 #### Sample records for equations numerical methods

1. Numerical Methods for Partial Differential Equations

CERN Document Server

Guo, Ben-yu

1987-01-01

These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.

2. Numerical methods for differential equations and applications

International Nuclear Information System (INIS)

Ixaru, L.G.

1984-01-01

This book is addressed to persons who, without being professionals in applied mathematics, are often faced with the problem of numerically solving differential equations. In each of the first three chapters a definite class of methods is discussed for the solution of the initial value problem for ordinary differential equations: multistep methods; one-step methods; and piecewise perturbation methods. The fourth chapter is mainly focussed on the boundary value problems for linear second-order equations, with a section devoted to the Schroedinger equation. In the fifth chapter the eigenvalue problem for the radial Schroedinger equation is solved in several ways, with computer programs included. (Auth.)

3. Partial differential equations with numerical methods

CERN Document Server

2003-01-01

The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering. The main theme is the integration of the theory of linear PDEs and the numerical solution of such equations. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. As preparation, the two-point boundary value problem and the initial-value problem for ODEs are discussed in separate chapters. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. Some background on linear functional analysis and Sobolev spaces, and also on numerical linear algebra, is reviewed in two appendices.

4. Introduction to numerical methods for time dependent differential equations

CERN Document Server

Kreiss, Heinz-Otto

2014-01-01

Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the t

5. Numerical methods for stochastic partial differential equations with white noise

CERN Document Server

Zhang, Zhongqiang

2017-01-01

This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical compa...

6. Numerical Methods for Partial Differential Equations.

Science.gov (United States)

1984-01-09

iteration or the conjugate gradient method. The smoothing sweeps are used to annihilate the highly oscillatory (compared to the grid spacing) components of...53 52 "-󈧯 33 41 *32 * . 31 * 21 - 11 O- carrius plane rotacions o I ~~arr: ’.trix vrS2-0 Cf A Figure 4. QM fiitorization of a BLTE (1,2) mnitrix

7. Numerical simulation of GEW equation using RBF collocation method

Directory of Open Access Journals (Sweden)

Hamid Panahipour

2012-08-01

Full Text Available The generalized equal width (GEW equation is solved numerically by a meshless method based on a global collocation with standard types of radial basis functions (RBFs. Test problems including propagation of single solitons, interaction of two and three solitons, development of the Maxwellian initial condition pulses, wave undulation and wave generation are used to indicate the efficiency and accuracy of the method. Comparisons are made between the results of the proposed method and some other published numerical methods.

8. Workshop on Numerical Methods for Ordinary Differential Equations

CERN Document Server

Gear, Charles; Russo, Elvira

1989-01-01

Developments in numerical initial value ode methods were the focal topic of the meeting at L'Aquila which explord the connections between the classical background and new research areas such as differental-algebraic equations, delay integral and integro-differential equations, stability properties, continuous extensions (interpolants for Runge-Kutta methods and their applications, effective stepsize control, parallel algorithms for small- and large-scale parallel architectures). The resulting proceedings address many of these topics in both research and survey papers.

9. Numerical Methods for a Class of Differential Algebraic Equations

Directory of Open Access Journals (Sweden)

Lei Ren

2017-01-01

Full Text Available This paper is devoted to the study of some efficient numerical methods for the differential algebraic equations (DAEs. At first, we propose a finite algorithm to compute the Drazin inverse of the time varying DAEs. Numerical experiments are presented by Drazin inverse and Radau IIA method, which illustrate that the precision of the Drazin inverse method is higher than the Radau IIA method. Then, Drazin inverse, Radau IIA, and Padé approximation are applied to the constant coefficient DAEs, respectively. Numerical results demonstrate that the Padé approximation is powerful for solving constant coefficient DAEs.

10. Efficient Numerical Methods for Stochastic Differential Equations in Computational Finance

KAUST Repository

Happola, Juho

2017-09-19

Stochastic Differential Equations (SDE) offer a rich framework to model the probabilistic evolution of the state of a system. Numerical approximation methods are typically needed in evaluating relevant Quantities of Interest arising from such models. In this dissertation, we present novel effective methods for evaluating Quantities of Interest relevant to computational finance when the state of the system is described by an SDE.

11. Efficient Numerical Methods for Stochastic Differential Equations in Computational Finance

KAUST Repository

Happola, Juho

2017-01-01

Stochastic Differential Equations (SDE) offer a rich framework to model the probabilistic evolution of the state of a system. Numerical approximation methods are typically needed in evaluating relevant Quantities of Interest arising from such models. In this dissertation, we present novel effective methods for evaluating Quantities of Interest relevant to computational finance when the state of the system is described by an SDE.

12. Nonlinear ordinary differential equations analytical approximation and numerical methods

CERN Document Server

Hermann, Martin

2016-01-01

The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

13. New numerical method for solving the solute transport equation

International Nuclear Information System (INIS)

Ross, B.; Koplik, C.M.

1978-01-01

The solute transport equation can be solved numerically by approximating the water flow field by a network of stream tubes and using a Green's function solution within each stream tube. Compared to previous methods, this approach permits greater computational efficiency and easier representation of small discontinuities, and the results are easier to interpret physically. The method has been used to study hypothetical sites for disposal of high-level radioactive waste

14. Numerical method for the nonlinear Fokker-Planck equation

International Nuclear Information System (INIS)

Zhang, D.S.; Wei, G.W.; Kouri, D.J.; Hoffman, D.K.

1997-01-01

A practical method based on distributed approximating functionals (DAFs) is proposed for numerically solving a general class of nonlinear time-dependent Fokker-Planck equations. The method relies on a numerical scheme that couples the usual path-integral concept to the DAF idea. The high accuracy and reliability of the method are illustrated by applying it to an exactly solvable nonlinear Fokker-Planck equation, and the method is compared with the accurate K-point Stirling interpolation formula finite-difference method. The approach is also used successfully to solve a nonlinear self-consistent dynamic mean-field problem for which both the cumulant expansion and scaling theory have been found by Drozdov and Morillo [Phys. Rev. E 54, 931 (1996)] to be inadequate to describe the occurrence of a long-lived transient bimodality. The standard interpretation of the transient bimodality in terms of the flat region in the kinetic potential fails for the present case. An alternative analysis based on the effective potential of the Schroedinger-like Fokker-Planck equation is suggested. Our analysis of the transient bimodality is strongly supported by two examples that are numerically much more challenging than other examples that have been previously reported for this problem. copyright 1997 The American Physical Society

15. On numerical solution of Burgers' equation by homotopy analysis method

International Nuclear Information System (INIS)

Inc, Mustafa

2008-01-01

In this Letter, we present the Homotopy Analysis Method (shortly HAM) for obtaining the numerical solution of the one-dimensional nonlinear Burgers' equation. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Convergence of the solution and effects for the method is discussed. The comparison of the HAM results with the Homotopy Perturbation Method (HPM) and the results of [E.N. Aksan, Appl. Math. Comput. 174 (2006) 884; S. Kutluay, A. Esen, Int. J. Comput. Math. 81 (2004) 1433; S. Abbasbandy, M.T. Darvishi, Appl. Math. Comput. 163 (2005) 1265] are made. The results reveal that HAM is very simple and effective. The HAM contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of solution series. The numerical solutions are compared with the known analytical and some numerical solutions

16. A Numerical Method for Lane-Emden Equations Using Hybrid Functions and the Collocation Method

Directory of Open Access Journals (Sweden)

Changqing Yang

2012-01-01

Full Text Available A numerical method to solve Lane-Emden equations as singular initial value problems is presented in this work. This method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The collocation method transforms the differential equation into a system of algebraic equations. It also has application in a wide area of differential equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.

17. Ernst Equation and Riemann Surfaces: Analytical and Numerical Methods

International Nuclear Information System (INIS)

Ernst, Frederick J

2007-01-01

metric tensor components. The first two chapters of this book are devoted to some basic ideas: in the introductory chapter 1 the authors discuss the concept of integrability, comparing the integrability of the vacuum Ernst equation with the integrability of nonlinear equations of Korteweg-de Vries (KdV) type, while in chapter 2 they describe various circumstances in which the vacuum Ernst equation has been determined to be relevant, not only in connection with gravitation but also, for example, in the construction of solutions of the self-dual Yang-Mills equations. It is also in this chapter that one of several equivalent linear systems for the Ernst equation is described. The next two chapters are devoted to Dmitry Korotkin's concept of algebro-geometric solutions of a linear system: in chapter 3 the structure of such solutions of the vacuum Ernst equation, which involve Riemann theta functions of hyperelliptic algebraic curves of any genus, is contrasted with the periodic structure of such solutions of the KdV equation. How such solutions can be obtained, for example, by solving a matrix Riemann-Hilbert problem and how the metric tensor of the associated spacetime can be evaluated is described in detail. In chapter 4 the asymptotic behaviour and the similarity structure of the general algebro-geometric solutions of the Ernst equation are described, and the relationship of such solutions to the perhaps more familiar multi-soliton solutions is discussed. The next three chapters are based upon the authors' own published research: in chapter 5 it is shown that a problem involving counter-rotating infinitely thin disks of matter can be solved in terms of genus two Riemann theta functions, while in chapter 6 the authors describe numerical methods that facilitate the construction of such solutions, and in chapter 7 three-dimensional graphs are displayed that depict all metrical fields of the associated spacetime. Finally, in chapter 8, the difficulties associated with

18. The Navier-Stokes Equations Theory and Numerical Methods

CERN Document Server

Masuda, Kyûya; Rautmann, Reimund; Solonnikov, Vsevolod

1990-01-01

These proceedings contain original (refereed) research articles by specialists from many countries, on a wide variety of aspects of Navier-Stokes equations. Additionally, 2 survey articles intended for a general readership are included: one surveys the present state of the subject via open problems, and the other deals with the interplay between theory and numerical analysis.

19. Numerical Simulation of Antennas with Improved Integral Equation Method

International Nuclear Information System (INIS)

Ma Ji; Fang Guang-You; Lu Wei

2015-01-01

Simulating antennas around a conducting object is a challenge task in computational electromagnetism, which is concerned with the behaviour of electromagnetic fields. To analyze this model efficiently, an improved integral equation-fast Fourier transform (IE-FFT) algorithm is presented in this paper. The proposed scheme employs two Cartesian grids with different size and location to enclose the antenna and the other object, respectively. On the one hand, IE-FFT technique is used to store matrix in a sparse form and accelerate the matrix-vector multiplication for each sub-domain independently. On the other hand, the mutual interaction between sub-domains is taken as the additional exciting voltage in each matrix equation. By updating integral equations several times, the whole electromagnetic system can achieve a stable status. Finally, the validity of the presented method is verified through the analysis of typical antennas in the presence of a conducting object. (paper)

20. Numerical method for solving integral equations of neutron transport. II

International Nuclear Information System (INIS)

Loyalka, S.K.; Tsai, R.W.

1975-01-01

In a recent paper it was pointed out that the weakly singular integral equations of neutron transport can be quite conveniently solved by a method based on subtraction of singularity. This previous paper was devoted entirely to the consideration of simple one-dimensional isotropic-scattering and one-group problems. The present paper constitutes interesting extensions of the previous work in that in addition to a typical two-group anisotropic-scattering albedo problem in the slab geometry, the method is also applied to an isotropic-scattering problem in the x-y geometry. These results are compared with discrete S/sub N/ (ANISN or TWOTRAN-II) results, and for the problems considered here, the proposed method is found to be quite effective. Thus, the method appears to hold considerable potential for future applications. (auth)

1. Discrete variational derivative method a structure-preserving numerical method for partial differential equations

CERN Document Server

Furihata, Daisuke

2010-01-01

Nonlinear Partial Differential Equations (PDEs) have become increasingly important in the description of physical phenomena. Unlike Ordinary Differential Equations, PDEs can be used to effectively model multidimensional systems. The methods put forward in Discrete Variational Derivative Method concentrate on a new class of ""structure-preserving numerical equations"" which improves the qualitative behaviour of the PDE solutions and allows for stable computing. The authors have also taken care to present their methods in an accessible manner, which means that the book will be useful to engineer

2. Numerical Solution of Fuzzy Differential Equations by Runge-Kutta Verner Method

Directory of Open Access Journals (Sweden)

T. Jayakumar

2015-01-01

Full Text Available In this paper we study the numerical methods for Fuzzy Differential equations by an application of the Runge-Kutta Verner method for fuzzy differential equations. We prove a convergence result and give numerical examples to illustrate the theory.

3. Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method

Directory of Open Access Journals (Sweden)

De-Gang Wang

2012-01-01

Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.

4. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

Energy Technology Data Exchange (ETDEWEB)

Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)

2007-01-15

In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

5. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods

International Nuclear Information System (INIS)

Reynolds, J. M.; Lopez-Bruna, D.

2009-01-01

In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs

6. A higher order numerical method for time fractional partial differential equations with nonsmooth data

Science.gov (United States)

Xing, Yanyuan; Yan, Yubin

2018-03-01

Gao et al.  (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 equation is sufficiently smooth, Lv and Xu  (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.

7. Numerical soliton-like solutions of the potential Kadomtsev-Petviashvili equation by the decomposition method

International Nuclear Information System (INIS)

Kaya, Dogan; El-Sayed, Salah M.

2003-01-01

In this Letter we present an Adomian's decomposition method (shortly ADM) for obtaining the numerical soliton-like solutions of the potential Kadomtsev-Petviashvili (shortly PKP) equation. We will prove the convergence of the ADM. We obtain the exact and numerical solitary-wave solutions of the PKP equation for certain initial conditions. Then ADM yields the analytic approximate solution with fast convergence rate and high accuracy through previous works. The numerical solutions are compared with the known analytical solutions

8. A asymptotic numerical method for the steady-state convection diffusion equation

International Nuclear Information System (INIS)

Wu Qiguang

1988-01-01

In this paper, A asymptotic numerical method for the steady-state Convection diffusion equation is proposed, which need not take very fine mesh size in the neighbourhood of the boundary layer. Numerical computation for model problem show that we can obtain the numerical solution in the boundary layer with moderate step size

9. Two split cell numerical methods for solving 2-D non-equilibrium radiation transport equations

International Nuclear Information System (INIS)

Feng Tinggui

2004-11-01

Two numerically positive methods, the step characteristic integral method and subcell balance method, for solving radiative transfer equations on quadrilateral grids are presented. Numerical examples shows that the schemes presented are feasible on non-rectangle grid computation, and that the computing results by the schemes presented are comparative to that by the discrete ordinate diamond scheme on rectangle grid. (author)

10. Numerical methods for the solution of ordinary differential equations

International Nuclear Information System (INIS)

Azeem, M.

1999-01-01

The ode 113 code solves non-stiff differential equations and is a fully variable step, variable order, PECE implementation in terms of modified divided differences of Adams-Bashforth-Moulton family of formulas of order 1-12. The main objectives of this project were to modify PECE mode of ode 113 into PEC mode, study the variable step size and variable order strategy of both the modes and finally, develop the switching strategy between both PECE and PEC modes to minimize the cost of solving the ordinary differential equations. Using some test problems (including stiff, mild stiff and non-stiff), it was found that the PEC mode was more efficient for non-stiff problems at crude and intermediate tolerances and the PECE mode for all problems at the stringent tolerance. An automatic switching strategy was developed using the results observed from the step size and order plots of all the test problems for both the modes and gave the optimum results. (author)

11. Theory of difference equations numerical methods and applications

CERN Document Server

Lakshmikantham, Vangipuram

1988-01-01

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

12. Some applications of perturbation theory to numerical integration methods for the Schroedinger equation

International Nuclear Information System (INIS)

Killingbeck, J.

1979-01-01

By using the methods of perturbation theory it is possible to construct simple formulae for the numerical integration of the Schroedinger equation, and also to calculate expectation values solely by means of simple eigenvalue calculations. (Auth.)

13. A method for solving the KDV equation and some numerical experiments

International Nuclear Information System (INIS)

Chang Jinjiang.

1993-01-01

In this paper, by means of difference method for discretization of space partial derivatives of KDV equation, an initial value problem in ordinary differential equations of large dimensions is produced. By using this ordinary differential equations the existence and the uniqueness of the solution of the KDV equation and the conservation of scheme are proved. This ordinary differential equation can be solved by using implicit Runge-Kutta methods, so a new method for finding the numerical solution of the KDV equation is presented. Numerical experiments not only describe in detail the procedure of two solitons collision, soliton reflex and soliton produce, but also show that this method is very effective. (author). 7 refs, 3 figs

14. Fast Numerical Methods for Stochastic Partial Differential Equations

Science.gov (United States)

2016-04-15

Particle Swarm Optimization (PSO) method. Inspired by the social behavior of the bird flocking or fish schooling, the particle swarm optimization (PSO...Weerasinghe, Hongmei Chi and Yanzhao Cao, Particle Swarm Optimization Simulation via Optimal Halton Sequences, accepted by Procedia Computer Science (2016...Optimization Simulation via Optimal Halton Sequences, accepted by Procedia Computer Science (2016). 2. Haiyan Tian, Hongmei Chi and Yanzhao Cao

15. Numerical method for the eigenvalue problem and the singular equation by using the multi-grid method and application to ordinary differential equation

International Nuclear Information System (INIS)

Kanki, Takashi; Uyama, Tadao; Tokuda, Shinji.

1995-07-01

In the numerical method to compute the matching data which are necessary for resistive MHD stability analyses, it is required to solve the eigenvalue problem and the associated singular equation. An iterative method is developed to solve the eigenvalue problem and the singular equation. In this method, the eigenvalue problem is replaced with an equivalent nonlinear equation and a singular equation is derived from Newton's method for the nonlinear equation. The multi-grid method (MGM), a high speed iterative method, can be applied to this method. The convergence of the eigenvalue and the eigenvector, and the CPU time in this method are investigated for a model equation. It is confirmed from the numerical results that this method is effective for solving the eigenvalue problem and the singular equation with numerical stability and high accuracy. It is shown by improving the MGM that the CPU time for this method is 50 times shorter than that of the direct method. (author)

16. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

Energy Technology Data Exchange (ETDEWEB)

Nielsen, Bjoern Fredrik

1997-12-31

The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

17. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

Energy Technology Data Exchange (ETDEWEB)

Nielsen, Bjoern Fredrik

1998-12-31

The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

18. A Numerical Method for Partial Differential Algebraic Equations Based on Differential Transform Method

Directory of Open Access Journals (Sweden)

Murat Osmanoglu

2013-01-01

Full Text Available We have considered linear partial differential algebraic equations (LPDAEs of the form , which has at least one singular matrix of . We have first introduced a uniform differential time index and a differential space index. The initial conditions and boundary conditions of the given system cannot be prescribed for all components of the solution vector here. To overcome this, we introduced these indexes. Furthermore, differential transform method has been given to solve LPDAEs. We have applied this method to a test problem, and numerical solution of the problem has been compared with analytical solution.

19. Conservation properties of numerical integration methods for systems of ordinary differential equations

Science.gov (United States)

Rosenbaum, J. S.

1976-01-01

If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.

20. Numerical method of identification of an unknown source term in a heat equation

Directory of Open Access Journals (Sweden)

Fatullayev Afet Golayo?lu

2002-01-01

Full Text Available A numerical procedure for an inverse problem of identification of an unknown source in a heat equation is presented. Approach of proposed method is to approximate unknown function by polygons linear pieces which are determined consecutively from the solution of minimization problem based on the overspecified data. Numerical examples are presented.

1. Numerical simulation of the regularized long wave equation by He's homotopy perturbation method

Energy Technology Data Exchange (ETDEWEB)

Inc, Mustafa [Department of Mathematics, Firat University, 23119 Elazig (Turkey)], E-mail: minc@firat.edu.tr; Ugurlu, Yavuz [Department of Mathematics, Firat University, 23119 Elazig (Turkey)

2007-09-17

In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions.

2. Numerical simulation of the regularized long wave equation by He's homotopy perturbation method

International Nuclear Information System (INIS)

Inc, Mustafa; Ugurlu, Yavuz

2007-01-01

In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions

3. Numerical simulation for fractional order stationary neutron transport equation using Haar wavelet collocation method

Energy Technology Data Exchange (ETDEWEB)

Saha Ray, S., E-mail: santanusaharay@yahoo.com; Patra, A.

2014-10-15

Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet collocation method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: In this paper the numerical solution for the fractional order stationary neutron transport equation is presented using Haar wavelet Collocation Method (HWCM). Haar wavelet collocation method is efficient and powerful in solving wide class of linear and nonlinear differential equations. This paper intends to provide an application of Haar wavelets to nuclear science problems. This paper describes the application of Haar wavelets for the numerical solution of fractional order stationary neutron transport equation in homogeneous medium with isotropic scattering. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency and applicability of the method, two test problems are discussed.

4. Development of a set of benchmark problems to verify numerical methods for solving burnup equations

International Nuclear Information System (INIS)

2017-01-01

Highlights: • Description transmutation chain benchmark problems. • Problems for validating numerical methods for solving burnup equations. • Analytical solutions for the burnup equations. • Numerical solutions for the burnup equations. - Abstract: A comprehensive set of transmutation chain benchmark problems for numerically validating methods for solving burnup equations was created. These benchmark problems were designed to challenge both traditional and modern numerical methods used to solve the complex set of ordinary differential equations used for tracking the change in nuclide concentrations over time due to nuclear phenomena. Given the development of most burnup solvers is done for the purpose of coupling with an established transport solution method, these problems provide a useful resource in testing and validating the burnup equation solver before coupling for use in a lattice or core depletion code. All the relevant parameters for each benchmark problem are described. Results are also provided in the form of reference solutions generated by the Mathematica tool, as well as additional numerical results from MATLAB.

5. Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method

International Nuclear Information System (INIS)

Mokhtari, R.; Toodar, A. Samadi; Chegini, N. G.

2011-01-01

We the extend application of the generalized differential quadrature method (GDQM) to solve some coupled nonlinear Schrödinger equations. The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge—Kutta method. The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly. Some comparisons with the methods applied in the literature are carried out. (general)

6. Stability of numerical method for semi-linear stochastic pantograph differential equations

Directory of Open Access Journals (Sweden)

Yu Zhang

2016-01-01

Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.

7. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

Science.gov (United States)

Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

2018-04-01

The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

8. On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations

Directory of Open Access Journals (Sweden)

H. Montazeri

2012-01-01

Full Text Available We consider a system of nonlinear equations F(x=0. A new iterative method for solving this problem numerically is suggested. The analytical discussions of the method are provided to reveal its sixth order of convergence. A discussion on the efficiency index of the contribution with comparison to the other iterative methods is also given. Finally, numerical tests illustrate the theoretical aspects using the programming package Mathematica.

9. Steady-state transport equation resolution by particle methods, and numerical results

International Nuclear Information System (INIS)

Mercier, B.

1985-10-01

A method to solve steady-state transport equation has been given. Principles of the method are given. The method is studied in two different cases; estimations given by the theory are compared to numerical results. Results got in 1-D (spherical geometry) and in 2-D (axisymmetric geometry) are given [fr

10. Exponential and Bessel fitting methods for the numerical solution of the Schroedinger equation

International Nuclear Information System (INIS)

Raptis, A.D.; Cash, J.R.

1987-01-01

A new method is developed for the numerical integration of the one dimensional radial Schroedinger equation. This method involves using different integration formulae in different parts of the range of integration rather than using the same integration formula throughout. Two new integration formulae are derived, one which integrates Bessel and Neumann functions exactly and another which exactly integrates certain exponential functions. It is shown that, for large r, these new formulae are much more accurate than standard integration methods for the Schroedinger equation. The benefit of using this new approach is demonstrated by considering some numerical examples based on the Lennard-Jones potential. (orig.)

11. Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method

International Nuclear Information System (INIS)

Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr

2008-01-01

Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code

12. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.

Science.gov (United States)

Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q

2013-03-01

In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.

13. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION

OpenAIRE

Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.

2013-01-01

In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and technique...

14. Numerical methods to solve the two-dimensional heat conduction equation

International Nuclear Information System (INIS)

Santos, R.S. dos.

1981-09-01

A class of numerical methods, called 'Hopscotch Algorithms', was used to solve the heat conduction equation in cylindrical geometry. Using a time dependent heat source, the temperature versus time behaviour of cylindric rod was analysed. Numerical simulation was used to study the stability and the convergence of each different method. Another test had the temperature specified on the outer surface as boundary condition. The various Hopscotch methods analysed exhibit differing degrees of accuracy, few of them being so accurate as the ADE method, but requiring more computational operations than the later, were observed. Finally, compared with the so called ODD-EVEN method, two other Hopscotch methods, are more time consuming. (Author) [pt

15. Numerical Hopf bifurcation of Runge-Kutta methods for a class of delay differential equations

International Nuclear Information System (INIS)

Wang Qiubao; Li Dongsong; Liu, M.Z.

2009-01-01

In this paper, we consider the discretization of parameter-dependent delay differential equation of the form y ' (t)=f(y(t),y(t-1),τ),τ≥0,y element of R d . It is shown that if the delay differential equation undergoes a Hopf bifurcation at τ=τ * , then the discrete scheme undergoes a Hopf bifurcation at τ(h)=τ * +O(h p ) for sufficiently small step size h, where p≥1 is the order of the Runge-Kutta method applied. The direction of numerical Hopf bifurcation and stability of bifurcating invariant curve are the same as that of delay differential equation.

16. A purely Lagrangian method for the numerical integration of Fokker-Planck equations

International Nuclear Information System (INIS)

Combis, P.; Fronteau, J.

1986-01-01

A new numerical approach to Fokker-Planck equations is presented, in which the integration grid moves according to the solution of a differential system. The method is purely Lagrangian, the mean effect of the diffusion being inserted into the differential system itself

17. Comparative numerical solutions of stiff Ordinary differential equations using magnus series expansion method

Directory of Open Access Journals (Sweden)

SURE KÖME

2014-12-01

Full Text Available In this paper, we investigated the effect of Magnus Series Expansion Method on homogeneous stiff ordinary differential equations with different stiffness ratios. A Magnus type integrator is used to obtain numerical solutions of two different examples of stiff problems and exact and approximate results are tabulated. Furthermore, absolute error graphics are demonstrated in detail.

18. Numerical approximations of nonlinear fractional differential difference equations by using modified He-Laplace method

Directory of Open Access Journals (Sweden)

J. Prakash

2016-03-01

Full Text Available In this paper, a numerical algorithm based on a modified He-Laplace method (MHLM is proposed to solve space and time nonlinear fractional differential-difference equations (NFDDEs arising in physical phenomena such as wave phenomena in fluids, coupled nonlinear optical waveguides and nanotechnology fields. The modified He-Laplace method is a combined form of the fractional homotopy perturbation method and Laplace transforms method. The nonlinear terms can be easily decomposed by the use of He’s polynomials. This algorithm has been tested against time-fractional differential-difference equations such as the modified Lotka Volterra and discrete (modified KdV equations. The proposed scheme grants the solution in the form of a rapidly convergent series. Three examples have been employed to illustrate the preciseness and effectiveness of the proposed method. The achieved results expose that the MHLM is very accurate, efficient, simple and can be applied to other nonlinear FDDEs.

19. A numerical dressing method for the nonlinear superposition of solutions of the KdV equation

International Nuclear Information System (INIS)

Trogdon, Thomas; Deconinck, Bernard

2014-01-01

In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg–de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t. (paper)

20. Two numerical methods for an inverse problem for the 2-D Helmholtz equation

CERN Document Server

Gryazin, Y A; Lucas, T R

2003-01-01

Two solution methods for the inverse problem for the 2-D Helmholtz equation are developed, tested, and compared. The proposed approaches are based on a marching finite-difference scheme which requires the solution of an overdetermined system at each step. The preconditioned conjugate gradient method is used for rapid solutions of these systems and an efficient preconditioner has been developed for this class of problems. Underlying target applications include the imaging of land mines, unexploded ordinance, and pollutant plumes in environmental cleanup sites, each formulated as an inverse problem for a 2-D Helmholtz equation. The images represent the electromagnetic properties of the respective underground regions. Extensive numerical results are presented.

1. Numerical analysis for multi-group neutron-diffusion equation using Radial Point Interpolation Method (RPIM)

International Nuclear Information System (INIS)

Kim, Kyung-O; Jeong, Hae Sun; Jo, Daeseong

2017-01-01

Highlights: • Employing the Radial Point Interpolation Method (RPIM) in numerical analysis of multi-group neutron-diffusion equation. • Establishing mathematical formation of modified multi-group neutron-diffusion equation by RPIM. • Performing the numerical analysis for 2D critical problem. - Abstract: A mesh-free method is introduced to overcome the drawbacks (e.g., mesh generation and connectivity definition between the meshes) of mesh-based (nodal) methods such as the finite-element method and finite-difference method. In particular, the Point Interpolation Method (PIM) using a radial basis function is employed in the numerical analysis for the multi-group neutron-diffusion equation. The benchmark calculations are performed for the 2D homogeneous and heterogeneous problems, and the Multiquadrics (MQ) and Gaussian (EXP) functions are employed to analyze the effect of the radial basis function on the numerical solution. Additionally, the effect of the dimensionless shape parameter in those functions on the calculation accuracy is evaluated. According to the results, the radial PIM (RPIM) can provide a highly accurate solution for the multiplication eigenvalue and the neutron flux distribution, and the numerical solution with the MQ radial basis function exhibits the stable accuracy with respect to the reference solutions compared with the other solution. The dimensionless shape parameter directly affects the calculation accuracy and computing time. Values between 1.87 and 3.0 for the benchmark problems considered in this study lead to the most accurate solution. The difference between the analytical and numerical results for the neutron flux is significantly increased in the edge of the problem geometry, even though the maximum difference is lower than 4%. This phenomenon seems to arise from the derivative boundary condition at (x,0) and (0,y) positions, and it may be necessary to introduce additional strategy (e.g., the method using fictitious points and

2. Solving the Bateman equations in CASMO5 using implicit ode numerical methods for stiff systems

International Nuclear Information System (INIS)

Hykes, J. M.; Ferrer, R. M.

2013-01-01

The Bateman equations, which describe the transmutation of nuclides over time as a result of radioactive decay, absorption, and fission, are often numerically stiff. This is especially true if short-lived nuclides are included in the system. This paper describes the use of implicit numerical methods for o D Es applied to the stiff Bateman equations, specifically employing the Backward Differentiation Formulas (BDF) form of the linear multistep method. As is true in other domains, using an implicit method removes or lessens the (sometimes severe) step-length constraints by which explicit methods must abide. To gauge its accuracy and speed, the BDF method is compared to a variety of other solution methods, including Runge-Kutta explicit methods and matrix exponential methods such as the Chebyshev Rational Approximation Method (CRAM). A preliminary test case was chosen as representative of a PWR lattice depletion step and was solved with numerical libraries called from a Python front-end. The Figure of Merit (a combined measure of accuracy and efficiency) for the BDF method was nearly identical to that for CRAM, while explicit methods and other matrix exponential approximations trailed behind. The test case includes 319 nuclides, in which the shortest-lived nuclide is 98 Nb with a half-life of 2.86 seconds. Finally, the BDF and CRAM methods were compared within CASMO5, where CRAM had a FOM about four times better than BDF, although the BDF implementation was not fully optimized. (authors)

3. Numerical method in reproducing kernel space for an inverse source problem for the fractional diffusion equation

International Nuclear Information System (INIS)

Wang, Wenyan; Han, Bo; Yamamoto, Masahiro

2013-01-01

We propose a new numerical method for reproducing kernel Hilbert space to solve an inverse source problem for a two-dimensional fractional diffusion equation, where we are required to determine an x-dependent function in a source term by data at the final time. The exact solution is represented in the form of a series and the approximation solution is obtained by truncating the series. Furthermore, a technique is proposed to improve some of the existing methods. We prove that the numerical method is convergent under an a priori assumption of the regularity of solutions. The method is simple to implement. Our numerical result shows that our method is effective and that it is robust against noise in L 2 -space in reconstructing a source function. (paper)

4. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

International Nuclear Information System (INIS)

Talamo, Alberto

2013-01-01

This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps

5. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

Energy Technology Data Exchange (ETDEWEB)

Talamo, Alberto, E-mail: alby@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

2013-05-01

This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.

