Dynamique de structuration spatio-temporelle des populations de ...
African Journals Online (AJOL)
Dynamique de structuration spatio-temporelle des populations de familles de macroinvertébrés dans un continuum lac de barrage-effluent-fleuve issu de périmètre irrigué. Bassin de la Volta (Burkina Faso)
Boussinesq evolution equations
DEFF Research Database (Denmark)
Bredmose, Henrik; Schaffer, H.; Madsen, Per A.
2004-01-01
This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...
Uraltseva, N N
1995-01-01
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p
Optimal Control for Stochastic Delay Evolution Equations
Energy Technology Data Exchange (ETDEWEB)
Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)
2016-08-15
In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.
Distribution spatio-temporelle du zooplancton en relation avec les ...
African Journals Online (AJOL)
SARAH
31 oct. 2014 ... lotique. Mots clés : zooplancton, eutrophisation, distribution spatio-temporelle, rivière Kondi, Douala. Journal of Applied Biosciences 82:7326 – 7338. ISSN 1997–5902 ...... Maroc subissent une nette augmentation après avoir reçu les effluents de la ville de Taourirt. La légère amélioration observée à la ...
Evolution equations for Killing fields
International Nuclear Information System (INIS)
Coll, B.
1977-01-01
The problem of finding necessary and sufficient conditions on the Cauchy data for Einstein equations which insure the existence of Killing fields in a neighborhood of an initial hypersurface has been considered recently by Berezdivin, Coll, and Moncrief. Nevertheless, it can be shown that the evolution equations obtained in all these cases are of nonstrictly hyperbolic type, and, thus, the Cauchy data must belong to a special class of functions. We prove here that, for the vacuum and Einstein--Maxwell space--times and in a coordinate independent way, one can always choose, as evolution equations for the Killing fields, a strictly hyperbolic system: The above theorems can be thus extended to all Cauchy data for which the Einstein evolution problem has been proved to be well set
International Nuclear Information System (INIS)
Laenen, E.
1995-01-01
We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)
Lie symmetries for systems of evolution equations
Paliathanasis, Andronikos; Tsamparlis, Michael
2018-01-01
The Lie symmetries for a class of systems of evolution equations are studied. The evolution equations are defined in a bimetric space with two Riemannian metrics corresponding to the space of the independent and dependent variables of the differential equations. The exact relation of the Lie symmetries with the collineations of the bimetric space is determined.
Decomposition of a hierarchy of nonlinear evolution equations
International Nuclear Information System (INIS)
Geng Xianguo
2003-01-01
The generalized Hamiltonian structures for a hierarchy of nonlinear evolution equations are established with the aid of the trace identity. Using the nonlinearization approach, the hierarchy of nonlinear evolution equations is decomposed into a class of new finite-dimensional Hamiltonian systems. The generating function of integrals and their generator are presented, based on which the finite-dimensional Hamiltonian systems are proved to be completely integrable in the Liouville sense. As an application, solutions for the hierarchy of nonlinear evolution equations are reduced to solving the compatible Hamiltonian systems of ordinary differential equations
Advanced functional evolution equations and inclusions
Benchohra, Mouffak
2015-01-01
This book presents up-to-date results on abstract evolution equations and differential inclusions in infinite dimensional spaces. It covers equations with time delay and with impulses, and complements the existing literature in functional differential equations and inclusions. The exposition is devoted to both local and global mild solutions for some classes of functional differential evolution equations and inclusions, and other densely and non-densely defined functional differential equations and inclusions in separable Banach spaces or in Fréchet spaces. The tools used include classical fixed points theorems and the measure-of non-compactness, and each chapter concludes with a section devoted to notes and bibliographical remarks. This monograph is particularly useful for researchers and graduate students studying pure and applied mathematics, engineering, biology and all other applied sciences.
Systems of evolution equations and the singular perturbation method
International Nuclear Information System (INIS)
Mika, J.
Several fundamental theorems are presented important for the solution of linear evolution equations in the Banach space. The algorithm is deduced extending the solution of the system of singularly perturbed evolution equations into an asymptotic series with respect to a small positive parameter. The asymptotic convergence is shown of an approximate solution to the accurate solution. Singularly perturbed evolution equations of the resonance type were analysed. The special role is considered of the asymptotic equivalence of P1 equations obtained as the first order approximation if the spherical harmonics method is applied to the linear Boltzmann equation, and the diffusion equations of the linear transport theory where the small parameter approaches zero. (J.B.)
Physical entropy, information entropy and their evolution equations
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Inspired by the evolution equation of nonequilibrium statistical physics entropy and the concise statistical formula of the entropy production rate, we develop a theory of the dynamic information entropy and build a nonlinear evolution equation of the information entropy density changing in time and state variable space. Its mathematical form and physical meaning are similar to the evolution equation of the physical entropy: The time rate of change of information entropy density originates together from drift, diffusion and production. The concise statistical formula of information entropy production rate is similar to that of physical entropy also. Furthermore, we study the similarity and difference between physical entropy and information entropy and the possible unification of the two statistical entropies, and discuss the relationship among the principle of entropy increase, the principle of equilibrium maximum entropy and the principle of maximum information entropy as well as the connection between them and the entropy evolution equation.
Subordination principle for fractional evolution equations
Bazhlekova, E.G.
2000-01-01
The abstract Cauchy problem for the fractional evolution equation Daa = Au, a > 0, (1) where A is a closed densely de??ned operator in a Banach space, is investigated. The subordination principle, presented earlier in [J. P r ??u s s, Evolutionary In- tegral Equations and Applications. Birkh??auser,
Electroweak evolution equations
International Nuclear Information System (INIS)
Ciafaloni, Paolo; Comelli, Denis
2005-01-01
Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings
On a new series of integrable nonlinear evolution equations
International Nuclear Information System (INIS)
Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.
1980-10-01
Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)
Moving interfaces and quasilinear parabolic evolution equations
Prüss, Jan
2016-01-01
In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...
Spatial evolution equation of wind wave growth
Institute of Scientific and Technical Information of China (English)
WANG; Wei; (王; 伟); SUN; Fu; (孙; 孚); DAI; Dejun; (戴德君)
2003-01-01
Based on the dynamic essence of air-sea interactions, a feedback type of spatial evolution equation is suggested to match reasonably the growing process of wind waves. This simple equation involving the dominant factors of wind wave growth is able to explain the transfer of energy from high to low frequencies without introducing the concept of nonlinear wave-wave interactions, and the results agree well with observations. The rate of wave height growth derived in this dissertation is applicable to both laboratory and open sea, which solidifies the physical basis of using laboratory experiments to investigate the generation of wind waves. Thus the proposed spatial evolution equation provides a new approach for the research on dynamic mechanism of air-sea interactions and wind wave prediction.
International Nuclear Information System (INIS)
Pierantozzi, T.; Vazquez, L.
2005-01-01
Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case
Weierstrass Elliptic Function Solutions to Nonlinear Evolution Equations
International Nuclear Information System (INIS)
Yu Jianping; Sun Yongli
2008-01-01
This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation. Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations
Emmy Noether and Linear Evolution Equations
Directory of Open Access Journals (Sweden)
P. G. L. Leach
2013-01-01
Full Text Available Noether’s Theorem relates the Action Integral of a Lagrangian with symmetries which leave it invariant and the first integrals consequent upon the variational principle and the existence of the symmetries. These each have an equivalent in the Schrödinger Equation corresponding to the Lagrangian and by extension to linear evolution equations in general. The implications of these connections are investigated.
Effective evolution equations from quantum mechanics
Leopold, Nikolai
2018-01-01
The goal of this thesis is to provide a mathematical rigorous derivation of the Schrödinger-Klein-Gordon equations, the Maxwell-Schrödinger equations and the defocusing cubic nonlinear Schrödinger equation in two dimensions. We study the time evolution of the Nelson model (with ultraviolet cutoff) in a limit where the number N of charged particles gets large while the coupling of each particle to the radiation field is of order N^{−1/2}. At time zero it is assumed that almost all charges a...
Nonlocal higher order evolution equations
Rossi, Julio D.; Schö nlieb, Carola-Bibiane
2010-01-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove
Effective evolution equations from many-body quantum mechanics
International Nuclear Information System (INIS)
Benedikter, Niels Patriz
2014-01-01
Systems of interest in physics often consist of a very large number of interacting particles. In certain physical regimes, effective non-linear evolution equations are commonly used as an approximation for making predictions about the time-evolution of such systems. Important examples are Bose-Einstein condensates of dilute Bose gases and degenerate Fermi gases. While the effective equations are well-known in physics, a rigorous justification is very difficult. However, a rigorous derivation is essential to precisely understand the range and the limits of validity and the quality of the approximation. In this thesis, we prove that the time evolution of Bose-Einstein condensates in the Gross-Pitaevskii regime can be approximated by the time-dependent Gross-Pitaevskii equation, a cubic non-linear Schroedinger equation. We then turn to fermionic systems and prove that the evolution of a degenerate Fermi gas can be approximated by the time-dependent Hartree-Fock equation (TDHF) under certain assumptions on the semiclassical structure of the initial data. Finally, we extend the latter result to fermions with relativistic kinetic energy. All our results provide explicit bounds on the error as the number of particles becomes large. A crucial methodical insight on bosonic systems is that correlations can be modeled by Bogolyubov transformations. We construct initial data appropriate for the Gross-Pitaevskii regime using a Bogolyubov transformation acting on a coherent state, which amounts to studying squeezed coherent states. As a crucial insight for fermionic systems, we point out a semiclassical structure in states close to the ground state of fermions in a trap. As a convenient language for studying the dynamics of fermionic systems, we use particle-hole transformations.
Existence of solutions of abstract fractional impulsive semilinear evolution equations
Directory of Open Access Journals (Sweden)
K. Balachandran
2010-01-01
Full Text Available In this paper we prove the existence of solutions of fractional impulsive semilinear evolution equations in Banach spaces. A nonlocal Cauchy problem is discussed for the evolution equations. The results are obtained using fractional calculus and fixed point theorems. An example is provided to illustrate the theory.
Hamiltonian structures of some non-linear evolution equations
International Nuclear Information System (INIS)
Tu, G.Z.
1983-06-01
The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)
QCD evolution equations for high energy partons in nuclear matter
Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt
1994-01-01
We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.
Prolongation Structure of Semi-discrete Nonlinear Evolution Equations
International Nuclear Information System (INIS)
Bai Yongqiang; Wu Ke; Zhao Weizhong; Guo Hanying
2007-01-01
Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schroedinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.
Nonlinear evolution equations having a physical meaning
International Nuclear Information System (INIS)
Nakach, R.
1976-06-01
The non stationary self-similar solutions of the nonlinear evolution equations which can be solved by the inverse scattering method are studied. It turns out, as shown by means of several examples, that when the L linear operator associated with these equations, is of second order and only then, the self-similar solutions can be expressed in terms of the various Painleve's transcendents [fr
Critical spaces for quasilinear parabolic evolution equations and applications
Prüss, Jan; Simonett, Gieri; Wilke, Mathias
2018-02-01
We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.
Soliton evolution and radiation loss for the Korteweg--de Vries equation
International Nuclear Information System (INIS)
Kath, W.L.; Smyth, N.F.
1995-01-01
The time-dependent behavior of solutions of the Korteweg--de Vries (KdV) equation for nonsoliton initial conditions is considered. While the exact solution of the KdV equation can in principle be obtained using the inverse scattering transform, in practice it can be extremely difficult to obtain information about a solution's transient evolution by this method. As an alternative, we present here an approximate method for investigating this transient evolution which is based upon the conservation laws associated with the KdV equation. Initial conditions which form one or two solitons are considered, and the resulting approximate evolution is found to be in good agreement with the numerical solution of the KdV equation. Justification for the approximations employed is also given by way of the linearized inverse scattering solution of the KdV equation. In addition, the final soliton state determined from the approximate equations agrees very well with the final state determined from the exact inverse scattering transform solution
A general nonlinear evolution equation for irreversible conservative approach to stable equilibrium
International Nuclear Information System (INIS)
Beretta, G.P.
1986-01-01
This paper addresses a mathematical problem relevant to the question of nonequilibrium and irreversibility, namely, that of ''designing'' a general evolution equation capable of describing irreversible but conservative relaxtion towards equilibrium. The objective is to present an interesting mathematical solution to this design problem, namely, a new nonlinear evolution equation that satisfies a set of very stringent relevant requirements. Three different frameworks are defined from which the new equation could be adopted, with entirely different interpretations. Some useful well-known mathematics involving Gram determinants are presented and a nonlinear evolution equation is given which meets the stringent design specifications
Semigroup methods for evolution equations on networks
Mugnolo, Delio
2014-01-01
This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations. This book is specifically devoted to the study of evolution equations – i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) – bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has been devoted to ellip...
Nonlocal higher order evolution equations
Rossi, Julio D.
2010-06-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.
Symmetry Reduction and Cauchy Problems for a Class of Fourth-Order Evolution Equations
International Nuclear Information System (INIS)
Li Jina; Zhang Shunli
2008-01-01
We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations to Cauchy problems for systems of ordinary differential equations (ODEs). We classify a class of fourth-order evolution equations which admit certain higher-order generalized conditional symmetries (GCSs) and give some examples to show the main reduction procedure. These reductions cannot be derived within the framework of the standard Lie approach, which hints that the technique presented here is something essential for the dimensional reduction of evolution equations
The Liouville equation for flavour evolution of neutrinos and neutrino wave packets
Energy Technology Data Exchange (ETDEWEB)
Hansen, Rasmus Sloth Lundkvist; Smirnov, Alexei Yu., E-mail: rasmus@mpi-hd.mpg.de, E-mail: smirnov@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)
2016-12-01
We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of momentum changing collisions, the LE can be reduced to a single derivative equation over a trajectory coordinate. Additional time and spatial dependence may stem from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.
Finite difference evolution equations and quantum dynamical semigroups
International Nuclear Information System (INIS)
Ghirardi, G.C.; Weber, T.
1983-12-01
We consider the recently proposed [Bonifacio, Lett. Nuovo Cimento, 37, 481 (1983)] coarse grained description of time evolution for the density operator rho(t) through a finite difference equation with steps tau, and we prove that there exists a generator of the quantum dynamical semigroup type yielding an equation giving a continuous evolution coinciding at all time steps with the one induced by the coarse grained description. The map rho(0)→rho(t) derived in this way takes the standard form originally proposed by Lindblad [Comm. Math. Phys., 48, 119 (1976)], even when the map itself (and, therefore, the corresponding generator) is not bounded. (author)
Periodic feedback stabilization for linear periodic evolution equations
Wang, Gengsheng
2016-01-01
This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.
Spectral transform and solvability of nonlinear evolution equations
International Nuclear Information System (INIS)
Degasperis, A.
1979-01-01
These lectures deal with an exciting development of the last decade, namely the resolving method based on the spectral transform which can be considered as an extension of the Fourier analysis to nonlinear evolution equations. Since many important physical phenomena are modeled by nonlinear partial wave equations this method is certainly a major breakthrough in mathematical physics. We follow the approach, introduced by Calogero, which generalizes the usual Wronskian relations for solutions of a Sturm-Liouville problem. Its application to the multichannel Schroedinger problem will be the subject of these lectures. We will focus upon dynamical systems described at time t by a multicomponent field depending on one space coordinate only. After recalling the Fourier technique for linear evolution equations we introduce the spectral transform method taking the integral equations of potential scattering as an example. The second part contains all the basic functional relationships between the fields and their spectral transforms as derived from the Wronskian approach. In the third part we discuss a particular class of solutions of nonlinear evolution equations, solitons, which are considered by many physicists as a first step towards an elementary particle theory, because of their particle-like behaviour. The effect of the polarization time-dependence on the motion of the soliton is studied by means of the corresponding spectral transform, leading to new concepts such as the 'boomeron' and the 'trappon'. The rich dynamic structure is illustrated by a brief report on the main results of boomeron-boomeron and boomeron-trappon collisions. In the final section we discuss further results concerning important properties of the solutions of basic nonlinear equations. We introduce the Baecklund transform for the special case of scalar fields and demonstrate how it can be used to generate multisoliton solutions and how the conservation laws are obtained. (HJ)
The spectral transform as a tool for solving nonlinear discrete evolution equations
International Nuclear Information System (INIS)
Levi, D.
1979-01-01
In this contribution we study nonlinear differential difference equations which became important to the description of an increasing number of problems in natural science. Difference equations arise for instance in the study of electrical networks, in statistical problems, in queueing problems, in ecological problems, as computer models for differential equations and as models for wave excitation in plasma or vibrations of particles in an anharmonic lattice. We shall first review the passages necessary to solve linear discrete evolution equations by the discrete Fourier transfrom, then, starting from the Zakharov-Shabat discretized eigenvalue, problem, we shall introduce the spectral transform. In the following part we obtain the correlation between the evolution of the potentials and scattering data through the Wronskian technique, giving at the same time many other properties as, for example, the Baecklund transformations. Finally we recover some of the important equations belonging to this class of nonlinear discrete evolution equations and extend the method to equations with n-dependent coefficients. (HJ)
Lectures on nonlinear evolution equations initial value problems
Racke, Reinhard
2015-01-01
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...
Institute of Scientific and Technical Information of China (English)
2008-01-01
Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.
The presentation of explicit analytical solutions of a class of nonlinear evolution equations
International Nuclear Information System (INIS)
Feng Jinshun; Guo Mingpu; Yuan Deyou
2009-01-01
In this paper, we introduce a function set Ω m . There is a conjecture that an arbitrary explicit travelling-wave analytical solution of a real constant coefficient nonlinear evolution equation is necessarily a linear (or nonlinear) combination of the product of some elements in Ω m . A widespread applicable approach for solving a class of nonlinear evolution equations is established. The new analytical solutions to two kinds of nonlinear evolution equations are described with the aid of the guess.
Diffusion equations and the time evolution of foreign exchange rates
Energy Technology Data Exchange (ETDEWEB)
Figueiredo, Annibal; Castro, Marcio T. de [Institute of Physics, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Fonseca, Regina C.B. da [Department of Mathematics, Instituto Federal de Goiás, Goiânia GO 74055-110 (Brazil); Gleria, Iram, E-mail: iram@fis.ufal.br [Institute of Physics, Federal University of Alagoas, Brazil, Maceió AL 57072-900 (Brazil)
2013-10-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
Diffusion equations and the time evolution of foreign exchange rates
Figueiredo, Annibal; de Castro, Marcio T.; da Fonseca, Regina C. B.; Gleria, Iram
2013-10-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers-Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
Diffusion equations and the time evolution of foreign exchange rates
International Nuclear Information System (INIS)
Figueiredo, Annibal; Castro, Marcio T. de; Fonseca, Regina C.B. da; Gleria, Iram
2013-01-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
An application of transverse momentum dependent evolution equations in QCD
International Nuclear Information System (INIS)
Ceccopieri, Federico A.; Trentadue, Luca
2008-01-01
The properties and behaviour of the solutions of the recently obtained k t -dependent QCD evolution equations are investigated. When used to reproduce transverse momentum spectra of hadrons in Semi-Inclusive DIS, an encouraging agreement with data is found. The present analysis also supports at the phenomenological level the factorization properties of the Semi-Inclusive DIS cross-sections in terms of k t -dependent distributions. Further improvements and possible developments of the proposed evolution equations are envisaged
An axisymmetric evolution code for the Einstein equations on hyperboloidal slices
International Nuclear Information System (INIS)
Rinne, Oliver
2010-01-01
We present the first stable dynamical numerical evolutions of the Einstein equations in terms of a conformally rescaled metric on hyperboloidal hypersurfaces extending to future null infinity. Axisymmetry is imposed in order to reduce the computational cost. The formulation is based on an earlier axisymmetric evolution scheme, adapted to time slices of constant mean curvature. Ideas from a previous study by Moncrief and the author are applied in order to regularize the formally singular evolution equations at future null infinity. Long-term stable and convergent evolutions of Schwarzschild spacetime are obtained, including a gravitational perturbation. The Bondi news function is evaluated at future null infinity.
International Nuclear Information System (INIS)
Eichmann, U.A.; Draayer, J.P.; Ludu, A.
2002-01-01
A potential representation for the subset of travelling solutions of nonlinear dispersive evolution equations is introduced. The procedure involves reduction of a third-order partial differential equation to a first-order ordinary differential equation. The potential representation allows us to deduce certain properties of the solutions without the actual need to solve the underlying evolution equation. In particular, the paper deals with the so-called K(n, m) equations. Starting from their respective potential representations it is shown that these equations can be classified according to a simple point transformation. As a result, e.g., all equations with linear dispersion join the same equivalence class with the Korteweg-deVries equation being its representative, and all soliton solutions of higher order nonlinear equations are thus equivalent to the KdV soliton. Certain equations with both linear and quadratic dispersions can also be treated within this equivalence class. (author)
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or
The fundamental solutions for fractional evolution equations of parabolic type
Directory of Open Access Journals (Sweden)
Mahmoud M. El-Borai
2004-01-01
Full Text Available The fundamental solutions for linear fractional evolution equations are obtained. The coefficients of these equations are a family of linear closed operators in the Banach space. Also, the continuous dependence of solutions on the initial conditions is studied. A mixed problem of general parabolic partial differential equations with fractional order is given as an application.
Existence results for impulsive evolution differential equations with state-dependent delay
Eduardo Hernandez M.; Rathinasamy Sakthivel; Sueli Tanaka Aki
2008-01-01
We study the existence of mild solution for impulsive evolution abstract differential equations with state-dependent delay. A concrete application to partial delayed differential equations is considered.
Existence families, functional calculi and evolution equations
deLaubenfels, Ralph
1994-01-01
This book presents an operator-theoretic approach to ill-posed evolution equations. It presents the basic theory, and the more surprising examples, of generalizations of strongly continuous semigroups known as 'existent families' and 'regularized semigroups'. These families of operators may be used either to produce all initial data for which a solution in the original space exists, or to construct a maximal subspace on which the problem is well-posed. Regularized semigroups are also used to construct functional, or operational, calculi for unbounded operators. The book takes an intuitive and constructive approach by emphasizing the interaction between functional calculus constructions and evolution equations. One thinks of a semigroup generated by A as etA and thinks of a regularized semigroup generated by A as etA g(A), producing solutions of the abstract Cauchy problem for initial data in the image of g(A). Material that is scattered throughout numerous papers is brought together and presented in a fresh, ...
Exact solutions for nonlinear evolution equations using Exp-function method
International Nuclear Information System (INIS)
Bekir, Ahmet; Boz, Ahmet
2008-01-01
In this Letter, the Exp-function method is used to construct solitary and soliton solutions of nonlinear evolution equations. The Klein-Gordon, Burger-Fisher and Sharma-Tasso-Olver equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations
Motsa, S S; Magagula, V M; Sibanda, P
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Directory of Open Access Journals (Sweden)
S. S. Motsa
2014-01-01
Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Fermionic covariant prolongation structure theory for supernonlinear evolution equation
International Nuclear Information System (INIS)
Cheng Jipeng; Wang Shikun; Wu Ke; Zhao Weizhong
2010-01-01
We investigate the superprincipal bundle and its associated superbundle. The super(nonlinear)connection on the superfiber bundle is constructed. Then by means of the connection theory, we establish the fermionic covariant prolongation structure theory of the supernonlinear evolution equation. In this geometry theory, the fermionic covariant fundamental equations determining the prolongation structure are presented. As an example, the supernonlinear Schroedinger equation is analyzed in the framework of this fermionic covariant prolongation structure theory. We obtain its Lax pairs and Baecklund transformation.
From BBGKY hierarchy to non-Markovian evolution equations
International Nuclear Information System (INIS)
Gerasimenko, V.I.; Shtyk, V.O.; Zagorodny, A.G.
2009-01-01
The problem of description of the evolution of the microscopic phase density and its generalizations is discussed. With this purpose, the sequence of marginal microscopic phase densities is introduced, and the appropriate BBGKY hierarchy for these microscopic distributions and their average values is formulated. The microscopic derivation of the generalized evolution equation for the average value of the microscopic phase density is given, and the non-Markovian generalization of the Fokker-Planck collision integral is proposed
Approach in Theory of Nonlinear Evolution Equations: The Vakhnenko-Parkes Equation
Directory of Open Access Journals (Sweden)
V. O. Vakhnenko
2016-01-01
Full Text Available A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE, by a change of independent variables. The VPE has an N-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprises N-loop-like solitons. Aspects of the inverse scattering transform (IST method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads to N-soliton solutions and M-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.
Almost Periodic Solutions for Impulsive Fractional Stochastic Evolution Equations
Directory of Open Access Journals (Sweden)
Toufik Guendouzi
2014-08-01
Full Text Available In this paper, we consider the existence of square-mean piecewise almost periodic solutions for impulsive fractional stochastic evolution equations involving Caputo fractional derivative. The main results are obtained by means of the theory of operators semi-group, fractional calculus, fixed point technique and stochastic analysis theory and methods adopted directly from deterministic fractional equations. Some known results are improved and generalized.
International Nuclear Information System (INIS)
Alvarez-Estrada, R.F.
1979-01-01
A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly
Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains
Adler, V. E.
2018-04-01
We consider differential-difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.
Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method
International Nuclear Information System (INIS)
Ebaid, A.
2007-01-01
Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method
Wave functions, evolution equations and evolution kernels form light-ray operators of QCD
International Nuclear Information System (INIS)
Mueller, D.; Robaschik, D.; Geyer, B.; Dittes, F.M.; Horejsi, J.
1994-01-01
The widely used nonperturbative wave functions and distribution functions of QCD are determined as matrix elements of light-ray operators. These operators appear as large momentum limit of non-local hardron operators or as summed up local operators in light-cone expansions. Nonforward one-particle matrix elements of such operators lead to new distribution amplitudes describing both hadrons simultaneously. These distribution functions depend besides other variables on two scaling variables. They are applied for the description of exclusive virtual Compton scattering in the Bjorken region near forward direction and the two meson production process. The evolution equations for these distribution amplitudes are derived on the basis of the renormalization group equation of the considered operators. This includes that also the evolution kernels follow from the anomalous dimensions of these operators. Relations between different evolution kernels (especially the Altarelli-Parisi and the Brodsky-Lepage kernels) are derived and explicitly checked for the existing two-loop calculations of QCD. Technical basis of these resluts are support and analytically properties of the anomalous dimensions of light-ray operators obtained with the help of the α-representation of Green's functions. (orig.)
Complete integrability of the difference evolution equations
International Nuclear Information System (INIS)
Gerdjikov, V.S.; Ivanov, M.I.; Kulish, P.P.
1980-01-01
The class of exactly solvable nonlinear difference evolution equations (DEE) related to the discrete analog of the one-dimensional Dirac problem L is studied. For this starting from L we construct a special linear non-local operator Λ and obtain the expansions of w and σ 3 deltaw over its eigenfunctions, w being the potential in L. This allows us to obtain compact expressions for the integrals of motion and to prove that these DEE are completely integrable Hamiltonian systems. Moreover, it is shown that there exists a hierarchy of Hamiltonian structures, generated by Λ, and the action-angle variables are explicity calculated. As particular cases the difference analog of the non-linear Schroedinger equation and the modified Korteweg-de-Vries equation are considered. The quantization of these Hamiltonian system through the use of the quantum inverse scattering method is briefly discussed [ru
Preservation of support and positivity for solutions of degenerate evolution equations
International Nuclear Information System (INIS)
Ambrose, David M; Wright, J Douglas
2010-01-01
We prove that sufficiently smooth solutions of equations of a certain class have two interesting properties. These evolution equations are in a sense degenerate, in that every term on the right-hand side of the evolution equation has either the unknown or its first spatial derivative as a factor. We first find a conserved quantity for the equation: the measure of the set on which the solution is non-zero. Second, we show that solutions which are initially non-negative remain non-negative for all times. These properties rely heavily upon the degeneracy of the leading order term. When the equation is more degenerate, we are able to prove that there are additional conserved quantities: the measure of the set on which the solution is positive and the measure of the set on which the solution is negative. To illustrate these results, we give examples of equations with nonlinear dispersion which have solutions in spaces with sufficient regularity to satisfy the hypotheses of the support and positivity theorems. An important family of equations with nonlinear dispersion are the Rosenau–Hyman compacton equations; there is no existence theory yet for these equations, but the known solutions of the compacton equations are of lower regularity than is needed for the preceding theorems. We prove an additional positivity theorem which applies to solutions of the same family of equations in a function space which includes some solutions of compacton equations
Evolution equation for classical and quantum light in turbulence
CSIR Research Space (South Africa)
Roux, FS
2015-06-01
Full Text Available Recently, an infinitesimal propagation equation was derived for the evolution of orbital angular momentum entangled photonic quantum states through turbulence. The authors will discuss its derivation and application within both classical and quantum...
On the evolution equations, solvable through the inverse scattering method
International Nuclear Information System (INIS)
Gerdjikov, V.S.; Khristov, E.Kh.
1979-01-01
The nonlinear evolution equations (NLEE), related to the one-parameter family of Dirac operators are considered in a uniform manner. The class of NLEE solvable through the inverse scatterina method and their conservation laws are described. The description of the hierarchy of Hamiltonian structures and the proof of complete integrability of the NLEE is presented. The class of Baecklund transformations for these NLEE is derived. The general formulae are illustrated by two important examples: the nonlinear Schroedinger equation and the sine-Gordon equation
Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves
DEFF Research Database (Denmark)
Eldeberky, Y.; Madsen, Per A.
1999-01-01
and stochastic formulations are solved numerically for the case of cross shore motion of unidirectional waves and the results are verified against laboratory data for wave propagation over submerged bars and over a plane slope. Outside the surf zone the two model predictions are generally in good agreement......This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary...... is significantly underestimated for larger wave numbers. In the present work we correct this inconsistency. In addition to the improved deterministic formulation, we present improved stochastic evolution equations in terms of the energy spectrum and the bispectrum for multidirectional waves. The deterministic...
Directory of Open Access Journals (Sweden)
Julie Jarty
2009-09-01
Full Text Available De par sa flexibilité temporelle, il existe une perception largement répandue selon laquelle la profession enseignante serait woman-friendly, « bien pour une femme ». Le « plafond de verre » est pourtant une réalité pour de nombreuses femmes au sein de l’enseignement du second degré. Centré sur une étude des perceptions et des pratiques temporelles au sein de ce groupe professionnel dans une perspective de genre, cet article s’appuie sur une analyse critique des discours de 40 entretiens individuels réalisés auprès d’hommes et de femmes enseignant-e-s du secondaire et de leurs « carnets-temps ». Il s’agit d’explorer la manière dont ils et elles utilisent leur temps et cette flexibilité professionnelle. Le résultat de cette recherche permet de montrer que les expériences temporelles sexuées sont particulièrement prédominantes, ce qui contribue à expliquer les difficultés des femmes enseignantes à accéder aux positions les plus prestigieuses et les mieux rémunérées de la hiérarchie. Néanmoins, la mobilisation d’une typologie des expériences temporelles des enseignantes nous conduit à identifier l’existence de discours alternatifs, reconnaissant ainsi les contrastes du degré selon lequel les rapports sociaux de sexe sont reproduits, reconfigurés ou transformés au sein de la profession.Because of its temporal flexibility, there is a widespread notion that the teaching profession is ‘woman-friendly’ or “good for women”. However, there is extensive evidence that a ‘glass ceiling’ exists for female secondary school teachers too. Based on a study of temporal perceptions and practices within the teaching profession in a gendered perspective, this paper draws on the critical discourse analysis of forty individual interviews conducted with male and female secondary school teachers and of their schedules. The aim was to examine the use they make of their time and professional flexibility
Evolution equation for the shape function in the parton model approach to inclusive B decays
International Nuclear Information System (INIS)
Baek, Seungwon; Lee, Kangyoung
2005-01-01
We derive an evolution equation for the shape function of the b quark in an analogous way to the Altarelli-Parisi equation by incorporating the perturbative QCD correction to the inclusive semileptonic decays of the B meson. Since the parton picture works well for inclusive B decays due to the heavy mass of the b quark, the scaling feature manifests and the decay rate may be expressed by a single structure function describing the light-cone distribution of the b quark apart from the kinematic factor. The evolution equation introduces a q 2 dependence of the shape function and violates the scaling properties. We solve the evolution equation and discuss the phenomenological implication.
Spin and energy evolution equations for a wide class of extended bodies
International Nuclear Information System (INIS)
Racine, Etienne
2006-01-01
We give a surface integral derivation of the leading-order evolution equations for the spin and energy of a relativistic body interacting with other bodies in the post-Newtonian expansion scheme. The bodies can be arbitrarily shaped and can be strongly self-gravitating. The effects of all mass and current multipoles are taken into account. As part of the computation one of the 2PN potentials parametrizing the metric is obtained. The formulae obtained here for spin and energy evolution coincide with those obtained by Damour, Soffel and Xu for the case of weakly self-gravitating bodies. By combining an Einstein-Infeld-Hoffman-type surface integral approach with multipolar expansions we extend the domain of validity of these evolution equations to a wide class of strongly self-gravitating bodies. This paper completes in a self-contained way a previous work by Racine and Flanagan on translational equations of motion for compact objects
Application of Exp-function method for (2 + 1)-dimensional nonlinear evolution equations
International Nuclear Information System (INIS)
Bekir, Ahmet; Boz, Ahmet
2009-01-01
In this paper, the Exp-function method is used to construct solitary and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. (2 + 1)-dimensional breaking soliton (Calogero) equation, modified Zakharov-Kuznetsov and Konopelchenko-Dubrovsky equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations.
New prospects in direct, inverse and control problems for evolution equations
Fragnelli, Genni; Mininni, Rosa
2014-01-01
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.
Phase-space formalism: Operational calculus and solution of evolution equations in phase-space
International Nuclear Information System (INIS)
Dattoli, G.; Torre, A.
1995-05-01
Phase-space formulation of physical problems offers conceptual and practical advantages. A class of evolution type equations, describing the time behaviour of a physical system, using an operational formalism useful to handle time ordering problems has been described. The methods proposed generalize the algebraic ordering techniques developed to deal with the ordinary Schroedinger equation, and how they are taylored suited to treat evolution problems both in classical and quantum dynamics has been studied
Pogan, Alin; Zumbrun, Kevin
2018-06-01
We construct center manifolds for a class of degenerate evolution equations including the steady Boltzmann equation and related kinetic models, establishing in the process existence and behavior of small-amplitude kinetic shock and boundary layers. Notably, for Boltzmann's equation, we show that elements of the center manifold decay in velocity at near-Maxwellian rate, in accord with the formal Chapman-Enskog picture of near-equilibrium flow as evolution along the manifold of Maxwellian states, or Grad moment approximation via Hermite polynomials in velocity. Our analysis is from a classical dynamical systems point of view, with a number of interesting modifications to accommodate ill-posedness of the underlying evolution equation.
Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra
International Nuclear Information System (INIS)
Gerdt, V.P.; Kostov, N.A.
1989-01-01
In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs
International Nuclear Information System (INIS)
Caraballo, T.; Kloeden, P.E.
2006-01-01
Under a one-sided dissipative Lipschitz condition on its drift, a stochastic evolution equation with additive noise of the reaction-diffusion type is shown to have a unique stochastic stationary solution which pathwise attracts all other solutions. A similar situation holds for each Galerkin approximation and each implicit Euler scheme applied to these Galerkin approximations. Moreover, the stationary solution of the Euler scheme converges pathwise to that of the Galerkin system as the stepsize tends to zero and the stationary solutions of the Galerkin systems converge pathwise to that of the evolution equation as the dimension increases. The analysis is carried out on random partial and ordinary differential equations obtained from their stochastic counterparts by subtraction of appropriate Ornstein-Uhlenbeck stationary solutions
Effective average action for gauge theories and exact evolution equations
International Nuclear Information System (INIS)
Reuter, M.; Wetterich, C.
1993-11-01
We propose a new nonperturbative evolution equation for Yang-Mills theories. It describes the scale dependence of an effective action. The running of the nonabelian gauge coupling in arbitrary dimension is computed. (orig.)
Operations involving momentum variables in non-Hamiltonian evolution equations
International Nuclear Information System (INIS)
Benatti, F.; Ghirardi, G.C.; Rimini, A.; Weber, T.
1988-02-01
Non-Hamiltonian evolution equations have been recently considered for the description of various physical processes. Among this type of equations the class which has been more extensively studied is the one usually referred to as Quantum Dynamical Semigroup equations (QDS). In particular an equation of the QDS type has been considered as the basis for a model, called Quantum Mechanics with Spontaneous Localization (QMSL), which has been shown to exhibit some very interesting features allowing to overcome most of the conceptual difficulties of standard quantum theory, QMSL assumes a modification of the pure Schroedinger evolution by assuming the occurrence, at random times, of stochastic processes for the wave function corresponding formally to approximate position measurements. In this paper, we investigate the consequences of modifying and/or enlarging the class of the considered stochastic processes, by considering the spontaeous occurrence of approximate momentum and of simultaneous position and momentum measurements. It is shown that the considered changes in the elementary processes have unacceptable consequences. In particular they either lead to drastic modifications in the dynamics of microsystems or are completely useless from the point of view of the conceptual advantages that one was trying to get from QMSL. The present work supports therefore the idea that QMSL, as originally formulated, can be taken as the basic scheme for the generalizations which are still necessary in order to make it appropriate for the description of systems of identical particles and to meet relativistic requirements. (author). 14 refs
Operations involving momentum variables in non-Hamiltonian evolution equation
International Nuclear Information System (INIS)
Benatti, F.; Ghirardi, G.C.; Weber, T.; Rimini, A.
1988-01-01
Non-Hamiltonian evolution equations have been recently considered for the description of various physical processes. Among these types of equations the class which has been more extensively studied is the one usually referred to as quantum-dynamical semi-group equations (QDS). In particular an equation of the QDS type has been considered as the basis for a model, called quantum mechanics with spontaneous localization (QMSL), which has been shown to exhibit some very interesting features allowing us to overcome most of the conceptual difficulties of standard quantum theory. QMSL assumes a modification of the pure Schroedinger evolution by assuming the occurrence, at random times, of stochastic processes for the wave function corresponding formally to approximate position measurements. In this paper the consequences of modifying and/or enlarging the class of the considered stochastic processes, by considering the spontaneous occurrence of approximate momentum and of simultaneous position and momentum measurements, are investigated. It is shown that the considered changes in the elementary processes have unacceptable consequences. In particular they either lead to drastic modification in the dynamics of microsystems or are completely useless from the point of view of the conceptual advantages that one was trying to get from QMSL. The present work supports therefore the idea that QMSL, as originally formulated, can be taken as the basic scheme for the generalizations which are still necessary in order to make it appropriate for the description of systems of identical particles and to meet relativistic requirements
Topological soliton solutions for some nonlinear evolution equations
Directory of Open Access Journals (Sweden)
Ahmet Bekir
2014-03-01
Full Text Available In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc. envelope for the understanding of most nonlinear physical phenomena.
Algebraic models for the hierarchy structure of evolution equations at small x
International Nuclear Information System (INIS)
Rembiesa, P.; Stasto, A.M.
2005-01-01
We explore several models of QCD evolution equations simplified by considering only the rapidity dependence of dipole scattering amplitudes, while provisionally neglecting their dependence on transverse coordinates. Our main focus is on the equations that include the processes of pomeron splittings. We examine the algebraic structures of the governing equation hierarchies, as well as the asymptotic behavior of their solutions in the large-rapidity limit
Directory of Open Access Journals (Sweden)
Rice Sean H
2008-09-01
Full Text Available Abstract Background Evolution involves both deterministic and random processes, both of which are known to contribute to directional evolutionary change. A number of studies have shown that when fitness is treated as a random variable, meaning that each individual has a distribution of possible fitness values, then both the mean and variance of individual fitness distributions contribute to directional evolution. Unfortunately the most general mathematical description of evolution that we have, the Price equation, is derived under the assumption that both fitness and offspring phenotype are fixed values that are known exactly. The Price equation is thus poorly equipped to study an important class of evolutionary processes. Results I present a general equation for directional evolutionary change that incorporates both deterministic and stochastic processes and applies to any evolving system. This is essentially a stochastic version of the Price equation, but it is derived independently and contains terms with no analog in Price's formulation. This equation shows that the effects of selection are actually amplified by random variation in fitness. It also generalizes the known tendency of populations to be pulled towards phenotypes with minimum variance in fitness, and shows that this is matched by a tendency to be pulled towards phenotypes with maximum positive asymmetry in fitness. This equation also contains a term, having no analog in the Price equation, that captures cases in which the fitness of parents has a direct effect on the phenotype of their offspring. Conclusion Directional evolution is influenced by the entire distribution of individual fitness, not just the mean and variance. Though all moments of individuals' fitness distributions contribute to evolutionary change, the ways that they do so follow some general rules. These rules are invisible to the Price equation because it describes evolution retrospectively. An equally general
An x-space analysis of evolution equations: Soffer's inequality and the non-forward evolution
International Nuclear Information System (INIS)
Cafarella, Alessandro; Coriano, Claudio; Guzzi, Marco
2003-01-01
We analyze the use of algorithms based in x-space for the solution of renormalization group equations of DGLAP-type and test their consistency by studying bounds among partons distributions - in our specific case Soffer's inequality and the perturbative behaviour of the nucleon tensor charge - to next-to-leading order in QCD. A discussion of the perturbative resummation implicit in these expansions using Mellin moments is included. We also comment on the (kinetic) proof of positivity of the evolution of h1, using a kinetic analogy and illustrate the extension of the algorithm to the evolution of generalized parton distributions. We prove positivity of the non-forward evolution in a special case and illustrate a Fokker-Planck approximation to it. (author)
Traveling solitary wave solutions to evolution equations with nonlinear terms of any order
International Nuclear Information System (INIS)
Feng Zhaosheng
2003-01-01
Many physical phenomena in one- or higher-dimensional space can be described by nonlinear evolution equations, which can be reduced to ordinary differential equations such as the Lienard equation. Thus, to study those ordinary differential equations is of significance not only in mathematics itself, but also in physics. In this paper, a kind of explicit exact solutions to the Lienard equation is obtained. The applications of the solutions to the nonlinear RR-equation and the compound KdV-type equation are presented, which extend the results obtained in the previous literature
Existence and uniqueness of mild and classical solutions of impulsive evolution equations
Directory of Open Access Journals (Sweden)
Annamalai Anguraj
2005-10-01
Full Text Available We consider the non-linear impulsive evolution equation $$displaylines{ u'(t=Au(t+f(t,u(t,Tu(t,Su(t, quad 0
Evolution equations for extended dihadron fragmentation functions
International Nuclear Information System (INIS)
Ceccopieri, F.A.; Bacchetta, A.
2007-03-01
We consider dihadron fragmentation functions, describing the fragmentation of a parton in two unpolarized hadrons, and in particular extended dihadron fragmentation functions, explicitly dependent on the invariant mass, M h , of the hadron pair. We first rederive the known results on M h -integrated functions using Jet Calculus techniques, and then we present the evolution equations for extended dihadron fragmentation functions. Our results are relevant for the analysis of experimental measurements of two-particle-inclusive processes at different energies. (orig.)
Existence of solutions for quasilinear random impulsive neutral differential evolution equation
Directory of Open Access Journals (Sweden)
B. Radhakrishnan
2018-07-01
Full Text Available This paper deals with the existence of solutions for quasilinear random impulsive neutral functional differential evolution equation in Banach spaces and the results are derived by using the analytic semigroup theory, fractional powers of operators and the Schauder fixed point approach. An application is provided to illustrate the theory. Keywords: Quasilinear differential equation, Analytic semigroup, Random impulsive neutral differential equation, Fixed point theorem, 2010 Mathematics Subject Classification: 34A37, 47H10, 47H20, 34K40, 34K45, 35R12
Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum
2014-01-01
In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.
Eu, Byung Chan
2008-09-07
In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.
The relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations
International Nuclear Information System (INIS)
Liu Chunping; Liu Xiaoping
2004-01-01
First, we investigate the solitary wave solutions of the Burgers equation and the KdV equation, which are obtained by using the hyperbolic function method. Then we present a theorem which will not only give us a clear relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations, but also provide us an approach to construct new exact solutions in complex scalar field. Finally, we apply the theorem to the KdV-Burgers equation and obtain its new exact solutions
Energy Technology Data Exchange (ETDEWEB)
Arvieu, R.; Carbonell, J.; Gignoux, C.; Mangin-Brinet, M. [Inst. des Sciences Nucleaires, Grenoble-1 Univ., 38 (France); Rozmej, P. [Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland)
1997-12-31
The time evolution of coherent rotational wave packets associated to a diatomic molecule or to a deformed nucleus has been studied. Assuming a rigid body dynamics the J(J+1) law leads to a mechanism of cloning: the way function is divided into wave packets identical to the initial one at specific time. Applications are studied for a nuclear wave packed formed by Coulomb excitation. Exact boundary conditions at finite distance for the solution of the time-dependent Schroedinger equation are derived. A numerical scheme based on Crank-Nicholson method is proposed to illustrate its applicability in several examples. (authors) 3 refs.
Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation
International Nuclear Information System (INIS)
Zhaqilao,
2013-01-01
A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed
Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation
Energy Technology Data Exchange (ETDEWEB)
Zhaqilao,, E-mail: zhaqilao@imnu.edu.cn
2013-12-06
A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed.
Directory of Open Access Journals (Sweden)
François-Xavier Devetter
2009-06-01
Full Text Available Cet article s’appuie sur une vision enrichie du temps de travail (la disponibilité temporelle au travail, incluant la durée, la localisation et la prévisibilité des horaires pour étudier les différences de valorisation des contraintes temporelles entre hommes et femmes. Il apparaît que, certes, les femmes semblent avoir une disponibilité au travail plus réduite (notamment en début de carrière mais surtout que les écarts entre genres ne portent pas sur les mêmes dimensions du temps. La reconnaissance sociale (notamment par l’employeur des contraintes touchant les femmes semble bien plus faible que dans le cas des hommes.This article uses a broader concept of working time than mere duration (time availability at work encompassing the volume of hours worked but also the scheduling and predictability of those hours, to examine the gender gap concerning temporal constraints. Women seem to dispose of fewer possibilities to make themselves available at work than men but, more importantly, this gap does not involve the same aspects of time. The temporal constraints experienced mainly by women are less socially visible and hence undervalued by their employers.
International Nuclear Information System (INIS)
Keanini, R.G.
2011-01-01
Research highlights: → Systematic approach for physically probing nonlinear and random evolution problems. → Evolution of vortex sheets corresponds to evolution of an Ornstein-Uhlenbeck process. → Organization of near-molecular scale vorticity mediated by hydrodynamic modes. → Framework allows calculation of vorticity evolution within random strain fields. - Abstract: A framework which combines Green's function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green's function and stochastic representative solutions of linear drift-diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems - Burgers' equation and the nonlinear Schroedinger's equation - are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole-Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger's vortex sheets. Here, the governing vorticity equation corresponds to the Fokker-Planck equation of an Ornstein-Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the
Gas-evolution oscillators. 10. A model based on a delay equation
Energy Technology Data Exchange (ETDEWEB)
Bar-Eli, K.; Noyes, R.M. [Univ. of Oregon, Eugene, OR (United States)
1992-09-17
This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas.
Gas-evolution oscillators. 10. A model based on a delay equation
International Nuclear Information System (INIS)
Bar-Eli, K.; Noyes, R.M.
1992-01-01
This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas
Solving QCD evolution equations in rapidity space with Markovian Monte Carlo
Golec-Biernat, K; Placzek, W; Skrzypek, M
2009-01-01
This work covers methodology of solving QCD evolution equation of the parton distribution using Markovian Monte Carlo (MMC) algorithms in a class of models ranging from DGLAP to CCFM. One of the purposes of the above MMCs is to test the other more sophisticated Monte Carlo programs, the so-called Constrained Monte Carlo (CMC) programs, which will be used as a building block in the parton shower MC. This is why the mapping of the evolution variables (eikonal variable and evolution time) into four-momenta is also defined and tested. The evolution time is identified with the rapidity variable of the emitted parton. The presented MMCs are tested independently, with ~0.1% precision, against the non-MC program APCheb especially devised for this purpose.
Decoupling of the Leading Order DGLAP Evolution Equation with Spin Dependent Structure Functions
Azadbakht, F. Teimoury; Boroun, G. R.
2018-02-01
We propose an analytical solution for DGLAP evolution equations with polarized splitting functions at the Leading Order (LO) approximation based on the Laplace transform method. It is shown that the DGLAP evolution equations can be decoupled completely into two second order differential equations which then are solved analytically by using the initial conditions δ FS(x,Q2)=F[partial δ FS0(x), δ FS0(x)] and {δ G}(x,Q2)=G[partial δ G0(x), δ G0(x)]. We used this method to obtain the polarized structure function of the proton as well as the polarized gluon distribution function inside the proton and compared the numerical results with experimental data of COMPASS, HERMES, and AAC'08 Collaborations. It was found that there is a good agreement between our predictions and the experiments.
Exponentially Stable Stationary Solutions for Stochastic Evolution Equations and Their Perturbation
International Nuclear Information System (INIS)
Caraballo, Tomas; Kloeden, Peter E.; Schmalfuss, Bjoern
2004-01-01
We consider the exponential stability of stochastic evolution equations with Lipschitz continuous non-linearities when zero is not a solution for these equations. We prove the existence of anon-trivial stationary solution which is exponentially stable, where the stationary solution is generated by the composition of a random variable and the Wiener shift. We also construct stationary solutions with the stronger property of attracting bounded sets uniformly. The existence of these stationary solutions follows from the theory of random dynamical systems and their attractors. In addition, we prove some perturbation results and formulate conditions for the existence of stationary solutions for semilinear stochastic partial differential equations with Lipschitz continuous non-linearities
Higher order Lie-Baecklund symmetries of evolution equations
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Roy Chowdhury, K.; Paul, S.
1983-10-01
We have considered in detail the analysis of higher order Lie-Baecklund symmetries for some representative nonlinear evolution equations. Until now all such symmetry analyses have been restricted only to the first order of the infinitesimal parameter. But the existence of Baecklund transformation (which can be shown to be an overall sum of higher order Lie-Baecklund symmetries) makes it necessary to search for such higher order Lie-Baecklund symmetries directly without taking recourse to the Baecklund transformation or inverse scattering technique. (author)
International Nuclear Information System (INIS)
Baishya, R.; Jamil, U.; Sarma, J. K.
2009-01-01
In this paper the spin-dependent singlet and nonsinglet structure functions have been obtained by solving Dokshitzer, Gribov, Lipatov, Altarelli, Parisi evolution equations in leading order and next to leading order in the small x limit. Here we have used Taylor series expansion and then the method of characteristics to solve the evolution equations. We have also calculated t and x evolutions of deuteron structure functions, and the results are compared with the SLAC E-143 Collaboration data.
Energy Technology Data Exchange (ETDEWEB)
Hautmann, F. [Rutherford Appleton Laboratory, Chilton (United Kingdom); Oxford Univ. (United Kingdom). Dept. of Theoretical Physics; Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica; Jung, H.; Lelek, A.; Zlebcik, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Radescu, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)
2017-08-15
We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the strong coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1 percent over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.
Evolution equations for connected and disconnected sea parton distributions
Liu, Keh-Fei
2017-08-01
It has been revealed from the path-integral formulation of the hadronic tensor that there are connected sea and disconnected sea partons. The former is responsible for the Gottfried sum rule violation primarily and evolves the same way as the valence. Therefore, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations can be extended to accommodate them separately. We discuss its consequences and implications vis-á-vis lattice calculations.
A class of periodic solutions of nonlinear wave and evolution equations
International Nuclear Information System (INIS)
Kashcheev, V.N.
1987-01-01
For the case of 1+1 dimensions a new heuristic method is proposed for deriving dels-similar solutions to nonlinear autonomous differential equations. If the differential function f is a polynomial, then: (i) in the case of even derivatives in f the solution is the ratio of two polynomials from the Weierstrass elliptic functions; (ii) in the case of any order derivatives in f the solution is the ratio of two polynomials from simple exponents. Numerous examples are given constructing such periodic solutions to the wave and evolution equations
Nonlinear evolution equations for waves in random media
International Nuclear Information System (INIS)
Pelinovsky, E.; Talipova, T.
1994-01-01
The scope of this paper is to highlight the main ideas of asymptotical methods applying in modern approaches of description of nonlinear wave propagation in random media. We start with the discussion of the classical conception of ''mean field''. Then an exactly solvable model describing nonlinear wave propagation in the medium with fluctuating parameters is considered in order to demonstrate that the ''mean field'' method is not correct. We develop new asymptotic procedures of obtaining the nonlinear evolution equations for the wave fields in random media. (author). 16 refs
A novel algebraic procedure for solving non-linear evolution equations of higher order
International Nuclear Information System (INIS)
Huber, Alfred
2007-01-01
We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest
Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions
International Nuclear Information System (INIS)
Maccari, A.
1997-01-01
Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio endash temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a open-quotes universalclose quotes character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. copyright 1997 American Institute of Physics
Population Thinking, Price’s Equation and the Analysis of Economic Evolution
DEFF Research Database (Denmark)
Andersen, Esben Sloth
2004-01-01
applicable to economic evolution due to the development of what may be called a general evometrics. Central to this evometrics is a method for partitioning evolutionary change developed by George Price into the selection effect and what may be called the innovation effect. This method serves surprisingly...... well as a means of accounting for evolution and as a starting point for the explanation of evolution. The applications of Price’s equation cover the partitioning and analysis of relatively short-term evolutionary change within individual industries as well as the study of more complexly structured...... populations of firms. By extrapolating these applications of Price’s evometrics, the paper suggests that his approach may play a central role in the emerging evolutionary econometrics....
Lie symmetry analysis and conservation laws for the time fractional fourth-order evolution equation
Directory of Open Access Journals (Sweden)
Wang Li
2017-06-01
Full Text Available In this paper, we study Lie symmetry analysis and conservation laws for the time fractional nonlinear fourth-order evolution equation. Using the method of Lie point symmetry, we provide the associated vector fields, and derive the similarity reductions of the equation, respectively. The method can be applied wisely and efficiently to get the reduced fractional ordinary differential equations based on the similarity reductions. Finally, by using the nonlinear self-adjointness method and Riemann-Liouville time-fractional derivative operator as well as Euler-Lagrange operator, the conservation laws of the equation are obtained.
A generalized variational algebra and conserved densities for linear evolution equations
International Nuclear Information System (INIS)
Abellanas, L.; Galindo, A.
1978-01-01
The symbolic algebra of Gel'fand and Dikii is generalized to the case of n variables. Using this algebraic approach a rigorous characterization of the polynomial kernel of the variational derivative is given. This is applied to classify all the conservation laws for linear polynomial evolution equations of arbitrary order. (Auth.)
Symbolic Detection of Permutation and Parity Symmetries of Evolution Equations
Alghamdi, Moataz
2017-06-18
We introduce a symbolic computational approach to detecting all permutation and parity symmetries in any general evolution equation, and to generating associated invariant polynomials, from given monomials, under the action of these symmetries. Traditionally, discrete point symmetries of differential equations are systemically found by solving complicated nonlinear systems of partial differential equations; in the presence of Lie symmetries, the process can be simplified further. Here, we show how to find parity- and permutation-type discrete symmetries purely based on algebraic calculations. Furthermore, we show that such symmetries always form groups, thereby allowing for the generation of new group-invariant conserved quantities from known conserved quantities. This work also contains an implementation of the said results in Mathematica. In addition, it includes, as a motivation for this work, an investigation of the connection between variational symmetries, described by local Lie groups, and conserved quantities in Hamiltonian systems.
Evolution equation for the higher-twist B-meson distribution amplitude
International Nuclear Information System (INIS)
Braun, V.M.; Offen, N.; Manashov, A.N.; Regensburg Univ.; Sankt-Petersburg State Univ.
2015-07-01
We find that the evolution equation for the three-particle quark-gluon B-meson light-cone distribution amplitude (DA) of subleading twist is completely integrable in the large N c limit and can be solved exactly. The lowest anomalous dimension is separated from the remaining, continuous, spectrum by a finite gap. The corresponding eigenfunction coincides with the contribution of quark-gluon states to the two-particle DA φ - (ω) so that the evolution equation for the latter is the same as for the leading-twist DA φ + (ω) up to a constant shift in the anomalous dimension. Thus, ''genuine'' three-particle states that belong to the continuous spectrum effectively decouple from φ - (ω) to the leading-order accuracy. In turn, the scale dependence of the full three-particle DA turns out to be nontrivial so that the contribution with the lowest anomalous dimension does not become leading at any scale. The results are illustrated on a simple model that can be used in studies of 1/m b corrections to heavy-meson decays in the framework of QCD factorization or light-cone sum rules.
Nonlinear evolution-type equations and their exact solutions using inverse variational methods
International Nuclear Information System (INIS)
Kara, A H; Khalique, C M
2005-01-01
We present the role of invariants in obtaining exact solutions of differential equations. Firstly, conserved vectors of a partial differential equation (p.d.e.) allow us to obtain reduced forms of the p.d.e. for which some of the Lie point symmetries (in vector field form) are easily concluded and, therefore, provide a mechanism for further reduction. Secondly, invariants of reduced forms of a p.d.e. are obtainable from a variational principle even though the p.d.e. itself does not admit a Lagrangian. In this latter case, the reductions carry all the usual advantages regarding Noether symmetries and double reductions. The examples we consider are nonlinear evolution-type equations such as the Korteweg-deVries equation, but a detailed analysis is made on the Fisher equation (which describes reaction-diffusion waves in biology, inter alia). Other diffusion-type equations lend themselves well to the method we describe (e.g., the Fitzhugh Nagumo equation, which is briefly discussed). Some aspects of Painleve properties are also suggested
Analytic treatment of leading-order parton evolution equations: Theory and tests
International Nuclear Information System (INIS)
Block, Martin M.; Durand, Loyal; McKay, Douglas W.
2009-01-01
We recently derived an explicit expression for the gluon distribution function G(x,Q 2 )=xg(x,Q 2 ) in terms of the proton structure function F 2 γp (x,Q 2 ) in leading-order (LO) QCD by solving the LO Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation for the Q 2 evolution of F 2 γp (x,Q 2 ) analytically, using a differential-equation method. We showed that accurate experimental knowledge of F 2 γp (x,Q 2 ) in a region of Bjorken x and virtuality Q 2 is all that is needed to determine the gluon distribution in that region. We rederive and extend the results here using a Laplace-transform technique, and show that the singlet quark structure function F S (x,Q 2 ) can be determined directly in terms of G from the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi gluon evolution equation. To illustrate the method and check the consistency of existing LO quark and gluon distributions, we used the published values of the LO quark distributions from the CTEQ5L and MRST2001 LO analyses to form F 2 γp (x,Q 2 ), and then solved analytically for G(x,Q 2 ). We find that the analytic and fitted gluon distributions from MRST2001LO agree well with each other for all x and Q 2 , while those from CTEQ5L differ significantly from each other for large x values, x > or approx. 0.03-0.05, at all Q 2 . We conclude that the published CTEQ5L distributions are incompatible in this region. Using a nonsinglet evolution equation, we obtain a sensitive test of quark distributions which holds in both LO and next-to-leading order perturbative QCD. We find in either case that the CTEQ5 quark distributions satisfy the tests numerically for small x, but fail the tests for x > or approx. 0.03-0.05--their use could potentially lead to significant shifts in predictions of quantities sensitive to large x. We encountered no problems with the MRST2001LO distributions or later CTEQ distributions. We suggest caution in the use of the CTEQ5 distributions.
The Relationship between Nonconservative Schemes and Initial Values of Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
林万涛
2004-01-01
For the nonconservative schemes of the nonlinear evolution equations, taking the one-dimensional shallow water wave equation as an example, the necessary conditions of computational stability are given.Based on numerical tests, the relationship between the nonlinear computational stability and the construction of difference schemes, as well as the form of initial values, is further discussed. It is proved through both theoretical analysis and numerical tests that if the construction of difference schemes is definite, the computational stability of nonconservative schemes is decided by the form of initial values.
Markovian Monte Carlo program EvolFMC v.2 for solving QCD evolution equations
Jadach, S.; Płaczek, W.; Skrzypek, M.; Stokłosa, P.
2010-02-01
We present the program EvolFMC v.2 that solves the evolution equations in QCD for the parton momentum distributions by means of the Monte Carlo technique based on the Markovian process. The program solves the DGLAP-type evolution as well as modified-DGLAP ones. In both cases the evolution can be performed in the LO or NLO approximation. The quarks are treated as massless. The overall technical precision of the code has been established at 5×10. This way, for the first time ever, we demonstrate that with the Monte Carlo method one can solve the evolution equations with precision comparable to the other numerical methods. New version program summaryProgram title: EvolFMC v.2 Catalogue identifier: AEFN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including binary test data, etc.: 66 456 (7407 lines of C++ code) No. of bytes in distributed program, including test data, etc.: 412 752 Distribution format: tar.gz Programming language: C++ Computer: PC, Mac Operating system: Linux, Mac OS X RAM: Less than 256 MB Classification: 11.5 External routines: ROOT ( http://root.cern.ch/drupal/) Nature of problem: Solution of the QCD evolution equations for the parton momentum distributions of the DGLAP- and modified-DGLAP-type in the LO and NLO approximations. Solution method: Monte Carlo simulation of the Markovian process of a multiple emission of partons. Restrictions:Limited to the case of massless partons. Implemented in the LO and NLO approximations only. Weighted events only. Unusual features: Modified-DGLAP evolutions included up to the NLO level. Additional comments: Technical precision established at 5×10. Running time: For the 10 6 events at 100 GeV: DGLAP NLO: 27s; C-type modified DGLAP NLO: 150s (MacBook Pro with Mac OS X v.10
Analytic solutions of QCD evolution equations for parton cascades inside nuclear matter at small x
International Nuclear Information System (INIS)
Geiger, K.
1994-01-01
An analytical method is presented to solve generalized QCD evolution equations for the time development of parton cascades in a nuclear environment. In addition to the usual parton branching processes in vacuum, these evolution equations provide a consistent description of interactions with the nuclear medium by accounting for stimulated branching processes, fusion, and scattering processes that are specific to QCD in a medium. Closed solutions for the spectra of produced partons with respect to the variables time, longitudinal momentum, and virtuality are obtained under some idealizing assumptions about the composition of the nuclear medium. Several characteristic features of the resulting parton distributions are discussed. One of the main conclusions is that the evolution of a parton shower in a medium is dilated as compared to free space and is accompanied by an enhancement of particle production. These effects become stronger with increasing nuclear density
Solving Partial Differential Equations Using a New Differential Evolution Algorithm
Directory of Open Access Journals (Sweden)
Natee Panagant
2014-01-01
Full Text Available This paper proposes an alternative meshless approach to solve partial differential equations (PDEs. With a global approximate function being defined, a partial differential equation problem is converted into an optimisation problem with equality constraints from PDE boundary conditions. An evolutionary algorithm (EA is employed to search for the optimum solution. For this approach, the most difficult task is the low convergence rate of EA which consequently results in poor PDE solution approximation. However, its attractiveness remains due to the nature of a soft computing technique in EA. The algorithm can be used to tackle almost any kind of optimisation problem with simple evolutionary operation, which means it is mathematically simpler to use. A new efficient differential evolution (DE is presented and used to solve a number of the partial differential equations. The results obtained are illustrated and compared with exact solutions. It is shown that the proposed method has a potential to be a future meshless tool provided that the search performance of EA is greatly enhanced.
International Nuclear Information System (INIS)
Liu Chunping
2003-01-01
Using a direct algebraic method, more new exact solutions of the Kolmogorov-Petrovskii-Piskunov equation are presented by formula form. Then a theorem concerning the relation between the kink-type solution and the kink-bell-type solution of nonlinear evolution equations is given. Finally, the applications of the theorem to several well-known equations in physics are also discussed
Some Evolution Hierarchies Derived from Self-dual Yang-Mills Equations
International Nuclear Information System (INIS)
Zhang Yufeng; Hon, Y.C.
2011-01-01
We develop in this paper a new method to construct two explicit Lie algebras E and F. By using a loop algebra Ē of the Lie algebra E and the reduced self-dual Yang-Mills equations, we obtain an expanding integrable model of the Giachetti-Johnson (GJ) hierarchy whose Hamiltonian structure can also be derived by using the trace identity. This provides a much simpler construction method in comparing with the tedious variational identity approach. Furthermore, the nonlinear integrable coupling of the GJ hierarchy is readily obtained by introducing the Lie algebra g N . As an application, we apply the loop algebra E-tilde of the Lie algebra E to obtain a kind of expanding integrable model of the Kaup-Newell (KN) hierarchy which, consisting of two arbitrary parameters α and β, can be reduced to two nonlinear evolution equations. In addition, we use a loop algebra F of the Lie algebra F to obtain an expanding integrable model of the BT hierarchy whose Hamiltonian structure is the same as using the trace identity. Finally, we deduce five integrable systems in R 3 based on the self-dual Yang-Mills equations, which include Poisson structures, irregular lines, and the reduced equations. (general)
Periodic Solutions and S-Asymptotically Periodic Solutions to Fractional Evolution Equations
Directory of Open Access Journals (Sweden)
Jia Mu
2017-01-01
Full Text Available This paper deals with the existence and uniqueness of periodic solutions, S-asymptotically periodic solutions, and other types of bounded solutions for some fractional evolution equations with the Weyl-Liouville fractional derivative defined for periodic functions. Applying Fourier transform we give reasonable definitions of mild solutions. Then we accurately estimate the spectral radius of resolvent operator and obtain some existence and uniqueness results.
International Nuclear Information System (INIS)
Oeien, A.H.
1980-09-01
For electrons in electric and magnetic fields which collide elastically with neutral atoms or molecules a minute evolution study is made using the multiple time scale method. In this study a set of quasi moment equations is used which is derived from the Boltzmann equation by taking appropriate quasi moments, i.e. velocity moments where the integration is performed only over velocity angles. In a systematic way the evolution in a transient regime is revealed where processes take place on time scales related to the electron-atom collision frequency and electron cyclotron frequency and how the evolution enters a regime where it is governed by a reduced transport equation is shown. This work has relevance to the theory of evolution of gases of charged particles in general and to non-neutral plasmas and partially ionized gases in particular. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
On the classification of scalar evolution equations with non-constant separant
Hümeyra Bilge, Ayşe; Mizrahi, Eti
2017-01-01
The ‘separant’ of the evolution equation u t = F, where F is some differentiable function of the derivatives of u up to order m, is the partial derivative \\partial F/\\partial {{u}m}, where {{u}m}={{\\partial}m}u/\\partial {{x}m} . As an integrability test, we use the formal symmetry method of Mikhailov-Shabat-Sokolov, which is based on the existence of a recursion operator as a formal series. The solvability of its coefficients in the class of local functions gives a sequence of conservation laws, called the ‘conserved densities’ {ρ(i)}, i=-1,1,2,3,\\ldots . We apply this method to the classification of scalar evolution equations of orders 3≤slant m≤slant 15 , for which {ρ(-1)}={≤ft[\\partial F/\\partial {{u}m}\\right]}-1/m} and {{ρ(1)} are non-trivial, i.e. they are not total derivatives and {ρ(-1)} is not linear in its highest order derivative. We obtain the ‘top level’ parts of these equations and their ‘top dependencies’ with respect to the ‘level grading’, that we defined in a previous paper, as a grading on the algebra of polynomials generated by the derivatives u b+i , over the ring of {{C}∞} functions of u,{{u}1},\\ldots,{{u}b} . In this setting b and i are called ‘base’ and ‘level’, respectively. We solve the conserved density conditions to show that if {ρ(-1)} depends on u,{{u}1},\\ldots,{{u}b}, then, these equations are level homogeneous polynomials in {{u}b+i},\\ldots,{{u}m} , i≥slant 1 . Furthermore, we prove that if {ρ(3)} is non-trivial, then {ρ(-1)}={≤ft(α ub2+β {{u}b}+γ \\right)}1/2} , with b≤slant 3 while if {{ρ(3)} is trivial, then {ρ(-1)}={≤ft(λ {{u}b}+μ \\right)}1/3} , where b≤slant 5 and α, β, γ, λ and μ are functions of u,\\ldots,{{u}b-1} . We show that the equations that we obtain form commuting flows and we construct their recursion operators that are respectively of orders 2 and 6 for non-trivial and trivial {{ρ(3)} respectively. Omitting lower order
Asymptotically Almost Periodic Solutions of Evolution Equations in Banach Spaces
Ruess, W. M.; Phong, V. Q.
Tile linear abstract evolution equation (∗) u'( t) = Au( t) + ƒ( t), t ∈ R, is considered, where A: D( A) ⊂ E → E is the generator of a strongly continuous semigroup of operators in the Banach space E. Starting from analogs of Kadets' and Loomis' Theorems for vector valued almost periodic Functions, we show that if σ( A) ∩ iR is countable and ƒ: R → E is [asymptotically] almost periodic, then every bounded and uniformly continuous solution u to (∗) is [asymptotically] almost periodic, provided e-λ tu( t) has uniformly convergent means for all λ ∈ σ( A) ∩ iR. Related results on Eberlein-weakly asymptotically almost periodic, periodic, asymptotically periodic and C 0-solutions of (∗), as well as on the discrete case of solutions of difference equations are included.
Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method
International Nuclear Information System (INIS)
Fan Engui
2002-01-01
A new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system. Compared with most of the existing tanh methods, the Jacobi elliptic function method or other sophisticated methods, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the travelling wave solutions according to the values of some parameters. The solutions obtained in this paper include (a) kink-shaped and bell-shaped soliton solutions, (b) rational solutions, (c) triangular periodic solutions and (d) Jacobi and Weierstrass doubly periodic wave solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. The efficiency of the method can be demonstrated on a large variety of nonlinear evolution equations such as those considered in this paper, KdV-MKdV, Ito's fifth MKdV, Hirota, Nizhnik-Novikov-Veselov, Broer-Kaup, generalized coupled Hirota-Satsuma, coupled Schroedinger-KdV, (2+1)-dimensional dispersive long wave, (2+1)-dimensional Davey-Stewartson equations. In addition, as an illustrative sample, the properties of the soliton solutions and Jacobi doubly periodic solutions for the Hirota equation are shown by some figures. The links among our proposed method, the tanh method, extended tanh method and the Jacobi elliptic function method are clarified generally. (author)
Directory of Open Access Journals (Sweden)
Hasibun Naher
2014-10-01
Full Text Available In this article, new extension of the generalized and improved (G′/G-expansion method is proposed for constructing more general and a rich class of new exact traveling wave solutions of nonlinear evolution equations. To demonstrate the novelty and motivation of the proposed method, we implement it to the Korteweg-de Vries (KdV equation. The new method is oriented toward the ease of utilize and capability of computer algebraic system and provides a more systematic, convenient handling of the solution process of nonlinear equations. Further, obtained solutions disclose a wider range of applicability for handling a large variety of nonlinear partial differential equations.
Interpretation of the evolution parameter of the Feynman parametrization of the Dirac equation
International Nuclear Information System (INIS)
Aparicio, J.P.; Garcia Alvarez, E.T.
1995-01-01
The Feynman parametrization of the Dirac equation is considered in order to obtain an indefinite mass formulation of relativistic quantum mechanics. It is shown that the parameter that labels the evolution is related to the proper time. The Stueckelberg interpretation of antiparticles naturally arises from the formalism. ((orig.))
International Nuclear Information System (INIS)
Konopel'chenko, B.G.
1983-01-01
New results in investigation of the group-theoretical and hamiltonian structure of the integrable evolution equations in 1+1 and 2+1 dimensions are briefly reviewed. Main general results, such as the form of integrable equations, Baecklund transfomations, symmetry groups, are turned out to have the same form for different spectral problems. The used generalized AKNS-method (the Ablowitz Kaup, Newell and Segur method) permits to prove that all nonlinear evolution equations considered are hamiltonians. The general condition of effective application of the ACNS mehtod to the concrete spectral problem is the possibility to calculate a recursion operator explicitly. The embedded representation is shown to be a fundamental object connected with different aspects of the inverse scattering problem
Dynamics of second order in time evolution equations with state-dependent delay
Czech Academy of Sciences Publication Activity Database
Chueshov, I.; Rezunenko, Oleksandr
123-124, č. 1 (2015), s. 126-149 ISSN 0362-546X R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Second order evolution equations * State dependent delay * Nonlinear plate * Finite-dimensional attractor Subject RIV: BD - Theory of Information Impact factor: 1.125, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/rezunenko-0444708.pdf
Time evolution of the wave equation using rapid expansion method
Pestana, Reynam C.; Stoffa, Paul L.
2010-01-01
Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.
Time evolution of the wave equation using rapid expansion method
Pestana, Reynam C.
2010-07-01
Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.
Lorentz-force equations as Heisenberg equations for a quantum system in the euclidean space
International Nuclear Information System (INIS)
Rodriguez D, R.
2007-01-01
In an earlier work, the dynamic equations for a relativistic charged particle under the action of electromagnetic fields were formulated by R. Yamaleev in terms of external, as well as internal momenta. Evolution equations for external momenta, the Lorentz-force equations, were derived from the evolution equations for internal momenta. The mapping between the observables of external and internal momenta are related by Viete formulae for a quadratic polynomial, the characteristic polynomial of the relativistic dynamics. In this paper we show that the system of dynamic equations, can be cast into the Heisenberg scheme for a four-dimensional quantum system. Within this scheme the equations in terms of internal momenta play the role of evolution equations for a state vector, whereas the external momenta obey the Heisenberg equation for an operator evolution. The solutions of the Lorentz-force equation for the motion inside constant electromagnetic fields are presented via pentagonometric functions. (Author)
Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru
2018-04-01
This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.
A trick loop algebra and a corresponding Liouville integrable hierarchy of evolution equations
International Nuclear Information System (INIS)
Zhang Yufeng; Xu Xixiang
2004-01-01
A subalgebra of loop algebra A-bar 2 is first constructed, which has its own special feature. It follows that a new Liouville integrable hierarchy of evolution equations is obtained, possessing a tri-Hamiltonian structure, which is proved by us in this paper. Especially, three symplectic operators are constructed directly from recurrence relations. The conjugate operator of a recurrence operator is a hereditary symmetry. As reduction cases of the hierarchy presented in this paper, the celebrated MKdV equation and heat-conduction equation are engendered, respectively. Therefore, we call the hierarchy a generalized MKdV-H system. At last, a high-dimension loop algebra G-bar is constructed by making use of a proper scalar transformation. As a result, a type expanding integrable model of the MKdV-H system is given
Evolution of the cosmological horizons in a universe with countably infinitely many state equations
Energy Technology Data Exchange (ETDEWEB)
Margalef-Bentabol, Berta; Cepa, Jordi [Departamento de Astrofísica, Universidad de la Laguna, E-38205 La Laguna, Tenerife (Spain); Margalef-Bentabol, Juan, E-mail: bmb@cca.iac.es, E-mail: juanmargalef@estumail.ucm.es, E-mail: jcn@iac.es [Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)
2013-02-01
This paper is the second of two papers devoted to the study of the evolution of the cosmological horizons (particle and event horizons). Specifically, in this paper we consider a general accelerated universe with countably infinitely many constant state equations, and we obtain simple expressions in terms of their respective recession velocities that generalize the previous results for one and two state equations. We also provide a qualitative study of the values of the horizons and their velocities at the origin of the universe and at the far future, and we prove that these values only depend on one dominant state equation. Finally, we compare both horizons and determine when one is larger than the other.
International Nuclear Information System (INIS)
Malmberg, T.
1993-09-01
The objective of this study is to derive and investigate thermodynamic restrictions for a particular class of internal variable models. Their evolution equations consist of two contributions: the usual irreversible part, depending only on the present state, and a reversible but path dependent part, linear in the rates of the external variables (evolution equations of ''mixed type''). In the first instance the thermodynamic analysis is based on the classical Clausius-Duhem entropy inequality and the Coleman-Noll argument. The analysis is restricted to infinitesimal strains and rotations. The results are specialized and transferred to a general class of elastic-viscoplastic material models. Subsequently, they are applied to several viscoplastic models of ''mixed type'', proposed or discussed in the literature (Robinson et al., Krempl et al., Freed et al.), and it is shown that some of these models are thermodynamically inconsistent. The study is closed with the evaluation of the extended Clausius-Duhem entropy inequality (concept of Mueller) where the entropy flux is governed by an assumed constitutive equation in its own right; also the constraining balance equations are explicitly accounted for by the method of Lagrange multipliers (Liu's approach). This analysis is done for a viscoplastic material model with evolution equations of the ''mixed type''. It is shown that this approach is much more involved than the evaluation of the classical Clausius-Duhem entropy inequality with the Coleman-Noll argument. (orig.) [de
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.
arXiv GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations
Ghiglieri, J.
2017-05-23
Starting from operator equations of motion and making arguments based on a separation of time scales, a set of equations is derived which govern the non-equilibrium time evolution of a GeV-scale sterile neutrino density matrix and active lepton number densities at temperatures T > 130 GeV. The density matrix possesses generation and helicity indices; we demonstrate how helicity permits for a classification of various sources for leptogenesis. The coefficients parametrizing the equations are determined to leading order in Standard Model couplings, accounting for the LPM resummation of 1+n 2+n scatterings and for all 2 2 scatterings. The regime in which sphaleron processes gradually decouple so that baryon plus lepton number becomes a separate non-equilibrium variable is also considered.
Bessaih, Hakima; Efendiev, Yalchin; Maris, Florin
2015-01-01
The evolution Stokes equation in a domain containing periodically distributed obstacles subject to Fourier boundary condition on the boundaries is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior
Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation
International Nuclear Information System (INIS)
Goryainov, V V
2015-01-01
The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution family of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles
Major, Marie-Eve; Vézina, Nicole
2017-11-01
Despite the health problems associated with irregular schedules and long working hours, few studies have focused on the temporal dimension of work in seasonal working contexts. Through the monitoring of sixteen seasonal workers in the crab-processing industry over a two-year period, this study aimed to better understand their working reality and to provide a detailed picture of the temporal dimension of seasonal work as experienced by these workers. Observations of the work activity, interviews, and analysis of official documents were carried out. The findings reveal that the organization of working time and working conditions are very restrictive. These constraints are linked not only to the work environment and management but also to various public policies and ministerial directives. Methodological elements essential for the study of the organization of working time have been identified and could contribute to a better understanding of temporal constraints experienced by seasonal workers. Résumé Malgré les problèmes de santé associés aux horaires non standards et aux longues heures de travail, peu d'études se sont attardées à dégager un portrait de la dimension temporelle du travail en contexte de travail saisonnier. Par le suivi de 16 travailleuses saisonnières de l'industrie de la transformation du crabe pendant deux années, cette étude visait à mieux comprendre leur réalité de travail et à dresser un portrait détaillé de la dimension temporelle du travail saisonnier tel que vécu par ces travailleuses. Des observations du travail, des entretiens et l'analyse de documents ont été réalisés. Les résultats révèlent une organisation temporelle et des conditions de travail fort contraignantes pour ces travailleuses liées, entre autres, à l'environnement et à la gestion du travail, mais également à diverses politiques publiques et consignes ministérielles. Des éléments méthodologiques essentiels pour l'étude des temps de travail
Venturi, D.; Karniadakis, G. E.
2012-08-01
By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection-reaction equation. By using a Fourier-Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.
Completely integrable operator evolution equations. II
International Nuclear Information System (INIS)
Chudnovsky, D.V.
1979-01-01
The author continues the investigation of operator classical completely integrable systems. The main attention is devoted to the stationary operator non-linear Schroedinger equation. It is shown that this equation can be used for separation of variables for a large class of completely integrable equations. (Auth.)
Directory of Open Access Journals (Sweden)
Md. Nur Alam
2017-11-01
Full Text Available In this article, a variety of solitary wave solutions are observed for microtubules (MTs. We approach the problem by treating the solutions as nonlinear RLC transmission lines and then find exact solutions of Nonlinear Evolution Equations (NLEEs involving parameters of special interest in nanobiosciences and biophysics. We determine hyperbolic, trigonometric, rational and exponential function solutions and obtain soliton-like pulse solutions for these equations. A comparative study against other methods demonstrates the validity of the technique that we developed and demonstrates that our method provides additional solutions. Finally, using suitable parameter values, we plot 2D and 3D graphics of the exact solutions that we observed using our method. Keywords: Analytical method, Exact solutions, Nonlinear evolution equations (NLEEs of microtubules, Nonlinear RLC transmission lines
Directory of Open Access Journals (Sweden)
V. Vijayakumar
2014-09-01
Full Text Available In this article, we study the existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay. The results are obtained by using the Banach contraction principle. Finally, an application is given to illustrate the theory.
Directory of Open Access Journals (Sweden)
N. N. Romanova
1998-01-01
Full Text Available The dynamics of weakly nonlinear wave trains in unstable media is studied. This dynamics is investigated in the framework of a broad class of dynamical systems having a Hamiltonian structure. Two different types of instability are considered. The first one is the instability in a weakly supercritical media. The simplest example of instability of this type is the Kelvin-Helmholtz instability. The second one is the instability due to a weak linear coupling of modes of different nature. The simplest example of a geophysical system where the instability of this and only of this type takes place is the three-layer model of a stratified shear flow with a continuous velocity profile. For both types of instability we obtain nonlinear evolution equations describing the dynamics of wave trains having an unstable spectral interval of wavenumbers. The transformation to appropriate canonical variables turns out to be different for each case, and equations we obtained are different for the two types of instability we considered. Also obtained are evolution equations governing the dynamics of wave trains in weakly subcritical media and in media where modes are coupled in a stable way. Presented results do not depend on a specific physical nature of a medium and refer to a broad class of dynamical systems having the Hamiltonian structure of a special form.
Decoupling the NLO coupled DGLAP evolution equations: an analytic solution to pQCD
International Nuclear Information System (INIS)
Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.
2010-01-01
Using repeated Laplace transforms, we turn coupled, integral-differential singlet DGLAP equations into NLO (next-to-leading) coupled algebraic equations, which we then decouple. After two Laplace inversions we find new tools for pQCD: decoupled NLO analytic solutions F s (x,Q 2 )=F s (F s0 (x),G 0 (x)), G(x,Q 2 )=G(F s0 (x), G 0 (x)). F s , G are known NLO functions and F s0 (x)≡F s (x,Q 0 2 ), G 0 (x)≡G(x,Q 0 2 ) are starting functions for evolution beginning at Q 2 =Q 0 2 . We successfully compare our u and d non-singlet valence quark distributions with MSTW results (Martin et al., Eur. Phys. J. C 63:189, 2009). (orig.)
The population and decay evolution of a qubit under the time-convolutionless master equation
International Nuclear Information System (INIS)
Huang Jiang; Fang Mao-Fa; Liu Xiang
2012-01-01
We consider the population and decay of a qubit under the electromagnetic environment. Employing the time-convolutionless master equation, we investigate the Markovian and non-Markovian behaviour of the corresponding perturbation expansion. The Jaynes-Cummings model on resonance is investigated. Some figures clearly show the different evolution behaviours. The reasons are interpreted in the paper. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Three-loop evolution equation for flavor-nonsinglet operators in off-forward kinematics
Energy Technology Data Exchange (ETDEWEB)
Braun, V.M.; Strohmaier, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Manashov, A.N. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik; Moch, S. [Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik
2017-03-15
Using the approach based on conformal symmetry we calculate the three-loop (NNLO) contribution to the evolution equation for flavor-nonsinglet leading twist operators in the MS scheme. The explicit expression for the three-loop kernel is derived for the corresponding light-ray operator in coordinate space. The expansion in local operators is performed and explicit results are given for the matrix of the anomalous dimensions for the operators up to seven covariant derivatives. The results are directly applicable to the renormalization of the pion light-cone distribution amplitude and flavor-nonsinglet generalized parton distributions.
Partial Differential Equations
1988-01-01
The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.
A transport equation for the evolution of shock amplitudes along rays
Directory of Open Access Journals (Sweden)
Giovanni Russo
1991-05-01
Full Text Available A new asymptotic method is derived for the study of the evolution of weak shocks in several dimension. The method is based on the Generalized Wavefront Expansion derived in [1]. In that paper the propagation of a shock into a known background was studied under the assumption that shock is weak, i.e. Mach Number =1+O(ε, ε ≪ 1, and that the perturbation of the field varies over a length scale O(ε. To the lowest order, the shock surface evolves along the rays associated with the unperturbed state. An infinite system of compatibility relations was derived for the jump in the field and its normal derivatives along the shock, but no valid criterion was found for a truncation of the system. Here we show that the infinite hierarchy is equivalent to a single equation that describes the evolution of the shock along the rays. We show that this method gives equivalent results to those obtained by Weakly Nonlinear Geometrical Optics [2].
Symbolic computation of exact solutions for a nonlinear evolution equation
International Nuclear Information System (INIS)
Liu Yinping; Li Zhibin; Wang Kuncheng
2007-01-01
In this paper, by means of the Jacobi elliptic function method, exact double periodic wave solutions and solitary wave solutions of a nonlinear evolution equation are presented. It can be shown that not only the obtained solitary wave solutions have the property of loop-shaped, cusp-shaped and hump-shaped for different values of parameters, but also different types of double periodic wave solutions are possible, namely periodic loop-shaped wave solutions, periodic hump-shaped wave solutions or periodic cusp-shaped wave solutions. Furthermore, periodic loop-shaped wave solutions will be degenerated to loop-shaped solitary wave solutions for the same values of parameters. So do cusp-shaped solutions and hump-shaped solutions. All these solutions are new and first reported here
Attractors for equations of mathematical physics
Chepyzhov, Vladimir V
2001-01-01
One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For a number of basic evolution equations of mathematical physics, it was shown that the long time behavior of their soluti
Scheili, Anna
2015-01-01
Cette thèse est consacrée à la détermination des facteurs responsables de la variabilité spatio-temporelle de la qualité de l’eau potable dans les petits réseaux de distribution et au développement d’outils de gestion destinés aux opérateurs. Afin de réaliser cette thèse, des études de cas ont été conduites dans 25 petites municipalités (population inférieure à 5 000 habitants) de deux provinces Canadiennes (Québec et Terre-Neuve et Labrador). Le premier chapitre présente un portrait spatio-t...
Czech Academy of Sciences Publication Activity Database
Fiala, Zdeněk
2015-01-01
Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1
Abi Ayad, Ahmed
2013-01-01
Nous avons choisi l’œuvre du grand romancier espagnol de l’époque moderne pour illustrer notre thématique relative à la dimension spatio-temporelle dans le Gallardo espagnol de Miguel de Cervantes.Nous essayons d’abord de vous exposer l’argument fondamental de cette pièce dramatique qui relate un événement capital de l’histoire d’Oran et des affrontements avec l’occupation espagnole, suite à conquête des places de Mers- el-Kebir et d’Oran en 1504 et 1509.Miguel de Cervantes s’inspire ici du c...
Loss of Energy Concentration in Nonlinear Evolution Beam Equations
Garrione, Maurizio; Gazzola, Filippo
2017-12-01
Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.
Symplectic and Hamiltonian structures of nonlinear evolution equations
International Nuclear Information System (INIS)
Dorfman, I.Y.
1993-01-01
A Hamiltonian structure on a finite-dimensional manifold can be introduced either by endowing it with a (pre)symplectic structure, or by describing the Poisson bracket with the help of a tensor with two upper indices named the Poisson structure. Under the assumption of nondegeneracy, the Poisson structure is nothing else than the inverse of the symplectic structure. Also in the degenerate case the distinction between the two approaches is almost insignificant, because both presymplectic and Poisson structures split into symplectic structures on leaves of appropriately chosen foliations. Hamiltonian structures that arise in the theory of evolution equations demonstrate something new in this respect: trying to operate in local terms, one is induced to develop both approaches independently. Hamiltonian operators, being the infinite-dimensional counterparts of Poisson structures, were the first to become the subject of investigations. A considerable period of time passed before the papers initiated research in the theory of symplectic operators, being the counterparts of presymplectic structures. In what follows, we focus on the main achievements in this field
International Nuclear Information System (INIS)
Agarwal, Ravi P.; Baghli, Selma; Benchohra, Mouffak
2009-01-01
The controllability of mild solutions defined on the semi-infinite positive real interval for two classes of first order semilinear functional and neutral functional differential evolution equations with infinite delay is studied in this paper. Our results are obtained using a recent nonlinear alternative due to Avramescu for sum of compact and contraction operators in Frechet spaces, combined with the semigroup theory
Polygons of differential equations for finding exact solutions
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.; Demina, Maria V.
2007-01-01
A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg-de Vries-Burgers equation, the generalized Kuramoto-Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg-de Vries equation, the fifth-order modified Korteveg-de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given
dimensional nonlinear evolution equations
Indian Academy of Sciences (India)
in real-life situations, it is important to find their exact solutions. Further, in ... But only little work is done on the high-dimensional equations. .... Similarly, to determine the values of d and q, we balance the linear term of the lowest order in eq.
On an abstract evolution equation with a spectral operator of scalar type
Directory of Open Access Journals (Sweden)
Marat V. Markin
2002-01-01
Full Text Available It is shown that the weak solutions of the evolution equation y′(t=Ay(t, t∈[0,T (0
International Nuclear Information System (INIS)
Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.
2016-01-01
We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g 1 structure function. These evolution equations resum powers of α s ln 2 (1/x) in the polarization-dependent evolution along with the powers of α s ln (1/x) in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-N c and large-N c N f limits. As a cross-check, in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for the g 1 structure function derived previously by Bartels, Ermolaev and Ryskin http://dx.doi.org/10.1007/s002880050285.
Neutron star evolutions using tabulated equations of state with a new execution model
Anderson, Matthew; Kaiser, Hartmut; Neilsen, David; Sterling, Thomas
2012-03-01
The addition of nuclear and neutrino physics to general relativistic fluid codes allows for a more realistic description of hot nuclear matter in neutron star and black hole systems. This additional microphysics requires that each processor have access to large tables of data, such as equations of state, and in large simulations the memory required to store these tables locally can become excessive unless an alternative execution model is used. In this talk we present neutron star evolution results obtained using a message driven multi-threaded execution model known as ParalleX as an alternative to using a hybrid MPI-OpenMP approach. ParalleX provides the user a new way of computation based on message-driven flow control coordinated by lightweight synchronization elements which improves scalability and simplifies code development. We present the spectrum of radial pulsation frequencies for a neutron star with the Shen equation of state using the ParalleX execution model. We present performance results for an open source, distributed, nonblocking ParalleX-based tabulated equation of state component capable of handling tables that may even be too large to read into the memory of a single node.
Transformation properties of the integrable evolution equations
International Nuclear Information System (INIS)
Konopelchenko, B.G.
1981-01-01
Group-theoretical properties of partial differential equations integrable by the inverse scattering transform method are discussed. It is shown that nonlinear transformations typical to integrable equations (symmetry groups, Baecklund-transformations) and these equations themselves are contained in a certain universal nonlinear transformation group. (orig.)
Hyperbolicity and constrained evolution in linearized gravity
International Nuclear Information System (INIS)
Matzner, Richard A.
2005-01-01
Solving the 4-d Einstein equations as evolution in time requires solving equations of two types: the four elliptic initial data (constraint) equations, followed by the six second order evolution equations. Analytically the constraint equations remain solved under the action of the evolution, and one approach is to simply monitor them (unconstrained evolution). Since computational solution of differential equations introduces almost inevitable errors, it is clearly 'more correct' to introduce a scheme which actively maintains the constraints by solution (constrained evolution). This has shown promise in computational settings, but the analysis of the resulting mixed elliptic hyperbolic method has not been completely carried out. We present such an analysis for one method of constrained evolution, applied to a simple vacuum system, linearized gravitational waves. We begin with a study of the hyperbolicity of the unconstrained Einstein equations. (Because the study of hyperbolicity deals only with the highest derivative order in the equations, linearization loses no essential details.) We then give explicit analytical construction of the effect of initial data setting and constrained evolution for linearized gravitational waves. While this is clearly a toy model with regard to constrained evolution, certain interesting features are found which have relevance to the full nonlinear Einstein equations
Decoupling the NLO coupled DGLAP evolution equations: an analytic solution to pQCD
Energy Technology Data Exchange (ETDEWEB)
Block, Martin M. [Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Durand, Loyal [University of Wisconsin, Department of Physics, Madison, WI (United States); Ha, Phuoc [Towson University, Department of Physics, Astronomy and Geosciences, Towson, MD (United States); McKay, Douglas W. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States)
2010-10-15
Using repeated Laplace transforms, we turn coupled, integral-differential singlet DGLAP equations into NLO (next-to-leading) coupled algebraic equations, which we then decouple. After two Laplace inversions we find new tools for pQCD: decoupled NLO analytic solutions F{sub s}(x,Q{sup 2})=F{sub s}(F{sub s0}(x),G{sub 0}(x)), G(x,Q{sup 2})=G(F{sub s0}(x), G{sub 0}(x)). F{sub s}, G are known NLO functions and F{sub s0}(x){identical_to}F{sub s}(x,Q{sub 0}{sup 2}), G{sub 0}(x){identical_to}G(x,Q{sub 0}{sup 2}) are starting functions for evolution beginning at Q{sup 2}=Q{sub 0}{sup 2}. We successfully compare our u and d non-singlet valence quark distributions with MSTW results (Martin et al., Eur. Phys. J. C 63:189, 2009). (orig.)
The AGL equation from the dipole picture
International Nuclear Information System (INIS)
Gay Ducati, M.B.; Goncalves, V.P.
1999-01-01
The AGL equation includes all multiple pomeron exchanges in the double logarithmic approximation (DLA) limit, leading to a unitarized gluon distribution in the small x regime. This equation was originally obtained using the Glauber-Mueller approach. We demonstrate in this paper that the AGL equation and, consequently, the GLR equation, can also be obtained from the dipole picture in the double logarithmic limit, using an evolution equation, recently proposed, which includes all multiple pomeron exchanges in the leading logarithmic approximation. Our conclusion is that the AGL equation is a good candidate for a unitarized evolution equation at small x in the DLA limit
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
199 Étude de la qualité des eaux d'une retenue située sous climat ...
African Journals Online (AJOL)
Afrique Sciences
Mots-clés : barrage Hassan II, Maroc, climat, eau, qualité, eutrophisation. Abstract ... However, the feasibility and management of these structures are ..... Figure 5 : Evolution spatio-temporelle de la température au barrage Hassan II. De S à P6 ...
Energy Technology Data Exchange (ETDEWEB)
Cazemajou, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1965-07-01
In this paper, a new formulation of the spatial dependent impulse response of a subcritical reactor in a cylindrical geometry is proposed. An expression of the transfer function between a point source at the center of coordinates and the flux at a given point (r,z) is obtained by solving: by means of Laplace transform, the one group diffusion equation. In this transfer function, variables r and p (p being the Laplace variable) remain linked within a modified Bessel function. Taking the inverse Laplace transform is done by two different ways: - using the Mellin-Fourier method which separates variables r and t. This method makes it possible to establish that there is identity between the classical formulation and the new one. - using an inverse Laplace transform which keeps variables r and t linked. This method requires to approximate the inverse Laplace transform of the end factor. It is then possible to replace the radial harmonics modes series of the classical expression by a single function. This new formulation seems to be of particular interest when dealing with reactors of large size and lifetime. It is also interesting each time the harmonics play an important role. (author) [French] Dans le present rapport, on propose une nouvelle formulation de la reponse impulsionnelle spatio-temporelle d'un reacteur sous-critique, en geometrie cylindrique. Une expression de la fonction de transfert entre une source ponctuelle placee au centre des coordonnees et le flux au point courant (r,z) est obtenue en resolvant, par transformation de Laplace, l'equation de la diffusion a un seul groupe d'energie. Dans cette fonction de transfert, les variables r et p (variable de Laplace) demeurent groupees dans une fonction de Bessel modifiee. Le retour a l'original est effectue de deux manieres: - la methode de Mellin-Fourier qui separe les variables r et t, permet d'etablir l'identite entre la nouvelle formulation et la formulation classique. - un original conservant les variables
Computing generalized Langevin equations and generalized Fokker-Planck equations.
Darve, Eric; Solomon, Jose; Kia, Amirali
2009-07-07
The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.
Engen, Steinar; Saether, Bernt-Erik
2014-03-01
We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Final state dipole showers and the DGLAP equation
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2009-01-01
We study a parton shower description, based on a dipole picture, of the final state in electron-positron annihilation. In such a shower, the distribution function describing the inclusive probability to find a quark with a given energy depends on the shower evolution time. Starting from the exclusive evolution equation for the shower, we derive an equation for the evolution of the inclusive quark energy distribution in the limit of strong ordering in shower evolution time of the successive parton splittings. We find that, as expected, this is the DGLAP equation. This paper is a response to a recent paper of Dokshitzer and Marchesini that raised troubling issues about whether a dipole based shower could give the DGLAP equation for the quark energy distribution.
Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood
2018-03-01
The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.
International Nuclear Information System (INIS)
Wu Jianping
2010-01-01
Based on the Hirota bilinear form, a simple approach without employing the standard perturbation technique, is presented for constructing a novel N-soliton solution for a (3+1)-dimensional nonlinear evolution equation. Moreover, the novel N-soliton solution is shown to have resonant behavior with the aid of Mathematica. (general)
Evolution of a Network of Vortex Loops in He-II: Exact Solution of the Rate Equation
International Nuclear Information System (INIS)
Nemirovskii, Sergey K.
2006-01-01
The evolution of a network of vortex loops in He-II due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the ''rate equation'' for the distribution function n(l) of number of loops of length l. By use of the special ansatz we have found the exact powerlike solution of the rate equation in a stationary case. That solution is the famous equilibrium distribution n(l)∝l -5/2 obtained earlier from thermodynamic arguments. Our result, however, is not equilibrium; it describes the state with two mutual fluxes of the length (or energy) in l space. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of the order of interline space and that the decay of the vortex tangle obeys the Vinen equation. We also evaluated the full rate of reconnection
Evolution of a network of vortex loops in He-II: exact solution of the rate equation.
Nemirovskii, Sergey K
2006-01-13
The evolution of a network of vortex loops in He-II due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the "rate equation" for the distribution function n(l) of number of loops of length l. By use of the special ansatz we have found the exact power-like solution of the rate equation in a stationary case. That solution is the famous equilibrium distribution n(l) proportional l(-5/2) obtained earlier from thermodynamic arguments. Our result, however, is not equilibrium; it describes the state with two mutual fluxes of the length (or energy) in l space. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of the order of interline space and that the decay of the vortex tangle obeys the Vinen equation. We also evaluated the full rate of reconnection.
Abstract methods in partial differential equations
Carroll, Robert W
2012-01-01
Detailed, self-contained treatment examines modern abstract methods in partial differential equations, especially abstract evolution equations. Suitable for graduate students with some previous exposure to classical partial differential equations. 1969 edition.
Toward making the constraint hypersurface an attractor in free evolution
International Nuclear Information System (INIS)
Fiske, David R.
2004-01-01
When constructing numerical solutions to systems of evolution equations subject to a constraint, one must decide what role the constraint equations will play in the evolution system. In one popular choice, known as free evolution, a simulation is treated as a Cauchy problem, with the initial data constructed to satisfy the constraint equations. This initial data are then evolved via the evolution equations with no further enforcement of the constraint equations. The evolution, however, via the discretized evolution equations introduce constraint violating modes at the level of truncation error, and these constraint violating modes will behave in a formalism dependent way. This paper presents a generic method for incorporating the constraint equations into the evolution equations so that the off-constraint dynamics are biased toward the constraint satisfying solutions
Kinetic equations for an unstable plasma; Equations cinetiques d'un plasma instable
Energy Technology Data Exchange (ETDEWEB)
Laval, G; Pellat, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1968-07-01
In this work, we establish the plasma kinetic equations starting from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of equations. We demonstrate that relations existing between correlation functions may help to justify the truncation of the hierarchy. Then we obtain the kinetic equations of a stable or unstable plasma. They do not reduce to an equation for the one-body distribution function, but generally involve two coupled equations for the one-body distribution function and the spectral density of the fluctuating electric field. We study limiting cases where the Balescu-Lenard equation, the quasi-linear theory, the Pines-Schrieffer equations and the equations of weak turbulence in the random phase approximation are recovered. At last we generalise the H-theorem for the system of equations and we define conditions for irreversible behaviour. (authors) [French] Dans ce travail nous etablissons les equations cinetiques d'un plasma a partir des equations de la recurrence de Bogoliubov, Born, Green, Kirkwood et Yvon. Nous demontrons qu'entre les fonctions de correlation d'un plasma existent des relations qui permettent de justifier la troncature de la recurrence. Nous obtenons alors les equations cinetiques d'un plasma stable ou instable. En general elles ne se reduisent pas a une equation d'evolution pour la densite simple, mais se composent de deux equations couplees portant sur la densite simple et la densite spectrale du champ electrique fluctuant. Nous etudions le cas limites ou l'on retrouve l'equation de Balescu-Lenard, les equations de la theorie quasi-lineaire, les equations de Pines et Schrieffer et les equations de la turbulence faible dans l'approximation des phases aleatoires. Enfin, nous generalisons le theoreme H pour ce systeme d'equations et nous precisons les conditions d'evolution irreversible. (auteurs)
Nonlinear evolution equations and Painlevé test
Steeb, Willi-Hans
1988-01-01
This book is an edited version of lectures given by the authors at a seminar at the Rand Afrikaans University. It gives a survey on the Painlevé test, Painlevé property and integrability. Both ordinary differential equations and partial differential equations are considered.
A multiscale asymptotic analysis of time evolution equations on the complex plane
Energy Technology Data Exchange (ETDEWEB)
Braga, Gastão A., E-mail: gbraga@mat.ufmg.br [Departamento de Matemática, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161-970 Belo Horizonte, MG (Brazil); Conti, William R. P., E-mail: wrpconti@gmail.com [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Dr. Carvalho de Mendonça 144, 11070-100 Santos, SP (Brazil)
2016-07-15
Using an appropriate norm on the space of entire functions, we extend to the complex plane the renormalization group method as developed by Bricmont et al. The method is based upon a multiscale approach that allows for a detailed description of the long time asymptotics of solutions to initial value problems. The time evolution equation considered here arises in the study of iterations of the block spin renormalization group transformation for the hierarchical N-vector model. We show that, for initial conditions belonging to a certain Fréchet space of entire functions of exponential type, the asymptotics is universal in the sense that it is dictated by the fixed point of a certain operator acting on the space of initial conditions.
International Nuclear Information System (INIS)
Gori, F.
2006-01-01
Mass conservation equation of non-renewable resources is employed to study the resources remaining in the reservoir according to the extraction policy. The energy conservation equation is transformed into an energy-capital conservation equation. The Hotelling rule is shown to be a special case of the general energy-capital conservation equation when the mass flow rate of extracted resources is equal to unity. Mass and energy-capital conservation equations are then coupled and solved together. It is investigated the price evolution of extracted resources. The conclusion of the Hotelling rule for non-extracted resources, i.e. an exponential increase of the price of non-renewable resources at the rate of current interest, is then generalized. A new parameter, called 'Price Increase Factor', PIF, is introduced as the difference between the current interest rate of capital and the mass flow rate of extraction of non-renewable resources. The price of extracted resources can increase exponentially only if PIF is greater than zero or if the mass flow rate of extraction is lower than the current interest rate of capital. The price is constant if PIF is zero or if the mass flow rate of extraction is equal to the current interest rate. The price is decreasing with time if PIF is smaller than zero or if the mass flow rate of extraction is higher than the current interest rate. (author)
Quantum adiabatic Markovian master equations
International Nuclear Information System (INIS)
Albash, Tameem; Zanardi, Paolo; Boixo, Sergio; Lidar, Daniel A
2012-01-01
We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state. (paper)
Conserved quantities for generalized KdV equations
International Nuclear Information System (INIS)
Calogero, F.; Rome Univ.; Degasperis, A.; Rome Univ.
