occurrence of the dayside three-peak density structure in the F2 and the topside ionosphere

    Science.gov (United States)

    Astafyeva, Elvira; Zakharenkova, Irina; Pineau, Yann

    2016-07-01

    In this work, we discuss the occurrence of the dayside three-peak electron density structure in the ionosphere. We first use a set of ground-based and satellite-borne instruments to demonstrate the development of a large-amplitude electron density perturbation at the recovery phase of a moderate storm of 11 October 2008. The perturbation developed in the F2 and low topside ionospheric regions over the American sector; it was concentrated on the north from the equatorial ionization anomaly (EIA) but was clearly separated from it. At the F2 region height, the amplitude of the observed perturbation was comparable or even exceeded that of the EIA. Further analysis of the observational data together with the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics model simulation results showed that a particular local combination of the thermospheric wind surges provided favorable conditions for the generation of the three-peak EIA structure. We further proceed with a statistical study of occurrence of the three-peak density structure in the ionosphere in general. Based on the analysis of 7 years of the in situ data from CHAMP satellite, we found that such three-peak density structure occurs sufficiently often during geomagnetically quiet time. The third ionization peak develops in the afternoon hours in the summer hemisphere at solstice periods. Based on analysis of several quiet time events, we conclude that during geomagnetically quiet time, the prevailing summer-to-winter thermospheric circulation acts in similar manner as the storm-time enhanced thermospheric winds, playing the decisive role in generation of the third ionization peak in the daytime ionosphere.

  6. Studies of small-scale plasma inhomogeneities in the cusp ionosphere using sounding rocket data

    Science.gov (United States)

    Chernyshov, Alexander A.; Spicher, Andres; Ilyasov, Askar A.; Miloch, Wojciech J.; Clausen, Lasse B. N.; Saito, Yoshifumi; Jin, Yaqi; Moen, Jøran I.

    2018-04-01

    Microprocesses associated with plasma inhomogeneities are studied on the basis of data from the Investigation of Cusp Irregularities (ICI-3) sounding rocket. The ICI-3 rocket is devoted to investigating a reverse flow event in the cusp F region ionosphere. By numerical stability analysis, it is demonstrated that inhomogeneous-energy-density-driven (IEDD) instability can be a mechanism for the excitation of small-scale plasma inhomogeneities. The Local Intermittency Measure (LIM) method also applied the rocket data to analyze irregular structures of the electric field during rocket flight in the cusp. A qualitative agreement between high values of the growth rates of the IEDD instability and the regions with enhanced LIM is observed. This suggests that IEDD instability is connected to turbulent non-Gaussian processes.

  7. Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2003-08-01

    Full Text Available We calculate the latitude profile of the equatorward-directed ionospheric Pedersen currents that are driven in Saturn’s ionosphere by partial corotation of the magnetospheric plasma. The calculation incorporates the flattened figure of the planet, a model of Saturn’s magnetic field derived from spacecraft flyby data, and angular velocity models derived from Voyager plasma data. We also employ an effective height-integrated ionospheric Pedersen conductivity of 1 mho, suggested by a related analysis of Voyager magnetic field data. The Voyager plasma data suggest that on the largest spatial scales, the plasma angular velocity declines from near-rigid corotation with the planet in the inner magnetosphere, to values of about half of rigid corotation at the outer boundary of the region considered. The latter extends to ~ 15–20 Saturn radii (RS in the equatorial plane, mapping along magnetic field lines to ~ 15° co-latitude in the ionosphere. We find in this case that the ionospheric Pedersen current peaks near the poleward (outer boundary of this region, and falls toward zero over ~ 5°–10° equator-ward of the boundary as the plasma approaches rigid corotation. The peak current near the poleward boundary, integrated in azimuth, is ~ 6 MA. The field-aligned current required for continuity is directed out of the ionosphere into the magnetosphere essentially throughout the region, with the current density peaking at ~ 10 nA m-2 at ~ 20° co-latitude. We estimate that such current densities are well below the limit requiring field-aligned acceleration of magnetospheric electrons in Saturn’s environment ( ~ 70 nAm-2, so that no significant auroral features associated with this ring of upward current is anticipated. The observed ultraviolet auroras at Saturn are also found to occur significantly closer to the pole (at ~ 10°–15° co-latitude, and show considerable temporal and local time variability, contrary to expectations for corotation

  8. Upper ionosphere and magnetospheric-ionospheric coupling

    International Nuclear Information System (INIS)

    Manzano, J.R.

    1989-02-01

    After a presentation of the ionospheric physics and of the earth magnetosphere morphology, generation and dynamics, the magnetosphere-ionosphere coupling in quiet and perturbed conditions is discussed. Some summary information about other planetary magnetospheres, particularly Venus and Jupiter magnetospheres, are finally given. 41 refs, 24 figs

  9. Plasma instabilities in the ionosphere at the crest of anomaly region

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Shivalika, E-mail: shivalikasarkar@gmail.com [Department of Education in Science and Mathematics, Regional Institute of Education, Bhopal – 462013 (India); Tiwari, Sunita, E-mail: suni-tiwari@yahoo.co.in [LNCT, Kalchuri Nagar, Raisen Road, Bhopal (India); Gwal, A. K., E-mail: ashok.gwal@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2015-07-31

    Comparison of the in situ density fluctuations measured by the DEMETER satellite with ground based GPS receiver measurements at the equatorial anomaly station Bhopal [geographic coordinates (23.2°N, 77.6°E); geomagnetic coordinates (14.29° N, 151.12°E)] for the low solar activity year, 2005, are presented in this paper. The Langmuir Probe experiment and Plasma Analyzer onboard DEMETER measure the electron and ion densities respectively. It is interesting to note that in situ density fluctuations observed on magnetic flux tubes that pass over Bhopal can be used as indicator of ionospheric scintillations at that site. Many cases of density fluctuations and associated scintillations have been observed during descending low solar activity period.

  10. CARINA Satellite Mission to Investigate the Upper Atmosphere below the F-Layer Ionosphere

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Briczinski, S. J., Jr.; Huba, J.; Montgomery, J. A., Jr.

    2017-12-01

    sea surface to measure the wave height spectrum over large areas. CARINA will provide an enhanced understanding of HF system limiting phenomena such as travelling ionospheric disturbances, field aligned irregularities, sporadic-E and bottomside ionosphere structures.This work supported by the Naval Research Laboratory Base Program.

  11. A global model of thunderstorm electricity and the prediction of whistler duct formation

    International Nuclear Information System (INIS)

    Stansbery, E.K.

    1989-01-01

    A two-dimensional numerical model is created to calculate the electric field and current that flow from a thunderstorm source into the global electrical circuit. The model includes a hemisphere in which the thunderstorm is located, an equalization layer, and a passive magnetic conjugate hemisphere. To maintain the fair weather electric field, the output current from the thunderstorm is allowed to spread out in the ionosphere or flow along the magnetic field lines into the conjugate hemisphere. The vertical current is constant up to approximately 65 km, decays and is redirected horizontally in the ionosphere. Approximately half of the current that reaches the ionosphere flows along magnetic field lines into the conjugate hemisphere while the rest is spread out in the ionosphere and redirected to the fair weather portion of the storm hemisphere. Our results show that it is important to include a realistic model of the equalization layer to evaluate the role of thunderstorm charging of the global circuit. The mapping of thunderstorm electric fields at middle and subauroral latitudes into the magnetic equatorial plane is studied. The geomagnetic field lines are assumed to be dipolar above approximately 150 km. The horizontal electric field computed in the ionosphere by our model is of sufficient size and shape for the formation of electron density irregularities in the magnetosphere. The mechanism involves a localized convection of ionization tubes by ExB drift. It is shown that the horizontal range of the electric field disturbance in the ionosphere must be within approximately 160 km to produce density irregularities necessary for the formation of whistler ducts. Although the electric field strength at ionospheric heights depends sensitively on the conductivity profile, the results presented show that whistler duct formation is possible by thunderstorm generated electric fields.*

  12. Application of Geostationary GNSS and SBAS Satellites for Studying Ionospheric TEC Disturbances of Geomagnetic and Meteorological Origin

    Science.gov (United States)

    Padokhin, A. M.; Kurbatov, G. A.; Yasyukevich, Y.; Yasyukevich, A.

    2017-12-01

    With the development of GNSS and SBAS constellations, the coherent multi-frequency L band transmissions are now available from a number of geostationary satellites. These signals can be used for ionospheric TEC estimations in the same way as widely used GPS/GLONASS signals. In this work, we compare noise patterns in TEC estimations based on different geostationary satellites data: augmentation systems (Indian GAGAN, European EGNOS and American WAAS), and Chinese COMPASS/Beidou navigation system. We show that noise level in geostationary COMPASS/Beidou TEC estimations is times smaller than noise in SBAS TEC estimation and corresponds to those of GPS/GLONASS at the same elevation angles. We discuss the capabilities of geostationary TEC data for studying ionospheric variability driven by space weather and meteorological sources at different time scales. Analyzing data from IGS/MGEX receivers we present geostationary TEC response on X-class Solar flares of current cycle, moderate and strong geomagnetic storms, including G4 St. Patrick's day Storm 2015 and recent G3 storm of the end of May 2017. We also discuss geostationary TEC disturbances in near equatorial ionosphere caused by two SSW events (minor and major final warming of 2015-2016 winter season) as well as geostationary TEC response on typhoons activity near Taiwan in autumn 2016. Our results show large potential of geostationary TEC estimations with GNSS and SBAS signals for continuous ionospheric monitoring.

  13. Role of the magnetospheric convection and inertial forces informing the planetary structure of the ionosphere-protonosphere system

    International Nuclear Information System (INIS)

    Saenko, Yu.S.; Natsvalyan, N.S.; Tepenitsyna, N.Yu.; Shagimuratov, I.I.

    1991-01-01

    Mechanisms of forming the planetary distribution of concentrations and fluxes of basic O + and H + ions are investigated on the base of a three-dimensional nonstationary model of ionosphere-protonosphere system. The leading role of diffusion, drifts and inertia in the formation of such structural features as equatorial anomaly, mid-latitudinal gap, polar tail in F2-layer and plasmosphere, plasmosphere, plasma gap and polar wind in protonosphere, as well as regions with increased concentrations of heavy O + ions in the polar wind and plasmosphere, is demonstrated

  14. Ionospheric data for two solar cycles available online

    International Nuclear Information System (INIS)

    Bilitza, D.; Papitashvili, N.; Grebowsky, J.; Schar, W.

    2002-01-01

    We report about a project that has as its goal to make a large volume of ionospheric satellite insitu data from the sixties, seventies and early eighties easily accessible for public use The original data exist in various machine-specific, highly compressed, binary encoding on 7- or 9-track magnetic tapes. The intent is to decode the data format and convert all data sets to a common ASCII data format and add solar and magnetic indices for user convenience. The original intent of producing CD-ROMs with these data has meanwhile been overtaken by the rapid development of the internet. Most users now prefer to obtain the data directly online and greatly value web-interfaces to browse, plot and subset the data. Accordingly, the focus has shifted to making the data available online on the anonymous ftp site of NASA's National Space Science Data Center (NSSDC) at ftp://nssdcftp.gsfc.nasa.gov/spacecraft data/ and on the development of a web-interface (ATMOWeb, http://nssdc.gsfc.nasa.gov/ atmoweb/) to help users study the data and select interesting time periods. The data considered by this project include data sets from the Alouette I, BE-B (Explorer 22), Alouette 2, DME-A (Explorer 31) , AE-B (Explorer 32), AE-C, -D, -E, OGO-6, ESRO-4, ISIS-I, -2, AEROS-I, -2 Taiyo, ISS-b, Hinotori and DE-2 satellites. The data are primarily electron and ion densities and temperatures measured by Langmuir Probes (LP), Retarding Potential Analyzers (RPA), and Ion Mass Spectrometers (IMS) flown on these satellites. The time resolution of the measurements is typically seconds to minutes. This data base covering almost two solar cycles is a unique asset for studies of the variation and variability of ionospheric parameters. It will be an important element in the quest for a better understanding of ionospheric plasma processes and for improved predictions of ionospheric Space Weather. Current models are still very limited in their predictive capabilities especially at equatorial and auroral

  15. Modeling ionospheric pre-reversal enhancement and plasma bubble growth rate using data assimilation

    Science.gov (United States)

    Rajesh, P. K.; Lin, C. C. H.; Chen, C. H.; Matsuo, T.

    2017-12-01

    We report that assimilating total electron content (TEC) into a coupled thermosphere-ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward pre-reversal enhancement (PRE) electric field (E-field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature and compositions are adjusted simultaneously. The improvement of dusk-side PRE E-field over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E-field promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E-field is enabled through self-consistent thermosphere and ionosphere coupling processes captured in the model. The assimilative outputs are further utilized to calculate the flux tube integrated Rayleigh-Taylor instability growth rate during March 2015 for investigation of global plasma bubble occurrence. Significant improvements in the calculated growth rates could be achieved because of the improved update of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.

  16. The Initial Results from the LITN of the FORMOSAT-3 TBB Program

    Directory of Open Access Journals (Sweden)

    Tung Yuan Hsiao

    2009-01-01

    Full Text Available Beginning in 2006, four ground stations located at Chung-Li (25.136°N, 121.539°E, TasoTun (23.981°N, 120.697°E, CheCheng (22.725°N, 120.544°E, and tropical Itu Aba Island (10.06°N, 114.350°E were set up to receive beacon signals from six FORMOSAT-3/COSMIC (Bernhardt et al. 2000 and other NNSS-like satellites. By applying differential Doppler technique on three quadrature components of the three-band beacon signals, we were able to obtain total electric contents (TEC values and scintillation along the radio path through the ionosphere. Such measurements can be used to derive regional ionospheric irregularity and tomography. In this paper, we have confirmed the power patterns contributed from the transmitting antennas on board FS3/COSMIC and the ground-based receiving antennas. The multiplicative algebraic reconstruction technique (MART algorithm has also been implemented to reconstruct ionospheric tomography images. Observations of the diurnal variations and the dynamics of equatorial anomaly showed that the equatorial anomaly appeared at 0800 LT, and then subsequently moved toward the Earth's poles. The north crest was strongest at ~1300 LT and its core was located at about 10°N of the magnetic latitude (~20°N geographic latitude. Afterwards, the crest moved toward the equator after sunset and disappeared after midnight.

  17. A climatological morphology of ionospheric disturbances at high and polar latitudes

    Directory of Open Access Journals (Sweden)

    Dimitris N. Fotiadis

    2016-01-01

    Full Text Available After a historical introduction on the first well-documented observations of ionospheric phenomena and a review of the current, state-of-the art polar ionospheric studies, a climatological morphology of the irregular F-region plasma structures at high and polar latitudes is being presented, following a feature-aided pattern recognition method. Using the available in three solar cycles hourly foF2 data from 18 ionosonde stations, an ionospheric definition of disturbed conditions, independent of any causative mechanism, is being applied and positive/negative disturbances of duration smaller than 24 hours are sorted out. No latitudinal/longitudinal bins or seasons are defined and disturbances in each month and station are handled separately while four local time intervals of storm commencement are considered, according to solar zenith angle. A median profile per disturbance is produced only when a minimum occurrence probability is satisfied. Non-systematic features are excluded from this analysis by careful selection of the time window under morphological investigation. First, the median profiles of disturbance patterns are fitted to standard distributions and then, if they fail, they are grouped according to their major characteristic features and are described by a dynamic variation envelope along with their distribution in space and time. The present model, while being a non-conditional stand-alone model of ionospheric storms at high and polar latitudes offered to radio users, may complement existing empirical models. Finally, the present model may ultimately reveal cause-effect relationships with geomagnetic field or interplanetary parameters after further correlation studies undertaken in the future.