6. Numerical method for solving the three-dimensional time-dependent neutron diffusion equation

International Nuclear Information System (INIS)

Khaled, S.M.; Szatmary, Z.

2005-01-01

A numerical time-implicit method has been developed for solving the coupled three-dimensional time-dependent multi-group neutron diffusion and delayed neutron precursor equations. The numerical stability of the implicit computation scheme and the convergence of the iterative associated processes have been evaluated. The computational scheme requires the solution of large linear systems at each time step. For this purpose, the point over-relaxation Gauss-Seidel method was chosen. A new scheme was introduced instead of the usual source iteration scheme. (author)

7. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

KAUST Repository

2017-01-01

Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

8. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

KAUST Repository

2017-03-22

Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

9. A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations

International Nuclear Information System (INIS)

Saurel, Richard; Franquet, Erwin; Daniel, Eric; Le Metayer, Olivier

2007-01-01

A new projection method is developed for the Euler equations to determine the thermodynamic state in computational cells. It consists in the resolution of a mechanical relaxation problem between the various sub-volumes present in a computational cell. These sub-volumes correspond to the ones traveled by the various waves that produce states with different pressures, velocities, densities and temperatures. Contrarily to Godunov type schemes the relaxed state corresponds to mechanical equilibrium only and remains out of thermal equilibrium. The pressure computation with this relaxation process replaces the use of the conventional equation of state (EOS). A simplified relaxation method is also derived and provides a specific EOS (named the Numerical EOS). The use of the Numerical EOS gives a cure to spurious pressure oscillations that appear at contact discontinuities for fluids governed by real gas EOS. It is then extended to the computation of interface problems separating fluids with different EOS (liquid-gas interface for example) with the Euler equations. The resulting method is very robust, accurate, oscillation free and conservative. For the sake of simplicity and efficiency the method is developed in a Lagrange-projection context and is validated over exact solutions. In a companion paper [F. Petitpas, E. Franquet, R. Saurel, A relaxation-projection method for compressible flows. Part II: computation of interfaces and multiphase mixtures with stiff mechanical relaxation. J. Comput. Phys. (submitted for publication)], the method is extended to the numerical approximation of a non-conservative hyperbolic multiphase flow model for interface computation and shock propagation into mixtures

10. Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains

Directory of Open Access Journals (Sweden)

Tsugio Fukuchi

2014-06-01

Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.

11. Mixed dual finite element methods for the numerical treatment of the diffusion equation in hexagonal geometry

International Nuclear Information System (INIS)

Schneider, D.

2001-01-01

The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P N approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)

12. Numerical methods and analysis of the nonlinear Vlasov equation on unstructured meshes of phase space

International Nuclear Information System (INIS)

Besse, Nicolas

2003-01-01

This work is dedicated to the mathematical and numerical studies of the Vlasov equation on phase-space unstructured meshes. In the first part, new semi-Lagrangian methods are developed to solve the Vlasov equation on unstructured meshes of phase space. As the Vlasov equation describes multi-scale phenomena, we also propose original methods based on a wavelet multi-resolution analysis. The resulting algorithm leads to an adaptive mesh-refinement strategy. The new massively-parallel computers allow to use these methods with several phase-space dimensions. Particularly, these numerical schemes are applied to plasma physics and charged particle beams in the case of two-, three-, and four-dimensional Vlasov-Poisson systems. In the second part we prove the convergence and give error estimates for several numerical schemes applied to the Vlasov-Poisson system when strong and classical solutions are considered. First we show the convergence of a semi-Lagrangian scheme on an unstructured mesh of phase space, when the regularity hypotheses for the initial data are minimal. Then we demonstrate the convergence of classes of high-order semi-Lagrangian schemes in the framework of the regular classical solution. In order to reconstruct the distribution function, we consider symmetrical Lagrange polynomials, B-Splines and wavelets bases. Finally we prove the convergence of a semi-Lagrangian scheme with propagation of gradients yielding a high-order and stable reconstruction of the solution. (author) [fr

13. A Galerkin Finite Element Method for Numerical Solutions of the Modified Regularized Long Wave Equation

Directory of Open Access Journals (Sweden)

Liquan Mei

2014-01-01

Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.

14. Numerical solution of stiff burnup equation with short half lived nuclides by the Krylov subspace method

International Nuclear Information System (INIS)

Yamamoto, Akio; Tatsumi, Masahiro; Sugimura, Naoki

2007-01-01

The Krylov subspace method is applied to solve nuclide burnup equations used for lattice physics calculations. The Krylov method is an efficient approach for solving ordinary differential equations with stiff nature such as the nuclide burnup with short lived nuclides. Some mathematical fundamentals of the Krylov subspace method and its application to burnup equations are discussed. Verification calculations are carried out in a PWR pin-cell geometry with UO 2 fuel. A detailed burnup chain that includes 193 fission products and 28 heavy nuclides is used in the verification calculations. Shortest half life found in the present burnup chain is approximately 30 s ( 106 Rh). Therefore, conventional methods (e.g., the Taylor series expansion with scaling and squaring) tend to require longer computation time due to numerical stiffness. Comparison with other numerical methods (e.g., the 4-th order Runge-Kutta-Gill) reveals that the Krylov subspace method can provide accurate solution for a detailed burnup chain used in the present study with short computation time. (author)

15. Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

International Nuclear Information System (INIS)

Katsaounis, T D

2005-01-01

The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall

16. An efficient numerical method for solving the Boltzmann equation in multidimensions

Science.gov (United States)

Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas

2018-01-01

In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 ) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.

17. Numerical solution of the helmholtz equation for the superellipsoid via the galerkin method

Directory of Open Access Journals (Sweden)

Hy Dinh

2013-01-01

Full Text Available The objective of this work was to find the numerical solution of the Dirichlet problem for the Helmholtz equation for a smooth superellipsoid. The superellipsoid is a shape that is controlled by two parameters. There are some numerical issues in this type of an analysis; any integration method is affected by the wave number k, because of the oscillatory behavior of the fundamental solution. In this case we could only obtain good numerical results for super ellipsoids that were more shaped like super cones, which is a narrow range of super ellipsoids. The formula for these shapes was: $x=cos(xsin(y^{n},y=sin(xsin(y^{n},z=cos(y$ where $n$ varied from 0.5 to 4. The Helmholtz equation, which is the modified wave equation, is used in many scattering problems. This project was funded by NASA RI Space Grant for testing of the Dirichlet boundary condition for the shape of the superellipsoid. One practical value of all these computations can be getting a shape for the engine nacelles in a ray tracing the space shuttle. We are researching the feasibility of obtaining good convergence results for the superellipsoid surface. It was our view that smaller and lighter wave numbers would reduce computational costs associated with obtaining Galerkin coefficients. In addition, we hoped to significantly reduce the number of terms in the infinite series needed to modify the original integral equation, all of which were achieved in the analysis of the superellipsoid in a finite range. We used the Green's theorem to solve the integral equation for the boundary of the surface. Previously, multiple surfaces were used to test this method, such as the sphere, ellipsoid, and perturbation of the sphere, pseudosphere and the oval of Cassini Lin and Warnapala , Warnapala and Morgan .

18. Born approximation to a perturbative numerical method for the solution of the Schroedinger equation

International Nuclear Information System (INIS)

1978-01-01

A step function perturbative numerical method (SF-PN method) is developed for the solution of the Cauchy problem for the second order liniar differential equation in normal form. An important point stressed in the present paper, which seems to have been previously ignored in the literature devoted to the PN methods, is the close connection between the first order perturbation theory of the PN approach and the wellknown Born approximation, and, in general, the connection between the varjous orders of the PN corrections and the Neumann series. (author)

19. Born approximation to a perturbative numerical method for the solution of the Schrodinger equation

International Nuclear Information System (INIS)

1978-05-01

A perturbative numerical (PN) method is given for the solution of a regular one-dimensional Cauchy problem arising from the Schroedinger equation. The present method uses a step function approximation for the potential. Global, free of scaling difficulty, forward and backward PN algorithms are derived within first order perturbation theory (Born approximation). A rigorous analysis of the local truncation errors is performed. This shows that the order of accuracy of the method is equal to four. In between the mesh points, the global formula for the wavefunction is accurate within O(h 4 ), while that for the first order derivative is accurate within O(h 3 ). (author)

20. Numerical simulations of a family of the coupled viscous Burgers, equation using the lattice Boltzmann method

International Nuclear Information System (INIS)

He, Y B; Tang, X H

2016-01-01

In this paper, in order to extend the lattice Boltzmann method (LBM) to deal with more nonlinear systems, a one-dimensional and five-velocity lattice Boltzmann scheme with an amending function for a family of the coupled viscous Burgers’ equation (CVBE) is proposed. With the Taylor and Chapman–Enskog expansion, a family of the CVBE is recovered correctly from the lattice Boltzmann equation through selecting the equilibrium distribution functions and amending functions properly. The method is applied to some test examples with an analytical solution. The results are compared with those obtained by the finite difference method (FDM); it is shown that the numerical solutions agree well with the analytical solutions and the errors obtained by the present method are smaller than the FDM. Furthermore, some problems without analytical solutions are numerically studied by the present method and the FDM. The results show that the numerical solutions of the LBM are in good agreement with those obtained by the FDM, which can validate the effectiveness and stability of the LBM. (paper: classical statistical mechanics, equilibrium and non-equilibrium)

1. Sparse grid spectral methods for the numerical solution of partial differential equations with periodic boundary conditions

International Nuclear Information System (INIS)

Kupka, F.

1997-11-01

This thesis deals with the extension of sparse grid techniques to spectral methods for the solution of partial differential equations with periodic boundary conditions. A review on boundary and initial-boundary value problems and a discussion on numerical resolution is used to motivate this research. Spectral methods are introduced by projection techniques, and by three model problems: the stationary and the transient Helmholtz equations, and the linear advection equation. The approximation theory on the hyperbolic cross is reviewed and its close relation to sparse grids is demonstrated. This approach extends to non-periodic problems. Various Sobolev spaces with dominant mixed derivative are introduced to provide error estimates for Fourier approximation and interpolation on the hyperbolic cross and on sparse grids by means of Sobolev norms. The theorems are immediately applicable to the stability and convergence analysis of sparse grid spectral methods. This is explicitly demonstrated for the three model problems. A variant of the von Neumann condition is introduced to simplify the stability analysis of the time-dependent model problems. The discrete Fourier transformation on sparse grids is discussed together with its software implementation. Results on numerical experiments are used to illustrate the performance of the new method with respect to the smoothness properties of each example. The potential of the method in mathematical modelling is estimated and generalizations to other sparse grid methods are suggested. The appendix includes a complete Fortran90 program to solve the linear advection equation by the sparse grid Fourier collocation method and a third-order Runge-Kutta routine for integration in time. (author)

2. A conservative finite difference method for the numerical solution of plasma fluid equations

International Nuclear Information System (INIS)

Colella, P.; Dorr, M.R.; Wake, D.D.

1999-01-01

This paper describes a numerical method for the solution of a system of plasma fluid equations. The fluid model is similar to those employed in the simulation of high-density, low-pressure plasmas used in semiconductor processing. The governing equations consist of a drift-diffusion model of the electrons, together with an internal energy equation, coupled via Poisson's equation to a system of Euler equations for each ion species augmented with electrostatic force, collisional, and source/sink terms. The time integration of the full system is performed using an operator splitting that conserves space charge and avoids dielectric relaxation timestep restrictions. The integration of the individual ion species and electrons within the time-split advancement is achieved using a second-order Godunov discretization of the hyperbolic terms, modified to account for the significant role of the electric field in the propagation of acoustic waves, combined with a backward Euler discretization of the parabolic terms. Discrete boundary conditions are employed to accommodate the plasma sheath boundary layer on underresolved grids. The algorithm is described for the case of a single Cartesian grid as the first step toward an implementation on a locally refined grid hierarchy in which the method presented here may be applied on each refinement level

3. Numerical Analysis of an H1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

Directory of Open Access Journals (Sweden)

Jinfeng Wang

2014-01-01

Full Text Available We discuss and analyze an H1-Galerkin mixed finite element (H1-GMFE method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H1-GMFE method. Based on the discussion on the theoretical error analysis in L2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H1-norm. Moreover, we derive and analyze the stability of H1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.

4. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

International Nuclear Information System (INIS)

Zhou, Xiafeng; Guo, Jiong; Li, Fu

2015-01-01

Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

5. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

Energy Technology Data Exchange (ETDEWEB)

Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

2015-12-15

Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

6. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

Science.gov (United States)

Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

2018-03-01

Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

7. The solitary wave solution of coupled Klein-Gordon-Zakharov equations via two different numerical methods

Science.gov (United States)

2013-09-01

In this research, we propose two different methods to solve the coupled Klein-Gordon-Zakharov (KGZ) equations: the Differential Quadrature (DQ) and Globally Radial Basis Functions (GRBFs) methods. In the DQ method, the derivative value of a function with respect to a point is directly approximated by a linear combination of all functional values in the global domain. The principal work in this method is the determination of weight coefficients. We use two ways for obtaining these coefficients: cosine expansion (CDQ) and radial basis functions (RBFs-DQ), the former is a mesh-based method and the latter categorizes in the set of meshless methods. Unlike the DQ method, the GRBF method directly substitutes the expression of the function approximation by RBFs into the partial differential equation. The main problem in the GRBFs method is ill-conditioning of the interpolation matrix. Avoiding this problem, we study the bases introduced in Pazouki and Schaback (2011) . Some examples are presented to compare the accuracy and easy implementation of the proposed methods. In numerical examples, we concentrate on Inverse Multiquadric (IMQ) and second-order Thin Plate Spline (TPS) radial basis functions. The variable shape parameter (exponentially and random) strategies are applied in the IMQ function and the results are compared with the constant shape parameter.

8. A first course in ordinary differential equations analytical and numerical methods

CERN Document Server

Hermann, Martin

2014-01-01

This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed t...

9. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

Science.gov (United States)

Katsaounis, T. D.

2005-02-01

The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using

10. Numerical solution of Boltzmann's equation

International Nuclear Information System (INIS)

Sod, G.A.

1976-04-01

The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig

11. A step function perturbative numerical method for the solution of coupled differential equations arising from the Schroedinger equation. Pt. 2

International Nuclear Information System (INIS)

Ixaru, G.L.

1978-03-01

The method developed in the previous paper (preprint, C.I.Ph. (Bucharest), MC-2-78, 1978) is here investigated from computational point of view. Special emphasis is paid to the two basic descriptors of the efficiency: the volume of memory required and the computational effort (timing). Next, two experimental cases are reported. They (i) confirm the theoretical estimates for the rate cf convergence of each version of the present method and (ii) show that the present method is substantially faster than the others. Specifically, it is found that for typical physical problems it is faster by a factor of ten up to twenty than the methods commonly used, viz. Numerov and de Vogelaere. The data reported also allow an inUirect comparison with the method of Gordon. I l/ allow an indirect comparison with the method of Gordon. It is shown that, while this exhibits the same rate as our basic, lowest order version, the computational effort for the latter is, in case of systems with nine equations, only half than for the method of Gordon. At the end of the paper some types of physical problems are suggested which should be the most benefitting if solved numerically with the present method. (author)

12. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

Energy Technology Data Exchange (ETDEWEB)

Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)

2016-02-15

We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.

13. Mathematical and numerical methods for partial differential equations applications for engineering sciences

CERN Document Server

2014-01-01

This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic

14. Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam-Bashforth method

Science.gov (United States)

Jain, Sonal

2018-01-01

In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.

15. A numerical method for transient gas-liquid two-phase flow using a general curvilinear coordinate system. 1. Governing equations and numerical method

International Nuclear Information System (INIS)

Tomiyama, Akio; Matsuoka, Toshiyuki.

1995-01-01

A simple numerical method for solving a transient incompressible two-fluid model was proposed in the present study. A general curvilinear coordinate system was adopted in this method for predicting transient flows in practical engineering devices. The simplicity of the present method is due to the fact that the field equations and constitutive equations were expressed in a tensor form in the general curvilinear coordinate system. When a conventional rectangular mesh is adopted in a calculation, the method reduces to a numerical method for a Cartesian coordinate system. As an example, the present method was applied to transient air-water bubbly flow in a vertical U-tube. It was confirmed that the effects of centrifugal and gravitational forces on the phase distribution in the U-tube were reasonably predicted. (author)

16. Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity

International Nuclear Information System (INIS)

Leiler, Gregor; Rezzolla, Luciano

2006-01-01

The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion

17. New methods for the numerical integration of ordinary differential equations and their application to the equations of motion of spacecraft

Science.gov (United States)

Banyukevich, A.; Ziolkovski, K.

1975-01-01

A number of hybrid methods for solving Cauchy problems are described on the basis of an evaluation of advantages of single and multiple-point numerical integration methods. The selection criterion is the principle of minimizing computer time. The methods discussed include the Nordsieck method, the Bulirsch-Stoer extrapolation method, and the method of recursive Taylor-Steffensen power series.

18. Numerical solution of the Neutron Transport Equation using discontinuous nodal methods at X-Y geometry

International Nuclear Information System (INIS)

Delfin L, A.

1996-01-01

The purpose of this work is to solve the neutron transport equation in discrete-ordinates and X-Y geometry by developing and using the strong discontinuous and strong modified discontinuous nodal finite element schemes. The strong discontinuous and modified strong discontinuous nodal finite element schemes go from two to ten interpolation parameters per cell. They are describing giving a set D c and polynomial space S c corresponding for each scheme BDMO, RTO, BL, BDM1, HdV, BDFM1, RT1, BQ and BDM2. The solution is obtained solving the neutron transport equation moments for each nodal scheme by developing the basis functions defined by Pascal triangle and the Legendre moments giving in the polynomial space S c and, finally, looking for the non singularity of the resulting linear system. The linear system is numerically solved using a computer program for each scheme mentioned . It uses the LU method and forward and backward substitution and makes a partition of the domain in cells. The source terms and angular flux are calculated, using the directions and weights associated to the S N approximation and solving the angular flux moments to find the effective multiplication constant. The programs are written in Fortran language, using the dynamic allocation of memory to increase efficiently the available memory of the computing equipment. (Author)

19. Numerical optimization using flow equations

Science.gov (United States)

Punk, Matthias

2014-12-01

We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

20. A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves

Science.gov (United States)

Favrie, N.; Gavrilyuk, S.

2017-07-01

A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing dispersive waves on shallow water is proposed. From the mathematical point of view, the SGN equations are the Euler-Lagrange equations for a ‘master’ lagrangian submitted to a differential constraint which is the mass conservation law. One major numerical challenge in solving the SGN equations is the resolution of an elliptic problem at each time instant. This is the most time-consuming part of the numerical method. The idea is to replace the ‘master’ lagrangian by a one-parameter family of ‘augmented’ lagrangians, depending on a greater number of variables, for which the corresponding Euler-Lagrange equations are hyperbolic. In such an approach, the ‘master’ lagrangian is recovered by the augmented lagrangian in some limit (for example, when the corresponding parameter is large). The choice of such a family of augmented lagrangians is proposed and discussed. The corresponding hyperbolic system is numerically solved by a Godunov type method. Numerical solutions are compared with exact solutions to the SGN equations. It appears that the computational time in solving the hyperbolic system is much lower than in the case where the elliptic operator is inverted. The new method is applied, in particular, to the study of ‘Favre waves’ representing non-stationary undular bores produced after reflection of the fluid flow with a free surface at an immobile wall.

1. Linear and nonlinear properties of numerical methods for the rotating shallow water equations

Science.gov (United States)

Eldred, Chris

The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar conservation laws, many of the same types of waves and a similar (quasi-) balanced state. It is desirable that numerical models posses similar properties, and the prototypical example of such a scheme is the 1981 Arakawa and Lamb (AL81) staggered (C-grid) total energy and potential enstrophy conserving scheme, based on the vector invariant form of the continuous equations. However, this scheme is restricted to a subset of logically square, orthogonal grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). It is also possible to obtain these properties (along with arguably superior wave dispersion properties) through the use of a collocated (Z-grid) scheme based on the vorticity-divergence form of the continuous equations. Unfortunately, existing examples of these schemes in the literature for general, spherical grids either contain computational modes; or do not conserve total energy and potential enstrophy. This dissertation extends an existing scheme for planar grids to spherical grids, through the use of Nambu brackets (as pioneered by Rick Salmon). To compare these two schemes, the linear modes (balanced states, stationary modes and propagating modes; with and without dissipation) are examined on both uniform planar grids (square, hexagonal) and quasi-uniform spherical grids (geodesic, cubed-sphere). In addition to evaluating the linear modes, the results of the two schemes applied to a set of standard shallow water test cases and a recently developed forced-dissipative turbulence test case from John Thuburn (intended to evaluate the ability the suitability of schemes as the basis for a climate model) on both hexagonal

2. Boundary integral equation methods and numerical solutions thin plates on an elastic foundation

CERN Document Server

Constanda, Christian; Hamill, William

2016-01-01

This book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically—by means of direct and indirect boundary integral equation methods (BIEMs)—and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and r...

3. Methods of numerical relativity

International Nuclear Information System (INIS)

Piran, T.

1983-01-01

Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)

4. Numerical methods for solving the governing equations for a seriated continuum

International Nuclear Information System (INIS)

Narum, R.E.; Noble, C.; Mortensen, G.A.; McFadden, J.H.

1976-09-01

A desire to more accurately predict the behavior of transient two-phase flows has resulted in an investigation of the feasibility of computing unequal phase velocities and unequal phase temperatures. The finite difference forms of a set of equations governing a seriated continuum are presented along with two methods developed for solving the resulting systems of simultaneous nonlinear equations. Results from a one-dimensional computer code are presented to illustrate the capabilities of one of the solution methods

5. Mathematical and numerical methods for Vlasov-Maxwell equations: the contributions of data mining

International Nuclear Information System (INIS)

2014-01-01

There exist a lot of formulations that can model plasma physics or particle accelerators problems as the Vlasov- Maxwell equations. This paper deals with the applications of data mining techniques in the evaluation of numerical solutions of Vlasov-Maxwell models. This is part of the topic of characterizing the model and approximation errors via learning techniques. We give two examples of application. The first one aims at comparing two Vlasov-Maxwell approximate models. In the second one, a scheme based on data mining techniques is proposed to characterize the errors between a P1 and a P2 finite element Particle-In-Cell approach. Beyond these examples, this original approach should operate in all cases where intricate numerical simulations like for the Vlasov-Maxwell equations take a central part. (authors)

6. A Family of Symmetric Linear Multistep Methods for the Numerical Solution of the Schroedinger Equation and Related Problems

International Nuclear Information System (INIS)

Anastassi, Z. A.; Simos, T. E.

2010-01-01

We develop a new family of explicit symmetric linear multistep methods for the efficient numerical solution of the Schroedinger equation and related problems with oscillatory solution. The new methods are trigonometrically fitted and have improved intervals of periodicity as compared to the corresponding classical method with constant coefficients and other methods from the literature. We also apply the methods along with other known methods to real periodic problems, in order to measure their efficiency.

7. A FORTRAN program for numerical solution of the Altarelli-Parisi equations by the Laguerre method

International Nuclear Information System (INIS)

Kumano, S.; Londergan, J.T.

1992-01-01

We review the Laguerre method for solving the Altarelli-Parisi equations. The Laguerre method allows one to expand quark/parton distributions and splitting functions in orthonormal polynomials. The desired quark distributions are themselves expanded in terms of evolution operators, and we derive the integrodifferential equations satisfied by the evolution operators. We give relevant equations for both flavor nonsinglet and singlet distributions, for both spin-independent and spin-dependent distributions. We discuss stability and accuracy of the results using this method. For intermediate values of Bjorken x (0.03< x<0.7), one can obtain accurate results with a modest number of Laguerre polynomials (N≅20); we discuss requirements for convergence also for the regions of large or small x. A FORTRAN program is provided which implements the Laguerre method; test results are given for both the spin-independent and spin-dependent cases. (orig.)

8. Fourth-order numerical solutions of diffusion equation by using SOR method with Crank-Nicolson approach

Science.gov (United States)

Muhiddin, F. A.; Sulaiman, J.

2017-09-01

The aim of this paper is to investigate the effectiveness of the Successive Over-Relaxation (SOR) iterative method by using the fourth-order Crank-Nicolson (CN) discretization scheme to derive a five-point Crank-Nicolson approximation equation in order to solve diffusion equation. From this approximation equation, clearly, it can be shown that corresponding system of five-point approximation equations can be generated and then solved iteratively. In order to access the performance results of the proposed iterative method with the fourth-order CN scheme, another point iterative method which is Gauss-Seidel (GS), also presented as a reference method. Finally the numerical results obtained from the use of the fourth-order CN discretization scheme, it can be pointed out that the SOR iterative method is superior in terms of number of iterations, execution time, and maximum absolute error.

9. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

International Nuclear Information System (INIS)

Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

2015-01-01

This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

10. Applications of integral equation methods for the numerical solution of magnetostatic and eddy current problems

International Nuclear Information System (INIS)

Trowbridge, C.W.

1976-06-01

Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c) which both lead to a more economic use of the computer than (a) some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation. (author)

11. Applications of integral equation methods for the numerical solution of magnetostatic and eddy current problems

Energy Technology Data Exchange (ETDEWEB)

Trowbridge, C W

1976-06-01

Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential, and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c), which both lead to a more economical use of the computer than (a), some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation.

12. Polynomial chaos methods for hyperbolic partial differential equations numerical techniques for fluid dynamics problems in the presence of uncertainties

CERN Document Server

2015-01-01

This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The approach described in the text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dime...

13. Local linearization methods for the numerical integration of ordinary differential equations: An overview

International Nuclear Information System (INIS)

Jimenez, J.C.

2009-06-01

Local Linearization (LL) methods conform a class of one-step explicit integrators for ODEs derived from the following primary and common strategy: the vector field of the differential equation is locally (piecewise) approximated through a first-order Taylor expansion at each time step, thus obtaining successive linear equations that are explicitly integrated. Hereafter, the LL approach may include some additional strategies to improve that basic affine approximation. Theoretical and practical results have shown that the LL integrators have a number of convenient properties. These include arbitrary order of convergence, A-stability, linearization preserving, regularity under quite general conditions, preservation of the dynamics of the exact solution around hyperbolic equilibrium points and periodic orbits, integration of stiff and high-dimensional equations, low computational cost, and others. In this paper, a review of the LL methods and their properties is presented. (author)

14. Schrodinger equation in two dimensions solution through numerical methods and its graphic representation

International Nuclear Information System (INIS)

Faleiro Usanos, E.; Salgado Barea, J.J.

1995-01-01

We describe a simple method to solve the time-dependent Schrodinger equation in two dimensions. We apply it to solve three classical problems in quantum physics: a cylindrical obstacle, a finite barrier and a double-slit screen. We show our results through bidimensional diagrams representing the probability density. (Author) 11 refs

15. A variable timestep generalized Runge-Kutta method for the numerical integration of the space-time diffusion equations

International Nuclear Information System (INIS)

Aviles, B.N.; Sutton, T.M.; Kelly, D.J. III.

1991-09-01

A generalized Runge-Kutta method has been employed in the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic timestep control. The efficiency of the Runge-Kutta method is enhanced by a block-factorization technique that exploits the sparse structure of the matrix system resulting from the space and energy discretized form of the time-dependent neutron diffusion equations. Preliminary numerical evaluation using a one-dimensional finite difference code shows the sparse matrix implementation of the generalized Runge-Kutta method to be highly accurate and efficient when compared to an optimized iterative theta method. 12 refs., 5 figs., 4 tabs

16. Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method

Science.gov (United States)

Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.

2017-02-01

Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.

17. Implementing Families of Implicit Chebyshev Methods with Exact Coefficients for the Numerical Integration of First- and Second-Order Differential Equations

National Research Council Canada - National Science Library

Mitchell, Jason

2002-01-01

A method is presented for the generation of exact numerical coefficients found in two families of implicit Chebyshev methods for the numerical integration of first- and second-order ordinary differential equations...

18. Numerical Integration Methods for the Takagi-Taupin Equations for Crystals of Rectangular Cross Section

International Nuclear Information System (INIS)

Kolosov, S.I.; Punegov, V.I.

2005-01-01

Two independent methods for calculation of the rocking curves for laterally bounded crystals are developed. Numerical simulation of diffraction for crystals of different sizes is performed. The results obtained using the dynamical theory of diffraction are compared to those obtained in the kinematic approximation

19. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

Science.gov (United States)

Wu, Hulin; Xue, Hongqi; Kumar, Arun

2012-06-01

Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.

20. ICM: an Integrated Compartment Method for numerically solving partial differential equations

Energy Technology Data Exchange (ETDEWEB)

Yeh, G.T.

1981-05-01

An integrated compartment method (ICM) is proposed to construct a set of algebraic equations from a system of partial differential equations. The ICM combines the utility of integral formulation of finite element approach, the simplicity of interpolation of finite difference approximation, and the flexibility of compartment analyses. The integral formulation eases the treatment of boundary conditions, in particular, the Neumann-type boundary conditions. The simplicity of interpolation provides great economy in computation. The flexibility of discretization with irregular compartments of various shapes and sizes offers advantages in resolving complex boundaries enclosing compound regions of interest. The basic procedures of ICM are first to discretize the region of interest into compartments, then to apply three integral theorems of vectors to transform the volume integral to the surface integral, and finally to use interpolation to relate the interfacial values in terms of compartment values to close the system. The Navier-Stokes equations are used as an example of how to derive the corresponding ICM alogrithm for a given set of partial differential equations. Because of the structure of the algorithm, the basic computer program remains the same for cases in one-, two-, or three-dimensional problems.

1. A Fortran program for the numerical integration of the one-dimensional Schroedinger equation using exponential and Bessel fitting methods

International Nuclear Information System (INIS)

Cash, J.R.; Raptis, A.D.; Simos, T.E.

1990-01-01

An efficient algorithm is described for the accurate numerical integration of the one-dimensional Schroedinger equation. This algorithm uses a high-order, variable step Runge-Kutta like method in the region where the potential term dominates, and an exponential or Bessel fitted method in the asymptotic region. This approach can be used to compute scattering phase shifts in an efficient and reliable manner. A Fortran program which implements this algorithm is provided and some test results are given. (orig.)

2. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

Science.gov (United States)

Ge, Liang; Sotiropoulos, Fotis

2007-08-01

A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

3. Numerical solution of newton´s cooling differential equation by the methods of euler and runge-kutta

Directory of Open Access Journals (Sweden)

2016-04-01

Full Text Available This article presents the first-order differential equations, which are a very important branch of mathematics as they have a wide applicability, in mathematics, as in physics, biology and economy. The objective of this study was to analyze the resolution of the equation that defines the cooling Newton's law. Verify its behavior using some applications that can be used in the classroom as an auxiliary instrument to the teacher in addressing these contents bringing answers to the questions of the students and motivating them to build their knowledge. It attempted to its resolution through two numerical methods, Euler method and Runge -Kutta method. Finally, there was a comparison of the approach of the solution given by the numerical solution with the analytical resolution whose solution is accurate.

4. Solving point reactor kinetic equations by time step-size adaptable numerical methods

International Nuclear Information System (INIS)

Liao Chaqing

2007-01-01

Based on the analysis of effects of time step-size on numerical solutions, this paper showed the necessity of step-size adaptation. Based on the relationship between error and step-size, two-step adaptation methods for solving initial value problems (IVPs) were introduced. They are Two-Step Method and Embedded Runge-Kutta Method. PRKEs were solved by implicit Euler method with step-sizes optimized by using Two-Step Method. It was observed that the control error has important influence on the step-size and the accuracy of solutions. With suitable control errors, the solutions of PRKEs computed by the above mentioned method are accurate reasonably. The accuracy and usage of MATLAB built-in ODE solvers ode23 and ode45, both of which adopt Runge-Kutta-Fehlberg method, were also studied and discussed. (authors)

5. Runge–Kutta type methods with special properties for the numerical integration of ordinary differential equations

International Nuclear Information System (INIS)

Kalogiratou, Z.; Monovasilis, Th.; Psihoyios, G.; Simos, T.E.

2014-01-01

In this work we review single step methods of the Runge–Kutta type with special properties. Among them are methods specially tuned to integrate problems that exhibit a pronounced oscillatory character and such problems arise often in celestial mechanics and quantum mechanics. Symplectic methods, exponentially and trigonometrically fitted methods, minimum phase-lag and phase-fitted methods are presented. These are Runge–Kutta, Runge–Kutta–Nyström and Partitioned Runge–Kutta methods. The theory of constructing such methods is given as well as several specific methods. In order to present the performance of the methods we have tested 58 methods from all categories. We consider the two dimensional harmonic oscillator, the two body problem, the pendulum problem and the orbital problem studied by Stiefel and Bettis. Also we have tested the methods on the computation of the eigenvalues of the one dimensional time independent Schrödinger equation with the harmonic oscillator, the doubly anharmonic oscillator and the exponential potentials

6. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

Directory of Open Access Journals (Sweden)

2014-05-01

Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

7. Fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles

International Nuclear Information System (INIS)

Fogelson, A.L.; Peskin, C.S.

1988-01-01

A new fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles is presented. The fluid dynamics equations are solved on a lattice. A particle is represented by a set of points each of which moves at the local fluid velocity and is not constrained to lie on the lattice. These points are coupled by forces which resist deformation of the particle. These forces contribute to the force density in the Stokes' equations. As a result, a single set of fluid dynamics equations holds at all points of the domain and there are no internal boundaries. Particles size, shape, and deformability may be prescribed. Computational work increases only linearly with the number of particles, so large numbers (500--1000) of particles may be studied efficiently. The numerical method involves implicit calculation of the particle forces by minimizing an energy function and solution of a finite-difference approximation to the Stokes' equations using the Fourier--Toeplitz method. The numerical method has been implemented to run on all CRAY computers: the implementation exploits the CRAY's vectorized arithmetic, and on machines with insufficient central memory, it performs efficient disk I/O while storing most of the data on disk. Applications of the method to sedimentation of one-, two-, and many-particle systems are described. Trajectories and settling speeds for two-particle sedimentation, and settling speed for multiparticle sedimentation from initial distributions on a cubic lattice or at random give good quantitative agreement with existing theories. copyright 1988 Academic Press, Inc

8. Numerical study of fractional nonlinear Schrodinger equations

KAUST Repository

Klein, Christian; Sparber, Christof; Markowich, Peter A.

2014-01-01

Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass

9. Application of synthetic diffusion method in the numerical solution of the equations of neutron transport in slab geometry

International Nuclear Information System (INIS)

Valdes Parra, J.J.

1986-01-01

One of the main problems in reactor physics is to determine the neutron distribution in reactor core, since knowing that, it is possible to calculate the rapidity of occurrence of different nuclear reaction inside the reactor core. Within different theories existing in nuclear reactor physics, is neutron transport the one in which equation who govern the exact behavior of neutronic distribution are developed even inside the proper neutron transport theory, there exist different methods of solution which are approximations to exact solution; still more, with the purpose to reach a more precise solution, the majority of methods have been approached to the obtention of solutions in numerical form with the aim of take the advantages of modern computers, and for this reason a great deal of effort is dedicated to numerical solution of the equations of neutron transport. In agreement with the above mentioned, in this work has been developed a computer program which uses a relatively new techniques known as 'acceleration of synthetic diffusion' which has been applied to solve the neutron transport equation with 'classical schemes of spatial integration' obtaining results with a smaller quantity of interactions, if they compare to done without using such equation (Author)

10. Numerical solution to generalized Burgers'-Fisher equation using Exp-function method hybridized with heuristic computation.

Directory of Open Access Journals (Sweden)

Suheel Abdullah Malik

Full Text Available In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE through substitution is converted into a nonlinear ordinary differential equation (NODE. The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM, homotopy perturbation method (HPM, and optimal homotopy asymptotic method (OHAM, show that the suggested scheme is fairly accurate and viable for solving such problems.

11. Numerical solution to generalized Burgers'-Fisher equation using Exp-function method hybridized with heuristic computation.

Science.gov (United States)

Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul

2015-01-01

In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.

12. Numerical resolution of the Navier-Stokes equations for a low Mach number by a spectral method

International Nuclear Information System (INIS)

Frohlich, Jochen

1990-01-01

The low Mach number approximation of the Navier-Stokes equations, also called isobar, is an approximation which is less restrictive than the one due to Boussinesq. It permits strong density variations while neglecting acoustic phenomena. We present a numerical method to solve these equations in the unsteady, two dimensional case with one direction of periodicity. The discretization uses a semi-implicit finite difference scheme in time and a Fourier-Chebycheff pseudo-spectral method in space. The solution of the equations of motion is based on an iterative algorithm of Uzawa type. In the Boussinesq limit we obtain a direct method. A first application is concerned with natural convection in the Rayleigh-Benard setting. We compare the results of the low Mach number equations with the ones in the Boussinesq case and consider the influence of variable fluid properties. A linear stability analysis based on a Chebychev-Tau method completes the study. The second application that we treat is a case of isobaric combustion in an open domain. We communicate results for the hydrodynamic Darrieus-Landau instability of a plane laminar flame front. [fr

13. Numerical Analysis of Partial Differential Equations

CERN Document Server

Lui, S H

2011-01-01

A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis

14. Novel Numerical Methods for Optimal Control Problems Involving Fractional-Order Differential Equations

Science.gov (United States)

2018-03-14

UNIVERSITY OF TECHNOLOGY Final Report 03/14/2018 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR...optimal control problems involving fractional-order differential equations Wang, Song Curtin University of Technology Kent Street, Bentley WA6102...Article history : Received 3 October 2016 Accepted 26 March 2017 Available online 29 April 2017 Keywords: Hamilton–Jacobi–Bellman equation Financial

15. A GPU-accelerated semi-implicit fractional step method for numerical solutions of incompressible Navier-Stokes equations

Science.gov (United States)

Ha, Sanghyun; Park, Junshin; You, Donghyun

2017-11-01

Utility of the computational power of modern Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. Due to its serial and bandwidth-bound nature, the present choice of numerical methods is considered to be a good candidate for evaluating the potential of GPUs for solving Navier-Stokes equations using non-explicit time integration. An efficient algorithm is presented for GPU acceleration of the Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution method used in the semi-implicit fractional-step method. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while Navier-Stokes equations are computed on a GPU. Extension to multiple NVIDIA GPUs is implemented using NVLink supported by the Pascal architecture. Performance of the present method is experimented on multiple Tesla P100 GPUs compared with a single-core Xeon E5-2650 v4 CPU in simulations of boundary-layer flow over a flat plate. Supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (Ministry of Science, ICT and Future Planning NRF-2016R1E1A2A01939553, NRF-2014R1A2A1A11049599, and Ministry of Trade, Industry and Energy 201611101000230).

16. On a numerical method for solving integro-differential equations with variable coefficients with applications in finance

Science.gov (United States)

Kudryavtsev, O.; Rodochenko, V.

2018-03-01

We propose a new general numerical method aimed to solve integro-differential equations with variable coefficients. The problem under consideration arises in finance where in the context of pricing barrier options in a wide class of stochastic volatility models with jumps. To handle the effect of the correlation between the price and the variance, we use a suitable substitution for processes. Then we construct a Markov-chain approximation for the variation process on small time intervals and apply a maturity randomization technique. The result is a system of boundary problems for integro-differential equations with constant coefficients on the line in each vertex of the chain. We solve the arising problems using a numerical Wiener-Hopf factorization method. The approximate formulae for the factors are efficiently implemented by means of the Fast Fourier Transform. Finally, we use a recurrent procedure that moves backwards in time on the variance tree. We demonstrate the convergence of the method using Monte-Carlo simulations and compare our results with the results obtained by the Wiener-Hopf method with closed-form expressions of the factors.

17. Developpement of a numerical method for Navier-Stokes equations in anelastic approximation: application to Rayleigh-Taylor instabilities

International Nuclear Information System (INIS)

Hammouch, Z.

2012-01-01

The 'anelastic' approximation allows us to filter the acoustic waves thanks to an asymptotic development of the Navier-Stokes equations, so increasing the averaged time step, during the numerical simulation of hydrodynamic instabilities development. So, the anelastic equations for a two fluid mixture in case of Rayleigh-Taylor instability are established.The linear stability of Rayleigh-Taylor flow is studied, for the first time, for perfect fluids in the anelastic approximation. We define the Stokes problem resulting from Navier-Stokes equations without the non linear terms (a part of the buoyancy is considered); the ellipticity is demonstrated, the Eigenmodes and the invariance related to the pressure are detailed. The Uzawa's method is extended to the anelastic approximation and shows the decoupling speeds in 3D, the particular case k = 0 and the spurious modes of pressure. Passing to multi-domain allowed to establish the transmission conditions.The algorithms and the implementation in the existing program are validated by comparing the Uzawa's operator in Fortran and Mathematica languages, to an experiment with incompressible fluids and results from anelastic and compressible numerical simulations. The study of the influence of the initial stratification of both fluids on the development of the Rayleigh-Taylor instability is initiated. (author) [fr

18. A nonstandard numerical method for the modified KdV equation

Ayhan Aydin

2017-10-25

Oct 25, 2017 ... Nonstandard finite difference; modified Korteweg–de Vries equation; local truncation error. PACS Nos 02.70.Bf; 02.30.Jr; 02.60.Lj. 1. Introduction. Many physical phenomena in various fields of science such as fluid mechanics and quantum field theory can be described by the modified Koreteweg–de Vries ...

19. Numerical analysis of systems of ordinary and stochastic differential equations

CERN Document Server

Artemiev, S S

1997-01-01

This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

20. Numerical treatment for solving two-dimensional space-fractional advection-dispersion equation using meshless method

Science.gov (United States)

Cheng, Rongjun; Sun, Fengxin; Wei, Qi; Wang, Jufeng

2018-02-01

Space-fractional advection-dispersion equation (SFADE) can describe particle transport in a variety of fields more accurately than the classical models of integer-order derivative. Because of nonlocal property of integro-differential operator of space-fractional derivative, it is very challenging to deal with fractional model, and few have been reported in the literature. In this paper, a numerical analysis of the two-dimensional SFADE is carried out by the element-free Galerkin (EFG) method. The trial functions for the SFADE are constructed by the moving least-square (MLS) approximation. By the Galerkin weak form, the energy functional is formulated. Employing the energy functional minimization procedure, the final algebraic equations system is obtained. The Riemann-Liouville operator is discretized by the Grünwald formula. With center difference method, EFG method and Grünwald formula, the fully discrete approximation schemes for SFADE are established. Comparing with exact results and available results by other well-known methods, the computed approximate solutions are presented in the format of tables and graphs. The presented results demonstrate the validity, efficiency and accuracy of the proposed techniques. Furthermore, the error is computed and the proposed method has reasonable convergence rates in spatial and temporal discretizations.

1. Numerical Solution of Nonlinear Fredholm Integro-Differential Equations Using Spectral Homotopy Analysis Method

Directory of Open Access Journals (Sweden)

2013-01-01

Full Text Available Spectral homotopy analysis method (SHAM as a modification of homotopy analysis method (HAM is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.

2. Numerical investigation of sixth order Boussinesq equation

Science.gov (United States)

Kolkovska, N.; Vucheva, V.

2017-10-01

We propose a family of conservative finite difference schemes for the Boussinesq equation with sixth order dispersion terms. The schemes are of second order of approximation. The method is conditionally stable with a mild restriction τ = O(h) on the step sizes. Numerical tests are performed for quadratic and cubic nonlinearities. The numerical experiments show second order of convergence of the discrete solution to the exact one.

3. Numerical study of fractional nonlinear Schrodinger equations

KAUST Repository

Klein, Christian

2014-10-08

Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

4. Analysis of numerical methods

CERN Document Server

Isaacson, Eugene

1994-01-01

This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.

5. Numerical method for the solution of the regulator equation with application to nonlinear tracking

Czech Academy of Sciences Publication Activity Database

Rehák, Branislav; Čelikovský, Sergej

2008-01-01

Roč. 44, č. 5 (2008), s. 1358-1365 ISSN 0005-1098 R&D Projects: GA ČR GP102/07/P413; GA ČR(CZ) GA102/08/0186 Institutional research plan: CEZ:AV0Z10750506 Keywords : nonlinear output regulation * finite-element method * optimization Subject RIV: BC - Control Systems Theory Impact factor: 3.178, year: 2008

6. Numerical Solution of Parabolic Equations

DEFF Research Database (Denmark)

Østerby, Ole

These lecture notes are designed for a one-semester course on finite-difference methods for parabolic equations. These equations which traditionally are used for describing diffusion and heat-conduction problems in Geology, Physics, and Chemistry have recently found applications in Finance Theory...... ? and how do boundary value approximations affect the overall order of the method. Knowledge of a reliable order and error estimate enables us to determine (near-)optimal step sizes to meet a prescribed error tolerance, and possibly to extrapolate to get (higher order and) better accuracy at a minimal...... expense. Problems in two space dimensions are effectively handled using the Alternating Direction Implicit (ADI) technique. We present a systematic way of incorporating inhomogeneous terms and derivative boundary conditions in ADI methods as well as mixed derivative terms....

7. Analysis of numerical solutions for Bateman equations

International Nuclear Information System (INIS)

Loch, Guilherme G.; Bevilacqua, Joyce S.

2013-01-01

The implementation of stable and efficient numerical methods for solving problems involving nuclear transmutation and radioactive decay chains is the main scope of this work. The physical processes associated with irradiations of samples in particle accelerators, or the burning spent nuclear fuel in reactors, or simply the natural decay chains, can be represented by a set of first order ordinary differential equations with constant coefficients, for instance, the decay radioactive constants of each nuclide in the chain. Bateman proposed an analytical solution for a particular case of a linear chain with n nuclides decaying in series and with different decay constants. For more complex and realistic applications, the construction of analytical solutions is not viable and the introduction of numerical techniques is imperative. However, depending on the magnitudes of the decay radioactive constants, the matrix of coefficients could be almost singular, generating unstable and non convergent numerical solutions. In this work, different numerical strategies for solving systems of differential equations were implemented, the Runge-Kutta 4-4, Adams Predictor-Corrector (PC2) and the Rosenbrock algorithm, this last one more specific for stiff equations. Consistency, convergence and stability of the numerical solutions are studied and the performance of the methods is analyzed for the case of the natural decay chain of Uranium-235 comparing numerical with analytical solutions. (author)

8. Partial Differential Equations Modeling and Numerical Simulation

CERN Document Server

Glowinski, Roland

2008-01-01

This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

9. Numerical methods

CERN Document Server

Dahlquist, Germund

1974-01-01

""Substantial, detailed and rigorous . . . readers for whom the book is intended are admirably served."" - MathSciNet (Mathematical Reviews on the Web), American Mathematical Society.Practical text strikes fine balance between students' requirements for theoretical treatment and needs of practitioners, with best methods for large- and small-scale computing. Prerequisites are minimal (calculus, linear algebra, and preferably some acquaintance with computer programming). Text includes many worked examples, problems, and an extensive bibliography.

10. A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation

OpenAIRE

Papadopoulos , D. F.; Anastassi , Z. A.; Simos , T. E.

2010-01-01

Abstract A new Runge-Kutta-Nystrom method, with phase-lag and amplification error of order infinity, for the numerical solution of the Schrodinger equation is developed in this paper. The new method is based on the Runge-Kutta-Nystrom method with fourth algebraic order, developed by Dormand, El-Mikkawy and Prince. Numerical illustrations indicate that the new method is much more efficient than other methods derived for the same purpose. phone: +30-210-9421510 (Simos, T. E.) ...

11. Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions

Science.gov (United States)

Zeng, Fanhai; Zhang, Zhongqiang; Karniadakis, George Em

2017-12-01

Starting with the asymptotic expansion of the error equation of the shifted Gr\\"{u}nwald--Letnikov formula, we derive a new modified weighted shifted Gr\\"{u}nwald--Letnikov (WSGL) formula by introducing appropriate correction terms. We then apply one special case of the modified WSGL formula to solve multi-term fractional ordinary and partial differential equations, and we prove the linear stability and second-order convergence for both smooth and non-smooth solutions. We show theoretically and numerically that numerical solutions up to certain accuracy can be obtained with only a few correction terms. Moreover, the correction terms can be tuned according to the fractional derivative orders without explicitly knowing the analytical solutions. Numerical simulations verify the theoretical results and demonstrate that the new formula leads to better performance compared to other known numerical approximations with similar resolution.

12. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods; Calculo Numerico de Transporte mediante la Ecuacion Cinetica de Deriva para Plasmas en Geometria Magnetica Toroidal: Metodos Numericos

Energy Technology Data Exchange (ETDEWEB)

Reynolds, J. M.; Lopez-Bruna, D.

2009-10-12

In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs.

13. A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov

International Nuclear Information System (INIS)

Greenough, J.A.; Rider, W.J.

2004-01-01

A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the 'peak' shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are

14. A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov

Science.gov (United States)

Greenough, J. A.; Rider, W. J.

2004-05-01

A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the "peak" shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are

15. Numerical solutions of the Vlasov equation

International Nuclear Information System (INIS)

Satofuka, Nobuyuki; Morinishi, Koji; Nishida, Hidetoshi

1985-01-01

A numerical procedure is derived for the solutions of the one- and two-dimensional Vlasov-Poisson system equations. This numerical procedure consists of the phase space discretization and the integration of the resulting set of ordinary differential equations. In the phase space discretization, derivatives with respect to the phase space variable are approximated by a weighted sum of the values of the distribution function at properly chosen neighboring points. Then, the resulting set of ordinary differential equations is solved by using an appropriate time integration scheme. The results for linear Landau damping, nonlinear Landau damping and counter-streaming plasmas are investigated and compared with those of the splitting scheme. The proposed method is found to be very accurate and efficient. (author)

16. Numerical Asymptotic Solutions Of Differential Equations

Science.gov (United States)

Thurston, Gaylen A.

1992-01-01

Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

17. Numerical solution of distributed order fractional differential equations

Science.gov (United States)

2014-02-01

In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

18. Test equating methods and practices

CERN Document Server

Kolen, Michael J

1995-01-01

In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...

19. Numerical Analysis of Partial Differential Equations

CERN Document Server

Lions, Jacques-Louis

2011-01-01

S. Albertoni: Alcuni metodi di calcolo nella teoria della diffusione dei neutroni.- I. Babuska: Optimization and numerical stability in computations.- J.H. Bramble: Error estimates in elliptic boundary value problems.- G. Capriz: The numerical approach to hydrodynamic problems.- A. Dou: Energy inequalities in an elastic cylinder.- T. Doupont: On the existence of an iterative method for the solution of elliptic difference equation with an improved work estimate.- J. Douglas, J.R. Cannon: The approximation of harmonic and parabolic functions of half-spaces from interior data.- B.E. Hubbard: Erro

20. Applications of Operator-Splitting Methods to the Direct Numerical Simulation of Particulate and Free-Surface Flows and to the Numerical Solution of the Two-Dimensional Elliptic Monge--Ampère Equation

OpenAIRE

Glowinski, R.; Dean, E.J.; Guidoboni, G.; Juárez, L.H.; Pan, T.-W.

2008-01-01

The main goal of this article is to review some recent applications of operator-splitting methods. We will show that these methods are well-suited to the numerical solution of outstanding problems from various areas in Mechanics, Physics and Differential Geometry, such as the direct numerical simulation of particulate flow, free boundary problems with surface tension for incompressible viscous fluids, and the elliptic real Monge--Ampère equation. The results of numerical ...

1. A Lie-admissible method of integration of Fokker-Planck equations with non-linear coefficients (exact and numerical solutions)

International Nuclear Information System (INIS)

Fronteau, J.; Combis, P.

1984-08-01

A Lagrangian method is introduced for the integration of non-linear Fokker-Planck equations. Examples of exact solutions obtained in this way are given, and also the explicit scheme used for the computation of numerical solutions. The method is, in addition, shown to be of a Lie-admissible type

2. The numerical simulation of convection delayed dominated diffusion equation

Directory of Open Access Journals (Sweden)

Mohan Kumar P. Murali

2016-01-01

Full Text Available In this paper, we propose a fitted numerical method for solving convection delayed dominated diffusion equation. A fitting factor is introduced and the model equation is discretized by cubic spline method. The error analysis is analyzed for the consider problem. The numerical examples are solved using the present method and compared the result with the exact solution.

3. Elliptic differential equations theory and numerical treatment

CERN Document Server

Hackbusch, Wolfgang

2017-01-01

This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics.

4. A direct method for numerical solution of a class of nonlinear Volterra integro-differential equations and its application to the nonlinear fission and fusion reactor kinetics

International Nuclear Information System (INIS)

Nakahara, Yasuaki; Ise, Takeharu; Kobayashi, Kensuke; Itoh, Yasuyuki

1975-12-01

A new method has been developed for numerical solution of a class of nonlinear Volterra integro-differential equations with quadratic nonlinearity. After dividing the domain of the variable into subintervals, piecewise approximations are applied in the subintervals. The equation is first integrated over a subinterval to obtain the piecewise equation, to which six approximate treatments are applied, i.e. fully explicit, fully implicit, Crank-Nicolson, linear interpolation, quadratic and cubic spline. The numerical solution at each time step is obtained directly as a positive root of the resulting algebraic quadratic equation. The point reactor kinetics with a ramp reactivity insertion, linear temperature feedback and delayed neutrons can be described by one of this type of nonlinear Volterra integro-differential equations. The algorithm is applied to the Argonne benchmark problem and a model problem for a fast reactor without delayed neutrons. The fully implicit method has been found to be unconditionally stable in the sense that it always gives the positive real roots. The cubic spline method is divergent, and the other four methods are intermediate in between. From the estimation of the stability, convergency, accuracy and CPU time, it is concluded that the Crank-Nicolson method is best, then the linear interpolation method comes closely next to it. Discussions are also made on the possibility of applying the algorithm to the fusion reactor kinetics in the form of a nonlinear partial differential equation. (auth.)

5. A new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation

Science.gov (United States)

Başhan, Ali; Uçar, Yusuf; Murat Yağmurlu, N.; Esen, Alaattin

2018-01-01

In the present paper, a Crank-Nicolson-differential quadrature method (CN-DQM) based on utilizing quintic B-splines as a tool has been carried out to obtain the numerical solutions for the nonlinear Schrödinger (NLS) equation. For this purpose, first of all, the Schrödinger equation has been converted into coupled real value differential equations and then they have been discretized using both the forward difference formula and the Crank-Nicolson method. After that, Rubin and Graves linearization techniques have been utilized and the differential quadrature method has been applied to obtain an algebraic equation system. Next, in order to be able to test the efficiency of the newly applied method, the error norms, L2 and L_{∞}, as well as the two lowest invariants, I1 and I2, have been computed. Besides those, the relative changes in those invariants have been presented. Finally, the newly obtained numerical results have been compared with some of those available in the literature for similar parameters. This comparison clearly indicates that the currently utilized method, namely CN-DQM, is an effective and efficient numerical scheme and allows us to propose to solve a wide range of nonlinear equations.

6. The control variable method: a fully implicit numerical method for solving conservation equations for unsteady multidimensional fluid flow

International Nuclear Information System (INIS)

Le Coq, G.; Boudsocq, G.; Raymond, P.

1983-03-01

The Control Variable Method is extended to multidimensional fluid flow transient computations. In this paper basic principles of the method are given. The method uses a fully implicit space discretization and is based on the decomposition of the momentum flux tensor into scalar, vectorial, and tensorial, terms. Finally some computations about viscous-driven flow and buoyancy-driven flow in cavity are presented

7. Numerical integration of asymptotic solutions of ordinary differential equations

Science.gov (United States)

Thurston, Gaylen A.

1989-01-01

Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

8. Numerical Schemes for Rough Parabolic Equations

Energy Technology Data Exchange (ETDEWEB)

Deya, Aurelien, E-mail: deya@iecn.u-nancy.fr [Universite de Nancy 1, Institut Elie Cartan Nancy (France)

2012-04-15

This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H>1/3.

9. Numerical solution of ordinary differential equations

CERN Document Server

Fox, L

1987-01-01

Nearly 20 years ago we produced a treatise (of about the same length as this book) entitled Computing methods for scientists and engineers. It was stated that most computation is performed by workers whose mathematical training stopped somewhere short of the 'professional' level, and that some books are therefore needed which use quite simple mathematics but which nevertheless communicate the essence of the 'numerical sense' which is exhibited by the real computing experts and which is surely needed, at least to some extent, by all who use modern computers and modern numerical software. In that book we treated, at no great length, a variety of computational problems in which the material on ordinary differential equations occupied about 50 pages. At that time it was quite common to find books on numerical analysis, with a little on each topic ofthat field, whereas today we are more likely to see similarly-sized books on each major topic: for example on numerical linear algebra, numerical approximation, numeri...

10. A GPU-accelerated semi-implicit fractional-step method for numerical solutions of incompressible Navier-Stokes equations

Science.gov (United States)

Ha, Sanghyun; Park, Junshin; You, Donghyun

2018-01-01

Utility of the computational power of Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. The Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution methods used in the semi-implicit fractional-step method take advantage of multiple tridiagonal matrices whose inversion is known as the major bottleneck for acceleration on a typical multi-core machine. A novel implementation of the semi-implicit fractional-step method designed for GPU acceleration of the incompressible Navier-Stokes equations is presented. Aspects of the programing model of Compute Unified Device Architecture (CUDA), which are critical to the bandwidth-bound nature of the present method are discussed in detail. A data layout for efficient use of CUDA libraries is proposed for acceleration of tridiagonal matrix inversion and fast Fourier transform. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while the Navier-Stokes equations are computed on a GPU. Performance of the present method using CUDA is assessed by comparing the speed of solving three tridiagonal matrices using ADI with the speed of solving one heptadiagonal matrix using a conjugate gradient method. An overall speedup of 20 times is achieved using a Tesla K40 GPU in comparison with a single-core Xeon E5-2660 v3 CPU in simulations of turbulent boundary-layer flow over a flat plate conducted on over 134 million grids. Enhanced performance of 48 times speedup is reached for the same problem using a Tesla P100 GPU.

11. Numerical doubly-periodic solution of the (2+1)-dimensional Boussinesq equation with initial conditions by the variational iteration method

International Nuclear Information System (INIS)

Inc, Mustafa

2007-01-01

In this Letter, a scheme is developed to study numerical doubly-periodic solutions of the (2+1)-dimensional Boussinesq equation with initial condition by the variational iteration method. As a result, the approximate and exact doubly-periodic solutions are obtained. For different modulus m, comparison between the approximate solution and the exact solution is made graphically, revealing that the variational iteration method is a powerful and effective tool to non-linear problems

12. Studies on the numerical solution of three-dimensional stationary diffusion equations using the finite element method

International Nuclear Information System (INIS)

Franke, H.P.

1976-05-01

The finite element method is applied to the solution of the stationary 3D group diffusion equations. For this, a programme system with the name of FEM3D is established which also includes a module for semi-automatic mesh generation. Tetrahedral finite elements are used. The neutron fluxes are described by complete first- or second-order Lagrangian polynomials. General homogeneous boundary conditions are allowed. The studies show that realistic three-dimensional problems can be solved at less expense by iterative methods, in particular so when especially adapted matrix handling and storage schemes are used efficiently. (orig./RW) [de

13. Multi-domain/multi-method numerical approach for neutron transport equation; Couplage de methodes et decomposition de domaine pour la resolution de l'equation du transport des neutrons

Energy Technology Data Exchange (ETDEWEB)

Girardi, E

2004-12-15

A new methodology for the solution of the neutron transport equation, based on domain decomposition has been developed. This approach allows us to employ different numerical methods together for a whole core calculation: a variational nodal method, a discrete ordinate nodal method and a method of characteristics. These new developments authorize the use of independent spatial and angular expansion, non-conformal Cartesian and unstructured meshes for each sub-domain, introducing a flexibility of modeling which is not allowed in today available codes. The effectiveness of our multi-domain/multi-method approach has been tested on several configurations. Among them, one particular application: the benchmark model of the Phebus experimental facility at Cea-Cadarache, shows why this new methodology is relevant to problems with strong local heterogeneities. This comparison has showed that the decomposition method brings more accuracy all along with an important reduction of the computer time.

14. Numerical solutions of diffusive logistic equation

International Nuclear Information System (INIS)

2007-01-01

In this paper we investigate numerically positive solutions of a superlinear Elliptic equation on bounded domains. The study of Diffusive logistic equation continues to be an active field of research. The subject has important applications to population migration as well as many other branches of science and engineering. In this paper the 'finite difference scheme' will be developed and compared for solving the one- and three-dimensional Diffusive logistic equation. The basis of the analysis of the finite difference equations considered here is the modified equivalent partial differential equation approach, developed from many authors these years

15. Numerical solution of one dimensional two-phase drift flux equations with a blend of partially and fully implicit methods

International Nuclear Information System (INIS)

Mahaffy, J.H.; Liles, D.R.

1977-01-01

A numerical method for treating two-phase flow in pipes is presented which incorporates the use of a partially implicit scheme in regions of relatively low flow velocity and a fully implicit treatment in regions of high velocity. This method takes advantage of the lower cost per iteration of the partially implicit scheme, without being limited by its conditional stability. Applications of this approach to water reactor blowdown calculations produce reductions in computer time by factors of 2 to 4 without a significant loss of accuracy

16. Introduction to precise numerical methods

CERN Document Server

Aberth, Oliver

2007-01-01

Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations ofthe various numerical methods· Two new types of numerical problems; accurately solving partial differential equations with the included software and computing line integrals in the complex plane.

17. Spurious Numerical Solutions Of Differential Equations

Science.gov (United States)

Lafon, A.; Yee, H. C.

1995-01-01

Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

18. The Numerical Solution of an Abelian Ordinary Differential Equation ...

African Journals Online (AJOL)

In this paper we present a relatively new technique call theNew Hybrid of Adomian decomposition method (ADM) for solution of an Abelian Differential equation. The numerical results of the equation have been obtained in terms of convergent series with easily computable component. These methods are applied to solve ...

19. Numerical solution of the radionuclide transport equation

International Nuclear Information System (INIS)

1983-11-01

A numerical solution of the one-dimensional geospheric radionuclide chain transport equation based on the pseudospectral method is developed. The advantages of this approach are flexibility in incorporating space and time dependent migration parameters, arbitrary boundary conditions and solute rock interactions as well as efficiency and reliability. As an application the authors investigate the impact of non-linear sorption isotherms on migration in crystalline rock. It is shown that non-linear sorption, in the present case a Freundlich isotherm, may reduce concentration at the geosphere outlet by orders of magnitude provided the migration time is comparable or larger than the half-life of the nuclide in question. The importance of fixing dispersivity within the continuum approach is stressed. (Auth.)

20. On the comparison of numerical methods for the integration of kinetic equations in atmospheric chemistry and transport models

Science.gov (United States)

Saylor, Rick D.; Ford, Gregory D.

The integration of systems of ordinary differential equations (ODEs) that arise in atmospheric photochemistry is of significant concern to tropospheric and stratospheric chemistry modelers. As a consequence of the stiff nature of these ODE systems, their solution requires a large fraction of the total computational effort in three-dimensional chemical model simulations. Several integration techniques have been proposed and utilized over the years in an attempt to provide computationally efficient, yet accurate, solutions to chemical kinetics ODES. In this work, we present a comparison of some of these techniques and argue that valid comparisons of ODE solvers must take into account the trade-off between solution accuracy and computational efficiency. Misleading comparison results can be obtained by neglecting the fact that any ODE solution method can be made faster or slower by manipulation of the appropriate error tolerances or time steps. Comparisons among ODE solution techniques should therefore attempt to identify which technique can provide the most accurate solution with the least computational effort over the entire range of behavior of each technique. We present here a procedure by which ODE solver comparisons can achieve this goal. Using this methodology, we compare a variety of integration techniques, including methods proposed by Hesstvedt et al. (1978, Int. J. Chem. Kinet.10, 971-994), Gong and Cho (1993, Atmospheric Environment27A, 2147-2160), Young and Boris (1977, J. phys. Chem.81, 2424-2427) and Hindmarsh (1983, In Scientific Computing (edited by Stepleman R. S. et al.), pp. 55-64. North-Holland, Amsterdam). We find that Gear-type solvers such as the Livermore Solver for ordinary differential equations (LSODE) and the sparse-matrix version of LSODE (LSODES) provide the most accurate solution of our test problems with the least computational effort.

1. Transport equation solving methods

International Nuclear Information System (INIS)

Granjean, P.M.

1984-06-01

This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

2. A numerical method to solve the 1D and the 2D reaction diffusion equation based on Bessel functions and Jacobian free Newton-Krylov subspace methods

Science.gov (United States)

Parand, K.; Nikarya, M.

2017-11-01

In this paper a novel method will be introduced to solve a nonlinear partial differential equation (PDE). In the proposed method, we use the spectral collocation method based on Bessel functions of the first kind and the Jacobian free Newton-generalized minimum residual (JFNGMRes) method with adaptive preconditioner. In this work a nonlinear PDE has been converted to a nonlinear system of algebraic equations using the collocation method based on Bessel functions without any linearization, discretization or getting the help of any other methods. Finally, by using JFNGMRes, the solution of the nonlinear algebraic system is achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the famous Fisher equation. We compare our results with other methods.

3. Numerical Evaluation of P-Multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations

Science.gov (United States)

Atkins, H. L.; Helenbrook, B. T.

2005-01-01

This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of di usion. Gauss-Seidel relaxation converges 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel.

4. Mixed dual finite element methods for the numerical treatment of the diffusion equation in hexagonal geometry; Elements finis mixtes duaux pour la resolution numerique de l'equation de la diffusion neutronique en geometrie hexagonale

Energy Technology Data Exchange (ETDEWEB)

Schneider, D

2001-07-01

The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P{sub N} approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)

5. Mixed dual finite element methods for the numerical treatment of the diffusion equation in hexagonal geometry; Elements finis mixtes duaux pour la resolution numerique de l'equation de la diffusion neutronique en geometrie hexagonale

Energy Technology Data Exchange (ETDEWEB)

Schneider, D

2001-07-01

The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P{sub N} approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)

6. An outline review of numerical transport methods

International Nuclear Information System (INIS)

Budd, C.

1981-01-01

A brief review is presented of numerical methods for solving the neutron transport equation in the context of reactor physics. First the various forms of transport equation are given. Second, the various ways of classifying numerical transport methods are discussed. Finally each method (or class of methods) is outlined in turn. (U.K.)

7. Numerical methods for hydrodynamic stability problems

International Nuclear Information System (INIS)

Fujimura, Kaoru

1985-11-01

Numerical methods for solving the Orr-Sommerfeld equation, which is the fundamental equation of the hydrodynamic stability theory for various shear flows, are reviewed and typical numerical results are presented. The methods of asymptotic solution, finite difference methods, initial value methods and expansions in orthogonal functions are compared. (author)

8. A new numerical approximation of the fractal ordinary differential equation

Science.gov (United States)

Atangana, Abdon; Jain, Sonal

2018-02-01

The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.

9. Numerical simulation of fractional Cable equation of spiny neuronal dendrites

Directory of Open Access Journals (Sweden)

N.H. Sweilam

2014-03-01

Full Text Available In this article, numerical study for the fractional Cable equation which is fundamental equations for modeling neuronal dynamics is introduced by using weighted average of finite difference methods. The stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. A simple and an accurate stability criterion valid for different discretization schemes of the fractional derivative and arbitrary weight factor is introduced and checked numerically. Numerical results, figures, and comparisons have been presented to confirm the theoretical results and efficiency of the proposed method.

10. A network thermodynamic method for numerical solution of the Nernst-Planck and Poisson equation system with application to ionic transport through membranes.

Science.gov (United States)

Horno, J; González-Caballero, F; González-Fernández, C F

1990-01-01

Simple techniques of network thermodynamics are used to obtain the numerical solution of the Nernst-Planck and Poisson equation system. A network model for a particular physical situation, namely ionic transport through a thin membrane with simultaneous diffusion, convection and electric current, is proposed. Concentration and electric field profiles across the membrane, as well as diffusion potential, have been simulated using the electric circuit simulation program, SPICE. The method is quite general and extremely efficient, permitting treatments of multi-ion systems whatever the boundary and experimental conditions may be.

11. Numerical methods using Matlab

CERN Document Server

Lindfield, George

2012-01-01

Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of use

CERN Document Server

Mastorakis, Nikos E

2009-01-01

Features contributions that are focused on significant aspects of current numerical methods and computational mathematics. This book carries chapters that advanced methods and various variations on known techniques that can solve difficult scientific problems efficiently.

13. Calculating qP-wave traveltimes in 2-D TTI media by high-order fast sweeping methods with a numerical quartic equation solver

Science.gov (United States)

Han, Song; Zhang, Wei; Zhang, Jie

2017-09-01

A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.

14. A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law

International Nuclear Information System (INIS)

Guo, Z.; Lin, P.; Lowengrub, J.S.

2014-01-01

In this paper, we investigate numerically a diffuse interface model for the Navier–Stokes equation with fluid–fluid interface when the fluids have different densities . Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a C 0 finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy law (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with C 0 finite element. A Newton method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme

15. Numerical solution of boundary-integral equations for molecular electrostatics.

Science.gov (United States)

Bardhan, Jaydeep P

2009-03-07

Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

16. A numerical scheme for the generalized Burgers–Huxley equation

Directory of Open Access Journals (Sweden)

Brajesh K. Singh

2016-10-01

Full Text Available In this article, a numerical solution of generalized Burgers–Huxley (gBH equation is approximated by using a new scheme: modified cubic B-spline differential quadrature method (MCB-DQM. The scheme is based on differential quadrature method in which the weighting coefficients are obtained by using modified cubic B-splines as a set of basis functions. This scheme reduces the equation into a system of first-order ordinary differential equation (ODE which is solved by adopting SSP-RK43 scheme. Further, it is shown that the proposed scheme is stable. The efficiency of the proposed method is illustrated by four numerical experiments, which confirm that obtained results are in good agreement with earlier studies. This scheme is an easy, economical and efficient technique for finding numerical solutions for various kinds of (nonlinear physical models as compared to the earlier schemes.

17. New Numerical Treatment for Solving the KDV Equation

Directory of Open Access Journals (Sweden)

khalid ali

2017-01-01

Full Text Available In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using collocation method with the modified exponential cubic B-spline. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms2L, ?L are computed. Three invariants of motion are predestined to determine the preservation properties of the problem, and the numerical scheme leads to careful and active results. Furthermore, interaction of two and three solitary waves is shown. These results show that the technique introduced here is easy to apply.

18. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

Energy Technology Data Exchange (ETDEWEB)

Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya36@yahoo.com

2008-04-14

In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

19. Exact and numerical solutions of generalized Drinfeld-Sokolov equations

International Nuclear Information System (INIS)

Ugurlu, Yavuz; Kaya, Dogan

2008-01-01

In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)

20. International Winter Workshop on Differential Equations and Numerical Analysis

CERN Document Server

Miller, John; Narasimhan, Ramanujam; Mathiazhagan, Paramasivam; Victor, Franklin

2016-01-01

This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.

1. The numerical solution of linear multi-term fractional differential equations: systems of equations

Science.gov (United States)

Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

2002-11-01

In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

2. Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas

International Nuclear Information System (INIS)

Lewis, H.R.

1979-01-01

The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates

3. Numerical solution of plasma fluid equations using locally refined grids

International Nuclear Information System (INIS)

Colella, P.

1997-01-01

This paper describes a numerical method for the solution of plasma fluid equations on block-structured, locally refined grids. The plasma under consideration is typical of those used for the processing of semiconductors. The governing equations consist of a drift-diffusion model of the electrons and an isothermal model of the ions coupled by Poisson's equation. A discretization of the equations is given for a uniform spatial grid, and a time-split integration scheme is developed. The algorithm is then extended to accommodate locally refined grids. This extension involves the advancement of the discrete system on a hierarchy of levels, each of which represents a degree of refinement, together with synchronization steps to ensure consistency across levels. A brief discussion of a software implementation is followed by a presentation of numerical results

4. A finite difference method for numerical solution of the Nernst-Planck equations when convective flux and electric current are involved

International Nuclear Information System (INIS)

Aguilera, V.M.; Garrido, J.; Mafe, S.; Pellicer, J.

1985-01-01

An algorithm for the solution of Nernst-Planck equations with simultaneous convective flux and electric current has been developed without using Poisson's equation. The numerical simulation which has been developed reproduces the behaviour of the system employing their experimental variables as parameters of the algorithm. However, other procedures are only capable of dealing with some of the experimental conditions described here. The agreement between the theoretically predicted values and the experimentally obtained is quite reasonable. (author)

5. Methods for Equating Mental Tests.

Science.gov (United States)

1984-11-01

1983) compared conventional and IRT methods for equating the Test of English as a Foreign Language ( TOEFL ) after chaining. Three conventional and...three IRT equating methods were examined in this study; two sections of TOEFL were each (separately) equated. The IRT methods included the following: (a...group. A separate base form was established for each of the six equating methods. Instead of equating the base-form TOEFL to itself, the last (eighth

6. One-dimensional solution of the transport equation in porous media in transient state by a new numerical method for the management of particle track

Science.gov (United States)

Delay, F.; de Marsily, G.; Carlier, E.

1994-10-01

For the last fifteen years or so, the random-walk methods have proved their worth in solving the transport equation in porous and fractured media. Their principal shortcomings remain their relatively slow calculation speed and their lack of precision at low concentrations. This paper proposes a new code which eliminates these disadvantages by managing the particles not individually but in the form of numerical values (representing the number of particles in each phase, mobile and immobile) assigned to each cell in a 1-D system. The calculation time then is short, and it is possible to introduce as many particles as desired into the model without increasing the calculation time. A large number of injection types can be simulated, and to the classical convection-dispersion phenomenon can be added a process of exchange between the mobile and immobile phase according to first-order kinetics. Because the particles are managed as numbers, the analytical solution obtained for the exchange during a time step reduces the calculation to a simple assignation of numerical values to two variables, one of which represents the mobile and the other the immobile phase; the calculation is then almost instantaneous. Because the program is developed in C, it leaves much room for graphic interaction which greatly facilitates the fitting of tracer experiments with a limited set of parameters.

7. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

KAUST Repository

Lyakhov, Dmitry A.

2017-08-29

We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\\\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

8. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

KAUST Repository

Lyakhov, Dmitry A.; Gerdt, Vladimir P.; Weber, Andreas G.; Michels, Dominik L.

2017-01-01

We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

9. Numerical methods in multibody dynamics

CERN Document Server

Eich-Soellner, Edda

1998-01-01

Today computers play an important role in the development of complex mechanical systems, such as cars, railway vehicles or machines. Efficient simulation of these systems is only possible when based on methods that explore the strong link between numerics and computational mechanics. This book gives insight into modern techniques of numerical mathematics in the light of an interesting field of applications: multibody dynamics. The important interaction between modeling and solution techniques is demonstrated by using a simplified multibody model of a truck. Different versions of this mechanical model illustrate all key concepts in static and dynamic analysis as well as in parameter identification. The book focuses in particular on constrained mechanical systems. Their formulation in terms of differential-algebraic equations is the backbone of nearly all chapters. The book is written for students and teachers in numerical analysis and mechanical engineering as well as for engineers in industrial research labor...

10. Operator theory and numerical methods

CERN Document Server

Fujita, H; Suzuki, T

2001-01-01

In accordance with the developments in computation, theoretical studies on numerical schemes are now fruitful and highly needed. In 1991 an article on the finite element method applied to evolutionary problems was published. Following the method, basically this book studies various schemes from operator theoretical points of view. Many parts are devoted to the finite element method, but other schemes and problems (charge simulation method, domain decomposition method, nonlinear problems, and so forth) are also discussed, motivated by the observation that practically useful schemes have fine mathematical structures and the converses are also true. This book has the following chapters: 1. Boundary Value Problems and FEM. 2. Semigroup Theory and FEM. 3. Evolution Equations and FEM. 4. Other Methods in Time Discretization. 5. Other Methods in Space Discretization. 6. Nonlinear Problems. 7. Domain Decomposition Method.

11. Essential numerical computer methods

CERN Document Server

Johnson, Michael L

2010-01-01

The use of computers and computational methods has become ubiquitous in biological and biomedical research. During the last 2 decades most basic algorithms have not changed, but what has is the huge increase in computer speed and ease of use, along with the corresponding orders of magnitude decrease in cost. A general perception exists that the only applications of computers and computer methods in biological and biomedical research are either basic statistical analysis or the searching of DNA sequence data bases. While these are important applications they only scratch the surface of the current and potential applications of computers and computer methods in biomedical research. The various chapters within this volume include a wide variety of applications that extend far beyond this limited perception. As part of the Reliable Lab Solutions series, Essential Numerical Computer Methods brings together chapters from volumes 210, 240, 321, 383, 384, 454, and 467 of Methods in Enzymology. These chapters provide ...

12. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

KAUST Repository

El-Beltagy, Mohamed A.; Al-Juhani, Amnah

2015-01-01

Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods . WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

13. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

KAUST Repository

El-Beltagy, Mohamed A.

2015-01-07

Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods . WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

14. CSR Fields: Direct Numerical Solution of the Maxwell's Equation

International Nuclear Information System (INIS)

Novokhatski, Alexander

2011-01-01

We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in (1). Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in (2). We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields (3).

15. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

International Nuclear Information System (INIS)

Priimak, Dmitri

2014-01-01

We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques

16. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

Energy Technology Data Exchange (ETDEWEB)

Priimak, Dmitri

2014-12-01

We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.

17. NUMERICAL HOPF BIFURCATION OF DELAY-DIFFERENTIAL EQUATIONS

Institute of Scientific and Technical Information of China (English)

2006-01-01

In this paper we consider the numerical solution of some delay differential equations undergoing a Hopf bifurcation. We prove that if the delay differential equations have a Hopf bifurcation point atλ=λ*, then the numerical solution of the equation also has a Hopf bifurcation point atλh =λ* + O(h).

18. Numerical solution of the Schroedinger equation with a polynomial potential

International Nuclear Information System (INIS)

Campoy, G.; Palma, A.

1986-01-01

A numerical method for solving the Schroedinger equation for a potential expressed as a polynomial is proposed. The basic assumption relies on the asymptotic properties of the solution of this equation. It is possible to obtain the energies and the stationary state functions simultaneously. They analyze, in particular, the cases of the quartic anharmonic oscillator and a hydrogen atom perturbed by a quadratic term, obtaining its energy eigenvalues for some values of the perturbation parameter. Together with the Hellmann-Feynman theorem, they use their algorithm to calculate expectation values of x'' for arbitrary positive values of n. 4 tables

19. Numerical solution of modified differential equations based on symmetry preservation.

Science.gov (United States)

Ozbenli, Ersin; Vedula, Prakash

2017-12-01

In this paper, we propose a method to construct invariant finite-difference schemes for solution of partial differential equations (PDEs) via consideration of modified forms of the underlying PDEs. The invariant schemes, which preserve Lie symmetries, are obtained based on the method of equivariant moving frames. While it is often difficult to construct invariant numerical schemes for PDEs due to complicated symmetry groups associated with cumbersome discrete variable transformations, we note that symmetries associated with more convenient transformations can often be obtained by appropriately modifying the original PDEs. In some cases, modifications to the original PDEs are also found to be useful in order to avoid trivial solutions that might arise from particular selections of moving frames. In our proposed method, modified forms of PDEs can be obtained either by addition of perturbation terms to the original PDEs or through defect correction procedures. These additional terms, whose primary purpose is to enable symmetries with more convenient transformations, are then removed from the system by considering moving frames for which these specific terms go to zero. Further, we explore selection of appropriate moving frames that result in improvement in accuracy of invariant numerical schemes based on modified PDEs. The proposed method is tested using the linear advection equation (in one- and two-dimensions) and the inviscid Burgers' equation. Results obtained for these tests cases indicate that numerical schemes derived from the proposed method perform significantly better than existing schemes not only by virtue of improvement in numerical accuracy but also due to preservation of qualitative properties or symmetries of the underlying differential equations.

20. Stable Numerical Approach for Fractional Delay Differential Equations

Science.gov (United States)

Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

2017-12-01

In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

1. Topics in numerical partial differential equations and scientific computing

CERN Document Server

2016-01-01

Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.

2. Numerical solution of the resistive magnetohydrodynamic boundary-layer equations

International Nuclear Information System (INIS)

Glasser, A.H.; Jardin, S.C.; Tesauro, G.

1983-10-01

Three different techniques are presented for numerical solution of the equations governing the boundary layer of resistive magnetohydrodynamic tearing and interchange instabilities in toroidal geometry. Excellent agreement among these methods and with analytical results provides confidence in the correctness of the results. Solutions obtained in regimes where analytical medthods fail indicate a new scaling for the tearing mode as well as the existence of a new regime of stability

3. Numerical integration of the Teukolsky equation in the time domain

International Nuclear Information System (INIS)

Pazos-Avalos, Enrique; Lousto, Carlos O.

2005-01-01

We present a fourth-order convergent (2+1)-dimensional, numerical formalism to solve the Teukolsky equation in the time domain. Our approach is first to rewrite the Teukolsky equation as a system of first-order differential equations. In this way we get a system that has the form of an advection equation. This is then used in combination with a series expansion of the solution in powers of time. To obtain a fourth-order scheme we kept terms up to fourth derivative in time and use the advectionlike system of differential equations to substitute the temporal derivatives by spatial derivatives. This scheme is applied to evolve gravitational perturbations in the Schwarzschild and Kerr backgrounds. Our numerical method proved to be stable and fourth-order convergent in r* and θ directions. The correct power-law tail, ∼1/t 2l+3 , for general initial data, and ∼1/t 2l+4 , for time-symmetric data, was found in our runs. We noted that it is crucial to resolve accurately the angular dependence of the mode at late times in order to obtain these values of the exponents in the power-law decay. In other cases, when the decay was too fast and round-off error was reached before a tail was developed, then the quasinormal modes frequencies provided a test to determine the validity of our code

4. Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics

Science.gov (United States)

Kakhktsyan, V. M.; Khachatryan, A. Kh.

2013-07-01

A mixed problem for a nonlinear integrodifferential equation arising in econometrics is considered. An analytical-numerical method is proposed for solving the problem. Some numerical results are presented.

5. Numerov iteration method for second order integral-differential equation

International Nuclear Information System (INIS)

Zeng Fanan; Zhang Jiaju; Zhao Xuan

1987-01-01

In this paper, Numerov iterative method for second order integral-differential equation and system of equations are constructed. Numerical examples show that this method is better than direct method (Gauss elimination method) in CPU time and memoy requireing. Therefore, this method is an efficient method for solving integral-differential equation in nuclear physics

6. Numerical methods and analysis of multiscale problems

CERN Document Server

2017-01-01

This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

7. Numerical Analysis of the Reaction-diffusion Equation for Soluble Starch and Dextrin as Substrates of Immobilized Amyloglucosidase in a Porous Support by Using Least Square Method

Directory of Open Access Journals (Sweden)

2015-10-01

Full Text Available In this study, substrates concentration profile has been studied in a porous matrix containing immobilized amyloglucosidase for glucose production. This analysis has been performed by using of an analytical method called Least Square Method and results have been compared with numerical solution. Effects of effective diffusivity (, Michael's constant (, maximum reaction rate ( and initial substrate concentration ( are studied on Soluble Starch and Dextrin concentration in the spherical support. Outcomes reveal that Least Square Method has an excellent agreement with numerical solution and in the center of support, substrate concentration is minimum and increasing of effective diffusivity and Michael's constant reduce the Soluble Starch and Dextrin profile gradient.

8. Numerical treatments for solving nonlinear mixed integral equation

Directory of Open Access Journals (Sweden)

M.A. Abdou

2016-12-01

Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

9. Deriving average soliton equations with a perturbative method

International Nuclear Information System (INIS)

Ballantyne, G.J.; Gough, P.T.; Taylor, D.P.

1995-01-01

The method of multiple scales is applied to periodically amplified, lossy media described by either the nonlinear Schroedinger (NLS) equation or the Korteweg--de Vries (KdV) equation. An existing result for the NLS equation, derived in the context of nonlinear optical communications, is confirmed. The method is then applied to the KdV equation and the result is confirmed numerically

10. Sinc-collocation method for solving the Blasius equation

International Nuclear Information System (INIS)

Parand, K.; Dehghan, Mehdi; Pirkhedri, A.

2009-01-01

Sinc-collocation method is applied for solving Blasius equation which comes from boundary layer equations. It is well known that sinc procedure converges to the solution at an exponential rate. Comparison with Howarth and Asaithambi's numerical solutions reveals that the proposed method is of high accuracy and reduces the solution of Blasius' equation to the solution of a system of algebraic equations.

11. Numerical solutions of ordinary and partial differential equations in the frequency domain

International Nuclear Information System (INIS)

Hazi, G.; Por, G.

1997-01-01

Numerical problems during the noise simulation in a nuclear power plant are discussed. The solutions of ordinary and partial differential equations are studied in the frequency domain. Numerical methods by the transfer function method are applied. It is shown that the correctness of the numerical methods is limited for ordinary differential equations in the frequency domain. To overcome the difficulties, step-size selection is suggested. (author)

12. Numerical implementation of the Dirac equation on hypercube multicomputers

International Nuclear Information System (INIS)

Wells, J.C.

1991-01-01

Motivated by an interest in nonperturbative electromagnetic lepton-pair production in relativistic heavy-ion collisions, we discuss the numerical methods used in implementing a lattice solution of the time-dependent Dirac equation in three-dimensional Cartesian coordinates. Discretization is obtained using the lattice basis-spline collocation method, in which quantum-state vectors and coordinate-space operators are expressed in terms of basis-spline functions, and represented on a spatial lattice. All numerical procedures reduce to a series of matrix-vector operations which we perform on the Intel iPSC/860 hypercube multicomputer. We discuss solutions to the problems of limited node memory and node-to-node communication overhead inherent in using distributed-memory, multiple-instruction, multiple-data parallel computers

13. Differential equation method

International Nuclear Information System (INIS)

Kotikov, A.V.

1993-01-01

A new method of massive Feynman diagrams calculation is presented. It provides a fairly simple procedure to obtain the result without the D-space integral calculation (for the dimensional regularization). Some diagrams are calculated as an illustration of this method capacities. (author). 7 refs

14. Spectral Methods in Numerical Plasma Simulation

DEFF Research Database (Denmark)

Coutsias, E.A.; Hansen, F.R.; Huld, T.

1989-01-01

An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...

15. Differential equations methods and applications

CERN Document Server

Said-Houari, Belkacem

2015-01-01

This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory. To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included. The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations. .

16. Integral equation methods for electromagnetics

CERN Document Server

Volakis, John

2012-01-01

This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo

17. The numerical dynamic for highly nonlinear partial differential equations

Science.gov (United States)

Lafon, A.; Yee, H. C.

1992-01-01

Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

18. A Line-Tau Collocation Method for Partial Differential Equations ...

African Journals Online (AJOL)

This paper deals with the numerical solution of second order linear partial differential equations with the use of the method of lines coupled with the tau collocation method. The method of lines is used to convert the partial differential equation (PDE) to a sequence of ordinary differential equations (ODEs) which is then ...

19. Numerical method for two phase flow with a unstable interface

International Nuclear Information System (INIS)

Glimm, J.; Marchesin, D.; McBryan, O.

1981-01-01

The random choice method is used to compute the oil-water interface for two dimensional porous media equations. The equations used are a pair of coupled equations; the (elliptic) pressure equation and the (hyperbolic) saturation equation. The equations do not include the dispersive capillary pressure term and the computation does not introduce numerical diffusion. The method resolves saturation discontinuities sharply. The main conclusion of this paper is that the random choice is a correct numerical procedure for this problem even in the highly fingered case. Two methods of inducing fingers are considered: deterministically, through choice of Cauchy data and heterogeneity, through maximizing the randomness of the random choice method

20. Numerical solution of ordinary differential equations

CERN Document Server

Lapidus, Leon

1971-01-01

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

1. Theoretical and numerical method in aeroacoustics

Directory of Open Access Journals (Sweden)

Nicuşor ALEXANDRESCU

2010-06-01

Full Text Available The paper deals with the mathematical and numerical modeling of the aerodynamic noisegenerated by the fluid flow interaction with the solid structure of a rotor blade.Our analysis use Lighthill’s acoustic analogy. Lighthill idea was to express the fundamental equationsof motion into a wave equation for acoustic fluctuation with a source term on the right-hand side. Theobtained wave equation is solved numerically by the spatial discretization. The method is applied inthe case of monopole source placed in different points of blade surfaces to find this effect of noisepropagation.

2. Physical qualification and improvements of the numerical model of a method of characteristics for the resolution of the neutron transport equation in non-structured grids

International Nuclear Information System (INIS)

Santandrea, Simone

2001-01-01

This research thesis addresses the resolution of the neutron transport equation inside reactor cells in non-structured grids and in general geometry by using the method of characteristics (MoC) and two acceleration methods developed during this research. The author introduces the MoC with a flat approximation of the neutron collision source within each computation area. This formulation leads to a linear approximation. The next part presents the mathematical framework for the use of the Lanczos iterative scheme. A new acceleration method is then introduced. The last part reports realistic cases with a high spatial and angular heterogeneity. Results obtained by using the Apollo2-TDT code are compared with those obtained with the Tripoli4 Monte-Carlo code [fr

3. Comparison of Kernel Equating and Item Response Theory Equating Methods

Science.gov (United States)

Meng, Yu

2012-01-01

The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…

4. Fast numerical upscaling of heat equation for fibrous materials

KAUST Repository

Iliev, Oleg; Lazarov, Raytcho; Willems, Joerg

2010-01-01

We are interested in numerical methods for computing the effective heat conductivities of fibrous insulation materials, such as glass or mineral wool, characterized by low solid volume fractions and high contrasts, i.e., high ratios between the thermal conductivities of the fibers and the surrounding air. We consider a fast numerical method for solving some auxiliary cell problems appearing in this upscaling procedure. The auxiliary problems are boundary value problems of the steady-state heat equation in a representative elementary volume occupied by fibers and air. We make a simplification by replacing these problems with appropriate boundary value problems in the domain occupied by the fibers only. Finally, the obtained problems are further simplified by taking advantage of the slender shape of the fibers and assuming that they form a network. A discretization on the graph defined by the fibers is presented and error estimates are provided. The resulting algorithm is discussed and the accuracy and the performance of the method are illusrated on a number of numerical experiments. © Springer-Verlag 2010.

5. Fast numerical upscaling of heat equation for fibrous materials

KAUST Repository

Iliev, Oleg

2010-08-01

We are interested in numerical methods for computing the effective heat conductivities of fibrous insulation materials, such as glass or mineral wool, characterized by low solid volume fractions and high contrasts, i.e., high ratios between the thermal conductivities of the fibers and the surrounding air. We consider a fast numerical method for solving some auxiliary cell problems appearing in this upscaling procedure. The auxiliary problems are boundary value problems of the steady-state heat equation in a representative elementary volume occupied by fibers and air. We make a simplification by replacing these problems with appropriate boundary value problems in the domain occupied by the fibers only. Finally, the obtained problems are further simplified by taking advantage of the slender shape of the fibers and assuming that they form a network. A discretization on the graph defined by the fibers is presented and error estimates are provided. The resulting algorithm is discussed and the accuracy and the performance of the method are illusrated on a number of numerical experiments. © Springer-Verlag 2010.

6. Nodal spectrum method for solving neutron diffusion equation

International Nuclear Information System (INIS)

Sanchez, D.; Garcia, C. R.; Barros, R. C. de; Milian, D.E.

1999-01-01

Presented here is a new numerical nodal method for solving static multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X, Y directions and then considering flat approximations for the current. These flat approximations are the only approximations that are considered in this method, as a result the numerical solutions are completely free from truncation errors. We show numerical results to illustrate the methods accuracy for coarse mesh calculations

7. Monograph - The Numerical Integration of Ordinary Differential Equations.

Science.gov (United States)

Hull, T. E.

The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…

8. Numerical bifurcation analysis of a class of nonlinear renewal equations

NARCIS (Netherlands)

Breda, Dimitri; Diekmann, Odo; Liessi, Davide; Scarabel, Francesca

2016-01-01

We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic-and Ricker-type population equations and exhibits

9. Design of heat exchangers by numerical methods

International Nuclear Information System (INIS)

Konuk, A.A.

1981-01-01

Differential equations describing the heat tranfer in shell - and tube heat exchangers are derived and solved numerically. The method of ΔT sub(lm) is compared with the proposed method in cases where the specific heat at constant pressure, Cp and the overall heat transfer coefficient, U, vary with temperature. The error of the method of ΔT sub (lm) for the computation of the exchanger lenght is less than + 10%. However, the numerical method, being more accurate and at the same time easy to use and economical, is recommended for the design of shell-and-tube heat exchangers. (Author) [pt

10. Variational linear algebraic equations method

International Nuclear Information System (INIS)

Moiseiwitsch, B.L.

1982-01-01

A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)

11. Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline

Directory of Open Access Journals (Sweden)

Ravi Kanth A.S.V.

2016-01-01

Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.

12. Numerical instability of time-discretized one-point kinetic equations

International Nuclear Information System (INIS)

Hashimoto, Kengo; Ikeda, Hideaki; Takeda, Toshikazu

2000-01-01

The one-point kinetic equations with numerical errors induced by the explicit, implicit and Crank-Nicolson integration methods are derived. The zero-power transfer functions based on the present equations are demonstrated to investigate the numerical stability of the discretized systems. These demonstrations indicate unconditional stability for the implicit and Crank-Nicolson methods but present the possibility of numerical instability for the explicit method. An upper limit of time mesh spacing for the stability is formulated and several numerical calculations are made to confirm the validity of this formula

13. A numerical method for resonance integral calculations

International Nuclear Information System (INIS)

Tanbay, Tayfun; Ozgener, Bilge

2013-01-01

A numerical method has been proposed for resonance integral calculations and a cubic fit based on least squares approximation to compute the optimum Bell factor is given. The numerical method is based on the discretization of the neutron slowing down equation. The scattering integral is approximated by taking into account the location of the upper limit in energy domain. The accuracy of the method has been tested by performing computations of resonance integrals for uranium dioxide isolated rods and comparing the results with empirical values. (orig.)

14. Numerical methods used in simulation

International Nuclear Information System (INIS)

Caseau, Paul; Perrin, Michel; Planchard, Jacques

1978-01-01

The fundamental numerical problem posed by simulation problems is the stability of the resolution diagram. The system of the most used equations is defined, since there is a family of models of increasing complexity with 3, 4 or 5 equations although only models with 3 and 4 equations have been used extensively. After defining what is meant by explicit or implicit, the best established stability results is given for one-dimension problems and then for two-dimension problems. It is shown that two types of discretisation may be defined: four and eight point diagrams (in one or two dimensions) and six and ten point diagrams (in one or two dimensions). To end, some results are given on problems that are not usually treated very much, i.e. non-asymptotic stability and the stability of diagrams based on finite elements [fr

15. Study on the numerical analysis of nuclear reactor kinetics equations

International Nuclear Information System (INIS)

Yang, J.C.

1980-01-01

A two-step alternating direction explict method is proposed for the solution of the space-and time-dependent diffusion theory reactor kinetics equations in two space dimensions as a special case of the general class of alternating direction implicit method and the truncation error of this method is estimated. To test the validity of this method it is applied to the Pressurized Water Reactor and CANDU-PHW reactor which have been operating and underconstructing in Korea. The time dependent neutron flux of the PWR reactor during control rod insertion and time dependent neutronic power of CANDU-PHW reactor in the case of postulated loss of coolant accident are obtained from the numerical calculation results. The results of the PWR reactor problem are shown the close agreement between implicit-difference method used in the TWIGL program and this method, and the results of the CANDU-PHW reactor are compared with the results of improved quasistic method and modal method. (Author)

16. A numerical study of the integral equations for the laser fields in free-electron lasers

International Nuclear Information System (INIS)

Yoo, J. G.; Park, S. H.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

2004-01-01

The dynamics of the radiation fields in free-electron lasers is investigated on the basis of the integro-differential equations in the one-dimensional formulation. For simple cases we solved the integro-differential equations analytically and numerically to test our numerical procedures developed on the basis of the Filon method. The numerical results showed good agreement with the analytical solutions. To confirm the legitimacy of the numerical package, we carried out numerical studies on the inhomogeneous broadening effects, where no analytic solutions are available, due to the energy spread and the emittance of the electron beam.

17. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations

Science.gov (United States)

Diethelm, Kai; Ford, Neville J.; Freed, Alan D.; Gray, Hugh R. (Technical Monitor)

2002-01-01

We discuss an Adams-type predictor-corrector method for the numerical solution of fractional differential equations. The method may be used both for linear and for nonlinear problems, and it may be extended to multi-term equations (involving more than one differential operator) too.

18. Spectral methods in numerical plasma simulation

International Nuclear Information System (INIS)

Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.

1989-01-01

An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)

19. Fast numerical solution of KKR-CPA equations: Testing new algorithms

Energy Technology Data Exchange (ETDEWEB)

Bruno, E.; Florio, G.M.; Ginatempo, B.; Giuliano, E.S. (Universita di Messina (Italy))

1994-04-01

Some numerical methods for the solution of KKR-CPA equations are discussed and tested. New, efficient, computational algorithms are proposed, allowing a remarkable reduction of computing time and a good reliability in evaluating spectral quantities. 16 refs., 7 figs.

20. Numerical calculation of the cross section by the solution of the wave equation

International Nuclear Information System (INIS)

Drewko, J.

1982-01-01

A numerical method of solving of the wave equation is described for chosen vibrational eigenfunctions. A prepared program calculates the total cross sections for the resonant vibrational excitation for diatomic molecules on the basis of introduced molecular data. (author)

1. Conservative numerical methods for solitary wave interactions

Energy Technology Data Exchange (ETDEWEB)

2003-07-18

The purpose of this paper is to show the advantages that represent the use of numerical methods that preserve invariant quantities in the study of solitary wave interactions for the regularized long wave equation. It is shown that the so-called conservative methods are more appropriate to study the phenomenon and provide a dynamic point of view that allows us to estimate the changes in the parameters of the solitary waves after the collision.

2. Spurious solutions in few-body equations. II. Numerical investigations

International Nuclear Information System (INIS)

1979-01-01

A recent analytic study of spurious solutions in few-body equations by Adhikari and Gloeckle is here complemented by numerical investigations. As proposed by Adhikari and Gloeckle we study numerically the spurious solutions in the three-body Weinberg type equations and draw some general conclusions about the existence of spurious solutions in three-body equations with the Weinberg kernel and in other few-body formulations. In particular we conclude that for most of the potentials we encounter in problems of nuclear physics the three-body Weinberg type equation will not have a spurious solution which may interfere with the bound state or scattering calculation. Hence, if proven convenient, the three-body Weinberg type equation can be used in practical calculations. The same conclusion is true for the three-body channel coupling array scheme of Kouri, Levin, and Tobocman. In the case of the set of six coupled four-body equations proposed by Rosenberg et al. and the set of the Bencze-Redish-Sloan equations a careful study of the possible spurious solutions is needed before using these equations in practical calculations

3. Iterative Splitting Methods for Differential Equations

CERN Document Server

Geiser, Juergen

2011-01-01

Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

4. Exponential Convergence for Numerical Solution of Integral Equations Using Radial Basis Functions

Directory of Open Access Journals (Sweden)

2014-01-01

Full Text Available We solve some different type of Urysohn integral equations by using the radial basis functions. These types include the linear and nonlinear Fredholm, Volterra, and mixed Volterra-Fredholm integral equations. Our main aim is to investigate the rate of convergence to solve these equations using the radial basis functions which have normic structure that utilize approximation in higher dimensions. Of course, the use of this method often leads to ill-posed systems. Thus we propose an algorithm to improve the results. Numerical results show that this method leads to the exponential convergence for solving integral equations as it was already confirmed for partial and ordinary differential equations.

5. An uncoupling strategy for numerically solving the dynamic thermoelasticity equations

International Nuclear Information System (INIS)

Moura, C.A. de; Feijoo, R.A.

1981-01-01

The dynamic equations of coupled linear thermoelasticity are presented. A numerical algorithm which combines finite-element space approximation with a two-step time discretization in such a way as to reach significant computational savings is presented: It features a strategy for independently calculating the displacement and temperature fields through equations that nevertheless remain coupled. The scheme convergence was shown to be optimal and its machine performance, as ilustrated by some examples, fairly satisfactory. (Author) [pt

6. Simple Numerical Schemes for the Korteweg-deVries Equation

International Nuclear Information System (INIS)

McKinstrie, C. J.; Kozlov, M.V.

2000-01-01

Two numerical schemes, which simulate the propagation of dispersive non-linear waves, are described. The first is a split-step Fourier scheme for the Korteweg-de Vries (KdV) equation. The second is a finite-difference scheme for the modified KdV equation. The stability and accuracy of both schemes are discussed. These simple schemes can be used to study a wide variety of physical processes that involve dispersive nonlinear waves

7. Simple Numerical Schemes for the Korteweg-deVries Equation

Energy Technology Data Exchange (ETDEWEB)

C. J. McKinstrie; M. V. Kozlov

2000-12-01

Two numerical schemes, which simulate the propagation of dispersive non-linear waves, are described. The first is a split-step Fourier scheme for the Korteweg-de Vries (KdV) equation. The second is a finite-difference scheme for the modified KdV equation. The stability and accuracy of both schemes are discussed. These simple schemes can be used to study a wide variety of physical processes that involve dispersive nonlinear waves.

8. Numerical solution of the one-dimensional Burgers' equation ...

Burgers' equation; exponential finite difference method; implicit exponential finite difference method ... prescribed functions of the variables. Pramana – J. ... explicit exponential finite difference method was originally developed by Bhattacharya.

9. Numerical solution of second-order stochastic differential equations with Gaussian random parameters

Directory of Open Access Journals (Sweden)

Rahman Farnoosh

2014-07-01

Full Text Available In this paper, we present the numerical solution of ordinary differential equations (or SDEs, from each orderespecially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysisfor second-order equations in specially case of scalar linear second-order equations (damped harmonicoscillators with additive or multiplicative noises. Making stochastic differential equations system from thisequation, it could be approximated or solved numerically by different numerical methods. In the case oflinear stochastic differential equations system by Computing fundamental matrix of this system, it could becalculated based on the exact solution of this system. Finally, this stochastic equation is solved by numericallymethod like E.M. and Milstein. Also its Asymptotic stability and statistical concepts like expectationand variance of solutions are discussed.

10. Theoretical stability in coefficient inverse problems for general hyperbolic equations with numerical reconstruction

Science.gov (United States)

Yu, Jie; Liu, Yikan; Yamamoto, Masahiro

2018-04-01

In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.

11. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

Science.gov (United States)

Polyanin, A. D.; Sorokin, V. G.

2017-12-01

The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

12. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

Energy Technology Data Exchange (ETDEWEB)

Klein, R I; Stone, J M

2007-11-20

We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

13. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

International Nuclear Information System (INIS)

Klein, R I; Stone, J M

2007-01-01

We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments

14. Auxiliary equation method for solving nonlinear partial differential equations

International Nuclear Information System (INIS)

Sirendaoreji,; Jiong, Sun

2003-01-01

By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

15. Numerical resolution of Navier-Stokes equations coupled to the heat equation

International Nuclear Information System (INIS)

Zenouda, Jean-Claude

1970-08-01

The author proves a uniqueness theorem for the time dependent Navier-Stokes equations coupled with heat flow in the two-dimensional case. He studies stability and convergence of several finite - difference schemes to solve these equations. Numerical experiments are done in the case of a square domain. (author) [fr

16. Analysis of the Numerical Solution of the Shallow Water Equations

National Research Council Canada - National Science Library

Hamrick, Thomas

1997-01-01

.... The two schemes are finite difference method (FDM) and the finite element method (FEM). After presenting the shallow water equations in several formulations, some examples will be presented. The use of the Fourier transform to find the solution of a semidiscrete analog of the shallow water equations is also demonstrated.

17. LIE GROUPS AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS: INVARIANT DISCRETIZATION VERSUS DIFFERENTIAL APPROXIMATION

Directory of Open Access Journals (Sweden)

Decio Levi

2013-10-01

Full Text Available We briefly review two different methods of applying Lie group theory in the numerical solution of ordinary differential equations. On specific examples we show how the symmetry preserving discretization provides difference schemes for which the “first differential approximation” is invariant under the same Lie group as the original ordinary differential equation.

18. Spline methods for conversation equations

International Nuclear Information System (INIS)

Bottcher, C.; Strayer, M.R.

1991-01-01

The consider the numerical solution of physical theories, in particular hydrodynamics, which can be formulated as systems of conservation laws. To this end we briefly describe the Basis Spline and collocation methods, paying particular attention to representation theory, which provides discrete analogues of the continuum conservation and dispersion relations, and hence a rigorous understanding of errors and instabilities. On this foundation we propose an algorithm for hydrodynamic problems in which most linear and nonlinear instabilities are brought under control. Numerical examples are presented from one-dimensional relativistic hydrodynamics. 9 refs., 10 figs

19. A Parameter Robust Method for Singularly Perturbed Delay Differential Equations

Directory of Open Access Journals (Sweden)

Erdogan Fevzi

2010-01-01

Full Text Available Uniform finite difference methods are constructed via nonstandard finite difference methods for the numerical solution of singularly perturbed quasilinear initial value problem for delay differential equations. A numerical method is constructed for this problem which involves the appropriate Bakhvalov meshes on each time subinterval. The method is shown to be uniformly convergent with respect to the perturbation parameter. A numerical example is solved using the presented method, and the computed result is compared with exact solution of the problem.

20. Numerical solutions of multi-order fractional differential equations by Boubaker polynomials

Directory of Open Access Journals (Sweden)

Bolandtalat A.

2016-01-01

Full Text Available In this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.

1. Numerical Solution of Differential Algebraic Equations and Applications

DEFF Research Database (Denmark)

Thomsen, Per Grove

2005-01-01

These lecture notes have been written as part of a special course on the numerical solution of Differential Algebraic Equations and applications . The course was held at IMM in the spring of 2005. The authors of the different chapters have all taken part in the course and the chapters are written...

2. Rotationally symmetric numerical solutions to the sine-Gordon equation

DEFF Research Database (Denmark)

Olsen, O. H.; Samuelsen, Mogens Rugholm

1981-01-01

We examine numerically the properties of solutions to the spherically symmetric sine-Gordon equation given an initial profile which coincides with the one-dimensional breather solution and refer to such solutions as ring waves. Expanding ring waves either exhibit a return effect or expand towards...

3. Conservative numerical schemes for Euler-Lagrange equations

Energy Technology Data Exchange (ETDEWEB)

1999-05-01

As a preliminary step to study magnetic field lines, the authors seek numerical schemes that reproduce at discrete level the significant feature of the continuous model, based on an underling Lagrangian structure. The resulting scheme give discrete counterparts of the variation law for the energy as well of as the Euler-Lagrange equations and their symmetries.

4. assessment of concentration of air pollutants using analytical and numerical solution of the atmospheric diffusion equation

International Nuclear Information System (INIS)

Esmail, S.F.H.

2011-01-01

The mathematical formulation of numerous physical problems a results in differential equations actually partial or ordinary differential equations.In our study we are interested in solutions of partial differential equations.The aim of this work is to calculate the concentrations of the pollution, by solving the atmospheric diffusion equation(ADE) using different mathematical methods of solution. It is difficult to solve the general form of ADE analytically, so we use some assumptions to get its solution.The solutions of it depend on the eddy diffusivity profiles(k) and the wind speed u. We use some physical assumptions to simplify its formula and solve it. In the present work, we solve the ADE analytically in three dimensions using Green's function method, Laplace transform method, normal mode method and these separation of variables method. Also, we use ADM as a numerical method. Finally, comparisons are made with the results predicted by the previous methods and the observed data.

5. Relaxation methods for gauge field equilibrium equations

International Nuclear Information System (INIS)

1984-01-01

This article gives a pedagogical introduction to relaxation methods for the numerical solution of elliptic partial differential equations, with particular emphasis on treating nonlinear problems with delta-function source terms and axial symmetry, which arise in the context of effective Lagrangian approximations to the dynamics of quantized gauge fields. The authors present a detailed theoretical analysis of three models which are used as numerical examples: the classical Abelian Higgs model (illustrating charge screening), the semiclassical leading logarithm model (illustrating flux confinement within a free boundary or ''bag''), and the axially symmetric Bogomol'nyi-Prasad-Sommerfield monopoles (illustrating the occurrence of p topological quantum numbers in non-Abelian gauge fields). They then proceed to a self-contained introduction to the theory of relaxation methods and allied iterative numerical methods and to the practical aspects of their implementation, with attention to general issues which arise in the three examples. The authors conclude with a brief discussion of details of the numerical solution of the models, presenting sample numerical results

6. Numerical methods for axisymmetric and 3D nonlinear beams

Science.gov (United States)

Pinton, Gianmarco F.; Trahey, Gregg E.

2005-04-01

Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.

7. Differential and Difference Boundary Value Problem for Loaded Third-Order Pseudo-Parabolic Differential Equations and Difference Methods for Their Numerical Solution

Science.gov (United States)

Beshtokov, M. Kh.

2017-12-01

Boundary value problems for loaded third-order pseudo-parabolic equations with variable coefficients are considered. A priori estimates for the solutions of the problems in the differential and difference formulations are obtained. These a priori estimates imply the uniqueness and stability of the solution with respect to the initial data and the right-hand side on a layer, as well as the convergence of the solution of each difference problem to the solution of the corresponding differential problem.

8. Hybrid methods for airframe noise numerical prediction

Energy Technology Data Exchange (ETDEWEB)

Terracol, M.; Manoha, E.; Herrero, C.; Labourasse, E.; Redonnet, S. [ONERA, Department of CFD and Aeroacoustics, BP 72, Chatillon (France); Sagaut, P. [Laboratoire de Modelisation en Mecanique - UPMC/CNRS, Paris (France)

2005-07-01

This paper describes some significant steps made towards the numerical simulation of the noise radiated by the high-lift devices of a plane. Since the full numerical simulation of such configuration is still out of reach for present supercomputers, some hybrid strategies have been developed to reduce the overall cost of such simulations. The proposed strategy relies on the coupling of an unsteady nearfield CFD with an acoustic propagation solver based on the resolution of the Euler equations for midfield propagation in an inhomogeneous field, and the use of an integral solver for farfield acoustic predictions. In the first part of this paper, this CFD/CAA coupling strategy is presented. In particular, the numerical method used in the propagation solver is detailed, and two applications of this coupling method to the numerical prediction of the aerodynamic noise of an airfoil are presented. Then, a hybrid RANS/LES method is proposed in order to perform some unsteady simulations of complex noise sources. This method allows for significant reduction of the cost of such a simulation by considerably reducing the extent of the LES zone. This method is described and some results of the numerical simulation of the three-dimensional unsteady flow in the slat cove of a high-lift profile are presented. While these results remain very difficult to validate with experiments on similar configurations, they represent up to now the first 3D computations of this kind of flow. (orig.)

9. Abstract methods in partial differential equations

CERN Document Server

Carroll, Robert W

2012-01-01

Detailed, self-contained treatment examines modern abstract methods in partial differential equations, especially abstract evolution equations. Suitable for graduate students with some previous exposure to classical partial differential equations. 1969 edition.

10. Variable-mesh method of solving differential equations

Science.gov (United States)

Van Wyk, R.

1969-01-01

Multistep predictor-corrector method for numerical solution of ordinary differential equations retains high local accuracy and convergence properties. In addition, the method was developed in a form conducive to the generation of effective criteria for the selection of subsequent step sizes in step-by-step solution of differential equations.

11. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

Energy Technology Data Exchange (ETDEWEB)

Lucas, D.S.

2004-10-03

This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.

12. Validation of a numerical algorithm based on transformed equations

International Nuclear Information System (INIS)

Xu, H.; Barron, R.M.; Zhang, C.

2003-01-01

Generally, a typical equation governing a physical process, such as fluid flow or heat transfer, has three types of terms that involve partial derivatives, namely, the transient term, the convective terms and the diffusion terms. The major difficulty in obtaining numerical solutions of these partial differential equations is the discretization of the convective terms. The transient term is usually discretized using the first-order forward or backward differencing scheme. The diffusion terms are usually discretized using the central differencing scheme and no difficulty arises since these terms involve second-order spatial derivatives of the flow variables. The convective terms are non-linear and contain first-order spatial derivatives. The main difference between various numerical algorithms is the discretization of the convective terms. In the present study, an alternative approach to discretizing the governing equations is presented. In this algorithm, the governing equations are first transformed by introducing an exponential function to eliminate the convective terms in the equations. The proposed algorithm is applied to simulate some fluid flows with exact solutions to validate the proposed algorithm. The fluid flows used in this study are a self-designed quasi-fluid flow problem, stagnation in plane flow (Hiemenz flow), and flow between two concentric cylinders. The comparisons with the power-law scheme indicate that the proposed scheme exhibits better performance. (author)

13. Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms

KAUST Repository

Carrillo, José A.

2016-09-22

In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this property with various examples in spatial dimension one and two.

14. Numerical Oscillations Analysis for Nonlinear Delay Differential Equations in Physiological Control Systems

Directory of Open Access Journals (Sweden)

Qi Wang

2012-01-01

Full Text Available This paper deals with the oscillations of numerical solutions for the nonlinear delay differential equations in physiological control systems. The exponential θ-method is applied to p′(t=β0ωμp(t−τ/(ωμ+pμ(t−τ−γp(t and it is shown that the exponential θ-method has the same order of convergence as that of the classical θ-method. Several conditions under which the numerical solutions oscillate are derived. Moreover, it is proven that every nonoscillatory numerical solution tends to positive equilibrium of the continuous system. Finally, the main results are illustrated with numerical examples.

15. Nodal methods in numerical reactor calculations

International Nuclear Information System (INIS)

Hennart, J.P.; Valle, E. del

2004-01-01

The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

16. Nodal methods in numerical reactor calculations

Energy Technology Data Exchange (ETDEWEB)

Hennart, J P [UNAM, IIMAS, A.P. 20-726, 01000 Mexico D.F. (Mexico); Valle, E del [National Polytechnic Institute, School of Physics and Mathematics, Department of Nuclear Engineering, Mexico, D.F. (Mexico)

2004-07-01

The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

17. A numerical solution for a class of time fractional diffusion equations with delay

Directory of Open Access Journals (Sweden)

2017-09-01

Full Text Available This paper describes a numerical scheme for a class of fractional diffusion equations with fixed time delay. The study focuses on the uniqueness, convergence and stability of the resulting numerical solution by means of the discrete energy method. The derivation of a linearized difference scheme with convergence order O(τ2−α+ h4 in L∞-norm is the main purpose of this study. Numerical experiments are carried out to support the obtained theoretical results.

18. A global numerical solution of the radial Schroedinger equation by second-order perturbation theory

International Nuclear Information System (INIS)

1979-01-01

A global numerical method, which uses second-order perturbation theory, is described for the solution of the radial Schroedinger equation. The perturbative numerical (PN) solution is derived in two stages: first, the original potential is approximated by a piecewise continuous parabolic function, and second, the resulting Schroedinger equation is solved on each integration step by second-order perturbation theory, starting with a step function reference approximation for the parabolic potential. We get a manageable PN algorithm, which shows an order of accuracy equal to six in the solution of the original Schroedinger equation, and is very stable against round off errors. (author)

19. Numerical Analysis for Stochastic Partial Differential Delay Equations with Jumps

OpenAIRE

Li, Yan; Hu, Junhao

2013-01-01

We investigate the convergence rate of Euler-Maruyama method for a class of stochastic partial differential delay equations driven by both Brownian motion and Poisson point processes. We discretize in space by a Galerkin method and in time by using a stochastic exponential integrator. We generalize some results of Bao et al. (2011) and Jacob et al. (2009) in finite dimensions to a class of stochastic partial differential delay equations with jumps in infinite dimensions.

20. Solution of the porous media equation by Adomian's decomposition method

International Nuclear Information System (INIS)

Pamuk, Serdal

2005-01-01

The particular exact solutions of the porous media equation that usually occurs in nonlinear problems of heat and mass transfer, and in biological systems are obtained using Adomian's decomposition method. Also, numerical comparison of particular solutions in the decomposition method indicate that there is a very good agreement between the numerical solutions and particular exact solutions in terms of efficiency and accuracy

1. Random ordinary differential equations and their numerical solution

CERN Document Server

Han, Xiaoying

2017-01-01

This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs).   RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems.  They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor ...

2. Numerical solution of neutral functional-differential equations with proportional delays

Directory of Open Access Journals (Sweden)

Mehmet Giyas Sakar

2017-07-01

Full Text Available In this paper, homotopy analysis method is improved with optimal determination of auxiliary parameter by use of residual error function for solving neutral functional-differential equations (NFDEs with proportional delays. Convergence analysis and error estimate of method are given. Some numerical examples are solved and comparisons are made with the existing results. The numerical results show that the homotopy analysis method with residual error function is very effective and simple.

3. A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation

Directory of Open Access Journals (Sweden)

S. Battal Gazi Karakoç

2016-02-01

Full Text Available The generalized equal width (GEW wave equation is solved numerically by using lumped Galerkin approach with cubic B-spline functions. The proposed numerical scheme is tested by applying two test problems including single solitary wave and interaction of two solitary waves. In order to determine the performance of the algorithm, the error norms L2 and L∞ and the invariants I1, I2 and I3 are calculated. For the linear stability analysis of the numerical algorithm, von Neumann approach is used. As a result, the obtained findings show that the presented numerical scheme is preferable to some recent numerical methods.

4. Exact solution of some linear matrix equations using algebraic methods

Science.gov (United States)

Djaferis, T. E.; Mitter, S. K.

1977-01-01

A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

5. Numerical Integration of the Transport Equation For Infinite Homogeneous Media

Energy Technology Data Exchange (ETDEWEB)

Haakansson, Rune

1962-01-15

The transport equation for neutrons in infinite homogeneous media is solved by direct numerical integration. Accounts are taken to the anisotropy and the inelastic scattering. The integration has been performed by means of the trapezoidal rule and the length of the energy intervals are constant in lethargy scale. The machine used is a Ferranti Mercury computer. Results are given for water, heavy water, aluminium water mixture and iron-aluminium-water mixture.

6. Canonical algorithms for numerical integration of charged particle motion equations

Science.gov (United States)

Efimov, I. N.; Morozov, E. A.; Morozova, A. R.

2017-02-01

A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.

7. Numerical solution of a reaction-diffusion equation

International Nuclear Information System (INIS)

Moyano, Edgardo A.; Scarpettini, Alberto F.

2000-01-01

The purpose of the present work to continue the observations and the numerical experiences on a reaction-diffusion model, that is a simplified form of the neutronic flux equation. The model is parabolic, nonlinear, with Dirichlet boundary conditions. The purpose is to approximate non trivial solutions, asymptotically stables for t → ∞, that is solutions that tend to the elliptic problem, in the Lyapunov sense. It belongs to the so-called reaction-diffusion equations of semi linear kind, that is, linear equations in the heat operator and they have a nonlinear reaction function, in this case f (u, a, b) = u (a - b u), being u concentration, a and b parameters. The study of the incidence of these parameters take an interest to the neutronic flux physics. So that we search non trivial, positive and bounded solutions. The used algorithm is based on the concept of monotone and ordered sequences, and on the existence theorem of Amann and Sattinger. (author)

8. On the numerical solution of the neutron fractional diffusion equation

International Nuclear Information System (INIS)

2014-01-01

Highlights: • The new version of neutron diffusion equation which established on the fractional derivatives is presented. • The Neutron Fractional Diffusion Equation (NFDE) is solved in the finite differences frame. • NFDE is solved using shifted Grünwald-Letnikov definition of fractional operators. • The results show that “K eff ” strongly depends on the order of fractional derivative. - Abstract: In order to core calculation in the nuclear reactors there is a new version of neutron diffusion equation which is established on the fractional partial derivatives, named Neutron Fractional Diffusion Equation (NFDE). In the NFDE model, neutron flux in each zone depends directly on the all previous zones (not only on the nearest neighbors). Under this circumstance, it can be said that the NFDE has the space history. We have developed a one-dimension code, NFDE-1D, which can simulate the reactor core using arbitrary exponent of differential operators. In this work a numerical solution of the NFDE is presented using shifted Grünwald-Letnikov definition of fractional derivative in finite differences frame. The model is validated with some numerical experiments where different orders of fractional derivative are considered (e.g. 0.999, 0.98, 0.96, and 0.94). The results show that the effective multiplication factor (K eff ) depends strongly on the order of fractional derivative

9. Numerical solution of special ultra-relativistic Euler equations using central upwind scheme

Science.gov (United States)

Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul

2018-06-01

This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.

10. Weighted particle method for solving the Boltzmann equation

International Nuclear Information System (INIS)

Tohyama, M.; Suraud, E.

1990-01-01

We propose a new, deterministic, method of solution of the nuclear Boltzmann equation. In this Weighted Particle Method two-body collisions are treated by a Master equation for an occupation probability of each numerical particle. We apply the method to the quadrupole motion of 12 C. A comparison with usual stochastic methods is made. Advantages and disadvantages of the Weighted Particle Method are discussed

11. Numerical methods for metamaterial design

CERN Document Server

2013-01-01

This book describes a relatively new approach for the design of electromagnetic metamaterials.  Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered.  Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies.  Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization.  Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromag...

12. Five-equation and robust three-equation methods for solution verification of large eddy simulation

Science.gov (United States)

Dutta, Rabijit; Xing, Tao

2018-02-01

This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.

13. Numerical approximations of difference functional equations and applications

Directory of Open Access Journals (Sweden)

Zdzisław Kamont

2005-01-01

Full Text Available We give a theorem on the error estimate of approximate solutions for difference functional equations of the Volterra type. We apply this general result in the investigation of the stability of difference schemes generated by nonlinear first order partial differential functional equations and by parabolic problems. We show that all known results on difference methods for initial or initial boundary value problems can be obtained as particular cases of this general and simple result. We assume that the right hand sides of equations satisfy nonlinear estimates of the Perron type with respect to functional variables.

14. Parameter Estimation for Partial Differential Equations by Collage-Based Numerical Approximation

Directory of Open Access Journals (Sweden)

Xiaoyan Deng

2009-01-01

into a minimization problem of a function of several variables after the partial differential equation is approximated by a differential dynamical system. Then numerical schemes for solving this minimization problem are proposed, including grid approximation and ant colony optimization. The proposed schemes are applied to a parameter estimation problem for the Belousov-Zhabotinskii equation, and the results show that the proposed approximation method is efficient for both linear and nonlinear partial differential equations with respect to unknown parameters. At worst, the presented method provides an excellent starting point for traditional inversion methods that must first select a good starting point.

15. Solutions of hyperbolic equations with the CIP-BS method

International Nuclear Information System (INIS)

Utsumi, Takayuki; Koga, James; Yamagiwa, Mitsuru; Yabe, Takashi; Aoki, Takayuki

2004-01-01

In this paper, we show that a new numerical method, the Constrained Interpolation Profile - Basis Set (CIP-BS) method, can solve general hyperbolic equations efficiently. This method uses a simple polynomial basis set that is easily extendable to any desired higher-order accuracy. The interpolating profile is chosen so that the subgrid scale solution approaches the local real solution owing to the constraints from the spatial derivatives of the master equations. Then, introducing scalar products, the linear and nonlinear partial differential equations are uniquely reduced to the ordinary differential equations for values and spatial derivatives at the grid points. The method gives stable, less diffusive, and accurate results. It is successfully applied to the continuity equation, the Burgers equation, the Korteweg-de Vries equation, and one-dimensional shock tube problems. (author)

16. Intelligent numerical methods applications to fractional calculus

CERN Document Server

Anastassiou, George A

2016-01-01

In this monograph the authors present Newton-type, Newton-like and other numerical methods, which involve fractional derivatives and fractional integral operators, for the first time studied in the literature. All for the purpose to solve numerically equations whose associated functions can be also non-differentiable in the ordinary sense. That is among others extending the classical Newton method theory which requires usual differentiability of function. Chapters are self-contained and can be read independently and several advanced courses can be taught out of this book. An extensive list of references is given per chapter. The book’s results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also to be in all science and engineering libraries.

17. A student's guide to numerical methods

CERN Document Server

Hutchinson, Ian H

2015-01-01

This concise, plain-language guide for senior undergraduates and graduate students aims to develop intuition, practical skills and an understanding of the framework of numerical methods for the physical sciences and engineering. It provides accessible self-contained explanations of mathematical principles, avoiding intimidating formal proofs. Worked examples and targeted exercises enable the student to master the realities of using numerical techniques for common needs such as solution of ordinary and partial differential equations, fitting experimental data, and simulation using particle and Monte Carlo methods. Topics are carefully selected and structured to build understanding, and illustrate key principles such as: accuracy, stability, order of convergence, iterative refinement, and computational effort estimation. Enrichment sections and in-depth footnotes form a springboard to more advanced material and provide additional background. Whether used for self-study, or as the basis of an accelerated introdu...

18. Use of artificial bee colonies algorithm as numerical approximation of differential equations solution

Science.gov (United States)

Fikri, Fariz Fahmi; Nuraini, Nuning

2018-03-01

The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.

19. A numerical solution of the coupled proton-H atom transport equations for the proton aurora

International Nuclear Information System (INIS)

Basu, B.; Jasperse, J.R.; Grossbard, N.J.

1990-01-01

A numerical code has been developed to solve the coupled proton-H atom linear transport equations for the proton aurora. The transport equations have been simplified by using plane-parallel geometry and the forward-scattering approximations only. Otherwise, the equations and their numerical solutions are exact. Results are presented for the particle fluxes and the energy deposition rates, and they are compared with the previous analytical results that were obtained by using additional simplifying approximations. It is found that although the analytical solutions for the particle fluxes differ somewhat from the numerical solutions, the energy deposition rates calculated by the two methods agree to within a few percent. The accurate particle fluxes given by the numerical code are useful for accurate calculation of the characteristic quantities of the proton aurora, such as the ionization rates and the emission rates

20. New finite volume methods for approximating partial differential equations on arbitrary meshes

International Nuclear Information System (INIS)

Hermeline, F.

2008-12-01

This dissertation presents some new methods of finite volume type for approximating partial differential equations on arbitrary meshes. The main idea lies in solving twice the problem to be dealt with. One addresses the elliptic equations with variable (anisotropic, antisymmetric, discontinuous) coefficients, the parabolic linear or non linear equations (heat equation, radiative diffusion, magnetic diffusion with Hall effect), the wave type equations (Maxwell, acoustics), the elasticity and Stokes'equations. Numerous numerical experiments show the good behaviour of this type of method. (author)

1. Convergence order vs. parallelism in the numerical simulation of the bidomain equations

International Nuclear Information System (INIS)

Sharomi, Oluwaseun; Spiteri, Raymond J

2012-01-01

The propagation of electrical activity in the human heart can be modelled mathematically by the bidomain equations. The bidomain equations represent a multi-scale reaction-diffusion model that consists of a set of ordinary differential equations governing the dynamics at the cellular level coupled with a set of partial differential equations governing the dynamics at the tissue level. Significant computation is generally required to generate clinically useful data from the bidomain equations. Contemporary developments in computer architecture, in particular multi- and many-core computers and graphics processing units, have made such computations feasible. However, the zeal to take advantage to parallel architectures has typically caused another important aspect of numerical methods for the solution of differential equations to be overlooked, namely the convergence order. It is well known that higher-order methods are generally more efficient than lower-order ones when solutions are smooth and relatively high accuracy is desired. In these situations, serial implementations of high-order methods may remain surprisingly competitive with parallel implementations of low-order methods. In this paper, we examine the effect of order on the numerical solution of the bidomain equations in parallel. We find that high-order methods, in particular high-order time-integration methods with relatively better stability properties, tend to outperform their low-order counterparts, even when the latter are run in parallel. In other words, increasing integration order often trumps increasing available computational resources, especially when relatively high accuracy is desired.

2. Numerical methods in matrix computations

CERN Document Server

Björck, Åke

2015-01-01

Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work. Åke Björck is a professor emeritus at the Department of Mathematics, Linköping University. He is a Fellow of the Society of Industrial and Applied Mathematics.

3. Approximate Method for Solving the Linear Fuzzy Delay Differential Equations

Directory of Open Access Journals (Sweden)

S. Narayanamoorthy

2015-01-01

Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.

4. RELAP-7 Numerical Stabilization: Entropy Viscosity Method

Energy Technology Data Exchange (ETDEWEB)

R. A. Berry; M. O. Delchini; J. Ragusa

2014-06-01

The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

5. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology

KAUST Repository

Pathmanathan, Pras

2010-06-01

Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulations-discretisation, ODE-solution, linear system solution, and parallelisation-is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme. © 2010 Elsevier Ltd.

6. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology

KAUST Repository

Pathmanathan, Pras; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Garny, Alan; Pitt-Francis, Joe M.; Whiteley, Jonathan P.; Gavaghan, David J.

2010-01-01

Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulations-discretisation, ODE-solution, linear system solution, and parallelisation-is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme. © 2010 Elsevier Ltd.

7. A numerical methodology for the Painlevé equations

KAUST Repository

Fornberg, Bengt

2011-07-01

The six Painlevé transcendents PI-PVI have both applications and analytic properties that make them stand out from most other classes of special functions. Although they have been the subject of extensive theoretical investigations for about a century, they still have a reputation for being numerically challenging. In particular, their extensive pole fields in the complex plane have often been perceived as \\'numerical mine fields\\'. In the present work, we note that the Painlevé property in fact provides the opportunity for very fast and accurate numerical solutions throughout such fields. When combining a Taylor/Padé-based ODE initial value solver for the pole fields with a boundary value solver for smooth regions, numerical solutions become available across the full complex plane. We focus here on the numerical methodology, and illustrate it for the PI equation. In later studies, we will concentrate on mathematical aspects of both the PI and the higher Painlevé transcendents. © 2011 Elsevier Inc.

8. Fast sweeping method for the factored eikonal equation

Science.gov (United States)

Fomel, Sergey; Luo, Songting; Zhao, Hongkai

2009-09-01

We develop a fast sweeping method for the factored eikonal equation. By decomposing the solution of a general eikonal equation as the product of two factors: the first factor is the solution to a simple eikonal equation (such as distance) or a previously computed solution to an approximate eikonal equation. The second factor is a necessary modification/correction. Appropriate discretization and a fast sweeping strategy are designed for the equation of the correction part. The key idea is to enforce the causality of the original eikonal equation during the Gauss-Seidel iterations. Using extensive numerical examples we demonstrate that (1) the convergence behavior of the fast sweeping method for the factored eikonal equation is the same as for the original eikonal equation, i.e., the number of iterations for the Gauss-Seidel iterations is independent of the mesh size, (2) the numerical solution from the factored eikonal equation is more accurate than the numerical solution directly computed from the original eikonal equation, especially for point sources.

9. Adaptive finite element methods for differential equations

CERN Document Server

Bangerth, Wolfgang

2003-01-01

These Lecture Notes discuss concepts of self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...

10. Telescopic projective methods for parabolic differential equations

CERN Document Server

Gear, C W

2003-01-01

Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components.

11. Telescopic projective methods for parabolic differential equations

International Nuclear Information System (INIS)

Gear, C.W.; Kevrekidis, Ioannis G.

2003-01-01

Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components

12. Numerical artifacts in the Generalized Porous Medium Equation: Why harmonic averaging itself is not to blame

Science.gov (United States)

Maddix, Danielle C.; Sampaio, Luiz; Gerritsen, Margot

2018-05-01

The degenerate parabolic Generalized Porous Medium Equation (GPME) poses numerical challenges due to self-sharpening and its sharp corner solutions. For these problems, we show results for two subclasses of the GPME with differentiable k (p) with respect to p, namely the Porous Medium Equation (PME) and the superslow diffusion equation. Spurious temporal oscillations, and nonphysical locking and lagging have been reported in the literature. These issues have been attributed to harmonic averaging of the coefficient k (p) for small p, and arithmetic averaging has been suggested as an alternative. We show that harmonic averaging is not solely responsible and that an improved discretization can mitigate these issues. Here, we investigate the causes of these numerical artifacts using modified equation analysis. The modified equation framework can be used for any type of discretization. We show results for the second order finite volume method. The observed problems with harmonic averaging can be traced to two leading error terms in its modified equation. This is also illustrated numerically through a Modified Harmonic Method (MHM) that can locally modify the critical terms to remove the aforementioned numerical artifacts.

13. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media

KAUST Repository

Sun, Shuyu; Salama, Amgad; El-Amin, Mohamed

2012-01-01

A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.

14. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media

KAUST Repository

Sun, Shuyu

2012-06-02

A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.

15. Test of numerical methods for the integration of kinetic equations in tropospheric chemistry; Confronto di metodi numerici per l'integrazione di sistemi di equazioni differenziali ordinarie di tipo STIFF inserite nel modello fotochimico Calgrid

Energy Technology Data Exchange (ETDEWEB)

Lorenzini, R.; Passoni, L. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente

1999-07-01

The integration of ordinary differential equations systems (ODEs) is of significant concern to tropospheric and stratospheric chemistry modelers. The solution of the ODEs requires a large computational effort because of their stiff nature; in a three-dimensional photochemical model the solution of the ODEs required at least 70% of the total CPU time. Several numerical integration techniques exist which attempt to provide accurate and computationally efficient solutions. In this work it is presented a comparison of some of the techniques in terms of solution accuracy and required computational time. It has been compared the Hybrid Solver (Young and Boris, 1977), the Quasi Steady-State Approximation method (Hesstvedt et al., 1978) and the Chemical Solver for Ordinary Differential Equations (Aro, 1996), by using the CALGRID photochemical model. The accuracy is evaluated by comparing the results of every method with the solutions obtained by the Livermore Solver for Ordinary Differential Equations (Hindmarsh, 1980). The comparison has been made varing the parameters of the error tolerances, and taking into account the trade-off between solution accuracy and computational efficiency. [Italian] L'integrazione di sistemi di equazioni differenziali ordinarie (ODEs), e' un problema significativo per i modellisti della chimica troposferica e stratosferica. A causa della loro natura stiff la soluzione degli ODEs richiese un notevole sforzo computazionale; in un modello fotochimico tridimensionale la soluzione degli ODEs richiede almeno il 70% del tempo totale di CPU. Esistono diverse tecniche di integrazione numerica che possono fornire soluzioni accurate e computazionalmente efficienti: in questo lavoro presentiamo un confronto fra alcune tecniche in termini di accuratezza della soluzione e tempo computazionale richiesto. Si sono confrontati il Solver Ibrido (Young and Boris, 1977), il metodo Quasi Steady-State Approximation (Hesstvedt et al., 1978) ed il Chemical

16. Numerical Analysis Of Hooke Jeeves-Runge Kutta To Determine Reaction Rate Equation In Pyrrole Polymerization

International Nuclear Information System (INIS)

2001-01-01

The numerical analysis of Hooke Jeeves Methods combined with Runge Kutta Methods is used to determine the exact model of reaction rate equation of pyrrole polymerization. Chemical polymerization of pyrrole was conducted with FeCI 3 / pyrrole solution at concentration ratio of 1.62 mole / mole and 2.18 mole / mole with varrying temperature of 28, 40, 50, and 60 o C. FeCl 3 acts as an oxidation agent to form pyrrole cation that will polymerize. The numerical analysis was done to examine the exact model of reaction rate equation which is derived from reaction equation of initiation, propagation, and termination. From its numerical analysis, it is found that the pyrrole polymerization follows third order of pyrrole cation concentration

17. Identifying generalized Fitzhugh-Nagumo equation from a numerical solution of Hodgkin-Huxley model

Directory of Open Access Journals (Sweden)

Nikola V. Georgiev

2003-01-01

Full Text Available An analytic time series in the form of numerical solution (in an appropriate finite time interval of the Hodgkin-Huxley current clamped (HHCC system of four differential equations, well known in the neurophysiology as an exact empirical model of excitation of a giant axon of Loligo, is presented. Then we search for a second-order differential equation of generalized Fitzhugh-Nagumo (GFN type, having as a solution the given single component (action potential of the numerical solution. The given time series is used as a basis for reconstructing orders, powers, and coefficients of the polynomial right-hand sides of GFN equation approximately governing the process of action potential. For this purpose, a new geometrical method for determining phase space dimension of the unknown dynamical system (GFN equation and a specific modification of least squares method for identifying unknown coefficients are developed and applied.

18. Solving equations by topological methods

Directory of Open Access Journals (Sweden)

Lech Górniewicz

2005-01-01

Full Text Available In this paper we survey most important results from topological fixed point theory which can be directly applied to differential equations. Some new formulations are presented. We believe that our article will be useful for analysts applying topological fixed point theory in nonlinear analysis and in differential equations.

19. Numerical solution of the point reactor kinetics equations with fuel burn-up and temperature feedback

International Nuclear Information System (INIS)

Tashakor, S.; Jahanfarnia, G.; Hashemi-Tilehnoee, M.

2010-01-01

Point reactor kinetics equations are solved numerically using one group of delayed neutrons and with fuel burn-up and temperature feedback included. To calculate the fraction of one-group delayed neutrons, a group of differential equations are solved by an implicit time method. Using point reactor kinetics equations, changes in mean neutrons density, temperature, and reactivity are calculated in different times during the reactor operation. The variation of reactivity, temperature, and maximum power with time are compared with the predictions by other methods.

20. Numerical Integration of a Class of Singularly Perturbed Delay Differential Equations with Small Shift

Directory of Open Access Journals (Sweden)

Gemechis File

2012-01-01

Full Text Available We have presented a numerical integration method to solve a class of singularly perturbed delay differential equations with small shift. First, we have replaced the second-order singularly perturbed delay differential equation by an asymptotically equivalent first-order delay differential equation. Then, Simpson’s rule and linear interpolation are employed to get the three-term recurrence relation which is solved easily by discrete invariant imbedding algorithm. The method is demonstrated by implementing it on several linear and nonlinear model examples by taking various values for the delay parameter and the perturbation parameter .

1. Numerical solution of stiff systems of ordinary differential equations with applications to electronic circuits

Science.gov (United States)

Rosenbaum, J. S.

1971-01-01

Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.

2. Numerical methods for image registration

CERN Document Server

Modersitzki, Jan

2003-01-01

Based on the author's lecture notes and research, this well-illustrated and comprehensive text is one of the first to provide an introduction to image registration with particular emphasis on numerical methods in medical imaging. Ideal for researchers in industry and academia, it is also a suitable study guide for graduate mathematicians, computer scientists, engineers, medical physicists, and radiologists.Image registration is utilised whenever information obtained from different viewpoints needs to be combined or compared and unwanted distortion needs to be eliminated. For example, CCTV imag

3. Numerical integration of the Langevin equation: Monte Carlo simulation

International Nuclear Information System (INIS)

Ermak, D.L.; Buckholz, H.

1980-01-01

Monte Carlo simulation techniques are derived for solving the ordinary Langevin equation of motion for a Brownian particle in the presence of an external force. These methods allow considerable freedom in selecting the size of the time step, which is restricted only by the rate of change in the external force. This approach is extended to the generalized Langevin equation which uses a memory function in the friction force term. General simulation techniques are derived which are independent of the form of the memory function. A special method requiring less storage space is presented for the case of the exponential memory function

4. Numerical solution of the kinetic equation in reactor shielding

International Nuclear Information System (INIS)

Germogenova, T.A.

1975-01-01

A review is made of methods of solving marginal problems of multi-group systems of equations of neutron and γ radiation transfer. The first stage of the solution - the quantification of the basic task, is determined by the qualitative behaviour of the solution - is the nature of its performance and asymptotics. In the second stage - solution of the approximating system, various modifications of the iterative method are as a rule used. A description is given of the features of the major Soviet complexes of programmes (ROZ and RADUGA) for the solution of multi-group systems of transfer equations and some methodological research findings are presented. (author)

5. Visualising magnetic fields numerical equation solvers in action

CERN Document Server

Beeteson, John Stuart

2001-01-01

Visualizing Magnetic Fields: Numerical Equation Solvers in Action provides a complete description of the theory behind a new technique, a detailed discussion of the ways of solving the equations (including a software visualization of the solution algorithms), the application software itself, and the full source code. Most importantly, there is a succinct, easy-to-follow description of each procedure in the code.The physicist Michael Faraday said that the study of magnetic lines of force was greatly influential in leading him to formulate many of those concepts that are now so fundamental to our modern world, proving to him their "great utility as well as fertility." Michael Faraday could only visualize these lines in his mind's eye and, even with modern computers to help us, it has been very expensive and time consuming to plot lines of force in magnetic fields

6. Equations involving Malliavin calculus operators applications and numerical approximation

CERN Document Server

Levajković, Tijana

2017-01-01

This book provides a comprehensive and unified introduction to stochastic differential equations and related optimal control problems. The material is new and the presentation is reader-friendly. A major contribution of the book is the development of generalized Malliavin calculus in the framework of white noise analysis, based on chaos expansion representation of stochastic processes and its application for solving several classes of stochastic differential equations with singular data involving the main operators of Malliavin calculus. In addition, applications in optimal control and numerical approximations are discussed.  The book is divided into four chapters. The first, entitled White Noise Analysis and Chaos Expansions, includes notation and provides the reader with the theoretical background needed to understand the subsequent chapters.  In Chapter 2, Generalized Operators of Malliavin Calculus, the Malliavin derivative operator, the Skorokhod integral and the Ornstein-Uhlenbeck operator are introdu...

7. A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations

Science.gov (United States)

Thalhammer, Mechthild; Abhau, Jochen

2012-01-01

As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross–Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter 0Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the numerical approximation captures correctly the behaviour of the analytical solution. Further illustrations for Gross–Pitaevskii equations with a focusing nonlinearity or a sharp Gaussian as initial condition, respectively

8. Numerical solution of multi groups point kinetic equations by simulink toolbox of Matlab software

International Nuclear Information System (INIS)

2004-01-01

The simulink toolbox of Matlab Software was employed to solve the point kinetics equation with six group delayed neutrons. The method of Adams-Bash ford showed a good convergence in solving the system of simultaneous equations and the obtained results showed good agreements with other numerical schemes. The flexibility of the package in changing the system parameters and the user friendly interface makes this approach a reliable educational package in revealing the affects of reactivity changes on power incursions

9. Numerical solutions of differential equations of an ionization chamber

International Nuclear Information System (INIS)

Novkovic, D.; Tomasevic, M.; Subotic, K.; Manic, S.

1998-01-01

A system of reduced differential equations generally valid for plane-parallel, cylindrical, and spherical ionization chambers filled with air, which is appropriate for numerical solution, has been derived. The system has been solved for all three geometries. The comparison of the calculated results of Armstrong and Tate, for plane-parallel ionization chambers, and Sprinkle and Tate, for spherical ionization chambers, with the present calculations has shown a good agreement. The calculated values for ionization chambers filled with CO 2 were also in good agreement with the experimental data of Moriuchi et al (author)

10. Numerical studies of the stochastic Korteweg-de Vries equation

International Nuclear Information System (INIS)

Lin Guang; Grinberg, Leopold; Karniadakis, George Em

2006-01-01

We present numerical solutions of the stochastic Korteweg-de Vries equation for three cases corresponding to additive time-dependent noise, multiplicative space-dependent noise and a combination of the two. We employ polynomial chaos for discretization in random space, and discontinuous Galerkin and finite difference for discretization in physical space. The accuracy of the stochastic solutions is investigated by comparing the first two moments against analytical and Monte Carlo simulation results. Of particular interest is the interplay of spatial discretization error with the stochastic approximation error, which is examined for different orders of spatial and stochastic approximation

11. Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor

International Nuclear Information System (INIS)

Saha Ray, S.

2012-01-01

Highlights: ► In this paper stochastic neutron point kinetic equations have been analyzed. ► Euler–Maruyama method and Strong Taylor 1.5 order method have been discussed. ► These methods are applied for the solution of stochastic point kinetic equations. ► Comparison between the results of these methods and others are presented in tables. ► Graphs for neutron and precursor sample paths are also presented. -- Abstract: In the present paper, the numerical approximation methods, applied to efficiently calculate the solution for stochastic point kinetic equations () in nuclear reactor dynamics, are investigated. A system of Itô stochastic differential equations has been analyzed to model the neutron density and the delayed neutron precursors in a point nuclear reactor. The resulting system of Itô stochastic differential equations are solved over each time-step size. The methods are verified by considering different initial conditions, experimental data and over constant reactivities. The computational results indicate that the methods are simple and suitable for solving stochastic point kinetic equations. In this article, a numerical investigation is made in order to observe the random oscillations in neutron and precursor population dynamics in subcritical and critical reactors.

12. Numerical solution of the Neutron Transport Equation using discontinuous nodal methods at X-Y geometry; Solucion numerica de la ecuacion de transporte de neutrones usando metodos nodales discontinuos en geometria X-Y

Energy Technology Data Exchange (ETDEWEB)

Delfin L, A

1997-12-31

The purpose of this work is to solve the neutron transport equation in discrete-ordinates and X-Y geometry by developing and using the strong discontinuous and strong modified discontinuous nodal finite element schemes. The strong discontinuous and modified strong discontinuous nodal finite element schemes go from two to ten interpolation parameters per cell. They are describing giving a set D{sub c} and polynomial space S{sub c} corresponding for each scheme BDMO, RTO, BL, BDM1, HdV, BDFM1, RT1, BQ and BDM2. The solution is obtained solving the neutron transport equation moments for each nodal scheme by developing the basis functions defined by Pascal triangle and the Legendre moments giving in the polynomial space S{sub c} and, finally, looking for the non singularity of the resulting linear system. The linear system is numerically solved using a computer program for each scheme mentioned . It uses the LU method and forward and backward substitution and makes a partition of the domain in cells. The source terms and angular flux are calculated, using the directions and weights associated to the S{sub N} approximation and solving the angular flux moments to find the effective multiplication constant. The programs are written in Fortran language, using the dynamic allocation of memory to increase efficiently the available memory of the computing equipment. (Author).

13. On method of solving third-order ordinary differential equations directly using Bernstein polynomials

Science.gov (United States)

Khataybeh, S. N.; Hashim, I.

2018-04-01

In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.

14. Numerical approximation of the Boltzmann equation : moment closure

NARCIS (Netherlands)

Abdel Malik, M.R.A.; Brummelen, van E.H.

2012-01-01

This work applies the moment method onto a generic form of kinetic equations to simplify kinetic models of particle systems. This leads to the moment closure problem which is addressed using entropy-based moment closure techniques utilizing entropy minimization. The resulting moment closure system

15. Numerical solution of an inverse 2D Cauchy problem connected with the Helmholtz equation

International Nuclear Information System (INIS)

Wei, T; Qin, H H; Shi, R

2008-01-01

In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green's formulation, the problem can be transformed into a moment problem. Then we propose a numerical algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimate and convergence analysis have also been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method

16. High-precision numerical integration of equations in dynamics

Science.gov (United States)

Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.

2018-05-01

An important requirement for the process of solving differential equations in Dynamics, such as the equations of the motion of celestial bodies and, in particular, the motion of cosmic robotic systems is high accuracy at large time intervals. One of effective tools for obtaining such solutions is the Taylor series method. In this connection, we note that it is very advantageous to reduce the given equations of Dynamics to systems with polynomial (in unknowns) right-hand sides. This allows us to obtain effective algorithms for finding the Taylor coefficients, a priori error estimates at each step of integration, and an optimal choice of the order of the approximation used. In the paper, these questions are discussed and appropriate algorithms are considered.

17. Modified Chebyshev Collocation Method for Solving Differential Equations

Directory of Open Access Journals (Sweden)

M Ziaul Arif

2015-05-01

Full Text Available This paper presents derivation of alternative numerical scheme for solving differential equations, which is modified Chebyshev (Vieta-Lucas Polynomial collocation differentiation matrices. The Scheme of modified Chebyshev (Vieta-Lucas Polynomial collocation method is applied to both Ordinary Differential Equations (ODEs and Partial Differential Equations (PDEs cases. Finally, the performance of the proposed method is compared with finite difference method and the exact solution of the example. It is shown that modified Chebyshev collocation method more effective and accurate than FDM for some example given.

18. Strongly correlated systems numerical methods

CERN Document Server

Mancini, Ferdinando

2013-01-01

This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

19. Hermite interpolant multiscaling functions for numerical solution of the convection diffusion equations

Directory of Open Access Journals (Sweden)

2018-04-01

Full Text Available A numerical technique based on the Hermite interpolant multiscaling functions is presented for the solution of Convection-diusion equations. The operational matrices of derivative, integration and product are presented for multiscaling functions and are utilized to reduce the solution of linear Convection-diusion equation to the solution of algebraic equations. Because of sparsity of these matrices, this method is computationally very attractive and reduces the CPU time and computer memory. Illustrative examples are included to demonstrate the validity and applicability of the new technique.

20. Direct numerical solution of Poisson's equation in cylindrical (r, z) coordinates

International Nuclear Information System (INIS)

Chao, E.H.; Paul, S.F.; Davidson, R.C.; Fine, K.S.

1997-01-01

A direct solver method is developed for solving Poisson's equation numerically for the electrostatic potential φ(r,z) in a cylindrical region (r wall , 0 wall , z) are specified, and ∂φ/∂z = 0 at the axial boundaries (z = 0, L)

1. A Numerical Development in the Dynamical Equations of Solitons in Optical Fibers

Directory of Open Access Journals (Sweden)

Érica Regina Takano Natti

2006-02-01

Full Text Available It was evaluated the numerical resolution of a nonlinear differential equations system that describes the solitons propagation in dielectric optical fibers, through the method of finite elements, which is implemented based on Streamline Upwind Petrov-Galerkin (SUPG and Consistent Approximate Upwind (CAU formulations.

2. Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation

Directory of Open Access Journals (Sweden)

Berenguer MI

2009-01-01

Full Text Available The authors present a method of numerical approximation of the fixed point of an operator, specifically the integral one associated with a nonlinear Fredholm integral equation, that uses strongly the properties of a classical Schauder basis in the Banach space .

3. Almost Surely Asymptotic Stability of Exact and Numerical Solutions for Neutral Stochastic Pantograph Equations

Directory of Open Access Journals (Sweden)

Zhanhua Yu

2011-01-01

Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.

4. Numerical study of a Vlasov equation for systems with interacting particles

Energy Technology Data Exchange (ETDEWEB)

Herrera, Dianela; Curilef, Sergio [Departamento de Física, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta (Chile)

2015-03-10

We solve numerically the Vlasov equation for the self-gravitating sheet model. We used the method introduced by Cheng and Knorr [Comput Phys 22, 330-351 (1976)]. We discuss the quasi-stationary state for some thermodynamical observables, specifically the kinetic energy, whose trend is depicted for early evolution.

5. Methods for enhancing numerical integration

International Nuclear Information System (INIS)

Doncker, Elise de

2003-01-01

We give a survey of common strategies for numerical integration (adaptive, Monte-Carlo, Quasi-Monte Carlo), and attempt to delineate their realm of applicability. The inherent accuracy and error bounds for basic integration methods are given via such measures as the degree of precision of cubature rules, the index of a family of lattice rules, and the discrepancy of uniformly distributed point sets. Strategies incorporating these basic methods often use paradigms to reduce the error by, e.g., increasing the number of points in the domain or decreasing the mesh size, locally or uniformly. For these processes the order of convergence of the strategy is determined by the asymptotic behavior of the error, and may be too slow in practice for the type of problem at hand. For certain problem classes we may be able to improve the effectiveness of the method or strategy by such techniques as transformations, absorbing a difficult part of the integrand into a weight function, suitable partitioning of the domain, transformations and extrapolation or convergence acceleration. Situations warranting the use of these techniques (possibly in an 'automated' way) are described and illustrated by sample applications

6. Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity

Science.gov (United States)

Sweilam, N. H.; Abou Hasan, M. M.

2017-05-01

In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.

7. Efficient Numerical Solution of Coupled Radial Differential Equations in Multichannel Scattering Problems

International Nuclear Information System (INIS)

Houfek, Karel

2008-01-01

Numerical solution of coupled radial differential equations which are encountered in multichannel scattering problems is presented. Numerical approach is based on the combination of the exterior complex scaling method and the finite-elements method with the discrete variable representation. This method can be used not only to solve multichannel scattering problem but also to find bound states and resonance positions and widths directly by diagonalization of the corresponding complex scaled Hamiltonian. Efficiency and accuracy of this method is demonstrated on an analytically solvable two-channel problem.

8. A numerical technique for solving fractional optimal control problems and fractional Riccati differential equations

Directory of Open Access Journals (Sweden)

F. Ghomanjani

2016-10-01

Full Text Available In the present paper, we apply the Bezier curves method for solving fractional optimal control problems (OCPs and fractional Riccati differential equations. The main advantage of this method is that it can reduce the error of the approximate solutions. Hence, the solutions obtained using the Bezier curve method give good approximations. Some numerical examples are provided to confirm the accuracy of the proposed method. All of the numerical computations have been performed on a PC using several programs written in MAPLE 13.

9. A finite-element model in vorticity and current function for the numerical solution of the Navier-Stokes equations

International Nuclear Information System (INIS)

Cunha Furtado, F. da; Galeao, A.C.N.R.

1984-01-01

A numerical procedure for the integration of the incompressible Navier-Stokes equations, when expressed in terms of a stream function equation and a vorticity transport equation, is presented. This procedure comprises: the variational formulation of the equations, the construction of the approximation spaces by the finite element method and the discretization via the Galerkin method. For the stationary problems, the system of non-linear algebraic equations resulting from the discretization is solved by the Newton-Raphson algorithm. Finally, for the transient problems, the solution of the non-linear ordinary differential equations resulting from the spatial discretization is accomplished through a Crank-Nicolson scheme. (Author) [pt

10. Analysis of numerical solutions for Bateman equations; Analise de solucoes numericas para as equacoes de Bateman

Energy Technology Data Exchange (ETDEWEB)

Loch, Guilherme G.; Bevilacqua, Joyce S., E-mail: guiloch@ime.usp.br, E-mail: joyce@ime.usp.br [Universidade de Sao Paulo (IME/USP), Sao Paulo, SP (Brazil). Departamento de Matematica Aplicada. Instituto de Matematica e Estatistica; Hiromoto, Goro; Rodrigues Junior, Orlando, E-mail: rodrijr@ipen.br, E-mail: hiromoto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

2013-07-01

The implementation of stable and efficient numerical methods for solving problems involving nuclear transmutation and radioactive decay chains is the main scope of this work. The physical processes associated with irradiations of samples in particle accelerators, or the burning spent nuclear fuel in reactors, or simply the natural decay chains, can be represented by a set of first order ordinary differential equations with constant coefficients, for instance, the decay radioactive constants of each nuclide in the chain. Bateman proposed an analytical solution for a particular case of a linear chain with n nuclides decaying in series and with different decay constants. For more complex and realistic applications, the construction of analytical solutions is not viable and the introduction of numerical techniques is imperative. However, depending on the magnitudes of the decay radioactive constants, the matrix of coefficients could be almost singular, generating unstable and non convergent numerical solutions. In this work, different numerical strategies for solving systems of differential equations were implemented, the Runge-Kutta 4-4, Adams Predictor-Corrector (PC2) and the Rosenbrock algorithm, this last one more specific for stiff equations. Consistency, convergence and stability of the numerical solutions are studied and the performance of the methods is analyzed for the case of the natural decay chain of Uranium-235 comparing numerical with analytical solutions. (author)

11. Numerical Study of Two-Dimensional Volterra Integral Equations by RDTM and Comparison with DTM

Directory of Open Access Journals (Sweden)

Reza Abazari

2013-01-01

Full Text Available The two-dimensional Volterra integral equations are solved using more recent semianalytic method, the reduced differential transform method (the so-called RDTM, and compared with the differential transform method (DTM. The concepts of DTM and RDTM are briefly explained, and their application to the two-dimensional Volterra integral equations is studied. The results obtained by DTM and RDTM together are compared with exact solution. As an important result, it is depicted that the RDTM results are more accurate in comparison with those obtained by DTM applied to the same Volterra integral equations. The numerical results reveal that the RDTM is very effective, convenient, and quite accurate compared to the other kind of nonlinear integral equations. It is predicted that the RDTM can be found widely applicable in engineering sciences.

12. New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks

Science.gov (United States)

Zúñiga-Aguilar, C. J.; Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Martínez, V. M.; Romero-Ugalde, H. M.

2018-02-01

In this paper, we approximate the solution of fractional differential equations with delay using a new approach based on artificial neural networks. We consider fractional differential equations of variable order with the Mittag-Leffler kernel in the Liouville-Caputo sense. With this new neural network approach, an approximate solution of the fractional delay differential equation is obtained. Synaptic weights are optimized using the Levenberg-Marquardt algorithm. The neural network effectiveness and applicability were validated by solving different types of fractional delay differential equations, linear systems with delay, nonlinear systems with delay and a system of differential equations, for instance, the Newton-Leipnik oscillator. The solution of the neural network was compared with the analytical solutions and the numerical simulations obtained through the Adams-Bashforth-Moulton method. To show the effectiveness of the proposed neural network, different performance indices were calculated.

13. A Laplace transform certified reduced basis method; application to the heat equation and wave equation

OpenAIRE

Knezevic, David; Patera, Anthony T.; Huynh, Dinh Bao Phuong

2010-01-01

We present a certified reduced basis (RB) method for the heat equation and wave equation. The critical ingredients are certified RB approximation of the Laplace transform; the inverse Laplace transform to develop the time-domain RB output approximation and rigorous error bound; a (Butterworth) filter in time to effect the necessary “modal” truncation; RB eigenfunction decomposition and contour integration for Offline–Online decomposition. We present numerical results to demonstrate the accura...

14. Numerical simulations of generalized Langevin equations with deeply asymptotic parameters

International Nuclear Information System (INIS)

Bao Jingdong; Li Rongwu; Wu Wei

2004-01-01

A unified algorithm for solving Langevin equations with deeply asymptotic parameters is proposed and tested. The method consists of identifying solvable linear friction and implementing the force evaluations by use of the Runge-Kutta method. We apply the present scheme to the periodic motion of an overdamped particle subjected to a multiplicative white noise. The accurate calculations for the temporal velocity of the particle and its correlation function can be realized by introducing an inertial term. It is shown that the fluctuation around the steady quantity increases with decreasing time step in the overdamped white-noise algorithm, however, a massive white-noise technique greatly reduces this spurious drift, and the result can converge to the correct value if the added inertia approaches zero. The other application is the simulation of generalized Langevin equation with an exponential memory friction, this allows us to treat a weak non-Markovian process

15. A numerical solution of the equation of the computerized tomography and its application in astrophysics

International Nuclear Information System (INIS)

Krastev, A.; Nedialkov, J.

1983-01-01

A method for numerical solving the equation of the computerized tomography is proposed. The method, is based on the Cormack's formulae and is applied for studying media with central symmetry. The generalization for the nonsymmetric case does not lead to complications. The method is applied for the investigation of the density distribution of the Earth, the other planets and the Sun by means of neutrino experiments

16. Parquet equations for numerical self-consistent-field theory

International Nuclear Information System (INIS)

Bickers, N.E.

1991-01-01

In recent years increases in computational power have provided new motivation for the study of self-consistent-field theories for interacting electrons. In this set of notes, the so-called parquet equations for electron systems are derived pedagogically. The principal advantages of the parquet approach are outlined, and its relationship to simpler self-consistent-field methods, including the Baym-Kadanoff technique, is discussed in detail. (author). 14 refs, 9 figs

17. Adaptive integral equation methods in transport theory

International Nuclear Information System (INIS)

Kelley, C.T.

1992-01-01

In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented

18. A novel numerical flux for the 3D Euler equations with general equation of state

KAUST Repository

Toro, Eleuterio F.

2015-09-30

Here we extend the flux vector splitting approach recently proposed in (E F Toro and M E Vázquez-Cendón. Flux splitting schemes for the Euler equations. Computers and Fluids. Vol. 70, Pages 1-12, 2012). The scheme was originally presented for the 1D Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both space and time through application of the semi-discrete ADER methodology on general meshes. The resulting methods are systematically assessed for accuracy, robustness and efficiency on a carefully selected suite of test problems. Formal high accuracy is assessed through convergence rates studies for schemes of up to 4th order of accuracy in both space and time on unstructured meshes.

19. Numerical Integration of the Vlasov Equation of Two Colliding Beams

CERN Document Server

Zorzano-Mier, M P

2000-01-01

In a circular collider the motion of particles of one beam is strongly perturbed at the interaction points by the electro-magnetic field associated with the counter-rotating beam. For any two arbitrary initial particle distributions the time evolution of the two beams can be known by solving the coupled system of two Vlasov equations. This collective description is mandatory when the two beams have similar strengths, as in the case of LEP or LHC. The coherent modes excited by this beam-beam interaction can be a strong limitation for the operation of LHC. In this work, the coupled Vlasov equations of two colliding flat beams are solved numerically using a finite difference scheme. The results suggest that, for the collision of beams with equal tunes, the tune shift between the $\\sigma$- and $\\pi$- coherent dipole mode depends on the unperturbed tune $q$ because of the deformation that the so-called dynamic beta effect induces on the beam distribution. Only when the unperturbed tune $q\\rightarrow 0.25$ this tun...

20. Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions

Directory of Open Access Journals (Sweden)

Marina Popolizio

2018-01-01

Full Text Available Multiterm fractional differential equations (MTFDEs nowadays represent a widely used tool to model many important processes, particularly for multirate systems. Their numerical solution is then a compelling subject that deserves great attention, not least because of the difficulties to apply general purpose methods for fractional differential equations (FDEs to this case. In this paper, we first transform the MTFDEs into equivalent systems of FDEs, as done by Diethelm and Ford; in this way, the solution can be expressed in terms of Mittag–Leffler (ML functions evaluated at matrix arguments. We then propose to compute it by resorting to the matrix approach proposed by Garrappa and Popolizio. Several numerical tests are presented that clearly show that this matrix approach is very accurate and fast, also in comparison with other numerical methods.

1. Theoretical and numerical study of the equations of Vlasov-Maxwell in the covariant formalism

International Nuclear Information System (INIS)

Back, A.

2011-11-01

A new point of view is proposed for the simulation of plasmas using the kinetic model which links the equations of Vlasov for the distribution of particles and the equations of Maxwell for the electromagnetic contribution of fields. We use the following principle: the equations of Physics are mathematical objects which put in relation geometrical objects. To preserve the geometrical properties of the various objects in an equation, we use, for the theoretical and numerical study, the differential geometry. All the equations of Physics can be written with differential forms and this point of view is not dependent on the choice of coordinates. We propose then a discretization of the differential forms by using B-Splines. To be coherent with the theory, we also propose a discretization of the various operations of the differential geometry. We test our scheme, first on the equations of Maxwell with several boundary conditions and since it does not depend on the system of coordinates, we also test it when we change coordinates. Finally, we apply the same method to the equations of Vlasov-Poisson in one-dimension and we propose several numerical schemes. (author)

2. Assessing numerical methods used in nuclear aerosol transport models

International Nuclear Information System (INIS)

McDonald, B.H.

1987-01-01

Several computer codes are in use for predicting the behaviour of nuclear aerosols released into containment during postulated accidents in water-cooled reactors. Each of these codes uses numerical methods to discretize and integrate the equations that govern the aerosol transport process. Computers perform only algebraic operations and generate only numbers. It is in the numerical methods that sense can be made of these numbers and where they can be related to the actual solution of the equations. In this report, the numerical methods most commonly used in the aerosol transport codes are examined as special cases of a general solution procedure, the Method of Weighted Residuals. It would appear that the numerical methods used in the codes are all capable of producing reasonable answers to the mathematical problem when used with skill and care. 27 refs

3. Numerical Simulation of rivulet build up via lubrication equations

Science.gov (United States)

Suzzi, N.; Croce, G.

2017-11-01

A number of engineering problems involve the evolution of a thin layer of liquid over a non-wettable substrate. For example, CO2 chemical absorption is carried out in packed columns, where post-combustion CO2 flows up while liquid solvent falls down through a collection of corrugated sheets. Further application include, among others, in-flight icing simulations, moisture condensation on de-humidifier fins, fogging build up and removal. Here, we present a development of an in-house code solving numerically the 2D lubrication equation for a film flowing down an inclined plate. The disjoining pressure approach is followed, in order to model both the contact line discontinuity and the surface wettability. With respect to the original implementation, the full modeling of capillary pressure terms according to Young- Laplace relation allows to investigate contact angles close to π/2. The code is thus validated with literature numerical results, obtained by a fully 3D approach (VOF), showing satisfying agreement despite a strong reduction in terms of computational cost. Steady and unsteady wetting dynamics of a developing rivulet are investigated (and validated) under different load conditions and for different values of the contact angles.

4. An Approximate Method for the Acoustic Attenuating VTI Eikonal Equation

KAUST Repository

Hao, Q.

2017-05-26

We present an approximate method to solve the acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis (VTI). A perturbation method is used to derive the perturbation formula for complex-valued traveltimes. The application of Shanks transform further enhances the accuracy of approximation. We derive both analytical and numerical solutions to the acoustic eikonal equation. The analytic solution is valid for homogeneous VTI media with moderate anellipticity and strong attenuation and attenuation-anisotropy. The numerical solution is applicable for inhomogeneous attenuating VTI media.

5. An Approximate Method for the Acoustic Attenuating VTI Eikonal Equation

KAUST Repository

Hao, Q.; Alkhalifah, Tariq Ali

2017-01-01

We present an approximate method to solve the acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis (VTI). A perturbation method is used to derive the perturbation formula for complex-valued traveltimes. The application of Shanks transform further enhances the accuracy of approximation. We derive both analytical and numerical solutions to the acoustic eikonal equation. The analytic solution is valid for homogeneous VTI media with moderate anellipticity and strong attenuation and attenuation-anisotropy. The numerical solution is applicable for inhomogeneous attenuating VTI media.

6. Numerical methods for engine-airframe integration

International Nuclear Information System (INIS)

Murthy, S.N.B.; Paynter, G.C.

1986-01-01

Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment

7. Various Newton-type iterative methods for solving nonlinear equations

Directory of Open Access Journals (Sweden)

Manoj Kumar

2013-10-01

Full Text Available The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.

8. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

KAUST Repository

Abdulle, Assyr

2012-01-01

© 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrated with the constructions of new methods of weak order two, in particular, semi-implicit integrators well suited for stiff (meansquare stable) stochastic problems, and implicit integrators that exactly conserve all quadratic first integrals of a stochastic dynamical system. Numerical examples confirm the theoretical results and show the versatility of our methodology.

9. Numerical solution of three-dimensional magnetic differential equations

International Nuclear Information System (INIS)

Reiman, A.H.; Greenside, H.S.

1987-02-01

A computer code is described that solves differential equations of the form B . del f = h for a single-valued solution f, given a toroidal three-dimensional divergence-free field B and a single-valued function h. The code uses a new algorithm that Fourier decomposes a given function in a set of flux coordinates in which the field lines are straight. The algorithm automatically adjusts the required integration lengths to compensate for proximity to low order rational surfaces. Applying this algorithm to the Cartesian coordinates defines a transformation to magnetic coordinates, in which the magnetic differential equation can be accurately solved. Our method is illustrated by calculating the Pfirsch-Schlueter currents for a stellarator

10. Solution of the Schroedinger equation by a spectral method

International Nuclear Information System (INIS)

Feit, M.D.; Fleck, J.A. Jr.; Steiger, A.

1982-01-01

A new computational method for determining the eigenvalues and eigenfunctions of the Schroedinger equation is described. Conventional methods for solving this problem rely on diagonalization of a Hamiltonian matrix or iterative numerical solutions of a time independent wave equation. The new method, in contrast, is based on the spectral properties of solutions to the time-dependent Schroedinger equation. The method requires the computation of a correlation function from a numerical solution psi(r, t). Fourier analysis of this correlation function reveals a set of resonant peaks that correspond to the stationary states of the system. Analysis of the location of these peaks reveals the eigenvalues with high accuracy. Additional Fourier transforms of psi(r, t) with respect to time generate the eigenfunctions. The effectiveness of the method is demonstrated for a one-dimensional asymmetric double well potential and for the two-dimensional Henon--Heiles potential

11. Matrix-oriented implementation for the numerical solution of the partial differential equations governing flows and transport in porous media

KAUST Repository

Sun, Shuyu; Salama, Amgad; El-Amin, Mohamed

2012-01-01

In this paper we introduce a new technique for the numerical solution of the various partial differential equations governing flow and transport phenomena in porous media. This method is proposed to be used in high level programming languages like

12. Numerical approximation of null controls for the heat equation: Ill-posedness and remedies

International Nuclear Information System (INIS)

Münch, Arnaud; Zuazua, Enrique

2010-01-01

The numerical approximation of exact or trajectory controls for the wave equation is known to be a delicate issue, since the pioneering work of Glowinski–Lions in the nineties, because of the anomalous behavior of the high-frequency spurious numerical waves. Various efficient remedies have been developed and analyzed in the last decade to filter out these high-frequency components: Fourier filtering, Tychonoff's regularization, mixed finite-element methods, multi-grid strategies, etc. Recently convergence rate results have also been obtained. This work is devoted to analyzing this issue for the heat equation, which is the opposite paradigm because of its strong dissipativity and smoothing properties. The existing analytical results guarantee that, at least in some simple situations, as in the finite-difference scheme in 1 − d, the null or trajectory controls for numerical approximation schemes converge. This is due to the intrinsic high-frequency damping of the heat equation that is inherited by its numerical approximation schemes. But when developing numerical simulations the topic appears to be much more subtle and difficult. In fact, efficiently computing the null control for a numerical approximation scheme of the heat equation is a difficult problem in itself. The difficulty is strongly related to the regularizing effect of the heat kernel. The controls of minimal L 2 -norm are characterized as minima of quadratic functionals on the solutions of the adjoint heat equation, or its numerical versions. These functionals are shown to be coercive in very large spaces of solutions, sufficient to guarantee the L 2 character of controls, but very far from being identifiable as energy spaces for the adjoint system. The very weak coercivity of the functionals under consideration makes the approximation problem exponentially ill-posed and the functional framework far from being well adapted to standard techniques in numerical analysis. In practice, the controls of the

13. Numerical solution of ordinary differential equations. For classical, relativistic and nano systems

International Nuclear Information System (INIS)

Greenspan, D.

2006-01-01

An up-to-date survey on numerical solutions with theory, intuition and applications. Ordinary differential equations (ODE) play a significant role in mathematics, physics and engineering sciences, and thus are part of relevant college and university courses. Many problems, however, both traditional and modern, do not possess exact solutions, and must be treated numerically. Usually this is done with software packages, but for this to be efficient requires a sound understanding of the mathematics involved. This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic and nano systems. The examples are carefully explained and compiled into an algorithm, each of which is presented generically, independent of a specific programming language, while each chapter is rounded off with exercises. The text meets the demands of MA200 courses and of the newly created Numerical Solution of Differential Equations courses, making it ideal for both students and lecturers in physics, mathematics, mechanical engineering, electrical engineering, as well as for physicists, mathematicians, engineers, and electrical engineers. From the Contents - Euler's Method - Runge-Kutta Methods - The Method of Taylor Expansions - Large Second Order Systems with Application to Nano Systems - Completely Conservative, Covariant Numerical Methodology - Instability - Numerical Solution of Tridiagonal Linear Algebraic Systems and Related Nonlinear Systems - Approximate Solution of Boundary Value Problems - Special Relativistic Motion - Special Topics - Appendix: Basic Matrix Operations - Bibliography. (orig.) (orig.)

14. Receptor binding kinetics equations: Derivation using the Laplace transform method.

Science.gov (United States)

Hoare, Sam R J

Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time

15. Statistical Methods for Stochastic Differential Equations

CERN Document Server

Kessler, Mathieu; Sorensen, Michael

2012-01-01

The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a sp

16. Method of controlling chaos in laser equations

International Nuclear Information System (INIS)

Duong-van, M.

1993-01-01

A method of controlling chaotic to laminar flows in the Lorenz equations using fixed points dictated by minimizing the Lyapunov functional was proposed by Singer, Wang, and Bau [Phys. Rev. Lett. 66, 1123 (1991)]. Using different fixed points, we find that the solutions in a chaotic regime can also be periodic. Since the laser equations are isomorphic to the Lorenz equations we use this method to control chaos when the laser is operated over the pump threshold. Furthermore, by solving the laser equations with an occasional proportional feedback mechanism, we recover the essential laser controlling features experimentally discovered by Roy, Murphy, Jr., Maier, Gills, and Hunt [Phys. Rev. Lett. 68, 1259 (1992)

17. Method of controlling chaos in laser equations

Science.gov (United States)

Duong-van, Minh

1993-01-01

A method of controlling chaotic to laminar flows in the Lorenz equations using fixed points dictated by minimizing the Lyapunov functional was proposed by Singer, Wang, and Bau [Phys. Rev. Lett. 66, 1123 (1991)]. Using different fixed points, we find that the solutions in a chaotic regime can also be periodic. Since the laser equations are isomorphic to the Lorenz equations we use this method to control chaos when the laser is operated over the pump threshold. Furthermore, by solving the laser equations with an occasional proportional feedback mechanism, we recover the essential laser controlling features experimentally discovered by Roy, Murphy, Jr., Maier, Gills, and Hunt [Phys. Rev. Lett. 68, 1259 (1992)].

18. Mathematica with a Numerical Methods Course

Science.gov (United States)

Varley, Rodney

2003-04-01

An interdisciplinary "Numerical Methods" course has been shared between physics, mathematics and computer science since 1992 at Hunter C. Recently, the lectures and workshops for this course have become formalized and placed on the internet at http://www.ph.hunter.cuny.edu (follow the links "Course Listings and Websites" >> "PHYS385 (Numerical Methods)". Mathematica notebooks for the lectures are available for automatic download (by "double clicking" the lecture icon) for student use in the classroom or at home. AOL (or Netscape/Explorer) can be used provided Mathematica (or the "free" MathReader) has been made a "helper application". Using Mathematica has the virtue that mathematical equations (no LaTex required) can easily be included with the text and Mathematica's graphing is easy to use. Computational cells can be included within the notebook and students may easily modify the calculation to see the result of "what if..." questions. Homework is sent as Mathematica notebooks to the instructor via the internet and the corrected workshops are returned in the same manner. Most exam questions require computational solutions.

19. NUMERICAL AND ANALYTIC METHODS OF ESTIMATION BRIDGES’ CONSTRUCTIONS

Directory of Open Access Journals (Sweden)

Y. Y. Luchko

2010-03-01

Full Text Available In this article the numerical and analytical methods of calculation of the stressed-and-strained state of bridge constructions are considered. The task on increasing of reliability and accuracy of the numerical method and its solution by means of calculations in two bases are formulated. The analytical solution of the differential equation of deformation of a ferro-concrete plate under the action of local loads is also obtained.

20. Finite element and discontinuous Galerkin methods for transient wave equations

CERN Document Server

Cohen, Gary

2017-01-01

This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...

1. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.

Science.gov (United States)

Thalhammer, Mechthild; Abhau, Jochen

2012-08-15

As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross-Pitaevskii equation arising in the description of Bose-Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross-Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter [Formula: see text], especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that

2. A numerical method for solving singular De`s

Energy Technology Data Exchange (ETDEWEB)

Mahaver, W.T.

1996-12-31

A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.

3. Entropy viscosity method applied to Euler equations

International Nuclear Information System (INIS)

Delchini, M. O.; Ragusa, J. C.; Berry, R. A.

2013-01-01

The entropy viscosity method  has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)

4. Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation

Science.gov (United States)

Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab

2015-05-01

3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.

5. Numerical solution of Euler's equation by perturbed functionals

Science.gov (United States)

Dey, S. K.

1985-01-01

A perturbed functional iteration has been developed to solve nonlinear systems. It adds at each iteration level, unique perturbation parameters to nonlinear Gauss-Seidel iterates which enhances its convergence properties. As convergence is approached these parameters are damped out. Local linearization along the diagonal has been used to compute these parameters. The method requires no computation of Jacobian or factorization of matrices. Analysis of convergence depends on properties of certain contraction-type mappings, known as D-mappings. In this article, application of this method to solve an implicit finite difference approximation of Euler's equation is studied. Some representative results for the well known shock tube problem and compressible flows in a nozzle are given.

6. Numerical perturbative methods in the quantum theory of physical systems

International Nuclear Information System (INIS)

1980-01-01

During the last two decades, development of digital electronic computers has led to the deployment of new, distinct methods in theoretical physics. These methods, based on the advances of modern numerical analysis as well as on specific equations describing physical processes, enabled to perform precise calculations of high complexity which have completed and sometimes changed our image of many physical phenomena. Our efforts have concentrated on the development of numerical methods with such intrinsic performances as to allow a successful approach of some Key issues in present theoretical physics on smaller computation systems. The basic principle of such methods is to translate, in numerical analysis language, the theory of perturbations which is suited to numerical rather than to analytical computation. This idea has been illustrated by working out two problems which arise from the time independent Schroedinger equation in the non-relativistic approximation, within both quantum systems with a small number of particles and systems with a large number of particles, respectively. In the first case, we are led to the numerical solution of some quadratic ordinary differential equations (first section of the thesis) and in the second case, to the solution of some secular equations in the Brillouin area (second section). (author)

7. An Explicit Finite Difference scheme for numerical solution of fractional neutron point kinetic equation

International Nuclear Information System (INIS)

Saha Ray, S.; Patra, A.

2012-01-01

Highlights: ► In this paper fractional neutron point kinetic equation has been analyzed. ► The numerical solution for fractional neutron point kinetic equation is obtained. ► Explicit Finite Difference Method has been applied. ► Supercritical reactivity, critical reactivity and subcritical reactivity analyzed. ► Comparison between fractional and classical neutron density is presented. - Abstract: In the present article, a numerical procedure to efficiently calculate the solution for fractional point kinetics equation in nuclear reactor dynamics is investigated. The Explicit Finite Difference Method is applied to solve the fractional neutron point kinetic equation with the Grunwald–Letnikov (GL) definition (). Fractional Neutron Point Kinetic Model has been analyzed for the dynamic behavior of the neutron motion in which the relaxation time associated with a variation in the neutron flux involves a fractional order acting as exponent of the relaxation time, to obtain the best operation of a nuclear reactor dynamics. Results for neutron dynamic behavior for subcritical reactivity, supercritical reactivity and critical reactivity and also for different values of fractional order have been presented and compared with the classical neutron point kinetic (NPK) equation as well as the results obtained by the learned researchers .

8. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

Science.gov (United States)

Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

2013-09-01

Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

9. Numerical solution of the thermalhydraulic conservation equations from fundamental concepts to multidimensional two-fluid analysis

International Nuclear Information System (INIS)

Carver, M.B.

1995-08-01

The discussion briefly establishes some requisite concepts of differential equation theory, and applies these to describe methods for numerical solution of the thermalhydraulic conservation equations in their various forms. The intent is to cover the general methodology without obscuring the principles with details. As a short overview of computational thermalhydraulics, the material provides an introductory foundation, so that those working on the application of thermalhydraulic codes can begin to understand the many intricacies involved without having to locate and read the references given. Those intending to work in code development will need to read and understand all the references. (author). 49 refs

10. Convergence of method of lines approximations to partial differential equations

International Nuclear Information System (INIS)

Verwer, J.G.; Sanz-Serna, J.M.

1984-01-01

Many existing numerical schemes for evolutionary problems in partial differential equations (PDEs) can be viewed as method of lines (MOL) schemes. This paper treats the convergence of one-step MOL schemes. The main purpose is to set up a general framework for a convergence analysis applicable to nonlinear problems. The stability materials for this framework are taken from the field of nonlinear stiff ODEs. In this connection, important concepts are the logarithmic matrix norm and C-stability. A nonlinear parabolic equation and the cubic Schroedinger equation are used for illustrating the ideas. (Auth.)

11. Numerical Verification Methods for Spherical $t$-Designs

OpenAIRE

Chen, Xiaojun

2009-01-01

The construction of spherical $t$-designs with $(t+1)^2$ points on the unit sphere $S^2$ in $\\mathbb{R}^3$ can be reformulated as an underdetermined system of nonlinear equations. This system is highly nonlinear and involves the evaluation of a degree $t$ polynomial in $(t+1)^4$ arguments. This paper reviews numerical verification methods using the Brouwer fixed point theorem and Krawczyk interval operator for solutions of the underdetermined system of nonlinear equations...

12. Application of Legendre spectral-collocation method to delay differential and stochastic delay differential equation

Science.gov (United States)

Khan, Sami Ullah; Ali, Ishtiaq

2018-03-01

Explicit solutions to delay differential equation (DDE) and stochastic delay differential equation (SDDE) can rarely be obtained, therefore numerical methods are adopted to solve these DDE and SDDE. While on the other hand due to unstable nature of both DDE and SDDE numerical solutions are also not straight forward and required more attention. In this study, we derive an efficient numerical scheme for DDE and SDDE based on Legendre spectral-collocation method, which proved to be numerical methods that can significantly speed up the computation. The method transforms the given differential equation into a matrix equation by means of Legendre collocation points which correspond to a system of algebraic equations with unknown Legendre coefficients. The efficiency of the proposed method is confirmed by some numerical examples. We found that our numerical technique has a very good agreement with other methods with less computational effort.

13. Advances in iterative methods for nonlinear equations

CERN Document Server

Busquier, Sonia

2016-01-01

This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

14. An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions

Directory of Open Access Journals (Sweden)

A. H. Bhrawy

2014-01-01

Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.

15. Numerical bifurcation analysis of delay differential equations arising from physiological modeling.

Science.gov (United States)

Engelborghs, K; Lemaire, V; Bélair, J; Roose, D

2001-04-01

This paper has a dual purpose. First, we describe numerical methods for continuation and bifurcation analysis of steady state solutions and periodic solutions of systems of delay differential equations with an arbitrary number of fixed, discrete delays. Second, we demonstrate how these methods can be used to obtain insight into complex biological regulatory systems in which interactions occur with time delays: for this, we consider a system of two equations for the plasma glucose and insulin concentrations in a diabetic patient subject to a system of external assistance. The model has two delays: the technological delay of the external system, and the physiological delay of the patient's liver. We compute stability of the steady state solution as a function of two parameters, compare with analytical results and compute several branches of periodic solutions and their stability. These numerical results allow to infer two categories of diabetic patients for which the external system has different efficiency.

16. Numerical computation of FCT equilibria by inverse equilibrium method

International Nuclear Information System (INIS)

Tokuda, Shinji; Tsunematsu, Toshihide; Takeda, Tatsuoki

1986-11-01

FCT (Flux Conserving Tokamak) equilibria were obtained numerically by the inverse equilibrium method. The high-beta tokamak ordering was used to get the explicit boundary conditions for FCT equilibria. The partial differential equation was reduced to the simultaneous quasi-linear ordinary differential equations by using the moment method. The regularity conditions for solutions at the singular point of the equations can be expressed correctly by this reduction and the problem to be solved becomes a tractable boundary value problem on the quasi-linear ordinary differential equations. This boundary value problem was solved by the method of quasi-linearization, one of the shooting methods. Test calculations show that this method provides high-beta tokamak equilibria with sufficiently high accuracy for MHD stability analysis. (author)

17. Numerical solution of compressible flow equations inside an ejector

International Nuclear Information System (INIS)

Omid khah, M. R.; Navid Famili, M. H.; Jalili Keshtiban, E.

2002-01-01

Ejector is important equipment in the chemical industry. It is mainly used for vaccuming and mixing of flows. In the present work a computer modeling of the flow inside an ejector is used to give a better understanding of the principle of the operation of an ejector. Since the fluid inside an ejector passes through subsonic, sonic and supersonic regimens, the pressure field is used as the controlling variable and the density is found through the constitutive equations. The control volume method with a co-location grid, attached to the boundary is used to discretize the domain. The overall solution is obtained by the SIMPLEC method and to dissociate the pressure and the velocity grid Rhie-Chow interpolation method is employed. A central difference approximation method is used to approximate the density on the elements borders and the upwind approximation is used to correct the density correction factors. Both upwind, quick and minimum gradient methods were used to approximate the momentum variables on the control volumes. The resultant matrices are solved with the tri-diagonal method. The accuracy of the model is checked by simulating a flow regiment in a converging-diverging nozzle, and comparing the results with the available experimental data. The results show that for an inviscid the first order approximation produce as an accurate results as the higher order approximations while it has a better stability. However, for the viscous fluid the second order approximation produces a better understanding of the physics of the problem. The solution also showes that the flow field inside an ejector is a complex one and the shock wave has a great influence on the pressure field especially close to the walls. The upper convective quick method did not converge well in the shock calculations while the slowest descent method had a very stable behavior in the analysis of the shock behavior

18. Numerical solution of kinetics equation for point defects accumulation in metals under irradiation

International Nuclear Information System (INIS)

Aldzhambekova, G.T.; Iskakov, B.M.

1999-01-01

In the report the mathematical model, describing processes of generation and accumulation of defects in solids under irradiation is considered. The equations of this model take into account the velocity of Frenkel pairs generation, the mutual recombination of vacancies and the interstitials, as well as velocity of defects absorption by discharge channeling of vacancies and interstitials. By Runge-Kutta method the numerical solution of the model was carried out

19. Numerical solution to the hermitian Yang-Mills equation on the Fermat quintic

International Nuclear Information System (INIS)

Douglas, Michael R.; Karp, Robert L.; Lukic, Sergio; Reinbacher, Rene

2007-01-01

We develop an iterative method for finding solutions to the hermitian Yang-Mills equation on stable holomorphic vector bundles, following ideas recently developed by Donaldson. As illustrations, we construct numerically the hermitian Einstein metrics on the tangent bundle and a rank three vector bundle on P 2 . In addition, we find a hermitian Yang-Mills connection on a stable rank three vector bundle on the Fermat quintic

20. Numerical solution of the Navier--Stokes equations at high Reynolds numbers

International Nuclear Information System (INIS)

Shestakov, A.I.

1974-01-01

A numerical method is presented which is designed to solve the Navier-Stokes equations for two-dimensional, incompressible flow. The method is intended for use on problems with high Reynolds numbers for which calculations via finite difference methods have been unattainable or unreliable. The proposed scheme is a hybrid utilizing a time-splitting finite difference method in areas away from the boundaries. In areas neighboring the boundaries, the equations of motion are solved by the newly proposed vortex method by Chorin. The major accomplishment of the new scheme is that it contains a simple way for merging the two methods at the interface of the two subdomains. The proposed algorithm is designed for use on the time-dependent equations but can be used on steady state problems as well. The method is tested on the popular, time-independent, square cavity problem, an example of a separated flow with closed streamlines. Numerical results are presented for a Reynolds number of 10 3 . (auth)

1. Numerical evaluation of path-integral solutions to Fokker-Planck equations. II. Restricted stochastic processes

International Nuclear Information System (INIS)

Wehner, M.F.

1983-01-01

A path-integral solution is derived for processes described by nonlinear Fokker-Plank equations together with externally imposed boundary conditions. This path-integral solution is written in the form of a path sum for small time steps and contains, in addition to the conventional volume integral, a surface integral which incorporates the boundary conditions. A previously developed numerical method, based on a histogram representation of the probability distribution, is extended to a trapezoidal representation. This improved numerical approach is combined with the present path-integral formalism for restricted processes and is show t give accurate results. 35 refs., 5 figs

2. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

Energy Technology Data Exchange (ETDEWEB)

Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

2017-07-01

A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

3. GHM method for obtaining rationalsolutions of nonlinear differential equations.

Science.gov (United States)

Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

2015-01-01

In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

4. Navier-Stokes equations by the finite element method

International Nuclear Information System (INIS)

Portella, P.E.

1984-01-01

A computer program to solve the Navier-Stokes equations by using the Finite Element Method is implemented. The solutions variables investigated are stream-function/vorticity in the steady case and velocity/pressure in the steady state and transient cases. For steady state flow the equations are solved simultaneously by the Newton-Raphson method. For the time dependent formulation, a fractional step method is employed to discretize in time and artificial viscosity is used to preclude spurious oscilations in the solution. The element used is the three node triangle. Some numerical examples are presented and comparisons are made with applications already existent. (Author) [pt

5. Equating TIMSS Mathematics Subtests with Nonlinear Equating Methods Using NEAT Design: Circle-Arc Equating Approaches

Science.gov (United States)

Ozdemir, Burhanettin

2017-01-01

The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…

6. Integral equation methods for vesicle electrohydrodynamics in three dimensions

Science.gov (United States)

Veerapaneni, Shravan

2016-12-01

In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.

7. A Proposed Method for Solving Fuzzy System of Linear Equations

Directory of Open Access Journals (Sweden)

Reza Kargar

2014-01-01

Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

8. Generalized Bondi-Sachs equations for characteristic formalism of numerical relativity

Science.gov (United States)

Cao, Zhoujian; He, Xiaokai

2013-11-01

The Cauchy formalism of numerical relativity has been successfully applied to simulate various dynamical spacetimes without any symmetry assumption. But discovering how to set a mathematically consistent and physically realistic boundary condition is still an open problem for Cauchy formalism. In addition, the numerical truncation error and finite region ambiguity affect the accuracy of gravitational wave form calculation. As to the finite region ambiguity issue, the characteristic extraction method helps much. But it does not solve all of the above issues. Besides the above problems for Cauchy formalism, the computational efficiency is another problem. Although characteristic formalism of numerical relativity suffers the difficulty from caustics in the inner near zone, it has advantages in relation to all of the issues listed above. Cauchy-characteristic matching (CCM) is a possible way to take advantage of characteristic formalism regarding these issues and treat the inner caustics at the same time. CCM has difficulty treating the gauge difference between the Cauchy part and the characteristic part. We propose generalized Bondi-Sachs equations for characteristic formalism for the Cauchy-characteristic matching end. Our proposal gives out a possible same numerical evolution scheme for both the Cauchy part and the characteristic part. And our generalized Bondi-Sachs equations have one adjustable gauge freedom which can be used to relate the gauge used in the Cauchy part. Then these equations can make the Cauchy part and the characteristic part share a consistent gauge condition. So our proposal gives a possible new starting point for Cauchy-characteristic matching.

9. Numerical solutions of the aerosol general dynamic equation for nuclear reactor safety studies

International Nuclear Information System (INIS)

Park, J.W.

1988-01-01

Methods and approximations inherent in modeling of aerosol dynamics and evolution for nuclear reactor source term estimation have been investigated. Several aerosol evolution problems are considered to assess numerical methods of solving the aerosol dynamic equation. A new condensational growth model is constructed by generalizing Mason's formula to arbitrary particle sizes, and arbitrary accommodation of the condensing vapor and background gas at particle surface. Analytical solution is developed for the aerosol growth equation employing the new condensation model. The space-dependent aerosol dynamic equation is solved to assess implications of spatial homogenization of aerosol distributions. The results of our findings are as follows. The sectional method solving the aerosol dynamic equation is quite efficient in modeling of coagulation problems, but should be improved for simulation of strong condensation problems. The J-space transform method is accurate in modeling of condensation problems, but is very slow. For the situation considered, the new condensation model predicts slower aerosol growth than the corresponding isothermal model as well as Mason's model, the effect of partial accommodation is considerable on the particle evolution, and the effect of the energy accommodation coefficient is more pronounced than that of the mass accommodation coefficient. For the initial conditions considered, the space-dependent aerosol dynamics leads to results that are substantially different from those based on the spatially homogeneous aerosol dynamic equation

10. Dynamical Systems Method and Applications Theoretical Developments and Numerical Examples

CERN Document Server

Ramm, Alexander G

2012-01-01

Demonstrates the application of DSM to solve a broad range of operator equations The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and

11. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations

International Nuclear Information System (INIS)

Hong Jialin; Li Chun

2006-01-01

In this paper, we consider the multi-symplectic Runge-Kutta (MSRK) methods applied to the nonlinear Dirac equation in relativistic quantum physics, based on a discovery of the multi-symplecticity of the equation. In particular, the conservation of energy, momentum and charge under MSRK discretizations is investigated by means of numerical experiments and numerical comparisons with non-MSRK methods. Numerical experiments presented reveal that MSRK methods applied to the nonlinear Dirac equation preserve exactly conservation laws of charge and momentum, and conserve the energy conservation in the corresponding numerical accuracy to the method utilized. It is verified numerically that MSRK methods are stable and convergent with respect to the conservation laws of energy, momentum and charge, and MSRK methods preserve not only the inner geometric structure of the equation, but also some crucial conservative properties in quantum physics. A remarkable advantage of MSRK methods applied to the nonlinear Dirac equation is the precise preservation of charge conservation law

12. Partial differential equations methods, applications and theories

CERN Document Server

Hattori, Harumi

2013-01-01

This volume is an introductory level textbook for partial differential equations (PDE's) and suitable for a one-semester undergraduate level or two-semester graduate level course in PDE's or applied mathematics. Chapters One to Five are organized according to the equations and the basic PDE's are introduced in an easy to understand manner. They include the first-order equations and the three fundamental second-order equations, i.e. the heat, wave and Laplace equations. Through these equations we learn the types of problems, how we pose the problems, and the methods of solutions such as the separation of variables and the method of characteristics. The modeling aspects are explained as well. The methods introduced in earlier chapters are developed further in Chapters Six to Twelve. They include the Fourier series, the Fourier and the Laplace transforms, and the Green's functions. The equations in higher dimensions are also discussed in detail. This volume is application-oriented and rich in examples. Going thr...

13. Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations

Directory of Open Access Journals (Sweden)

I. Amirali

2014-01-01

Full Text Available Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown.

14. Analysis of spectral methods for the homogeneous Boltzmann equation

KAUST Repository

Filbet, Francis

2011-04-01

The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

15. Analysis of spectral methods for the homogeneous Boltzmann equation

KAUST Repository

Filbet, Francis; Mouhot, Clé ment

2011-01-01

The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

16. Instability of the filtering method for Vlasov's equation

International Nuclear Information System (INIS)

Figua, H.; Bouchut, F.; Fijalkow, E.

1999-01-01

Klimas has introduced a smoothed Fourier-Fourier method. This method consists in convolving the original distribution function with a Gaussian distribution function, and, next, in solving the new system with a transformed splitting algorithm. Unfortunately, a second-order term appears in the new equation. In this work, it is studied how this term affects the numerical equation. In particular it is proven that instability occurs in the linear version of the Vlasov equation obtained by considering only free non-interacting particles. It is proved that the use of Fourier-Fourier transform is a fundamental requirement to solve this new equation. An important property is pointed out concerning the filtered distribution function in the transformed space. (K.A.)

17. Numerical solution of integral equations, describing mass spectrum of vector mesons

International Nuclear Information System (INIS)

Zhidkov, E.P.; Nikonov, E.G.; Sidorov, A.V.; Skachkov, N.B.; Khoromskij, B.N.

1988-01-01

The description of the numerical algorithm for solving quasipotential integral equation in impulse space is presented. The results of numerical computations of the vector meson mass spectrum and the leptonic decay width are given in comparison with the experimental data

18. Numerical computer methods part D

CERN Document Server

Johnson, Michael L

2004-01-01

The aim of this volume is to brief researchers of the importance of data analysis in enzymology, and of the modern methods that have developed concomitantly with computer hardware. It is also to validate researchers' computer programs with real and synthetic data to ascertain that the results produced are what they expected. Selected Contents: Prediction of protein structure; modeling and studying proteins with molecular dynamics; statistical error in isothermal titration calorimetry; analysis of circular dichroism data; model comparison methods.

19. Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson’s 3/8 Rule

Directory of Open Access Journals (Sweden)

2012-01-01

Full Text Available The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using this rule the system is converted to a nonlinear block system and then by solving this nonlinear system we find approximate solution of nonlinear Volterra integral equations system. One of the advantages of the proposed method is its simplicity in application. Further, we investigate the convergence of the proposed method and it is shown that its convergence is of order O(h4. Numerical examples are given to show abilities of the proposed method for solving linear as well as nonlinear systems. Our results show that the proposed method is simple and effective.

20. Numerical methods in software and analysis

CERN Document Server

Rice, John R

1992-01-01

Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm

1. Kinetic equation solution by inverse kinetic method

International Nuclear Information System (INIS)

Salas, G.

1983-01-01

We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance

2. An introduction to numerical methods and analysis

CERN Document Server

Epperson, James F

2013-01-01

Praise for the First Edition "". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises.""-Zentralblatt MATH "". . . carefully structured with many detailed worked examples.""-The Mathematical Gazette The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis. An Introduction to

3. On randomized algorithms for numerical solution of applied Fredholm integral equations of the second kind

Science.gov (United States)

Voytishek, Anton V.; Shipilov, Nikolay M.

2017-11-01

In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.

4. Alternating-direction implicit numerical solution of the time-dependent, three-dimensional, single fluid, resistive magnetohydrodynamic equations

Energy Technology Data Exchange (ETDEWEB)

Finan, C.H. III

1980-12-01

Resistive magnetohydrodynamics (MHD) is described by a set of eight coupled, nonlinear, three-dimensional, time-dependent, partial differential equations. A computer code, IMP (Implicit MHD Program), has been developed to solve these equations numerically by the method of finite differences on an Eulerian mesh. In this model, the equations are expressed in orthogonal curvilinear coordinates, making the code applicable to a variety of coordinate systems. The Douglas-Gunn algorithm for Alternating-Direction Implicit (ADI) temporal advancement is used to avoid the limitations in timestep size imposed by explicit methods. The equations are solved simultaneously to avoid syncronization errors.

5. Solution of fractional differential equations by using differential transform method

International Nuclear Information System (INIS)

Arikoglu, Aytac; Ozkol, Ibrahim

2007-01-01

In this study, we implement a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equations. Theorems that never existed before are introduced with their proofs. Also numerical examples are carried out for various types of problems, including the Bagley-Torvik, Ricatti and composite fractional oscillation equations for the application of the method. The results obtained are in good agreement with the existing ones in open literature and it is shown that the technique introduced here is robust, accurate and easy to apply

6. Solution of fractional differential equations by using differential transform method

Energy Technology Data Exchange (ETDEWEB)

Arikoglu, Aytac [Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Aeronautical Engineering, Maslak, TR-34469 Istanbul (Turkey); Ozkol, Ibrahim [Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Aeronautical Engineering, Maslak, TR-34469 Istanbul (Turkey)]. E-mail: ozkol@itu.edu.tr

2007-12-15

In this study, we implement a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equations. Theorems that never existed before are introduced with their proofs. Also numerical examples are carried out for various types of problems, including the Bagley-Torvik, Ricatti and composite fractional oscillation equations for the application of the method. The results obtained are in good agreement with the existing ones in open literature and it is shown that the technique introduced here is robust, accurate and easy to apply.

7. Error Analysis of Galerkin's Method for Semilinear Equations

Directory of Open Access Journals (Sweden)

2012-01-01

Full Text Available We establish a general existence result for Galerkin's approximate solutions of abstract semilinear equations and conduct an error analysis. Our results may be regarded as some extension of a precedent work (Schultz 1969. The derivation of our results is, however, different from the discussion in his paper and is essentially based on the convergence theorem of Newton’s method and some techniques for deriving it. Some of our results may be applicable for investigating the quality of numerical verification methods for solutions of ordinary and partial differential equations.

8. An Unconditionally Stable Method for Solving the Acoustic Wave Equation

Directory of Open Access Journals (Sweden)

Zhi-Kai Fu

2015-01-01

Full Text Available An unconditionally stable method for solving the time-domain acoustic wave equation using Associated Hermit orthogonal functions is proposed. The second-order time derivatives in acoustic wave equation are expanded by these orthogonal basis functions. By applying Galerkin temporal testing procedure, the time variable can be eliminated from the calculations. The restriction of Courant-Friedrichs-Levy (CFL condition in selecting time step for analyzing thin layer can be avoided. Numerical results show the accuracy and the efficiency of the proposed method.

9. Isogeometric methods for numerical simulation

CERN Document Server

Bordas, Stéphane

2015-01-01

The book presents the state of the art in isogeometric modeling and shows how the method has advantaged. First an introduction to geometric modeling with NURBS and T-splines is given followed by the implementation into computer software. The implementation in both the FEM and BEM is discussed.

10. Numerical simulation methods for wave propagation through optical waveguides

International Nuclear Information System (INIS)

Sharma, A.

1993-01-01

The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs

11. Modified harmonic balance method for the solution of nonlinear jerk equations

Science.gov (United States)

Rahman, M. Saifur; Hasan, A. S. M. Z.

2018-03-01

In this paper, a second approximate solution of nonlinear jerk equations (third order differential equation) can be obtained by using modified harmonic balance method. The method is simpler and easier to carry out the solution of nonlinear differential equations due to less number of nonlinear equations are required to solve than the classical harmonic balance method. The results obtained from this method are compared with those obtained from the other existing analytical methods that are available in the literature and the numerical method. The solution shows a good agreement with the numerical solution as well as the analytical methods of the available literature.

12. The integral equation method applied to eddy currents

International Nuclear Information System (INIS)

Biddlecombe, C.S.; Collie, C.J.; Simkin, J.; Trowbridge, C.W.

1976-04-01

An algorithm for the numerical solution of eddy current problems is described, based on the direct solution of the integral equation for the potentials. In this method only the conducting and iron regions need to be divided into elements, and there are no boundary conditions. Results from two computer programs using this method for iron free problems for various two-dimensional geometries are presented and compared with analytic solutions. (author)

13. Numerical computer methods part E

CERN Document Server

Johnson, Michael L

2004-01-01

The contributions in this volume emphasize analysis of experimental data and analytical biochemistry, with examples taken from biochemistry. They serve to inform biomedical researchers of the modern data analysis methods that have developed concomitantly with computer hardware. Selected Contents: A practical approach to interpretation of SVD results; modeling of oscillations in endocrine networks with feedback; quantifying asynchronous breathing; sample entropy; wavelet modeling and processing of nasal airflow traces.

14. Excel spreadsheet in teaching numerical methods

Science.gov (United States)

Djamila, Harimi

2017-09-01

One of the important objectives in teaching numerical methods for undergraduates’ students is to bring into the comprehension of numerical methods algorithms. Although, manual calculation is important in understanding the procedure, it is time consuming and prone to error. This is specifically the case when considering the iteration procedure used in many numerical methods. Currently, many commercial programs are useful in teaching numerical methods such as Matlab, Maple, and Mathematica. These are usually not user-friendly by the uninitiated. Excel spreadsheet offers an initial level of programming, which it can be used either in or off campus. The students will not be distracted with writing codes. It must be emphasized that general commercial software is required to be introduced later to more elaborated questions. This article aims to report on a teaching numerical methods strategy for undergraduates engineering programs. It is directed to students, lecturers and researchers in engineering field.

15. Nonlinear Fredholm Integral Equation of the Second Kind with Quadrature Methods

Directory of Open Access Journals (Sweden)

2010-06-01

Full Text Available In this paper, a numerical method for solving the nonlinear Fredholm integral equation is presented. We intend to approximate the solution of this equation by quadrature methods and by doing so, we solve the nonlinear Fredholm integral equation more accurately. Several examples are given at the end of this paper

16. Classical and modern numerical analysis theory, methods and practice

CERN Document Server

Ackleh, Azmy S; Kearfott, R Baker; Seshaiyer, Padmanabhan

2009-01-01

Mathematical Review and Computer Arithmetic Mathematical Review Computer Arithmetic Interval ComputationsNumerical Solution of Nonlinear Equations of One Variable Introduction Bisection Method The Fixed Point Method Newton's Method (Newton-Raphson Method) The Univariate Interval Newton MethodSecant Method and Müller's Method Aitken Acceleration and Steffensen's Method Roots of Polynomials Additional Notes and SummaryNumerical Linear Algebra Basic Results from Linear Algebra Normed Linear Spaces Direct Methods for Solving Linear SystemsIterative Methods for Solving Linear SystemsThe Singular Value DecompositionApproximation TheoryIntroduction Norms, Projections, Inner Product Spaces, and Orthogonalization in Function SpacesPolynomial ApproximationPiecewise Polynomial ApproximationTrigonometric ApproximationRational ApproximationWavelet BasesLeast Squares Approximation on a Finite Point SetEigenvalue-Eigenvector Computation Basic Results from Linear Algebra The Power Method The Inverse Power Method Deflation T...

17. A Meshfree Quasi-Interpolation Method for Solving Burgers’ Equation

Directory of Open Access Journals (Sweden)

Mingzhu Li

2014-01-01

Full Text Available The main aim of this work is to consider a meshfree algorithm for solving Burgers’ equation with the quartic B-spline quasi-interpolation. Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions directly without the need to solve any linear system of equations and overcome the ill-conditioning problem resulting from using the B-spline as a global interpolant. The numerical scheme is presented, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the time derivative of the dependent variable. Compared to other numerical methods, the main advantages of our scheme are higher accuracy and lower computational complexity. Meanwhile, the algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.

18. Waveform relaxation methods for implicit differential equations

NARCIS (Netherlands)

P.J. van der Houwen; W.A. van der Veen

1996-01-01

textabstractWe apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems

19. Application of coarse-mesh methods to fluid dynamics equations

International Nuclear Information System (INIS)

Romstedt, P.; Werner, W.

1977-01-01

An Asymmetric Weighted Residual (ASWR) method for fluid dynamics equations is described. It leads to local operators with a 7-point Finite Difference (FD) structure, which is independent of the degree of the approximating polynomials. An 1-dimensional problem was solved by both this ASWR-method and a commonly used FD-method. The numerical results demonstrate that the ASWR-method combines high accuracy on a coarse computational mesh with short computing time per space point. The posibility of using fewer space points consequently brings about a considerable reduction in total running time for the ASWR-method as compared with conventional FD-methods. (orig.) [de

20. Various types of numerical schema for the one-dimensional spherical geometry transport equation

International Nuclear Information System (INIS)

Jaber, Abdelouhab.

1981-07-01

Mathematical and numerical studies of new schemas possessing high accuracy spatial variable properties are described and the corresponding studies presented. In order to do this, the [0,R] x [-1,+1] rectangle is decomposad into Ksub(ij) = [rsub(i),rsub(i+1)] x [μsub(j),μsub(j+1) ] rectangles. Continuous finite element methods employing polynominals of degree 1 in μ and degree 2 in r are defined for each elements. In chapter I, different ways of rendering the particular equation (for μ = -1) discrete are studied. In chapter II, numerical schemas are described and their stability investigated. In chapter III, error estimation theories are exposed and numerical results for different second members, S, given [fr

1. Numerical solution of the Schrodinger equation for stationary bound states using nodel theorem

International Nuclear Information System (INIS)

Chen Zhijiang; Kong Fanmei; Din Yibin

1987-01-01

An iterative procedure for getting the numerical solution of Schrodinger equation on stationary bound states is introduced. The theoretical foundtion, the practical steps and the method are presented. An example is added at the end. Comparing with other methods, the present one requires less storage, less running time but posesses higher accuracy. It can be run on the personal computer or microcomputer with 256 K memory and 16 bit word length such as IBM/PC, MC68000/83/20, PDP11/23 etc

2. Improved stochastic approximation methods for discretized parabolic partial differential equations

Science.gov (United States)

Guiaş, Flavius

2016-12-01

We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).

3. Application of Four-Point Newton-EGSOR iteration for the numerical solution of 2D Porous Medium Equations

Science.gov (United States)

Chew, J. V. L.; Sulaiman, J.

2017-09-01

Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.

4. Molecular dynamics with deterministic and stochastic numerical methods

CERN Document Server

Leimkuhler, Ben

2015-01-01

This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications.  Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method...

5. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps

Science.gov (United States)

Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui

2017-03-01

In this paper, a numerical model is developed by combining thermodynamics with heat transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for heat circulation in air gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the heat flowing through air gaps which forms heat circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant heat flux reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with heat source and sink assembly. At constant power dissipation, steady temperatures of heat source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different heat transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and heat flux, heat loss of the device vertical surfaces and measurements.

6. Finite element method with quadratic quadrilateral unit for solving two dimensional incompressible N-S equation

International Nuclear Information System (INIS)

Tao Ganqiang; Yu Qing; Xiao Xiao

2011-01-01

Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)

7. Salpeter equation in position space: Numerical solution for arbitrary confining potentials

International Nuclear Information System (INIS)

Nickisch, L.J.; Durand, L.; Durand, B.

1984-01-01

We present and test two new methods for the numerical solution of the relativistic wave equation [(-del 2 +m 1 2 )/sup 1/2/+(-del 2 +m 2 2 )/sup 1/2/+V(r)-M]psi( r ) = 0, which appears in the theory of relativistic quark-antiquark bound states. Our methods work directly in position space, and hence have the desirable features that we can vary the potential V(r) locally in fitting the qq-bar mass spectrum, and can easily build in the expected behavior of V for r→0,infinity. Our first method converts the nonlocal square-root operators to mildly singular integral operators involving hyperbolic Bessel functions. The resulting integral equation can be solved numerically by matrix techniques. Our second method approximates the square-root operators directly by finite matrices. Both methods converge rapidly with increasing matrix size (the square-root matrix method more rapidly) and can be used in fast-fitting routines. We present some tests for oscillator and Coulomb interactions, and for the realistic Coulomb-plus-linear potential used in qq-bar phenomenology

8. Taylor's series method for solving the nonlinear point kinetics equations

International Nuclear Information System (INIS)

Nahla, Abdallah A.

2011-01-01

Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.

9. A novel numerical flux for the 3D Euler equations with general equation of state

KAUST Repository

Toro, Eleuterio F.; Castro, Cristó bal E.; Bok Jik, Lee

2015-01-01

Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both

10. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation

Science.gov (United States)

Agarwal, P.; El-Sayed, A. A.

2018-06-01

In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.

11. On the Inclusion of Difference Equation Problems and Z Transform Methods in Sophomore Differential Equation Classes

Science.gov (United States)

Savoye, Philippe

2009-01-01

In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.

12. Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law

Science.gov (United States)

Želi, Velibor; Zorica, Dušan

2018-02-01

Generalization of the heat conduction equation is obtained by considering the system of equations consisting of the energy balance equation and fractional-order constitutive heat conduction law, assumed in the form of the distributed-order Cattaneo type. The Cauchy problem for system of energy balance equation and constitutive heat conduction law is treated analytically through Fourier and Laplace integral transform methods, as well as numerically by the method of finite differences through Adams-Bashforth and Grünwald-Letnikov schemes for approximation derivatives in temporal domain and leap frog scheme for spatial derivatives. Numerical examples, showing time evolution of temperature and heat flux spatial profiles, demonstrate applicability and good agreement of both methods in cases of multi-term and power-type distributed-order heat conduction laws.

13. The instanton method and its numerical implementation in fluid mechanics

Science.gov (United States)

Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias

2015-08-01

A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier-Stokes equations.

14. The instanton method and its numerical implementation in fluid mechanics

International Nuclear Information System (INIS)

Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias

2015-01-01

A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin–Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler–Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier–Stokes equations. (topical review)

15. Numerical Solution of Hamilton-Jacobi Equations in High Dimension

Science.gov (United States)

2012-11-23

high dimension FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA-Universita di Roma P. Aldo Moro, 2 00185 ROMA AH930...solution of Hamilton-Jacobi equations in high dimension AFOSR contract n. FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA

16. New Numerical Solution of von Karman Equation of Lengthwise Rolling

Directory of Open Access Journals (Sweden)

Rudolf Pernis

2015-01-01

Full Text Available The calculation of average material contact pressure to rolls base on mathematical theory of rolling process given by Karman equation was solved by many authors. The solutions reported by authors are used simplifications for solution of Karman equation. The simplifications are based on two cases for approximation of the circular arch: (a by polygonal curve and (b by parabola. The contribution of the present paper for solution of two-dimensional differential equation of rolling is based on description of the circular arch by equation of a circle. The new term relative stress as nondimensional variable was defined. The result from derived mathematical models can be calculated following variables: normal contact stress distribution, front and back tensions, angle of neutral point, coefficient of the arm of rolling force, rolling force, and rolling torque during rolling process. Laboratory cold rolled experiment of CuZn30 brass material was performed. Work hardening during brass processing was calculated. Comparison of theoretical values of normal contact stress with values of normal contact stress obtained from cold rolling experiment was performed. The calculations were not concluded with roll flattening.

17. Numerical Solutions of the Complete Navier-Stokes Equations

Science.gov (United States)

Robinson, David F.; Hassan, H. A.

1997-01-01

This report details the development of a new two-equation turbulence closure model based on the exact turbulent kinetic energy k and the variance of vorticity, zeta. The model, which is applicable to three dimensional flowfields, employs one set of model constants and does not use damping or wall functions, or geometric factors.

18. Application of the Generalized Differential Quadrature Method in Solving Burgers' Equations

International Nuclear Information System (INIS)

Mokhtari, R.; Toodar, A. Samadi; Chegini, N.G.

2011-01-01

The aim of this paper is to obtain numerical solutions of the one-dimensional, two-dimensional and coupled Burgers' equations through the generalized differential quadrature method (GDQM). The polynomial-based differential quadrature (PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta (TVD-RK) method. The numerical solutions are satisfactorily coincident with the exact solutions. The method can compete against the methods applied in the literature. (general)

19. Implicit methods for the Navier-Stokes equations

Science.gov (United States)

Yoon, S.; Kwak, D.

1990-01-01

Numerical solutions of the Navier-Stokes equations using explicit schemes can be obtained at the expense of efficiency. Conventional implicit methods which often achieve fast convergence rates suffer high cost per iteration. A new implicit scheme based on lower-upper factorization and symmetric Gauss-Seidel relaxation offers very low cost per iteration as well as fast convergence. High efficiency is achieved by accomplishing the complete vectorizability of the algorithm on oblique planes of sweep in three dimensions.

20. Unconditionally stable difference methods for delay partial differential equations

OpenAIRE

Huang, Chengming; Vandewalle, Stefan

2012-01-01

This paper is concerned with the numerical solution of parabolic partial differential equations with time-delay. We focus in particular on the delay dependent stability analysis of difference methods that use a non-constrained mesh, i.e., the time step-size is not required to be a submultiple of the delay. We prove that the fully discrete system unconditionally preserves the delay dependent asymptotic stability of the linear test problem under consideration, when the following discretizati...

1. HAM-Based Adaptive Multiscale Meshless Method for Burgers Equation

Directory of Open Access Journals (Sweden)

Shu-Li Mei

2013-01-01

Full Text Available Based on the multilevel interpolation theory, we constructed a meshless adaptive multiscale interpolation operator (MAMIO with the radial basis function. Using this operator, any nonlinear partial differential equations such as Burgers equation can be discretized adaptively in physical spaces as a nonlinear matrix ordinary differential equation. In order to obtain the analytical solution of the system of ODEs, the homotopy analysis method (HAM proposed by Shijun Liao was developed to solve the system of ODEs by combining the precise integration method (PIM which can be employed to get the analytical solution of linear system of ODEs. The numerical experiences show that HAM is not sensitive to the time step, and so the arithmetic error is mainly derived from the discrete in physical space.

2. Gabor Wave Packet Method to Solve Plasma Wave Equations

International Nuclear Information System (INIS)

Pletzer, A.; Phillips, C.K.; Smithe, D.N.

2003-01-01

A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach

3. Structural equation modeling methods and applications

CERN Document Server

Wang, Jichuan

2012-01-01

A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a

4. Integration of equations of parabolic type by the method of nets

CERN Document Server

Saul'Yev, V K; Stark, M; Ulam, S

1964-01-01

International Series of Monographs in Pure and Applied Mathematics, Volume 54: Integration of Equations of Parabolic Type by the Method of Nets deals with solving parabolic partial differential equations using the method of nets. The first part of this volume focuses on the construction of net equations, with emphasis on the stability and accuracy of the approximating net equations. The method of nets or method of finite differences (used to define the corresponding numerical method in ordinary differential equations) is one of many different approximate methods of integration of partial diff

5. Numerical Solutions of Mechanical Turbulent Filtration Equation Used in Mechatronics and Micro Mechanic

OpenAIRE

2013-01-01

In this study, several novel numerical solutions are presented to solve the turbulent filtration equation and its special case called “Non-Newtonian mechanical filtration equation”. The turbulent filtration equation in porous media is a very important equation which has many applications to solve the problems appearing especially in mechatronics, micro mechanic and fluid mechanic. Many applied mechanical problems can be solved using this equation. For example, non-Newtonian mechanical filtrat...

6. Explicit appropriate basis function method for numerical solution of stiff systems

International Nuclear Information System (INIS)

Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling

2015-01-01

Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations

7. Simple equation method for nonlinear partial differential equations and its applications

Directory of Open Access Journals (Sweden)

Taher A. Nofal

2016-04-01

Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.

8. Numerical solutions of the monoenergetic neutron transport equation with anisotropic scattering

International Nuclear Information System (INIS)

Dahl, B.

1985-01-01

The Boltzmann equation for monoenergetic neutrons has been solved numerically with high accuracy for homogeneous slabs and spheres with various degree of linear anisotropy. Vacuum boundary conditions are used. The numerical method is based on previous work by Carlvik. Benchmark values of the criticality factor and higher order eigenvalues are given for multiplying systems of thickness or diameter from 10 -5 to 20 mean free paths and with anisotropy coefficients from 0.0 to 0.3. For slab geometry, both even and odd mode eigenvalues are treated. With increasing anisotropy, an increasing number of complex eigenvalues is observer. The total flux is calculated from the eigenvector and tables of the fundamental mode flux are given. Accurate extrapolation distances are derived for various dimensions and anisotropy coefficients from our eigenvalue results on slabs and spheres and from the work by Sanchez on infinite cylinders.The time eigenvalue spectrum in subcritical systems has also been studied. First, the connection between the eigenvalues arising from the time dependent and stationary transport equation is established. Based on this, the spectrum of real time eigenvalues in slabs and spheres is calculated. For spheres, the existence of complex time eigenvalues in the region beyond the value corresponding to the Corngold limit is numerically established. The presence of such eigenvalues has earlier not been proved. It is further shown that the Boltzmann equation for a sphere is significantly simplified when the decay constant is at the Corngold limit. The spectrum of sphere diameters corresponding to this decay constant is calculated for various linear anisotropies, and detailed numerical results are given. (Author)

9. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves

Science.gov (United States)

Grava, T.; Klein, C.; Pitton, G.

2018-02-01

A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.

10. Iterative method of the parameter variation for solution of nonlinear functional equations

International Nuclear Information System (INIS)

Davidenko, D.F.

1975-01-01

The iteration method of parameter variation is used for solving nonlinear functional equations in Banach spaces. The authors consider some methods for numerical integration of ordinary first-order differential equations and construct the relevant iteration methods of parameter variation, both one- and multifactor. They also discuss problems of mathematical substantiation of the method, study the conditions and rate of convergence, estimate the error. The paper considers the application of the method to specific functional equations

11. A numerical technique for enhanced efficiency and stability for the solution of the nuclear reactor equation

International Nuclear Information System (INIS)

Khotylev, V.A.; Hoogenboom, J.E.

1996-01-01

The paper presents new techniques for the solution of the nuclear reactor equation in diffusion approximation, that has enhanced efficiency and stability. The code system based on the new technique solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three dimensional geometry with reduced CPU time as compared to similar code systems of previous generations if well-posed neutronics problems are considered. Automated detection of ill-posed problem and selection of the appropriate numerical method makes the new code system capable of yielding a correct solution for wider range of problems without user intervention. (author)

12. A numerical technique for enhanced efficiency and stability for the solution of the nuclear reactor equation

Energy Technology Data Exchange (ETDEWEB)

Khotylev, V.A.; Hoogenboom, J.E. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands)

1996-07-01

The paper presents new techniques for the solution of the nuclear reactor equation in diffusion approximation, that has enhanced efficiency and stability. The code system based on the new technique solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three dimensional geometry with reduced CPU time as compared to similar code systems of previous generations if well-posed neutronics problems are considered. Automated detection of ill-posed problem and selection of the appropriate numerical method makes the new code system capable of yielding a correct solution for wider range of problems without user intervention. (author)

13. Distribution of the Discretization and Algebraic Error in Numerical Solution of Partial Differential Equations

Czech Academy of Sciences Publication Activity Database

Papež, Jan; Liesen, J.; Strakoš, Z.

2014-01-01

Roč. 449, 15 May (2014), s. 89-114 ISSN 0024-3795 R&D Projects: GA AV ČR IAA100300802; GA ČR GA201/09/0917 Grant - others:GA MŠk(CZ) LL1202; GA UK(CZ) 695612 Institutional support: RVO:67985807 Keywords : numerical solution of partial differential equations * finite element method * adaptivity * a posteriori error analysis * discretization error * algebra ic error * spatial distribution of the error Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

14. Lectures on the Numerical Solution of Partial Differential Equations.

Science.gov (United States)

1981-12-01

Mathematics Rockefeller University Professor F. Brezzi New York, New York 10021 Laboratorio di Analisi Numerica Universita di Pavia Professor Amiram Harten...equations and to control the spacing of the points sj. In the MFE process the grid points move with the solution and cluster atound areas of roughness...149-159.  Fichera, G.: Analisi essistenziale per le soluzioni die problemi al contorno misti relativi alle equazione ed ai sistemi di equazioni

15. On Solution of a Fractional Diffusion Equation by Homotopy Transform Method

International Nuclear Information System (INIS)

Salah, A.; Hassan, S.S.A.

2012-01-01

The homotopy analysis transform method (HATM) is applied in this work in order to find the analytical solution of fractional diffusion equations (FDE). These equations are obtained from standard diffusion equations by replacing a second-order space derivative by a fractional derivative of order α and a first order time derivative by a fractional derivative. Furthermore, some examples are given. Numerical results show that the homotopy analysis transform method is easy to implement and accurate when applied to a fractional diffusion equations.

16. Solving the Schroedinger equation using the finite difference time domain method

International Nuclear Information System (INIS)

Sudiarta, I Wayan; Geldart, D J Wallace

2007-01-01

In this paper, we solve the Schroedinger equation using the finite difference time domain (FDTD) method to determine energies and eigenfunctions. In order to apply the FDTD method, the Schroedinger equation is first transformed into a diffusion equation by the imaginary time transformation. The resulting time-domain diffusion equation is then solved numerically by the FDTD method. The theory and an algorithm are provided for the procedure. Numerical results are given for illustrative examples in one, two and three dimensions. It is shown that the FDTD method accurately determines eigenfunctions and energies of these systems

17. Numerical Clifford Analysis for the Non-stationary Schroedinger Equation

International Nuclear Information System (INIS)

Faustino, N.; Vieira, N.

2007-01-01

We construct a discrete fundamental solution for the parabolic Dirac operator which factorizes the non-stationary Schroedinger operator. With such fundamental solution we construct a discrete counterpart for the Teodorescu and Cauchy-Bitsadze operators and the Bergman projectors. We finalize this paper with convergence results regarding the operators and a concrete numerical example

18. Numerical solution of the Black-Scholes equation using cubic spline wavelets

Science.gov (United States)

Černá, Dana

2016-12-01

The Black-Scholes equation is used in financial mathematics for computation of market values of options at a given time. We use the θ-scheme for time discretization and an adaptive scheme based on wavelets for discretization on the given time level. Advantages of the proposed method are small number of degrees of freedom, high-order accuracy with respect to variables representing prices and relatively small number of iterations needed to resolve the problem with a desired accuracy. We use several cubic spline wavelet and multi-wavelet bases and discuss their advantages and disadvantages. We also compare an isotropic and anisotropic approach. Numerical experiments are presented for the two-dimensional Black-Scholes equation.

19. Numerical analysis in electromagnetics the TLM method

CERN Document Server

Saguet, Pierre

2013-01-01

The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been

20. Stochastic coalescence in finite systems: an algorithm for the numerical solution of the multivariate master equation.

Science.gov (United States)

Alfonso, Lester; Zamora, Jose; Cruz, Pedro

2015-04-01

The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.