1980-01-01
It is noted that the nonlinear evolution equation usub(t) = α(t)usub(xxx) - 6ν(t) usub(x)u, u is identical to u(x,t), possesses three (and, in some cases, four) conserved quantities, that are explicitly displayed. These results are of course relevant only to the cases in which this evolution equation is not known to possess an infinite number of conserved quantities. Purpose and scope of this paper is to report three or four simple conservation laws possessed by the evolution equation usub(t) = α(t)usub(xxx) - 6ν(t)usub(x)u, u is identical to u(x,t). (author)
A new formulation of equations of compressible fluids by analogy with Maxwell's equations
International Nuclear Information System (INIS)
Kambe, Tsutomu
2010-01-01
A compressible ideal fluid is governed by Euler's equation of motion and equations of continuity, entropy and vorticity. This system can be reformulated in a form analogous to that of electromagnetism governed by Maxwell's equations with source terms. The vorticity plays the role of magnetic field, while the velocity field plays the part of a vector potential and the enthalpy (of isentropic flows) plays the part of a scalar potential in electromagnetism. The evolution of source terms of fluid Maxwell equations is determined by solving the equations of motion and continuity. The equation of sound waves can be derived from this formulation, where time evolution of the sound source is determined by the equation of motion. The theory of vortex sound of aeroacoustics is included in this formulation. It is remarkable that the forces acting on a point mass moving in a velocity field of an inviscid fluid are analogous in their form to the electric force and Lorentz force in electromagnetism. The significance of the reformulation is interpreted by examples taken from fluid mechanics. This formulation can be extended to viscous fluids without difficulty. The Maxwell-type equations are unchanged by the viscosity effect, although the source terms have additional terms due to viscosities.
Minimal length, Friedmann equations and maximum density
Energy Technology Data Exchange (ETDEWEB)
Awad, Adel [Center for Theoretical Physics, British University of Egypt,Sherouk City 11837, P.O. Box 43 (Egypt); Department of Physics, Faculty of Science, Ain Shams University,Cairo, 11566 (Egypt); Ali, Ahmed Farag [Centre for Fundamental Physics, Zewail City of Science and Technology,Sheikh Zayed, 12588, Giza (Egypt); Department of Physics, Faculty of Science, Benha University,Benha, 13518 (Egypt)
2014-06-16
Inspired by Jacobson’s thermodynamic approach, Cai et al. have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation http://dx.doi.org/10.1103/PhysRevD.75.084003 of Friedmann equations to accommodate a general entropy-area law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p(ρ,a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p=ωρ through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.
Integrable systems of partial differential equations determined by structure equations and Lax pair
International Nuclear Information System (INIS)
Bracken, Paul
2010-01-01
It is shown how a system of evolution equations can be developed both from the structure equations of a submanifold embedded in three-space as well as from a matrix SO(6) Lax pair. The two systems obtained this way correspond exactly when a constraint equation is selected and imposed on the system of equations. This allows for the possibility of selecting the coefficients in the second fundamental form in a general way.
Meyer, Yves
2001-01-01
Image compression, the Navier-Stokes equations, and detection of gravitational waves are three seemingly unrelated scientific problems that, remarkably, can be studied from one perspective. The notion that unifies the three problems is that of "oscillating patterns", which are present in many natural images, help to explain nonlinear equations, and are pivotal in studying chirps and frequency-modulated signals. The first chapter of this book considers image processing, more precisely algorithms of image compression and denoising. This research is motivated in particular by the new standard for compression of still images known as JPEG-2000. The second chapter has new results on the Navier-Stokes and other nonlinear evolution equations. Frequency-modulated signals and their use in the detection of gravitational waves are covered in the final chapter. In the book, the author describes both what the oscillating patterns are and the mathematics necessary for their analysis. It turns out that this mathematics invo...
CIME course on Control of Partial Differential Equations
Alabau-Boussouira, Fatiha; Glass, Olivier; Le Rousseau, Jérôme; Zuazua, Enrique
2012-01-01
The term “control theory” refers to the body of results - theoretical, numerical and algorithmic - which have been developed to influence the evolution of the state of a given system in order to meet a prescribed performance criterion. Systems of interest to control theory may be of very different natures. This monograph is concerned with models that can be described by partial differential equations of evolution. It contains five major contributions and is connected to the CIME Course on Control of Partial Differential Equations that took place in Cetraro (CS, Italy), July 19 - 23, 2010. Specifically, it covers the stabilization of evolution equations, control of the Liouville equation, control in fluid mechanics, control and numerics for the wave equation, and Carleman estimates for elliptic and parabolic equations with application to control. We are confident this work will provide an authoritative reference work for all scientists who are interested in this field, representing at the same time a fri...
Directory of Open Access Journals (Sweden)
Herb Kunze
2014-06-01
Full Text Available Let T be a set-valued contraction mapping on a general Banach space $\\mathcal{B}$. In the first part of this paper we introduce the evolution inclusion $\\dot x + x \\in Tx$ and study the convergence of solutions to this inclusion toward fixed points of T. Two cases are examined: (i T has a fixed point $\\bar y \\in \\mathcal{B}$ in the usual sense, i.e., $\\bar y = T \\bar y$ and (ii T has a fixed point in the sense of inclusions, i.e., $\\bar y \\in T \\bar y$. In the second part we extend this analysis to the case of set-valued evolution equations taking the form $\\dot x + x = Tx$. We also provide some applications to generalized fractal transforms.
Bessaih, Hakima
2015-04-01
The evolution Stokes equation in a domain containing periodically distributed obstacles subject to Fourier boundary condition on the boundaries is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the obstacles. We represent the solid obstacles by holes in the fluid domain. The macroscopic (homogenized) equation is derived as another stochastic partial differential equation, defined in the whole non perforated domain. Here, the initial stochastic perturbation on the boundary becomes part of the homogenized equation as another stochastic force. We use the twoscale convergence method after extending the solution with 0 in the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. In order to pass to the limit on the boundary integrals, we rewrite them in terms of integrals in the whole domain. In particular, for the stochastic integral on the boundary, we combine the previous idea of rewriting it on the whole domain with the assumption that the Brownian motion is of trace class. Due to the particular boundary condition dealt with, we get that the solution of the stochastic homogenized equation is not divergence free. However, it is coupled with the cell problem that has a divergence free solution. This paper represents an extension of the results of Duan and Wang (Comm. Math. Phys. 275:1508-1527, 2007), where a reaction diffusion equation with a dynamical boundary condition with a noise source term on both the interior of the domain and on the boundary was studied, and through a tightness argument and a pointwise two scale convergence method the homogenized equation was derived. © American Institute of Mathematical Sciences.
Dynamique spatio-temporelle de la forêt tropicale
Chave, J.
'actuel des forêts tropicales humides. L'ensemble de ces informations est utilisé pour construire un modèle de dynamique forestière spatialement explicite, dont l'unité de description est l'arbre. Des modèles simplifiés sont déduits de celui-ci pour poser des problèmes plus spécifiques, comme la résilience de la forêt aux perturbations climatiques, ou la dynamique des interfaces forêt-savane. Le dernier aspect abordé est la description spatiale et temporelle de la biodiversité des plantes tropicales. Une introduction détaillée à la problématique est fournie, et les modèles permettant d'expliquer le maintien de la biodiversité sont comparés. Ces modèles incluent des approches non spatiales (marches aléatoires avec branchement-annihilation), ou spatiales (modèle des électeurs avec mutation).
New application of Exp-function method for improved Boussinesq equation
Energy Technology Data Exchange (ETDEWEB)
Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Department of Physics, Faculty of Education for Girls, Science Departments, King Khalid University, Bisha (Saudi Arabia)], E-mail: m_abdou_eg@yahoo.com; Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish) Suez Canal University, AL-Arish 45111 (Egypt); Department of Mathematics, Teacher' s College (Bisha), King Khalid University, Bisha, PO Box 551 (Saudi Arabia)], E-mail: asoliman_99@yahoo.com; El-Basyony, S.T. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt)
2007-10-01
The Exp-function method is used to obtain generalized solitary solutions and periodic solutions for nonlinear evolution equations arising in mathematical physics with the aid of symbolic computation method, namely, the improved Boussinesq equation. The method is straightforward and concise, and its applications is promising for other nonlinear evolution equations in mathematical physics.
Perturbation theory for continuous stochastic equations
International Nuclear Information System (INIS)
Chechetkin, V.R.; Lutovinov, V.S.
1987-01-01
The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)
A generalized simplest equation method and its application to the Boussinesq-Burgers equation.
Sudao, Bilige; Wang, Xiaomin
2015-01-01
In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.
Comment on connections between nonlinear evolution equations
International Nuclear Information System (INIS)
Fuchssteiner, B.; Hefter, E.F.
1981-01-01
An open problem raised in a recent paper by Chodos is treated. We explain the reason for the interrelation between the conservation laws of the Korteweg-de Vries (KdV) and sine-Gordon equations. We point out that it is due to a corresponding connection between the infinite-dimensional Abelian symmetry groups of these equations. While it has been known for a long time that a Baecklund transformation (in this case the Miura transformation) connects corresponding members of the KdV and the sine-Gordon families, it is quite obvious that no Baecklund transformation can exist between different members of these families. And since the KdV and sine-Gordon equations do not correspond to each other, one cannot expect a Baecklund transformation between them; nevertheless we can give explicit relations between their two-soliton solutions. No inverse scattering techniques are used in this paper
Iterative Splitting Methods for Differential Equations
Geiser, Juergen
2011-01-01
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential
Effective equations for the quantum pendulum from momentous quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Hector H.; Chacon-Acosta, Guillermo [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua 31125 (Mexico); Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120 (Mexico)
2012-08-24
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
Soliton solutions of some nonlinear evolution equations with time ...
Indian Academy of Sciences (India)
Abstract. In this paper, we obtain exact soliton solutions of the modified KdV equation, inho- mogeneous nonlinear Schrödinger equation and G(m, n) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the ...
Dilation of non-quasifree dissipative evolution
Energy Technology Data Exchange (ETDEWEB)
Varilly, J C [Costa Rica Univ., San Jose. Escuela de Matematica
1981-03-01
A semigroup evolution for the 1/2-spin which admits a conservative dilation is known to be governed by a Bloch equation in a standard form. Here we construct a conservative dilation directly from the Bloch equation, thus yielding an example of a dilation scheme for an evolution which is not quasifree. Moreover, we show that this conservative evolution is never ergodic in the non-quasifree case.
Directory of Open Access Journals (Sweden)
Jinliang Xu
2013-06-01
Full Text Available This paper investigates the filtering problem for multivariate continuous nonlinear non-Gaussian systems based on an improved minimum error entropy (MEE criterion. The system is described by a set of nonlinear continuous equations with non-Gaussian system noises and measurement noises. The recently developed generalized density evolution equation is utilized to formulate the joint probability density function (PDF of the estimation errors. Combining the entropy of the estimation error with the mean squared error, a novel performance index is constructed to ensure the estimation error not only has small uncertainty but also approaches to zero. According to the conjugate gradient method, the optimal filter gain matrix is then obtained by minimizing the improved minimum error entropy criterion. In addition, the condition is proposed to guarantee that the estimation error dynamics is exponentially bounded in the mean square sense. Finally, the comparative simulation results are presented to show that the proposed MEE filter is superior to nonlinear unscented Kalman filter (UKF.
Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth
International Nuclear Information System (INIS)
Thiele, U
2010-01-01
In the present contribution we review basic mathematical results for three physical systems involving self-organizing solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e. time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different systems. First, we discuss the linear stability of homogeneous steady states, i.e. flat films, and second the systematics of non-trivial steady states, i.e. drop/hole states for dewetting films and quantum-dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly unrelated physical systems mathematically, but does allow as well for discussing model extensions in a more unified way.
Antishadowing effects in the unitarized BFKL equation
International Nuclear Information System (INIS)
Ruan Jianhong; Shen Zhenqi; Yang Jifeng; Zhu Wei
2007-01-01
A unitarized BFKL equation incorporating shadowing and antishadowing corrections of the gluon recombination is proposed. This equation reduces to the Balitsky-Kovchegov evolution equation near the saturation limit. We find that the antishadowing effects have a sizable influence on the gluon distribution function in the preasymptotic regime
Antishadowing effects in the unitarized BFKL equation
Energy Technology Data Exchange (ETDEWEB)
Ruan Jianhong [Department of Physics, East China Normal University, Shanghai 200062 (China); Shen Zhenqi [Department of Physics, East China Normal University, Shanghai 200062 (China); Yang Jifeng [Department of Physics, East China Normal University, Shanghai 200062 (China); Zhu Wei [Department of Physics, East China Normal University, Shanghai 200062 (China)]. E-mail: weizhu@mail.ecnu.edu.cn
2007-01-01
A unitarized BFKL equation incorporating shadowing and antishadowing corrections of the gluon recombination is proposed. This equation reduces to the Balitsky-Kovchegov evolution equation near the saturation limit. We find that the antishadowing effects have a sizable influence on the gluon distribution function in the preasymptotic regime.
EXACT TRAVELLING WAVE SOLUTIONS TO BBM EQUATION
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Abundant new travelling wave solutions to the BBM (Benjamin-Bona-Mahoni) equation are obtained by the generalized Jacobian elliptic function method. This method can be applied to other nonlinear evolution equations.
Non-Equilibrium Turbulence and Two-Equation Modeling
Rubinstein, Robert
2011-01-01
Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.
Analytic solution to leading order coupled DGLAP evolution equations: A new perturbative QCD tool
International Nuclear Information System (INIS)
Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.
2011-01-01
We have analytically solved the LO perturbative QCD singlet DGLAP equations [V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)][G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977)][Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)] using Laplace transform techniques. Newly developed, highly accurate, numerical inverse Laplace transform algorithms [M. M. Block, Eur. Phys. J. C 65, 1 (2010)][M. M. Block, Eur. Phys. J. C 68, 683 (2010)] allow us to write fully decoupled solutions for the singlet structure function F s (x,Q 2 ) and G(x,Q 2 ) as F s (x,Q 2 )=F s (F s0 (x 0 ),G 0 (x 0 )) and G(x,Q 2 )=G(F s0 (x 0 ),G 0 (x 0 )), where the x 0 are the Bjorken x values at Q 0 2 . Here F s and G are known functions--found using LO DGLAP splitting functions--of the initial boundary conditions F s0 (x)≡F s (x,Q 0 2 ) and G 0 (x)≡G(x,Q 0 2 ), i.e., the chosen starting functions at the virtuality Q 0 2 . For both G(x) and F s (x), we are able to either devolve or evolve each separately and rapidly, with very high numerical accuracy--a computational fractional precision of O(10 -9 ). Armed with this powerful new tool in the perturbative QCD arsenal, we compare our numerical results from the above equations with the published MSTW2008 and CTEQ6L LO gluon and singlet F s distributions [A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009)], starting from their initial values at Q 0 2 =1 GeV 2 and 1.69 GeV 2 , respectively, using their choice of α s (Q 2 ). This allows an important independent check on the accuracies of their evolution codes and, therefore, the computational accuracies of their published parton distributions. Our method completely decouples the two LO distributions, at the same time guaranteeing that both G and F s satisfy the singlet coupled DGLAP equations. It also allows one to easily obtain the effects of the starting functions on the evolved gluon and singlet structure functions, as functions of both Q
Energy Technology Data Exchange (ETDEWEB)
Winckler, N., E-mail: n.winckler@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Rybalchenko, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Shevelko, V.P. [P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); Al-Turany, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); CERN, European Organization for Nuclear Research, 1211 Geneve 23 (Switzerland); Kollegger, T. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institute Jena, D-07743 Jena (Germany); Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, D-07743 Jena (Germany)
2017-02-01
A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.
International Nuclear Information System (INIS)
Kawamura, Hiroyuki; Tanaka, Kazuhiro
2010-01-01
The B-meson distribution amplitude (DA) is defined as the matrix element of a quark-antiquark bilocal light-cone operator in the heavy-quark effective theory, corresponding to a long-distance component in the factorization formula for exclusive B-meson decays. The evolution equation for the B-meson DA is governed by the cusp anomalous dimension as well as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-type anomalous dimension, and these anomalous dimensions give the ''quasilocal'' kernel in the coordinate-space representation. We show that this evolution equation can be solved analytically in the coordinate space, accomplishing the relevant Sudakov resummation at the next-to-leading logarithmic accuracy. The quasilocal nature leads to a quite simple form of our solution which determines the B-meson DA with a quark-antiquark light-cone separation t in terms of the DA at a lower renormalization scale μ with smaller interquark separations zt (z≤1). This formula allows us to present rigorous calculation of the B-meson DA at the factorization scale ∼√(m b Λ QCD ) for t less than ∼1 GeV -1 , using the recently obtained operator product expansion of the DA as the input at μ∼1 GeV. We also derive the master formula, which reexpresses the integrals of the DA at μ∼√(m b Λ QCD ) for the factorization formula by the compact integrals of the DA at μ∼1 GeV.
The forced nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Kaup, D.J.; Hansen, P.J.
1985-01-01
The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)
Winckler, N; Shevelko, V P; Al-Turany, M; Kollegger, T; Stöhlker, Th
2017-01-01
A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
International Nuclear Information System (INIS)
Ablowitz, Mark J; Curtis, Christopher W
2011-01-01
The Benney-Luke equation, which arises as a long wave asymptotic approximation of water waves, contains the Kadomtsev-Petviashvilli (KP) equation as a leading-order maximal balanced approximation. The question analyzed is how the Benney-Luke equation modifies the so-called web solutions of the KP equation. It is found that the Benney-Luke equation introduces dispersive radiation which breaks each of the symmetric soliton-like humps well away from the interaction region of the KP web solution into a tail of multi-peaked oscillating profiles behind the main solitary hump. Computation indicates that the wave structure is modified near the center of the interaction region. Both analytical and numerical techniques are employed for working with non-periodic, non-decaying solutions on unbounded domains.
Ablowitz, Mark J.; Curtis, Christopher W.
2011-05-01
The Benney-Luke equation, which arises as a long wave asymptotic approximation of water waves, contains the Kadomtsev-Petviashvilli (KP) equation as a leading-order maximal balanced approximation. The question analyzed is how the Benney-Luke equation modifies the so-called web solutions of the KP equation. It is found that the Benney-Luke equation introduces dispersive radiation which breaks each of the symmetric soliton-like humps well away from the interaction region of the KP web solution into a tail of multi-peaked oscillating profiles behind the main solitary hump. Computation indicates that the wave structure is modified near the center of the interaction region. Both analytical and numerical techniques are employed for working with non-periodic, non-decaying solutions on unbounded domains.
Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations
Lorz, Alexander; Mirrahimi, Sepideh; Perthame, Benoî t
2011-01-01
simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.
Numerical Methods for Partial Differential Equations
Guo, Ben-yu
1987-01-01
These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.
Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I
International Nuclear Information System (INIS)
Tsuchida, Takayuki; Wolf, Thomas
2005-01-01
We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made
Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I
Energy Technology Data Exchange (ETDEWEB)
Tsuchida, Takayuki [Department of Physics, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Wolf, Thomas [Department of Mathematics, Brock University, St Catharines, ON L2S 3A1 (Canada)
2005-09-02
We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made.
Singularities in the nonisotropic Boltzmann equation
International Nuclear Information System (INIS)
Garibotti, C.R.; Martiarena, M.L.; Zanette, D.
1987-09-01
We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs
Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations
Lorz, Alexander
2011-01-17
Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.
Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus
2014-01-01
Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.
Effective action and the quantum equation of motion
International Nuclear Information System (INIS)
Branchina, V.; Faivre, H.; Zappala, D.
2004-01-01
We carefully analyze the use of the effective action in dynamical problems, in particular the conditions under which the equation (δΓ)/(δφ) = 0 can be used as a quantum equation of motion and illustrate in detail the crucial relation between the asymptotic states involved in the definition of Γ and the initial state of the system. Also, by considering the quantum-mechanical example of a double-well potential, where we can get exact results for the time evolution of the system, we show that an approximation to the effective potential in the quantum equation of motion that correctly describes the dynamical evolution of the system is obtained with the help of the wilsonian RG equation (already at the lowest order of the derivative expansion), while the commonly used one-loop effective potential fails to reproduce the exact results. (orig.)
Evolution of gluon TMDs from small to moderate x
Energy Technology Data Exchange (ETDEWEB)
Tarasov, Andrey [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-05-01
Recently we obtained an evolution equation of gluon TMDs, which addresses a problem of unification of different kinematic regimes. It describes evolution in the whole range of Bjorken $x_B$ and the whole range of transverse momentum $k_\\perp$. In this notes I study different limits of this evolution equation and show how it yields several well-known and some previously unknown results.
On the solution of fractional evolution equations
International Nuclear Information System (INIS)
Kilbas, Anatoly A; Pierantozzi, Teresa; Trujillo, Juan J; Vazquez, Luis
2004-01-01
This paper is devoted to the solution of the bi-fractional differential equation ( C D α t u)(t, x) = λ( L D β x u)(t, x) (t>0, -∞ 0 and λ ≠ 0, with the initial conditions lim x→±∞ u(t,x) = 0 u(0+,x)=g(x). Here ( C D α t u)(t, x) is the partial derivative coinciding with the Caputo fractional derivative for 0 L D β x u)(t, x)) is the Liouville partial fractional derivative ( L D β t u)(t, x)) of order β > 0. The Laplace and Fourier transforms are applied to solve the above problem in closed form. The fundamental solution of these problems is established and its moments are calculated. The special case α = 1/2 and β = 1 is presented, and its application is given to obtain the Dirac-type decomposition for the ordinary diffusion equation
An equation of state for purely kinetic k-essence inspired by cosmic topological defects
Energy Technology Data Exchange (ETDEWEB)
Cordero, Ruben; Gonzalez, Eduardo L.; Queijeiro, Alfonso [Instituto Politecnico Nacional, Departamento de Fisica, Escuela Superior de Fisica y Matematicas, Ciudad de Mexico (Mexico)
2017-06-15
We investigate the physical properties of a purely kinetic k-essence model with an equation of state motivated in superconducting membranes. We compute the equation of state parameter w and discuss its physical evolution via a nonlinear equation of state. Using the adiabatic speed of sound and energy density, we restrict the range of parameters of the model in order to have an acceptable physical behavior. We study the evolution of the scale factor and address the question of the possible existence of finite-time future singularities. Furthermore, we analyze the evolution of the luminosity distance d{sub L} with redshift z by comparing (normalizing) it with the ΛCDM model. Since the equation of state parameter is z-dependent the evolution of the luminosity distance is also analyzed using the Alcock-Paczynski test. (orig.)
Diffusion-equation representations of landform evolution in the simplest circumstances: Appendix C
Hanks, Thomas C.
2009-01-01
The diffusion equation is one of the three great partial differential equations of classical physics. It describes the flow or diffusion of heat in the presence of temperature gradients, fluid flow in porous media in the presence of pressure gradients, and the diffusion of molecules in the presence of chemical gradients. [The other two equations are the wave equation, which describes the propagation of electromagnetic waves (including light), acoustic (sound) waves, and elastic (seismic) waves radiated from earthquakes; and LaPlace’s equation, which describes the behavior of electric, gravitational, and fluid potentials, all part of potential field theory. The diffusion equation reduces to LaPlace’s equation at steady state, when the field of interest does not depend on t. Poisson’s equation is LaPlace’s equation with a source term.
International Nuclear Information System (INIS)
Wang Qi; Chen Yong; Zhang Hongqing
2005-01-01
In this paper, we present a new Riccati equation rational expansion method to uniformly construct a series of exact solutions for nonlinear evolution equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recover some known solutions, but also find some new and general solutions. The solutions obtained in this paper include rational triangular periodic wave solutions, rational solitary wave solutions and rational wave solutions. The efficiency of the method can be demonstrated on (2 + 1)-dimensional Burgers equation
Monge-Ampere equations and tensorial functors
International Nuclear Information System (INIS)
Tunitsky, Dmitry V
2009-01-01
We consider differential-geometric structures associated with Monge-Ampere equations on manifolds and use them to study the contact linearization of such equations. We also consider the category of Monge-Ampere equations (the morphisms are contact diffeomorphisms) and a number of subcategories. We are chiefly interested in subcategories of Monge-Ampere equations whose objects are locally contact equivalent to equations linear in the second derivatives (semilinear equations), linear in derivatives, almost linear, linear in the second derivatives and independent of the first derivatives, linear, linear and independent of the first derivatives, equations with constant coefficients or evolution equations. We construct a number of functors from the category of Monge-Ampere equations and from some of its subcategories to the category of tensorial objects (that is, multi-valued sections of tensor bundles). In particular, we construct a pseudo-Riemannian metric for every generic Monge-Ampere equation. These functors enable us to establish effectively verifiable criteria for a Monge-Ampere equation to belong to the subcategories listed above.
International Nuclear Information System (INIS)
Marczynski, Slawomir
2011-01-01
The integro-differential Berk-Breizman (BB) equation, describing the evolution of particle-driven wave mode is transformed into a simple delayed differential equation form ν∂a(τ)/∂τ=a(τ) -a 2 (τ- 1) a(τ- 2). This transformation is also applied to the two modes extension of the BB theory. The obtained solutions are presented together with the derived asymptotic analytical solutions and the numerical results.
Nonadiabatic quantum Vlasov equation for Schwinger pair production
International Nuclear Information System (INIS)
Kim, Sang Pyo; Schubert, Christian
2011-01-01
Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which allows us to construct an exact solution using the well-known one-soliton solution to that equation. The case of timelike delta function pulse fields is also briefly considered.
The Davey-Stewartson Equation on the Half-Plane
Fokas, A. S.
2009-08-01
The Davey-Stewartson (DS) equation is a nonlinear integrable evolution equation in two spatial dimensions. It provides a multidimensional generalisation of the celebrated nonlinear Schrödinger (NLS) equation and it appears in several physical situations. The implementation of the Inverse Scattering Transform (IST) to the solution of the initial-value problem of the NLS was presented in 1972, whereas the analogous problem for the DS equation was solved in 1983. These results are based on the formulation and solution of certain classical problems in complex analysis, namely of a Riemann Hilbert problem (RH) and of either a d-bar or a non-local RH problem respectively. A method for solving the mathematically more complicated but physically more relevant case of boundary-value problems for evolution equations in one spatial dimension, like the NLS, was finally presented in 1997, after interjecting several novel ideas to the panoply of the IST methodology. Here, this method is further extended so that it can be applied to evolution equations in two spatial dimensions, like the DS equation. This novel extension involves several new steps, including the formulation of a d-bar problem for a sectionally non-analytic function, i.e. for a function which has different non-analytic representations in different domains of the complex plane. This, in addition to the computation of a d-bar derivative, also requires the computation of the relevant jumps across the different domains. This latter step has certain similarities (but is more complicated) with the corresponding step for those initial-value problems in two dimensions which can be solved via a non-local RH problem, like KPI.
Relations between nonlinear Riccati equations and other equations in fundamental physics
International Nuclear Information System (INIS)
Schuch, Dieter
2014-01-01
Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract ''quantizations'' such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown
Diffusion equations and hard collisions in multiple scattering of charged particles
International Nuclear Information System (INIS)
Papiez, Lech; Tulovsky, Vladimir
1998-01-01
The processes of angular-spatial evolution of multiple scattering of charged particles are described by the Lewis (special case of Boltzmann) integro-differential equation. The underlying stochastic process for this evolution is the compound Poisson process with transition densities satisfying the Lewis equation. In this paper we derive the Lewis equation from the compound Poisson process and show that the effective method of the solution of this equation can be based on the idea of decomposition of the compound Poisson process into processes of soft and hard collisions. Formulas for transition densities of soft and hard collision processes are provided in this paper together with the formula expressing the general solution of the Lewis equation in terms of those transition densities
Diffusion equations and hard collisions in multiple scattering of charged particles
Energy Technology Data Exchange (ETDEWEB)
Papiez, Lech [Department of Radiation Oncology, Indiana University, Indianapolis, IN (United States); Tulovsky, Vladimir [Department of Mathematics, St. John' s College, Staten Island, New York, NY (United States)
1998-09-01
The processes of angular-spatial evolution of multiple scattering of charged particles are described by the Lewis (special case of Boltzmann) integro-differential equation. The underlying stochastic process for this evolution is the compound Poisson process with transition densities satisfying the Lewis equation. In this paper we derive the Lewis equation from the compound Poisson process and show that the effective method of the solution of this equation can be based on the idea of decomposition of the compound Poisson process into processes of soft and hard collisions. Formulas for transition densities of soft and hard collision processes are provided in this paper together with the formula expressing the general solution of the Lewis equation in terms of those transition densities.
Non-local quasi-linear parabolic equations
International Nuclear Information System (INIS)
Amann, H
2005-01-01
This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing
Auzinger, Winfried; Hofstä tter, Harald; Ketcheson, David I.; Koch, Othmar
2016-01-01
We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.
Auzinger, Winfried
2016-07-28
We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.
International Nuclear Information System (INIS)
Chen Yong; Wang Qi; Li Biao
2005-01-01
Based on a new general ansatz and a general subepuation, a new general algebraic method named elliptic equation rational expansion method is devised for constructing multiple travelling wave solutions in terms of rational special function for nonlinear evolution equations (NEEs). We apply the proposed method to solve Whitham-Broer-Kaup equation and explicitly construct a series of exact solutions which include rational form solitary wave solution, rational form triangular periodic wave solutions and rational wave solutions as special cases. In addition, the links among our proposed method with the method by Fan [Chaos, Solitons and Fractals 2004;20:609], are also clarified generally
Travelling wave solutions to the Kuramoto-Sivashinsky equation
International Nuclear Information System (INIS)
Nickel, J.
2007-01-01
Combining the approaches given by Baldwin [Baldwin D et al. Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs. J Symbol Comput 2004;37:669-705], Peng [Peng YZ. A polynomial expansion method and new general solitary wave solutions to KS equation. Comm Theor Phys 2003;39:641-2] and by Schuermann [Schuermann HW, Serov VS. Weierstrass' solutions to certain nonlinear wave and evolution equations. Proc progress electromagnetics research symposium, 28-31 March 2004, Pisa. p. 651-4; Schuermann HW. Traveling-wave solutions to the cubic-quintic nonlinear Schroedinger equation. Phys Rev E 1996;54:4312-20] leads to a method for finding exact travelling wave solutions of nonlinear wave and evolution equations (NLWEE). The first idea is to generalize ansaetze given by Baldwin and Peng to find elliptic solutions of NLWEEs. Secondly, conditions used by Schuermann to find physical (real and bounded) solutions and to discriminate between periodic and solitary wave solutions are used. The method is shown in detail by evaluating new solutions of the Kuramoto-Sivashinsky equation
Stellar structure and evolution
International Nuclear Information System (INIS)
Kippernhahn, R.; Weigert, A.
1990-01-01
This book introduces the theory of the internal structure of stars and their evolution in time. It presents the basic physics of stellar interiors, methods for solving the underlying equations, and the most important results necessary for understanding the wide variety of stellar types and phenomena. The evolution of stars is discussed from their birth through normal evolution to possibly spectacular final stages. Chapters on stellar oscillations and rotation are included
Einstein boundary conditions for the 3+1 Einstein equations
International Nuclear Information System (INIS)
Frittelli, Simonetta; Gomez, Roberto
2003-01-01
In the 3+1 framework of the Einstein equations for the case of a vanishing shift vector and arbitrary lapse, we calculate explicitly the four boundary equations arising from the vanishing of the projection of the Einstein tensor along the normal to the boundary surface of the initial-boundary value problem. Such conditions take the form of evolution equations along (as opposed to across) the boundary for certain components of the extrinsic curvature and for certain space derivatives of the three-metric. We argue that, in general, such boundary conditions do not follow necessarily from the evolution equations and the initial data, but need to be imposed on the boundary values of the fundamental variables. Using the Einstein-Christoffel formulation, which is strongly hyperbolic, we show how three of the boundary equations up to linear combinations should be used to prescribe the values of some incoming characteristic fields. Additionally, we show that the fourth one imposes conditions on some outgoing fields
Equations of State: Gateway to Planetary Origin and Evolution (Invited)
Melosh, J.
2013-12-01
Research over the past decades has shown that collisions between solid bodies govern many crucial phases of planetary origin and evolution. The accretion of the terrestrial planets was punctuated by planetary-scale impacts that generated deep magma oceans, ejected primary atmospheres and probably created the moons of Earth and Pluto. Several extrasolar planetary systems are filled with silicate vapor and condensed 'tektites', probably attesting to recent giant collisions. Even now, long after the solar system settled down from its violent birth, a large asteroid impact wiped out the dinosaurs, while other impacts may have played a role in the origin of life on Earth and perhaps Mars, while maintaining a steady exchange of small meteorites between the terrestrial planets and our moon. Most of these events are beyond the scale at which experiments are possible, so that our main research tool is computer simulation, constrained by the laws of physics and the behavior of materials during high-speed impact. Typical solar system impact velocities range from a few km/s in the outer solar system to 10s of km/s in the inner system. Extrasolar planetary systems expand that range to 100s of km/sec typical of the tightly clustered planetary systems now observed. Although computer codes themselves are currently reaching a high degree of sophistication, we still rely on experimental studies to determine the Equations of State (EoS) of materials critical for the correct simulation of impact processes. The recent expansion of the range of pressures available for study, from a few 100 GPa accessible with light gas guns up to a few TPa from current high energy accelerators now opens experimental access to the full velocity range of interest in our solar system. The results are a surprise: several groups in both the USA and Japan have found that silicates and even iron melt and vaporize much more easily in an impact than previously anticipated. The importance of these findings is
Diagonalizing quadratic bosonic operators by non-autonomous flow equations
Bach, Volker
2016-01-01
The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocketâe"Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.
Solitary wave solutions to nonlinear evolution equations in ...
Indian Academy of Sciences (India)
1Computer Engineering Technique Department, Al-Rafidain University College, Baghdad, ... applied to extract solutions are tan–cot method and functional variable approaches. ... Consider the nonlinear partial differential equation in the form.
On the propagation of Einstein's equations with quasi-Maxwellian equations of gravity
International Nuclear Information System (INIS)
Novello, M.; Salim, J.M.
1985-01-01
It is proved that an affirmation proposed in a recent paper of Lesche and Som in which they argue about the non equivalence in the use of Weyl conformal tensor instead of the fuel curvature tensor in Bianchi identities regarded as the equation of evolution is wrong. (L.C.) [pt
Differential Equations as Actions
DEFF Research Database (Denmark)
Ronkko, Mauno; Ravn, Anders P.
1997-01-01
We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....
Constrained evolution in numerical relativity
Anderson, Matthew William
The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.