  18. The study of the midlatitude ionospheric response to geomagnetic activity at Nagycenk Geophysical Observatory

    Science.gov (United States)

    Berényi, Kitti; Kis, Árpád; Barta, Veronika; Novák, Attila

    2016-04-01

    European ionosondes. Also we studied the prominent phenomena (e.g. TIDs- Travelling Ionospheric Disturbances), and plasma irregularities (e.g. spread-F) of the ionosphere in the function of geomagnetic activity. As we compared the occurrences of TIDs and spread-F phenomena on the quiet days with their occurrences on moderate and strong stormy days, we can see significant correlation between the magnitude of the Ae-index and the daily number of the occurrence of TIDs, but at the same time there is no definite connection between the daily number of the occurrence of spread-F phenomenas and the intensity of geomagnetic activity.

  19. The height of electron content changes in the ionosphere from ATS6 beacon data

    International Nuclear Information System (INIS)

    Davies, K.; Heron, M.L.

    1984-01-01

    A technique is described which uses relative changes in Faraday rotation and modulation phase of satellite radio signals to determine the median height of the enhancement (or depletion) in the electron density of the ionosphere. During the post sunrise formation of the F layer the incremental layers have a median height of around 210 km (+- 40) and in the afternoon the decremental median is above the peak at 340 km (+- 40) on a winter day. A winter night-time enhancement just after midnight appears as a thick layer extending upwards from the peak, with a median height at about 730 km. The method applies to large scale irregularities but not to small, dense, scintillation-causing irregularities for which Faraday and modulation phases do not represent the total electron content. (author)

  20. EEJ and EIA variations during modeling substorms with different onset moments

    Science.gov (United States)

    Klimenko, V. V.; Klimenko, M. V.

    2015-11-01

    This paper presents the simulations of four modeling substorms with different moment of substorm onset at 00:00 UT, 06:00 UT, 12:00 UT, and 18:00 UT for spring equinoctial conditions in solar activity minimum. Such investigation provides opportunity to examine the longitudinal dependence of ionospheric response to geomagnetic substorms. Model runs were performed using modified Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP). We analyzed GSM TIP simulated global distributions of foF2, low latitude electric field and ionospheric currents at geomagnetic equator and their disturbances at different UT moments substorms. We considered in more detail the variations in equatorial ionization anomaly, equatorial electrojet and counter equatorial electrojet during substorms. It is shown that: (1) the effects in EIA, EEJ and CEJ strongly depend on the substorm onset moment; (2) disturbances in equatorial zonal current density during substorm has significant longitudinal dependence; (3) the observed controversy on the equatorial ionospheric electric field signature of substorms can depend on the substorm onset moments, i.e., on the longitudinal variability in parameters of the thermosphere-ionosphere system.

  1. High Frequency Backscatter from the Polar and Auroral E-Region Ionosphere

    Science.gov (United States)

    Forsythe, Victoriya V.

    The Earth's ionosphere contains collisional and partially-ionized plasma. The electric field, produced by the interaction between the Earth's magnetosphere and the solar wind, drives the plasma bulk motion, also known as convection, in the F-region of the ionosphere. It can also destabilize the plasma in the E-region, producing irregularities or waves. Intermediate-scale waves with wavelengths of hundreds of meters can cause scintillation and fading of the Global Navigation Satellite System (GNSS) signals, whereas the small-scale waves (lambda Network (SuperDARN). The theoretical part of this work focuses on symmetry properties of the general dispersion relation that describes wave propagation in the collisional plasma in the two-stream and gradient-drift instability regimes. The instability growth rate and phase velocity are examined under the presence of a background parallel electric field, whose influence is demonstrated to break the spatial symmetry of the wave propagation patterns. In the observational part of this thesis, a novel dual radar setup is used to examine E-region irregularities in the magnetic polar cap by probing the E-region along the same line from opposite directions. The phase velocity analysis together with raytracing simulations demonstrated that, in the polar cap, the radar backscatter is primarily controlled by the plasma density conditions. In particular, when the E-region layer is strong and stratified, the radar backscatter properties are controlled by the convection velocity, whereas for a tilted E-layer, the height and aspect angle conditions are more important. Finally, the fundamental dependence of the E-region irregularity phase velocity on the component of the plasma convection is investigated using two new SuperDARN radars at high southern latitudes where plasma convection estimates are accurately deduced from all SuperDARN radars in the southern hemisphere. Statistical analysis is presented showing that the predominance of the

  2. Filamentary Alfvénic structures excited at the edges of equatorial plasma bubbles

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2007-11-01

    Full Text Available Recent observations performed by the French DEMETER satellite at altitudes of about 710 km suggest that the generation of equatorial plasma bubbles correlates with the presence of filamentary structures of field aligned currents carried by Alfvén waves. These localized structures are located at the bubble edges. We study the dynamics of the equatorial plasma bubbles, taking into account that their motion is dictated by gravity driven and displacement currents. Ion-polarization currents appear to be crucial for the accurate description of the evolution of plasma bubbles in the high altitude ionosphere. During their eastward/westward motion the bubbles intersect gravity driven currents flowing transversely with respect to the background magnetic field. The circulation of these currents is prohibited by large density depressions located at the bubble edges acting as perfect insulators. As a result, in these localized regions the transverse currents have to be locally closed by field aligned currents. Such a physical process generates kinetic Alfvén waves which appear to be stationary in the plasma bubble reference frame. Using a two-dimensional model and "in situ" wave measurements on board the DEMETER spacecraft, we give estimates for the magnitude of the field aligned currents and the associated Alfvén fields.

  3. F region electron density irregularity spectra near Auroral acceleration and shear regions

    International Nuclear Information System (INIS)

    Basu, S.; Basu, S.; MacKenzie, E.; Coley, W.R.; Hanson, W.B.; Lin, C.S.

    1984-01-01

    Spectral characteristics of auroral F region irregularities were studied by the use of high-resolution (approx.35 m) density measurements made by the retarding potential analyzer (RPA) on board the Atmosphere Explorer D (AE-D) satellite during two orbits when the satellite was traversing the high-latitude ionosphere in the evening sector. Coordinated DMSP passes provided synoptic coverage of auroral activity. The auroral energy input was estimated by intergrating the low-energy electron (LEE) data on AE-D. It was found that the one-dimensional in situ spectral index (p 1 ) of the irregularities at scale lengths of 1 values of approx.-3. This is interpreted as resulting from the effects of E region conductivity on the F region irregularity structure. The regions in between the precipitation structures, where presumably the E region conductivity was small, were generally associated with large shears in the horizontal E-W drifts and large velocities, as measured by the ion drift meter on board AE-D. The maximum drifts measured were approx.2 km s -1 , corresponding to an electric field of 100 mV m -1 . The large-velocity regions were also associated with substantial ion heating and electron density depletions. The largest shear magnitudes observed were approx.80 m s -1 km -1 , and the shear gradient scale lengths were approx.10 km, which was approximately the resolution of the ion drift meter data set used. The spectral characteristics of irregularities in the large, variable flow regions were very different, with p 1 being approx.-1

  4. Equatorial electrojet in east Brazil longitudes

    Indian Academy of Sciences (India)

    dip latitude as the electrons/ions can move vertically along the inclined magnetic field lines. Equatorial electrojet has been extensively studied from ground, rocket ... Keywords. Equatorial electrojet; Brazilian anomaly in equatorial electrojet; asymmetries in equatorial electrojet. J. Earth Syst. Sci. 119, No. 4, August 2010, pp.

  5. PLUMEX II: A second set of coincident radar and rocket observations of equatorial spread-F

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Tsunoda, R.T.; Narcisi, R.; Holmes, J.C.

    1981-01-01

    PLUMEX II, the second rocket in a two-rocket operation that successfully executed coincident rocket and radar measurements of backscatter plumes and plasma depletions, was launched into the mid-phase of well-developed equatorial spread-F. In contrast with the first operation, the PLUMEX II results show large scale F-region irregularities only on the bottomside gradient with smaller scale irregularities (i.e., small scale structure imbedded in larger scale features) less intense than corresponding observations in PLUMEX I. The latter result could support current interpretations of east-west plume asymmetry which suggests that during initial upwelling the western wall of a plume (the PLUMEX I case) is more unstable than its eastern counterpart (the PLUMEX II case). In addition, ion mass spectrometer results are found to provide further support for an ion transport model which ''captures'' bottomside ions in an upwelling bubble and transports them to high altitudes

  6. Very high latitude F-region irregularities observed by HF-radar backscatter

    International Nuclear Information System (INIS)

    Baker, K.B.; Greenwald, R.A.; Tsunoda, R.T.

    1983-01-01

    In February and March, 1982, a coherent scatter HF radar was operated from Cleary, Alaska to observe 7- to 15-m wavelength F-region plasma irregularities near the poleward edge of the auroral zone and in the polar cap. The radar operated for five days from February 25 to March 1 and produced approximately 700,000 Doppler spectra during that time. Of those nearly 700,000 spectra, approximately 10% showed backscattered power 3 dB or more above the noise level. A ray tracing technique using electron densities determined by the Chatanika incoherent scatter radar was used to predict locations where the HF waves were approximately normal to the magnetic field. If those locations were also to contain small scale electron density structure, then one would expect them to backscatter the HF waves. Several comparisons were made between predicted and observed locations of radiowave backscatter and excellent agreement was obtained. In addition, comparisons of the Doppler velocities observed by the coherent scatter HF radar and those observed by the Chatanika radar showed good agreement, suggesting that the plasma irregularities observed by the HF radar drift with the ambient plasma. In addition, average vector velocities calculated for the entire 5-day period show a flow pattern consistent with polar cap convection models. This again indicates that the irregularities drift with the plasma, as is predicted by a number of theories of F-region plasma irregularities. In the summer of 1983, the research program begun with those measurements will be continued with a steerable phased-array HF radar located at Goose Bay, Labrador, that will view the same ionospheric region as does the Sondre Stromfjord incoherent scatter radar

  7. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    International Nuclear Information System (INIS)

    Bell, T.F.; Ngo, H.D.

    1990-01-01

    Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength

  8. Low-latitude ionospheric turbulence observed by Aureol-3 satellite

    Directory of Open Access Journals (Sweden)

    Y. Hobara

    2005-06-01

    Full Text Available Using PSD (Power Spectral Density data on electron density and electric field variations observed on board Aureol-3 satellite at low-to-mid-latitude ionosphere we analyze a scale distribution of the ionospheric turbulence in a form k, where k is the wave number and α is the spectral index. At first, high-resolution data in the near-equator region for several orbits have been processed. In this case the frequency range is from 6Hz to 100Hz (corresponding spatial scales from 80m to 1.3km, each power spectrum obeys a single power law fairly well, and the mean spectral indices are rather stable with αN=2.2±0.3 and αE=1.8±0.2, for the density and electric field, respectively. Then we produce a statistical study of 96 electric field bursts in the frequency range 10-100Hz from low-time resolution data (filter bank envelope. These bursts concentrate on the side of the Equatorial Anomaly crest (geomagnetic latitude 30-40°. Spectral indices of the bursts vary in the interval αE=2.0-2.5 but are fairly stable in seasons and local times. The electric field power of the burst has rather a large variability but has a relative increase in mean values for the summer and winter, as well as the daytime. The effect of major seismic activities toward the ionospheric turbulence is not conclusive either for the refractive index or for the electric field power. However, the mean value for the electric field power of bursts during seismic periods is larger than that for non seismic periods, and the statistical difference of the mean values is rather significant.

  9. Low-latitude ionospheric turbulence observed by Aureol-3 satellite

    Directory of Open Access Journals (Sweden)

    Y. Hobara

    2005-06-01

    Full Text Available Using PSD (Power Spectral Density data on electron density and electric field variations observed on board Aureol-3 satellite at low-to-mid-latitude ionosphere we analyze a scale distribution of the ionospheric turbulence in a form k-α, where k is the wave number and α is the spectral index. At first, high-resolution data in the near-equator region for several orbits have been processed. In this case the frequency range is from 6Hz to 100Hz (corresponding spatial scales from 80m to 1.3km, each power spectrum obeys a single power law fairly well, and the mean spectral indices are rather stable with αN=2.2±0.3 and αE=1.8±0.2, for the density and electric field, respectively. Then we produce a statistical study of 96 electric field bursts in the frequency range 10-100Hz from low-time resolution data (filter bank envelope. These bursts concentrate on the side of the Equatorial Anomaly crest (geomagnetic latitude 30-40°. Spectral indices of the bursts vary in the interval αE=2.0-2.5 but are fairly stable in seasons and local times. The electric field power of the burst has rather a large variability but has a relative increase in mean values for the summer and winter, as well as the daytime. The effect of major seismic activities toward the ionospheric turbulence is not conclusive either for the refractive index or for the electric field power. However, the mean value for the electric field power of bursts during seismic periods is larger than that for non seismic periods, and the statistical difference of the mean values is rather significant.

  10. Preliminary report of numerical simulatons of intermediate wavelength collisional Rayleigh-Taylor instability in equatorial spread F

    International Nuclear Information System (INIS)

    Keskinen, M.J.; Ossakow, S.L.; Chaturvedi, P.K.

    1980-01-01

    Computer simulations of the intermediate wavelength (100--1000 m) collisional Rayleigh-Taylor instability in local unstable regions of the postsunset bottomside (300 km) equatorial F region ionosphere have been performed. For ambient electron density gradient scale lengths L=5, 10, 15 km we find that the linearly unstable horizontal modes saturate by nonlinear generation of linearly damped vertical modes with the result that in the nonlinear regime, power laws are observed in the horizontal P(k/sub x/) proportional k/sub x//sup -n/ and vertical P(k/sub y/) proportional k/sub y//sup -n/ one-dimensional power spectra with n=2--2.5. These results are consistent both with in situ experimental data and with theoretical prediction

  11. Electric field versus neutral wind control of the equatorial anomaly under quiet and disturbed condition: A global perspective from SUNDIAL 86

    International Nuclear Information System (INIS)

    Abdu, M.A.; Sobral, J.H.A.; Trivedi, N.B.; Reddy, B.M.; Fejer, B.G.; Szuszczewicz, E.P.; Walker, G.O.; Kikuchi, T.