International Nuclear Information System (INIS)
Guo, Shimin; Mei, Liquan; Li, Ying; Sun, Youfa
2012-01-01
By introducing a new general ansätz, the improved fractional sub-equation method is proposed to construct analytical solutions of nonlinear evolution equations involving Jumarie's modified Riemann–Liouville derivative. By means of this method, the space–time fractional Whitham–Broer–Kaup and generalized Hirota–Satsuma coupled KdV equations are successfully solved. The obtained results show that the proposed method is quite effective, promising and convenient for solving nonlinear fractional differential equations. -- Highlights: ► We propose a novel method for nonlinear fractional differential equations. ► Two important fractional differential equations in fluid mechanics are solved successfully. ► Some new exact solutions of the fractional differential equations are obtained. ► These solutions will advance the understanding of nonlinear physical phenomena.
Solving nonlinear evolution equation system using two different methods
Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.
2015-12-01
This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.
Classification of exact solutions to the generalized Kadomtsev-Petviashvili equation
International Nuclear Information System (INIS)
Pandir, Yusuf; Gurefe, Yusuf; Misirli, Emine
2013-01-01
In this paper, we study the Kadomtsev-Petviashvili equation with generalized evolution and derive some new results using the approach called the trial equation method. The obtained results can be expressed by the soliton solutions, rational function solutions, elliptic function solutions and Jacobi elliptic function solutions. In the discussion, we give a new version of the trial equation method for nonlinear differential equations.
From the Hartree dynamics to the Vlasov equation
DEFF Research Database (Denmark)
Benedikter, Niels Patriz; Porta, Marcello; Saffirio, Chiara
2016-01-01
We consider the evolution of quasi-free states describing N fermions in the mean field limit, as governed by the nonlinear Hartree equation. In the limit of large N, we study the convergence towards the classical Vlasov equation. For a class of regular interaction potentials, we establish precise...
On the solution of fractional evolution equations
Energy Technology Data Exchange (ETDEWEB)
Kilbas, Anatoly A [Department of Mathematics and Mechanics, Belarusian State University, 220050 Minsk (Belarus); Pierantozzi, Teresa [Departamento de Matematica Aplicada, Facultad de Informatica, Universidad Complutense, E-28040 Madrid (Spain); Trujillo, Juan J [Departamento de Analisis Matematico, Universidad de la Laguna, 38271 La Laguna-Tenerife (Spain); Vazquez, Luis [Departamento de Matematica Aplicada, Facultad de Informatica, Universidad Complutense, E-28040 Madrid (Spain)
2004-03-05
This paper is devoted to the solution of the bi-fractional differential equation ({sup C}D{sup {alpha}}{sub t}u)(t, x) = {lambda}({sup L}D{sup {beta}}{sub x}u)(t, x) (t>0, -{infinity}
Generalized equations of gravitational field
International Nuclear Information System (INIS)
Stanyukovich, K.P.; Borisova, L.B.
1985-01-01
Equations for gravitational fields are obtained on the basis of a generalized Lagrangian Z=f(R) (R is the scalar curvature). Such an approach permits to take into account the evolution of a gravitation ''constant''. An expression for the force Fsub(i) versus the field variability is obtained. Conservation laws are formulated differing from the standard ones by the fact that in the right part of new equations the value Fsub(i) is present that goes to zero at an ultimate passage to the standard Einstein theory. An equation of state is derived for cosmological metrics for a particular case, f=bRsup(1+α) (b=const, α=const)
On an improved method for solving evolution equations of higher ...
African Journals Online (AJOL)
In this paper we introduce a new algebraic procedure to compute new classes of solutions of (1+1)-nonlinear partial differential equations (nPDEs) both of physical and technical relevance. The basic assumption is that the unknown solution(s) of the nPDE under consideration satisfy an ordinary differential equation (ODE) of ...
The auxiliary elliptic-like equation and the exp-function method
Indian Academy of Sciences (India)
exact solutions of the nonlinear evolution equations are derived with the aid of auxiliary elliptic-like equation. ... (NEE) have been paid attention by many researchers, especially the investigations of exact solutions for ... elliptic-like equation with the aid of the travelling wave reduction are introduced. The exact solutions of ...
New exact solutions to the generalized KdV equation with ...
Indian Academy of Sciences (India)
is reduced to an ordinary differential equation with constant coefficients ... Application to generalized KdV equation with generalized evolution ..... [12] P F Byrd and M D Friedman, Handbook of elliptic integrals for engineers and physicists.
The quark gluon plasma equation of state and the expansion of the early Universe
International Nuclear Information System (INIS)
Sanches, S.M.; Navarra, F.S.; Fogaça, D.A.
2015-01-01
Our knowledge of the equation of state of the quark gluon plasma has been continuously growing due to the experimental results from heavy ion collisions, due to recent astrophysical measurements and also due to the advances in lattice QCD calculations. The new findings about this state may have consequences on the time evolution of the early Universe, which can be estimated by solving the Friedmann equations. The solutions of these equations give the time evolution of the energy density and also of the temperature in the beginning of the Universe. In this work we compute the time evolution of the QGP in the early Universe, comparing several equations of state, some of them based on the MIT bag model (and on its variants) and some of them based on lattice QCD calculations. Among other things, we investigate the effects of a finite baryon chemical potential in the evolution of the early Universe
Spherical symmetry as a test case for unconstrained hyperboloidal evolution
International Nuclear Information System (INIS)
Vañó-Viñuales, Alex; Husa, Sascha; Hilditch, David
2015-01-01
We consider the hyperboloidal initial value problem for the Einstein equations in numerical relativity, motivated by the goal to evolve radiating compact objects such as black hole binaries with a numerical grid that includes null infinity. Unconstrained evolution schemes promise optimal efficiency, but are difficult to regularize at null infinity, where the compactified Einstein equations are formally singular. In this work we treat the spherically symmetric case, which already poses nontrivial problems and constitutes an important first step. We have carried out stable numerical evolutions with the generalized BSSN and Z4 equations coupled to a scalar field. The crucial ingredients have been to find an appropriate evolution equation for the lapse function and to adapt constraint damping terms to handle null infinity. (paper)
Analytic treatment of nonlinear evolution equations using first ...
Indian Academy of Sciences (India)
1. — journal of. July 2012 physics pp. 3–17. Analytic treatment of nonlinear evolution ... Eskisehir Osmangazi University, Art-Science Faculty, Department of Mathematics, ... (2.2) is integrated where integration constants are considered zeros.
Quasi-Newton methods for parameter estimation in functional differential equations
Brewer, Dennis W.
1988-01-01
A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.
Quantum trajectories for time-dependent adiabatic master equations
Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.
2018-02-01
We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.
Solutions and Conservation Laws of a (2+1-Dimensional Boussinesq Equation
Directory of Open Access Journals (Sweden)
Letlhogonolo Daddy Moleleki
2013-01-01
Full Text Available We study a nonlinear evolution partial differential equation, namely, the (2+1-dimensional Boussinesq equation. For the first time Lie symmetry method together with simplest equation method is used to find the exact solutions of the (2+1-dimensional Boussinesq equation. Furthermore, the new conservation theorem due to Ibragimov will be utilized to construct the conservation laws of the (2+1-dimensional Boussinesq equation.
Dihadron fragmentation function and its evolution
International Nuclear Information System (INIS)
Majumder, A.; Wang Xinnian
2004-01-01
Dihadron fragmentation functions and their evolution are studied in the process of e + e - annihilation. Under the collinear factorization approximation and facilitated by the cut-vertex technique, the two hadron inclusive cross section at leading order is shown to factorize into a short distance parton cross section and a long distance dihadron fragmentation function. We provide the definition of such a dihadron fragmentation function in terms of parton matrix elements and derive its Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation at leading log. The evolution equation for the nonsinglet quark fragmentation function is solved numerically with a simple ansatz for the initial condition and results are presented for cases of physical interest
Imaginary Time Step Method to Solve the Dirac Equation with Nonlocal Potential
International Nuclear Information System (INIS)
Zhang Ying; Liang Haozhao; Meng Jie
2009-01-01
The imaginary time step (ITS) method is applied to solve the Dirac equation with nonlocal potentials in coordinate space. Taking the nucleus 12 C as an example, even with nonlocal potentials, the direct ITS evolution for the Dirac equation still meets the disaster of the Dirac sea. However, following the recipe in our former investigation, the disaster can be avoided by the ITS evolution for the corresponding Schroedinger-like equation without localization, which gives the convergent results exactly the same with those obtained iteratively by the shooting method with localized effective potentials.
International Nuclear Information System (INIS)
Papiez, L.; Moskvin, V.; Tulovsky, V.
2001-01-01
The process of angular-spatial evolution of multiple scattering of charged particles can be described by a special case of Boltzmann integro-differential equation called Lewis equation. The underlying stochastic process for this evolution is the compound Poisson process on the surface of the unit sphere. The significant portion of events that constitute compound Poisson process that describes multiple scattering have diffusional character. This property allows to analyze the process of angular-spatial evolution of multiple scattering of charged particles as combination of soft and hard collision processes and compute appropriately its transition densities. These computations provide a method of the approximate solution to the Lewis equation. (orig.)
Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua
2016-12-01
Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205
Kinetic equation solution by inverse kinetic method
International Nuclear Information System (INIS)
Salas, G.
1983-01-01
We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance
Stochastic Evolution Equations Driven by Fractional Noises
2016-11-28
paper is to establish the weak convergence, in the topology of the Skorohod space, of the ν-symmetric Riemann sums for functionals of the fractional...stochastic heat equation with fractional-colored noise: existence of the solution. ALEA Lat. Am. J. Probab. Math . Stat. 4 (2008), 57–87. [8] P. Carmona, Y...Hu: Strong disorder implies strong localization for directed polymers in a random environment. ALEA Lat. Am. J. Probab. Math . Stat. 2 (2006), 217
A generalized advection dispersion equation
Indian Academy of Sciences (India)
This paper examines a possible effect of uncertainties, variability or heterogeneity of any dynamic system when being included in its evolution rule; the notion is illustrated with the advection dispersion equation, which describes the groundwater pollution model. An uncertain derivative is defined; some properties of.
Pseudodifferential equations over non-Archimedean spaces
Zúñiga-Galindo, W A
2016-01-01
Focusing on p-adic and adelic analogues of pseudodifferential equations, this monograph presents a very general theory of parabolic-type equations and their Markov processes motivated by their connection with models of complex hierarchic systems. The Gelfand-Shilov method for constructing fundamental solutions using local zeta functions is developed in a p-adic setting and several particular equations are studied, such as the p-adic analogues of the Klein-Gordon equation. Pseudodifferential equations for complex-valued functions on non-Archimedean local fields are central to contemporary harmonic analysis and mathematical physics and their theory reveals a deep connection with probability and number theory. The results of this book extend and complement the material presented by Vladimirov, Volovich and Zelenov (1994) and Kochubei (2001), which emphasize spectral theory and evolution equations in a single variable, and Albeverio, Khrennikov and Shelkovich (2010), which deals mainly with the theory and applica...
New exact solutions of the mBBM equation
International Nuclear Information System (INIS)
Zhang Zhe; Li Desheng
2013-01-01
The enhanced modified simple equation method presented in this article is applied to construct the exact solutions of modified Benjamin-Bona-Mahoney equation. Some new exact solutions are derived by using this method. When some parameters are taken as special values, the solitary wave solutions can be got from the exact solutions. It is shown that the method introduced in this paper has general significance in searching for exact solutions to the nonlinear evolution equations. (authors)
Destrade, M.
2010-12-08
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
Destrade, M.; Goriely, A.; Saccomandi, G.
2010-01-01
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
Wilds, Roy; Kauffman, Stuart A.; Glass, Leon
2008-09-01
We study the evolution of complex dynamics in a model of a genetic regulatory network. The fitness is associated with the topological entropy in a class of piecewise linear equations, and the mutations are associated with changes in the logical structure of the network. We compare hill climbing evolution, in which only mutations that increase the fitness are allowed, with neutral evolution, in which mutations that leave the fitness unchanged are allowed. The simple structure of the fitness landscape enables us to estimate analytically the rates of hill climbing and neutral evolution. In this model, allowing neutral mutations accelerates the rate of evolutionary advancement for low mutation frequencies. These results are applicable to evolution in natural and technological systems.
Perfect fluid cosmological Universes: One equation of state and the ...
Indian Academy of Sciences (India)
Anadijiban Das
2018-01-04
Jan 4, 2018 ... equation of state, one may calculate the geometric vari- ables, such as the ... connected by any analytic function ψ, the evolutions equations, mainly ... [3] J E Marsden and A J Tromba, Vector calculus, 3rd edn. (W. H. Freeman ...
Destrade, Michel; Goriely, Alain; Saccomandi, Giuseppe
2011-01-01
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent, and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation c...
A Dynamic BI–Orthogonal Field Equation Approach to Efficient Bayesian Inversion
Directory of Open Access Journals (Sweden)
Tagade Piyush M.
2017-06-01
Full Text Available This paper proposes a novel computationally efficient stochastic spectral projection based approach to Bayesian inversion of a computer simulator with high dimensional parametric and model structure uncertainty. The proposed method is based on the decomposition of the solution into its mean and a random field using a generic Karhunen-Loève expansion. The random field is represented as a convolution of separable Hilbert spaces in stochastic and spatial dimensions that are spectrally represented using respective orthogonal bases. In particular, the present paper investigates generalized polynomial chaos bases for the stochastic dimension and eigenfunction bases for the spatial dimension. Dynamic orthogonality is used to derive closed-form equations for the time evolution of mean, spatial and the stochastic fields. The resultant system of equations consists of a partial differential equation (PDE that defines the dynamic evolution of the mean, a set of PDEs to define the time evolution of eigenfunction bases, while a set of ordinary differential equations (ODEs define dynamics of the stochastic field. This system of dynamic evolution equations efficiently propagates the prior parametric uncertainty to the system response. The resulting bi-orthogonal expansion of the system response is used to reformulate the Bayesian inference for efficient exploration of the posterior distribution. The efficacy of the proposed method is investigated for calibration of a 2D transient diffusion simulator with an uncertain source location and diffusivity. The computational efficiency of the method is demonstrated against a Monte Carlo method and a generalized polynomial chaos approach.
International Nuclear Information System (INIS)
Jun-Mao, Wang; Miao, Zhang; Wen-Liang, Zhang; Rui, Zhang; Jia-Hua, Han
2008-01-01
We present a new method to find the exact travelling wave solutions of nonlinear evolution equations, with the aid of the symbolic computation. Based on this method, we successfully solve the modified Benjamin–Bona–Mahoney equation, and obtain some new solutions which can be expressed by trigonometric functions and hyperbolic functions. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics. (general)
Directory of Open Access Journals (Sweden)
Jens Thoemmes
2012-12-01
Full Text Available Cet article porte sur la provenance des normes temporelles du travail. Il indiquera d’une part que ces normes résultent des orientations globales d’une société, de la formation d’une conscience des temporalités, mais aussi de la mobilisation du mouvement syndical et ouvrier sans lesquels la réduction du temps de travail n’aurait pas vu le jour. D’autre part, l’origine des normes temporelles est liée aux dynamiques locales, notamment à celles des entreprises, aux relations sociales, mais aussi au type de production qui a contribué à définir les règles effectives des temps sociaux. Nous retracerons d’abord l’émergence d’un droit au temps libre pour les travailleurs qui reste tributaire des évolutions sociétales. Ensuite, nous montrerons les temps du sujet en situation indiquant la persistance de multiples tensions. Enfin, nous avancerons que le passage du temps décrété au temps négocié ouvre un espace de discussion qui, à certaines conditions, pourrait donner lieu à une nouvelle politique des temps davantage en lien avec les besoins du monde du travail.The article focuses on the origin of time standards for work. On one hand, it demonstrates that these reflect a society’s general orientations and evolving awareness of temporalities, as well as its mobilisation of union and worker movements without which it is impossible to reduce working hours. On the other hand, time standards also originate in local dynamics, notably where this involves companies, social relations but also production types that help to define the rules by which social time are actually governed. The paper starts by retracing the emergence of workers’ right to free time, which continues to depend on social developments. We then address how employees spend their time in work situations and discover a number of ongoing tensions. Lastly, we argue that the shift from decreed to negotiated time opens up a space for discussion that, under
The evolution of tensor polarization
International Nuclear Information System (INIS)
Huang, H.; Lee, S.Y.; Ratner, L.
1993-01-01
By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake
Three-scale expansion of the solution of MHD and Reynolds equations for tokamak
International Nuclear Information System (INIS)
Maslov, V.P.; Omel'yanov, G.A.
1994-01-01
An asymptotic solution of the magnetohydrodynamic equations is constructed. The three scales asymptotic solution describes the non-linear evolution of small, rapidly varying perturbations of equilibrium. It is shown, that an anisotropic coherent structure appears in the linear nonstability situation, and the structures evolution directs to energy interaction between high-frequency and low-frequency waves. The closed system of MHD Reynolds equations for anisotropic structure is derived
Nakagawa, Y.
1981-01-01
The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.
Solutions of the KPI equation with smooth initial data
Boiti, M.; Pempinelli, F.; Pogrebkov, A.
1994-06-01
The solution $u(t,x,y)$ of the Kadomtsev--Petviashvili I (KPI) equation with given initial data $u(0,x,y)$ belonging to the Schwartz space is considered. No additional special constraints, usually considered in literature, as $\\int\\!dx\\,u(0,x,y)=0$ are required to be satisfied by the initial data. The problem is completely solved in the framework of the spectral transform theory and it is shown that $u(t,x,y)$ satisfies a special evolution version of the KPI equation and that, in general, $\\partial_t u(t,x,y)$ has different left and right limits at the initial time $t=0$. The conditions of the type $\\int\\!dx\\,u(t,x,y)=0$, $\\int\\!dx\\,xu_y(t,x,y)=0$ and so on (first, second, etc. `constraints') are dynamically generated by the evolution equation for $t\
Constraint propagation of C2-adjusted formulation: Another recipe for robust ADM evolution system
International Nuclear Information System (INIS)
Tsuchiya, Takuya; Yoneda, Gen; Shinkai, Hisa-aki
2011-01-01
With a purpose of constructing a robust evolution system against numerical instability for integrating the Einstein equations, we propose a new formulation by adjusting the ADM evolution equations with constraints. We apply an adjusting method proposed by Fiske (2004) which uses the norm of the constraints, C 2 . One of the advantages of this method is that the effective signature of adjusted terms (Lagrange multipliers) for constraint-damping evolution is predetermined. We demonstrate this fact by showing the eigenvalues of constraint propagation equations. We also perform numerical tests of this adjusted evolution system using polarized Gowdy-wave propagation, which show robust evolutions against the violation of the constraints than that of the standard ADM formulation.
Equation-Free Analysis of Macroscopic Behavior in Traffic and Pedestrian Flow
DEFF Research Database (Denmark)
Marschler, Christian; Sieber, Jan; Hjorth, Poul G.
2014-01-01
Equation-free methods make possible an analysis of the evolution of a few coarse-grained or macroscopic quantities for a detailed and realistic model with a large number of fine-grained or microscopic variables, even though no equations are explicitly given on the macroscopic level. This will fac......Equation-free methods make possible an analysis of the evolution of a few coarse-grained or macroscopic quantities for a detailed and realistic model with a large number of fine-grained or microscopic variables, even though no equations are explicitly given on the macroscopic level....... This will facilitate a study of how the model behavior depends on parameter values including an understanding of transitions between different types of qualitative behavior. These methods are introduced and explained for traffic jam formation and emergence of oscillatory pedestrian counter flow in a corridor...
Hilbert space methods in partial differential equations
Showalter, Ralph E
1994-01-01
This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.
Evolution of the cosmological horizons in a concordance universe
Energy Technology Data Exchange (ETDEWEB)
Margalef-Bentabol, Berta; Cepa, Jordi [Departamento de Astrofísica, Universidad de la Laguna, E-38205 La Laguna, Tenerife (Spain); Margalef-Bentabol, Juan, E-mail: bmb@cca.iac.es, E-mail: juanmargalef@estumail.ucm.es, E-mail: jcn@iac.es [Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain)
2012-12-01
The particle and event horizons are widely known and studied concepts, but the study of their properties, in particular their evolution, have only been done so far considering a single state equation in a decelerating universe. This paper is the first of two where we study this problem from a general point of view. Specifically, this paper is devoted to the study of the evolution of these cosmological horizons in an accelerated universe with two state equations, cosmological constant and dust. We have obtained simple expressions in terms of their respective recession velocities that generalize the previous results for one state equation only. With the equations of state considered, it is proved that both velocities remain always positive.
Embedded solitons in the third-order nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Pal, Debabrata; Ali, Sk Golam; Talukdar, B
2008-01-01
We work with a sech trial function with space-dependent soliton parameters and envisage a variational study for the nonlinear Schoedinger (NLS) equation in the presence of third-order dispersion. We demonstrate that the variational equations for pulse evolution in this NLS equation provide a natural basis to derive a potential model which can account for the existence of a continuous family of embedded solitons supported by the third-order NLS equation. Each member of the family is parameterized by the propagation velocity and co-efficient of the third-order dispersion
A kinetic equation for irreversible aggregation
International Nuclear Information System (INIS)
Zanette, D.H.
1990-09-01
We introduce a kinetic equation for describing irreversible aggregation in the ballistic regime, including velocity distributions. The associated evolution for the macroscopic quantities is studied, and the general solution for Maxwell interaction models is obtained in the Fourier representation. (author). 23 refs
Institute of Scientific and Technical Information of China (English)
WANG; Shunjin; ZHANG; Hua
2006-01-01
The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system.The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics,and a new algorithm-algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method.In the new algorithm,the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator.The exact analytical piece-like solution of the ordinary differential equations is expressd in terms of Taylor series with a local convergent radius,and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.
A simple model for binary star evolution
International Nuclear Information System (INIS)
Whyte, C.A.; Eggleton, P.P.
1985-01-01
A simple model for calculating the evolution of binary stars is presented. Detailed stellar evolution calculations of stars undergoing mass and energy transfer at various rates are reported and used to identify the dominant physical processes which determine the type of evolution. These detailed calculations are used to calibrate the simple model and a comparison of calculations using the detailed stellar evolution equations and the simple model is made. Results of the evolution of a few binary systems are reported and compared with previously published calculations using normal stellar evolution programs. (author)
Chaotic evolution of arms races
Tomochi, Masaki; Kono, Mitsuo
1998-12-01
A new set of model equations is proposed to describe the evolution of the arms race, by extending Richardson's model with special emphases that (1) power dependent defensive reaction or historical enmity could be a motive force to promote armaments, (2) a deterrent would suppress the growth of armaments, and (3) the defense reaction of one nation against the other nation depends nonlinearly on the difference in armaments between two. The set of equations is numerically solved to exhibit stationary, periodic, and chaotic behavior depending on the combinations of parameters involved. The chaotic evolution is realized when the economic situation of each country involved in the arms race is quite different, which is often observed in the real world.
Cnoidal waves governed by the Kudryashov–Sinelshchikov equation
International Nuclear Information System (INIS)
Randrüüt, Merle; Braun, Manfred
2013-01-01
The evolution equation for waves propagating in a mixture of liquid and gas bubbles as proposed by Kudryashov and Sinelshchikov allows, in a special case, the propagation of solitary waves of the sech 2 type. It is shown that these waves represent the solitary limit separating two families of periodic waves. One of them consists of the same cnoidal waves that are solutions of the Korteweg–de Vries equation, while the other one does not have a corresponding counterpart. It is pointed out how the ordinary differential equations governing traveling-wave solutions of the Kudryashov–Sinelshchikov and the Korteweg–de Vries equations are related to each other.
Cnoidal waves governed by the Kudryashov–Sinelshchikov equation
Energy Technology Data Exchange (ETDEWEB)
Randrüüt, Merle, E-mail: merler@cens.ioc.ee [Tallinn University of Technology, Faculty of Mechanical Engineering, Department of Mechatronics, Ehitajate tee 5, 19086 Tallinn (Estonia); Braun, Manfred [University of Duisburg–Essen, Chair of Mechanics and Robotics, Lotharstraße 1, 47057 Duisburg (Germany)
2013-10-30
The evolution equation for waves propagating in a mixture of liquid and gas bubbles as proposed by Kudryashov and Sinelshchikov allows, in a special case, the propagation of solitary waves of the sech{sup 2} type. It is shown that these waves represent the solitary limit separating two families of periodic waves. One of them consists of the same cnoidal waves that are solutions of the Korteweg–de Vries equation, while the other one does not have a corresponding counterpart. It is pointed out how the ordinary differential equations governing traveling-wave solutions of the Kudryashov–Sinelshchikov and the Korteweg–de Vries equations are related to each other.
A note on the three dimensional sine--Gordon equation
Shariati, Ahmad
1996-01-01
Using a simple ansatz for the solutions of the three dimensional generalization of the sine--Gordon and Toda model introduced by Konopelchenko and Rogers, a class of solutions is found by elementary methods. It is also shown that these equations are not evolution equations in the sense that solution to the initial value problem is not unique.
A nonlinear wave equation in nonadiabatic flame propagation
International Nuclear Information System (INIS)
Booty, M.R.; Matalon, M.; Matkowsky, B.J.
1988-01-01
The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time
Boundary Control of Linear Evolution PDEs - Continuous and Discrete
DEFF Research Database (Denmark)
Rasmussen, Jan Marthedal
2004-01-01
Consider a partial di erential equation (PDE) of evolution type, such as the wave equation or the heat equation. Assume now that you can influence the behavior of the solution by setting the boundary conditions as you please. This is boundary control in a broad sense. A substantial amount...... of literature exists in the area of theoretical results concerning control of partial differential equations. The results have included existence and uniqueness of controls, minimum time requirements, regularity of domains, and many others. Another huge research field is that of control theory for ordinary di...... erential equations. This field has mostly concerned engineers and others with practical applications in mind. This thesis makes an attempt to bridge the two research areas. More specifically, we make finite dimensional approximations to certain evolution PDEs, and analyze how properties of the discrete...
Whitham modulation theory for (2 + 1)-dimensional equations of Kadomtsev–Petviashvili type
Ablowitz, Mark J.; Biondini, Gino; Rumanov, Igor
2018-05-01
Whitham modulation theory for certain two-dimensional evolution equations of Kadomtsev–Petviashvili (KP) type is presented. Three specific examples are considered in detail: the KP equation, the two-dimensional Benjamin–Ono (2DBO) equation and a modified KP (m2KP) equation. A unified derivation is also provided. In the case of the m2KP equation, the corresponding Whitham modulation system exhibits features different from the other two. The approach presented here does not require integrability of the original evolution equation. Indeed, while the KP equation is known to be a completely integrable equation, the 2DBO equation and the m2KP equation are not known to be integrable. In each of the cases considered, the Whitham modulation system obtained consists of five first-order quasilinear partial differential equations. The Riemann problem (i.e. the analogue of the Gurevich–Pitaevskii problem) for the one-dimensional reduction of the m2KP equation is studied. For the m2KP equation, the system of modulation equations is used to analyze the linear stability of traveling wave solutions.
A Hamiltonian structure for the linearized Einstein vacuum field equations
International Nuclear Information System (INIS)
Torres del Castillo, G.F.
1991-01-01
By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained (Author)
International Nuclear Information System (INIS)
Dubrovsky, V.G.; Formusatik, I.B.
2003-01-01
The scheme for calculating via Zakharov-Manakov ∂-macron-dressing method of new rational solutions with constant asymptotic values at infinity of the famous two-dimensional Veselov-Novikov (VN) integrable nonlinear evolution equation and new exact rational potentials of two-dimensional stationary Schroedinger (2DSchr) equation with multiple pole wave functions is developed. As examples new lumps of VN nonlinear equation and new exact rational potentials of 2DSchr equation with multiple pole of order two wave functions are calculated. Among the constructed rational solutions are as nonsingular and also singular
Small-χ singlet structure functions from the nonlinear GLR equation
International Nuclear Information System (INIS)
Kim, V.T.; Ryskin, M.G.
1991-06-01
The effect of absorptive corrections in the nonlinear GLR evolution equation is considered. A simple method how to estimate the corrections numerically is described. In the case of the parametrization based on semihard hadron phenomenology developed earlier a visible difference between linear and nonlinear evolution is expected at HERA energies. (orig.)
International Nuclear Information System (INIS)
Zhang Yufeng; Tam, Honwah; Feng Binlu
2011-01-01
Highlights: → A generalized Zakharov-Shabat equation is obtained. → The generalized AKNS vector fields are established. → The finite-band solution of the g-ZS equation is obtained. → By using a Lie algebra presented in the paper, a new soliton hierarchy with an arbitrary parameter is worked out. - Abstract: In this paper, a generalized Zakharov-Shabat equation (g-ZS equation), which is an isospectral problem, is introduced by using a loop algebra G ∼ . From the stationary zero curvature equation we define the Lenard gradients {g j } and the corresponding generalized AKNS (g-AKNS) vector fields {X j } and X k flows. Employing the nonlinearization method, we obtain the generalized Zhakharov-Shabat Bargmann (g-ZS-B) system and prove that it is Liouville integrable by introducing elliptic coordinates and evolution equations. The explicit relations of the X k flows and the polynomial integrals {H k } are established. Finally, we obtain the finite-band solutions of the g-ZS equation via the Abel-Jacobian coordinates. In addition, a soliton hierarchy and its Hamiltonian structure with an arbitrary parameter k are derived.
The relationship among the solutions of two auxiliary ordinary differential equations
International Nuclear Information System (INIS)
Liu Xiaoping; Liu Chunping
2009-01-01
In a recent article [Phys. Lett. A 356 (2006) 124], Sirendaoreji extended their auxiliary equation method by introducing a new auxiliary ordinary differential equation (NAODE) and its 14 solutions. Then the author studied some nonlinear evolution equations (NLEEs) and got more exact travelling wave solutions. In this paper, we will show that the 14 solutions of the NAODE are actually the same as the solutions obtained by original auxiliary equation method, and they are only different in the form.
Kryven, I.; Röblitz, S; Schütte, C.
2015-01-01
Background: The chemical master equation is the fundamental equation of stochastic chemical kinetics. This differential-difference equation describes temporal evolution of the probability density function for states of a chemical system. A state of the system, usually encoded as a vector, represents
The Approach to Equilibrium: Detailed Balance and the Master Equation
Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.
2011-01-01
The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…
Hosseini, K.; Ayati, Z.; Ansari, R.
2018-04-01
One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.
Transfer equations for spectral densities of inhomogeneous MHD turbulence
International Nuclear Information System (INIS)
Tu, C.-Y.; Marsch, E.
1990-01-01
On the basis of the dynamic equations governing the evolution of magnetohydrodynamic fluctuations expressed in terms of Elsaesser variables and of their correlation functions derived by Marsch and Tu, a new set of equations is presented describing the evolutions of the energy spectrum e ± and of the residual energy spectra e R and e S of MHD turbulence in an inhomogeneous magnetofluid. The nonlinearities associated with triple correlations in these equations are analysed in detail and evaluated approximately. The resulting energy-transfer functions across wavenumber space are discussed. For e ± they are shown to be approximately energy-conserving if the gradients of the flow speed and density are weak. New cascading functions are heuristically determined by an appropriate dimensional analysis and plausible physical arguments, following the standard phenomenology of fluid turbulence. However, for e R the triple correlations do not correspond to an 'energy' conserving process, but also represent a nonlinear source term for e R . If this source term can be neglected, the spectrum equations are found to be closed. The problem of dealing with the nonlinear source terms remains to be solved in future investigations. (author)
El Mouden, C; André, J-B; Morin, O; Nettle, D
2014-02-01
Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
A nonlinear bounce kinetic equation for trapped electrons
International Nuclear Information System (INIS)
Gang, F.Y.
1990-03-01
A nonlinear bounce averaged drift kinetic equation for trapped electrons is derived. This equation enables one to compute the nonlinear response of the trapped electron distribution function in terms of the field-line projection of a potential fluctuation left-angle e -inqθ φ n right-angle b . It is useful for both analytical and computational studies of the nonlinear evolution of short wavelength (n much-gt 1) trapped electron mode-driven turbulence. 7 refs
Equation for disentangling time-ordered exponentials with arbitrary quadratic generators
International Nuclear Information System (INIS)
Budanov, V.G.
1987-01-01
In many quantum-mechanical constructions, it is necessary to disentangle an operator-valued time-ordered exponential with time-dependent generators quadratic in the creation and annihilation operators. By disentangling, one understands the finding of the matrix elements of the time-ordered exponential or, in a more general formulation. The solution of the problem can also be reduced to calculation of a matrix time-ordered exponential that solves the corresponding classical problem. However, in either case the evolution equations in their usual form do not enable one to take into account explicitly the symmetry of the system. In this paper the methods of Weyl analysis are used to find an ordinary differential equation on a matrix Lie algebra that is invariant with respect to the adjoint action of the dynamical symmetry group of a quadratic Hamiltonian and replaces the operator evolution equation for the Green's function
International Nuclear Information System (INIS)
Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.
2011-01-01
We recently derived explicit solutions of the leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations for the Q 2 evolution of the singlet structure function F s (x,Q 2 ) and the gluon distribution G(x,Q 2 ) using very efficient Laplace transform techniques. We apply our results here to a study of the HERA data on deep inelastic ep scattering as recently combined by the H1 and ZEUS groups. We use initial distributions F 2 γp (x,Q 0 2 ) and G(x,Q 0 2 ) determined for x s (x,Q 0 2 ) from F 2 γp (x,Q 0 2 ) using small nonsinglet quark distributions taken from either the CTEQ6L or the MSTW2008LO analyses, evolve F s and G to arbitrary Q 2 , and then convert the results to individual quark distributions. Finally, we show directly from a study of systematic trends in a comparison of the evolved F 2 γp (x,Q 2 ) with the HERA data that the assumption of leading-order DGLAP evolution is inconsistent with those data.
A stochastic differential equation framework for the timewise dynamics of turbulent velocities
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen
2008-01-01
We discuss a stochastic differential equation as a modeling framework for the timewise dynamics of turbulent velocities. The equation is capable of capturing basic stylized facts of the statistics of temporal velocity increments. In particular, we focus on the evolution of the probability density...
Persistence of solutions to nonlinear evolution equations in weighted Sobolev spaces
Directory of Open Access Journals (Sweden)
Xavier Carvajal Paredes
2010-11-01
Full Text Available In this article, we prove that the initial value problem associated with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq 2heta ge 2$ and the initial value problem associated with the nonlinear Schrodinger equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq heta geq 1$. Persistence property has been proved by approximation of the solutions and using a priori estimates.
Slave equations for spin models
International Nuclear Information System (INIS)
Catterall, S.M.; Drummond, I.T.; Horgan, R.R.
1992-01-01
We apply an accelerated Langevin algorithm to the simulation of continuous spin models on the lattice. In conjunction with the evolution equation for the spins we use slave equations to compute estimators for the connected correlation functions of the model. In situations for which the symmetry of the model is sufficiently strongly broken by an external field these estimators work well and yield a signal-to-noise ratio for the Green function at large time separations more favourable than that resulting from the standard method. With the restoration of symmetry, however, the slave equation estimators exhibit an intrinsic instability associated with the growth of a power law tail in the probability distributions for the measured quantities. Once this tail has grown sufficiently strong it results in a divergence of the variance of the estimator which then ceases to be useful for measurement purposes. The instability of the slave equation method in circumstances of weak symmetry breaking precludes its use in determining the mass gap in non-linear sigma models. (orig.)
N-body bound state relativistic wave equations
International Nuclear Information System (INIS)
Sazdjian, H.
1988-06-01
The manifestly covariant formalism with constraints is used for the construction of relativistic wave equations to describe the dynamics of N interacting spin 0 and/or spin 1/2 particles. The total and relative time evolutions of the system are completely determined by means of kinematic type wave equations. The internal dynamics of the system is 3 N-1 dimensional, besides the contribution of the spin degrees of freedom. It is governed by a single dynamical wave equation, that determines the eigenvalue of the total mass squared of the system. The interaction is introduced in a closed form by means of two-body potentials. The system satisfies an approximate form of separability
Constraint propagation equations of the 3+1 decomposition of f(R) gravity
International Nuclear Information System (INIS)
Paschalidis, Vasileios; Shapiro, Stuart L; Halataei, Seyyed M H; Sawicki, Ignacy
2011-01-01
Theories of gravity other than general relativity (GR) can explain the observed cosmic acceleration without a cosmological constant. One such class of theories of gravity is f(R). Metric f(R) theories have been proven to be equivalent to Brans-Dicke (BD) scalar-tensor gravity without a kinetic term (ω = 0). Using this equivalence and a 3+1 decomposition of the theory, it has been shown that metric f(R) gravity admits a well-posed initial value problem. However, it has not been proven that the 3+1 evolution equations of metric f(R) gravity preserve the (Hamiltonian and momentum) constraints. In this paper, we show that this is indeed the case. In addition, we show that the mathematical form of the constraint propagation equations in BD-equilavent f(R) gravity and in f(R) gravity in both the Jordan and Einstein frames is exactly the same as in the standard ADM 3+1 decomposition of GR. Finally, we point out that current numerical relativity codes can incorporate the 3+1 evolution equations of metric f(R) gravity by modifying the stress-energy tensor and adding an additional scalar field evolution equation. We hope that this work will serve as a starting point for relativists to develop fully dynamical codes for valid f(R) models.
Expressing Solutions of the Dirac Equation in Terms of Feynman Path Integral
Hose, R D
2006-01-01
Using the separation of the variables technique, the free particle solutions of the Dirac equation in the momentum space are shown to be actually providing the definition of Delta function for the Schr dinger picture. Further, the said solution is shown to be derivable on the sole strength of geometrical argument that the Dirac equation for free particle is an equation of a plane in momentum space. During the evolution of time in the Schr dinger picture, the normal to the said Dirac equation plane is shown to be constantly changing in direction due to the uncertainty principle and thereby, leading to a zigzag path for the Dirac particle in the momentum space. Further, the time evolution of the said Delta function solutions of the Dirac equation is shown to provide Feynman integral of all such zigzag paths in the momentum space. Towards the end of the paper, Feynman path integral between two fixed spatial points in the co-ordinate space during a certain time interv! al is shown to be composed, in time sequence...
International Nuclear Information System (INIS)
Arvieu, R.; Carbonell, J.; Gignoux, C.; Mangin-Brinet, M.; Rozmej, P.
1997-01-01
The time evolution of coherent rotational wave packets associated to a diatomic molecule or to a deformed nucleus has been studied. Assuming a rigid body dynamics the J(J+1) law leads to a mechanism of cloning: the way function is divided into wave packets identical to the initial one at specific time. Applications are studied for a nuclear wave packed formed by Coulomb excitation. Exact boundary conditions at finite distance for the solution of the time-dependent Schroedinger equation are derived. A numerical scheme based on Crank-Nicholson method is proposed to illustrate its applicability in several examples. (authors)
A One-Dimensional Wave Equation with White Noise Boundary Condition
International Nuclear Information System (INIS)
Kim, Jong Uhn
2006-01-01
We discuss the Cauchy problem for a one-dimensional wave equation with white noise boundary condition. We also establish the existence of an invariant measure when the noise is additive. Similar problems for parabolic equations were discussed by several authors. To our knowledge, there is only one work which investigated the initial-boundary value problem for a wave equation with random noise at the boundary. We handle a more general case by a different method. Our result on the existence of an invariant measure relies on the author's recent work on a certain class of stochastic evolution equations
Symmetries and recursion operators of variable coefficient Korteweg-de Vries equations
International Nuclear Information System (INIS)
Baby, B.V.
1987-01-01
The infinitely many symmetries and recursion operators are constructed for two recently introduced variable coefficient Korteweg-de Vries equations, u t +αt n uu x +βt 2n+1 u xxx =0 and v t +βt 2n+1 (v 3 -6vv x )+(n+1)/t(xv x +2v)=0. The recursion operators are developed from Lax-pairs and this method is extended to nonisospectral problems. Olver's method of finding the existence of infinitely many symmetries for an evolution equation is found to be true for the nonisospectral case. It is found that the minimum number of different infinite sets of symmetries is the same as the number of independent similarity transformation groups associated with the given evolution equation. The relation between Painleve property and symmetries is also discussed in this paper. (author). 29 refs
Differential equations, mechanics, and computation
Palais, Richard S
2009-01-01
This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject.
Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar
2018-05-01
The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.
Long-Term Dynamics of Autonomous Fractional Differential Equations
Liu, Tao; Xu, Wei; Xu, Yong; Han, Qun
This paper aims to investigate long-term dynamic behaviors of autonomous fractional differential equations with effective numerical method. The long-term dynamic behaviors predict where systems are heading after long-term evolution. We make some modification and transplant cell mapping methods to autonomous fractional differential equations. The mapping time duration of cell mapping is enlarged to deal with the long memory effect. Three illustrative examples, i.e. fractional Lotka-Volterra equation, fractional van der Pol oscillator and fractional Duffing equation, are studied with our revised generalized cell mapping method. We obtain long-term dynamics, such as attractors, basins of attraction, and saddles. Compared with some existing stability and numerical results, the validity of our method is verified. Furthermore, we find that the fractional order has its effect on the long-term dynamics of autonomous fractional differential equations.
Numerical solutions of the aerosol general dynamic equation for nuclear reactor safety studies
International Nuclear Information System (INIS)
Park, J.W.
1988-01-01
Methods and approximations inherent in modeling of aerosol dynamics and evolution for nuclear reactor source term estimation have been investigated. Several aerosol evolution problems are considered to assess numerical methods of solving the aerosol dynamic equation. A new condensational growth model is constructed by generalizing Mason's formula to arbitrary particle sizes, and arbitrary accommodation of the condensing vapor and background gas at particle surface. Analytical solution is developed for the aerosol growth equation employing the new condensation model. The space-dependent aerosol dynamic equation is solved to assess implications of spatial homogenization of aerosol distributions. The results of our findings are as follows. The sectional method solving the aerosol dynamic equation is quite efficient in modeling of coagulation problems, but should be improved for simulation of strong condensation problems. The J-space transform method is accurate in modeling of condensation problems, but is very slow. For the situation considered, the new condensation model predicts slower aerosol growth than the corresponding isothermal model as well as Mason's model, the effect of partial accommodation is considerable on the particle evolution, and the effect of the energy accommodation coefficient is more pronounced than that of the mass accommodation coefficient. For the initial conditions considered, the space-dependent aerosol dynamics leads to results that are substantially different from those based on the spatially homogeneous aerosol dynamic equation
International Nuclear Information System (INIS)
Coffey, W T; Kalmykov, Yu P; Titov, S V; Mulligan, B P
2007-01-01
The quantum Brownian motion of a particle in an external potential V(x) is treated using the master equation for the Wigner distribution function W(x, p, t) in phase space (x, p). A heuristic method of determination of diffusion coefficients in the master equation is proposed. The time evolution equation so obtained contains explicit quantum correction terms up to o(ℎ 4 ) and in the classical limit, ℎ → 0, reduces to the Klein-Kramers equation. For a quantum oscillator, the method yields an evolution equation for W(x, p, t) coinciding with that of Agarwal (1971 Phys. Rev. A 4 739). In the non-inertial regime, by applying the Brinkman expansion of the momentum distribution in Weber functions (Brinkman 1956 Physica 22 29), the corresponding semiclassical Smoluchowski equation is derived. (fast track communication)
Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2018-01-01
We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.
Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan
2018-04-01
The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional
Selected Aspects of Markovian and Non-Markovian Quantum Master Equations
Lendi, K.
A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.
Stochastic modeling of mode interactions via linear parabolized stability equations
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
Existence of solutions of nonlinear integrodifferential equations of ...
Indian Academy of Sciences (India)
The results are obtained by using semigroup theory and the Schauder fixed point ... The problem of existence of solutions of evolution equations with nonlocal ... we assume that there exists an operator E on DЕEЖИX given by the formula.
Renormalon chains contributions to the non-singlet evolution kernels in [φ3]6 and QCD
International Nuclear Information System (INIS)
Mikhajlov, S.V.
1997-01-01
The contributions to non-singlet evolution kernels P (z) for the DGLAP equation and V (x,y) for the Brodsky-Lepage evolution equation are calculated for certain classes of diagrams which include the renormalon chains. Closed expressions are obtained for the sums of contributions associated with these diagram classes. Calculations are performed in the [φ 3 ] 6 model and QCD in the M bar S bar scheme. The contribution for one of the classes of diagrams dominates for a number of flavors N f >>1. For the latter case, a simple solution to the Brodsky-Lepage evolution equation is obtained
Time-evolution problem in Regge calculus
International Nuclear Information System (INIS)
Sorkin, R.
1975-01-01
The simplectic approximation to Einstein's equations (''Regge calculus'') is derived by considering the net to be actually a (singular) Riemannian manifold. Specific nets for open and closed spaces are introduced in terms of which one can formulate the general time-evolution problem, which thereby reduces to the repeated solution of finite sets of coupled nonlinear (algebraic) equations. The initial-value problem is also formulated in simplectic terms
Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation
Energy Technology Data Exchange (ETDEWEB)
Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel
2009-06-15
A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)
Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation
International Nuclear Information System (INIS)
Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel
2009-01-01
A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)
The lattice Boltzmann model for the second-order Benjamin–Ono equations
International Nuclear Information System (INIS)
Lai, Huilin; Ma, Changfeng
2010-01-01
In this paper, in order to extend the lattice Boltzmann method to deal with more complicated nonlinear equations, we propose a 1D lattice Boltzmann scheme with an amending function for the second-order (1 + 1)-dimensional Benjamin–Ono equation. With the Taylor expansion and the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The equilibrium distribution function and the amending function are obtained. Numerical simulations are carried out for the 'good' Boussinesq equation and the 'bad' one to validate the proposed model. It is found that the numerical results agree well with the analytical solutions. The present model can be used to solve more kinds of nonlinear partial differential equations
Institute of Scientific and Technical Information of China (English)
张解放; 吴锋民
2002-01-01
We study an approach to constructing multiple soliton solutions of the (3+1)-dimensional nonlinear evolution equation. We take the (3+1)-dimensional Jimbo-Miwa (JM) equation as an example. Using the extended homogeneous balance method, one can find a Backlund transformation to decompose the (3+1)-dimensional JM equation into a linear partial differential equation and two bilinear partial differential equations. Starting from these linear and bilinear partial differential equations, some multiple soliton solutions for the (3+1)-dimensional JM equation are obtained by introducing a class of formal solutions.
Recursive approach for non-Markovian time-convolutionless master equations
Gasbarri, G.; Ferialdi, L.
2018-02-01
We consider a general open system dynamics and we provide a recursive method to derive the associated non-Markovian master equation in a perturbative series. The approach relies on a momenta expansion of the open system evolution. Unlike previous perturbative approaches of this kind, the method presented in this paper provides a recursive definition of each perturbative term. Furthermore, we give an intuitive diagrammatic description of each term of the series, which provides a useful analytical tool to build them and to derive their structure in terms of commutators and anticommutators. We eventually apply our formalism to the evolution of the observables of the reduced system, by showing how the method can be applied to the adjoint master equation, and by developing a diagrammatic description of the associated series.
On the complete integrability of the discrete Nahm equations
International Nuclear Information System (INIS)
Murray, M.K.
2000-01-01
The discrete Nahm equations, a system of matrix valued difference equations, arose in the work of Braam and Austin on half-integral mass hyperbolic monopoles. We show that the discrete Nahm equations are completely integrable in a natural sense: to any solution we can associate a spectral curve and a holomorphic line-bundle over the spectral curve, such that the discrete-time DN evolution corresponds to walking in the Jacobian of the spectral curve in a straight line through the line-bundle with steps of a fixed size. Some of the implications for hyperbolic monopoles are also discussed. (orig.)
Study of nonlinear waves described by the cubic Schroedinger equation
International Nuclear Information System (INIS)
Walstead, A.E.
1980-01-01
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables
Study of nonlinear waves described by the cubic Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Walstead, A.E.
1980-03-12
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.
Bianucci, Marco
2018-05-01
Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability density function of a subpart of a given complex system is a classical issue of statistical mechanics. Zwanzig projection perturbation approach to this issue leads to the trouble of resumming a series of commutators of differential operators that we show to correspond to solving the Lie evolution of first order differential operators along the unperturbed Liouvillian of the dynamical system of interest. In this paper, we develop in a systematic way the procedure to formally solve this problem. In particular, here we show which the basic assumptions are, concerning the dynamical system of interest, necessary for the Lie evolution to be a group on the space of first order differential operators, and we obtain the coefficients of the so-evolved operators. It is thus demonstrated that if the Liouvillian of the system of interest is not a first order differential operator, in general, the FPE structure breaks down and the master equation contains all the power of the partial derivatives, up to infinity. Therefore, this work shed some light on the trouble of the ubiquitous emergence of both thermodynamics from microscopic systems and regular regression laws at macroscopic scales. However these results are very general and can be applied also in other contexts that are non-Hamiltonian as, for example, geophysical fluid dynamics, where important events, like El Niño, can be considered as large time scale phenomena emerging from the observation of few ocean degrees of freedom of a more complex system, including the interaction with the atmosphere.
An introduction to geometric theory of fully nonlinear parabolic equations
International Nuclear Information System (INIS)
Lunardi, A.
1991-01-01
We study a class of nonlinear evolution equations in general Banach space being an abstract version of fully nonlinear parabolic equations. In addition to results of existence, uniqueness and continuous dependence on the data, we give some qualitative results about stability of the stationary solutions, existence and stability of the periodic orbits. We apply such results to some parabolic problems arising from combustion theory. (author). 24 refs
A polynomial expansion method and its application in the coupled Zakharov-Kuznetsov equations
International Nuclear Information System (INIS)
Huang Wenhua
2006-01-01
A polynomial expansion method is presented to solve nonlinear evolution equations. Applying this method, the coupled Zakharov-Kuznetsov equations in fluid system are studied and many exact travelling wave solutions are obtained. These solutions include solitary wave solutions, periodic solutions and rational type solutions
Quasistatic evolution of compact toroids
International Nuclear Information System (INIS)
Sgro, A.G.; Spencer, R.L.; Lilliequist, C.
1981-01-01
Some results are presented of simulations of the post formation evolution of compact toroids. The simulations were performed with a 1-1/2 D transport code. Such a code makes explicit use of the fact that the shapes of the flux surfaces in the plasma change much more slowly than do the profiles of the physical variables across the flux surfaces. Consequently, assuming that the thermodynamic variables are always equilibrated on a flux surface, one may calculate the time evolution of these profiles as a function of a single variable that labels the flux surfaces. Occasionally, during the calculation these profiles are used to invert the equilibrium equation to update the shapes of the flux surfaces. In turn, these shapes imply certain geometric cofficients, such as A = 2 >, which contain the geometric information required by the 1-D equations
The collinearly-improved Balitsky–Kovchegov equation
Energy Technology Data Exchange (ETDEWEB)
Iancu, E.; Madrigal, J.D. [Institut de Physique Théorique, CEA Saclay, CNRS UMR 3681, F-91191 Gif-sur-Yvette (France); Mueller, A.H. [Department of Physics, Columbia University, New York, NY 10027 (United States); Soyez, G. [Institut de Physique Théorique, CEA Saclay, CNRS UMR 3681, F-91191 Gif-sur-Yvette (France); Triantafyllopoulos, D.N. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas ECT* and Fondazione Bruno Kessler, Strada delle Tabarelle 286, I-38123 Villazzano (Italy)
2016-12-15
The high-energy evolution in perturbative QCD suffers from a severe lack-of-convergence problem, due to higher order corrections enhanced by double and single transverse logarithms. We resum double logarithms to all orders within the non-linear Balitsky-Kovchegov equation, by taking into account successive soft gluon emissions strongly ordered in lifetime. We further resum single logarithms generated by the first non-singular part of the splitting functions and by the one-loop running of the coupling. The resummed BK equation admits stable solutions, which are used to successfully fit the HERA data at small x for physically acceptable initial conditions and reasonable values of the fit parameters.
Quark contribution to the small-x evolution of color dipole
Energy Technology Data Exchange (ETDEWEB)
Ian Balitsky
2006-09-11
The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-lines operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the NLO the nonlinear equation gets contributions from quark and gluon loops. In this paper I calculate the quark-loop contribution to small-x evolution of Wilson lines in the NLO. It turns out that there are no new operators at the one-loop level--just as at the tree level, the high-energy scattering can be described in terms of Wilson lines. In addition, from the analysis of quark loops I find that the argument of coupling constant in the BK equation is determined by the size of the parent dipole rather than by the size of produced dipoles. These results are to be supported by future calculation of gluon loops.
Overcoming misconceptions in quantum mechanics with the time evolution operator
International Nuclear Information System (INIS)
Garcia Quijas, P C; Arevalo Aguilar, L M
2007-01-01
Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary states. In this paper, we argue that a possible way to remove these is to solve the Schroedinger equation using the evolution operator method (EOM), and stress the fact that to find stationary states is only the first step in solving that equation. The EOM consists in solving the Schroedinger equation by direct integration, i.e. Ψ(x, t) = U(t)Ψ(x, 0), where U(t)=e -itH-hat/h is the time evolution operator, and Ψ(x, 0) is the initial state. We apply the evolution operator method in the case of the harmonic oscillator
High energy evolution of soft gluon cascades
International Nuclear Information System (INIS)
Shuvaev, A.; Wallon, S.
2006-01-01
In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)
High energy evolution of soft gluon cascades
Energy Technology Data Exchange (ETDEWEB)
Shuvaev, A. [St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg district (Russian Federation); Wallon, S. [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)
2006-04-15
In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)
Time-dependent weak values and their intrinsic phases of evolution
International Nuclear Information System (INIS)
Parks, A D
2008-01-01
The equation of motion for a time-dependent weak value of a quantum-mechanical observable is known to contain a complex valued energy factor (the weak energy of evolution) that is defined by the dynamics of the pre-selected and post-selected states which specify the observable's weak value. In this paper, the mechanism responsible for the creation of this energy is identified and it is shown that the cumulative effect over time of this energy is manifested as dynamical phases and pure geometric phases (the intrinsic phases of evolution) which govern the evolution of the weak value during its measurement process. These phases are simply related to a Pancharatnam phase and Fubini-Study metric distance defined by the Hilbert space evolution of the associated pre-selected and post-selected states. A characterization of time-dependent weak value evolution as Pancharatnam phase angle rotations and Fubini-Study distance scalings of a vector in the Argand plane is discussed as an application of this relationship. The theory of weak values is also reviewed and simple 'gedanken experiments' are used to illustrate both the time-independent and the time-dependent versions of the theory. It is noted that the direct experimental observation of the weak energy of evolution would strongly support the time-symmetric paradigm of quantum mechanics and it is suggested that weak value equations of motion represent a new category of nonlocal equations of motion
Traveling wave solutions for two nonlinear evolution equations with nonlinear terms of any order
International Nuclear Information System (INIS)
Feng Qing-Hua; Zhang Yao-Ming; Meng Fan-Wei
2011-01-01
In this paper, based on the known first integral method and the Riccati sub-ordinary differential equation (ODE) method, we try to seek the exact solutions of the general Gardner equation and the general Benjamin—Bona—Mahoney equation. As a result, some traveling wave solutions for the two nonlinear equations are established successfully. Also we make a comparison between the two methods. It turns out that the Riccati sub-ODE method is more effective than the first integral method in handling the proposed problems, and more general solutions are constructed by the Riccati sub-ODE method. (general)
Direct approach for solving nonlinear evolution and two-point
Indian Academy of Sciences (India)
Time-delayed nonlinear evolution equations and boundary value problems have a wide range of applications in science and engineering. In this paper, we implement the differential transform method to solve the nonlinear delay differential equation and boundary value problems. Also, we present some numerical examples ...
Henderson-Hasselbalch Equation: Its History and Limitations
Po, Henry N.; Senozan, N. M.
2001-11-01
Many students of chemistry have wondered if putting the mass action expression in logarithmic format should have warranted immortalization of the names Henderson and Hasselbalch. With focus on this question, this article examines the evolution of the Henderson-Hasselbalch equation and presents a critical evaluation of its usefulness. The discussion centers on the titration of a weak acid with sodium hydroxide. Approximate pH values obtained from the Henderson-Hasselbalch equation are compared with exact hydrogen ion concentrations and the percentage errors are displayed as a function of the acid dissociation constant and buffer composition (titration mixture).
ERC Workshop on Geometric Partial Differential Equations
Novaga, Matteo; Valdinoci, Enrico
2013-01-01
This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Particular attention was paid to self-similar solutions, such as solitons and travelling waves, asymptotic behaviour, formation of singularities and qualitative properties of solutions. These problems arise in many models from Physics, Biology, Image Processing and Applied Mathematics in general, and have attracted a lot of attention in recent years.
Quantum time evolution of a closed Friedmann model
Hinterleitner, F
2002-01-01
We consider a quantized dust-filled closed Friedmann universe in Ashtekar-type variables. Due to the presence of matter, the 'timelessness problem' of quantum gravity can be solved in this case by using the following approach to the Hamiltonian operator. 1. The arising Wheeler-DeWitt equation appears as an eigenvalue equation for discrete values of the total mass. 2. Its gravitational part is considered as the generator of the time evolution of geometry. 3. Superpositions of different eigenfunctions with time behaviour governed by the corresponding eigenvalues of mass are admitted. Following these lines, a time evolution with a correct classical limit is obtained.
Drift-free kinetic equations for turbulent dispersion
Bragg, A.; Swailes, D. C.; Skartlien, R.
2012-11-01
The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.
Error characterization for asynchronous computations: Proxy equation approach
Sallai, Gabriella; Mittal, Ankita; Girimaji, Sharath
2017-11-01
Numerical techniques for asynchronous fluid flow simulations are currently under development to enable efficient utilization of massively parallel computers. These numerical approaches attempt to accurately solve time evolution of transport equations using spatial information at different time levels. The truncation error of asynchronous methods can be divided into two parts: delay dependent (EA) or asynchronous error and delay independent (ES) or synchronous error. The focus of this study is a specific asynchronous error mitigation technique called proxy-equation approach. The aim of this study is to examine these errors as a function of the characteristic wavelength of the solution. Mitigation of asynchronous effects requires that the asynchronous error be smaller than synchronous truncation error. For a simple convection-diffusion equation, proxy-equation error analysis identifies critical initial wave-number, λc. At smaller wave numbers, synchronous error are larger than asynchronous errors. We examine various approaches to increase the value of λc in order to improve the range of applicability of proxy-equation approach.
Parabolized stability equations
Herbert, Thorwald
1994-01-01
The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.
Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef
2013-01-01
Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.
International Nuclear Information System (INIS)
Khrennikov, A.Yu.
2005-01-01
One derived the general evolutionary differential equation within the Hilbert space describing dynamics of the wave function. The derived contextual model is more comprehensive in contrast to a quantum one. The contextual equation may be a nonlinear one. Paper presents the conditions ensuring linearity of the evolution and derivation of the Schroedinger equation [ru
Development of a numerical 2-dimensional beach evolution model
DEFF Research Database (Denmark)
Baykal, Cüneyt
2014-01-01
This paper presents the description of a 2-dimensional numerical model constructed for the simulation of beach evolution under the action of wind waves only over the arbitrary land and sea topographies around existing coastal structures and formations. The developed beach evolution numerical model...... is composed of 4 submodels: a nearshore spectral wave transformation model based on an energy balance equation including random wave breaking and diffraction terms to compute the nearshore wave characteristics, a nearshore wave-induced circulation model based on the nonlinear shallow water equations...... to compute the nearshore depth-averaged wave-induced current velocities and mean water level changes, a sediment transport model to compute the local total sediment transport rates occurring under the action of wind waves, and a bottom evolution model to compute the bed level changes in time based...
Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.
Vorobev, Anatoliy
2010-11-01
We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentration. The quasicompressibility of the governing equations brings a short time-scale (quasiacoustic) process that may not affect the slow dynamics but may significantly complicate the numerical treatment. Using the multiple-scale method we separate the physical processes occurring on different time scales and, ultimately, derive the equations with the filtered-out quasiacoustics. The derived equations represent the Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. This approximation can be further employed as a universal theoretical model for an analysis of slow thermodynamic and hydrodynamic evolution of the multiphase systems with strongly evolving and diffusing interfacial boundaries, i.e., for the processes involving dissolution/nucleation, evaporation/condensation, solidification/melting, polymerization, etc.
Directory of Open Access Journals (Sweden)
Philippe Lacour
2004-06-01
Full Text Available « Dis-moi comment tu traites le présent, et je te dirai quelle philosophie tu es ». Charles Péguy 1 Qu’est-ce qu’un « régime d’historicité » ? Le concept fondamental que ce livre aimerait mettre en valeur est celui de régime d’historicité . François Hartog insiste sur la prétention modeste et la portée limitée de cette notion, qui n’est ni une chronosophie, ni un instrument de prédiction, mais plus simplement un « outil », ou encore un modèle destiné à ...
On the evolution of a two component, two temperature, fully ionised plasma in electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Oeien, A H
1975-01-01
When inhomogenities and fields are not too strong, transients of distribution function, correlation functions and fields which may appear when the plasma evolves from an initial state out of equilibrium are derived, applying the multiple time scale method to the BBGKY and field equations. It is also shown that, at the end of an initial stage, kinetic equations and sets of approximate field equations will govern the evolution further on. In part II a study of the evolution further on is performed when conditions are such that distribution functions to lowest order may reach local Maxwellians with different temperatures for electrons and ions. Using the same method as above, the transient behaviour into a state where macroscopic and field equations take over the leadership in the evolution is derived, and the governing equations further on, together with correcting kinetic equations, are obtained up to an order of approximation higher than before. In part III a set of lower order and a set of higher order correcting kinetic equations from part II, which correspond partly to equations for the Chapman-Enskog and the Burnett levels of approximations, are solved qualitatively. New results for various transports of a two temperature plasma are obtained.
Evolution of perturbation in charge-varying dusty plasmas
International Nuclear Information System (INIS)
Popel, S.I.; Golub, A.P.; Losseva, T.V.; Bingham, R.; Benkadda, S.
2001-01-01
The nonstationary problem of the evolution of perturbation and its transformation into nonlinear wave structure in dusty plasmas is considered. For this purpose two one-dimensional models based on a set of fluid equations, Poisson's equation, and a charging equation for dust are developed. The first (simplified) model corresponds to the case [Popel et al., Phys. Plasmas 3, 4313 (1996)] when exact steady-state shock wave solutions can exist. This simplified model includes variable-charged dust grains, Boltzmann electrons, and inertial ions. The second (ionization source) model takes into account the variation of the ion density and the ion momentum dissipation due to dust particle charging as well as the source of plasma particles due to ionization process. The computational method for solving the set of equations which describe the evolution in time of a nonlinear structure in a charge-varying dusty plasma is developed. The case of the evolution of an intensive initial nonmoving region with a constant enhanced ion density is investigated on the basis of these two models. The consideration within the ionization source model is performed for the data of the laboratory experiment [Luo et al., Phys. Plasmas 6, 3455 (1999)]. It is shown that the ionization source model allows one to obtain shock structures as a result of evolution of an initial perturbation and to explain the experimental value of the width of the shock wave front. Comparison of the numerical data obtained on the basis of the ionization source model and the simplified model shows that the main characteristic features of the shock structure are the same for both models. Nevertheless, the ionization source model is much more sensitive to the form of the initial perturbation than the simplified model. The solution of the problem of the evolution of perturbation and its transformation into shock wave in charge-varying dusty plasmas opens up possibilities for description of the real phenomena like supernova
Separation of massive field equation of arbitrary spin in Robertson-Walker space-time
International Nuclear Information System (INIS)
Zecca, A.
2006-01-01
The massive spin-(3/2) field equation is explicitly integrated in the Robertson-Walker space-time by the Newman Penrose formalism. The solution is obtained by extending a separation procedure previously used to solve the spin-1 equation. The separated time dependence results in two coupled equations depending on the cosmological background evolution. The separated angular equations are explicitly integrated and the eigenvalues determined. The separated radial equations are integrated in the flat space-time case. The separation method of solution is then generalized, by induction, to prove the main result, that is the separability of the massive field equations of arbitrary spin in the Robertson-Walker space-time
Rigorous derivation of porous-media phase-field equations
Schmuck, Markus; Kalliadasis, Serafim
2017-11-01
The evolution of interfaces in Complex heterogeneous Multiphase Systems (CheMSs) plays a fundamental role in a wide range of scientific fields such as thermodynamic modelling of phase transitions, materials science, or as a computational tool for interfacial flow studies or material design. Here, we focus on phase-field equations in CheMSs such as porous media. To the best of our knowledge, we present the first rigorous derivation of error estimates for fourth order, upscaled, and nonlinear evolution equations. For CheMs with heterogeneity ɛ, we obtain the convergence rate ɛ 1 / 4 , which governs the error between the solution of the new upscaled formulation and the solution of the microscopic phase-field problem. This error behaviour has recently been validated computationally in. Due to the wide range of application of phase-field equations, we expect this upscaled formulation to allow for new modelling, analytic, and computational perspectives for interfacial transport and phase transformations in CheMSs. This work was supported by EPSRC, UK, through Grant Nos. EP/H034587/1, EP/L027186/1, EP/L025159/1, EP/L020564/1, EP/K008595/1, and EP/P011713/1 and from ERC via Advanced Grant No. 247031.
Structure and properties of Hughston's stochastic extension of the Schroedinger equation
International Nuclear Information System (INIS)
Adler, Stephen L.; Horwitz, Lawrence P.
2000-01-01
Hughston has recently proposed a stochastic extension of the Schroedinger equation, expressed as a stochastic differential equation on projective Hilbert space. We derive new projective Hilbert space identities, which we use to give a general proof that Hughston's equation leads to state vector collapse to energy eigenstates, with collapse probabilities given by the quantum mechanical probabilities computed from the initial state. We discuss the relation of Hughston's equation to earlier work on norm-preserving stochastic equations, and show that Hughston's equation can be written as a manifestly unitary stochastic evolution equation for the pure state density matrix. We discuss the behavior of systems constructed as direct products of independent subsystems, and briefly address the question of whether an energy-based approach, such as Hughston's, suffices to give an objective interpretation of the measurement process in quantum mechanics. (c) 2000 American Institute of Physics
International Nuclear Information System (INIS)
Fewo, S I; Kenfack-Jiotsa, A; Kofane, T C
2006-01-01
With the help of the one-dimensional quintic complex Ginzburg-Landau equation (CGLE) as perturbations of the nonlinear Schroedinger equation (NLSE), we derive the equations of motion of pulse parameters called collective variables (CVs), of a pulse propagating in dispersion-managed (DM) fibre optic links. The equations obtained are investigated numerically in order to view the evolution of pulse parameters along the propagation distance, and also to analyse effects of initial amplitude and width on the propagating pulse. Nonlinear gain is shown to be beneficial in stabilizing DM solitons. A fully numerical simulation of the one-dimensional quintic CGLE as perturbations of NLSE finally tests the results of the CV theory. A good agreement is observed between both methods
Directory of Open Access Journals (Sweden)
M. Arshad
Full Text Available In this manuscript, we constructed different form of new exact solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations by utilizing the modified extended direct algebraic method. New exact traveling wave solutions for both equations are obtained in the form of soliton, periodic, bright, and dark solitary wave solutions. There are many applications of the present traveling wave solutions in physics and furthermore, a wide class of coupled nonlinear evolution equations can be solved by this method. Keywords: Traveling wave solutions, Elliptic solutions, Generalized coupled Zakharov–Kuznetsov equation, Dispersive long wave equation, Modified extended direct algebraic method
Trajectory attractors of equations of mathematical physics
International Nuclear Information System (INIS)
Vishik, Marko I; Chepyzhov, Vladimir V
2011-01-01
In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier-Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier-Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics. Bibliography: 96 titles.
The hair-trigger effect for a class of nonlocal nonlinear equations
Finkelshtein, Dmitri; Tkachov, Pasha
2018-06-01
We prove the hair-trigger effect for a class of nonlocal nonlinear evolution equations on which have only two constant stationary solutions, 0 and . The effect consists in that the solution with an initial condition non identical to zero converges (when time goes to ) to θ locally uniformly in . We also find sufficient conditions for existence, uniqueness and comparison principle in the considered equations.
Hamilton's equations for a fluid membrane
International Nuclear Information System (INIS)
Capovilla, R; Guven, J; Rojas, E
2005-01-01
Consider a homogeneous fluid membrane described by the Helfrich-Canham energy, quadratic in the mean curvature of the membrane surface. The shape equation that determines equilibrium configurations is fourth order in derivatives and cubic in the mean curvature. We introduce a Hamiltonian formulation of this equation which dismantles it into a set of coupled first-order equations. This involves interpreting the Helfrich-Canham energy as an action; equilibrium surfaces are generated by the evolution of space curves. Two features complicate the implementation of a Hamiltonian framework. (i) The action involves second derivatives. This requires treating the velocity as a phase-space variable and the introduction of its conjugate momentum. The canonical Hamiltonian is constructed on this phase space. (ii) The action possesses a local symmetry-reparametrization invariance. The two labels we use to parametrize points on the surface are themselves physically irrelevant. This symmetry implies primary constraints, one for each label, that need to be implemented within the Hamiltonian. The two Lagrange multipliers associated with these constraints are identified as the components of the acceleration tangential to the surface. The conservation of the primary constraints implies two secondary constraints, fixing the tangential components of the momentum conjugate to the position. Hamilton's equations are derived and the appropriate initial conditions on the phase-space variables are identified. Finally, it is shown how the shape equation can be reconstructed from these equations
Applications of Boltzmann Langevin equation to nuclear collisions
International Nuclear Information System (INIS)
Suraud, E.; Belkacem, M.; Stryjewski, J.; Ayik, S.