    1990-01-01

    Developments of equatorial Ionization Anomaly (EIA) under quiescent and disturbed ionospheric conditions are investigated using the data collected from the low-latitude network of ionosondes and magnetometers operated at different longitude sectors of the globe as a part of the SUNDIAL 86 campaign (22 September to 3 October, 1986). Based on case studies of EIA developments, attention is focused on identifiying the EIA response to changes in the electric fields associated with the equatorial electrojet and counter electrojet events. The response time of the EIA to electric field changes is found to vary from 2.5 to 4 h. An anomalous EIA development observed in the morning sector on September 23 suggested possible electric field penetration to low latitude during a substorm energy storage/Dst development phase. The analysis also shows that the afternoon EIA could be inhibited due to equatorward blowing disturbed neutral winds. The results of the present analysis emphasize the need for pursuing further investigations for the response of EIA to magnetosphere-induced disturbances

  12. Effect of solar and magnetic activity on VHF scintillations near the equatorial anomaly crest

    Directory of Open Access Journals (Sweden)

    R. P. Singh

    2004-09-01

    Full Text Available The VHF amplitude scintillation recorded during the period January 1991 to December 1993 in the declining phase of a solar cycle and April 1998 to December 1999 in the ascending phase of the next solar cycle at Varanasi (geogr. lat.=25.3°, long.=83.0°, dip=37°N have been analyzed to study the behavior of ionospheric irregularities during active solar periods and magnetic storms. It is shown that irregularities occur at arbitrary times and may last for <30min. A rise in solar activity increases scintillations during winter (November-February and near equinoxes (March-April; September-October, whereas it depresses the scintillations during the summer (May-July. In general, the role of magnetic activity is to suppress scintillations in the pre-midnight period and to increase it in the post-midnight period during equinox and winter seasons, whilst during summer months the effect is reversed. The pre-midnight scintillation is sometimes observed when the main phase of Dst corresponds to the pre-midnight period. The annual variation shows suppression of scintillations on disturbed days, both during pre-midnight and post-midnight period, which becomes more effective during years of high solar activity. It is observed that for magnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time. If the magnetic storm occurred during daytime, then the probability of occurrence of scintillations during the night hours is decreased. The penetration of magnetospheric electric fields to the magnetic equator affects the evolution of low-latitude irregularities. A delayed disturbance dynamo electric field also affects the development of irregularities.

  13. Ionosphere Waves Service - A demonstration

    Science.gov (United States)

    Crespon, François

    2013-04-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service was developed by ionosphere experts to answer several questions: How make the old ionosphere missions more valuable? How provide scientific community with a new insight on wave processes that take place in the ionosphere? The answer is a unique data mining service accessing a collection of topical catalogues that characterize a huge number of Atmospheric Gravity Waves, Travelling Ionosphere Disturbances and Whistlers events. The Ionosphere Waves Service regroups databases of specific events extracted by experts from a ten of ionosphere missions which end users can access by applying specific searches and by using statistical analysis modules for their domain of interest. The scientific applications covered by the IWS are relative to earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations. In this presentation we propose to detail the service design, the hardware and software architecture, and the service functions. The service interface and capabilities will be the focus of a demonstration in order to help potential end-users for their first access to the Ionosphere Waves Service portal. This work is made with the support of FP7 grant # 263240.

  14. Impending ionospheric anomaly preceding the Iquique Mw8.2 earthquake in Chile on 2014 April 1

    Science.gov (United States)

    Guo, Jinyun; Li, Wang; Yu, Hongjuan; Liu, Zhimin; Zhao, Chunmei; Kong, Qiaoli

    2015-12-01

    To investigate the coupling relationship between great earthquake and ionosphere, the GPS-derived total electron contents (TECs) by the Center for Orbit Determination in Europe and the foF2 data from the Space Weather Prediction Center were used to analyse the impending ionospheric anomalies before the Iquique Mw8.2 earthquake in Chile on 2014 April 1. Eliminating effects of the solar and geomagnetic activities on ionosphere by the sliding interquartile range with the 27-day window, the TEC analysis results represent that there were negative anomalies occurred on 15th day prior to the earthquake, and positive anomalies appeared in 5th day before the earthquake. The foF2 analysis results of ionosonde stations Jicamarca, Concepcion and Ramey show that the foF2 increased by 40, 50 and 45 per cent, respectively, on 5th day before the earthquake. The TEC anomalous distribution indicates that there was a widely TEC decrement over the epicentre with the duration of 6 hr on 15th day before the earthquake. On 5th day before the earthquake, the TEC over the epicentre increased with the amplitude of 15 TECu, and the duration exceeded 6 hr. The anomalies occurred on the side away from the equator. All TEC anomalies in these days were within the bounds of equatorial anomaly zone where should be the focal area to monitor ionospheric anomaly before strong earthquakes. The relationship between ionospheric anomalies and geomagnetic activity was detected by the cross wavelet analysis, which implied that the foF2 was not affected by the magnetic activities on 15th day and 5th day prior to the earthquake, but the TECs were partially affected by anomalous magnetic activity during some periods of 5th day prior to the earthquake.

  15. Modeling ionospheric foF2 by using empirical orthogonal function analysis

    Directory of Open Access Journals (Sweden)

    E. A

    2011-08-01

    Full Text Available A similar-parameters interpolation method and an empirical orthogonal function analysis are used to construct empirical models for the ionospheric foF2 by using the observational data from three ground-based ionosonde stations in Japan which are Wakkanai (Geographic 45.4° N, 141.7° E, Kokubunji (Geographic 35.7° N, 140.1° E and Yamagawa (Geographic 31.2° N, 130.6° E during the years of 1971–1987. The impact of different drivers towards ionospheric foF2 can be well indicated by choosing appropriate proxies. It is shown that the missing data of original foF2 can be optimal refilled using similar-parameters method. The characteristics of base functions and associated coefficients of EOF model are analyzed. The diurnal variation of base functions can reflect the essential nature of ionospheric foF2 while the coefficients represent the long-term alteration tendency. The 1st order EOF coefficient A1 can reflect the feature of the components with solar cycle variation. A1 also contains an evident semi-annual variation component as well as a relatively weak annual fluctuation component. Both of which are not so obvious as the solar cycle variation. The 2nd order coefficient A2 contains mainly annual variation components. The 3rd order coefficient A3 and 4th order coefficient A4 contain both annual and semi-annual variation components. The seasonal variation, solar rotation oscillation and the small-scale irregularities are also included in the 4th order coefficient A4. The amplitude range and developing tendency of all these coefficients depend on the level of solar activity and geomagnetic activity. The reliability and validity of EOF model are verified by comparison with observational data and with International Reference Ionosphere (IRI. The agreement between observations and EOF model is quite well, indicating that the EOF model can reflect the major changes and the temporal distribution characteristics of the mid-latitude ionosphere of the

  16. Ionospheric modification induced by high-power HF transmitters: a potential for extended range VHF--UHF communications and plasma physics research

    International Nuclear Information System (INIS)

    Utlaut, W.F.

    1975-01-01

    When the ionized upper atmosphere of the earth is illuminated by high-power HF radio waves at appropriate frequencies, the temperature of electrons in the ionosphere can be raised substantially. In addition, radio waves with sufficient energy cause parametric instabilities that generate a spectrum of intense plasma waves. Observations of these phenomena have produced new understanding of plasma processes. One consequence of heating and plasma wave generation is that irregularities are formed in the electron distribution which are aligned with the earth's magnetic field. Because of this, a scatterer of large radar cross section is produced, which scatters HF through UHF communication signals over long distance paths, that would not otherwise be normally possible by ionospheric means. Results of radio, radar, communication, and photometric experiments that explored the characteristics of the volume of ionosphere which has been intentionally modified, temporarily, above facilities near Boulder (Platteville), Colo., and at Arecibo, Puerto Rico are summarized

  17. Numerical modeling of the equatorial ionization anomaly (EIA), equatorial temperature and wind anomaly (ETWA) and equatorial electron temperature anomaly (EETA) on the basis of the GSM TIP

    Science.gov (United States)

    Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.

    On the basis of Global Self-consistent Model of Thermosphere Ionosphere and Protonosphere GSM TIP developed in WD IZMIRAN the calculations of the behavior of thermosphere F-region and upper ionosphere parameters at middle and low geomagnetic latitudes are carried out The calculations were carried out with use the new block of the calculation of electric fields in the ionosphere in which the decision of the three-dimensional equation describing the law of the conservation of the full current density in the ionosphere of the Earth is realized by adduction it to the two-dimensional by integration on the thickness of the current conductive layer of the ionosphere along equipotential geomagnetic field lines The calculations of the neutral atmosphere composition and temperature were executed with use of the MSIS model The quite geomagnetic conditions of the equinox were considered in the minimum of the solar activity There are presented the calculated global distributions of the critical frequency of the F2-layer of ionosphere for the different moments UT the latitudinal course of the N e and T e in the F-region and upper ionosphere in the vicinity of geomagnetic equator and unrolling on UT of the calculated velocities of zonal component of the thermospheric wind and ion temperature in the F-region of ionosphere as well as critical frequency and height of the F2-layer maximum of the ionosphere at three longitude chains of the stations Brazilian -- Fortaleza 4 0 r S 38 0 r W Jicamarca 11 9 r S 76 0 r W Cachoeira

  18. VLF wave generation by beating of two HF waves in the ionosphere

    Science.gov (United States)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2011-05-01

    Theory of a beat-wave mechanism for very low frequency (VLF) wave generation in the ionosphere is presented. The VLF current is produced by beating two high power HF waves of slightly different frequencies through the nonlinearity and inhomogeneity of the ionospheric plasma. Theory also shows that the density irregularities can enhance the beat-wave generation. An experiment was conducted by transmitting two high power HF waves of 3.2 MHz and 3.2 MHz + f, where f = 5, 8, 13, and 2.02 kHz, from the HAARP transmitter. In the experiment, the ionosphere was underdense to the O-mode heater, i.e., the heater frequency f0 > foF2, and overdense or slightly underdense to the X-mode heater, i.e., f0 < fxF2 or f0 ≥ fxF2. The radiation intensity increased with the VLF wave frequency, was much stronger with the X-mode heaters, and was not sensitive to the electrojet. The strongest VLF radiation of 13 kHz was generated when the reflection layer of the X-mode heater was just slightly below the foF2 layer and the spread of the O-mode sounding echoes had the largest enhancement, suggesting an optimal setting for beat-wave generation of VLF waves by the HF heaters.

  19. Scintillation measurements at Bahir Dar during the high solar activity phase of solar cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens; Sato, Hiroatsu [German Aerospace Center (DLR), Neustrelitz (Germany). Inst. of Communications and Navigation; Mersha, Mogese Wassaie [Bahir Dar Univ. (Ethiopia). Washera Geospace and Radar Science Lab.

    2017-04-01

    Small-scale ionospheric disturbances may cause severe radio scintillations of signals transmitted from global navigation satellite systems (GNSSs). Consequently, smallscale plasma irregularities may heavily degrade the performance of current GNSSs such as GPS, GLONASS or Galileo. This paper presents analysis results obtained primarily from two high-rate GNSS receiver stations designed and operated by the German Aerospace Center (DLR) in cooperation with Bahir Dar University (BDU) at 11.6 N, 37.4 E. Both receivers collect raw data sampled at up to 50 Hz, from which characteristic scintillation parameters such as the S4 index are deduced. This paper gives a first overview of the measurement setup and the observed scintillation events over Bahir Dar in 2015. Both stations are located close to one another and aligned in an east-west, direction which allows us to estimate the zonal drift velocity and spatial dimension of equatorial ionospheric plasma irregularities. Therefore, the lag times of moving electron density irregularities and scintillation patterns are derived by applying cross-correlation analysis to high-rate measurements of the slant total electron content (sTEC) along radio links between a GPS satellite and both receivers and to the associated signal power, respectively. Finally, the drift velocity is derived from the estimated lag time, taking into account the geometric constellation of both receiving antennas and the observed GPS satellites.

  20. Space weather effects on lower ionosphere: First investigation from Bharati station during 34th Indian scientific expedition to Antarctica

    Science.gov (United States)

    Guha, Anirban; Saha, Kumarjit; De, Barin Kumar; Subrahmanyam, Kandula Venkata; Shreedevi, P. R.

    2017-04-01

    We investigate the solar flare effects on the D-region of the ionosphere with the help of VLF (Very Low Frequency) radio waves using a portable E-field system from Antarctica during the summer period of 34th Indian scientific expedition. Two GPS time synchronized VLF receivers, one located at Bharati, Antarctica (geographical latitude 69.40°S, longitude 76.18°E) and another located at Tripura, India (geographical latitude 23.84°N, longitude 91.28°E) were operated simultaneously to infer common mode changes in the lower ionosphere for a number of solar flares events. The two systems constantly monitored the carrier amplitude and phase of the MSK (Minimum Shift Keying) modulated navy transmitter located in Australia (Callsign: NWC, 19.8 kHz, geographical latitude 21.88°S, longitude 114.13°E), around 5.6 Mm great circle distance from the two receivers. The results are interpreted in terms of Earth-ionosphere wave-guide characteristics. A Long Wave Propagation Capability (LWPC) model study is also performed to infer the changes in the daytime electron density in polar D-region ionosphere during the solar flares. The exponential fit of the modeled electron density change with average X-ray flux change shows an excellent correlation (R2 value 0.95). The exponential fit is utilized to infer the daytime electron density change in the polar ionosphere during solar flare events. The analyses indicate that small solar flares of class 'C' can be very effectively detected with the portable antenna system even if the receiver is located in polar coastal region compared to equatorial region. The expedition results also demonstrate the feasibility of using portable VLF receivers from the coastal stations for monitoring the polar lower ionosphere from Antarctica and open up new opportunities for long term exploration.

  1. Effects of sporadic E-layer characteristics on spread-F generation in the nighttime ionosphere near a northern equatorial anomaly crest during solar minimum

    Science.gov (United States)

    Lee, C. C.; Chen, W. S.

    2015-06-01

    This study is to know how the characteristics of sporadic E-layer (Es-layer) affect the generation of spread-F in the nighttime ionosphere near the crest of equatorial ionization anomaly during solar minimum. The data of Es-layer parameters and spread-F are obtained from the Chungli ionograms of 1996. The Es-layer parameters include foEs (critical frequency of Es-layer), fbEs (blanketing frequency of Es-layer), and Δf (≡foEs-fbEs). Results show that the nighttime variations of foEs and fbEs medians (Δf medians) are different from (similar to) that of the occurrence probabilities of spread-F. Because the total number of Es-layer events is greater than that of spread-F events, the comparison between the medians of Es-layer parameters and the occurrence probabilities of spread-F might have a shortfall. Further, we categorize the Es-layer and spread-F events into each frequency interval of Es-layer parameters. For the occurrence probabilities of spread-F versus foEs, an increasing trend is found in post-midnight of all three seasons. The increasing trend also exists in pre-midnight of the J-months and in post-midnight of all seasons, for the occurrence probabilities of spread-F versus Δf. These demonstrate that the spread-F occurrence increases with increasing foEs and/or Δf. Moreover, the increasing trends indicate that polarization electric fields generated in Es-layer assist to produce spread-F, through the electrodynamical coupling of Es-layer and F-region. Regarding the occurrence probabilities of spread-F versus fbEs, the significant trend only appears in post-midnight of the E-months. This implies that fbEs might not be a major factor for the spread-F formation.

  2. Impact of non-migrating tides on the low latitude ionosphere during a sudden stratospheric warming event in January 2010

    Science.gov (United States)

    McDonald, S. E.; Sassi, F.; Tate, J.; McCormack, J.; Kuhl, D. D.; Drob, D. P.; Metzler, C.; Mannucci, A. J.

    2018-06-01

    The lower atmosphere contributes significantly to the day-to-day variability of the ionosphere, especially during solar minimum conditions. Ionosphere/atmosphere model simulations that incorporate meteorology from data assimilation analysis products can be critically important for elucidating the physical processes that have substantial impact on ionospheric weather. In this study, the NCAR Whole Atmosphere Community Climate Model, extended version with specified dynamics (SD-WACCM-X) is coupled with an ionospheric model (Sami3 is Another Model of the Ionosphere) to study day-to-day variability in the ionosphere during January 2010. Lower atmospheric weather patterns are introduced into the SAMI3/SD-WACCM-X simulations using the 6-h Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) data assimilation products. The same time period is simulated using the new atmospheric forecast model, the High Altitude Navy Global Environmental Model (HA-NAVGEM), a hybrid 4D-Var prototype data assimilation with the ability to produce meteorological fields at a 3-h cadence. Our study shows that forcing SD-WACCM-X with HA-NAVGEM better resolves the semidiurnal tides and introduces more day-to-day variability into the ionosphere than forcing with NOGAPS-ALPHA. The SAMI3/SD-WACCM-X/HA-NAVGEM simulation also more accurately captures the longitudinal variability associated with non-migrating tides in the equatorial ionization anomaly (EIA) region as compared to total electron content (TEC) maps derived from GPS data. Both the TEC maps and the SAMI3/SD-WACCM-X/HA-NAVGEM simulation show an enhancement in TEC over South America during 17-21 January 2010, which coincides with the commencement of a stratospheric warming event on 19 January 2010. Analysis of the SAMI3/SD-WACCM-X/HA-NAVGEM simulations indicates non-migrating tides (including DW4, DE2 and SW5) played a role during 17-21 January in shifting the phase of the wave-3 pattern in

  3. High latitude ionospheric structure

    International Nuclear Information System (INIS)

    1984-06-01

    The Earth's ionosphere is an important element in solar-terrestrial energy transfer processes. As a major terrestrial sink for many solar and magnetospheric events, the ionosphere has characteristic features that are traced to such seemingly remote phenomena as solar flares, radiation belt wave-particle interactions and magnetospheric substorms. In considering the multiple of solar-terrestrial plasma interactions, it is important to recognize that the high-latitude ionosphere is not altogether a simple receptor of various energy deposition processes. The high-altitude ionosphere plays an active feedback role by controlling the conductivity at the base of far-reaching magnetic field lines and by providing a plasma source for the magnetosphere. Indeed, the role of the ionosphere during magnetospheric substorms is emerging as a topic for meaningful study in the overall picture of magnetospheric-ionospheric coupling

  4. COMPENSATION OF THE IONOSPHERIC EFFECTS ON SAR INTERFEROGRAM BASED ON RANGE SPLIT-SPECTRUM AND AZIMUTH OFFSET METHODS – A CASE STUDY OF YUSHU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    Y. F. He

    2018-04-01

    Full Text Available InSAR technique can measure the surface deformation with the accuracy of centimeter-level or even millimeter and therefore has been widely used in the deformation monitoring associated with earthquakes, volcanoes, and other geologic process. However, ionospheric irregularities can lead to the wavy fringes in the low frequency SAR interferograms, which disturb the actual information of geophysical processes and thus put severe limitations on ground deformations measurements. In this paper, an application of two common methods, the range split-spectrum and azimuth offset methods are exploited to estimate the contributions of the ionosphere, with the aim to correct ionospheric effects in interferograms. Based on the theoretical analysis and experiment, a performance analysis is conducted to evaluate the efficiency of these two methods. The result indicates that both methods can mitigate the ionospheric effect in SAR interferograms and the range split-spectrum method is more precise than the other one. However, it is also found that the range split-spectrum is easily contaminated by the noise, and the achievable accuracy of the azimuth offset method is limited by the ambiguous integral constant, especially with the strong azimuth variations induced by the ionosphere disturbance.

  5. Generation of a severe convective ionospheric storm under stable Rayleigh–Taylor conditions: triggering by meteors?

    Directory of Open Access Journals (Sweden)

    M. C. Kelley

    2016-02-01

    Full Text Available Here we report on four events detected using the Jicamarca Radio Observatory (JRO over an 18-year period, in which huge convective ionospheric storms (CISs occur in a stable ionosphere. We argue that these rare events could be initiated by meteor-induced electric fields. The meteor-induced electric fields map to the bottomside of the F region, causing radar echoes and a localized CIS. If and when a localized disturbance reaches 500 km, we argue that it becomes two-dimensionally turbulent and cascades structure to both large and small scales. This leads to long-lasting structure and, almost certainly, to scintillations over a huge range of latitudes some ±15° wide and to 3 m irregularities, which backscatter the VHF radar waves. These structures located at high altitudes are supported by vortices shed by the upwelling bubble in a vortex street.

  6. An ionospheric index suitable for estimating the degree of ionospheric perturbations

    Science.gov (United States)

    Wilken, Volker; Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens

    2018-03-01

    Space weather can strongly affect trans-ionospheric radio signals depending on the used frequency. In order to assess the strength of a space weather event from its origin at the sun towards its impact on the ionosphere a number of physical quantities need to be derived from scientific measurements. These are for example the Wolf number sunspot index, the solar flux density F10.7, measurements of the interplanetary magnetic field, the proton density, the solar wind speed, the dynamical pressure, the geomagnetic indices Auroral Electrojet, Kp, Ap and Dst as well as the Total Electron Content (TEC), the Rate of TEC, the scintillation indices S4 and σ(ϕ) and the Along-Arc TEC Rate index index. All these quantities provide in combination with an additional classification an orientation in a physical complex environment. Hence, they are used for brief communication of a simplified but appropriate space situation awareness. However, space weather driven ionospheric phenomena can affect many customers in the communication and navigation domain, which are still served inadequately by the existing indices. We present a new robust index, that is able to properly characterize temporal and spatial ionospheric variations of small to medium scales. The proposed ionospheric disturbance index can overcome several drawbacks of other ionospheric measures and might be suitable as potential driver for an ionospheric space weather scale.

  7. The topside ionosphere above Arecibo at equinox during sunspot maximum

    International Nuclear Information System (INIS)

    Bailey, G.J.

    1980-01-01

    The coupled time-dependent 0 + and H + continuity and momentum equations and 0 + , H + and electron heat balance equations are solved simultaneously within the L = 1.4 (Arecibo) magnetic flux tube between an altitude of 120 km and the equatorial plane. The results of the calculations are used in a study of the topside ionosphere above Arecibo at equinox during sunspot maximum. Magnetically quiet conditions are assumed. The results of the calculations show that the L = 1.4 magnetic flux tube becomes saturated from an arbitrary state within 2-3 days. During the day the ion content of the magnetic flux tube consists mainly of 0 + whereas 0 + and H + are both important during the night. There is an altitude region in the topside ionosphere during the day where ion-counterstreaming occurs with H + flowing downward and 0 + flowing upward. The conditions causing this ion-counterstreaming are discussed. There is a net chemical gain of H + at the higher altitudes. This H + diffuses both upwards and downwards whilst 0 + diffuses upwards from its solar e.u.v. production source which is most important at the lower altitudes. During the night the calculated 0 + and H + temperatures are very nearly equal whereas during the day there are occasions when the H + temperature exceeds the 0 - temperature by about 300 K. (author)

  8. First in situ measurement of electric field fluctuations during strong spread F in the Indian zone

    Directory of Open Access Journals (Sweden)

    H. S. S. Sinha

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip 14°N along with other experiments, as a part of equatorial spread F (ESF campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160-190 km, 210-257 km and 290-330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km, in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210-257 km showed a tendency to become slightly flatter (spectral index n = -2.1 ± 0.7 as compared to the valley region (n = -3.6 ± 0.8 and the region below the F peak (n = -2.8 ± 0.5. Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160-330 km region.

    Keywords: Ionosphere (Electric fields and currents; ionospheric irregularities; Radio science (ionospheric physics

  9. Ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, C [Centre National d' Etudes des Telecommunications (CNET), 92 - Issy-les-Moulineaux (France)

    1977-11-01

    This paper comprises four parts. The first one deals with the neutral atmosphere, its structure, its composition, its variations. The second one describes the ionospheric plasma, (the ionized part) and explains its formation. The influence of the geomagnetic field is discussed in the third chapter, the fourth one being concerned with the means of studying the ionosphere: ionograms obtained by ionosondes or incoherent scattering sounding or from satellite measurements.

  10. Performance evaluation of linear time-series ionospheric Total Electron Content model over low latitude Indian GPS stations

    Science.gov (United States)

    Dabbakuti, J. R. K. Kumar; Venkata Ratnam, D.

    2017-10-01

    Precise modeling of the ionospheric Total Electron Content (TEC) is a critical aspect of Positioning, Navigation, and Timing (PNT) services intended for the Global Navigation Satellite Systems (GNSS) applications as well as Earth Observation System (EOS), satellite communication, and space weather forecasting applications. In this paper, linear time series modeling has been carried out on ionospheric TEC at two different locations at Koneru Lakshmaiah University (KLU), Guntur (geographic 16.44° N, 80.62° E; geomagnetic 7.55° N) and Bangalore (geographic 12.97° N, 77.59° E; geomagnetic 4.53° N) at the northern low-latitude region, for the year 2013 in the 24th solar cycle. The impact of the solar and geomagnetic activity on periodic oscillations of TEC has been investigated. Results confirm that the correlation coefficient of the estimated TEC from the linear model TEC and the observed GPS-TEC is around 93%. Solar activity is the key component that influences ionospheric daily averaged TEC while periodic component reveals the seasonal dependency of TEC. Furthermore, it is observed that the influence of geomagnetic activity component on TEC is different at both the latitudes. The accuracy of the model has been assessed by comparing the International Reference Ionosphere (IRI) 2012 model TEC and TEC measurements. Moreover, the absence of winter anomaly is remarkable, as determined by the Root Mean Square Error (RMSE) between the linear model TEC and GPS-TEC. On the contrary, the IRI2012 model TEC evidently failed to predict the absence of winter anomaly in the Equatorial Ionization Anomaly (EIA) crest region. The outcome of this work will be useful for improving the ionospheric now-casting models under various geophysical conditions.

  11. Occurrence of the blanketing sporadic E layer during the recovery phase of the October 2003 superstorm

    Science.gov (United States)

    Denardini, Clezio Marcos; Resende, Laysa Cristina Araújo; Moro, Juliano; Chen, Sony Su

    2016-05-01

    We have routinely monitored the total frequency ( ftEs) and the blanketing frequency ( fbEs) of sporadic E layers with the digital sounder under the magnetic equator in the Brazilian sector. Sporadic layers appear in the equatorial region (Esq) at heights between 90 and 130 km, mainly due to irregularities in the equatorial electrojet current. However, during the recovery phase of the October 2003 superstorm, an anomalous intensification of the ionospheric density that exceeded the normal ambient background values for local time and location was observed. The parameter fbEs rose to almost 7.5 MHz during this event, due to a type "c" blanketing sporadic layer (Esc), which is driven by wind shear. This result is discussed in terms of the atmosphere dynamics based on magnetic signature of the equatorial electrojet current using magnetometer data. Also, using data measured by sensors onboard the Geostationary Operational Environmental Satellite (GOES) 10 we analyze the possible influence of the solar flare-associated X-ray flux as an additional source of ionization.

  12. Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results

    Science.gov (United States)

    Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.

    2012-04-01

    Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems

  13. Solar cycle signatures in the NCEP equatorial annual oscillation

    Science.gov (United States)

    Mayr, H. G.; Mengel, J. G.; Huang, F. T.; Nash, E. R.

    2009-08-01

    Our analysis of temperature and zonal wind data (1958 to 2006) from the National Center for Atmospheric Research (NCAR) reanalysis (Re-1), supplied by the National Centers for Environmental Prediction (NCEP), shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO) contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC). The spectral features from the 48-year data record reveal modulation signatures of 9.6 and 12 years, which produce EAO variations that mimic in limited altitude regimes the varying maxima and minima of the 10.7 cm flux solar index. Above 20 km, the spectra also contain modulation signatures with periods around 11 years, but the filtered variations are too irregular to suggest that systematic SC forcing is the principal agent.

  14. Solar cycle signatures in the NCEP equatorial annual oscillation

    Directory of Open Access Journals (Sweden)

    H. G. Mayr

    2009-08-01

    Full Text Available Our analysis of temperature and zonal wind data (1958 to 2006 from the National Center for Atmospheric Research (NCAR reanalysis (Re-1, supplied by the National Centers for Environmental Prediction (NCEP, shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC. The spectral features from the 48-year data record reveal modulation signatures of 9.6 and 12 years, which produce EAO variations that mimic in limited altitude regimes the varying maxima and minima of the 10.7 cm flux solar index. Above 20 km, the spectra also contain modulation signatures with periods around 11 years, but the filtered variations are too irregular to suggest that systematic SC forcing is the principal agent.

  15. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    Science.gov (United States)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the

  16. Vertical and longitudinal electron density structures of equatorial E- and F-regions

    Directory of Open Access Journals (Sweden)

    P. S. Brahmanandam

    2011-01-01

    Full Text Available From global soundings of ionospheric electron density made with FORMOSAT 3/COSMIC satellites for September 2006–August 2009, day-night variations in vertical and longitudinal structures of the electron densities in equatorial E- and F-regions for different seasons are investigated for the first time. The results reveal that the wavenumber-3 and wavenumber-4 patterns dominated the nighttime (22:00–04:00 LT F-region longitudinal structures in solstice and in equinox seasons, respectively. In daytime (08:00–18:00 LT F-region, the wavenumber-4 patterns governed the longitudinal structures in the September equinox and December solstice, and wavenumber-3 in March equinox and June solstice respectively. A comparison of the daytime and nighttime longitudinal electron density structures indicates that they are approximately 180° out of phase with each other. It is believed that this out of phase relation is very likely the result of the opposite phase relation between daytime and nighttime nonmigrating diurnal tidal winds that modulate background E-region dynamo electric field at different places, leading to the day-night change in the locations of the equatorial plasma fountains that are responsible for the formation of the F-region longitudinal structures. Further, a good consistency between the locations of the density structures in the same seasons of the different years for both daytime and nighttime epochs has been noticed indicating that the source mechanism for these structures could be the same.

  17. Tsunami Ionospheric warning and Ionospheric seismology

    Science.gov (United States)

    Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan

    2014-05-01

    The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future

  18. Effect of the IMF By component on the ionospheric flow overhead at EISCAT: observations and theory

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    Full Text Available We have analysed a database of ∼300 h of tristatic ionospheric velocity measurements obtained overhead at Tromsø (66.3° magnetic latitude by the EISCAT UHF radar system, for the presence of flow effects associated with the y-component of the IMF. Since it is already known that the flow depends upon IMF Bz, a least-squares multivariate analysis has been used to determine the flow dependence on both IMF By and Bz simultaneously. It is found that significant flow variations with IMF By occur, predominantly in the midnight sector (∼2100–0300 MLT, but also pre-dusk (∼1600–1700 MLT, which are directed eastward for IMF By positive and westward for IMF By negative. The flows are of magnitude 20–30 m s–1 nT–1 in the midnight sector, and smaller, 10–20 m s–1 nT–1, pre-dusk, and are thus associated with significant changes of flow of order a few hundred m s–1 over the usual range of IMF By of about ±5 nT. At other local times the IMF By-related perturbation flows are much smaller, less than ∼5 m s–1 nT–1, and consistent with zero within the uncertainty estimates. We have investigated whether these IMF By-dependent flows can be accounted for quantitatively by a theoretical model in which the equatorial flow in the inner magnetosphere is independent of IMF By, but where distortions of the magnetospheric magnetic field associated with a "penetrating" component of the IMF By field changes the mapping of the field to the ionosphere, and hence the ionospheric flow. We find that the principal flow perturbation produced by this effect is an east-west flow whose sense is determined by the north-south component of the unperturbed flow. Perturbations in the north-south flow are typically smaller by more than an order of magnitude, and generally negligible in terms of observations. Using equatorial flows which are determined from EISCAT data for zero IMF By, to which the corotation flow has been added, the theory predicts the presence

  19. Effect of the IMF By component on the ionospheric flow overhead at EISCAT: observations and theory

    Directory of Open Access Journals (Sweden)

    H. Khan

    2000-12-01

    Full Text Available We have analysed a database of ∼300 h of tristatic ionospheric velocity measurements obtained overhead at Tromsø (66.3° magnetic latitude by the EISCAT UHF radar system, for the presence of flow effects associated with the y-component of the IMF. Since it is already known that the flow depends upon IMF Bz, a least-squares multivariate analysis has been used to determine the flow dependence on both IMF By and Bz simultaneously. It is found that significant flow variations with IMF By occur, predominantly in the midnight sector (∼2100–0300 MLT, but also pre-dusk (∼1600–1700 MLT, which are directed eastward for IMF By positive and westward for IMF By negative. The flows are of magnitude 20–30 m s–1 nT–1 in the midnight sector, and smaller, 10–20 m s–1 nT–1, pre-dusk, and are thus associated with significant changes of flow of order a few hundred m s–1 over the usual range of IMF By of about ±5 nT. At other local times the IMF By-related perturbation flows are much smaller, less than ∼5 m s–1 nT–1, and consistent with zero within the uncertainty estimates. We have investigated whether these IMF By-dependent flows can be accounted for quantitatively by a theoretical model in which the equatorial flow in the inner magnetosphere is independent of IMF By, but where distortions of the magnetospheric magnetic field associated with a "penetrating" component of the IMF By field changes the mapping of the field to the ionosphere, and hence the ionospheric flow. We find that the principal flow perturbation produced by this effect is an east-west flow whose sense is determined by the north-south component of the unperturbed flow. Perturbations in the north-south flow are typically smaller by more than an order of magnitude, and generally negligible in terms of observations. Using equatorial flows which are determined from EISCAT data for zero IMF By, to which the corotation flow has been added, the theory predicts the presence

  20. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    Science.gov (United States)

    Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.

    2008-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.

  1. An Explanation of Jupiter's Equatorially Symmetric Gravitational Field using a Four-layer, Non-spheroidal Model with Zonal Flow

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John

    2017-10-01

    The structure/amplitude of the Jovian equatorially symmetric gravitational field is affected by both rotational distortion and the fast equatorially symmetric zonal flow. We construct a fully self-consistent, four-layer, non-spheroidal (i.e, the shape is irregular) model of Jupiter that comprises an inner core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. While the core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. We solve the governing equations via a perturbation approach. The leading-order problem accounts for the full effect of rotational distortion, and determines the density, size and shape of the core, the location and thickness of the transition layer, and the shape of the 1-bar pressure level; it also produces the mass, the equatorial and polar radii of Jupiter, and the even zonal gravitational coefficients caused by the rotational distortion. The next-order problem determines the corrections caused by the zonal flow which is assumed to be confined within the molecular envelope and on cylinders parallel to the rotation axis. Our model provides the total even gravitational coefficients that can be compared with those acquired by the Juno spacecraft.

  2. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    DEFF Research Database (Denmark)

    Yuan, Y.; Tscherning, C.C.; Knudsen, Per

    2006-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) lambda of the ionospheric pierce point (IPP....... The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM...

  3. Atmosphere-Ionosphere Electrodynamic Coupling

    Science.gov (United States)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  4. Ionospheric Digital Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ionosphere is that part of the Earth's atmosphere that results mainly from the photo ionization of the upper atmosphere. Traditionally, the following ionospheric...

  5. Southern European ionospheric TEC maps based on Kriging technique to monitor ionosphere behavior

    Science.gov (United States)

    Rodríguez-Bouza, Marta; Paparini, Claudia; Otero, Xurxo; Herraiz, Miguel; Radicella, Sandro M.; Abe, Oladipo E.; Rodríguez-Caderot, Gracia

    2017-10-01

    Global or regional Maps of the ionospheric Total Electron Content (TEC) are an efficient tool to monitor the delay introduced by the ionosphere in the satellite signals. Ionospheric disturbance periods are of particular interest because these conditions can strongly affect satellite navigation range measurements. This work presents post-processing regional vertical TEC maps over Southern Europe ([35°N-50°N] latitude) obtained by applying Kriging interpolation to GPS derived TEC over more than 100 Global Navigation Satellite System (GNSS) stations. These maps are used to study the behavior of the ionosphere during space weather events and their effects. To validate these maps, hereafter called Southern European Ionospheric Maps (SEIMs), their TEC values have been compared with those obtained from EGNOS Message Server (EMS) and with direct experimental TEC data from GNSS stations. Ionospheric space weather events related to geomagnetic storms of March 17th, 2013, February 19th, 2014 and March 17th, 2015 have been selected. To test the methodology, one period of quiet days has been also analyzed. TEC values obtained by SEIMs in the Ionospheric Grid Points (IGPs) defined by EGNOS are very close to those given by EMS and in the period of major geomagnetic storms the difference does not exceed 6 TEC units. These results confirm the good performance of the technique used for obtaining the SEIMs that can be a useful tool to study the ionosphere behavior during geomagnetic storms and their effects in the region of interest.

  6. Harmonic analysis of the ionospheric electron densities retrieved from FORMOSAT-3/COSMIC radio occultation measurements

    Science.gov (United States)

    Masoumi, S.; Safari, A.; Sharifi, M.; Sam Khaniani, A.

    2011-12-01

    In order to investigate regular variations of the ionosphere, the least-squares harmonic estimation is applied to the time series of ionospheric electron densities in the region of Iran derived from about five years of Global Positioning System Radio Occultation (GPS RO) observations by FORMOSAT-3/COSMIC satellites. Although the obtained results are slightly different from the expected ones due to the low horizontal resolution of RO measurements, high vertical resolution of the observations enables us to detect not only the Total Electron Content (TEC) variations, but also periodic patterns of electron densities in different altitudes of the ionosphere. Dominant diurnal and annual signals, together with their Fourier series decompositions, and also periods close to 27 days are obtained, which is consistent with the previous analyses on TEC. In the equatorial anomaly band, the annual component is weaker than its Fourier decomposition periods. In particular, the semiannual period dominates the annual component, which is probably due to the effect of geomagnetic field. By the investigation of the frequencies at different local times, the semiannual signal is more significant than the annual one in the daytime, while the annual frequency is dominant at night. By the detection of the phases of the components, it is revealed that the annual signal has its maximum in summer at high altitudes, and in winter at lower altitudes. This suggests the effect of neutral compositions in the lower atmosphere. Further, the semiannual component peaks around equinox during the day, while its maximum mostly occurs in solstice at night. Since RO measurements can be used to derive TEC along the signal path between a GPS satellite and a receiver, study on the potentiality of using these observations for the prediction of electron densities and its application to the ionospheric correction of the single frequency receivers is suggested.

  7. Electromagnetic waves in irregular multilayered spheroidal structures of finite conductivity: full wave solutions

    International Nuclear Information System (INIS)

    Bahar, E.

    1976-01-01

    The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important

  8. Visual exploration and analysis of ionospheric scintillation monitoring data: The ISMR Query Tool

    Science.gov (United States)

    Vani, Bruno César; Shimabukuro, Milton Hirokazu; Galera Monico, João Francisco

    2017-07-01

    Ionospheric Scintillations are rapid variations on the phase and/or amplitude of a radio signal as it passes through ionospheric plasma irregularities. The ionosphere is a specific layer of the Earth's atmosphere located approximately between 50 km and 1000 km above the Earth's surface. As Global Navigation Satellite Systems (GNSS) - such as GPS, Galileo, BDS and GLONASS - use radio signals, these variations degrade their positioning service quality. Due to its location, Brazil is one of the places most affected by scintillation in the world. For that reason, ionosphere monitoring stations have been deployed over Brazilian territory since 2011 through cooperative projects between several institutions in Europe and Brazil. Such monitoring stations compose a network that generates a large amount of monitoring data everyday. GNSS receivers deployed at these stations - named Ionospheric Scintillation Monitor Receivers (ISMR) - provide scintillation indices and related signal metrics for available satellites dedicated to satellite-based navigation and positioning services. With this monitoring infrastructure, more than ten million observation values are generated and stored every day. Extracting the relevant information from this huge amount of data was a hard process and required the expertise of computer and geoscience scientists. This paper describes the concepts, design and aspects related to the implementation of the software that has been supporting research on ISMR data - the so-called ISMR Query Tool. Usability and other aspects are also presented via examples of application. This web based software has been designed and developed aiming to ensure insights over the huge amount of ISMR data that is fetched every day on an integrated platform. The software applies and adapts time series mining and information visualization techniques to extend the possibilities of exploring and analyzing ISMR data. The software is available to the scientific community through the

  9. A Laboratory Experiment on EM Backscatter from Farley-Buneman and Gradient Drift Waves

    DEFF Research Database (Denmark)

    Alport, M. J.; D'Angelo, N.; Pécseli, Hans

    1981-01-01

    Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent i...... ideas on EM scattering by equatorial and high-latitude ionospheric waves and irregularities.......Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent...

  10. Observations by the CUTLASS radar, HF Doppler, oblique ionospheric sounding, and TEC from GPS during a magnetic storm

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2005-07-01

    Full Text Available Multi-diagnostic observations, covering a significant area of northwest Europe, were made during the magnetic storm interval (28–29 April 2001 that occurred during the High Rate SolarMax IGS/GPS-campaign. HF radio observations were made with vertical sounders (St. Petersburg and Sodankyla, oblique incidence sounders (OIS, on paths from Murmansk to St. Petersburg, 1050 km, and Inskip to Leicester, 170 km, Doppler sounders, on paths from Cyprus to St. Petersburg, 2800 km, and Murmansk to St. Petersburg, and a coherent scatter radar (CUTLASS, Hankasalmi, Finland. These, together with total electron content (TEC measurements made at GPS stations from the Euref network in northwest Europe, are presented in this paper. A broad comparison of radio propagation data with ionospheric data at high and mid latitudes, under quiet and disturbed conditions, was undertaken. This analysis, together with a geophysical interpretation, allow us to better understand the nature of the ionospheric processes which occur during geomagnetic storms. The peculiarity of the storm was that it comprised of three individual substorms, the first of which appears to have been triggered by a compression of the magnetosphere. Besides the storm effects, we have also studied substorm effects in the observations separately, providing an improved understanding of the storm/substorm relationship. The main results of the investigations are the following. A narrow trough is formed some 10h after the storm onset in the TEC which is most likely a result of enhanced ionospheric convection. An enhancement in TEC some 2–3 h after the storm onset is most likely a result of heating and upwelling of the auroral ionosphere caused by enhanced currents. The so-called main effect on ionospheric propagation was observed at mid-latitudes during the first two substorms, but only during the first substorm at high latitudes. Ionospheric irregularities observed by CUTLASS were clearly related to the

  11. Response of the Ionospheric F-region in the Latin American Sector During the Intense Geomagnetic Storm of 21-22 January 2005

    Science.gov (United States)

    Sahai, Y.; Fagundes, P. R.; de Jesus, R.; de Abreu, A. J.; Crowley, G.; Pillat, V. G.; Guarnieri, F. L.; Abalde, J. R.; Bittencourt, J. A.

    2009-12-01

    Ionospheric storms are closely associated with geomagnetic storms and are an extreme example of space weather events. The response of the ionosphere to storms is rather complicated. In the present investigation, we have studied the response of the ionospheric F-region in the Latin American sector during the intense geomagnetic storm of 21-22 January 2005 (with storm sudden commencement (SSC) at 1712 UT on 21 January). This geomagnetic storm is anomalous (minimum Dst reached -105 nT at 0700 UT on 22 January) because the main phase occurred during the northward excursion of the Bz component of interplanetary magnetic fields (IMFs). The monthly mean F10.7 solar flux for the month of January 2005 was 99.0 sfu. The ionospheric F-region parameters observed at Ramey (18.5 N, 67.1 W; RAM), Puerto Rico, Jicamarca (12.0 S, 76.8 W; JIC), Peru, Manaus (2.9 S, 60.0 W; MAN), and São José dos Campos (23.2 S, 45.9 W; SJC), Brazil, during 21-22 January (geomagnetically disturbed) and 25 January (geomagnetically quiet) have been analyzed. Both JIC and MAN, the equatorial stations, show unusually rapid uplifting of the F-region peak heights(hpF2/hmF2) and a decrease in the NmF2 coincident with the time of SSC. At both RAM and SJC an uplifting of the F-region peak height is observed at about 2000 UT. The low-latitude station SJC shows a coincident decrease in NmF2 with the uplifting, whereas the mid-latitude station RAM shows a decrease in NmF2 earlier than the uplifting. Also, the observed variations in the F-region ionospheric parameters are compared with the TIMEGCM model run for 21-22 January and the model results show both similarities and differences from the observed results. Average GPS-TEC (21-22 and 25 January) and phase fluctuations (21, 22, 25, 26 January) observed at Belem (1.5 S, 48.5 W; BELE), Brasilia (15.9 S, 47.9 W; BRAZ), Presidente Prudente (22.3o S, 51.4 W; UEPP), and Porto Alegre (30.1 S, 51.1 W; POAL), Brazil, are also presented. These GPS stations belong to

  12. Why is there more ionosphere in January than in July? The annual asymmetry in the F2-layer

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    2006-12-01

    Full Text Available Adding together the northern and southern hemisphere values for pairs of stations, the combined peak electron density NmF2 is greater in December-January than in June–July. The same applies to the total height-integrated electron content. This "F2-layer annual asymmetry" between northern and southern solstices is typically 30%, and thus greatly exceeds the 7% asymmetry in ion production due to the annual variation of Sun-Earth distance. Though it was noticed in ionospheric data almost seventy years ago, the asymmetry is still unexplained.

    Using ionosonde data and also values derived from the International Reference Ionosphere, we show that the asymmetry exists at noon and at midnight, at all latitudes from equatorial to sub-auroral, and tends to be greater at solar minimum than solar maximum. We find a similar asymmetry in neutral composition in the MSIS model of the thermosphere. Numerical computations with the Coupled Thermosphere-Ionosphere-Plasmasphere (CTIP model give a much smaller annual asymmetry in electron density and neutral composition than is observed. Including mesospheric tides in the model makes little difference. After considering possible explanations, which do not account for the asymmetry, we are left with the conclusion that dynamical influences of the lower atmosphere (below about 30 km, not included in our computations, are the most likely cause of the asymmetry.

  13. Why is there more ionosphere in January than in July? The annual asymmetry in the F2-layer

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    2006-12-01

    Full Text Available Adding together the northern and southern hemisphere values for pairs of stations, the combined peak electron density NmF2 is greater in December-January than in June–July. The same applies to the total height-integrated electron content. This "F2-layer annual asymmetry" between northern and southern solstices is typically 30%, and thus greatly exceeds the 7% asymmetry in ion production due to the annual variation of Sun-Earth distance. Though it was noticed in ionospheric data almost seventy years ago, the asymmetry is still unexplained. Using ionosonde data and also values derived from the International Reference Ionosphere, we show that the asymmetry exists at noon and at midnight, at all latitudes from equatorial to sub-auroral, and tends to be greater at solar minimum than solar maximum. We find a similar asymmetry in neutral composition in the MSIS model of the thermosphere. Numerical computations with the Coupled Thermosphere-Ionosphere-Plasmasphere (CTIP model give a much smaller annual asymmetry in electron density and neutral composition than is observed. Including mesospheric tides in the model makes little difference. After considering possible explanations, which do not account for the asymmetry, we are left with the conclusion that dynamical influences of the lower atmosphere (below about 30 km, not included in our computations, are the most likely cause of the asymmetry.

  14. Irregular Applications: Architectures & Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Feo, John T.; Villa, Oreste; Tumeo, Antonino; Secchi, Simone

    2012-02-06

    Irregular applications are characterized by irregular data structures, control and communication patterns. Novel irregular high performance applications which deal with large data sets and require have recently appeared. Unfortunately, current high performance systems and software infrastructures executes irregular algorithms poorly. Only coordinated efforts by end user, area specialists and computer scientists that consider both the architecture and the software stack may be able to provide solutions to the challenges of modern irregular applications.

  15. Latitudinal profile of the ionospheric disturbance dynamo magnetic signature: comparison with the DP2 magnetic disturbance

    Directory of Open Access Journals (Sweden)

    K. Z. Zaka

    2009-09-01

    Full Text Available During magnetic storms, the auroral electrojets intensification affects the thermospheric circulation on a global scale. This process which leads to electric field and current disturbance at middle and low latitudes, on the quiet day after the end of a storm, has been attributed to the ionospheric disturbance dynamo (Ddyn. The magnetic field disturbance observed as a result of this process is the reduction of the H component amplitude in the equatorial region which constitutes the main characteristic of the ionospheric disturbance dynamo process, associated with a westward electric current flow. The latitudinal profile of the Ddyn disturbance dynamo magnetic signature exhibits an eastward current at mid latitudes and a westward one at low latitudes with a substantial amplification at the magnetic equator. Such current flow reveals an "anti-Sq" system established between the mid latitudes and the equatorial region and opposes the normal Sq current vortex. However, the localization of the eastward current and consequently the position and the extent of the "anti-Sq" current vortex changes from one storm to another. Indeed, for a strong magnetic storm, the eastward current is well established at mid latitudes about 45° N and for a weak magnetic storm, the eastward current is established toward the high latitudes (about 60° N, near the Joule heating region, resulting in a large "anti-Sq" current cell. The latitudinal profile of the Ddyn disturbance as well as the magnetic disturbance DP2 generated by the mechanism of prompt penetration of the magnetospheric convection electric field in general, show a weak disturbance at the low latitudes with a substantial amplification at the magnetic equator. Due to the intensity of the storm, the magnitude of the DP2 appears higher than the Ddyn over the American and Asian sector contrary to the African sector.

  16. Geomagnetic storm effects in ionospheric TEC at an euatorial station: contribution of EXB drifts and meridional neutral winds

    International Nuclear Information System (INIS)

    Dabas, R.S.; Jain, A.R.

    1985-01-01

    Storm-time variations in TEC measurements at the Indian station Ootacamund with IEC data for four stations in the anomaly region. Variations in Nsub(T)(OOTY) are found to be smaller compared to those observed at anomaly stations. The equatorial electrojet control of Nsub(T)(OOTY) is weaker compared to that of Nsub(m)F2. This result and absence of midday biteout in Nsub(T)(OOTY) are interpreted in terms of plasma exchange between ionosphere and plasmasphere which, to some extent, compensates the loss of plasma in the column due to E x B drifts. The anomaly depth is found to be well correlated with the electrojet strength. It is also noticed that for the same anomaly is weaker on a storm day than for quiet days. This is interpreted in terms of converging equatorward meridional winds. Thus, ionosphere-plasmasphere plasma exchange and, during disturbed period, the converging equatorward meridional winds also have significant effects on the distribution of ionization at these latitudes though the E x B drifts are most important in affecting the ionization distribution at low latitudes. (author)

  17. EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS

    International Nuclear Information System (INIS)

    Showman, Adam P.; Polvani, Lorenzo M.

    2011-01-01

    The increasing richness of exoplanet observations has motivated a variety of three-dimensional (3D) atmospheric circulation models of these planets. Under strongly irradiated conditions, models of tidally locked, short-period planets (both hot Jupiters and terrestrial planets) tend to exhibit a circulation dominated by a fast eastward, or 'superrotating', jet stream at the equator. When the radiative and advection timescales are comparable, this phenomenon can cause the hottest regions to be displaced eastward from the substellar point by tens of degrees longitude. Such an offset has been subsequently observed on HD 189733b, supporting the possibility of equatorial jets on short-period exoplanets. Despite its relevance, however, the dynamical mechanisms responsible for generating the equatorial superrotation in such models have not been identified. Here, we show that the equatorial jet results from the interaction of the mean flow with standing Rossby waves induced by the day-night thermal forcing. The strong longitudinal variations in radiative heating-namely intense dayside heating and nightside cooling-trigger the formation of standing, planetary-scale equatorial Rossby and Kelvin waves. The Rossby waves develop phase tilts that pump eastward momentum from high latitudes to the equator, thereby inducing equatorial superrotation. We present an analytic theory demonstrating this mechanism and explore its properties in a hierarchy of one-layer (shallow-water) calculations and fully 3D models. The wave-mean-flow interaction produces an equatorial jet whose latitudinal width is comparable to that of the Rossby waves, namely the equatorial Rossby deformation radius modified by radiative and frictional effects. For conditions typical of synchronously rotating hot Jupiters, this length is comparable to a planetary radius, explaining the broad scale of the equatorial jet obtained in most hot-Jupiter models. Our theory illuminates the dependence of the equatorial jet

  18. Ionospheric Change and Solar EUV Irradiance

    Science.gov (United States)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  19. Seeding and layering of equatorial spread F by gravity waves

    International Nuclear Information System (INIS)

    Hysell, D.L.; Kelley, M.C.; Swartz, W.E.; Woodman, R.F.

    1990-01-01

    Studies dating back more than 15 years have presented evidence that atmospheric gravity waves play a role in initiating nighttime equatorial F region instabilities. This paper analyzes a spectabular spread F event that for the first time demonstrates a layering which, the authors argue, is controlled by a gravity wave effect. The 50-km vertical wavelength of a gravity wave which they have found is related theoretically to a plasma layering irregularity that originated at low altitudes and then was convected, intact, to higher altitudes. Gravity waves also seem to have determined bottomside intermediate scale undulations, although this fact is not as clear in the data. The neutral wind dynamo effect yields wave number conditions on the gravity wave's ability to modulate the Rayleigh-Taylor instaiblity process. Finally, after evaluating the gravity wave dispersion relation and spatial resonance conditions, we estimate the properties of the seeding wave

  20. Ionosphere monitoring and forecast activities within the IAG working group "Ionosphere Prediction"

    Science.gov (United States)

    Hoque, Mainul; Garcia-Rigo, Alberto; Erdogan, Eren; Cueto Santamaría, Marta; Jakowski, Norbert; Berdermann, Jens; Hernandez-Pajares, Manuel; Schmidt, Michael; Wilken, Volker

    2017-04-01

    Ionospheric disturbances can affect technologies in space and on Earth disrupting satellite and airline operations, communications networks, navigation systems. As the world becomes ever more dependent on these technologies, ionospheric disturbances as part of space weather pose an increasing risk to the economic vitality and national security. Therefore, having the knowledge of ionospheric state in advance during space weather events is becoming more and more important. To promote scientific cooperation we recently formed a Working Group (WG) called "Ionosphere Predictions" within the International Association of Geodesy (IAG) under Sub-Commission 4.3 "Atmosphere Remote Sensing" of the Commission 4 "Positioning and Applications". The general objective of the WG is to promote the development of ionosphere prediction algorithm/models based on the dependence of ionospheric characteristics on solar and magnetic conditions combining data from different sensors to improve the spatial and temporal resolution and sensitivity taking advantage of different sounding geometries and latency. Our presented work enables the possibility to compare total electron content (TEC) prediction approaches/results from different centers contributing to this WG such as German Aerospace Center (DLR), Universitat Politècnica de Catalunya (UPC), Technische Universität München (TUM) and GMV. DLR developed a model-assisted TEC forecast algorithm taking benefit from actual trends of the TEC behavior at each grid point. Since during perturbations, characterized by large TEC fluctuations or ionization fronts, this approach may fail, the trend information is merged with the current background model which provides a stable climatological TEC behavior. The presented solution is a first step to regularly provide forecasted TEC services via SWACI/IMPC by DLR. UPC forecast model is based on applying linear regression to a temporal window of TEC maps in the Discrete Cosine Transform (DCT) domain

  1. The influence of tidal winds in the formation of blanketing sporadic e-layer over equatorial Brazilian region

    Science.gov (United States)

    Resende, Laysa Cristina Araujo; Batista, Inez Staciarini; Denardini, Clezio Marcos; Batista, Paulo Prado; Carrasco, Alexander José; Andrioli, Vânia Fátima; Moro, Juliano

    2018-06-01

    This work analysis the blanketing sporadic layers (Esb) behavior over São Luís, Brazil (2° 31‧ S, 44° 16‧ W, dip: -4.80) which is classified as a transition region between equatorial and low-latitude. Hence, some peculiarities can appear as Esb occurrence instead of the common Esq, which is a non-blanketing irregularity layer. The analysis presented here was obtained using a modified version of a theoretical model for the E region (MIRE), which computes the densities of the metallic ions (Fe+ and Mg+) and the densities of the main molecular ions (NO+, O2+, N2+) by solving the continuity and momentum equations for each one of them. In that model, the Es layer physics driven by both diurnal and semidiurnal tidal winds are taken into account and it was extended in height coverage by adding a novel neutral wind model derived from the all-sky meteor radar measurements. Thus, we provide more trustworthy results related to the Es layer formation in the equatorial region. We verified the contribution of each tidal wind component to the Esb layer formation in this equatorial region. Additionally, we compared the Es layer electron density computed by MIRE with the data obtained by using the blanketing frequency parameter (fbEs) deduced from ionograms. The results show that the diurnal component of the tidal wind is more important in the Esb layer formation whereas the semidiurnal component has a little contribution in our simulations. Finally, it was verified that the modified MIRE presented here can be used to study the Esb layers occurrence over the equatorial region in the Brazilian sector.

  2. Complex network description of the ionosphere

    Science.gov (United States)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.

  3. Numerical Simulation of the Variation of Schumann Resonance Associated with Seismogenic Processe in the Lithosphere-Atmosphere-Ionosphere system

    Science.gov (United States)

    Liu, L.; Huang, Q.; Wang, Y.

    2012-12-01

    The variations in the strength and frequency shift of the Schumann resonance (SR) of the electromagnetic (EM) field prior to some significance earthquakes were reported by a number of researchers. As a robust physical phenomenon constantly exists in the resonant cavity formed by the lithosphere-atmosphere-ionosphere system, irregular variations in SR parameters can be naturally attributed to be the potential precursory observables for forecasting earthquake occurrences. Schumann resonance (SR) of the EM field between the lithosphere and the ionosphere occurs because the space between the surface of the Earth and the conductive ionosphere acts as a closed waveguide. The cavity is naturally excited by electric currents generated by lightning. SR is the principal background in the electromagnetic spectrum at extremely low frequencies (ELF) between 3-69 Hz. We simulated the EM field in the lithosphere-ionosphere waveguide with a 2-dimensional (2D), cylindrical whole-earth model by the hybrid pseudo-spectral and finite difference time domain method. Considering the seismogensis as a fully coupled seismoelectric process, we simulate the seismic wave and EM wave in this 2D model. The excitation of SR in the background EM field are generated by the electric-current impulses due to lightning thunderstorms within the lowest 10 kilometers of the atmosphere . The diurnal variation and the latitude-dependence in ion concentration in the ionosphere are included in the model. After the SR has reached the steady state, the impulse generated by the seismogenic process (pre-, co- and post-seismic) in the crust is introduced to assess the possible precursory effects on SR strength and frequency. The modeling results explain the observed fact of why SR has a much more sensitive response to continental earthquakes, and much less response to oceanic events; the reason is simply due to the shielding effect of the conductive ocean that prevents effective radiation of the seismoelectric

  4. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    Science.gov (United States)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of

  5. Data Assimilation and Adjusted Spherical Harmonic Model of VTEC Map over Thailand

    Science.gov (United States)

    Klinngam, Somjai; Maruyama, Takashi; Tsugawa, Takuya; Ishii, Mamoru; Supnithi, Pornchai; Chiablaem, Athiwat

    2016-07-01

    The global navigation satellite system (GNSS) and high frequency (HF) communication are vulnerable to the ionospheric irregularities, especially when the signal travels through the low-latitude region and around the magnetic equator known as equatorial ionization anomaly (EIA) region. In order to study the ionospheric effects to the communications performance in this region, the regional map of the observed total electron content (TEC) can show the characteristic and irregularities of the ionosphere. In this work, we develop the two-dimensional (2D) map of vertical TEC (VTEC) over Thailand using the adjusted spherical harmonic model (ASHM) and the data assimilation technique. We calculate the VTEC from the receiver independent exchange (RINEX) files recorded by the dual-frequency global positioning system (GPS) receivers on July 8th, 2012 (quiet day) at 12 stations around Thailand: 0° to 25°E and 95°N to 110°N. These stations are managed by Department of Public Works and Town & Country Planning (DPT), Thailand, and the South East Asia Low-latitude ionospheric Network (SEALION) project operated by National Institute of Information and Communications Technology (NICT), Japan, and King Mongkut's Institute of Technology Ladkrabang (KMITL). We compute the median observed VTEC (OBS-VTEC) in the grids with the spatial resolution of 2.5°x5° in latitude and longitude and time resolution of 2 hours. We assimilate the OBS-VTEC with the estimated VTEC from the International Reference Ionosphere model (IRI-VTEC) as well as the ionosphere map exchange (IONEX) files provided by the International GNSS Service (IGS-VTEC). The results show that the estimation of the 15-degree ASHM can be improved when both of IRI-VTEC and IGS-VTEC are weighted by the latitude-dependent factors before assimilating with the OBS-VTEC. However, the IRI-VTEC assimilation can improve the ASHM estimation more than the IGS-VTEC assimilation. Acknowledgment: This work is partially funded by the

  6. The ionosphere

    International Nuclear Information System (INIS)

    Taieb, C.

    1977-01-01

    This paper comprises four parts. The first one is dealing with the neutral atmosphere, its structure, its composition, its variations. The second one describes the ionospheric plasma, (the ionized part) and explains its formation. The influence of the geomagnetic field is discussed in the third chapter, the fourth one being concerned with the means of studying the ionosphere: ionograms obtained by ionosondes or incoherent scattering sounding or from satellite measurements [fr

  7. Magnetotail processes and their ionospheric signatures

    Science.gov (United States)

    Ferdousi, B.; Raeder, J.; Zesta, E.; Murphy, K. R.; Cramer, W. D.

    2017-12-01

    In-situ observations in the magnetotail are sparse and limited to single point measurements. In the ionosphere, on the other hand, there is a broad range of observations, including magnetometers, auroral imagers, and various radars. Since the ionosphere is to some extent a mirror of plasmasheet processes it can be used as a monitor of magnetotail dynamics. Thus, it is of great importance to understand the coupling between the ionosphere and the magnetosphere in order to properly interpret the ionosphere and ground observations in terms of magnetotail dynamics. For this purpose, the global magnetohydrodynamic model OpenGGCM is used to investigate magnetosphere-ionosphere coupling. One of the key processes in magnetotail dynamics are bursty bulk flows (BBFs) which are the major means by which momentum and energy get transferred through the magnetotail and down to the ionosphere. BBFs often manifested in the ionosphere as auroral streamers. This study focuses on mapping such flow bursts from the magnetotail to the ionosphere along the magnetic field lines for three states of the magnetotail: pre-substorm onset through substorm expansion and during steady magnetospheric convection (SMC) following the substorm. We find that the orientation of streamers in the ionosphere differes for different local times, and that, for both tail and ionospheric signatures, activity increases during the SCM configutation compared to the pre-onset and quiet times. We also find that the background convection in the tail impacts the direction and deflection of the BBFs and the subsequent orientation of the auroral streamers in the ionosphere.

  8. The worldwide ionospheric data base

    International Nuclear Information System (INIS)

    Bilitza, D.

    1989-04-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory

  9. The worldwide ionospheric data base

    Science.gov (United States)

    Bilitza, Dieter

    1989-01-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory.

  10. Spatial and temporal variations of small-scale plasma turbulence parameters in the equatorial electrojet: HF and VHF radar observational results

    Directory of Open Access Journals (Sweden)

    G. Manju

    2005-06-01

    Full Text Available The spatial and temporal variations of various parameters associated with plasma wave turbulence in the equatorial electrojet (EEJ at the magnetic equatorial location of Trivandrum (8.5° N, 77° E; dip 0.5° N are studied for the first time, using co-located HF (18MHz and VHF (54.95MHz coherent backscatter radar observations (daytime in the altitude region of 95-110km, mostly on magnetically quiet days. The derived turbulence parameters are the mean electron density irregularity strength (δn/n, anomalous electron collision frequency (νe* and the corrected east-west electron drift velocity (Vey. The validity of the derived parameters is confirmed using radar data at two different frequencies and comparing with in-situ measurements. The behaviour of δn/n in relation to the backscattered power during weak and strong EEJ conditions is also examined to understand the growth and evolution of turbulence in the electrojet.

  11. Spatial and temporal variations of small-scale plasma turbulence parameters in the equatorial electrojet: HF and VHF radar observational results

    Directory of Open Access Journals (Sweden)

    G. Manju

    2005-06-01

    Full Text Available The spatial and temporal variations of various parameters associated with plasma wave turbulence in the equatorial electrojet (EEJ at the magnetic equatorial location of Trivandrum (8.5° N, 77° E; dip 0.5° N are studied for the first time, using co-located HF (18MHz and VHF (54.95MHz coherent backscatter radar observations (daytime in the altitude region of 95-110km, mostly on magnetically quiet days. The derived turbulence parameters are the mean electron density irregularity strength (δn/n, anomalous electron collision frequency (νe* and the corrected east-west electron drift velocity (Vey. The validity of the derived parameters is confirmed using radar data at two different frequencies and comparing with in-situ measurements. The behaviour of δn/n in relation to the backscattered power during weak and strong EEJ conditions is also examined to understand the growth and evolution of turbulence in the electrojet.

  12. In-situ measurements of wave electric fields in the equatorial electrojet

    International Nuclear Information System (INIS)

    Pfaff, R.F.; Kelley, M.C.; Fejer, B.G.; Maynard, N.C.; Baker, K.D.

    1982-01-01

    Electric field wave measurements have been performed on two sounding rockets in the equatorial ionosphere. During a daytime flight from Chilca, Peru, intense electrostatic waves were detected on the upward directed electron density gradient. During a nighttime flight from Kwajalein Atoll, similar waves were detected on a downward directed gradient. These results are in agreement with a gradient drift instability explanation of the generation of the waves. The wave amplitudes were as high as 5 mV/m implying perturbation drifts comparable to the driving drift velocities. Power spectra from the turbulent region show a peak at long wavelengths, followed by a nearly flat spectral region before breaking into a power law form with negative index of 3.6--3.7 for lambda< or =30 m. Similarities between the spectra of the two flights suggest that the fundamental processes of the instabilities are the same in the day and nighttime conditions. The rocket data are consistent with radar results presented in a companion paper which show coherent, kilometer scale waves present in the electrojet

  13. Signature of rapid subauroral ion drifts in the high-latitude ionosphere structure

    International Nuclear Information System (INIS)

    Galperin, Y.I.; Khalipov, V.L.; Filippov, V.M.

    1986-01-01

    Characteristics of fast subauroral ion drifts were studied for several cases where synchronous satellite measurements and ground-based ionospheric data from vertical and oblique-incidence sounding were available. Also some relevant data were analyzed concerning apparent irregularities drift velocity measurements by the multipoint spaced receiver at HF range (DI method). Changes of high-latitude ionosphere structure were investigated to identify the signature on the ionograms, and to provide a semiquantitative description of this phenomenon. It is shown that, above a particular station, the time development of the rapid subauroral ion drift band, or the ''polarization jet'' according to Galperin et al., 1973, 1974 in about 5-30 minutes leads to the formation of a trough which is narrow in latitude (approximately 100-200 km) but extended in longitude (several hours of MLT) and rather deep (N sub(emin)approximately 2.10 4 cm -3 in the electron density distribution in the F-region. Such narrow troughs can be observed in the evening sector superimposed on the undisturbed ionization density level, while in the near-midnight sector they contribute to the deepening of the preexisting, and much wider, main ionospheric through A qualitative scenario for the formation of the ''trough in the trough'' on the nightside, as a result of the increase of the loss processes related to rapid drift speed, is supported by ''synthetic'' ionograms deduced from numerical ray-tracing calculations for a model electron density distribution that is in reasonable accord with the observed vertical and oblique sounding ionograms and from satellite data

  14. Electric field mapping and auroral Birkeland currents

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Larson, D.J.

    1989-01-01

    Magnetic field lines, electric fields and equipotentials have been mapped throughout the magnetosphere in the vicinity of strong Birkeland currents. It was found that a uniform electric field at either the ionospheric or the equatorial end of a field line can map to a highly structured field at the other end if strong Birkeland currents are located nearby. The initiation of sheet currents of the region 1 - region 2 scale size and intensity resulted in magnetic field line displacements of about 1/2 hour in local time between equatorial and ionospheric end points. As a result, a uniform dawn to dusk electric field at the equator mapped to an ionospheric electric field with strong inward pointing components in the dusk hemisphere. Similar distortions were produced by Birkeland currents associated with narrow east-west-aligned auroral arcs. A specific model for the auroral current system, based on ionospheric measurements during a large substorm, was used to study effects seen during disturbed periods. An iterative procedure was developed to generate a self-consistent current system even in the presence of highly twisted field lines. The measured ionospheric electric field was projected tot he equatorial plane in the presence of the model Birkeland current system. Several physical processes were seen to influence ionospheric and equatorial electric fields, and the associated plasma convection, during a substorm

  15. Anomalous variation in GPS based TEC measurements prior to the 30 September 2009 Sumatra Earthquake

    Science.gov (United States)

    Karia, Sheetal; Pathak, Kamlesh

    This paper investigates the features of pre-earthquake ionospheric anomalies in the total elec-tron content (TEC) data obtained on the basis of regular GPS observations from the GPS receiver at SVNIT Surat (21.16 N, 72.78 E Geog) located at the northern crest of equatorial anomaly region. The data has been analysed for 5 different earthquakes that occurred during 2009 in India and its neighbouring regions. Our observation shows that for the cases of the earthquake, in which the preparation area lies between the crests of the equatorial anomaly close to the geomagnetic equator the enhancement in TEC was followed by a depletion in TEC on the day of earthquake, which may be connected to the equatorial anomaly shape distortions. For the analysis of the ionospheric effects of one of such case-the 30 September 2009 Sumatra earthquake, Global Ionospheric Maps of TEC were used. The possible influence of the earth-quake preparation processes on the main low-latitude ionosphere peculiarity—the equatorial anomaly—is discussed.

  16. Onset conditions for equatorial spread F

    International Nuclear Information System (INIS)

    Mendillo, M.; Baumgardner, J.; Xiaoqing Pi; Sultan, P.J.; Tsunoda, R.

    1992-01-01

    The problem of day-to-day variability in the occurrence of equatorial spread F (ESF) is addressed using multidiagnostic observations and semiempirical modeling. The observational results are derived from a two-night case study of ESF onset conditions observed at Kwajalein Atoll (Marshall Islands) using the ALTAIR incoherent scatter radar and all-sky optical imaging techniques. The major difference between nights when ESF instabilities did not occur (August 14, 1988) and did occur (August 15, 1988) in the Kwajalein sector was that the northern meridional gradient of 6300-angstrom airglow was reduced on the night of limited ESF activity. Modeling results suggest that this unusual airglow pattern is due to equatorward neutral winds. Previous researchers have shown that transequatorial thermospheric winds can exert a control over ESF seasonal and longitudinal occurrence patterns by inhibiting Rayleigh-Taylor instability growth rates. They present evidence to suggest that this picture can be extended to far shorter time scales, namely, that 'surges' in transequatoral winds acting over characteristic times of a few hours to a day can result in a stabilizing influence upon irregularity growth rates. The seemingly capricious nature of ESF onset may thus be controlled, in part, by the inherent variability of low-latitude thermospheric winds

  17. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function. Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  18. Ionosphere Waves Service (IWS) - a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    Science.gov (United States)

    Ferencz, Csaba; Lizunov, Georgii; Crespon, François; Price, Ivan; Bankov, Ludmil; Przepiórka, Dorota; Brieß, Klaus; Dudkin, Denis; Girenko, Andrey; Korepanov, Valery; Kuzmych, Andrii; Skorokhod, Tetiana; Marinov, Pencho; Piankova, Olena; Rothkaehl, Hanna; Shtus, Tetyana; Steinbach, Péter; Lichtenberger, János; Sterenharz, Arnold; Vassileva, Any

    2014-05-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  19. Transient Effects in Atmosphere and Ionosphere preceding the two 2015 M7.8 and M7.3 Earthquakes in Nepal

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S. A.; Hernandez-Pajares, M.; Alberto Garcia Rigo, A. G.; Davidenko, D.; Hatzopoulos, N.; Kafatos, M.

    2015-12-01

    The recent M7.8 Nepal earthquake of April 25, 2015 was the largest recorded earthquake event to hit this nation since 1934. We prospectively and retrospectively analyzed the transient variations of three different physical parameters - outgoing earth radiation (OLR), GPS/TEC and the thermodynamic proprieties in the lower atmosphere. These changes characterize the state of the atmosphere and ionosphere several days before the onset of this earthquake. Our preliminary results show that in mid March 2015 a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly near the epicenter reached the maximum on April 21-22. The ongoing analysis of satellite radiation revealed another transient anomaly on May 3th, probably associated with the M7.3 of May 12, 2015. The analysis of air temperature form ground stations show similar patterns of rapid increases offset 1-2 days earlier to the satellite transient anomalies.The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value during April 22-24. We found a strong negative TEC anomaly in the crest of EIA (Equatorial Ionospheric Anomaly) on April 21st and strong positive on April 24th, 2015. Our results show strong ionospheric effects not only in the changes of the EIA intensity but also within the latitudinal movements of the crests of EIA.

  20. The Vector Electric Field Investigation on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Acuna, M.; Kujawski, J.; Fourre, R.; Uribe, P.; Hunsaker, F.; Rowland, D.; Le, G.; Farrell, W.; Maynard, N.; hide

    2008-01-01

    We provide an overview of the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA/GSFC instrument funded by the Air Force Research Laboratory whose main objectives are to: 1) investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) determine the quasi-DC electric fields associated with abrupt, large amplitude, density depletions, and 3) quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions typically referred to as equatorial spread-F. The VEFI instrument includes a vector electric field double probe detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux-gate magnetometer, an optical lightning detector, and associated electronics. The heart of the instrument is the set of detectors designed to measure DC and AC electric fields using 6 identical booms that provide 3 axis, 20-m tip-to-tip orthogonal double probes. Each probe extends a 10 cm diameter sphere containing an embedded preamplifier. VEFI also includes a burst memory that enables snapshots of data from 1-8 channels of selected instruments to be sampled at rates of up to 32 kHz each. The bursts may be triggered by the detection of density depletions, intense electric field wave activity in a given band, lightning detector pulses, or an event at a pre-determined time or location. All VEFI instrument components are working exceptionally well. A description of the instrument, its sensors, and their sampling frequencies and sensitivities will be presented. Representative measurements will be shown.

  1. Effects of multiple scatter on the propagation and absorption of electromagnetic waves in a field-aligned-striated cold magneto-plasma: implications for ionospheric modification experiments

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  2. Ionospheric research for space weather service support

    Science.gov (United States)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  3. Prediction of post-sunset ESF based on the strength and asymmetry of EIA from ground based TEC measurements

    Science.gov (United States)

    Thampi, S. V.; Ravindran, S.; Devasia, C. V.; Pant, T. K.; Sreelatha, P.; Sridharan, R.

    The Coherent Radio Beacon Experiment (CRABEX) is aimed at investigating the equatorial ionospheric processes like the Equatorial Ionization Anomaly (EIA) and Equatorial Spread F (ESF) and their inter relationships. As a part of CRABEX program, a network of six stations covering the region from Trivandrum (8.5°N) to Nainital (29.3°N) is set up along the 77-78° E meridian. These ground receivers basically measure the slant Total Electron Content (TEC) along the line of sight from the Low Earth Orbiting satellites (NIMS). These simultaneous TEC measurements are inverted to obtain the tomographic image of the latitudinal distribution of electron densities in the meridional plane. In this paper, the tomographic images of the equatorial ionosphere along the 77-78°E meridian are presented. The crest intensities in the southern and northern hemispheres also show significant differences with seasons, showing the variability in the EIA asymmetry. The evening images give an indication of the prevailing electrodynamical conditions on different days, preceding the occurrence/non-occurrence of ESF. Apart from this, the single station TEC measurements from the Trivandrum station itself is used to estimate the EIA strength and asymmetry. Since this station is situated at the trough of the EIA, right over the dip equator, the latitudinal gradients on both northern (N) and southern (S) sides can be used to compute the EIA strength and asymmetry. These two parameters, obtained well ahead of the onset time of ESF, are shown to have a definite role on the subsequent ESF activity. Hence, both these factors are combined to define a new `forecast parameter' for the generation of ESF. It has been shown that this parameter can uniquely define the state of the `background ionosphere' conducive for the generation of ESF irregularities as early as 1600 IST. A critical value for the `forecast parameter' has been identified such that when the estimated value for `forecast parameter' exceeds

  4. A New Approach for Identifying Ionospheric Gradients in the Context of the Gagan System

    Science.gov (United States)

    Kudala, Ravi Chandra

    The Indian Space Research Organization and the Airports Authority of India are jointly implementing the Global Positioning System (GPS) aided GEO Augmented Navigation (GAGAN) system in order to meet the following required navigation performance (RNP) parameters: integrity, continuity, accuracy, and availability (for aircraft operations). Such a system provides the user with orbit, clock, and ionospheric corrections in addition to ranging signals via the geostationary earth orbit satellite (GEOSAT). The equatorial ionization anomaly (EIA), due to rapid non-uniform electron-ion recombination that persists on the Indian subcontinent, causes ionospheric gradients. Ionospheric gradients represent the most severe threat to high-integrity differential GNSS systems such as GAGAN. In order to ensure integrity under conditions of an ionospheric storm, the following three objectives must be met: careful monitoring, error bounding, and sophisticated storm-front modeling. The first objective is met by continuously tracking data due to storms, and, on quiet days, determining precise estimates of the threat parameters from reference monitoring stations. The second objective is met by quantifying the above estimates of threat parameters due to storms through maximum and minimum typical thresholds. In the context GAGAN, this work proposes a new method for identifying ionospheric gradients, in addition to determining an appropriate upper bound, in order to sufficiently understand error during storm days. Initially, carrier phase data of the GAGAN network from Indian TEC stations for both storm and quiet days was used for estimating ionospheric spatial and temporal gradients (the vertical ionospheric gradient (σVIG) and the rate of the TEC index (ROTI), respectively) in multiple viewing directions. Along similar lines, using the carrier to noise ratio (C/N0) for the same data, the carrier to noise ratio index (σCNRI) was derived. Subsequently, the one-toone relationship between

  5. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  6. Equatorial electrodynamics and neutral background in the Asian sector during the 2009 stratospheric sudden warming

    DEFF Research Database (Denmark)

    Liu, Huixin; Yamamoto, Mamoru; Ram, S. Tulasi

    2011-01-01

    Using ground observations of total electron content (TEC) and equatorial electrojet (EEJ) in the Asian sector, along with plasma and neutral densities obtained from the CHAMP satellite, we investigate the ionospheric electrodynamics and neutral background in this longitude sector during the major...... perturbation possesses a significant hemispheric asymmetry in terms of onset date and magnitude. It starts on the same day as the SSW peak in the Northern Hemisphere but 2 days later in the Southern Hemisphere. Its magnitude is twice as strong in the north than in the south. Third, strong counter electrojet...... occurs in the afternoon, following the strengthening of the eastward EEJ in the morning. Fourth, semidiurnal perturbation in both TEC and EEJ possesses a phase shift, at a rate of about 0.7 h/day. Comparisons with results reported in the Peruvian sector reveal clear longitude dependence in the amplitude...

  7. Ionospheric effects of thunderstorms and lightning

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Erin H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-03

    Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm. We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.

  8. Ionospheric behaviour during storm recovery phase

    Science.gov (United States)

    Buresova, D.; Lastovicka, J.; Boska, J.; Sindelarova, T.; Chum, J.

    2012-04-01

    Intensive ionospheric research, numerous multi-instrumental observations and large-scale numerical simulations of ionospheric F region response to magnetic storm-induced disturbances during the last several decades were primarily focused on the storm main phase, in most cases covering only a few hours of the recovery phase following after storm culmination. Ionospheric behaviour during entire recovery phase still belongs to not sufficiently explored and hardly predictable features. In general, the recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. However, observations of stormy ionosphere show significant departures from the climatology also within this phase. This paper deals with the quantitative and qualitative analysis of the ionospheric behaviour during the entire recovery phase of strong-to-severe magnetic storms at middle latitudes for nowadays and future modelling and forecasting purposes.

  9. Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    Directory of Open Access Journals (Sweden)

    D. P. Monselesan

    2004-09-01

    previously unreported polar cap E-region Bragg scatter Doppler spectral signatures, observed at Casey in December 1996 during SEC/lacuna conditions may be linked to ionosphere irregularities. These irregularities may possibly be generated by primary plasma waves triggered by current-driven instabilities, that is to say, a hybrid of the "modified two-stream" and "gradient drift" instability mechanisms.

  10. Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    Directory of Open Access Journals (Sweden)

    D. P. Monselesan

    2004-09-01

    cap E-region Bragg scatter Doppler spectral signatures, observed at Casey in December 1996 during SEC/lacuna conditions may be linked to ionosphere irregularities. These irregularities may possibly be generated by primary plasma waves triggered by current-driven instabilities, that is to say, a hybrid of the "modified two-stream" and "gradient drift" instability mechanisms.

  11. Ionosphere Waves Service (IWS – a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    Directory of Open Access Journals (Sweden)

    Ferencz Csaba

    2014-05-01

    Full Text Available In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  12. Cassini Radio Occultations of Saturn's Ionosphere: Modeling a Variable Influx of Water into Saturn's Atmosphere

    Science.gov (United States)

    Moore, L.; Mendillo, M.

    2006-12-01

    The Saturn-Thermosphere-Ionosphere-Model (STIM), a global circulation model (GCM) of Saturn's upper atmosphere, is used to investigate a range of possible parameters that could lead to the profiles measured recently by the Radio Science Subsystem (RSS) aboard Cassini. Specifically, electron density observations of Saturn's equatorial ionosphere demonstrate a dawn/dusk asymmetry, a possible double peak, and a high degree of vertical structure and variability. On average, peak electron densities are larger at dusk than dawn (5400 cm-3 vs. 1700 cm-3) and the peak altitudes are lower at dusk than dawn (1880 km vs. 2360 km). Self-consistent, time-dependent 1D water diffusion calculations have been combined with the GCM in order to examine the possibility that a topside flux of neutral water into Saturn's atmosphere may provide a loss mechanism -- via charge exchange with protons -- that is sufficient to reproduce the observed ionosphere. Our previous modeling results indicated that a constant background influx of (0.5 -- 1.0) x 107 H2O cm-2 sec-1 was adequate in reproducing Cassini measurements on average [Moore et al., 2006], however the large observed variations in the vertical electron density profiles require additional complexities in the modeling. In this study we show that one possible source of the structuring observed in the electron density profiles could be from brief surges and/or reductions in the background water flux, which ultimately may be linked to geysers near Enceladus' southern pole. Moore, L., A.F. Nagy, A.J. Kliore, I. Mueller-Wodarg, J.D. Richardson, M. Mendillo (2006), Cassini radio occultations of Saturn's ionopshere: I. model comparisons using a constant water flux, submitted to GRL.

  13. Martian Ionospheric Observation and Modeling

    Science.gov (United States)

    González-Galindo, Francisco

    2018-02-01

    The Martian ionosphere is a plasma embedded within the neutral upper atmosphere of the planet. Its main source is the ionization of the CO2-dominated Martian mesosphere and thermosphere by the energetic EUV solar radiation. The ionosphere of Mars is subject to an important variability induced by changes in its forcing mechanisms (e.g., the UV solar flux) and by variations in the neutral atmosphere (e.g., the presence of global dust storms, atmospheric waves and tides, changes in atmospheric composition, etc.). Its vertical structure is dominated by a maximum in the electron concentration placed at about 120–140 km of altitude, coincident with the peak of the ionization rate. Below, a secondary peak produced by solar X-rays and photoelectron-impact ionization is observed. A sporadic third layer, possibly of meteoric origin, has been also detected below. The most abundant ion in the Martian ionosphere is O2+, although O+ can become more abundant in the upper ionospheric layers. While below about 180–200 km the Martian ionosphere is dominated by photochemical processes, above those altitudes the dynamics of the plasma become more important. The ionosphere is also an important source of escaping particles via processes such as dissociative recombination of ions or ion pickup. So, characterization of the ionosphere provides or can provide information about such disparate systems and processes as the solar radiation getting to the planet, the neutral atmosphere, the meteoric influx, the atmospheric escape to space, or the interaction of the planet with the solar wind. It is thus not surprising that the interest about this region dates from the beginning of the space era. From the first measurements provided by the Mariner 4 mission in the 1960s to the contemporaneous observations, still ongoing, by the Mars Express and MAVEN orbiters, our current knowledge of this atmospheric region is the consequence of the accumulation of more than 50 years of discontinuous

  14. Multi-Instrument Investigation of Ionospheric Flow Channels and Their Impact on the Ionosphere and Thermosphere during Geomagnetic Storms

    Science.gov (United States)

    2017-12-29

    AFRL-AFOSR-JP-TR-2018-0009 Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during...SUBTITLE Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during geomagnetic storms 5a...Experiment) and GOCE (Gravity field and steady- state Ocean Circulation Explorer) satellite data. We also created a series of computer algorithms to

  15. Radar observations of field-aligned plasma irregularities in the SEEK-2 campaign

    Directory of Open Access Journals (Sweden)

    S. Saito

    2005-10-01

    negative (positive, when a frontal structure of echoing regions elongated east-northeast-west-southwest drifts with southward (northward neutral wind.

    Keywords. Ionosphere-atmosphere interactions; Ionospheric irregularities; Plasma waves and instabilities

  16. Simultaneous observations of equatorial F-region plasma depletions over Brazil during the Spread-F Experiment (SpreadFEx

    Directory of Open Access Journals (Sweden)

    P.-D. Pautet

    2009-06-01

    Full Text Available From September to November 2005, the NASA Living with a Star program supported the Spread-F Experiment campaign (SpreadFEx in Brazil to study the effects of convectively generated gravity waves on the ionosphere and their role in seeding Rayleigh-Taylor instabilities, and associated equatorial plasma bubbles. Several US and Brazilian institutes deployed a broad range of instruments (all-sky imagers, digisondes, photometers, meteor/VHF radars, GPS receivers covering a large area of Brazil. The campaign was divided in two observational phases centered on the September and October new moon periods. During these periods, an Utah State University (USU all-sky CCD imager operated at São João d'Aliança (14.8° S, 47.6° W, near Brasilia, and a Brazilian all-sky CCD imager located at Cariri (7.4° S, 36° W, observed simultaneously the evolution of the ionospheric bubbles in the OI (630 nm emission and the mesospheric gravity wave field. The two sites had approximately the same magnetic latitude (9–10° S but were separated in longitude by ~1500 km.

    Plasma bubbles were observed on every clear night (17 from Brasilia and 19 from Cariri, with 8 coincident nights. These joint datasets provided important information for characterizing the ionospheric depletions during the campaign and to perform a novel longitudinal investigation of their variability. Measurements of the drift velocities at both sites are in good agreement with previous studies, however, the overlapping fields of view revealed significant differences in the occurrence and structure of the plasma bubbles, providing new evidence for localized generation. This paper summarizes the observed bubble characteristics important for related investigations of their seeding mechanisms associated with gravity wave activity.

  17. Seasonal, Diurnal, and Solar-Cycle Variations of Electron Density at Two West Africa Equatorial Ionization Anomaly Stations

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2012-01-01

    Full Text Available We analyse the variability of foF2 at two West Africa equatorial ionization anomaly stations (Ouagadougou and Dakar during three solar cycles (from cycle 20 to cycle 22, that is, from 1966 to 1998 for Ouagadougou and from 1971 to 1997 for Dakar. We examine the effect of the changing levels of solar extreme ultraviolet radiation with sunspot number. The study shows high correlation between foF2 and sunspot number (Rz. The correlation coefficient decreases from cycle 20 to cycle 21 at both stations. From cycle 21 to cycle 22 it decreases at Ouagadougou station and increases at Dakar station. The best correlation coefficient, 0.990, is obtained for Dakar station during solar cycle 22. The seasonal variation displays equinoctial peaks that are asymmetric between March and September. The percentage deviations of monthly average data from one solar cycle to another display variability with respect to solar cycle phase and show solar ultraviolet radiation variability with solar cycle phase. The diurnal variation shows a noon bite out with a predominant late-afternoon peak except during the maximum phase of the solar cycle. The diurnal Ouagadougou station foF2 data do not show a significant difference between the increasing and decreasing cycle phases, while Dakar station data do show it, particularly for cycle 21. The percentage deviations of diurnal variations from solar-minimum conditions show more ionosphere during solar cycle 21 at both stations for all three of the other phases of the solar cycle. There is no significant variability of ionosphere during increasing and decreasing solar cycle phases at Ouagadougou station, but at Dakar station there is a significant variability of ionosphere during these two solar-cycle phases.

  18. Simultaneous observations of equatorial F-region plasma depletions over Brazil during the Spread-F Experiment (SpreadFEx

    Directory of Open Access Journals (Sweden)

    P.-D. Pautet

    2009-06-01

    Full Text Available From September to November 2005, the NASA Living with a Star program supported the Spread-F Experiment campaign (SpreadFEx in Brazil to study the effects of convectively generated gravity waves on the ionosphere and their role in seeding Rayleigh-Taylor instabilities, and associated equatorial plasma bubbles. Several US and Brazilian institutes deployed a broad range of instruments (all-sky imagers, digisondes, photometers, meteor/VHF radars, GPS receivers covering a large area of Brazil. The campaign was divided in two observational phases centered on the September and October new moon periods. During these periods, an Utah State University (USU all-sky CCD imager operated at São João d'Aliança (14.8° S, 47.6° W, near Brasilia, and a Brazilian all-sky CCD imager located at Cariri (7.4° S, 36° W, observed simultaneously the evolution of the ionospheric bubbles in the OI (630 nm emission and the mesospheric gravity wave field. The two sites had approximately the same magnetic latitude (9–10° S but were separated in longitude by ~1500 km. Plasma bubbles were observed on every clear night (17 from Brasilia and 19 from Cariri, with 8 coincident nights. These joint datasets provided important information for characterizing the ionospheric depletions during the campaign and to perform a novel longitudinal investigation of their variability. Measurements of the drift velocities at both sites are in good agreement with previous studies, however, the overlapping fields of view revealed significant differences in the occurrence and structure of the plasma bubbles, providing new evidence for localized generation. This paper summarizes the observed bubble characteristics important for related investigations of their seeding mechanisms associated with gravity wave activity.

  19. On a Correlation between the Ionospheric Electric Field and the Time Derivative of the Magnetic Field

    Directory of Open Access Journals (Sweden)

    R. R. Ilma

    2012-01-01

    Full Text Available A correlation of the ionospheric electric field and the time derivative of the magnetic field was noticed over thirty years ago and has yet to be explained. Here we report on another set of examples during the superstorm of November 2004. The electric field in the equatorial ionosphere, measured with the Jicamarca incoherent scatter radar, exhibited a 3 mV/m electric field pulse that was not seen in the interplanetary medium. It was, however, accompanied by a correlation with the time derivative of the magnetic field measured at two points in Peru. Our inclination was to assume that the field was inductive. However, the time scale of the pulse was too short for the magnetic field to penetrate the crust of the Earth. This means that the area threaded by ∂B/∂t was too small to create the observed electric field by induction. We suggest that the effect was caused by a modulation of the ring current location relative to the Earth due to the electric field. This electric field is required, as the magnetic field lines are considered frozen into the plasma in the magnetosphere. The closer location of the ring current to the Earth in turn increased the magnetic field at the surface.

  20. Constituent Ion Temperatures Measured in the Topside Ionosphere

    Science.gov (United States)

    Hsu, C. T.; Heelis, R. A.

    2017-12-01

    Plasma temperatures in the ionosphere are associated with both the dynamics and structure of the neutral and charge particles. The temperatures are determined by solar energy inputs and energy exchange between charged particles and neutrals. Previous observations show that during daytime the O+ temperature is generally higher when the fractional contribution of H+ to the plasma is high. Further simulations confirm that the daytime heat balance between the H+ and O+ always keeps the H+ at a temperature higher than the O+. In addition the plasma transport parallel and perpendicular to the magnetic field influences the plasma temperature through adiabatic heating and cooling effects. These processes are also important during the nighttime, when the source of photoionization is absent. In this work we examine a more sophisticated analysis procedure to extract individual mass dependent ion temperature and apply it on the DMSP F15 RPA measurements. The result shows that the daytime TH+ is a few hundred degrees higher than the TO+ and the nighttime temperature difference between TH+ and TO+ is indicative of mass dependent adiabatic heating and cooling processes across the equatorial region.