1991-01-01
An approximate method for obtaining numerical solutions of the Boltzmann-Langevin equation is proposed. The method is applied to calculate the time evolution of the mean value and dispersion of the quadrupole and octupole moments of the momentum distribution in nucleus-nucleus collisions, and some consequences are discussed
Integrable boundary conditions and modified Lax equations
International Nuclear Information System (INIS)
Avan, Jean; Doikou, Anastasia
2008-01-01
We consider integrable boundary conditions for both discrete and continuum classical integrable models. Local integrals of motion generated by the corresponding 'transfer' matrices give rise to time evolution equations for the initial Lax operator. We systematically identify the modified Lax pairs for both discrete and continuum boundary integrable models, depending on the classical r-matrix and the boundary matrix
EVOLUT - a computer program for fast burnup evaluation
International Nuclear Information System (INIS)
Craciunescu, T.; Dobrin, R.; Stamatescu, L.; Alexa, A.
1999-01-01
EVOLUT is a computer program for burnup evaluation. The input data consist on the one hand of axial and radial gamma-scanning profiles (for the experimental evaluation of the number of nuclei of a fission product - the burnup monitor - at the end of irradiation) and on the other hand of the history of irradiation (the time length and values proportional to the neutron flux for each step of irradiation). Using the equation of evolution of the burnup monitor the flux values are iteratively adjusted, by a multiplier factor, until the calculated number of nuclei is equal to the experimental one. The flux values are used in the equation of evolution of the fissile and fertile nuclei to determine the fission number and consequently the burnup. EVOLUT was successfully used in the analysis of several hundreds of CANDU and TRIGA-type fuel rods. We appreciate that EVOLUT is a useful tool in the burnup evaluation based on gamma spectrometry measurements. EVOLUT can be used on an usual AT computer and in this case the results are obtained in a few minutes. It has an original and user-friendly graphical interface and it provides also output in script MATLAB files for graphical representation and further numerical analysis. The computer program needs simple data and it is valuable especially when a large number of burnup analyses are required quickly. (authors)
Reduced equations for finite beta tearing modes in tokamaks
International Nuclear Information System (INIS)
Izzo, R.; Monticello, D.A.; DeLucia, J.; Park, W.; Ryu, C.M.
1984-10-01
The equations of resistive magnetohydrodynamics (MHD) are recast in a form that is useful for studying the evolution of those toroidal systems where the fast magnetosonic wave plays no important role. The equations are exact and have nabla vector.B vector = O satisfied explicitly. From this set of equations it is a simple matter to derive the equations of reduced MHD to any order in the inverse aspect ratio epsilon of the torus, and for β approx. epsilon or smaller. We demonstrate this by deriving a reduced set of MHD equations that are correct to 5th order in epsilon. These equations contain the exact equilibrium relation and as such can be used to find 3-D stellarator equilibria. In addition, if a subsidiary ordering in eta, the resistivity, is made, the equations of Glasser, Greene, and Johnson are recovered. This set of reduced equations has been coded by extending the initial value code, HILO. Results obtained, for both ideal and resistive linear stability, from the reduced equations are compared with those obtained by solving the full set of MHD equations in a cylinder. The agreement is shown to be excellent for both zero and finite beta calculations. Comparisons are also made with analytic theory illuminating the present limitations of the latter
Regge behaviour of distribution functions and evolution of gluon ...
Indian Academy of Sciences (India)
work we solved DGLAP evolution equation for gluon distribution function at low-x in next-to-leading order (NLO) and the t and x-evolutions of gluon distribution function thus obtained have been compared with global MRST2004 and GRV98 parametrizations. In PQCD, since the higher-order terms in the leading logarithmic.
Evolution of envelope solitons of ionization waves
International Nuclear Information System (INIS)
Ohe, K.; Hashimoto, M.
1985-01-01
The time evolution of a particle-like envelope soliton of ionization waves in plasma was investigated theoretically. The hydrodynamic equations of one spatial dimension were solved and the nonlinear dispersion relation was derived. For the amplitude of the wave the nonlinear Schroedinger equation was derived. Its soliton solution was interpreted as the envelope soliton which was experimentally found. The damping rate of the envelope soliton was estimated. (D.Gy.)
Kou, Jisheng
2016-02-25
In this paper, we propose an energy-stable evolution method for the calculation of the phase equilibria under given volume, temperature, and moles (VT-flash). An evolution model for describing the dynamics of two-phase fluid system is based on Fick’s law of diffusion for multi-component fluids and the Peng-Robinson equation of state. The mobility is obtained from diffusion coefficients by relating the gradient of chemical potential to the gradient of molar density. The evolution equation for moles of each component is derived using the discretization of diffusion equations, while the volume evolution equation is constructed based on the mechanical mechanism and the Peng-Robinson equation of state. It is proven that the proposed evolution system can well model the VT-flash problem, and moreover, it possesses the property of total energy decay. By using the Euler time scheme to discretize this evolution system, we develop an energy stable algorithm with an adaptive choice strategy of time steps, which allows us to calculate the suitable time step size to guarantee the physical properties of moles and volumes, including positivity, maximum limits, and correct definition of the Helmhotz free energy function. The proposed evolution method is also proven to be energy-stable under the proposed time step choice. Numerical examples are tested to demonstrate efficiency and robustness of the proposed method.
On World Religion Adherence Distribution Evolution
Ausloos, Marcel; Petroni, Filippo
Religious adherence can be considered as a degree of freedom, in a statistical physics sense, for a human agent belonging to a population. The distribution, performance and life time of religions can thus be studied having in mind heterogeneous interacting agent modeling. We present a comprehensive analysis of 58 so-called religions (to be better defined in the main text) as measured through their number of adherents evolutions, between 1900 and 2000, - data taken from the World Christian Trends (Barrett and Johnson, "World Christian Trends AD 30 - AD 2200: Interpreting the Annual Christian Megacensus", William Carey Library, 2001): 40 are considered to be "presently growing" cases, including 11 turn overs in the twentieth century; 18 are "presently decaying", among which 12 are found to have had a recent maximum, in the nineteenth or the twentieth century. The Avrami-Kolmogorov differential equation which usually describes solid state transformations, like crystal growth, is used in each case in order to obtain the preferential attachment parameter introduced previously (Europhys Lett 77:38002, 2007). It is not often found close to unity, though often corresponding to a smooth evolution. However large values suggest the occurrence of extreme cases which we conjecture are controlled by so-called external fields. A few cases indicate the likeliness of a detachment process. We discuss a few growing and decaying religions, and illustrate various fits. Some cases seem to indicate the lack of reliability of the data, but others some marked departure from Avrami law. Whence the Avrami evolution equation might be surely improved, in particular, and somewhat obviously, for the decaying religion cases. We point out two major difficulties in such an analysis: (1) the "precise" original time of apparition of a religion, (2) the time at which there is a maximum number of adherents, both information being necessary for integrating reliably any evolution equation.
Akbar, M Ali; Hj Mohd Ali, Norhashidah
2014-01-01
The exp(-Ф(η))-expansion method is an ascending method for obtaining exact and solitary wave solutions for nonlinear evolution equations. In this article, we implement the exp(-Ф(η))-expansion method to build solitary wave solutions to the fourth order Boussinesq equation. The procedure is simple, direct and useful with the help of computer algebra. By using this method, we obtain solitary wave solutions in terms of the hyperbolic functions, the trigonometric functions and elementary functions. The results show that the exp(-Ф(η))-expansion method is straightforward and effective mathematical tool for the treatment of nonlinear evolution equations in mathematical physics and engineering. 35C07; 35C08; 35P99.
Microstructure evolution of superalloy for large exhaust valve during hot forging
International Nuclear Information System (INIS)
Jeong, H.S.; Cho, J.R.; Park, H.C.
2004-01-01
The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. These products are used for aerospace, marine engineering and power generation, etc. The control of forging parameters such as strain, strain rate, temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. It is necessary to understand the microstructure variation evolution. The microstructure change evolution occurs by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range 950-1250 deg. C and strain rate range 0.05-5s-1 using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range 950-1250 deg. C and strain rate range 0.05, 5s-1, holding time range 5, 10, 100, 600 sec using hot compression tests. Modeling equations are developed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters of modeling equation are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of initial grain size and holding time. The developed modeling equation was combined with thermo-viscoplastic finite element modeling to predict various microstructure change evolution during thermo mechanical processing. The predicted grain size in developed FE simulation results is compared with results obtained in various tests. In order to obtain a final microstructure and good mechanical properties in forging, the FEM would become a useful tool in the simulation of the microstructure development
Controlled quantum evolutions and transitions
Energy Technology Data Exchange (ETDEWEB)
Petroni, Nicola Cufaro [INFN Sezione di Bari, INFM Unitadi Bari and Dipartimento Interateneo di Fisica dell' Universitae del Politecnico di Bari, Bari (Italy); De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio [INFM Unitadi Salerno, INFN Sezione di Napoli - Gruppo collegato di Salerno and Dipartimento di Fisica dell' Universitadi Salerno, Baronissi, Salerno (Italy)
1999-10-29
We study the nonstationary solutions of Fokker-Planck equations associated to either stationary or non stationary quantum states. In particular, we discuss the stationary states of quantum systems with singular velocity fields. We introduce a technique that allows arbitrary evolutions ruled by these equations to account for controlled quantum transitions. As a first significant application we present a detailed treatment of the transition probabilities and of the controlling time-dependent potentials associated to the transitions between the stationary, the coherent, and the squeezed states of the harmonic oscillator. (author)
Learning partial differential equations via data discovery and sparse optimization.
Schaeffer, Hayden
2017-01-01
We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.
An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion
Messelmi, Farid
2017-12-01
We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.
High-order quantum algorithm for solving linear differential equations
International Nuclear Information System (INIS)
Berry, Dominic W
2014-01-01
Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt 2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution. (paper)
Evolution of compact stars and dark dynamical variables
Energy Technology Data Exchange (ETDEWEB)
Bhatti, M.Z.; Yousaf, Z. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Ilyas, M. [University of the Punjab, Centre for High Energy Physics, Lahore (Pakistan)
2017-10-15
This work aims to explore the dark dynamical effects of the f(R, T) modified gravity theory on the dynamics of a compact celestial star. We have taken the interior geometry of a spherical star which is filled with an imperfect fluid distribution. The modified field equations are explored by taking a particular form of the f(R, T) model, i.e. f(R, T) = f{sub 1}(R) + f{sub 2}(R)f{sub 3}(T). These equations are utilized to formulate the well-known structure scalars under the dark dynamical effects of this higher-order gravity theory. Also, with the help of these scalar variables, the evolution equations for expansion and shear are formulated. The whole analysis is made under the condition of a constant R and T. We found a crucial significance of dark source terms and dynamical variables on the evolution and density inhomogeneity of compact objects. (orig.)
Continuum model of the two-component Becker-Döring equations
Soheili, Ali Reza
2004-01-01
The process of collision between particles is a subject of interest in many fields of physics, astronomy, polymer physics, atmospheric physics, and colloid chemistry. If two types of particles are allowed to participate in the cluster coalescence, then the time evolution of the cluster distribution has been described by an infinite system of ordinary differential equations. In this paper, we describe the model with a second-order two-dimensional partial differential equation, as a continuum m...
Continuum model of the two-component Becker-Döring equations
Directory of Open Access Journals (Sweden)
Ali Reza Soheili
2004-01-01
Full Text Available The process of collision between particles is a subject of interest in many fields of physics, astronomy, polymer physics, atmospheric physics, and colloid chemistry. If two types of particles are allowed to participate in the cluster coalescence, then the time evolution of the cluster distribution has been described by an infinite system of ordinary differential equations. In this paper, we describe the model with a second-order two-dimensional partial differential equation, as a continuum model.
Westneat, David F
2012-03-01
Social interactions have a powerful effect on the evolutionary process. Recent attempts to synthesize models of social selection with equations for indirect genetic effects (McGlothlin et al. 2010) provide a broad theoretical base from which to study selection and evolutionary response in the context of social interactions. However, this framework concludes that social selection will lead to evolution only if the traits carried by social partners are nonrandomly associated. I suggest this conclusion is incomplete, and that traits that do not covary between social partners can nevertheless lead to evolution via interactive effects on fitness. Such effects occur when there are functional interactions between traits, and as an example I use the interplay in water striders (Gerridae) between grasping appendages carried by males and spines by females. Functional interactive effects between traits can be incorporated into both the equations for social selection and the general model of social evolution proposed by McGlothlin et al. These expanded equations would accommodate adaptive coevolution in social interactions, integrate the quantitative genetic approach to social evolution with game theoretical approaches, and stimulate some new questions about the process of social evolution. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.
Nuclear shape evolution starting from superdeformed state. Role of two-body collision and rotation
International Nuclear Information System (INIS)
Liu, Yu-xin; Sakata, Fumihiko
1999-01-01
With the nuclear density distribution being simulated by the Boltzmann Uehling-Uhlenbeck equation and Vlasov equation with several rotational frequencies, the time evolution of the quadrupole moment of nucleus 86 Zr starting with superdeformed shape is studied. The contribution of two-body collisions and the effects of collective rotation to the shape evolution is investigated. The numerical results indicate that the two-body collisions play a role of damping on the evolution from a superdeformed shape to a normal deformed one in a case without rotation. In a case of rotation with lower frequency, the two-body collisions accelerate the evolution process. A new role of the collective rotation to enhance the nuclear fission is proposed. (author)
Reproducible and Verifiable Equations of State Using Microfabricated Materials
Martin, J. F.; Pigott, J. S.; Panero, W. R.
2017-12-01
Accurate interpretation of observable geophysical data, relevant to the structure, composition, and evolution of planetary interiors, requires precise determination of appropriate equations of state. We present the synthesis of controlled-geometry nanofabricated samples and insulation layers for the laser-heated diamond anvil cell. We present electron-gun evaporation, sputter deposition, and photolithography methods to mass-produce Pt/SiO2/Fe/SiO2 stacks and MgO insulating disks to be used in LHDAC experiments to reduce uncertainties in equation of state measurements due to large temperature gradients. We present a reanalysis of published iron PVT data to establish a statistically-valid extrapolation of the equation of state to inner core conditions with quantified uncertainties, addressing the complication of covariance in equation of state parameters. We use this reanalysis, together with the synthesized samples, to propose a scheme for measurement and validation of high-precision equations of state relevant to the Earth and super-Earth exoplanets.
Hot zone evolution and pre-equilibrium emission in interactions between nuclei
International Nuclear Information System (INIS)
Jakobsson, B.; Karlsson, L.
1990-01-01
The evolution of the hot- and cold zones in intermediate energy nucleus-nucleus collisions by means of spherically expanding volumes and transport equations based on the Fermi-Dirac equation of state is described. Though the dynamical evolution of the collision is similar to that in Vlasov-Uehling-Uhlenbeck (VUU) calculations, some differences in the spectral shapes of emitted nucleons are found. The pre-equilibrium particle emission, prior to the breakup- or to the evaporation stage is always found to be an important contribution to the nucleon spectra which show reasonable agreement with data. (orig.)
Equation of motion for estimation fidelity of monitored oscillating qubits
CSIR Research Space (South Africa)
Bassa, H
2017-08-01
Full Text Available We study the convergence properties of state estimates of an oscillating qubit being monitored by a sequence of discrete, unsharp measurements. Our method derives a differential equation determining the evolution of the estimation fidelity from a...
The CCFM uPDF evolution. uPDFevolv Version 1.0.00
International Nuclear Information System (INIS)
Hautmann, F.; Taheri Monfared, S.
2014-06-01
uPDFevolv is an evolution code for TMD parton densities using the CCFM evolution equation. A description of the underlying theoretical model and technical realization is given together with a detailed program description, with emphasis on parameters the user may want to change.
A Unified Differential Evolution Algorithm for Global Optimization
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.
Lehtonen, Jussi
2018-01-01
A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.
Calatroni, Luca
2013-08-01
We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.
Calatroni, Luca; Dü ring, Bertram; Schö nlieb, Carola-Bibiane
2013-01-01
We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.
Derivation of the phase field equations from the thermodynamic extremal principle
International Nuclear Information System (INIS)
Svoboda, J.; Fischer, F.D.; McDowell, D.L.
2012-01-01
Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynamic systems. The phase field method is a promising tool for simulation of the microstructure evolution in complex systems but introduces several parameters that are not standard in thermodynamics. The purpose of this paper is to show how the phase field method equations can be derived from the thermodynamic extremal principle, allowing the common treatment of the phase field parameters together with standard thermodynamic parameters in future applications. Fixed values of the phase field parameters may, however, not guarantee fixed values of thermodynamic parameters. Conditions are determined, for which relatively stable values of the thermodynamic parameters are guaranteed during phase field method simulations of interface migration. Finally, analytical relations between the thermodynamic and phase field parameters are found and verified for these simulations. A slight dependence of the thermodynamic parameters on the driving force is determined for the cases examined.
Solution Hamilton-Jacobi equation for oscillator Caldirola-Kanai
Directory of Open Access Journals (Sweden)
LEONARDO PASTRANA ARTEAGA
2016-12-01
Full Text Available The method allows Hamilton-Jacobi explicitly determine the generating function from which is possible to derive a transformation that makes soluble Hamilton's equations. Using the separation of variables the partial differential equation of the first order called Hamilton-Jacobi equation is solved; as a particular case consider the oscillator Caldirola-Kanai (CK, which is characterized in that the mass presents a temporal evolution exponentially . We demonstrate that the oscillator CK position presents an exponential decay in time similar to that obtained in the damped sub-critical oscillator, which reflects the dissipation of total mechanical energy. We found that in the limit that the damping factor is small, the behavior is the same as an oscillator with simple harmonic motion, where the effects of energy dissipation is negligible.
Schrödinger–Langevin equation with quantum trajectories for photodissociation dynamics
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2017-02-15
The Schrödinger–Langevin equation is integrated to study the wave packet dynamics of quantum systems subject to frictional effects by propagating an ensemble of quantum trajectories. The equations of motion for the complex action and quantum trajectories are derived from the Schrödinger–Langevin equation. The moving least squares approach is used to evaluate the spatial derivatives of the complex action required for the integration of the equations of motion. Computational results are presented and analyzed for the evolution of a free Gaussian wave packet, a two-dimensional barrier model, and the photodissociation dynamics of NOCl. The absorption spectrum of NOCl obtained from the Schrödinger–Langevin equation displays a redshift when frictional effects increase. This computational result agrees qualitatively with the experimental results in the solution-phase photochemistry of NOCl.
Analytical solution of Mori's equation with secant hyperbolic memory
International Nuclear Information System (INIS)
Tankeshwar, K.; Pathak, K.N.
1993-07-01
The equation of motion of the auto-correlation function has been solved analytically using a secant-hyperbolic form of the memory function. The analytical results obtained for the long time expansion together with the short time expansion provide a good description over the whole time domain as judged by their comparison with the numerical solution of Mori's equation of motion. We also find that the time evolution of the auto-correlation function is determined by a single parameter τ which is related to the frequency sum rules up to the fourth order. The auto-correlation function has been found to show simple decaying or oscillatory behaviour depending on whether the parameter τ is greater than or less than some critical values. Similarities as well as differences in time evolution of the auto-correlation have been discussed for exponential, secant-hyperbolic and Gaussian approaches of the memory function. (author). 16 refs, 5 figs
The Kadomtsev endash Petviashvili equation under rapid forcing
International Nuclear Information System (INIS)
Moroz, I.M.
1997-01-01
We consider the initial value problem for the forced Kadomtsev endash Petviashvili equation (KP) when the forcing is assumed to be fast compared to the evolution of the unforced equation. This suggests the introduction of two time scales. Solutions to the forced KP are sought by expanding the dependent variable in powers of a small parameter, which is inversely related to the forcing time scale. The unforced system describes weakly nonlinear, weakly dispersive, weakly two-dimensional wave propagation and is studied in two forms, depending upon whether gravity dominates surface tension or vice versa. We focus on the effect that the forcing has on the one-lump solution to the KPI equation (where surface tension dominates) and on the one- and two-line soliton solutions to the KPII equation (when gravity dominates). Solutions to second order in the expansion are computed analytically for some specific choices of the forcing function, which are related to the choice of initial data. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Oezis, Turgut; Aslan, Imail
2009-01-01
With the aid of symbolic computation system Mathematica, several explicit solutions for Fisher's equation and CKdV equation are constructed by utilizing an auxiliary equation method, the so called G'/G-expansion method, where the new and more general forms of solutions are also constructed. When the parameters are taken as special values, the previously known solutions are recovered. (general)
Exp-function method for constructing exact solutions of Sharma-Tasso-Olver equation
International Nuclear Information System (INIS)
Erbas, Baris; Yusufoglu, Elcin
2009-01-01
In this paper we use the Exp-function method for the analytic treatment of Sharma-Tasso-Olver equation. New solitonary solutions are formally derived. Change of parameters, which drastically changes the characteristics of the equations, is examined. It is shown that the Exp-function method provides a powerful mathematical tool for solving high-dimensional nonlinear evolutions in mathematical physics. The proposed schemes are reliable and manageable.
Energy Technology Data Exchange (ETDEWEB)
Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)
2014-06-13
Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.
Superdiffusions and positive solutions of nonlinear partial differential equations
Dynkin, E B
2004-01-01
This book is devoted to the applications of probability theory to the theory of nonlinear partial differential equations. More precisely, it is shown that all positive solutions for a class of nonlinear elliptic equations in a domain are described in terms of their traces on the boundary of the domain. The main probabilistic tool is the theory of superdiffusions, which describes a random evolution of a cloud of particles. A substantial enhancement of this theory is presented that can be of interest for everybody who works on applications of probabilistic methods to mathematical analysis.
Operator of Time and Generalized Schrödinger Equation
Directory of Open Access Journals (Sweden)
Slobodan Prvanović
2018-01-01
Full Text Available The equation describing the change of the state of the quantum system with respect to energy is introduced within the framework of the self-adjoint operator of time in nonrelativistic quantum mechanics. In this proposal, the operator of time appears to be the generator of the change of the energy, while the operator of energy that is conjugate to the operator of time generates the time evolution. Two examples, one with discrete time and the other with continuous one, are given and the generalization of Schrödinger equation is proposed.
Non-linear Evolution of the Transverse Instability of Plane-Envelope Solitons
DEFF Research Database (Denmark)
Janssen, Peter A. E. M.; Juul Rasmussen, Jens
1983-01-01
The nonlinear evolution of the transverse instability of plane envelope soliton solutions of the nonlinear Schrödinger equation is investigated. For the case where the spatial derivatives in the two‐dimensional nonlinear Schrödinger equation are elliptic a critical transverse wavenumber is found...
Equations for the non linear evolution of the resistive tearing modes in toroidal plasmas
International Nuclear Information System (INIS)
Edery, D.; Pellat, R.; Soule, J.L.
1979-09-01
Following the tokamak ordering, we simplify the resistive MHD equations in toroidal geometry. We obtain a closed system of non linear equations for two scalar potentials of the magnetic and velocity fields and for plasma density and temperature. If we expand these equations in the inverse of aspect ratio they are exact to the two first orders. Our formalism should correctly describe the mode coupling by curvature effects /1/ and the toroidal displacement of magnetic surfaces /2/. It provides a natural extension of the well known cylindrical model /3/ and is now being solved on computer
A Hamiltonian functional for the linearized Einstein vacuum field equations
International Nuclear Information System (INIS)
Rosas-RodrIguez, R
2005-01-01
By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained
Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee
In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.
Gravitational field equations on and off a 3-brane world
International Nuclear Information System (INIS)
Aliev, A N; Guemruekcueoglu, A E
2004-01-01
The effective gravitational field equations on and off a 3-brane world possessing a Z 2 mirror symmetry and embedded in a five-dimensional bulk spacetime with cosmological constant were derived by Shiromizu, Maeda and Sasaki (SMS) in the framework of the Gauss-Codazzi projective approach with the subsequent specialization to the Gaussian normal coordinates in the neighbourhood of the brane. However, the Gaussian normal coordinates imply a very special slicing of spacetime and clearly, the consistent analysis of the brane dynamics would benefit from complete freedom in the slicing of spacetime, pushing the layer surfaces in the fifth dimension at any rates of evolution and in arbitrary positions. We rederive the SMS effective gravitational field equations on a 3-brane and generalize the off-brane equations to the case where there is an arbitrary energy-momentum tensor in the bulk. We use a more general setting to allow for acceleration of the normals to the brane surface through the lapse function and the shift vector in the spirit of Arnowitt, Deser and Misner. We show that the gravitational influence of the bulk spacetime on the brane may be described by a traceless second-rank tensor W ij , constructed from the 'electric' part of the bulk Riemann tensor. We also present the evolution equations for the tensor W ij , as well as for the corresponding 'magnetic' part of the bulk curvature. These equations involve terms determined by both the nonvanishing acceleration of normals in the nongeodesic slicing of spacetime and the presence of other fields in the bulk
Reduced equations for finite beta tearing modes in tokamaks
International Nuclear Information System (INIS)
Izzo, R.; Monticello, D.A.; DeLucia, J.; Park, W.; Ryu, C.M.
1985-01-01
The equations of resistive magnetohydrodynamics (MHD) are recast in a form that is useful for studying the evolution of those toroidal systems where the fast magnetosonic wave plays no important role. The equations are exact and have del x B = 0 satisfied explicitly. From this set of equations it is a simple matter to derive the equations of reduced MHD to any order in the inverse aspect ratio epsilon of the torus and for βapprox.epsilon or smaller. This is demonstrated by deriving a reduced set of MHD equations that are correct to fifth order in epsilon. These equations contain the exact equilibrium relation and, as such, can be used to find three-dimensional stellarator equilibria. In addition, if a subsidiary ordering in eta, the resistivity, is made, the equations of Glasser, Greene, and Johnson [Phys. Fluids 8, 875 (1967); 19, 567 (1967)] are recovered. This set of reduced equations has been coded by extending the initial value code hIlo [Phys. Fluids 26, 3066 (1983)]. Results obtained for both ideal and resistive linear stability from the reduced equations are compared with those obtained by solving the full set of MHD equations in a cylinder. Good agreement is shown for both zero and finite-beta calculations. Comparisons are also made with analytic theory illuminating the present limitations of the latter
International Nuclear Information System (INIS)
Reynolds, J. M.; Lopez-Bruna, D.
2009-01-01
This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs
Energy Technology Data Exchange (ETDEWEB)
Dupuis, M [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, departement de physico-chimie, services des isotopes stables
1971-07-01
Two analytical representations of the Laplace transform of the time autocorrelation of a dynamical variable, namely the moment expansion and Mori's continued fraction expansion, are investigated from the point of view of structure and convergence properties, and the relation between them is established. The general theory is applied first to a dynamical model exactly solvable, the isotopic impurity in a linear chain of coupled harmonic oscillators, and then to two stochastic models recently introduced by Gordon for the rotational diffusion of molecules. In the latter case, the continued fraction expansion yields simple analytical expressions for the infrared absorption band shapes, showing that these models contain all the features of observed shapes in compressed gases, liquids and solutions. (author) [French] Deux representations analytiques de la transformee de Laplace de la fonction d'autocorrelation temporelle d'une variable dynamique, le developpement en moments et le developpement en fraction continue recemment introduit par Mori, sont etudiees du point de vue de leurs proprietes de structure et de convergence, en meme temps que la relation qui existe entre elles est etablie. La theorie generale est appliquee, d'une part, a un modele dynamique exactement soluble, celui d'une particule isotopique dans une chaine lineaire d'oscillateurs harmoniques couples, et, d'autre part, a deux modeles stochastiques recemment proposes par Gordon pour la diffusion rotationnelle des molecules. Dans ce dernier cas, la voie de la fraction continue fournit des expressions analytiques simples pour les formes de bande d'absorption infrarouge, montrant que ces modeles possedent les caracteristiques des formes observees dans les gaz comprimes, les liquides ou les solutions. (auteur)
Generalized Boltzmann equations for on-shell particle production in a hot plasma
International Nuclear Information System (INIS)
Jakovac, A.
2002-01-01
A novel refinement of the conventional treatment of Kadanoff-Baym equations is suggested. In addition to the Boltzmann equation, another differential equation is used for calculating the evolution of the nonequilibrium two-point function. Although it was usually interpreted as a constraint on the solution of the Boltzmann equation, we argue that its dynamics is relevant to the determination and resummation of the particle production cut contributions. The differential equation for this new contribution is illustrated in the example of the cubic scalar model. The analogue of the relaxation time approximation is suggested. It results in the shift of the threshold location and in a smearing out of the nonanalytic threshold behavior of the spectral function. The possible consequences for the dilepton production are discussed
A stochastic differential equation framework for the turbulent velocity field
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen
We discuss a stochastic differential equation, as a modelling framework for the turbulent velocity field, that is capable of capturing basic stylized facts of the statistics of velocity increments. In particular, we focus on the evolution of the probability density of velocity increments...
Trapped surfaces in monopole-like Cauchy data of Einstein-Yang-Mills-Higgs equations
International Nuclear Information System (INIS)
Malec, E.; Koc, P.
1989-08-01
We choose the nonabelian monopole solution of Bogomolny, Prasad and Sommerfield as a part of Cauchy data for the evolution of Einstein-Yang-Mills-Higgs equations. Momentarily static spherically symmetric data for gravitational fields are obtained numerically via the Lichnerowicz equation. In the case of generic scaling of fields we have found initial data with trapped surfaces. (author). 13 refs
Wave-packet revival for the Schroedinger equation with position-dependent mass
International Nuclear Information System (INIS)
Schmidt, Alexandre G.M.
2006-01-01
We study the temporal evolution of solutions of 1D Schroedinger equation with position-dependent mass inside an infinite well. Revival of wave-packet is shown to exist and partial revivals are different from the usual ones
Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity
International Nuclear Information System (INIS)
Yepez, Jeffrey
2006-01-01
Presented is an analysis of an open quantum model of the time-dependent evolution of a flow field governed by the nonlinear Burgers equation in one spatial dimension. The quantum model is a system of qubits where there exists a minimum time interval in the time-dependent dynamics. Each temporally discrete unitary quantum-mechanical evolution is followed by state reduction of the quantum state. The mesoscopic behavior of this quantum model is described by a quantum Boltzmann equation with a naturally emergent entropy function and H theorem and the model obeys the detailed balance principle. The macroscopic-scale effective field theory for the quantum model is derived using a perturbative Chapman-Enskog expansion applied to the linearized quantum Boltzmann equation. The entropy function is consistent with the quantum-mechanical collision process and a Fermi-Dirac single-particle distribution function for the occupation probabilities of the qubit's energy eigenstates. Comparisons are presented between analytical predictions and numerical predictions and the agreement is excellent, indicating that the nonlinear Burgers equation with a tunable shear viscosity is the operative macroscopic scale effective field theory
On the non-stationary generalized Langevin equation
Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja
2017-12-01
In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.
Relic neutrino asymmetry evolution from first principles
International Nuclear Information System (INIS)
Bell, N.F.; Volkas, R.R.; Wong, Y.Y.Y.
1998-09-01
The exact Quantum Kinetic Equations for a two-flavour active-sterile neutrino system are used to provide a systematic derivation of approximate evolution equations for the relic neutrino asymmetry. An extension of the adiabatic approximation for matter-affected neutrino oscillations is developed which incorporates decoherence due to collisions. Exact and approximate expressions for the decoherence and repopulation functions are discussed. A first pass is made over the exact treatment of multi-flavour partially incoherent oscillations. (authors)
Topological structure of the solution set for evolution inclusions
Zhou, Yong; Peng, Li
2017-01-01
This book systematically presents the topological structure of solution sets and attractability for nonlinear evolution inclusions, together with its relevant applications in control problems and partial differential equations. It provides readers the background material needed to delve deeper into the subject and explore the rich research literature. In addition, the book addresses many of the basic techniques and results recently developed in connection with this theory, including the structure of solution sets for evolution inclusions with m-dissipative operators; quasi-autonomous and non-autonomous evolution inclusions and control systems;evolution inclusions with the Hille-Yosida operator; functional evolution inclusions; impulsive evolution inclusions; and stochastic evolution inclusions. Several applications of evolution inclusions and control systems are also discussed in detail. Based on extensive research work conducted by the authors and other experts over the past four years, the information p...
Numerical study of traveling-wave solutions for the Camassa-Holm equation
International Nuclear Information System (INIS)
Kalisch, Henrik; Lenells, Jonatan
2005-01-01
We explore numerically different aspects of periodic traveling-wave solutions of the Camassa-Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied
López Pouso, Rodrigo; Márquez Albés, Ignacio
2018-04-01
Stieltjes differential equations, which contain equations with impulses and equations on time scales as particular cases, simply consist on replacing usual derivatives by derivatives with respect to a nondecreasing function. In this paper we prove new existence results for functional and discontinuous Stieltjes differential equations and we show that such general results have real world applications. Specifically, we show that Stieltjes differential equations are specially suitable to study populations which exhibit dormant states and/or very short (impulsive) periods of reproduction. In particular, we construct two mathematical models for the evolution of a silkworm population. Our first model can be explicitly solved, as it consists on a linear Stieltjes equation. Our second model, more realistic, is nonlinear, discontinuous and functional, and we deduce the existence of solutions by means of a result proven in this paper.
Dark energy equation of state parameter and its evolution at low redshift
Energy Technology Data Exchange (ETDEWEB)
Tripathi, Ashutosh; Sangwan, Archana; Jassal, H.K., E-mail: ashutosh_tripathi@fudan.edu.cn, E-mail: archanakumari@iisermohali.ac.in, E-mail: hkjassal@iisermohali.ac.in [Indian Institute of Science Education and Research Mohali, SAS Nagar, Mohali 140306, Punjab (India)
2017-06-01
In this paper, we constrain dark energy models using a compendium of observations at low redshifts. We consider the dark energy as a barotropic fluid, with the equation of state a constant as well the case where dark energy equation of state is a function of time. The observations considered here are Supernova Type Ia data, Baryon Acoustic Oscillation data and Hubble parameter measurements. We compare constraints obtained from these data and also do a combined analysis. The combined observational constraints put strong limits on variation of dark energy density with redshift. For varying dark energy models, the range of parameters preferred by the supernova type Ia data is in tension with the other low redshift distance measurements.
Axisymmetric multiphase lattice Boltzmann method for generic equations of state
Reijers, S.A.; Gelderblom, H.; Toschi, F.
2016-01-01
We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation
Improved stochastic approximation methods for discretized parabolic partial differential equations
Guiaş, Flavius
2016-12-01
We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).
International Nuclear Information System (INIS)
Yusufoglu, E.; Bekir, A.; Alp, M.
2008-01-01
In this paper, we establish exact solutions for nonlinear evolution equations. The sine-cosine method is used to construct periodic and solitary wave solutions of the Kawahara and modified Kawahara equations. These solutions may be important of significance for the explanation of some practical physical problems
Partial Differential Equations and Solitary Waves Theory
Wazwaz, Abdul-Majid
2009-01-01
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...
A FORTRAN program for numerical solution of the Altarelli-Parisi equations by the Laguerre method
International Nuclear Information System (INIS)
Kumano, S.; Londergan, J.T.
1992-01-01
We review the Laguerre method for solving the Altarelli-Parisi equations. The Laguerre method allows one to expand quark/parton distributions and splitting functions in orthonormal polynomials. The desired quark distributions are themselves expanded in terms of evolution operators, and we derive the integrodifferential equations satisfied by the evolution operators. We give relevant equations for both flavor nonsinglet and singlet distributions, for both spin-independent and spin-dependent distributions. We discuss stability and accuracy of the results using this method. For intermediate values of Bjorken x (0.03< x<0.7), one can obtain accurate results with a modest number of Laguerre polynomials (N≅20); we discuss requirements for convergence also for the regions of large or small x. A FORTRAN program is provided which implements the Laguerre method; test results are given for both the spin-independent and spin-dependent cases. (orig.)
Framework for evolution in double parton scattering
Energy Technology Data Exchange (ETDEWEB)
Buffing, Maarten G.A.
2017-07-15
Double parton scattering (DPS) describes two colliding hadrons having interactions in the form of two hard processes, each initiated by a separate pair of partons. Just as for single parton scattering, the resummation of soft gluon exchange gives rise to a soft function, which is a necessary ingredient for obtaining rapidity evolution equations. For various regions of phase space, we derive the rapidity evolution and the scale evolution of double transverse momentum dependent parton distribution functions (DTMDs) as well as of the p{sub T}-resummed cross section for double Drell-Yan like processes. This contributes to a framework that can be used for phenomenological DPS studies including resummation.
Range of validity of transport equations
International Nuclear Information System (INIS)
Berges, Juergen; Borsanyi, Szabolcs
2006-01-01
Transport equations can be derived from quantum field theory assuming a loss of information about the details of the initial state and a gradient expansion. While the latter can be systematically improved, the assumption about a memory loss is not known to be controlled by a small expansion parameter. We determine the range of validity of transport equations for the example of a scalar g 2 Φ 4 theory. We solve the nonequilibrium time evolution using the three-loop 2PI effective action. The approximation includes off-shell and memory effects and assumes no gradient expansion. This is compared to transport equations to lowest order (LO) and beyond (NLO). We find that the earliest time for the validity of transport equations is set by the characteristic relaxation time scale t damp =-2ω/Σ ρ (eq) , where -Σ ρ (eq) /2 denotes the on-shell imaginary-part of the self-energy. This time scale agrees with the characteristic time for partial memory loss, but is much shorter than thermal equilibration times. For times larger than about t damp the gradient expansion to NLO is found to describe the full results rather well for g 2 (less-or-similar sign)1
Zhukovsky, K.; Oskolkov, D.
2018-03-01
A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer-Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.
Evolution of truncated moments of singlet parton distributions
International Nuclear Information System (INIS)
Forte, S.; Magnea, L.; Piccione, A.; Ridolfi, G.
2001-01-01
We define truncated Mellin moments of parton distributions by restricting the integration range over the Bjorken variable to the experimentally accessible subset x 0 ≤x≤1 of the allowed kinematic range 0≤x≤1. We derive the evolution equations satisfied by truncated moments in the general (singlet) case in terms of an infinite triangular matrix of anomalous dimensions which couple each truncated moment to all higher moments with orders differing by integers. We show that the evolution of any moment can be determined to arbitrarily good accuracy by truncating the system of coupled moments to a sufficiently large but finite size, and show how the equations can be solved in a way suitable for numerical applications. We discuss in detail the accuracy of the method in view of applications to precision phenomenology
International Nuclear Information System (INIS)
Kraenkel, R.A.; Pereira, J.G.; Manna, M.A.
1991-01-01
The (2+1)-dimensional Burgers equation is obtained as the equation of motion governing the surface perturbations of a shallow viscous fluid heated from below, provided the Rayleigh number of the system satisfy the condition R ≠ 30. A solution to this equation is explicity exhibited and it is argued that it describes the nonlinear evolution of a nearly one-dimensional kink. (author)
Energy Technology Data Exchange (ETDEWEB)
Lee, Keumsook [Department of Geography, Sungshin University, Seoul 136-742 (Korea, Republic of); Goh, Segun; Choi, M Y [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Park, Jong Soo [School of Information Technology, Sungshin University, Seoul 136-742 (Korea, Republic of); Jung, Woo-Sung, E-mail: kslee@sungshin.ac.kr, E-mail: mychoi@snu.ac.kr [Department of Physics and Basic Science Research Institute, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)
2011-03-18
The master equation approach is proposed to describe the evolution of passengers in a subway system. With the transition rate constructed from simple geographical consideration, the evolution equation for the distribution of subway passengers is found to bear skew distributions including log-normal, Weibull, and power-law distributions. This approach is then applied to the Metropolitan Seoul Subway system: analysis of the trip data of all passengers in a day reveals that the data in most cases fit well to the log-normal distributions. Implications of the results are also discussed.
International Nuclear Information System (INIS)
Lee, Keumsook; Goh, Segun; Choi, M Y; Park, Jong Soo; Jung, Woo-Sung
2011-01-01
The master equation approach is proposed to describe the evolution of passengers in a subway system. With the transition rate constructed from simple geographical consideration, the evolution equation for the distribution of subway passengers is found to bear skew distributions including log-normal, Weibull, and power-law distributions. This approach is then applied to the Metropolitan Seoul Subway system: analysis of the trip data of all passengers in a day reveals that the data in most cases fit well to the log-normal distributions. Implications of the results are also discussed.
A novel hierarchy of differential—integral equations and their generalized bi-Hamiltonian structures
International Nuclear Information System (INIS)
Zhai Yun-Yun; Geng Xian-Guo; He Guo-Liang
2014-01-01
With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3 × 3 matrix spectral problem is proposed. By using the trace identity, the bi-Hamiltonian structures of the hierarchy are established with two skew-symmetric operators. Based on two linear spectral problems, we obtain the infinite many conservation laws of the first member in the hierarchy
Remarks on the chemical Fokker-Planck and Langevin equations: Nonphysical currents at equilibrium.
Ceccato, Alessandro; Frezzato, Diego
2018-02-14
The chemical Langevin equation and the associated chemical Fokker-Planck equation are well-known continuous approximations of the discrete stochastic evolution of reaction networks. In this work, we show that these approximations suffer from a physical inconsistency, namely, the presence of nonphysical probability currents at the thermal equilibrium even for closed and fully detailed-balanced kinetic schemes. An illustration is given for a model case.
An efficient technique for higher order fractional differential equation.
Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef
2016-01-01
In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.
Analytic study of solutions for a (3 + 1) -dimensional generalized KP equation
Gao, Hui; Cheng, Wenguang; Xu, Tianzhou; Wang, Gangwei
2018-03-01
The (3 + 1) -dimensional generalized KP (gKP) equation is an important nonlinear partial differential equation in theoretical and mathematical physics which can be used to describe nonlinear wave motion. Through the Hirota bilinear method, one-solition, two-solition and N-solition solutions are derived via symbolic computation. Two classes of lump solutions, rationally localized in all directions in space, to the dimensionally reduced cases in (2 + 1)-dimensions, are constructed by using a direct method based on the Hirota bilinear form of the equation. It implies that we can derive the lump solutions of the reduced gKP equation from positive quadratic function solutions to the aforementioned bilinear equation. Meanwhile, we get interaction solutions between a lump and a kink of the gKP equation. The lump appears from a kink and is swallowed by it with the change of time. This work offers a possibility which can enrich the variety of the dynamical features of solutions for higher-dimensional nonlinear evolution equations.
Travelling wave solutions of the Schamel–Korteweg–de Vries and the Schamel equations
Directory of Open Access Journals (Sweden)
Figen Kangalgil
2016-10-01
Full Text Available In this paper, the extended (G′/G-expansion method has been suggested for constructing travelling wave solutions of the Schamel–Korteweg–de Vries (s-KdV and the Schamel equations with aid of computer systems like Maple or Mathematica. The hyperbolic function solutions and the trigonometric function solutions with free parameters of these equations have been obtained. Moreover, it has been shown that the suggested method is elementary, effective and has been used to solve nonlinear evolution equations in applied mathematics, engineering and mathematical physics.
Advanced evolution of a 15 solar mass star
International Nuclear Information System (INIS)
Endal, A.S.
1974-01-01
The evolution of a 15 solar mass star has been followed from the zero-age main sequence to the neon-ignition phase by use of the Henyey method for solving the equations of quasi-hydrostatic evolution. The detailed results of nucleosynthesis during carbon burning were calculated by a second-order, backwards-differencing scheme, with the effects of convection included in an approximate manner. The results of the evolution calculations and of the nucleosynthesis calculations are described and a detailed analysis of the effects of convection on nucleosynthesis is presented. The quiescent nature of evolution through the hydrogen, helium, and carbon burning stages is confirmed. Comparison with previous studies of the post-carbon burning evolution of massive stars shows that calculations in which degeneracy is neglected will not yield realistic results
Structure-preserving algorithms for the Duffing equation
International Nuclear Information System (INIS)
Gang Tieqiang; Mei Fengxiang; Xie Jiafang
2008-01-01
In this paper, the dissipative and the forced terms of the Duffing equation are considered as the perturbations of nonlinear Hamiltonian equations and the perturbational effect is indicated by parameter ε. Firstly, based on the gradient-Hamiltonian decomposition theory of vector fields, by using splitting methods, this paper constructs structure-preserving algorithms (SPAs) for the Duffing equation. Then, according to the Liouville formula, it proves that the Jacobian matrix determinants of the SPAs are equal to that of the exact flow of the Duffing equation. However, considering the explicit Runge–Kutta methods, this paper finds that there is an error term of order p+1 for the Jacobian matrix determinants. The volume evolution law of a given region in phase space is discussed for different algorithms, respectively. As a result, the sum of Lyapunov exponents is exactly invariable for the SPAs proposed in this paper. Finally, through numerical experiments, relative norm errors and absolute energy errors of phase trajectories of the SPAs and the Heun method (a second-order Runge–Kutta method) are compared. Computational results illustrate that the SPAs are evidently better than the Heun method when ε is small or equal to zero. (general)
Effective dark energy equation of state in interacting dark energy models
International Nuclear Information System (INIS)
Avelino, P.P.; Silva, H.M.R. da
2012-01-01
In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.
Effective dark energy equation of state in interacting dark energy models
Energy Technology Data Exchange (ETDEWEB)
Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Silva, H.M.R. da, E-mail: hilberto.silva@gmail.com [Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)
2012-07-24
In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.
QCD Evolution of the Transverse Momentum Dependent Correlations
Energy Technology Data Exchange (ETDEWEB)
Zhou, Jian; Liang, Zuo-Tang; Yuan, Feng
2008-12-10
We study the QCD evolution for the twist-three quark-gluon correlation functions associated with the transverse momentum odd quark distributions. Different from that for the leading twist quark distributions, these evolution equations involve more general twist-three functions beyond the correlation functions themselves. They provide important information on nucleon structure, and can be studied in the semi-inclusive hadron production in deep inelastic scattering and Drell-Yan lepton pair production in pp scattering process.
Vaibhav, V.
2011-04-01
The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.
International Nuclear Information System (INIS)
Zhang Yufeng; Fan Engui; Zhang Yongqing
2006-01-01
With the help of two semi-direct sum Lie algebras, an efficient way to construct discrete integrable couplings is proposed. As its applications, the discrete integrable couplings of the Toda-type lattice equations are obtained. The approach can be devoted to establishing other discrete integrable couplings of the discrete lattice integrable hierarchies of evolution equations
Kemppainen, Antti
2017-01-01
This book is a short, but complete, introduction to the Loewner equation and the SLEs, which are a family of random fractal curves, as well as the relevant background in probability and complex analysis. The connection to statistical physics is also developed in the text in an example case. The book is based on a course (with the same title) lectured by the author. First three chapters are devoted to the background material, but at the same time, give the reader a good understanding on the overview on the subject and on some aspects of conformal invariance. The chapter on the Loewner equation develops in detail the connection of growing hulls and the differential equation satisfied by families of conformal maps. The Schramm–Loewner evolutions are defined and their basic properties are studied in the following chapter, and the regularity properties of random curves as well as scaling limits of discrete random curves are investigated in the final chapter. The book is aimed at graduate students or researcher...
A new characterization of half-flat solutions to Einstein's equation
International Nuclear Information System (INIS)
Ashtekar, A.; California Univ., Santa Barbara; Jacobson, T.; California Univ., Santa Barbara; Smolin, L.; Yale Univ., New Haven, CT
1988-01-01
A 3+1 formulation of complex Einstein's equation is first obtained on a real 4-manifold M, topologically Σ x R, where Σ is an arbitrary 3-manifold. The resulting constraint and evolution equations are then simplified by using variables that capture the (anti-) self dual part of the 4-dimensional Weyl curvature. As a result, to obtain a vacuum self-dual solution, one has just to solve one constraint and one ''evolution'' equation on a field of triads on Σ: Div V i a = 0 and V i a = ε ijk [V j , V k ] a , with i = 1, 2, 3, where Div denotes divergence with respect to a fixed, non-dynamical volume element. If the triad is real, the resulting self-dual metric is real and positive definite. This characterization of self-dual solutions in terms of triads appears to be particularly well suited for analysing the issues of exact integrability of the (anti-)-self-dual Einstein system. Finally, although the use of a 3+1 decomposition seems artificial from a strict mathematical viewpoint, as David C. Robinson has recently shown, the resulting triad description is closely related to the hyperkaehler geometry that (anti-)self-dual vacuum solutions naturally admit. (orig.)
Quintom models with an equation of state crossing -1
International Nuclear Information System (INIS)
Zhao Wen; Zhang Yang
2006-01-01
In this paper, we investigate a kind of special quintom model, which is made of a quintessence field φ 1 and a phantom field φ 2 , and the potential function has the form of V(φ 1 2 -φ 2 2 ). This kind of quintom field can be separated into two kinds: the hessence model, which has the state of φ 1 2 >φ 2 2 , and the hantom model with the state φ 1 2 2 2 . We discuss the evolution of these models in the ω-ω ' plane (ω is the state equation of the dark energy, and ω ' is its time derivative in units of Hubble time), and find that according to ω>-1 or ' plane can be divided into four parts. The late time attractor solution, if existing, is always quintessencelike or Λ-like for hessence field, so the big rip does not exist. But for hantom field, its late time attractor solution can be phantomlike or Λ-like, and sometimes, the big rip is unavoidable. Then we consider two special cases: one is the hessence field with an exponential potential, and the other is with a power law potential. We investigate their evolution in the ω-ω ' plane. We also develop a theoretical method of constructing the hessence potential function directly from the effective equation-of-state function ω(z). We apply our method to five kinds of parametrizations of equation-of-state parameter, where ω crossing -1 can exist, and find they all can be realized. At last, we discuss the evolution of the perturbations of the quintom field, and find the perturbations of the quintom δ Q and the metric Φ are all finite even at the state of ω=-1 and ω ' ≠0
Quantum theory from a nonlinear perspective Riccati equations in fundamental physics
Schuch, Dieter
2018-01-01
This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link these two worlds when applied to complex quantities. The nonlinearity can provide information about the phase-amplitude correlations of the complex quantities that cannot be obtained from the linearized form. As revealed in this wide ranging treatment, Riccati equations can also be found in many diverse fields of physics from Bose-Einstein-condensates to cosmology. The book will appeal to graduate students and theoretical physicists interested in ...
Master equations and the theory of stochastic path integrals
Weber, Markus F.; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from
Master equations and the theory of stochastic path integrals.
Weber, Markus F; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon
Properties of quantum Markovian master equations
International Nuclear Information System (INIS)
Gorini, V.; Frigerio, A.; Verri, M.; Kossakowski, A.; Sudarshan, E.C.G.
1976-11-01
An essentially self-contained account is given of some general structural properties of the dynamics of quantum open Markovian systems. Some recent results regarding the problem of the classification of quantum Markovian master equations and the limiting conditions under which the dynamical evolution of a quantum open system obeys an exact semigroup law (weak coupling limit and singular coupling limit are reviewed). A general form of quantum detailed balance and its relation to thermal relaxation and to microreversibility is discussed
On the time evolution operator for time-dependent quadratic Hamiltonians
International Nuclear Information System (INIS)
Fernandez, F.M.
1989-01-01
The Schroedinger equation with a time-dependent quadratic Hamiltonian is investigated. The time-evolution operator is written as a product of exponential operators determined by the Heisenberg equations of motion. This product operator is shown to be global in the occupation number representation when the Hamiltonian is Hermitian. The success of some physical applications of the product-form representation is explained
Integration of Lax and Zakharov-Schabat equations by means of algebraic geometry's methods
International Nuclear Information System (INIS)
Gozman, N.Ja.; Latyshev, A.V.; Savostjanov, M.V.; Lebedev, D.R.
1982-01-01
The solutions of nonlinear partial differential equations of Lax and Zakharov-Schabat types are obtained with the help of algebro-geometric method. The Krichever-Drinfeld bimodule for rational curve with cusp point is constructed. It is noted that rational solutions of Zakharov-Schabat equations can be found by means of constructed bimodule in the case of rank 1 only. The evolution of the poles of these solutions is investigated
Directory of Open Access Journals (Sweden)
S. C. Oukouomi Noutchie
2014-01-01
Full Text Available We make use of Laplace transform techniques and the method of characteristics to solve fragmentation equations explicitly. Our result is a breakthrough in the analysis of pure fragmentation equations as this is the first instance where an exact solution is provided for the fragmentation evolution equation with general fragmentation rates. This paper is the key for resolving most of the open problems in fragmentation theory including “shattering” and the sudden appearance of infinitely many particles in some systems with initial finite particles number.
Bove, Antonio; Murthy, MK Venkatesha
2009-01-01
This collection of original articles and surveys addresses the recent advances in linear and nonlinear aspects of the theory of partial differential equations. The key topics include operators as "sums of squares" of real and complex vector fields, nonlinear evolution equations, local solvability, and hyperbolic questions.
The equations icons of knowledge
Bais, Sander
2005-01-01
For thousands of years mankind has tried to understand nature. Exploring the world on all scales with instruments of ever more ingenuity, we have been able to unravel some of the great mysteries that surround us. While collecting an overwhelming multitude of observational facts, we discovered fundamental laws that govern the structure and evolution of physical reality. We know that nature speaks to us in the language of mathematics. In this language most of our basic understanding of the physical world can be expressed in an unambiguous and concise way. The most artificial language turns out to be the most natural of all. The laws of nature correspond to equations. These equations are the icons of knowledge that mark crucial turning points in our thinking about the world we happen to live in. They form the symbolic representation of most of what we know, and as such constitute an important and robust part of our culture.
Original Paper Evolution spatiale et temporelle des dégâts du ...
African Journals Online (AJOL)
Jacobi, 1912 (Cicadellidae) en comparaison avec la distribution de la pluviométrie au cours des vingt dernières années dans les zones de culture ... for 30 plants), with a peak of attack between the 93rd and 114th days after emergence (DAE), while the period 1993-2007 corresponds to a low pest pressure (0.52 to 2.10 ...
Ellner, Stephen P; Geber, Monica A; Hairston, Nelson G
2011-06-01
Rapid contemporary evolution due to natural selection is common in the wild, but it remains uncertain whether its effects are an essential component of community and ecosystem structure and function. Previously we showed how to partition change in a population, community or ecosystem property into contributions from environmental and trait change, when trait change is entirely caused by evolution (Hairston et al. 2005). However, when substantial non-heritable trait change occurs (e.g. due to phenotypic plasticity or change in population structure) that approach can mis-estimate both contributions. Here, we demonstrate how to disentangle ecological impacts of evolution vs. non-heritable trait change by combining our previous approach with the Price Equation. This yields a three-way partitioning into effects of evolution, non-heritable phenotypic change and environment. We extend the approach to cases where ecological consequences of trait change are mediated through interspecific interactions. We analyse empirical examples involving fish, birds and zooplankton, finding that the proportional contribution of rapid evolution varies widely (even among different ecological properties affected by the same trait), and that rapid evolution can be important when it acts to oppose and mitigate phenotypic effects of environmental change. Paradoxically, rapid evolution may be most important when it is least evident. © 2011 Blackwell Publishing Ltd/CNRS.
On Critical Spaces for the Navier-Stokes Equations
Prüss, Jan; Wilke, Mathias
2017-10-01
The abstract theory of critical spaces developed in Prüss and Wilke (J Evol Equ, 2017. doi: 10.1007/s00028-017-0382-6), Prüss et al. (Critical spaces for quasilinear parabolic evolution equations and applications, 2017) is applied to the Navier-Stokes equations in bounded domains with Navier boundary conditions as well as no-slip conditions. Our approach unifies, simplifies and extends existing work in the L_p -L_q setting, considerably. As an essential step, it is shown that the strong and weak Stokes operators with Navier conditions admit an H^∞-calculus with H^∞-angle 0, and the real and complex interpolation spaces of these operators are identified.
International Nuclear Information System (INIS)
Biswas, Anjan
2009-01-01
In this Letter, the 1-soliton solution of the Zakharov-Kuznetsov equation with power law nonlinearity and nonlinear dispersion along with time-dependent coefficients is obtained. There are two models for this kind of an equation that are studied. The constraint relation between these time-dependent coefficients is established for the solitons to exist. Subsequently, this equation is again analysed with generalized evolution. The solitary wave ansatz is used to carry out this investigation.
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
International Nuclear Information System (INIS)
Gong, W.G.; Bauer, W.; Gelbke, C.K.; Carlin, N.; de Souza, R.T.; Kim, Y.D.; Lynch, W.G.; Murakami, T.; Poggi, G.; Sanderson, D.P.; Tsang, M.B.; Xu, H.M.; Pratt, S.; Fields, D.E.; Kwiatkowski, K.; Planeta, R.; Viola, V.E. Jr.; Yennello, S.J.
1990-01-01
Two-proton correlation functions measured for the 14 N+ 27 Al reaction at E/A=75 MeV are compared to correlation functions predicted for collision geometries obtained from numerical solutions of the Boltzmann-Uehling-Uhlenbeck (BUU) equation. The calculations are in rather good agreement with the experimental correlation function, indicating that the BUU equation gives a reasonable description of the space-time evolution of the reaction
On the Solution of the Continuity Equation for Precipitating Electrons in Solar Flares
Emslie, A. Gordon; Holman, Gordon D.; Litvinenko, Yuri E.
2014-01-01
Electrons accelerated in solar flares are injected into the surrounding plasma, where they are subjected to the influence of collisional (Coulomb) energy losses. Their evolution is modeled by a partial differential equation describing continuity of electron number. In a recent paper, Dobranskis & Zharkova claim to have found an "updated exact analytical solution" to this continuity equation. Their solution contains an additional term that drives an exponential decrease in electron density with depth, leading them to assert that the well-known solution derived by Brown, Syrovatskii & Shmeleva, and many others is invalid. We show that the solution of Dobranskis & Zharkova results from a fundamental error in the application of the method of characteristics and is hence incorrect. Further, their comparison of the "new" analytical solution with numerical solutions of the Fokker-Planck equation fails to lend support to their result.We conclude that Dobranskis & Zharkova's solution of the universally accepted and well-established continuity equation is incorrect, and that their criticism of the correct solution is unfounded. We also demonstrate the formal equivalence of the approaches of Syrovatskii & Shmeleva and Brown, with particular reference to the evolution of the electron flux and number density (both differential in energy) in a collisional thick target. We strongly urge use of these long-established, correct solutions in future works.
Evolution of perturbations in distinct classes of canonical scalar field models of dark energy
International Nuclear Information System (INIS)
Jassal, H. K.
2010-01-01
Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modeled by either a scalar field or by a barotropic fluid. The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models. The dark energy equation of state evolves differently in these classes. In freezing models, the equation of state deviates from that of a cosmological constant at early times. For thawing models, the dark energy equation of state remains near that of the cosmological constant at early times and begins to deviate from it only at late times. Since the dark energy equation of state evolves differently in these classes, the dark energy perturbations too evolve differently. In freezing models, since the equation of state deviates from that of a cosmological constant at early times, there is a significant difference in evolution of matter perturbations from those in the cosmological constant model. In comparison, matter perturbations in thawing models differ from the cosmological constant only at late times. This difference provides an additional handle to distinguish between these classes of models and this difference should manifest itself in the integrated Sachs-Wolfe effect.
Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach
Chen, Yusui; You, J. Q.; Yu, Ting
2014-11-01
A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.
Reduced equations of motion for quantum systems driven by diffusive Markov processes.
Sarovar, Mohan; Grace, Matthew D
2012-09-28
The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.
Rank-dependant factorization of entanglement evolution
International Nuclear Information System (INIS)
Siomau, Michael
2016-01-01
Highlights: • In some cases the complex entanglement evolution can be factorized on simple terms. • We suggest factorization equations for multiqubit entanglement evolution. • The factorization is solely defined by the rank of the final state density matrices. • The factorization is independent on the local noisy channels and initial pure states. - Abstract: The description of the entanglement evolution of a complex quantum system can be significantly simplified due to the symmetries of the initial state and the quantum channels, which simultaneously affect parts of the system. Using concurrence as the entanglement measure, we study the entanglement evolution of few qubit systems, when each of the qubits is affected by a local unital channel independently on the others. We found that for low-rank density matrices of the final quantum state, such complex entanglement dynamics can be completely described by a combination of independent factors representing the evolution of entanglement of the initial state, when just one of the qubits is affected by a local channel. We suggest necessary conditions for the rank of the density matrices to represent the entanglement evolution through the factors. Our finding is supported with analytical examples and numerical simulations.
Prolongation Loop Algebras for a Solitonic System of Equations
Directory of Open Access Journals (Sweden)
Maria A. Agrotis
2006-11-01
Full Text Available We consider an integrable system of reduced Maxwell-Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the n-soliton potentials and establish their pole structure with respect to the broadening parameter. The natural phase space of the model is embedded in an infinite dimensional loop algebra. The dynamical equations of the model are associated to an infinite family of higher order Hamiltonian systems that are in involution. We present the Hamiltonian functions and the Poisson brackets between the extended potentials.
Refinement of the Korteweg–de Vries equation from the Fermi–Pasta–Ulam model
Energy Technology Data Exchange (ETDEWEB)
Kudryashov, Nikolay A., E-mail: nakudr@gmail.com
2015-10-23
We study a generalization of the Korteweg–de Vries equation obtained from the Fermi–Pasta–Ulam problem. We get the fifth-order nonlinear evolution equation for description of perturbations in the mass chain. Using the Painlevé test, we analyze this equation and show that it does not pass the Painlevé test in the general case. However, the necessary condition for existence of the meromorphic solution is carried out and some exact solutions can be found. We present a new approach to look for traveling wave solutions of the generalization of the Korteweg–de Vries equation. Solitary wave and elliptic solutions of the equation are found and discussed, compared to the Korteweg–de Vries soliton. - Highlights: • The Painlevé test for studying of the generalized Korteweg–de Vries equation is used. • It is shown the generalized Korteweg–de Vries of the fifth order equation does not pass the Painlevé test. • The approach for finding exact solution of nonlinear equations is presented. • Solitary wave and elliptic solutions of the equation are found.
High-energy evolution to three loops
Caron-Huot, Simon; Herranen, Matti
2018-02-01
The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to the equation in planar N = 4 super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the threeloop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in crosssection calculations in the planar limit. We compare our result in the linear regime with a recent prediction for the so-called Pomeron trajectory, and compare its collinear limit with predictions from the spectrum of twist-two operators.
International Nuclear Information System (INIS)
Guidi, Leonardo F.; Marchetti, D.H.U.
2003-01-01
We establish a comparison between Rakib-Sivashinsky and Michelson-Sivashinsky quasilinear parabolic differential equations governing the weak thermal limit of flame front propagating in channels. For the former equation, we give a complete description of all steady solutions and present their local and global stability analysis. For the latter, bi-coalescent and interpolating unstable steady solutions are introduced and shown to be more numerous than the previous known coalescent solutions. These facts are argued to be responsible for the disagreement between the observed dynamics in numerical experiments and the exact (linear) stability analysis and give ingredients to construct quasi-stable solutions describing parabolic steadily propagating flame with centered tip
Effective self-similar expansion for the Gross-Pitaevskii equation
Modugno, Michele; Pagnini, Gianni; Valle-Basagoiti, Manuel Angel
2018-04-01
We consider an effective scaling approach for the free expansion of a one-dimensional quantum wave packet, consisting in a self-similar evolution to be satisfied on average, i.e., by integrating over the coordinates. A direct comparison with the solution of the Gross-Pitaevskii equation shows that the effective scaling reproduces with great accuracy the exact evolution—the actual wave function is reproduced with a fidelity close to one—for arbitrary values of the interactions. This result represents a proof of concept of the effectiveness of the scaling ansatz, which has been used in different forms in the literature but never compared against the exact evolution.
Second RPA dynamics at finite temperature: time-evolutions of dynamical operators
International Nuclear Information System (INIS)
Jang, S.
1989-01-01
Time-evolutions of dynamical operators, in particular the generalized density matrix comprising both diagonal and off-diagonal elements, are investigated within the framework of second RPA dynamics at finite temperature. The calculation of the density matrix previously carried out through the appliance of the second RPA master equation by retaining only the slowly oscillating coupling terms is extended to include in the interaction Hamiltonian both the rapidly and slowly oscillating coupling terms. The extended second RPA master equation, thereby formulated without making use of the so-called resonant approximation, is analytically solved and a closed expression for the generalized density matrix is extracted. We provide illustrative examples of the generalized density matrix for various specific initial conditions. We turn particularly our attention to the Poisson distribution type of initial condition for which we deduce specifically a particular form of the density matrix from the solution of the Fokker-Planck equation for the coherent state representation. The relation of the Fokker-Planck equation to the second RPA master equation and its properties are briefly discussed. The oversight incurred in the time-evolution of operators by the resonant approximation is elucidated. The first and second moments of collective coordinates are also computed in relation to the expectation value of various dynamical operators involved in the extended master equation
Ordinary differential equations with applications in molecular biology.
Ilea, M; Turnea, M; Rotariu, M
2012-01-01
Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances
Quantum-mechanical transport equation for atomic systems.
Berman, P. R.
1972-01-01
A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.
Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity
Directory of Open Access Journals (Sweden)
Claudio Cremaschini
2017-07-01
Full Text Available Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015–2017 are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG wave equation, which advances the quantum state ψ associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton–Jacobi quantization of the classical variational tensor field g ≡ g μ ν and its conjugate momentum, referred to as (canonical g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for ψ , which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state ψ is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g ≡ g μ ν and its quantum conjugate momentum operator.
International Nuclear Information System (INIS)
Zhang Yi; Wei Wei-Wei; Cheng Teng-Fei; Song Yang
2011-01-01
In this paper, we apply the binary Bell polynomial approach to high-dimensional variable-coefficient nonlinear evolution equations. Taking the generalized (2+1)-dimensional KdV equation with variable coefficients as an illustrative example, the bilinear formulism, the bilinear Bäcklund transformation and the Lax pair are obtained in a quick and natural manner. Moreover, the infinite conservation laws are also derived. (general)
Evolution of wave turbulence under "gusty" forcing.
Annenkov, S Y; Shrira, V I
2011-09-09
We consider nonlinear evolution of a random wave field under gusty forcing, fluctuating around a constant mean. Here the classical wave turbulence theory that assumes a proximity to stationarity is not applicable. We show by direct numerical simulation that the self-similarity of wave field evolution survives under fluctuating forcing. The wave field statistical characteristics averaged over fluctuations of forcing evolve as if there were a certain constant "effective wind." The results justify the use of the kinetic equations with forcing averaged over gusts as a good first approximation.
The soliton solution of BBGKY quantum kinetic equations chain for different type particles system
International Nuclear Information System (INIS)
Rasulova, M.Yu.; Avazov, U.; Hassan, T.
2006-12-01
In the present paper on the basis of BBGKY chain of quantum kinetic equations the chain of equations for correlation matrices is derived, describing the evolution of a system of different types particles, which interact by pair potential. The series, which is the solution of this chain of equations for correlation matrices, is suggested. Using this series the solution of the last chain of equations is reduced to a solution of a set of homogeneous and nonhomogeneous von-Neumann's kinetic equations (analogue of Vlasov equations for quantum case). The first and second equations of this set of equations coincide with the first and second kinetic equations of the set, which is used in plasma physics. For an potential in the form of Dirac delta function, the solution of von-Neumann equation is defined through soliton solution of nonlinear Schrodinger equations. Based on von-Neumann equation one can define all terms of series, which is a solution of a chain of equations for correlation matrices. On the basis of these correlation matrices for a system of different types of particles we can define exact solution of BBGKY chain of quantum kinetic equations
The method of projected characteristics for the evolution of magnetic arches
Nakagawa, Y.; Hu, Y. Q.; Wu, S. T.
1987-01-01
A numerical method of solving fully nonlinear MHD equation is described. In particular, the formulation based on the newly developed method of projected characteristics (Nakagawa, 1981) suitable to study the evolution of magnetic arches due to motions of their foot-points is presented. The final formulation is given in the form of difference equations; therefore, the analysis of numerical stability is also presented. Further, the most important derivation of physically self-consistent, time-dependent boundary conditions (i.e. the evolving boundary equations) is given in detail, and some results obtained with such boundary equations are reported.
Decoupled equations for reverse time migration in tilted transversely isotropic media
Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.
2012-01-01
Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.
Decoupled equations for reverse time migration in tilted transversely isotropic media
Zhan, Ge
2012-03-01
Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.
Evolution in space and time of two interacting intensities
International Nuclear Information System (INIS)
Wilhelmsson, H.
1977-01-01
The basic nonlinear coupled equations describing the interaction between two intensities (or two populations) are discussed. Analytic solutions are deduced for the evolution in space and time of initially given perturbations of the equilibrium intensities. (Auth.)
Existence of extremal periodic solutions for quasilinear parabolic equations
Directory of Open Access Journals (Sweden)
Siegfried Carl
1997-01-01
bounded domain under periodic Dirichlet boundary conditions. Our main goal is to prove the existence of extremal solutions among all solutions lying in a sector formed by appropriately defined upper and lower solutions. The main tools used in the proof of our result are recently obtained abstract results on nonlinear evolution equations, comparison and truncation techniques and suitably constructed special testfunction.
Equation-free dynamic renormalization in a glassy compaction model
International Nuclear Information System (INIS)
Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.
2006-01-01
Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena
Equation-free dynamic renormalization in a glassy compaction model
Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.
2006-07-01
Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena.