WorldWideScience

Sample records for epigenetic phenotype predetermines

  1. Epigenetic Basis of Morphological Variation and Phenotypic Plasticity in Arabidopsis thaliana

    NARCIS (Netherlands)

    Kooke, R.; Johannes, F.; Wardenaar, R.; Becker, F.F.M.; Etcheverry, M.; Colot, V.; Vreugdenhil, D.; Keurentjes, J.J.B.

    2015-01-01

    Epigenetics is receiving growing attention in the plant science community. Epigenetic modifications are thought to play a particularly important role in fluctuating environments. It is hypothesized that epigenetics contributes to plant phenotypic plasticity because epigenetic modifications, in

  2. Interpreting phenotypic antibiotic tolerance and persister cells as evolution via epigenetic inheritance.

    Science.gov (United States)

    Day, Troy

    2016-04-01

    Epigenetic inheritance is the transmission of nongenetic material such as gene expression levels, RNA and other biomolecules from parents to offspring. There is a growing realization that such forms of inheritance can play an important role in evolution. Bacteria represent a prime example of epigenetic inheritance because a large array of cellular components is transmitted to offspring, in addition to genetic material. Interestingly, there is an extensive and growing empirical literature showing that many bacteria can form 'persister' cells that are phenotypically resistant or tolerant to antibiotics, but most of these results are not interpreted within the context of epigenetic inheritance. Instead, persister cells are usually viewed as a genetically encoded bet-hedging strategy that has evolved in response to a fluctuating environment. Here I show, using a relatively simple model, that many of these empirical findings can be more simply understood as arising from a combination of epigenetic inheritance and cellular noise. I therefore suggest that phenotypic drug tolerance in bacteria might represent one of the best-studied examples of evolution under epigenetic inheritance. © 2016 John Wiley & Sons Ltd.

  3. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    NARCIS (Netherlands)

    de Groote, M.L.; Verschure, P.J.; Rots, M.G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  4. Epigenetic Editing : targeted rewriting of epigenetic marks to modulate expression of selected target genes

    NARCIS (Netherlands)

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  5. Extending Injury- and Disease-Resistant CNS Phenotypes by Repetitive Epigenetic Conditioning

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Gidday

    2015-03-01

    Full Text Available Significant reductions in the extent of acute injury in the CNS can be achieved by exposure to different preconditioning stimuli, but the duration of the induced protective phenotype is typically short-lasting, and thus is deemed as limiting its clinical applicability. Extending the period over which such adaptive epigenetic changes persist – in effect, expanding conditioning’s therapeutic window – would significantly broaden the potential applications of such a treatment approach in patients. The frequency of the conditioning stimulus may hold the key. While transient (1-3 days protection against CNS ischemic injury is well established preclinically following a single preconditioning stimulus, repetitively presenting preconditioning stimuli extends the duration of ischemic tolerance by many weeks. Moreover, repetitive intermittent postconditioning enhances postischemic recovery metrics and improves long-term survival. Intermittent conditioning is also efficacious for preventing or delaying injury in preclinical models of chronic neurodegenerative disease, and for promoting long-lasting functional improvements in a number of other pathologies as well. Although the detailed mechanisms underlying these protracted kinds of neuroplasticity remain largely unstudied, accumulating empirical evidence supports the contention that all of these adaptive phenotypes are epigenetically mediated. Going forward, additional preclinical demonstrations of the ability to induce sustained beneficial phenotypes that reduce the burden of acute and chronic neurodegeneration, and experimental interrogations of the regulatory constructs responsible for these epigenetic responses, will accelerate the identification of not only efficacious, but practical, adaptive epigenetics-based treatments for individuals with neurological disease.

  6. Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs

    Directory of Open Access Journals (Sweden)

    Eveline M Ibeagha-Awemu

    2015-09-01

    Full Text Available Improvement in animal productivity has been achieved over the years through careful breeding and selection programs. Today, variations in the genome are gaining increasing importance in livestock improvement strategies. Genomic information alone however explains only a part of the phenotypic variance in traits. It is likely that a portion of the unaccounted variance is embedded in the epigenome. The epigenome encompasses epigenetic marks such as DNA methylation, histone tail modifications, chromatin remodeling and other molecules that can transmit epigenetic information such as non-coding RNA species. Epigenetic factors respond to external or internal environmental cues such as nutrition, pathogens and climate, and have the ability to change gene expression leading to emergence of specific phenotypes. Accumulating evidence shows that epigenetic marks influence gene expression and phenotypic outcome in livestock species. This review examines available evidence of the influence of epigenetic marks on livestock (cattle, sheep, goat and pig traits and discusses the potential for consideration of epigenetic markers in livestock improvement programs. However, epigenetic research activities on farm animal species are currently limited partly due to lack of recognition, funding and a global network of researchers. Therefore, considerable less attention has been given to epigenetic research in livestock species in comparison to extensive work in humans and model organisms. Elucidating therefore the epigenetic determinants of animal diseases and complex traits may represent one of the principal challenges to use epigenetic markers for further improvement of animal productivity.

  7. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Yang, Qiwei; Tian, Yufeng; Ostler, Kelly R; Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Godley, Lucy A; Cohn, Susan L

    2010-01-01

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  8. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes.

    Science.gov (United States)

    Nagy, Corina; Turecki, Gustavo

    2012-08-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.

  9. Advancement of Phenotype Transformation of Cancer-associated Fibroblasts: 
from Genetic Alterations to Epigenetic Modification

    Directory of Open Access Journals (Sweden)

    Dali CHEN

    2015-02-01

    Full Text Available In the field of human cancer research, even though the vast majority attentions were paid to tumor cells as “the seeds”, the roles of tumor microenvironments as “the soil” are gradually explored in recent years. As a dominant compartment of tumor microenvironments, cancer-associated fibroblasts (CAFs were discovered to correlated with tumorigenesis, tumor progression and prognosis. And the exploration of the mechanisms of CAF phenotype transformation would conducive to the further understand of the CAFs function in human cancers. As we known that CAFs have four main origins, including epithelial cells, endothelial cells, mesenchymal stem cells (MSCs and local mesenchymal cells. However, researchers found that all these origins finally conduct similiar phenotypes from intrinsic to extrinsic ones. Thus, what and how a mechanism can conduct the phenotype transformation of CAFs with different origins? Two viewpoints are proposed to try to answer the quetsion, involving genetic alterations and epigenetic modifications. This review will systematically summarize the advancement of mechanisms of CAF phenotype transformations in the aspect of genentic and epigenetic modifications.

  10. Epigenetics in natural animal populations.

    Science.gov (United States)

    Hu, J; Barrett, R D H

    2017-09-01

    Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally-mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  11. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  12. Epigenetic considerations in aquaculture

    Directory of Open Access Journals (Sweden)

    Mackenzie R. Gavery

    2017-12-01

    Full Text Available Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.

  13. Genetic and Epigenetic Tumor Suppressor Gene Silencing are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Non small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Marsit, C. J.; Kelsey, K. T.; Houseman, E. A.; Kelsey, K. T.; Houseman, E. A.; Nelson, H. H.

    2008-01-01

    Both genetic and epigenetic alterations characterize human non small cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hyper methylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hyper methylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hyper methylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hyper methylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  14. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation.

    Science.gov (United States)

    Gao, Lexuan; Geng, Yupeng; Li, Bo; Chen, Jiakuan; Yang, Ji

    2010-11-01

    Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome-wide methylation profiling using methylation-sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome-wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors. © 2010 Blackwell Publishing Ltd.

  15. Epigenetics and Bruxism: Possible Role of Epigenetics in the Etiology of Bruxism.

    Science.gov (United States)

    Čalić, Aleksandra; Peterlin, Borut

    2015-01-01

    Bruxism is defined as a repetitive jaw muscle activity characterized by clenching or grinding of the teeth and/or bracing or thrusting of the mandible. There are two distinct circadian phenotypes for bruxism: sleep bruxism (SB) and awake bruxism, which are considered separate entities due to the putative difference in their etiology and phenotypic variance. The detailed etiology of bruxism so far remains unknown. Recent theories suggest the central regulation of certain pathophysiological or psychological pathways. Current proposed causes of bruxism appear to be a combination of genetic and environmental (G×E) factors, with epigenetics providing a robust framework for investigating G×E interactions, and their involvement in bruxism makes it a suitable candidate for epigenetic research. Both types of bruxism are associated with certain epigenetically determined disorders, such as Rett syndrome (RTT), Prader-Willi syndrome (PWS), and Angelman syndrome (AS), and these associations suggest a mechanistic link between epigenetic deregulation and bruxism. The present article reviews the possible role of epigenetic mechanisms in the etiology of both types of bruxism based on the epigenetic pathways involved in the pathophysiology of RTT, PWS, and AS, and on other epigenetic disruptions associated with risk factors for bruxism, including sleep disorders, altered stress response, and psychopathology.

  16. The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps.

    Science.gov (United States)

    O'Dea, Rose E; Noble, Daniel W A; Johnson, Sheri L; Hesselson, Daniel; Nakagawa, Shinichi

    2016-01-01

    Rapid environmental change is predicted to compromise population survival, and the resulting strong selective pressure can erode genetic variation, making evolutionary rescue unlikely. Non-genetic inheritance may provide a solution to this problem and help explain the current lack of fit between purely genetic evolutionary models and empirical data. We hypothesize that epigenetic modifications can facilitate evolutionary rescue through 'epigenetic buffering'. By facilitating the inheritance of novel phenotypic variants that are generated by environmental change-a strategy we call 'heritable bet hedging'-epigenetic modifications could maintain and increase the evolutionary potential of a population. This process may facilitate genetic adaptation by preserving existing genetic variation, releasing cryptic genetic variation and/or facilitating mutations in functional loci. Although we show that examples of non-genetic inheritance are often maladaptive in the short term, accounting for phenotypic variance and non-adaptive plasticity may reveal important evolutionary implications over longer time scales. We also discuss the possibility that maladaptive epigenetic responses may be due to 'epigenetic traps', whereby evolutionarily novel factors (e.g. endocrine disruptors) hack into the existing epigenetic machinery. We stress that more ecologically relevant work on transgenerational epigenetic inheritance is required. Researchers conducting studies on transgenerational environmental effects should report measures of phenotypic variance, so that the possibility of both bet hedging and heritable bet hedging can be assessed. Future empirical and theoretical work is required to assess the relative importance of genetic and epigenetic variation, and their interaction, for evolutionary rescue.

  17. Epigenetics: ambiguities and implications.

    Science.gov (United States)

    Stotz, Karola; Griffiths, Paul

    2016-12-01

    Everyone has heard of 'epigenetics', but the term means different things to different researchers. Four important contemporary meanings are outlined in this paper. Epigenetics in its various senses has implications for development, heredity, and evolution, and also for medicine. Concerning development, it cements the vision of a reactive genome strongly coupled to its environment. Concerning heredity, both narrowly epigenetic and broader 'exogenetic' systems of inheritance play important roles in the construction of phenotypes. A thoroughly epigenetic model of development and evolution was Waddington's aim when he introduced the term 'epigenetics' in the 1940s, but it has taken the modern development of molecular epigenetics to realize this aim. In the final sections of the paper we briefly outline some further implications of epigenetics for medicine and for the nature/nurture debate.

  18. Depletion of tumor-associated macrophages switches the epigenetic profile of pancreatic cancer infiltrating T cells and restores their anti-tumor phenotype.

    Science.gov (United States)

    Borgoni, Simone; Iannello, Andrea; Cutrupi, Santina; Allavena, Paola; D'Incalci, Maurizio; Novelli, Francesco; Cappello, Paola

    2018-01-01

    Pancreatic Ductal Adenocarcinoma (PDA) is characterized by a complex tumor microenvironment that supports its progression, aggressiveness and resistance to therapies. The delicate interplay between cancer and immune cells creates the conditions for PDA development, particularly due to the functional suppression of T cell anti-tumor effector activity. However, some of the mechanisms involved in this process are still poorly understood. In this study, we analyze whether the functional and epigenetic profile of T cells that infiltrate PDA is modulated by the microenvironment, and in particular by tumor-associated macrophages (TAMs). CD4 and CD8 T cells obtained from mice orthotopically injected with syngeneic PDA cells, and untreated or treated with Trabectedin, a cytotoxic drug that specifically targets TAMs, were sorted and analyzed by flow cytometry and characterized for their epigenetic profile. Assessment of cytokine production and the epigenetic profile of genes coding for IL10, T-bet and PD1 revealed that T cells that infiltrated PDA displayed activated Il10 promoter and repressed T-bet activity, in agreement with their regulatory phenotype (IL10 high /IFNγ low , PD1 high ). By contrast, in Trabectedin-treated mice, PDA-infiltrating T cells displayed repressed Il10 and Pdcd1 and activated T-bet promoter activity, in accordance with their anti-tumor effector phenotype (IL10 low /IFNγ high ), indicating a key role of TAMs in orchestrating functions of PDA-infiltrating T cells by modulating their epigenetic profile towards a pro-tumoral phenotype. These results suggest the targeting of TAMs as an efficient strategy to obtain an appropriate T cell anti-tumor immune response and open new potential combinations for PDA treatment.

  19. The Epigenetic Cytocrin Pathway to the Nucleus. Epigenetic Factors, Epigenetic Mediators, and Epigenetic Traits. A Biochemist Perspective

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    2017-11-01

    Full Text Available A single word, Epigenetics, underlies one exciting subject in today's Science, with different sides and with interactions with philosophy. The apparent trivial description includes everything in between genotype and phenotype that occurs for a given unique DNA sequence/genome. This Perspective article first presents an historical overview and the reasons for the lack of consensus in the field, which derives from different interpretations of the diverse operative definitions of Epigenetics. In an attempt to reconcile the different views, we propose a novel concept, the “cytocrin system.” Secondly, the article questions the inheritability requirement and makes emphasis in the epigenetic mechanisms, known or to be discovered, that provide hope for combating human diseases. Hopes in cancer are at present in deep need of deciphering mechanisms to support ad hoc therapeutic approaches. Better perspectives are for diseases of the central nervous system, in particular to combat neurodegeneration and/or cognitive deficits in Alzheimer's disease. Neurons are post-mitotic cells and, therefore, epigenetic targets to prevent neurodegeneration should operate in non-dividing diseased cells. Accordingly, epigenetic-based human therapy may not need to count much on transmissible potential.

  20. Epigenetics of human asthma and allergy: promises to keep.

    Science.gov (United States)

    Devries, Avery; Vercelli, Donata

    2013-09-01

    The interest in asthma epigenetics is high because epigenetic mechanisms likely contribute to the environmental origins of the disease and its phenotypic variability. This review presents the main findings of asthma epigenetics and the challenges that still delay progress. We examined the current literature on asthma epigenetics (31 reviews and 25 original data publications). We focused on DNA methylation studies in populations. Both genome-wide and candidate gene studies have explored DNA methylation in allergic disease. Genome-wide studies ask whether and which regions of the genome are differentially methylated in relation to the phenotype of interest. Identification of such regions provides clues about the identity of the genes, pathways and networks underpinning a phenotype and connects these networks to the phenotype through epigenetic mechanisms. Candidate gene studies examine DNA methylation in genes chosen because of their known or hypothesized role in immunity, responses to environmental stimuli or disease pathogenesis. Most existing studies in asthma and allergy focused on candidate genes involved in the response to environmental pollutants. Asthma epigenetics is still in its infancy. The paucity of primary literature originates from methodological and analytical challenges of genome-wide studies, the difficulties in interpreting small differences in DNA methylation, and the need to develop robust bioinformatic tools for pathway, network and system analyses of epigenetic data. Once these challenges have been overcome, epigenetic studies will likely provide important insights about the inception and pathogenesis of allergic disease and will help define disease endotypes.

  1. The Emerging Role of Epigenetics in Inflammation and Immunometabolism.

    Science.gov (United States)

    Raghuraman, Sukanya; Donkin, Ida; Versteyhe, Soetkin; Barrès, Romain; Simar, David

    2016-11-01

    Recent research developments have shed light on the risk factors contributing to metabolic complications, implicating both genetic and environmental factors, potentially integrated by epigenetic mechanisms. Distinct epigenetic changes in immune cells are frequently observed in obesity and type 2 diabetes mellitus, and these are associated with alterations in the phenotype, function, and trafficking patterns of these cells. The first step in the development of effective therapeutic strategies is the identification of distinct epigenetic signatures associated with metabolic disorders. In this review we provide an overview of the epigenetic mechanisms influencing immune cell phenotype and function, summarize current knowledge about epigenetic changes affecting immune functions in the context of metabolic diseases, and discuss the therapeutic options currently available to counteract epigenetically driven metabolic complications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Epigenetic variation, phenotypic heritability, and evolution

    DEFF Research Database (Denmark)

    Furrow, Robert E.; Christiansen, Freddy Bugge; Feldman, Marcus W.

    2014-01-01

    families. The potential importance of this interaction, recognized in classical studies of the genetic epidemiology of complex diseases and other quantitative characters, has reemerged in studies of the effects of epigenetic modifications, their variation, and their transmission between generations....

  3. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hisataka Ogawa

    Full Text Available Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors.

  4. Epigenetics in comparative biology: why we should pay attention.

    Science.gov (United States)

    Burggren, Warren W; Crews, David

    2014-07-01

    The past decade has seen an explosion of articles in scientific journals involving non-genetic influences on phenotype through modulation of gene function without changes in gene sequence. The excitement in modern molecular biology surrounding the impact exerted by the environment on development of the phenotype is focused largely on mechanism and has not incorporated questions asked (and answers provided) by early philosophers, biologists, and psychologists. As such, this emergence of epigenetic studies is somewhat "old wine in new bottles" and represents a reformulation of the old debate of preformationism versus epigenesis-one resolved in the 1800s. Indeed, this tendency to always look forward, with minimal concern or regard of what has gone before, has led to the present situation in which "true" epigenetic studies are believed to consist of one of two schools. The first is primarily medically based and views epigenetic mechanisms as pathways for disease (e.g., "the epigenetics of cancer"). The second is primarily from the basic sciences, particularly molecular genetics, and regards epigenetics as a potentially important mechanism for organisms exposed to variable environments across multiple generations. There is, however, a third, and separate, school based on the historical literature and debates and regards epigenetics as more of a perspective than a phenomenon. Against this backdrop, comparative integrative biologists are particularly well-suited to understand epigenetic phenomena as a way for organisms to respond rapidly with modified phenotypes (relative to natural selection) to changes in the environment. Using evolutionary principles, it is also possible to interpret "sunsetting" of modified phenotypes when environmental conditions result in a disappearance of the epigenetic modification of gene regulation. Comparative integrative biologists also recognize epigenetics as a potentially confounding source of variation in their data. Epigenetic

  5. Epigenetics and environmental impacts in cattle

    Science.gov (United States)

    This chapter reviews the major advances in the field of epigenetics as well as the environmental impacts of cattle. Many findings from our own research endeavors related to the topic of this chapter are also introduced. The phenotypic characterization of an animal can be changed through epigenetic ...

  6. Epigenetic Alterations in Fanconi Anaemia: Role in Pathophysiology and Therapeutic Potential.

    Directory of Open Access Journals (Sweden)

    Hélio Belo

    Full Text Available Fanconi anaemia (FA is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average. Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population.

  7. Is Neurofibromatosis Type 1-Noonan Syndrome a Phenotypic Result of Combined Genetic and Epigenetic Factors?

    Science.gov (United States)

    Yapijakis, Christos; Pachis, Nikos; Natsis, Stavros; Voumvourakis, Costas

    2016-01-01

    Neurofibromatosis 1-Noonan syndrome (NFNS) presents combined characteristics of both autosomal dominant disorders: NF1 and Noonan syndrome (NS). The genes causing NF1 and NS are located on different chromosomes, making it uncertain whether NFNS is a separate entity as previously suggested, or rather a clinical variation. We present a four-membered Greek family. The father was diagnosed with familial NF1 and the mother with generalized epilepsy, being under hydantoin treatment since the age of 18 years. Their two male children exhibited NFNS characteristics. The father and his sons shared R1947X mutation in the NF1 gene. The two children with NFNS phenotype presented with NF1 signs inherited from their father and fetal hydantoin syndrome-like phenotype due to exposure to that anticonvulsant during fetal development. The NFNS phenotype may be the result of both a genetic factor (mutation in the NF1 gene) and an epigenetic/environmental factor (e.g. hydantoin). Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Rice epigenomics and epigenetics: challenges and opportunities.

    Science.gov (United States)

    Chen, Xiangsong; Zhou, Dao-Xiu

    2013-05-01

    During recent years rice genome-wide epigenomic information such as DNA methylation and histone modifications, which are important for genome activity has been accumulated. The function of a number of rice epigenetic regulators has been studied, many of which are found to be involved in a diverse range of developmental and stress-responsive pathways. Analysis of epigenetic variations among different rice varieties indicates that epigenetic modification may lead to inheritable phenotypic variation. Characterizing phenotypic consequences of rice epigenomic variations and the underlining chromatin mechanism and identifying epialleles related to important agronomic traits may provide novel strategies to enhance agronomically favorable traits and grain productivity in rice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Speciation, phenotypic variation and plasticity: what can endocrine disruptors tell us?

    Science.gov (United States)

    Ayala-García, Braulio; López-Santibáñez Guevara, Marta; Marcos-Camacho, Lluvia I; Fuentes-Farías, Alma L; Meléndez-Herrera, Esperanza; Gutiérrez-Ospina, Gabriel

    2013-01-01

    Phenotype variability, phenotypic plasticity, and the inheritance of phenotypic traits constitute the fundamental ground of processes such as individuation, individual and species adaptation and ultimately speciation. Even though traditional evolutionary thinking relies on genetic mutations as the main source of intra- and interspecies phenotypic variability, recent studies suggest that the epigenetic modulation of gene transcription and translation, epigenetic memory, and epigenetic inheritance are by far the most frequent reliable sources of transgenerational variability among viable individuals within and across organismal species. Therefore, individuation and speciation should be considered as nonmutational epigenetic phenomena.

  10. Speciation, Phenotypic Variation and Plasticity: What Can Endocrine Disruptors Tell Us?

    Directory of Open Access Journals (Sweden)

    Braulio Ayala-García

    2013-01-01

    Full Text Available Phenotype variability, phenotypic plasticity, and the inheritance of phenotypic traits constitute the fundamental ground of processes such as individuation, individual and species adaptation and ultimately speciation. Even though traditional evolutionary thinking relies on genetic mutations as the main source of intra- and interspecies phenotypic variability, recent studies suggest that the epigenetic modulation of gene transcription and translation, epigenetic memory, and epigenetic inheritance are by far the most frequent reliable sources of transgenerational variability among viable individuals within and across organismal species. Therefore, individuation and speciation should be considered as nonmutational epigenetic phenomena.

  11. Epigenetic Inheritance Across the Landscape

    Directory of Open Access Journals (Sweden)

    Amy Vaughn Whipple

    2016-10-01

    Full Text Available The study of epigenomic variation at the landscape-level in plants may add important insight to studies of adaptive variation. A major goal of landscape genomic studies is to identify genomic regions contributing to adaptive variation across the landscape. Heritable variation in epigenetic marks, resulting in transgenerational plasticity, can influence fitness-related traits. Epigenetic marks are influenced by the genome, the environment, and their interaction, and can be inherited independently of the genome. Thus, epigenomic variation likely influences the heritability of many adaptive traits, but the extent of this influence remains largely unknown. Here we summarize the relevance of epigenetic inheritance to ecological and evolutionary processes, and review the literature on landscape-level patterns of epigenetic variation. Landscape-level patterns of epigenomic variation in plants generally show greater levels of isolation by distance and isolation by environment then is found for the genome, but the causes of these patterns are not yet clear. Linkage between the environment and epigenomic variation has been clearly shown within a single generation, but demonstrating transgenerational inheritance requires more complex breeding and/or experimental designs. Transgenerational epigenetic variation may alter the interpretation of landscape genomic studies that rely upon phenotypic analyses, but should have less influence on landscape genomic approaches that rely upon outlier analyses or genome-environment associations. We suggest that multi-generation common garden experiments conducted across multiple environments will allow researchers to understand which parts of the epigenome are inherited, as well as to parse out the relative contribution of heritable epigenetic variation to the phenotype.

  12. Epigenetic Inheritance across the Landscape.

    Science.gov (United States)

    Whipple, Amy V; Holeski, Liza M

    2016-01-01

    The study of epigenomic variation at the landscape-level in plants may add important insight to studies of adaptive variation. A major goal of landscape genomic studies is to identify genomic regions contributing to adaptive variation across the landscape. Heritable variation in epigenetic marks, resulting in transgenerational plasticity, can influence fitness-related traits. Epigenetic marks are influenced by the genome, the environment, and their interaction, and can be inherited independently of the genome. Thus, epigenomic variation likely influences the heritability of many adaptive traits, but the extent of this influence remains largely unknown. Here, we summarize the relevance of epigenetic inheritance to ecological and evolutionary processes, and review the literature on landscape-level patterns of epigenetic variation. Landscape-level patterns of epigenomic variation in plants generally show greater levels of isolation by distance and isolation by environment then is found for the genome, but the causes of these patterns are not yet clear. Linkage between the environment and epigenomic variation has been clearly shown within a single generation, but demonstrating transgenerational inheritance requires more complex breeding and/or experimental designs. Transgenerational epigenetic variation may alter the interpretation of landscape genomic studies that rely upon phenotypic analyses, but should have less influence on landscape genomic approaches that rely upon outlier analyses or genome-environment associations. We suggest that multi-generation common garden experiments conducted across multiple environments will allow researchers to understand which parts of the epigenome are inherited, as well as to parse out the relative contribution of heritable epigenetic variation to the phenotype.

  13. Twins for epigenetic studies of human aging and development

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; Thomassen, Mads

    2013-01-01

    Most of the complex traits including aging phenotypes are caused by the interaction between genome and environmental conditions and the interface of epigenetics may be a central mechanism. Although modern technologies allow us high-throughput profiling of epigenetic patterns already at genome level...... and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable sample of twins is helping to bridge the gap between gene activity and the environments through epigenetic mechanisms unlimited by DNA sequence variations. We propose to extend the classical twin...... design to study the aging-related molecular epigenetic phenotypes and link them with environmental exposures especially early life events. Different study designs and application issues will be highlighted and novel approaches introduced with aim at making uses of twins in assessing the environmental...

  14. Epigenetic mechanisms in the initiation of hematological malignancies

    Directory of Open Access Journals (Sweden)

    Ali Maleki

    2011-10-01

    Full Text Available Background: Cancer development is not restricted to the genetic changes, but also to epigenetic changes. Epigenetic processes are very important in the development of hematological malignancies. The main epigenetic alterations are aberrations in DNA methylation, post-translational modifications of histones, chromatin remodeling and microRNAs patterns, and these are associated with tumor genesis. All the various cellular pathways contributing to the neoplastic phenotype are affected by epigenetic genes in cancer. These pathways can be explored as biomarkers in clinical use for early detection of disease, malignancy classification and response to treatment with classical chemotherapy agents and epigenetic drugs. Materials and Method: A literature review was performed using PUBMED from 1985 to 2008. Cross referencing of discovered articles was also reviewed.Results: In chronic lymphocytic leukemia, regional hypermethylation of gene promoters leads to gene silencing. Many of these genes have tumor suppressor phenotypes. In myelodysplastic syndrome (MDS, CDKN2B (alias, P15, a cyclin-dependent kinase inhibitor that negatively regulates the cell cycle, has been shown to be hypermethylated in marrow stem (CD34+ cells in patients with MDS. At present both Vidaza and Decitabine (DNA methyltransferase inhibitors are approved for the treatment of MDS.Conclusion: Unlike mutations or deletions, DNA hypermethylation and histone deacetylation are potentially reversible by pharmacological inhibition, therefore those epigenetic changes have been recognized as promising novel therapeutic targets in hematopoietic malignances. In this review, we discussed molecular mechanisms of epigenetics, epigenetic changes in hematological malignancies and epigenetic based treatments

  15. Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability

    Directory of Open Access Journals (Sweden)

    Xu Chunming

    2009-05-01

    Full Text Available Abstract Background Inter-specific hybridization occurs frequently in plants, which may induce genetic and epigenetic instabilities in the resultant hybrids, allopolyploids and introgressants. It remains unclear however whether pollination by alien pollens of an incompatible species may impose a "biological stress" even in the absence of genome-merger or genetic introgression, whereby genetic and/or epigenetic instability of the maternal recipient genome might be provoked. Results We report here the identification of a rice mutator-phenotype from a set of rice plants derived from a crossing experiment involving two remote and apparently incompatible species, Oryza sativa L. and Oenothera biennis L. The mutator-phenotype (named Tong211-LP showed distinct alteration in several traits, with the most striking being substantially enlarged panicles. Expectably, gel-blotting by total genomic DNA of the pollen-donor showed no evidence for introgression. Characterization of Tong211-LP (S0 and its selfed progenies (S1 ruled out contamination (via seed or pollen or polyploidy as a cause for its dramatic phenotypic changes, but revealed transgenerational mobilization of several previously characterized transposable elements (TEs, including a MITE (mPing, and three LTR retrotransposons (Osr7, Osr23 and Tos17. AFLP and MSAP fingerprinting revealed extensive, transgenerational alterations in cytosine methylation and to a less extent also genetic variation in Tong211-LP and its immediate progenies. mPing mobility was found to correlate with cytosine methylation alteration detected by MSAP but not with genetic variation detected by AFLP. Assay by q-RT-PCR of the steady-state transcript abundance of a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, and small interference RNA (siRNA pathway-related proteins showed that, relative to the rice parental line, heritable perturbation in expression of 12 out of

  16. Mitochondrial regulation of epigenetics and its role in human diseases

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Tollefsbol, Trygve O; Singh, Keshav K

    2012-01-01

    as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction....... In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead...... to epigenetic changes causing genomic instability in the nuclear genome. We propose that "mitocheckpoint" mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role....

  17. Epigenetic changes in solid and hematopoietic tumors.

    Science.gov (United States)

    Toyota, Minoru; Issa, Jean-Pierre J

    2005-10-01

    There are three connected molecular mechanisms of epigenetic cellular memory in mammalian cells: DNA methylation, histone modifications, and RNA interference. The first two have now been firmly linked to neoplastic transformation. Hypermethylation of CpG-rich promoters triggers local histone code modifications resulting in a cellular camouflage mechanism that sequesters gene promoters away from transcription factors and results in stable silencing. This normally restricted mechanism is ubiquitously used in cancer to silence hundreds of genes, among which some critically contribute to the neoplastic phenotype. Virtually every pathway important to cancer formation is affected by this process. Methylation profiling of human cancers reveals tissue-specific epigenetic signatures, as well as tumor-specific signatures, reflecting in particular the presence of epigenetic instability in a subset of cancers affected by the CpG island methylator phenotype. Generally, methylation patterns can be traced to a tissue-specific, proliferation-dependent accumulation of aberrant promoter methylation in aging tissues, a process that can be accelerated by chronic inflammation and less well-defined mechanisms including, possibly, diet and genetic predisposition. The epigenetic machinery can also be altered in cancer by specific lesions in epigenetic effector genes, or by aberrant recruitment of these genes by mutant transcription factors and coactivators. Epigenetic patterns are proving clinically useful in human oncology via risk assessment, early detection, and prognostic classification. Pharmacologic manipulation of these patterns-epigenetic therapy-is also poised to change the way we treat cancer in the clinic.

  18. 17 CFR 8.10 - Predetermined penalties.

    Science.gov (United States)

    2010-04-01

    ... Section 8.10 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION EXCHANGE PROCEDURES FOR DISCIPLINARY, SUMMARY, AND MEMBERSHIP DENIAL ACTIONS Disciplinary Procedure § 8.10 Predetermined... the rules of an exchange establish predetermined penalties, the disciplinary committee shall have...

  19. The Emerging Role of Epigenetics in Inflammation and Immunometabolism

    DEFF Research Database (Denmark)

    Raghuraman, Sukanya; Donkin, Ida; Versteyhe, Soetkin

    2016-01-01

    Recent research developments have shed light on the risk factors contributing to metabolic complications, implicating both genetic and environmental factors, potentially integrated by epigenetic mechanisms. Distinct epigenetic changes in immune cells are frequently observed in obesity and type 2 ...... we provide an overview of the epigenetic mechanisms influencing immune cell phenotype and function, summarize current knowledge about epigenetic changes affecting immune functions in the context of metabolic diseases, and discuss the therapeutic options currently available to counteract...

  20. Epigenetic silencing of serine protease HTRA1 drives polyploidy

    International Nuclear Information System (INIS)

    Schmidt, Nina; Irle, Inga; Ripkens, Kamilla; Lux, Vanda; Nelles, Jasmin; Johannes, Christian; Parry, Lee; Greenow, Kirsty; Amir, Sarah; Campioni, Mara; Baldi, Alfonso; Oka, Chio; Kawaichi, Masashi; Clarke, Alan R.; Ehrmann, Michael

    2016-01-01

    Increased numbers and improperly positioned centrosomes, aneuploidy or polyploidy, and chromosomal instability are frequently observed characteristics of cancer cells. While some aspects of these events and the checkpoint mechanisms are well studied, not all players have yet been identified. As the role of proteases other than the proteasome in tumorigenesis is an insufficiently addressed question, we investigated the epigenetic control of the widely conserved protease HTRA1 and the phenotypes of deregulation. Mouse embryonal fibroblasts and HCT116 and SW480 cells were used to study the mechanism of epigenetic silencing of HTRA1. In addition, using cell biological and genetic methods, the phenotypes of downregulation of HTRA1 expression were investigated. HTRA1 is epigenetically silenced in HCT116 colon carcinoma cells via the epigenetic adaptor protein MBD2. On the cellular level, HTRA1 depletion causes multiple phenotypes including acceleration of cell growth, centrosome amplification and polyploidy in SW480 colon adenocarcinoma cells as well as in primary mouse embryonic fibroblasts (MEFs). Downregulation of HTRA1 causes a number of phenotypes that are hallmarks of cancer cells suggesting that the methylation state of the HtrA1 promoter may be used as a biomarker for tumour cells or cells at risk of transformation. The online version of this article (doi:10.1186/s12885-016-2425-8) contains supplementary material, which is available to authorized users

  1. [Epigenetics 2.0: The multiple faces of the genome].

    Science.gov (United States)

    Rubinstein, Marcelo

    2016-09-01

    Epigenetics is the branch of genetics that studies the dynamic relationship between stable genotypes and varying phenotypes. To this end, epigenetics aims to discover the molecular mechanisms that explain how different nutrients and hormones, environmental changes, and emotional, social and cognitive experiences modify gene expression and behaviors, even permanently so. Psychiatry has learned that diseases with strong genetic predisposition, such as schizophrenia, show a concordance of around 50% between monozygotic twins, thus evidencing the importance of the genetic background and the presence of environmental variables that stimulate or block phenotypic development. The interest in epigenetics has increased during the last few years due to fundamental discoveries made in molecular and behavioral genetics, although within this framework factual knowledge coexists with fictional expectations and wrong concepts. Is it possible that epigenetic variants modify temperament and human behavior? May abused or neglected children develop long-lasting epigenetic marks in their DNA? May bipolar states correlate with different epigenetic signatures? Studying these subjects in not an easy task, but experiments performed in lab animals suggest that these conjectures are reasonable, although there is still a long distance between hypotheses and scientifically proven facts.

  2. Nonlinear Epigenetic Variance: Review and Simulations

    Science.gov (United States)

    Kan, Kees-Jan; Ploeger, Annemie; Raijmakers, Maartje E. J.; Dolan, Conor V.; van Der Maas, Han L. J.

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addition to our review, we present simulation studies…

  3. MSAP In Tiger Snakes: Island Populations Are Epigenetically More Divergent

    OpenAIRE

    Konate, Moumouni; Lopez, Carlos; Thomson, Vicki

    2017-01-01

    Research on changes in phenotypic plasticity within wild animal populations is centuries old, however far fewer studies have investigated the role that epigenetics play in the development or persistence of natural variation in response to environmental change. Tiger snakes (Notechis scutatus) are an ideal study organism to investigate the link between epigenetics and phenotypic responses to environmental change, as they live on a range of offshore islands with different environments and prey ...

  4. Epigenetic regulation in obesity.

    Science.gov (United States)

    Drummond, Elaine M; Gibney, Eileen R

    2013-07-01

    Research suggests that 65% of variation in obesity is genetic. However, much of the known genetic associations have little known function and their effect size small, thus the gene-environment interaction, including epigenetic influences on gene expression, is suggested to be an important factor in the susceptibilty to obesity. This review will explore the potential of epigenetic markers to influence expression of genes associated with obesity. Epigenetic changes in utero are known to have direct implications on the phenotype of the offspring. More recently work has focused on how such epigenetic changes continue to regulate risk of obesity from infancy through to adulthood. Work has shown that, for example, hypomethylation of the MC4 gene causes an increase in expression, and has a direct impact on appetite and intake, and thus influences risk of obesity. Similar influences are also seen in other aspects of obesity including inflammation and adiposity. Maternal diet during foetal development has many epigenetic implications, which affect the offspring's risk factors for obesity during childhood and adulthood, and even in subsequent generations. Genes associated with risk of obesity, are susceptible to epigenetic mutations, which have subsequent effects on disease mechanisms, such as appetite and impaired glucose and insulin tolerance.

  5. The Key Role of Epigenetics in the Persistence of Asexual Lineages

    Directory of Open Access Journals (Sweden)

    Emilie Castonguay

    2012-01-01

    Full Text Available Asexual organisms, often perceived as evolutionary dead ends, can be long-lived and geographically widespread. We propose that epigenetic mechanisms could play a crucial role in the evolutionary persistence of these lineages. Genetically identical organisms could rely on phenotypic plasticity to face environmental variation. Epigenetic modifications could be the molecular mechanism enabling such phenotypic plasticity; they can be influenced by the environment and act at shorter timescales than mutation. Recent work on the asexual vertebrate Chrosomus eos-neogaeus (Pisces: Cyprinidae provides broad insights into the contribution of epigenetics in genetically identical individuals. We discuss the extension of these results to other asexual organisms, in particular those resulting from interspecific hybridizations. We finally develop on the evolutionary relevance of epigenetic variation in the context of heritability.

  6. Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease.

    Science.gov (United States)

    Martos, Suzanne N; Tang, Wan-Yee; Wang, Zhibin

    2015-07-01

    Epigenetic mechanisms involving DNA methylation, histone modification, histone variants and nucleosome positioning, and noncoding RNAs regulate cell-, tissue-, and developmental stage-specific gene expression by influencing chromatin structure and modulating interactions between proteins and DNA. Epigenetic marks are mitotically inherited in somatic cells and may be altered in response to internal and external stimuli. The idea that environment-induced epigenetic changes in mammals could be inherited through the germline, independent of genetic mechanisms, has stimulated much debate. Many experimental models have been designed to interrogate the possibility of transgenerational epigenetic inheritance and provide insight into how environmental exposures influence phenotypes over multiple generations in the absence of any apparent genetic mutation. Unexpected molecular evidence has forced us to reevaluate not only our understanding of the plasticity and heritability of epigenetic factors, but of the stability of the genome as well. Recent reviews have described the difference between transgenerational and intergenerational effects; the two major epigenetic reprogramming events in the mammalian lifecycle; these two events making transgenerational epigenetic inheritance of environment-induced perturbations rare, if at all possible, in mammals; and mechanisms of transgenerational epigenetic inheritance in non-mammalian eukaryotic organisms. This paper briefly introduces these topics and mainly focuses on (1) transgenerational phenotypes and epigenetic effects in mammals, (2) environment-induced intergenerational epigenetic effects, and (3) the inherent difficulties in establishing a role for epigenetic inheritance in human environmental disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Epigenetics: What it is about?

    Directory of Open Access Journals (Sweden)

    Saade E.

    2014-01-01

    Full Text Available Epigenetics has captured the attention of scientists in the past decades, yet its scope has been continuously changing. In this paper, we give an overview on how and why its definition has evolved and suggest several clarification on the concepts used in this field. Waddington coined the term in 1942 to describe genes interaction with each other and with their environment and insisted on dissociating these events from development. Then, Holliday and others argued that epigenetic phenomena are characterized by their heritability. However, differentiated cells can maintain their phenotypes for decades without undergoing division, which points out the limitation of the «heritability» criterion for a particular phenomenon to qualify as epigenetic. «Epigenetic stability» encompasses traits preservation in both dividing and non dividing cells. Likewise, the use of the term «epigenetic regulation» has been misleading as it overlaps with «regulation of gene expression», whereas «epigenetic information» clearly distinguishes epigenetic from genetic phenomena. Consequently, how could epigenetic information be transmitted and perpetuated? The term «epigenetic templating» has been proposed to refer to a general mechanism of perpetuation of epigenetic information that is based on the preferential activity of enzymes that deposit a particular epigenetic mark on macromolecular complexes already containing the same mark. Another issue that we address is the role of epigenetic information. Not only it is important in allowing alternative interpretations of genetic information, but it appears to be important in protecting the genome, as can be illustrated by bacterial endonucleases that targets non methylated DNA – i. e. foreign DNA – and not the endogenous methylated DNA.

  8. Genetics and epigenetics of rheumatoid arthritis

    Science.gov (United States)

    Viatte, Sebastien; Plant, Darren; Raychaudhuri, Soumya

    2013-01-01

    Investigators have made key advances in rheumatoid arthritis (RA) genetics in the past 10 years. Although genetic studies have had limited influence on clinical practice and drug discovery, they are currently generating testable hypotheses to explain disease pathogenesis. Firstly, we review here the major advances in identifying RA genetic susceptibility markers both within and outside of the MHC. Understanding how genetic variants translate into pathogenic mechanisms and ultimately into phenotypes remains a mystery for most of the polymorphisms that confer susceptibility to RA, but functional data are emerging. Interplay between environmental and genetic factors is poorly understood and in need of further investigation. Secondly, we review current knowledge of the role of epigenetics in RA susceptibility. Differences in the epigenome could represent one of the ways in which environmental exposures translate into phenotypic outcomes. The best understood epigenetic phenomena include post-translational histone modifications and DNA methylation events, both of which have critical roles in gene regulation. Epigenetic studies in RA represent a new area of research with the potential to answer unsolved questions. PMID:23381558

  9. Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits

    NARCIS (Netherlands)

    Johannes, Frank; Porcher, Emmanuelle; Teixeira, Felipe K.; Saliba-Colombani, Vera; Simon, Matthieu; Agier, Nicolas; Bulski, Agnes; Albuisson, Juliette; Heredia, Fabiana; Audigier, Pascal; Bouchez, David; Dillmann, Christine; Guerche, Philippe; Hospital, Frederic; Colot, Vincent

    Loss or gain of DNA methylation can affect gene expression and is sometimes transmitted across generations. Such epigenetic alterations are thus a possible source of heritable phenotypic variation in the absence of DNA sequence change. However, attempts to assess the prevalence of stable epigenetic

  10. Daphnia as an Emerging Epigenetic Model Organism

    Directory of Open Access Journals (Sweden)

    Kami D. M. Harris

    2012-01-01

    Full Text Available Daphnia offer a variety of benefits for the study of epigenetics. Daphnia’s parthenogenetic life cycle allows the study of epigenetic effects in the absence of confounding genetic differences. Sex determination and sexual reproduction are epigenetically determined as are several other well-studied alternate phenotypes that arise in response to environmental stressors. Additionally, there is a large body of ecological literature available, recently complemented by the genome sequence of one species and transgenic technology. DNA methylation has been shown to be altered in response to toxicants and heavy metals, although investigation of other epigenetic mechanisms is only beginning. More thorough studies on DNA methylation as well as investigation of histone modifications and RNAi in sex determination and predator-induced defenses using this ecologically and evolutionarily important organism will contribute to our understanding of epigenetics.

  11. The epigenetic footprint of poleward range-expanding plants in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.; Snoek, L.B.; Oplaat, C.; Biere, A.; Putten, van der W.H.; Verhoeven, K.J.F.

    2015-01-01

    Epigenetic modifications, such as DNA methylation variation, can generate heritable phenotypic variation independent of the underlying genetic code. However, epigenetic variation in natural plant populations is poorly documented and little understood. Here, we test if northward range expansion of

  12. Epigenetics of host-pathogen interactions: the road ahead and the road behind.

    Directory of Open Access Journals (Sweden)

    Elena Gómez-Díaz

    Full Text Available A growing body of evidence points towards epigenetic mechanisms being responsible for a wide range of biological phenomena, from the plasticity of plant growth and development to the nutritional control of caste determination in honeybees and the etiology of human disease (e.g., cancer. With the (partial elucidation of the molecular basis of epigenetic variation and the heritability of certain of these changes, the field of evolutionary epigenetics is flourishing. Despite this, the role of epigenetics in shaping host-pathogen interactions has received comparatively little attention. Yet there is plenty of evidence supporting the implication of epigenetic mechanisms in the modulation of the biological interaction between hosts and pathogens. The phenotypic plasticity of many key parasite life-history traits appears to be under epigenetic control. Moreover, pathogen-induced effects in host phenotype may have transgenerational consequences, and the bases of these changes and their heritability probably have an epigenetic component. The significance of epigenetic modifications may, however, go beyond providing a mechanistic basis for host and pathogen plasticity. Epigenetic epidemiology has recently emerged as a promising area for future research on infectious diseases. In addition, the incorporation of epigenetic inheritance and epigenetic plasticity mechanisms to evolutionary models and empirical studies of host-pathogen interactions will provide new insights into the evolution and coevolution of these associations. Here, we review the evidence available for the role epigenetics on host-pathogen interactions, and the utility and versatility of the epigenetic technologies available that can be cross-applied to host-pathogen studies. We conclude with recommendations and directions for future research on the burgeoning field of epigenetics as applied to host-pathogen interactions.

  13. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Takeo Kubota

    2016-05-01

    Full Text Available Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs. Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature since it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore, further epigenetic understanding of ASDs is important for the development of new drugs that take advantages of epigenetic reversibility.

  14. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders.

    Science.gov (United States)

    Kubota, Takeo; Mochizuki, Kazuki

    2016-05-14

    Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs). Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature since it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore, further epigenetic understanding of ASDs is important for the development of new drugs that take advantages of epigenetic reversibility.

  15. Twin methodology in epigenetic studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob

    2015-01-01

    of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method...

  16. Understanding Neurological Disease Mechanisms in the Era of Epigenetics

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type–specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues. PMID:23571666

  17. Recent developments in epigenetics of acute and chronic kidney diseases.

    Science.gov (United States)

    Reddy, Marpadga A; Natarajan, Rama

    2015-08-01

    The growing epidemic of obesity and diabetes, the aging population as well as prevalence of drug abuse has led to significant increases in the rates of the closely associated acute and chronic kidney diseases, including diabetic nephropathy. Furthermore, evidence shows that parental behavior and diet can affect the phenotype of subsequent generations via epigenetic transmission mechanisms. These data suggest a strong influence of the environment on disease susceptibility and that, apart from genetic susceptibility, epigenetic mechanisms need to be evaluated to gain critical new information about kidney diseases. Epigenetics is the study of processes that control gene expression and phenotype without alterations in the underlying DNA sequence. Epigenetic modifications, including cytosine DNA methylation and covalent post-translational modifications of histones in chromatin, are part of the epigenome, the interface between the stable genome and the variable environment. This dynamic epigenetic layer responds to external environmental cues to influence the expression of genes associated with disease states. The field of epigenetics has seen remarkable growth in the past few years with significant advances in basic biology, contributions to human disease, as well as epigenomics technologies. Further understanding of how the renal cell epigenome is altered by metabolic and other stimuli can yield novel new insights into the pathogenesis of kidney diseases. In this review, we have discussed the current knowledge on the role of epigenetic mechanisms (primarily DNAme and histone modifications) in acute and chronic kidney diseases, and their translational potential to identify much needed new therapies.

  18. Epigenetics of obesity: beyond the genome sequence.

    Science.gov (United States)

    Cordero, Paul; Li, Jiawei; Oben, Jude A

    2015-07-01

    After the study of the gene code as a trigger for obesity, epigenetic code has appeared as a novel tool in the diagnosis, prognosis and treatment of obesity, and its related comorbidities. This review summarizes the status of the epigenetic field associated with obesity, and the current epigenetic-based approaches for obesity treatment. Thanks to technical advances, novel and key obesity-associated polymorphisms have been described by genome-wide association studies, but there are limitations with their predictive power. Epigenetics is also studied for disease association, which involves decoding of the genome information, transcriptional status and later phenotypes. Obesity could be induced during adult life by feeding and other environmental factors, and there is a strong association between obesity features and specific epigenetic patterns. These patterns could be established during early life stages, and programme the risk of obesity and its comorbidities during adult life. Furthermore, recent studies have shown that DNA methylation profile could be applied as biomarkers of diet-induced weight loss treatment. High-throughput technologies, recently implemented for commercial genetic test panels, could soon lead to the creation of epigenetic test panels for obesity. Nonetheless, epigenetics is a modifiable risk factor, and different dietary patterns or environmental insights during distinct stages of life could lead to rewriting of the epigenetic profile.

  19. Comparative epigenetic and genetic spatial structure of the perennial herb Helleborus foetidus: Isolation by environment, isolation by distance, and functional trait divergence.

    Science.gov (United States)

    Herrera, Carlos M; Medrano, Mónica; Bazaga, Pilar

    2017-08-16

    Epigenetic variation can play a role in local adaptation; thus, there should be associations among epigenetic variation, environmental variation, and functional trait variation across populations. This study examines these relationships in the perennial herb Helleborus foetidus (Ranunculaceae). Plants from 10 subpopulations were characterized genetically (AFLP, SSR markers), epigenetically (MSAP markers), and phenotypically (20 functional traits). Habitats were characterized using six environmental variables. Isolation-by-distance (IBD) and isolation-by-environment (IBE) patterns of genetic and epigenetic divergence were assessed, as was the comparative explanatory value of geographical and environmental distance as predictors of epigenetic, genetic, and functional differentiation. Subpopulations were differentiated genetically, epigenetically, and phenotypically. Genetic differentiation was best explained by geographical distance, while epigenetic differentiation was best explained by environmental distance. Divergence in functional traits was correlated with environmental and epigenetic distances, but not with geographical and genetic distances. Results are compatible with the hypothesis that epigenetic IBE and functional divergence reflected responses to environmental variation. Spatial analyses simultaneously considering epigenetic, genetic, phenotypic and environmental information provide a useful tool to evaluate the role of environmental features as drivers of natural epigenetic variation between populations. © 2017 Botanical Society of America.

  20. How stable 'should' epigenetic modifications be? Insights from adaptive plasticity and bet hedging.

    Science.gov (United States)

    Herman, Jacob J; Spencer, Hamish G; Donohue, Kathleen; Sultan, Sonia E

    2014-03-01

    Although there is keen interest in the potential adaptive value of epigenetic variation, it is unclear what conditions favor the stability of these variants either within or across generations. Because epigenetic modifications can be environmentally sensitive, existing theory on adaptive phenotypic plasticity provides relevant insights. Our consideration of this theory suggests that stable maintenance of environmentally induced epigenetic states over an organism's lifetime is most likely to be favored when the organism accurately responds to a single environmental change that subsequently remains constant, or when the environmental change cues an irreversible developmental transition. Stable transmission of adaptive epigenetic states from parents to offspring may be selectively favored when environments vary across generations and the parental environment predicts the offspring environment. The adaptive value of stability beyond a single generation of parent-offspring transmission likely depends on the costs of epigenetic resetting. Epigenetic stability both within and across generations will also depend on the degree and predictability of environmental variation, dispersal patterns, and the (epi)genetic architecture underlying phenotypic responses to environment. We also discuss conditions that favor stability of random epigenetic variants within the context of bet hedging. We conclude by proposing research directions to clarify the adaptive significance of epigenetic stability. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  1. Method of producing a diesel fuel blend having a pre-determined flash-point and pre-determined increase in cetane number

    Science.gov (United States)

    Waller, Francis Joseph; Quinn, Robert

    2004-07-06

    The present invention relates to a method of producing a diesel fuel blend having a pre-determined flash-point and a pre-determined increase in cetane number over the stock diesel fuel. Upon establishing the desired flash-point and increase in cetane number, an amount of a first oxygenate with a flash-point less than the flash-point of the stock diesel fuel and a cetane number equal to or greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number. Thereafter, an amount of a second oxygenate with a flash-point equal to or greater than the flash-point of the stock diesel fuel and a cetane number greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number.

  2. Epigenetics: relevance and implications for public health.

    Science.gov (United States)

    Rozek, Laura S; Dolinoy, Dana C; Sartor, Maureen A; Omenn, Gilbert S

    2014-01-01

    Improved understanding of the multilayer regulation of the human genome has led to a greater appreciation of environmental, nutritional, and epigenetic risk factors for human disease. Chromatin remodeling, histone tail modifications, and DNA methylation are dynamic epigenetic changes responsive to external stimuli. Careful interpretation can provide insights for actionable public health through collaboration between population and basic scientists and through integration of multiple data sources. We review key findings in environmental epigenetics both in human population studies and in animal models, and discuss the implications of these results for risk assessment and public health protection. To ultimately succeed in identifying epigenetic mechanisms leading to complex phenotypes and disease, researchers must integrate the various animal models, human clinical approaches, and human population approaches while paying attention to life-stage sensitivity, to generate effective prescriptions for human health evaluation and disease prevention.

  3. Epigenetic therapy in myeloproliferative neoplasms: evidence and perspectives

    Science.gov (United States)

    Vannucchi, Alessandro M; Guglielmelli, Paola; Rambaldi, Alessandro; Bogani, Costanza; Barbui, Tiziano

    2009-01-01

    The classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), which include polycythaemia vera, essential thrombocythaemia and primary myelofibrosis, originate from a stem cell-derived clonal myeloproliferation that manifests itself with variable haematopoietic cell lineage involvement; they are characterized by a high degree of similarities and the chance to transform each to the other and to evolve into acute leukaemia. Their molecular pathogenesis has been associated with recurrent acquired mutations in janus kinase 2 (JAK2) and myeloproliferative leukemia virus oncogene (MPL). These discoveries have simplified the diagnostic approach and provided a number of clues to understanding the phenotypic expression of MPNs; furthermore, they represented a framework for developing and/or testing in clinical trials small molecules acting as tyrosine kinase inhibitors. On the other hand, evidence of abnormal epigenetic gene regulation as a mechanism potentially contributing to the pathogenesis and the phenotypic diversity of MPNs is still scanty; however, study of epigenetics in MPNs represents an active field of research. The first clinical trials with epigenetic drugs have been completed recently, whereas others are still ongoing; results have been variable and at present do not allow any firm conclusion. Novel basic and translational information concerning epigenetic gene regulation in MPNs and the perspectives for therapy will be critically addressed in this review. PMID:19522842

  4. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2.

    Directory of Open Access Journals (Sweden)

    Jafar Kiani

    2013-05-01

    Full Text Available RNA-mediated transmission of phenotypes is an important way to explain non-Mendelian heredity. We have previously shown that small non-coding RNAs can induce hereditary epigenetic variations in mice and act as the transgenerational signalling molecules. Two prominent examples for these paramutations include the epigenetic modulation of the Kit gene, resulting in altered fur coloration, and the modulation of the Sox9 gene, resulting in an overgrowth phenotype. We now report that expression of the Dnmt2 RNA methyltransferase is required for the establishment and hereditary maintenance of both paramutations. Our data show that the Kit paramutant phenotype was not transmitted to the progeny of Dnmt2(-/- mice and that the Sox9 paramutation was also not established in Dnmt2(-/- embryos. Similarly, RNA from Dnmt2-negative Kit heterozygotes did not induce the paramutant phenotype when microinjected into Dnmt2-deficient fertilized eggs and microinjection of the miR-124 microRNA failed to induce the characteristic giant phenotype. In agreement with an RNA-mediated mechanism of inheritance, no change was observed in the DNA methylation profiles of the Kit locus between the wild-type and paramutant mice. RNA bisulfite sequencing confirmed Dnmt2-dependent tRNA methylation in mouse sperm and also indicated Dnmt2-dependent cytosine methylation in Kit RNA in paramutant embryos. Together, these findings uncover a novel function of Dnmt2 in RNA-mediated epigenetic heredity.

  5. From genotype to phenotype; clinical variability in Lesch-Nyhan disease. The role of epigenetics.

    Science.gov (United States)

    Trigueros Genao, M; Torres, R J

    2014-11-01

    Lesch-Nyhan disease is a rare genetic disease characterized by a deficiency in the function of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). Patients affected by this disease experience hyperuricemia, motor disorders, mental retardation and, in the most severe cases, self-mutilation. Its clinical manifestations depend on the enzymatic activity of HGPRT, which is classically linked to the type of alteration in the HGPRT gene. More than 400 mutations of this gene have been found. At present, one of the controversial aspects of the disease is the relationship between the genotype and phenotype; cases have been described lacking a mutation, such as the patient presented in this article, as well as families who despite sharing the same genetic defect show disorders with differing severity. Epigenetic processes, which modify the genetic expression without changing the sequence of the deoxyribonucleic acid (DNA), could explain the clinical variability observed in this disease. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  6. Environmental Epigenetics: Crossroad between Public Health, Lifestyle, and Cancer Prevention

    Science.gov (United States)

    Romani, Massimo; Pistillo, Maria Pia; Banelli, Barbara

    2015-01-01

    Epigenetics provides the key to transform the genetic information into phenotype and because of its reversibility it is considered an ideal target for therapeutic interventions. This paper reviews the basic mechanisms of epigenetic control: DNA methylation, histone modifications, chromatin remodeling, and ncRNA expression and their role in disease development. We describe also the influence of the environment, lifestyle, nutritional habits, and the psychological influence on epigenetic marks and how these factors are related to cancer and other diseases development. Finally we discuss the potential use of natural epigenetic modifiers in the chemoprevention of cancer to link together public health, environment, and lifestyle. PMID:26339624

  7. Epigenetic control of CD8+ T cell differentiation.

    Science.gov (United States)

    Henning, Amanda N; Roychoudhuri, Rahul; Restifo, Nicholas P

    2018-05-01

    Upon stimulation, small numbers of naive CD8 + T cells proliferate and differentiate into a variety of memory and effector cell types. CD8 + T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8 + T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8 + T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8 + T cell function in individuals with chronic infections and cancer.

  8. Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.?

    Directory of Open Access Journals (Sweden)

    Bui Ha TN

    2010-11-01

    Full Text Available Abstract Background There is a growing interest in Jatropha curcas L. (jatropha as a biodiesel feedstock plant. Variations in its morphology and seed productivity have been well documented. However, there is the lack of systematic comparative evaluation of distinct collections under same climate and agronomic practices. With the several reports on low genetic diversity in jatropha collections, there is uncertainty on genetic contribution to jatropha morphology. Result In this study, five populations of jatropha plants collected from China (CN, Indonesia (MD, Suriname (SU, Tanzania (AF and India (TN were planted in one farm under the same agronomic practices. Their agronomic traits (branching pattern, height, diameter of canopy, time to first flowering, dormancy, accumulated seed yield and oil content were observed and tracked for two years. Significant variations were found for all the agronomic traits studied. Genetic diversity and epigenetic diversity were evaluated using florescence Amplified Fragment Length Polymorphism (fAFLP and methylation sensitive florescence AFLP (MfAFLP methods. Very low level of genetic diversity was detected (polymorphic band Conclusion Our study confirmed climate and practice independent differences in agronomic performance among jatropha collections. Such agronomic trait variations, however, were matched by very low genetic diversity and medium level but significant epigenetic diversity. Significant difference in inner cytosine and double cytosine methylation at CCGG sites was also found among populations. Most epigenetic differential markers can be inherited as epialleles following Mendelian segregation. These results suggest possible involvement of epigenetics in jatropha development.

  9. Epigenetics and Colorectal Cancer

    Science.gov (United States)

    Lao, Victoria Valinluck; Grady, William M.

    2012-01-01

    Colorectal cancer is a leading cause of cancer deaths in the world. It results from an accumulation of genetic and epigenetic changes in colon epithelial cells that transforms them into adenocarcinomas. There have been major advances in our understanding of cancer epigenetics over the last decade, particularly regarding aberrant DNA methylation. Assessment of the colon cancer epigenome has revealed that virtually all colorectal cancers have aberrantly methylated genes and the average colorectal cancer methylome has hundreds to thousands of abnormally methylated genes. As with gene mutations in the cancer genome, a subset of these methylated genes, called driver genes, is presumed to play a functional role in colorectal cancer. The assessment of methylated genes in colorectal cancers has also revealed a unique molecular subgroup of colorectal cancers called CpG Island Methylator Phenotype (CIMP) cancers; these tumors have a particularly high frequency of methylated genes. The advances in our understanding of aberrant methylation in colorectal cancer has led to epigenetic alterations being developed as clinical biomarkers for diagnostic, prognostic, and therapeutic applications. Progress in the assessment of epigenetic alterations in colorectal cancer and their clinical applications has shown that these alterations will be commonly used in the near future as molecular markers to direct the prevention and treatment of colorectal cancer. PMID:22009203

  10. Epigenetics and maternal nutrition: nature v. nurture.

    Science.gov (United States)

    Simmons, Rebecca

    2011-02-01

    Under- and over-nutrition during pregnancy has been linked to the later development of diseases such as diabetes and obesity. Epigenetic modifications may be one mechanism by which exposure to an altered intrauterine milieu or metabolic perturbation may influence the phenotype of the organism much later in life. Epigenetic modifications of the genome provide a mechanism that allows the stable propagation of gene expression from one generation of cells to the next. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodelling and histone modifications play key roles in adipogenesis and the development of obesity. Epigenetic modifications affecting processes important to glucose regulation and insulin secretion have been described in the pancreatic β-cells and muscle of the intrauterine growth-retarded offspring, characteristics essential to the pathophysiology of type-2 diabetes. Epigenetic regulation of gene expression contributes to both adipocyte determination and differentiation in in vitro models. The contributions of histone acetylation, histone methylation and DNA methylation to the process of adipogenesis in vivo remain to be evaluated.

  11. Bifurcation in epigenetics: Implications in development, proliferation, and diseases

    Science.gov (United States)

    Jost, Daniel

    2014-01-01

    Cells often exhibit different and stable phenotypes from the same DNA sequence. Robustness and plasticity of such cellular states are controlled by diverse transcriptional and epigenetic mechanisms, among them the modification of biochemical marks on chromatin. Here, we develop a stochastic model that describes the dynamics of epigenetic marks along a given DNA region. Through mathematical analysis, we show the emergence of bistable and persistent epigenetic states from the cooperative recruitment of modifying enzymes. We also find that the dynamical system exhibits a critical point and displays, in the presence of asymmetries in recruitment, a bifurcation diagram with hysteresis. These results have deep implications for our understanding of epigenetic regulation. In particular, our study allows one to reconcile within the same formalism the robust maintenance of epigenetic identity observed in differentiated cells, the epigenetic plasticity of pluripotent cells during differentiation, and the effects of epigenetic misregulation in diseases. Moreover, it suggests a possible mechanism for developmental transitions where the system is shifted close to the critical point to benefit from high susceptibility to developmental cues.

  12. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart

    OpenAIRE

    F. De Majo; M. Calore

    2018-01-01

    Epigenetics refers to all the changes in phenotype and gene expression which are not due to alterations in the DNA sequence. These mechanisms have a pivotal role not only in the development but also in the maintenance during adulthood of a physiological phenotype of the heart. Because of the crucial role of epigenetic modifications, their alteration can lead to the arise of pathological conditions.Heart failure affects an estimated 23 million people worldwide and leads to substantial numbers ...

  13. Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types

    DEFF Research Database (Denmark)

    Ecker, Simone; Chen, Lu; Pancaldi, Vera

    2017-01-01

    Background: A healthy immune system requires immune cells that adapt rapidly to environmental challenges. This phenotypic plasticity can be mediated by transcriptional and epigenetic variability. Results: We apply a novel analytical approach to measure and compare transcriptional and epigenetic v...

  14. Transgenerational epigenetic effects on animal behaviour.

    Science.gov (United States)

    Jensen, Per

    2013-12-01

    Over the last decade a shift in paradigm has occurred with respect to the interaction between environment and genes. It is now clear that animal genomes are regulated to a large extent as a result of input from environmental events and experiences, which cause short- and long-term modifications in epigenetic markings of DNA and histones. In this review, the evidence that such epigenetic modifications can affect the behaviour of animals is explored, and whether such acquired behaviour alterations can transfer across generation borders. First, the mechanisms by which experiences cause epigenetic modifications are examined. This includes, for example, methylation of cytosine in CpG positions and acetylation of histones, and studies showing that this can be modified by early experiences. Secondly, the evidence that specific modifications in the epigenome can be the cause of behaviour variation is reviewed. Thirdly, the extent to which this phenotypically active epigenetic variants can be inherited either through the germline or through reoccurring environmental conditions is examined. A particularly interesting observation is that epigenetic modifications are often linked to stress, and may possibly be mediated by steroid effects. Finally, the idea that transgenerationally stable epigenetic variants may serve as substrates for natural selection is explored, and it is speculated that they may even predispose for directed, non-random mutations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Epigenetic regulation of hematopoietic stem cell aging

    International Nuclear Information System (INIS)

    Beerman, Isabel; Rossi, Derrick J.

    2014-01-01

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging

  16. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  17. Multiple levels of epigenetic control for bone biology and pathology.

    Science.gov (United States)

    Montecino, Martin; Stein, Gary; Stein, Janet; Zaidi, Kaleem; Aguilar, Rodrigo

    2015-12-01

    Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs bone biology and pathology. Once confined to DNA methylation and a limited number of post-translational modifications of histone proteins, the definition of epigenetic mechanisms is expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism for retaining phenotype identity during cell proliferation. Together these different levels of epigenetic control of physiological processes and their perturbations that are associated with compromised gene expression during the onset and progression of disease, have contributed to an unprecedented understanding of the activities (operation) of the genomic landscape. Here, we address general concepts that explain the contribution of epigenetic control to the dynamic regulation of gene expression during eukaryotic transcription. This article is part of a Special Issue entitled Epigenetics and Bone. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Epstein-Barr virus: a master epigenetic manipulator.

    Science.gov (United States)

    Scott, Rona S

    2017-10-01

    Like all herpesviruses, the ability of Epstein-Barr virus (EBV) to establish life-long persistent infections is related to a biphasic viral lifecycle that involves latency and reactivation/lytic replication. Memory B cells serve as the EBV latency compartment where silencing of viral gene expression allows maintenance of the viral genome, avoidance of immune surveillance, and life-long carriage. Upon viral reactivation, viral gene expression is induced for replication, progeny virion production, and viral spread. EBV uses the host epigenetic machinery to regulate its distinct viral gene expression states. However, epigenetic manipulation by EBV affects the host epigenome by reprogramming cells in ways that leave long-lasting, oncogenic phenotypes. Such virally-induced epigenetic alterations are evident in EBV-associated cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Epigenetic Transgenerational Actions of Vinclozolin on the Development of Disease and Cancer

    Science.gov (United States)

    Skinner, Michael K.; Anway, Matthew D.

    2018-01-01

    Exposure to an environmental endocrine disruptor (e.g., vinclozolin) during embryonic gonadal sex determination appears to alter the male germ line epigenome and subsequently promotes transgenerational adult onset disease. The epigenetic mechanism involves the induction of new imprinted-like genes/DNA sequences in the germ line that appear to transmit disease phenotypes. The disease phenotypes include testis abnormalities, prostate disease, kidney disease, immune abnormalities, and tumor development. This epigenetic transgenerational disease mechanism provides a unique perspective from which to view inheritable adult onset disease states, such as cancer, and ultimately offers new insights into novel diagnostic and therapeutic strategies. PMID:17956218

  20. Transgenerational epigenetics of parental exposure to ionising radiation and other mutagens

    International Nuclear Information System (INIS)

    Dubrova, Yuri E.

    2013-01-01

    Recent studies have established that epigenetic changes play an important role in many common human diseases, including cancer. Given that the epigenetic landscape of the mammalian cell is not fixed and undergoes massive reprogramming during development, it can potentially be affected by a variety of environmental factors. As the majority of the de novo epigenetic marks, including DNA methylation, are faithfully reproduced during DNA replication, they are transmissible through many cell divisions and, in some cases, can be passed from parents to their offspring. An increasing body of experimental evidence from animal and human studies suggests that environmentally-induced epigenetic changes can be inherited by subsequent generations and can result in transgenerational phenotypic alterations, including predisposition to common diseases

  1. Prostate cancer epigenetics and its clinical implications.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan

    2016-01-01

    Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.

  2. Prostate cancer epigenetics and its clinical implications

    Directory of Open Access Journals (Sweden)

    Srinivasan Yegnasubramanian

    2016-01-01

    Full Text Available Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.

  3. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    Science.gov (United States)

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  4. Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes

    Science.gov (United States)

    Multhaup, Michael L.; Seldin, Marcus; Jaffe, Andrew E.; Lei, Xia; Kirchner, Henriette; Mondal, Prosenjit; Li, Yuanyuan; Rodriguez, Varenka; Drong, Alexander; Hussain, Mehboob; Lindgren, Cecilia; McCarthy, Mark; Näslund, Erik; Zierath, Juleen R.; Wong, G. William; Feinberg, Andrew P.

    2015-01-01

    SUMMARY Using a functional approach to investigate the epigenetics of Type 2 Diabetes (T2D), we combine three lines of evidence – diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and T2D clinical risk evidence – to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass, identifying regions where both the location and direction of methylation change is conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed four genes with roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk. PMID:25565211

  5. Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation.

    Science.gov (United States)

    Qazi, Talal Jamil; Quan, Zhenzhen; Mir, Asif; Qing, Hong

    2018-02-01

    Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.

  6. Combining genomic and proteomic approaches for epigenetics research

    Science.gov (United States)

    Han, Yumiao; Garcia, Benjamin A

    2014-01-01

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656

  7. One gene, many phenotypes | Shawky | Egyptian Journal of Medical ...

    African Journals Online (AJOL)

    ... mechanisms underlying genotype-phenotype discrepancies is important, as it will move clinical genetics towards predictive medicine, allowing better selection of therapeutic strategies and individualized counseling of persons affected with genetic disorders. Keywords: Gene, phenotype, mosaicism, epigenetics, pleiotropy ...

  8. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Van Gurp, T.P.

    2012-01-01

    Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various

  9. Transgenerational Effects of Stress Exposure on Offspring Phenotypes in Apomictic Dandelion

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Gurp, van T.P.

    2012-01-01

    Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various

  10. Epigenetics, obesity and early-life cadmium or lead exposure.

    Science.gov (United States)

    Park, Sarah S; Skaar, David A; Jirtle, Randy L; Hoyo, Cathrine

    2017-01-01

    Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures.

  11. Epigenetic variation contributes to environmental adaptation of Arabidopsis thaliana

    NARCIS (Netherlands)

    Kooke, R.; Keurentjes, J.J.B.

    2015-01-01

    Epigenetic variation is frequently observed in plants and direct relationships between differences in DNA methylation and phenotypic responses to changing environments have often been described. The identification of contributing genetic loci, however, was until recently hampered by the lack of

  12. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution

    Directory of Open Access Journals (Sweden)

    Daniel Frías-Lasserre

    2017-12-01

    Full Text Available Neo-Darwinian explanations of organic evolution have settled on mutation as the principal factor in producing evolutionary novelty. Mechanistic characterizations have been also biased by the classic dogma of molecular biology, where only proteins regulate gene expression. This together with the rearrangement of genetic information, in terms of genes and chromosomes, was considered the cornerstone of evolution at the level of natural populations. This predominant view excluded both alternative explanations and phenomenologies that did not fit its paradigm. With the discovery of non-coding RNAs (ncRNAs and their role in the control of genetic expression, new mechanisms arose providing heuristic power to complementary explanations to evolutionary processes overwhelmed by mainstream genocentric views. Viruses, epimutation, paramutation, splicing, and RNA editing have been revealed as paramount functions in genetic variations, phenotypic plasticity, and diversity. This article discusses how current epigenetic advances on ncRNAs have changed the vision of the mechanisms that generate variation, how organism-environment interaction can no longer be underestimated as a driver of organic evolution, and how it is now part of the transgenerational inheritance and evolution of species.

  13. Daddy issues: paternal effects on phenotype.

    Science.gov (United States)

    Rando, Oliver J

    2012-11-09

    The once popular and then heretical idea that ancestral environment can affect the phenotype of future generations is coming back into vogue due to advances in the field of epigenetic inheritance. How paternal environmental conditions influence the phenotype of progeny is now a tractable question, and researchers are exploring potential mechanisms underlying such effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum

    Science.gov (United States)

    Cara, Nicolás; Marfil, Carlos F; Masuelli, Ricardo W

    2013-01-01

    Interspecific hybridization is known for triggering genetic and epigenetic changes, such as modifications on DNA methylation patterns and impact on phenotypic plasticity and ecological adaptation. Wild potatoes (Solanum, section Petota) are adapted to multiple habitats along the Andes, and natural hybridizations have proven to be a common feature among species of this group. Solanum × rechei, a recently formed hybrid that grows sympatrically with the parental species S. kurtzianum and S. microdontum, represents an ideal model for studying the ecologically and evolutionary importance of hybridization in generating of epigenetic variability. Genetic and epigenetic variability and their correlation with morphological variation were investigated in wild and ex situ conserved populations of these three wild potato species using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques. We observed that novel methylation patterns doubled the number of novel genetic patterns in the hybrid and that the morphological variability measured on 30 characters had a higher correlation with the epigenetic than with the genetic variability. Statistical comparison of methylation levels suggested that the interspecific hybridization induces genome demethylation in the hybrids. A Bayesian analysis of the genetic data reveled the hybrid nature of S. × rechei, with genotypes displaying high levels of admixture with the parental species, while the epigenetic information assigned S. × rechei to its own cluster with low admixture. These findings suggested that after the hybridization event, a novel epigenetic pattern was rapidly established, which might influence the phenotypic plasticity and adaptation of the hybrid to new environments. PMID:24198938

  15. [Epigenetics of schizophrenia: a review].

    Science.gov (United States)

    Rivollier, F; Lotersztajn, L; Chaumette, B; Krebs, M-O; Kebir, O

    2014-10-01

    Schizophrenia is a frequent and disabling disease associated with heterogeneous psychiatric phenotypes. It emerges during childhood, adolescence or young adulthood and has dramatic consequences for the affected individuals, causing considerable familial and social burden, as well as increasing health expenses. Although some progress has been made in the understanding of their physiopathology, many questions remain unsolved, and the disease is still poorly understood. The prevailing hypothesis regarding psychotic disorders proposes that a combination of genetic and/or environmental factors, during critical periods of brain development increases the risk for these illnesses. Epigenetic regulations, such as DNA methylation, can mediate gene x environment interactions at the level of the genome and may provide a potential substrate to explain the variability in symptom severity and family heritability. Initially, epigenetics was used to design mitotic and meiotic changes in gene transcription that could not be attributed to genetic mutations. It referred later to changes in the epigenome not transmitted through the germline. Thus, epigenetics refers to a wide range of molecular mechanisms including DNA methylation of cytosine residues in CpG dinucleotides and post-translational histone modifications. These mechanisms alter the way the transcriptional factors bind the DNA, modulating its expression. Prenatal and postnatal environmental factors may affect these epigenetics factors, having responsability in long-term DNA transcription, and influencing the development of psychiatric disorders. The object of this review is to present the state of knowledge in epigenetics of schizophrenia, outlining the most recent findings in the matter. We did so using Pubmed, researching words such as 'epigenetics', 'epigenetic', 'schizophrenia', 'psychosis', 'psychiatric'. This review summarizes evidences mostly for two epigenetic mechanisms: DNA methylation and post

  16. Comparative epigenetics: relevance to the regulation of production and health traits in cattle.

    Science.gov (United States)

    Doherty, Rachael; O' Farrelly, Cliona; Meade, Kieran G

    2014-08-01

    With the development of genomic, transcriptomic and bioinformatic tools, recent advances in molecular technologies have significantly impacted bovine bioscience research and are revolutionising animal selection and breeding. Integration of epigenetic information represents yet another challenging molecular frontier. Epigenetics is the study of biochemical modifications to DNA and to histones, the proteins that provide stability to DNA. These epigenetic changes are induced by environmental stimuli; they alter gene expression and are potentially heritable. Epigenetics research holds the key to understanding how environmental factors contribute to phenotypic variation in traits of economic importance in cattle including development, nutrition, behaviour and health. In this review, we discuss the potential applications of epigenetics in bovine research, using breakthroughs in human and murine research to signpost the way. © 2014 Stichting International Foundation for Animal Genetics.

  17. Pre-disposition and epigenetics govern variation in bacterial survival upon stress.

    Directory of Open Access Journals (Sweden)

    Ming Ni

    Full Text Available Bacteria suffer various stresses in their unpredictable environment. In response, clonal populations may exhibit cell-to-cell variation, hypothetically to maximize their survival. The origins, propagation, and consequences of this variability remain poorly understood. Variability persists through cell division events, yet detailed lineage information for individual stress-response phenotypes is scarce. This work combines time-lapse microscopy and microfluidics to uniformly manipulate the environmental changes experienced by clonal bacteria. We quantify the growth rates and RpoH-driven heat-shock responses of individual Escherichia coli within their lineage context, stressed by low streptomycin concentrations. We observe an increased variation in phenotypes, as different as survival from death, that can be traced to asymmetric division events occurring prior to stress induction. Epigenetic inheritance contributes to the propagation of the observed phenotypic variation, resulting in three-fold increase of the RpoH-driven expression autocorrelation time following stress induction. We propose that the increased permeability of streptomycin-stressed cells serves as a positive feedback loop underlying this epigenetic effect. Our results suggest that stochasticity, pre-disposition, and epigenetic effects are at the source of stress-induced variability. Unlike in a bet-hedging strategy, we observe that cells with a higher investment in maintenance, measured as the basal RpoH transcriptional activity prior to antibiotic treatment, are more likely to give rise to stressed, frail progeny.

  18. Epigenetics and Epigenomics of Plants.

    Science.gov (United States)

    Yadav, Chandra Bhan; Pandey, Garima; Muthamilarasan, Mehanathan; Prasad, Manoj

    2018-01-23

    The genetic material DNA in association with histone proteins forms the complex structure called chromatin, which is prone to undergo modification through certain epigenetic mechanisms including cytosine DNA methylation, histone modifications, and small RNA-mediated methylation. Alterations in chromatin structure lead to inaccessibility of genomic DNA to various regulatory proteins such as transcription factors, which eventually modulates gene expression. Advancements in high-throughput sequencing technologies have provided the opportunity to study the epigenetic mechanisms at genome-wide levels. Epigenomic studies using high-throughput technologies will widen the understanding of mechanisms as well as functions of regulatory pathways in plant genomes, which will further help in manipulating these pathways using genetic and biochemical approaches. This technology could be a potential research tool for displaying the systematic associations of genetic and epigenetic variations, especially in terms of cytosine methylation onto the genomic region in a specific cell or tissue. A comprehensive study of plant populations to correlate genotype to epigenotype and to phenotype, and also the study of methyl quantitative trait loci (QTL) or epiGWAS, is possible by using high-throughput sequencing methods, which will further accelerate molecular breeding programs for crop improvement. Graphical Abstract.

  19. Epigenetic codes programming class switch recombination

    Directory of Open Access Journals (Sweden)

    Bharat eVaidyanathan

    2015-09-01

    Full Text Available Class switch recombination imparts B cells with a fitness-associated adaptive advantage during a humoral immune response by using a precision-tailored DNA excision and ligation process to swap the default constant region gene of the antibody with a new one that has unique effector functions. This secondary diversification of the antibody repertoire is a hallmark of the adaptability of B cells when confronted with environmental and pathogenic challenges. Given that the nucleotide sequence of genes during class switching remains unchanged (genetic constraints, it is logical and necessary therefore, to integrate the adaptability of B cells to an epigenetic state, which is dynamic and can be heritably modulated before, after or even during an antibody-dependent immune response. Epigenetic regulation encompasses heritable changes that affect function (phenotype without altering the sequence information embedded in a gene, and include histone, DNA and RNA modifications. Here, we review current literature on how B cells use an epigenetic code language as a means to ensure antibody plasticity in light of pathogenic insults.

  20. Epigenetic developmental programs and adipogenesis: implications for psychotropic induced obesity.

    Science.gov (United States)

    Chase, Kayla; Sharma, Rajiv P

    2013-11-01

    Psychotropic agents are notorious for their ability to increase fat mass in psychiatric patients. The two determinants of fat mass are the production of newly differentiated adipocytes (adipogenesis), and the volume of lipid accumulation. Epigenetic programs have a prominent role in cell fate commitments and differentiation required for adipogenesis. In parallel, epigenetic effects on energy metabolism are well supported by several genetic models. Consequently, a variety of psychotropics, often prescribed in combinations and for long periods, may utilize a common epigenetic effector path causing an increase in adipogenesis or reduction in energy metabolism. In particular, the recent discovery that G protein coupled signaling cascades can directly modify epigenetic regulatory enzymes implicates surface receptor activity by psychotropic medications. The potential therapeutic implications are also suggested by the effects of the clinically approved antidepressant tranylcypromine, also a histone demethylase inhibitor, which has impressive therapeutic effects on metabolism in the obese phenotype.

  1. Epigenetics Research on the International Space Station

    Science.gov (United States)

    Love, John; Cooley, Vic

    2016-01-01

    The International Space Station (ISS) is a state-of-the orbiting laboratory focused on advancing science and technology research. Experiments being conducted on the ISS include investigations in the emerging field of Epigenetics. Epigenetics refers to stably heritable changes in gene expression or cellular phenotype (the transcriptional potential of a cell) resulting from changes in a chromosome without alterations to the underlying DNA nucleotide sequence (the genetic code), which are caused by external or environmental factors, such as spaceflight microgravity. Molecular mechanisms associated with epigenetic alterations regulating gene expression patterns include covalent chemical modifications of DNA (e.g., methylation) or histone proteins (e.g., acetylation, phorphorylation, or ubiquitination). For example, Epigenetics ("Epigenetics in Spaceflown C. elegans") is a recent JAXA investigation examining whether adaptations to microgravity transmit from one cell generation to another without changing the basic DNA of the organism. Mouse Epigenetics ("Transcriptome Analysis and Germ-Cell Development Analysis of Mice in Space") investigates molecular alterations in organ-specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight, as well as assessing changes in offspring DNA. NASA's first foray into human Omics research, the Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), includes investigations evaluating differential epigenetic effects via comprehensive whole genome analysis, the landscape of DNA and RNA methylation, and biomolecular changes by means of longitudinal integrated multi-omics research. And the inaugural Genes in Space student challenge experiment (Genes in Space-1) is aimed at understanding how epigenetics plays a role in immune system dysregulation by assaying DNA methylation in immune cells

  2. An emerging role for epigenetic factors in relation to executive function.

    Science.gov (United States)

    Ibrahim, Omar; Sutherland, Heidi G; Haupt, Larisa M; Griffiths, Lyn R

    2017-11-20

    Executive function (EF) includes a range of decision-making and higher-order thinking processes. Although the genetic basis of EF has been studied and reviewed, epigenetic factors that influence EF are an emerging field of interest; here, we summarize the current research. Work relating to different word combinations of 'Executive Function' and 'Epigenetic' was identified through three academic search directories. Inclusion criteria were human populations, EF testing, epigenetic testing or genotyping related to epigenetic regulation. To date, 14 studies have been reported, which examined epigenetic variation, in particular DNA methylation, in relation to EF assessments conducted in human subjects, with some positive associations found. Study populations included healthy cohorts, as well as psychiatric and neurological patient cohorts. Epigenetics in relation to EF is an emerging area of investigation with relatively few studies to date. Most assay DNA methylation, with some studies suggesting that epigenetic factors can be associated with EF. EF constitutes complex phenotypic and genotypic correlates that differ because of cohort attributes as well as the targeted task examined. Larger studies are required to further elucidate the contribution of epigenetic factors to EF with the identification of epigenetic modifications influencing EF having potential to provide new biomarkers for neuropsychiatric disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  3. Developmental systems of plasticity and trans-generational epigenetic inheritance in nematodes.

    Science.gov (United States)

    Serobyan, Vahan; Sommer, Ralf J

    2017-08-01

    Several decades of research provided detailed insight into how genes control development and evolution, whereas recent studies have expanded this purely genetic perspective by presenting strong evidence for environmental and epigenetic influences. We summarize examples of phenotypic plasticity and trans-generational epigenetic inheritance in the nematode model organisms Pristionchus pacificus and Caenorhabditis elegans, which indicate that the response of developmental systems to environmental influences is hardwired into the organismś genome. We argue that genetic programs regulating these organismal-environmental interactions are themselves subject to natural selection. Indeed, macro-evolutionary studies of nematode feeding structures indicate evolutionary trajectories in which plasticity followed by genetic assimilation results in extreme diversity highlighting the role of plasticity as major facilitator of phenotypic diversification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. General-Purpose Genotype or How Epigenetics Extend the Flexibility of a Genotype

    Directory of Open Access Journals (Sweden)

    Rachel Massicotte

    2012-01-01

    Full Text Available This project aims at investigating the link between individual epigenetic variability (not related to genetic variability and the variation of natural environmental conditions. We studied DNA methylation polymorphisms of individuals belonging to a single genetic lineage of the clonal diploid fish Chrosomus eos-neogaeus sampled in seven geographically distant lakes. In spite of a low number of informative fragments obtained from an MSAP analysis, individuals of a given lake are epigenetically similar, and methylation profiles allow the clustering of individuals in two distinct groups of populations among lakes. More importantly, we observed a significant pH variation that is consistent with the two epigenetic groups. It thus seems that the genotype studied has the potential to respond differentially via epigenetic modifications under variable environmental conditions, making epigenetic processes a relevant molecular mechanism contributing to phenotypic plasticity over variable environments in accordance with the GPG model.

  5. Progression of Tubulointerstitial Fibrosis and the Chronic Kidney Disease Phenotype – Role of Risk Factors and Epigenetics

    Directory of Open Access Journals (Sweden)

    Timothy D. Hewitson

    2017-08-01

    Full Text Available Although the kidney has capacity to repair after mild injury, ongoing or severe damage results in scarring (fibrosis and an associated progressive loss of kidney function. However, despite its universal significance, evidence highlights a population based heterogeneity in the trajectory of chronic kidney disease (CKD in these patients. To explain the heterogeneity of the CKD phenotype requires an understanding of the relevant risk factors for fibrosis. These factors include both the extrinsic nature of injury, and intrinsic factors such as age, gender, genetics, and perpetual activation of fibroblasts through priming. In many cases an additional level of regulation is provided by epigenetic mechanisms which integrate the various pro-fibrotic and anti-fibrotic triggers in fibrogenesis. In this review we therefore examine the various molecular and structural changes of fibrosis, and how they are influenced by extrinsic and intrinsic factors. Our aim is to provide a unifying hypothesis to help explain the transition from acute to CKD.

  6. Epigenetic Variation May Compensate for Decreased Genetic Variation with Introductions: A Case Study Using House Sparrows (Passer domesticus on Two Continents

    Directory of Open Access Journals (Sweden)

    Aaron W. Schrey

    2012-01-01

    Full Text Available Epigenetic mechanisms impact several phenotypic traits and may be important for ecology and evolution. The introduced house sparrow (Passer domesticus exhibits extensive phenotypic variation among and within populations. We screened methylation in populations from Kenya and Florida to determine if methylation varied among populations, varied with introduction history (Kenyan invasion <50 years old, Florida invasion ~150 years old, and could potentially compensate for decrease genetic variation with introductions. While recent literature has speculated on the importance of epigenetic effects for biological invasions, this is the first such study among wild vertebrates. Methylation was more frequent in Nairobi, and outlier loci suggest that populations may be differentiated. Methylation diversity was similar between populations, in spite of known lower genetic diversity in Nairobi, which suggests that epigenetic variation may compensate for decreased genetic diversity as a source of phenotypic variation during introduction. Our results suggest that methylation differences may be common among house sparrows, but research is needed to discern whether methylation impacts phenotypic variation.

  7. Epigenetic Regulation of the Oxytocin Receptor Gene: Implications for Behavioral Neuroscience

    Directory of Open Access Journals (Sweden)

    Robert eKumsta

    2013-05-01

    Full Text Available Genetic approaches have improved our understanding of the neurobiological basis of social behavior and cognition. For instance, common polymorphisms of genes involved in oxytocin signaling have been associated with sociobehavioral phenotypes in healthy samples as well as in subjects with mental disorders. More recently, attention has been drawn to epigenetic mechanisms, which regulate genetic function and expression without changes to the underlying DNA sequence. We provide an overview of the functional importance of oxytocin receptor gene (OXTR promoter methylation and summarize studies that have investigated the role of OXTR methylation in behavioral phenotypes. There is first evidence that OXTR methylation is associated with autism, high callous-unemotional traits, and differential activation of brain regions involved in social perception. Furthermore, psychosocial stress exposure might dynamically regulate OXTR. Given evidence that epigenetic states of genes can be modified by experiences, especially those occurring in sensitive periods early in development, we conclude with a discussion on the effects of traumatic experience on the developing oxytocin system. Epigenetic modification of genes involved in oxytocin signaling might be involved in the mechanisms mediating the long-term influence of early adverse experiences on socio-behavioral outcomes.

  8. Conceptual shifts needed to understand the dynamic interactions of genes, environment, epigenetics, social processes, and behavioral choices.

    Science.gov (United States)

    Jackson, Fatimah L C; Niculescu, Mihai D; Jackson, Robert T

    2013-10-01

    Social and behavioral research in public health is often intimately tied to profound, but frequently neglected, biological influences from underlying genetic, environmental, and epigenetic events. The dynamic interplay between the life, social, and behavioral sciences often remains underappreciated and underutilized in addressing complex diseases and disorders and in developing effective remediation strategies. Using a case-study format, we present examples as to how the inclusion of genetic, environmental, and epigenetic data can augment social and behavioral health research by expanding the parameters of such studies, adding specificity to phenotypic assessments, and providing additional internal control in comparative studies. We highlight the important roles of gene-environment interactions and epigenetics as sources of phenotypic change and as a bridge between the life and social and behavioral sciences in the development of robust interdisciplinary analyses.

  9. The Microbiological Memory, an Epigenetic Regulator Governing the Balance Between Good Health and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Christian A. Devaux

    2018-06-01

    Full Text Available If the transmission of biological information from one generation to the next is based on DNA, most heritable phenotypic traits such as chronic metabolic diseases, are not linked to genetic variation in DNA sequences. Non-genetic heritability might have several causes including epigenetic, parental effect, adaptive social learning, and influence of the ecological environment. Distinguishing among these causes is crucial to resolve major phenotypic enigmas. Strong evidence indicates that changes in DNA expression through various epigenetic mechanisms can be linked to parent-offspring resemblance in terms of sensitivity to metabolic diseases. Among non-genetic heritable traits, early nutrition could account for a long term deviant programming of genes expression responsible for metabolic diseases in adulthood. Nutrition could shape an inadequate gut microbiota (dysbiosis, triggering epigenetic deregulation of transcription which can be observed in chronic metabolic diseases. We review herein the evidence that dysbiosis might be a major cause of heritable epigenetic patterns found to be associated with metabolic diseases. By taking into account the recent advances on the gut microbiome, we have aggregated together different observations supporting the hypothesis that the gut microbiota could promote the molecular crosstalk between bacteria and surrounding host cells which controls the pathological epigenetic signature. We introduce for the first time the concept of “microbiological memory” as the main regulator of the epigenetic signatures, thereby indicating that different causes of non-genetic heritability can interact in complex pathways to produce inheritance.

  10. Epigenetics in Paediatric Gastroenterology, Hepatology, and Nutrition: Present Trends and Future Perspectives.

    Science.gov (United States)

    Zilbauer, Matthias; Zellos, Aglaia; Heuschkel, Robert; Gasparetto, Marco; Kraiczy, Judith; Postberg, Jan; Greco, Luigi; Auricchio, Renata; Galatola, Martina; Embleton, Nicholas; Wirth, Stefan; Jenke, Andreas

    2016-04-01

    Epigenetics can be defined as stable, potentially heritable changes in the cellular phenotype caused by mechanisms other than alterations to the underlying DNA sequence. As such, any observed phenotypic changes including organ development, aging, and the occurrence of disease could be driven by epigenetic mechanisms in the presence of stable cellular DNA sequences. Indeed, with the exception of rare mutations, the human genome-sequence has remained remarkably stable over the past centuries. In contrast, substantial changes to our environment as part of our modern life style have not only led to a significant reduction of certain infectious diseases but also seen the exponential increase in complex traits including obesity and multifactorial diseases such as autoimmune disorders. It is becoming increasingly clear that epigenetic mechanisms operate at the interface between the genetic code and our environment, and a large body of existing evidence supports the importance of environmental factors such as diet and nutrition, infections, and exposure to toxins on human health. This seems to be particularly the case during vulnerable periods of human development such as pregnancy and early life. Importantly, as the first point of contact for many of such environmental factors including nutrition, the digestive system is being increasingly linked to a number of "modern" pathologies. In this review article, we aim to give a brief introduction to the basic molecular principals of epigenetics and provide a concise summary of the existing evidence for the role of epigenetic mechanisms in gastrointestinal health and disease, hepatology, and nutrition.

  11. Identification, replication and characterization of epigenetic remodelling in the aging genome

    DEFF Research Database (Denmark)

    Li, Shuxia; Christiansen, Lene; Christensen, Kaare

    Background: Aging is a complex biological process that involves numerous changes at various levels through remodelling of multiple biological processes and regulatory mechanisms including epigenetics. Recent analysis of the DNA methylome has reported large numbers of epigenetic markers associated......, and by overwhelming age-related methylation in CpG island and demethylation at shore/shelf and open sea. Biological pathway analysis showed that age-dependent methylations were especially involved in cellular signalling activities while demethylations were particularly related to functions of the extracellular matrix....... Conclusion: Extensive epigenetic remodelling in the DNA methylome could be involved in the aging process. The identified age-methylated and demethylated sites displayed differential distribution patterns over genomic regions and were involved in biological pathways closely related to aging phenotypes and age...

  12. [Early attachement relationships and epigenetic customization].

    Science.gov (United States)

    Rocchi, Giordana; Serio, Valentina; Carluccio, Giuseppe Mattia; Marini, Isabella; Meuti, Valentina; Zaccagni, Michela; Giacchetti, Nicoletta; Aceti, Franca

    2015-01-01

    Recently, new findings in epigenetic science switched the focus from the observation of physiological intragenomic dynamics to the idea of an environmental co-construction of phenotypic expression. In psichodynamic field, objectual relations and attachement theoreticians emphasized the interpersonal dimension of individual development, focusing the attention on the relational matrix of self organization. The construction of stable affective-behavioral traits throughout different parenting styles has actually found a coincidence in ethological studies, which have explored the epigenetic processes underlying the relationship between caregiving and HPA stress responsiveness. An adequate parenting style seems to support affective regulation throughout psychobiological hidden moderators, which would tend to rebalance the physiological systems homeostasis; an unconfident attachment style would promote, on the other hand, the allostatic load rise. Sites of longlife epigenetic susceptibility have also been identified in humans; although associated with risk of maladaptive developing in adverse environmental conditions, they seem to confer protection under favorable conditions. This persisting possibility of reorganization of stable traits throughout lifetime, which seems to be activated by a relevant environmental input, grant to significant relationships, and to therapeutical one as well, an implicit reconditioning potential which could result into the configuration of new stable affective-behavioral styles.

  13. An epigenetic biomarker of aging for lifespan and healthspan

    Science.gov (United States)

    Levine, Morgan E.; Lu, Ake T.; Quach, Austin; Chen, Brian H.; Assimes, Themistocles L.; Bandinelli, Stefania; Hou, Lifang; Baccarelli, Andrea A.; Stewart, James D.; Li, Yun; Whitsel, Eric A.; Wilson, James G; Reiner, Alex P; Aviv, Abraham; Lohman, Kurt; Liu, Yongmei; Ferrucci, Luigi

    2018-01-01

    Identifying reliable biomarkers of aging is a major goal in geroscience. While the first generation of epigenetic biomarkers of aging were developed using chronological age as a surrogate for biological age, we hypothesized that incorporation of composite clinical measures of phenotypic age that capture differences in lifespan and healthspan may identify novel CpGs and facilitate the development of a more powerful epigenetic biomarker of aging. Using an innovative two-step process, we develop a new epigenetic biomarker of aging, DNAm PhenoAge, that strongly outperforms previous measures in regards to predictions for a variety of aging outcomes, including all-cause mortality, cancers, healthspan, physical functioning, and Alzheimer's disease. While this biomarker was developed using data from whole blood, it correlates strongly with age in every tissue and cell tested. Based on an in-depth transcriptional analysis in sorted cells, we find that increased epigenetic, relative to chronological age, is associated with increased activation of pro-inflammatory and interferon pathways, and decreased activation of transcriptional/translational machinery, DNA damage response, and mitochondrial signatures. Overall, this single epigenetic biomarker of aging is able to capture risks for an array of diverse outcomes across multiple tissues and cells, and provide insight into important pathways in aging. PMID:29676998

  14. Theory for the stability and regulation of epigenetic landscapes

    International Nuclear Information System (INIS)

    Micheelsen, Mille A; Mitarai, Namiko; Sneppen, Kim; Dodd, Ian B

    2010-01-01

    Cells can often choose among several stably heritable phenotypes. Examples are the expressions of genes in eukaryotic cells where long chromosomal regions can adopt persistent and heritable silenced or active states that may be associated with positive feedback in dynamic modification of nucleosomes. We generalize this mechanism in terms of bistability associated with valleys in an epigenetic landscape. A transfer matrix method was used to rigorously follow the system through the disruptive process of cell division. This combined treatment of noisy dynamics both between and during cell division provides an efficient way to calculate the stability of alternative states in a broad range of epigenetic systems

  15. Epigenetics and the Biological Definition of Gene X Environment Interactions

    Science.gov (United States)

    Meaney, Michael J.

    2010-01-01

    Variations in phenotype reflect the influence of environmental conditions during development on cellular functions, including that of the genome. The recent integration of epigenetics into developmental psychobiology illustrates the processes by which environmental conditions in early life structurally alter DNA, providing a physical basis for the…

  16. Epigenetics in the Vascular Endothelium: Looking From a Different Perspective in the Epigenomics Era.

    Science.gov (United States)

    Yan, Matthew S; Marsden, Philip A

    2015-11-01

    Cardiovascular diseases are commonly thought to be complex, non-Mendelian diseases that are influenced by genetic and environmental factors. A growing body of evidence suggests that epigenetic pathways play a key role in vascular biology and might be involved in defining and transducing cardiovascular disease inheritability. In this review, we argue the importance of epigenetics in vascular biology, especially from the perspective of endothelial cell phenotype. We highlight and discuss the role of epigenetic modifications across the transcriptional unit of protein-coding genes, especially the role of intragenic chromatin modifications, which are underappreciated and not well characterized in the current era of genome-wide studies. Importantly, we describe the practical application of epigenetics in cardiovascular disease therapeutics. © 2015 American Heart Association, Inc.

  17. Epigenetic and conventional regulation is distributed among activators of FLO11 allowing tuning of population-level heterogeneity in its expression.

    Directory of Open Access Journals (Sweden)

    Leah M Octavio

    2009-10-01

    Full Text Available Epigenetic switches encode their state information either locally, often via covalent modification of DNA or histones, or globally, usually in the level of a trans-regulatory factor. Here we examine how the regulation of cis-encoded epigenetic switches controls the extent of heterogeneity in gene expression, which is ultimately tied to phenotypic diversity in a population. We show that two copies of the FLO11 locus in Saccharomyces cerevisiae switch between a silenced and competent promoter state in a random and independent fashion, implying that the molecular event leading to the transition occurs locally at the promoter, in cis. We further quantify the effect of trans regulators both on the slow epigenetic transitions between a silenced and competent promoter state and on the fast promoter transitions associated with conventional regulation of FLO11. We find different classes of regulators affect epigenetic, conventional, or both forms of regulation. Distributing kinetic control of epigenetic silencing and conventional gene activation offers cells flexibility in shaping the distribution of gene expression and phenotype within a population.

  18. Homosexuality via canalized sexual development: a testing protocol for a new epigenetic model.

    Science.gov (United States)

    Rice, William R; Friberg, Urban; Gavrilets, Sergey

    2013-09-01

    We recently synthesized and reinterpreted published studies to advance an epigenetic model for the development of homosexuality (HS). The model is based on epigenetic marks laid down in response to the XX vs. XY karyotype in embryonic stem cells. These marks boost sensitivity to testosterone in XY fetuses and lower it in XX fetuses, thereby canalizing sexual development. Our model predicts that a subset of these canalizing epigenetic marks stochastically carry over across generations and lead to mosaicism for sexual development in opposite-sex offspring--the homosexual phenotype being one such outcome. Here, we begin by outlining why HS has been under-appreciated as a commonplace phenomenon in nature, and how this trend is currently being reversed in the field of neurobiology. We next briefly describe our epigenetic model of HS, develop a set of predictions, and describe how epigenetic profiles of human stem cells can provide for a strong test of the model. © 2013 The Authors. Bioessays published by WILEY Periodicals, Inc.

  19. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  20. Epigenetic Alterations in Epstein-Barr Virus-Associated Diseases.

    Science.gov (United States)

    Niller, Hans Helmut; Banati, Ferenc; Salamon, Daniel; Minarovits, Janos

    2016-01-01

    Latent Epstein-Bar virus genomes undergo epigenetic modifications which are dependent on the respective tissue type and cellular phenotype. These define distinct viral epigenotypes corresponding with latent viral gene expression profiles. Viral Latent Membrane Proteins 1 and 2A can induce cellular DNA methyltransferases, thereby influencing the methylation status of the viral and cellular genomes. Therefore, not only the viral genomes carry epigenetic modifications, but also the cellular genomes adopt major epigenetic alterations upon EBV infection. The distinct cellular epigenotypes of EBV-infected cells differ from the epigenotypes of their normal counterparts. In Burkitt lymphoma (BL), nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (EBVaGC) significant changes in the host cell methylome with a strong tendency towards CpG island hypermethylation are observed. Hypermethylated genes unique for EBVaGC suggest the existence of an EBV-specific "epigenetic signature". Contrary to the primary malignancies carrying latent EBV genomes, lymphoblastoid cells (LCs) established by EBV infection of peripheral B cells in vitro are characterized by a massive genome-wide demethylation and a significant decrease and redistribution of heterochromatic histone marks. Establishing complete epigenomes of the diverse EBV-associated malignancies shall clarify their similarities and differences and further clarify the contribution of EBV to the pathogenesis, especially for the epithelial malignancies, NPC and EBVaGC.

  1. Epigenetic Therapy in Human Choriocarcinoma

    Directory of Open Access Journals (Sweden)

    Hisashi Narahara

    2010-09-01

    Full Text Available Because epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in choriocarcinomas, novel compounds endowed with a histone deacetylase (HDAC inhibitory activity are an attractive therapeutic approach. HDAC inhibitors (HDACIs were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and the expression of genes related to the malignant phenotype in choriocarcinoma cell lines. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating choriocarcinoma, with a special focus on preclinical studies.

  2. A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro

    Directory of Open Access Journals (Sweden)

    Craig L. Parfett

    2017-06-01

    Full Text Available An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2

  3. DNA Methylation: An Epigenetic Risk Factor in Preterm Birth

    Science.gov (United States)

    Menon, Ramkumar; Conneely, Karen N.; Smith, Alicia K.

    2012-01-01

    Spontaneous preterm birth (PTB; birth prior to 37 weeks of gestation) is a complex phenotype with multiple risk factors that complicate our understanding of its etiology. A number of recent studies have supported the hypothesis that epigenetic modifications such as DNA methylation induced by pregnancy-related risk factors may influence the risk of PTB or result in changes that predispose a neonate to adult-onset diseases. The critical role of timing of gene expression in the etiology of PTB makes it a highly relevant disorder in which to examine the potential role of epigenetic changes. Because changes in DNA methylation patterns can result in long-term consequences, it is of critical interest to identify the epigenetic patterns associated with adverse pregnancy outcomes. This review examines the potential role of DNA methylation as a risk factor for PTB and discusses several issues and limitations that should be considered when planning DNA methylation studies. PMID:22228737

  4. Salmon and steelhead genetics and genomics - Epigenetic and genomic variation in salmon and steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct analyses of epigenetic and genomic variation in Chinook salmon and steelhead to determine influence on phenotypic expression of life history traits. Genetic,...

  5. Epigenetic reprogramming in mammalian species after SCNT-based cloning.

    Science.gov (United States)

    Niemann, Heiner

    2016-07-01

    The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-induced mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.

  7. A nursing theory-guided framework for genetic and epigenetic research.

    Science.gov (United States)

    Maki, Katherine A; DeVon, Holli A

    2018-04-01

    The notion that genetics, through natural selection, determines innate traits has led to much debate and divergence of thought on the impact of innate traits on the human phenotype. The purpose of this synthesis was to examine how innate theory informs genetic research and how understanding innate theory through the lens of Martha Rogers' theory of unitary human beings can offer a contemporary view of how innate traits can inform epigenetic and genetic research. We also propose a new conceptual model for genetic and epigenetic research. The philosophical, theoretical, and research literatures were examined for this synthesis. We have merged philosophical and conceptual phenomena from innate theory with the theory of unitary beings into the University of Illinois at Chicago model for genetic and epigenetic research. Innate traits are the cornerstone of the framework but may be modified epigenetically by biological, physiological, psychological, and social determinants as they are transcribed. These modifiers serve as important links between the concept of innate traits and epigenetic modifications, and, like the theory of unitary human beings, the process is understood in the context of individual and environmental interaction that has the potential to evolve as the determinants change. © 2018 John Wiley & Sons Ltd.

  8. Epigenetic changes and transposon reactivation in Thai rice hybrids. Molecular Breeding

    NARCIS (Netherlands)

    Kantama, L.; Junbuathong, S.; Sakulkoo, J.; Jong, de J.H.S.G.M.; Apisitwanich, S.

    2013-01-01

    Inter- or intraspecific hybridization is the first step in transferring exogenous traits to the germplasm of a recipient crop. One of the complicating factors is the occurrence of epigenetic modifications of the hybrids, which in turn can change their gene expression and phenotype. In this study we

  9. Comparative epigenomics: an emerging field with breakthrough potential to understand evolution of epigenetic regulation

    Directory of Open Access Journals (Sweden)

    Janine E. Deakin

    2014-12-01

    Full Text Available Epigenetic mechanisms regulate gene expression, thereby mediating the interaction between environment, genotype and phenotype. Changes to epigenetic regulation of genes may be heritable, permitting rapid adaptation of a species to environmental cues. However, most of the current understanding of epigenetic gene regulation has been gained from studies of mice and humans, with only a limited understanding of the conservation of epigenetic mechanisms across divergent taxa. The relative ease at which genome sequence data is now obtained and the advancements made in epigenomics techniques for non-model species provides a basis for carrying out comparative epigenomic studies across a wider range of species, making it possible to start unraveling the evolution of epigenetic mechanisms. We review the current knowledge of epigenetic mechanisms obtained from studying model organisms, give an example of how comparative epigenomics using non-model species is helping to trace the evolutionary history of X chromosome inactivation in mammals and explore the opportunities to study comparative epigenomics in biological systems displaying adaptation between species, such as the immune system and sex determination.

  10. Transgenic Epigenetics: Using Transgenic Organisms to Examine Epigenetic Phenomena

    Directory of Open Access Journals (Sweden)

    Lori A. McEachern

    2012-01-01

    Full Text Available Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model. Interestingly, while transgenic Drosophila and mice have provided significant insight into the molecular mechanisms and evolutionary conservation of the epigenetic processes that target epigenetic control regions in other model organisms, this method has so far been under-exploited for non-model organism epigenetic analysis. This paper details several experiments that have examined the epigenetic processes of genomic imprinting and paramutation, by transferring an epigenetic control region from one model organism to another. These cross-species experiments demonstrate that valuable insight into both the molecular mechanisms and evolutionary conservation of epigenetic processes may be obtained via transgenic experiments, which can then be used to guide further investigations and experiments in the species of interest.

  11. The molecular and mathematical basis of Waddington's epigenetic landscape: a framework for post-Darwinian biology?

    Science.gov (United States)

    Huang, Sui

    2012-02-01

    The Neo-Darwinian concept of natural selection is plausible when one assumes a straightforward causation of phenotype by genotype. However, such simple 1:1 mapping must now give place to the modern concepts of gene regulatory networks and gene expression noise. Both can, in the absence of genetic mutations, jointly generate a diversity of inheritable randomly occupied phenotypic states that could also serve as a substrate for natural selection. This form of epigenetic dynamics challenges Neo-Darwinism. It needs to incorporate the non-linear, stochastic dynamics of gene networks. A first step is to consider the mathematical correspondence between gene regulatory networks and Waddington's metaphoric 'epigenetic landscape', which actually represents the quasi-potential function of global network dynamics. It explains the coexistence of multiple stable phenotypes within one genotype. The landscape's topography with its attractors is shaped by evolution through mutational re-wiring of regulatory interactions - offering a link between genetic mutation and sudden, broad evolutionary changes. Copyright © 2012 WILEY Periodicals, Inc.

  12. Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype

    Directory of Open Access Journals (Sweden)

    Takeshi Tsuda

    2017-09-01

    Full Text Available Duchenne muscular dystrophy (DMD, Becker muscular dystrophy (BMD, and X-linked dilated cardiomyopathy (XL-DCM consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts.

  13. Nucleosome Positioning and Epigenetics

    Science.gov (United States)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  14. Phase retrieval from diffraction data utilizing pre-determined partial information

    International Nuclear Information System (INIS)

    Kim, S.S.; Marathe, S.; Kim, S.N.; Kang, H.C.; Noh, D.Y.

    2007-01-01

    We developed a phase retrieval algorithm that utilizes pre-determined partial phase information to overcome insufficient oversampling ratio in diffraction data. Implementing the Fourier modulus projection and the modified support projection manifesting the pre-determined information, a generalized difference map and HIO (Hybrid Input-Output) algorithms are developed. Optical laser diffraction data as well as simulated X-ray diffraction data are used to illustrate the validity of the proposed algorithm, which revealed the strength and the limitations of the algorithm. The proposed algorithm can expand the applicability of the diffraction based image reconstruction

  15. The developmental environment, epigenetic biomarkers and long-term health.

    Science.gov (United States)

    Godfrey, K M; Costello, P M; Lillycrop, K A

    2015-10-01

    Evidence from both human and animal studies has shown that the prenatal and early postnatal environments influence susceptibility to chronic disease in later life and suggests that epigenetic processes are an important mechanism by which the environment alters long-term disease risk. Epigenetic processes, including DNA methylation, histone modification and non-coding RNAs, play a central role in regulating gene expression. The epigenome is highly sensitive to environmental factors in early life, such as nutrition, stress, endocrine disruption and pollution, and changes in the epigenome can induce long-term changes in gene expression and phenotype. In this review we focus on how the early life nutritional environment can alter the epigenome leading to an altered susceptibility to disease in later life.

  16. New insights in oncology: Epi-genetics and cancer stem cells

    International Nuclear Information System (INIS)

    Krutovskikh, V.; Partensky, C.

    2011-01-01

    Cancer is a multi-etiologic, multistage disease with a prevalent genetic component, which happens when a large number of genes, critical for cell growth, death, differentiation, migration, and metabolic plasticity are altered irreversibly, so as to either 'gain' (oncogenes) or 'lose' (tumour suppressors) their function. Recent discoveries have revealed the previously underestimated etiologic importance of multiple epigenetic, that is to say, reversible factors (histone modifications, DNA methylation, non-coding RNA) involved in the transcriptional and post-transcriptional regulation of proteins, indispensable for the control of cancerous phenotype. Stable alterations of epigenetic machinery ('epi-mutations') turn out to play a critical role at different steps of carcinogenesis. In addition, due to substantial recent progress in stem cell biology, the new concept of cancer stem cells has emerged. This, along with newly discovered epigenetic cancer mechanisms, gives rise to a hope to overcome radio- and chemo-resistance and to eradicate otherwise incurable neoplasms. (authors)

  17. Developmental plasticity and epigenetic mechanisms underpinning metabolic and cardiovascular diseases.

    Science.gov (United States)

    Low, Felicia M; Gluckman, Peter D; Hanson, Mark A

    2011-06-01

    The importance of developmental factors in influencing the risk of later-life disease has a strong evidence base derived from multiple epidemiological, clinical and experimental studies in animals and humans. During early life, an organism is able to adjust its phenotypic development in response to environmental cues. Such developmentally plastic responses evolved as a fitness-maximizing strategy to cope with variable environments. There are now increasing data that these responses are, at least partially, underpinned by epigenetic mechanisms. A mismatch between the early and later-life environments may lead to inappropriate early life-course epigenomic changes that manifest in later life as increased vulnerability to disease. There is also growing evidence for the transgenerational transmission of epigenetic marks. This article reviews the evidence that susceptibility to metabolic and cardiovascular disease in humans is linked to changes in epigenetic marks induced by early-life environmental cues, and discusses the clinical, public health and therapeutic implications that arise.

  18. Epigenetic priming of the metabolic syndrome.

    Science.gov (United States)

    Bruce, Kimberley D; Cagampang, Felino R

    2011-05-01

    The metabolic syndrome (MetS) represents a cluster of cardiometabolic risk factors, including central obesity, insulin resistance, glucose intolerance, dyslipidemia, hypertension, hyperinsulinemia and microalbuminuria, and more recently, nonalcoholic fatty liver disease (NAFLD), polycystic ovarian syndrome (PCOS) and atherosclerosis. Although the concept of the MetS is subject to debate due to lack of a unifying underlying mechanism, the prevalence of a metabolic syndrome phenotype is rapidly increasing worldwide. Moreover, it is increasingly prevalent in children and adolescents of obese mothers. Evidence from both epidemiological and experimental animal studies now demonstrates that MetS onset is increasingly likely following exposure to suboptimal nutrition during critical periods of development, as observed in maternal obesity. Thus, the developmental priming of the MetS provides a common origin for this multifactorial disorder. Consequently, the mechanisms leading to this developmental priming have recently been the subject of intensive investigation. This review discusses recent data regarding the epigenetic modifications resulting from nutrition during early development that mediate persistent changes in the expression of key metabolic genes and contribute toward an adult metabolic syndrome phenotype. In addition, this review considers the role of the endogenous molecular circadian clock system, which has the potential to act at the interface between nutrient sensing and epigenetic processing. A continued and greater understanding of these mechanisms will eventually aid in the identification of individuals at high risk of cardiovascular disease (CVD) and type 2 diabetes, and help develop therapeutic interventions, in accordance with current global government strategy.

  19. Epigenetic reversion of breast carcinoma phenotype is accompaniedby DNA sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sandal, Tone; Valyi-Nagy, Klara; Spencer, Virginia A.; Folberg,Robert; Bissell, Mina J.; Maniotis, Andrew J.

    2006-07-19

    The importance of microenvironment and context in regulation of tissue-specific genes is finally well established. DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.

  20. Epigenetics: A Fascinating Field with Profound Research, Clinical, & Public Health Implications

    Science.gov (United States)

    Stein, Richard A.; Davis, Devra Lee

    2012-01-01

    Epigenetics is emerging as one of the most dynamic and vibrant biomedical areas. Multiple lines of evidence confirm that inherited genetic changes alone cannot fully explain all phenotypic characteristics of live organisms, and additional factors, which are not encoded in the DNA sequence, are involved. The contribution of non-genetic factors is…

  1. Effect of Cryopreservation and Post-Cryopreservation Somatic Embryogenesis on the Epigenetic Fidelity of Cocoa (Theobroma cacao L.).

    Science.gov (United States)

    Adu-Gyamfi, Raphael; Wetten, Andy; Marcelino Rodríguez López, Carlos

    2016-01-01

    While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation.

  2. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies.

    Science.gov (United States)

    Partin, Alan W; Van Neste, Leander; Klein, Eric A; Marks, Leonard S; Gee, Jason R; Troyer, Dean A; Rieger-Christ, Kimberly; Jones, J Stephen; Magi-Galluzzi, Cristina; Mangold, Leslie A; Trock, Bruce J; Lance, Raymond S; Bigley, Joseph W; Van Criekinge, Wim; Epstein, Jonathan I

    2014-10-01

    The DOCUMENT multicenter trial in the United States validated the performance of an epigenetic test as an independent predictor of prostate cancer risk to guide decision making for repeat biopsy. Confirming an increased negative predictive value could help avoid unnecessary repeat biopsies. We evaluated the archived, cancer negative prostate biopsy core tissue samples of 350 subjects from a total of 5 urological centers in the United States. All subjects underwent repeat biopsy within 24 months with a negative (controls) or positive (cases) histopathological result. Centralized blinded pathology evaluation of the 2 biopsy series was performed in all available subjects from each site. Biopsies were epigenetically profiled for GSTP1, APC and RASSF1 relative to the ACTB reference gene using quantitative methylation specific polymerase chain reaction. Predetermined analytical marker cutoffs were used to determine assay performance. Multivariate logistic regression was used to evaluate all risk factors. The epigenetic assay resulted in a negative predictive value of 88% (95% CI 85-91). In multivariate models correcting for age, prostate specific antigen, digital rectal examination, first biopsy histopathological characteristics and race the test proved to be the most significant independent predictor of patient outcome (OR 2.69, 95% CI 1.60-4.51). The DOCUMENT study validated that the epigenetic assay was a significant, independent predictor of prostate cancer detection in a repeat biopsy collected an average of 13 months after an initial negative result. Due to its 88% negative predictive value adding this epigenetic assay to other known risk factors may help decrease unnecessary repeat prostate biopsies. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Epigenetic changes of DNA repair genes in cancer.

    Science.gov (United States)

    Lahtz, Christoph; Pfeifer, Gerd P

    2011-02-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  4. Epigenetics: a link between addiction and social environment.

    Science.gov (United States)

    Ajonijebu, Duyilemi C; Abboussi, Oualid; Russell, Vivienne A; Mabandla, Musa V; Daniels, William M U

    2017-08-01

    The detrimental effects of drug abuse are apparently not limited to individuals but may also impact the vulnerability of their progenies to develop addictive behaviours. Epigenetic signatures, early life experience and environmental factors, converge to influence gene expression patterns in addiction phenotypes and consequently may serve as mediators of behavioural trait transmission between generations. The majority of studies investigating the role of epigenetics in addiction do not consider the influence of social interactions. This shortcoming in current experimental approaches necessitates developing social models that reflect the addictive behaviour in a free-living social environment. Furthermore, this review also reports on the advancement of interventions for drug addiction and takes into account the emerging roles of histone deacetylase (HDAC) inhibitors in the etiology of drug addiction and that HDAC may be a potential therapeutic target at nucleosomal level to improve treatment outcomes.

  5. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia.

    Science.gov (United States)

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J V; Schulz, Marcel H; Simon, Martin

    2015-08-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage

    NARCIS (Netherlands)

    Wilschut, R.A.; Oplaat, C.; Snoek, B.; Kirschner, J.; Verhoeven, K.J.F.

    2016-01-01

    Epigenetic variation has been proposed to contribute to the success of asexual plants, either as a contributor to phenotypic plasticity or by enabling transient adaptation via selection on transgenerationally stable, but reversible, epialleles. While recent studies in experimental plant populations

  7. Landscaping plant epigenetics.

    Science.gov (United States)

    McKeown, Peter C; Spillane, Charles

    2014-01-01

    The understanding of epigenetic mechanisms is necessary for assessing the potential impacts of epigenetics on plant growth, development and reproduction, and ultimately for the response of these factors to evolutionary pressures and crop breeding programs. This volume highlights the latest in laboratory and bioinformatic techniques used for the investigation of epigenetic phenomena in plants. Such techniques now allow genome-wide analyses of epigenetic regulation and help to advance our understanding of how epigenetic regulatory mechanisms affect cellular and genome function. To set the scene, we begin with a short background of how the field of epigenetics has evolved, with a particular focus on plant epigenetics. We consider what has historically been understood by the term "epigenetics" before turning to the advances in biochemistry, molecular biology, and genetics which have led to current-day definitions of the term. Following this, we pay attention to key discoveries in the field of epigenetics that have emerged from the study of unusual and enigmatic phenomena in plants. Many of these phenomena have involved cases of non-Mendelian inheritance and have often been dismissed as mere curiosities prior to the elucidation of their molecular mechanisms. In the penultimate section, consideration is given to how advances in molecular techniques are opening the doors to a more comprehensive understanding of epigenetic phenomena in plants. We conclude by assessing some opportunities, challenges, and techniques for epigenetic research in both model and non-model plants, in particular for advancing understanding of the regulation of genome function by epigenetic mechanisms.

  8. Epigenetic Matters: The Link between Early Nutrition, Microbiome, and Long-term Health Development

    Directory of Open Access Journals (Sweden)

    Flavia Indrio

    2017-08-01

    Full Text Available Epigenetic modifications are among the most important mechanisms by which environmental factors can influence early cellular differentiation and create new phenotypic traits during pregnancy and within the neonatal period without altering the deoxyribonucleic acid sequence. A number of antenatal and postnatal factors, such as maternal and neonatal nutrition, pollutant exposure, and the composition of microbiota, contribute to the establishment of epigenetic changes that can not only modulate the individual adaptation to the environment but also have an influence on lifelong health and disease by modifying inflammatory molecular pathways and the immune response. Postnatal intestinal colonization, in turn determined by maternal flora, mode of delivery, early skin-to-skin contact and neonatal diet, leads to specific epigenetic signatures that can affect the barrier properties of gut mucosa and their protective role against later insults, thus potentially predisposing to the development of late-onset inflammatory diseases. The aim of this review is to outline the epigenetic mechanisms of programming and development acting within early-life stages and to examine in detail the role of maternal and neonatal nutrition, microbiota composition, and other environmental factors in determining epigenetic changes and their short- and long-term effects.

  9. Epigenetic Matters: The Link between Early Nutrition, Microbiome, and Long-term Health Development

    Science.gov (United States)

    Indrio, Flavia; Martini, Silvia; Francavilla, Ruggiero; Corvaglia, Luigi; Cristofori, Fernanda; Mastrolia, Salvatore Andrea; Neu, Josef; Rautava, Samuli; Russo Spena, Giovanna; Raimondi, Francesco; Loverro, Giuseppe

    2017-01-01

    Epigenetic modifications are among the most important mechanisms by which environmental factors can influence early cellular differentiation and create new phenotypic traits during pregnancy and within the neonatal period without altering the deoxyribonucleic acid sequence. A number of antenatal and postnatal factors, such as maternal and neonatal nutrition, pollutant exposure, and the composition of microbiota, contribute to the establishment of epigenetic changes that can not only modulate the individual adaptation to the environment but also have an influence on lifelong health and disease by modifying inflammatory molecular pathways and the immune response. Postnatal intestinal colonization, in turn determined by maternal flora, mode of delivery, early skin-to-skin contact and neonatal diet, leads to specific epigenetic signatures that can affect the barrier properties of gut mucosa and their protective role against later insults, thus potentially predisposing to the development of late-onset inflammatory diseases. The aim of this review is to outline the epigenetic mechanisms of programming and development acting within early-life stages and to examine in detail the role of maternal and neonatal nutrition, microbiota composition, and other environmental factors in determining epigenetic changes and their short- and long-term effects. PMID:28879172

  10. Phenotypic plasticity and epithelial-to-mesenchymal transition in the behaviour and therapeutic response of oral squamous cell carcinoma.

    Science.gov (United States)

    Vig, Navin; Mackenzie, Ian C; Biddle, Adrian

    2015-10-01

    It is increasingly recognised that phenotypic plasticity, apparently driven by epigenetic mechanisms, plays a key role in tumour behaviour and markedly influences the important processes of therapeutic survival and metastasis. An important source of plasticity in malignancy is epithelial-to-mesenchymal transition (EMT), a common epigenetically controlled event that results in transition of malignant cells between different phenotypic states that confer motility and enhance survival. In this review, we discuss the importance of phenotypic plasticity and its contribution to cellular heterogeneity in oral squamous cell carcinoma with emphasis on aspects of drug resistance and EMT. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Epigenetics, eh! A meeting summary of the Canadian Conference on Epigenetics.

    Science.gov (United States)

    Rodenhiser, David I; Bérubé, Nathalie G; Mann, Mellissa R W

    2011-10-01

    In May 2011, the Canadian Conference on Epigenetics: Epigenetics Eh! was held in London, Canada. The objectives of this conference were to showcase the breadth of epigenetic research on environment and health across Canada and to provide the catalyst to develop collaborative Canadian epigenetic research opportunities, similar to existing international epigenetic initiatives in the US and Europe. With ten platform sessions and two sessions with over 100 poster presentations, this conference featured cutting-edge epigenetic research, presented by Canadian and international principal investigators and their trainees in the field of epigenetics and chromatin dynamics. An EpigenART competition included ten artists, creating a unique opportunity for artists and scientists to interact and explore their individual interpretations of this scientific discipline. The conference provided a unique venue for a significant cross-section of Canadian epigenetic researchers from diverse disciplines to meet, interact, collaborate and strategize at the national level.

  12. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    Directory of Open Access Journals (Sweden)

    Michael K Skinner

    Full Text Available A number of environmental factors (e.g. toxicants have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation progeny in regards to the primordial germ cell (PGC epigenetic reprogramming of the F3 generation (i.e. great-grandchildren. The F3 generation germline transcriptome and epigenome (DNA methylation were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13 and after cord formation in the testis at embryonic day 16 (E16. A larger number of DNA methylation abnormalities (epimutations and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  13. Epigenetics primer: why the clinician should care about epigenetics.

    Science.gov (United States)

    Duarte, Julio D

    2013-12-01

    Epigenetics describes heritable alterations of gene expression that do not involve DNA sequence variation and are changeable throughout an organism's lifetime. Not only can epigenetic status influence drug response, but it can also be modulated by drugs. In this review, the three major epigenetic mechanisms are described: covalent DNA modification, histone protein modification, and regulation by noncoding RNA. Further, this review describes how drug therapy can influence, and be influenced by, these mechanisms. Drugs with epigenetic mechanisms are already in use, with many more likely to be approved within the next few years. As the understanding of epigenetic processes improves, so will the ability to use these data in the clinic to improve patient care. © 2013 Pharmacotherapy Publications, Inc.

  14. Epigenetic rejuvenation.

    Science.gov (United States)

    Manukyan, Maria; Singh, Prim B

    2012-05-01

    Induced pluripotent stem (iPS) cells have provided a rational means of obtaining histo-compatible tissues for 'patient-specific' regenerative therapies (Hanna et al. 2010; Yamanaka & Blau 2010). Despite the obvious potential of iPS cell-based therapies, there are certain problems that must be overcome before these therapies can become safe and routine (Ohi et al. 2011; Pera 2011). As an alternative, we have recently explored the possibility of using 'epigenetic rejuvenation', where the specialized functions of an old cell are rejuvenated in the absence of any change in its differentiated state (Singh & Zacouto 2010). The mechanism(s) that underpin 'epigenetic rejuvenation' are unknown and here we discuss model systems, using key epigenetic modifiers, which might shed light on the processes involved. Epigenetic rejuvenation has advantages over iPS cell techniques that are currently being pursued. First, the genetic and epigenetic abnormalities that arise through the cycle of dedifferentiation of somatic cells to iPS cells followed by redifferentiation of iPS cells into the desired cell type are avoided (Gore et al. 2011; Hussein et al. 2011; Pera 2011): epigenetic rejuvenation does not require passage through the de-/redifferentiation cycle. Second, because the aim of epigenetic rejuvenation is to ensure that the differentiated cell type retains its specialized function it makes redundant the question of transcriptional memory that is inimical to iPS cell-based therapies (Ohi et al. 2011). Third, to produce unrelated cell types using the iPS technology takes a long time, around three weeks, whereas epigenetic rejuvenation of old cells will take only a matter of days. Epigenetic rejuvenation provides the most safe, rapid and cheap route to successful regenerative medicine. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  15. Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder.

    Science.gov (United States)

    Grayson, Dennis R; Guidotti, Alessandro

    2016-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is characterized by a wide range of cognitive and behavioral abnormalities. Genetic research has identified large numbers of genes that contribute to ASD phenotypes. There is compelling evidence that environmental factors contribute to ASD through influences that differentially impact the brain through epigenetic mechanisms. Both genetic mutations and epigenetic influences alter gene expression in different cell types of the brain. Mutations impact the expression of large numbers of genes and also have downstream consequences depending on specific pathways associated with the mutation. Environmental factors impact the expression of sets of genes by altering methylation/hydroxymethylation patterns, local histone modification patterns and chromatin remodeling. Herein, we discuss recent developments in the research of ASD with a focus on epigenetic pathways as a complement to current genetic screening.

  16. Rosaceae Fruit Development, Ripening and Post-harvest: An Epigenetic Perspective.

    Science.gov (United States)

    Farinati, Silvia; Rasori, Angela; Varotto, Serena; Bonghi, Claudio

    2017-01-01

    Rosaceae is a family with an extraordinary spectrum of fruit types, including fleshy peach, apple, and strawberry that provide unique contributions to a healthy diet for consumers, and represent an excellent model for studying fruit patterning and development. In recent years, many efforts have been made to unravel regulatory mechanism underlying the hormonal, transcriptomic, proteomic and metabolomic changes occurring during Rosaceae fruit development. More recently, several studies on fleshy (tomato) and dry (Arabidopsis) fruit model have contributed to a better understanding of epigenetic mechanisms underlying important heritable crop traits, such as ripening and stress response. In this context and summing up the results obtained so far, this review aims to collect the available information on epigenetic mechanisms that may provide an additional level in gene transcription regulation, thus influencing and driving the entire Rosaceae fruit developmental process. The whole body of information suggests that Rosaceae fruit could become also a model for studying the epigenetic basis of economically important phenotypes, allowing for their more efficient exploitation in plant breeding.

  17. Maternal stress and diet may influence affective behavior and stress-response in offspring via epigenetic regulation of central peptidergic function.

    Science.gov (United States)

    Thorsell, Annika; Nätt, Daniel

    2016-08-01

    It has been shown that maternal stress and malnutrition, or experience of other adverse events, during the perinatal period may alter susceptibility in the adult offspring in a time-of-exposure dependent manner. The mechanism underlying this may be epigenetic in nature. Here, we summarize some recent findings on the effects on gene-regulation following maternal malnutrition, focusing on epigenetic regulation of peptidergic activity. Numerous neuropeptides within the central nervous system are crucial components in regulation of homeostatic energy-balance, as well as affective health (i.e. health events related to affective disorders, psychiatric disorders also referred to as mood disorders). It is becoming evident that expression, and function, of these neuropeptides can be regulated via epigenetic mechanisms during fetal development, thereby contributing to the development of the adult phenotype and, possibly, modulating disease susceptibility. Here, we focus on two such neuropeptides, neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH), both involved in regulation of endocrine function, energy homeostasis, as well as affective health. While a number of published studies indicate the involvement of epigenetic mechanisms in CRH-dependent regulation of the offspring adult phenotype, NPY has been much less studied in this context and needs further work.

  18. 'Biologizing' Psychopathy: Ethical, Legal, and Research Implications at the Interface of Epigenetics and Chronic Antisocial Conduct.

    Science.gov (United States)

    Tamatea, Armon J

    2015-10-01

    Epigenetics, a field that links genetics and environmental influences on the expression of phenotypic traits, offers to increase our understanding of the development and trajectory of disease and psychological disorders beyond that thought of traditional genetic research and behavioural measures. By extension, this new perspective has implications for risk and risk management of antisocial behaviour where there is a biological component, such as psychopathy. Psychopathy is a personality disorder associated with repeat displays of antisocial behaviour, and is associated with the disproportionate imposition of harm on communities. Despite advances in our knowledge of psychopathic individuals, the construct remains complex and is hampered by a lack of integration across a range of fundamental domains. The clinical and forensic research on psychopathy is brought into conversation with the emerging field of epigenetics to highlight critical issues of (1) clinical definition and diagnosis, (2) assessment, (3) aetiology of psychopathic phenotypes, and (4) treatment and rehabilitation approaches. Broader ethical and legal questions of the role of epigenetic mechanisms in the management of psychopathy beyond the criminal justice arena are also outlined. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Epigenetics: The New Frontier in the Landscape of Asthma

    Science.gov (United States)

    Chogtu, Bharti; Bhattacharjee, Dipanjan; Magazine, Rahul

    2016-01-01

    Over the years, on a global scale, asthma has continued to remain one of the leading causes of morbidity, irrespective of age, sex, or social bearings. This is despite the prevalence of varied therapeutic options to counter the pathogenesis of asthma. Asthma, as a disease per se, is a very complex one. Scientists all over the world have been trying to obtain a lucid understanding of the machinations behind asthma. This has led to many theories and conjectures. However, none of the scientific disciplines have been able to provide the missing links in the chain of asthma pathogenesis. This was until epigenetics stepped into the picture. Though epigenetic research in asthma is in its nascent stages, it has led to very exciting results, especially with regard to explaining the massive influence of environment on development of asthma and its varied phenotypes. However, there remains a lot of work to be done, especially with regard to understanding how the interactions between immune system, epigenome, and environment lead to asthma. But introduction of epigenetics has infused a fresh lease of life in research into asthma and the mood among the scientific community is that of cautious optimism. PMID:27293973

  20. Epigenetics: The New Frontier in the Landscape of Asthma

    Directory of Open Access Journals (Sweden)

    Bharti Chogtu

    2016-01-01

    Full Text Available Over the years, on a global scale, asthma has continued to remain one of the leading causes of morbidity, irrespective of age, sex, or social bearings. This is despite the prevalence of varied therapeutic options to counter the pathogenesis of asthma. Asthma, as a disease per se, is a very complex one. Scientists all over the world have been trying to obtain a lucid understanding of the machinations behind asthma. This has led to many theories and conjectures. However, none of the scientific disciplines have been able to provide the missing links in the chain of asthma pathogenesis. This was until epigenetics stepped into the picture. Though epigenetic research in asthma is in its nascent stages, it has led to very exciting results, especially with regard to explaining the massive influence of environment on development of asthma and its varied phenotypes. However, there remains a lot of work to be done, especially with regard to understanding how the interactions between immune system, epigenome, and environment lead to asthma. But introduction of epigenetics has infused a fresh lease of life in research into asthma and the mood among the scientific community is that of cautious optimism.

  1. Epigenetics and Evolution: Transposons and the Stochastic Epigenetic Modification Model

    Directory of Open Access Journals (Sweden)

    Sergio Branciamore

    2015-04-01

    Full Text Available In addition to genetic variation, epigenetic variation and transposons can greatly affect the evolutionary fitnesses landscape and gene expression. Previously we proposed a mathematical treatment of a general epigenetic variation model that we called Stochastic Epigenetic Modification (SEM model. In this study we follow up with a special case, the Transposon Silencing Model (TSM, with, once again, emphasis on quantitative treatment. We have investigated the evolutionary effects of epigenetic changes due to transposon (T insertions; in particular, we have considered a typical gene locus A and postulated that (i the expression level of gene A depends on the epigenetic state (active or inactive of a cis- located transposon element T, (ii stochastic variability in the epigenetic silencing of T occurs only in a short window of opportunity during development, (iii the epigenetic state is then stable during further development, and (iv the epigenetic memory is fully reset at each generation. We develop the model using two complementary approaches: a standard analytical population genetics framework (di usion equations and Monte-Carlo simulations. Both approaches led to similar estimates for the probability of fixation and time of fixation of locus TA with initial frequency P in a randomly mating diploid population of effective size Ne. We have ascertained the e ect that ρ, the probability of transposon Modification during the developmental window, has on the population (species. One of our principal conclusions is that as ρ increases, the pattern of fixation of the combined TA locus goes from "neutral" to "dominant" to "over-dominant". We observe that, under realistic values of ρ, epigenetic Modifications can provide an e cient mechanism for more rapid fixation of transposons and cis-located gene alleles. The results obtained suggest that epigenetic silencing, even if strictly transient (being reset at each generation, can still have signi cant

  2. Heterogeneity of chromatin modifications in testicular spermatocytic seminoma point toward an epigenetically unstable phenotype

    DEFF Research Database (Denmark)

    Kristensen, Dina Graae; Mlynarska, Olga; Nielsen, John E

    2012-01-01

    Testicular spermatocytic seminoma (SS) is a rare tumor type predominantly found in elderly men. It is thought to originate from spermatogonia and shows cytological and genetic heterogeneity. In this study, we performed for the first time a comprehensive analysis of epigenetic modifications in a s...

  3. [Nutritionnal epigenomics: consequences of unbalanced diets on epigenetics processes of programming during lifespan and between generations].

    Science.gov (United States)

    Junien, C; Gallou-Kabani, C; Vigé, A; Gross, M-S

    2005-04-01

    Epigenetic changes associated with DNA methylation and histone modifications leading to chromatin remodeling and regulation of gene expression underlie the developmental programming of obesity, type 2 diabetes, cardiovascular diseases and metabolic syndrome. This review focuses on converging data supporting the hypothesis that, in addition to "thrifty genotype" inheritance, individuals with obesity, type 2 diabetes, and metabolic syndrome (MetS) with an increased risk of cardiovascular diseases have suffered improper "epigenetic programming" during their fetal/postnatal development due to maternal inadequate nutrition and metabolic disturbances and also during their lifetime, that could even be transmitted to the next generation(s). We highlight the susceptibility of epigenetic mechanisms controlling gene expression to environmental influences due to their inherent malleability, emphasizing the participation of transposable elements and the potential role of imprinted genes during critical time windows in epigenetic programming, from the very beginning of development, throughout life. Increasing our understanding on epigenetic patterns significance and their role in development, evolution and adaptation and on small molecules (nutrients, drugs) that reverse epigenetic (in)activation should provide us with the means to "unlock" silenced (enhanced) genes, and to "convert" the obsolete human thrifty genotype into a "squandering" phenotype.

  4. Molecular epigenetics in the management of ovarian cancer: Are we investigating a rational clinical promise?

    Directory of Open Access Journals (Sweden)

    Ha eNguyen

    2014-04-01

    Full Text Available Epigenetics is essentially a phenotypical change in gene expression without any alteration of the DNA sequence; the emergence of epigenetics in cancer research and mainstream oncology is fueling new hope. However, it is not yet known whether this knowledge will translate to improved clinical management of ovarian cancer. In this malignancy, women are still undergoing chemotherapy similar to what was approved in 1978, which to this day represents one of the biggest breakthroughs for treating ovarian cancer. While liquid tumors are benefitting from epigenetically-related therapies, solid tumors like ovarian cancer are not (yet?. Herein we will review the science of molecular epigenetics, especially DNA methylation, histone modifications and microRNA, but also include transcription factors since they, too, are important in ovarian cancer. Preclinical and clinical research on the role of epigenetic modifications is summarized as well. Sadly, ovarian cancer remains an idiopathic disease, for the most part, and there are many areas of patient management which could benefit from improved technology. This review will also highlight the evidence suggesting that epigenetics may have preclinical utility in pharmacology and clinical applications for prognosis and diagnosis. Lastly, drugs currently in clinical trials (i.e. histone deacetylase inhibitors are discussed along with the promise for epigenetics in the exploitation of chemoresistance. Whether epigenetics will ultimately be the answer to better management in ovarian cancer is currently unknown; what we have now is hope.

  5. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.

    Science.gov (United States)

    Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H

    2015-05-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics.

  6. Induction of epigenetic variation in Arabidopsis by over-expression of DNA METHYLTRANSFERASE1 (MET1.

    Directory of Open Access Journals (Sweden)

    Samuel Brocklehurst

    Full Text Available Epigenetic marks such as DNA methylation and histone modification can vary among plant accessions creating epi-alleles with different levels of expression competence. Mutations in epigenetic pathway functions are powerful tools to induce epigenetic variation. As an alternative approach, we investigated the potential of over-expressing an epigenetic function, using DNA METHYLTRANSFERASE1 (MET1 for proof-of-concept. In Arabidopsis thaliana, MET1 controls maintenance of cytosine methylation at symmetrical CG positions. At some loci, which contain dense DNA methylation in CG- and non-CG context, loss of MET1 causes joint loss of all cytosines methylation marks. We find that over-expression of both catalytically active and inactive versions of MET1 stochastically generates new epi-alleles at loci encoding transposable elements, non-coding RNAs and proteins, which results for most loci in an increase in expression. Individual transformants share some common phenotypes and genes with altered gene expression. Altered expression states can be transmitted to the next generation, which does not require the continuous presence of the MET1 transgene. Long-term stability and epigenetic features differ for individual loci. Our data show that over-expression of MET1, and potentially of other genes encoding epigenetic factors, offers an alternative strategy to identify epigenetic target genes and to create novel epi-alleles.

  7. The Interaction between the Immune System and Epigenetics in the Etiology of Autism Spectrum Disorders.

    Science.gov (United States)

    Nardone, Stefano; Elliott, Evan

    2016-01-01

    Recent studies have firmly established that the etiology of autism includes both genetic and environmental components. However, we are only just beginning to elucidate the environmental factors that might be involved in the development of autism, as well as the molecular mechanisms through which they function. Mounting epidemiological and biological evidence suggest that prenatal factors that induce a more activated immune state in the mother are involved in the development of autism. In parallel, molecular studies have highlighted the role of epigenetics in brain development as a process susceptible to environmental influences and potentially causative of autism spectrum disorders (ASD). In this review, we will discuss converging evidence for a multidirectional interaction between immune system activation in the mother during pregnancy and epigenetic regulation in the brain of the fetus that may cooperate to produce an autistic phenotype. This interaction includes immune factor-induced changes in epigenetic signatures in the brain, dysregulation of epigenetic modifications specifically in genomic regions that encode immune functions, and aberrant epigenetic regulation of microglia. Overall, the interaction between immune system activation in the mother and the subsequent epigenetic dysregulation in the developing fetal brain may be a main consideration for the environmental factors that cause autism.

  8. The interaction between the immune system and epigenetics in the etiology of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Stefano Nardone

    2016-07-01

    Full Text Available Recent studies have firmly established that the etiology of autism includes both genetic and environmental components. However, we are only just beginning to elucidate the environmental factors that might be involved in the development of autism, as well as the molecular mechanisms through which they function. Mounting epidemiological and biological evidence suggest that prenatal factors that induce a more activated immune state in the mother are involved in the development of autism. In parallel, molecular studies have highlighted the role of epigenetics in brain development as process susceptible to environmental influences and potentially causative of ASD. In this review, we will discuss converging evidence for a multidirectional interaction between immune system activation in the mother during pregnancy and epigenetic regulation in the brain of the fetus that may cooperate to produce an autistic phenotype. This interaction includes immune factor-induced changes in epigenetic signatures in the brain, dysregulation of epigenetic modifications specifically in genomic regions that encode immune functions, and aberrant epigenetic regulation of microglia. Overall, the interaction between immune system activation in the mother and the subsequent epigenetic dysregulation in the developing fetal brain may be a main consideration for the environmental factors that cause autism.

  9. Epigenetic telomere protection by Drosophila DNA damage response pathways.

    Science.gov (United States)

    Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H

    2006-05-01

    Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.

  10. Obesity: epigenetic aspects.

    Science.gov (United States)

    Kaushik, Prashant; Anderson, James T

    2016-06-01

    Epigenetics, defined as inheritable and reversible phenomena that affect gene expression without altering the underlying base pair sequence has been shown to play an important role in the etiopathogenesis of obesity. Obesity is associated with extensive gene expression changes in tissues throughout the body. Epigenetics is emerging as perhaps the most important mechanism through which the lifestyle-choices we make can directly influence the genome. Considerable epidemiological, experimental and clinical data have been amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. In addition to the 'maternal' interactions, there has been increasing interest in the epigenetic mechanisms through which 'paternal' influences on offspring development can be achieved. Nutrition, among many other environmental factors, is a key player that can induce epigenetic changes not only in the directly exposed organisms but also in subsequent generations through the transgenerational inheritance of epigenetic traits. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Fortunately, epigenetic phenomena are dynamic and rather quickly reversible with intensive lifestyle changes. This is a very promising and sustainable resolution to the obesity pandemic.

  11. Epigenetic modulation of dental pulp stem cells: implications for regenerative endodontics.

    Science.gov (United States)

    Duncan, H F; Smith, A J; Fleming, G J P; Cooper, P R

    2016-05-01

    Dental pulp stem cells (DPSCs) offer significant potential for use in regenerative endodontics, and therefore, identifying cellular regulators that control stem cell fate is critical to devising novel treatment strategies. Stem cell lineage commitment and differentiation are regulated by an intricate range of host and environmental factors of which epigenetic influence is considered vital. Epigenetic modification of DNA and DNA-associated histone proteins has been demonstrated to control cell phenotype and regulate the renewal and pluripotency of stem cell populations. The activities of the nuclear enzymes, histone deacetylases, are increasingly being recognized as potential targets for pharmacologically inducing stem cell differentiation and dedifferentiation. Depending on cell maturity and niche in vitro, low concentration histone deacetylase inhibitor (HDACi) application can promote dedifferentiation of several post-natal and mouse embryonic stem cell populations and conversely increase differentiation and accelerate mineralization in DPSC populations, whilst animal studies have shown an HDACi-induced increase in stem cell marker expression during organ regeneration. Notably, both HDAC and DNA methyltransferase inhibitors have also been demonstrated to dramatically increase the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) for use in regenerative therapeutic procedures. As the regulation of cell fate will likely remain the subject of intense future research activity, this review aims to describe the current knowledge relating to stem cell epigenetic modification, focusing on the role of HDACi on alteration of DPSC phenotype, whilst presenting the potential for therapeutic application as part of regenerative endodontic regimens. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Data from: Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage

    NARCIS (Netherlands)

    Wilschut, Rutger; Oplaat, C.; Snoek, L.B.; Kirschner, J.; Verhoeven, K.J.F.

    2015-01-01

    Epigenetic variation has been proposed to contribute to the success of asexual plants, either as a contributor to phenotypic plasticity or by enabling transient adaptation via selection on transgenerationally stable, but reversible, epialleles. While recent studies in experimental plant populations

  13. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice.

    Science.gov (United States)

    Holland, Michelle L; Lowe, Robert; Caton, Paul W; Gemma, Carolina; Carbajosa, Guillermo; Danson, Amy F; Carpenter, Asha A M; Loche, Elena; Ozanne, Susan E; Rakyan, Vardhman K

    2016-07-29

    A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults. Copyright © 2016, American Association for the Advancement of Science.

  14. Clonal stability and epigenetic variation in sour cherry

    DEFF Research Database (Denmark)

    Clausen, Sabine Karin

    . This observed variability within the clones raises the question as to whether more suitable plant material for the future might be found through similar selection. In this study, a number of the selected individuals were evaluated based on their morphological (harvested yield, number of buds...... selections compared to cl. 'Birgitte'. However, such epigenetic differences may be enough to change gene expression and result in phenotypic variability. This study demonstrates that morphological differences exist both between and within the 'Stevnsbaer' clones 'Birgitte' and 'Viki'. However, the genetic...

  15. Epigenetic modulators of monocytic function: implication for steady state and disease in the CNS .

    Directory of Open Access Journals (Sweden)

    F. Nina Papavasiliou

    2016-01-01

    Full Text Available Epigenetic alterations are necessary for the establishment of functional and phenotypic diversity in populations of immune cells of the monocytic lineage. The epigenetic status of individual genes at different time points defines their transcriptional responses throughout development and in response to environmental stimuli. Epigenetic states are defined at the level of DNA modifications, chromatin modifications, as well as at the level of RNA base changes through RNA editing. Drawing from lessons regarding the epigenome and epitranscriptome of cells of the monocytic lineage in the periphery, and from recently published RNAseq data deriving from brain-resident monocytes, we discuss the impact of modulation of these epigenetic states and how they affect processes important for the development of a healthy brain, as well as mechanisms of neurodegenerative disease and aging. An understanding of the varied brain responses and pathologies in light of these novel gene regulatory systems in monocytes will lead to important new insights in the understanding of the aging process and the treatment and diagnosis of neurodegenerative disease.

  16. Morphological analysis and DNA methylation in Conyza bonariensis L. cronquist (Asteraceae phenotypes

    Directory of Open Access Journals (Sweden)

    Juliana Maria de Paula

    2017-08-01

    Full Text Available ABSTRACT The species Conyza bonariensis (L. cause losses in agriculture due to their invasive capacity and resistance to herbicides like glyphosate. The species of this genus exhibit phenotypic plasticity, which complicates their identification and characterization. Thus, experiments were performed with 2 extreme C. bonariensis phenotypes (called broad leaf and narrow leaf in greenhouse conditions and in the laboratory, in order to verify if the morphological differences among these phenotypes are a genetic character or result from environmental effects. In addition to the comparative morphological analysis, assessment of DNA methylation profile was performed to detect the occurrence, or not, of differences in the epigenetic level. The morphological characteristics evaluated were length, width, shape, margin and leaves indument; plant height and stem indument; the number of capitula, flowers and seeds. The Methylation Sensitive Amplified Polymorphism technique was used to investigate the methylation levels. The morphological differences of phenotypes supposed to be C. bonariensis are probably genetic in origin and not the result of environmental effects, since, after 6 crop cycles in a greenhouse under the same environmental conditions, these phenotypes remained with the same morphological characteristics and seed production in relation to the original phenotypes found in the collection site. The different phenotypes did not show differences corresponding to DNA methylation patterns that could indicate an epigenetic effect as the cause of the differences between the 2 phenotypes. The results of morphological analysis and methylation probably indicate that maybe they are individuals of populations from different taxa not registered yet in the literature.

  17. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  18. Epigenetic memory in mammals

    Directory of Open Access Journals (Sweden)

    Zoe eMigicovsky

    2011-06-01

    Full Text Available Epigenetic information can be passed on from one generation to another via DNA methylation, histone modifications and changes in small RNAs, a process called epigenetic memory. During a mammal’s lifecycle epigenetic reprogramming, or the resetting of most epigenetic marks, occurs twice. The first instance of reprogramming occurs in primordial germ cells and the second occurs following fertilization. These processes may be both passive and active. In order for epigenetic inheritance to occur the epigenetic modifications must be able to escape reprogramming. There are several examples supporting this non-Mendelian mechanism of inheritance including the prepacking of early developmental genes in histones instead of protamines in sperm, genomic imprinting via methylation marks, the retention of CenH3 in mammalian sperm and the inheritance of piwi-associated interfering RNAs. The ability of mammals to pass on epigenetic information to their progeny provides clear evidence that inheritance is not restricted to DNA sequence and epigenetics plays a key role in producing viable offspring.

  19. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward.

    Science.gov (United States)

    Richards, Christina L; Alonso, Conchita; Becker, Claude; Bossdorf, Oliver; Bucher, Etienne; Colomé-Tatché, Maria; Durka, Walter; Engelhardt, Jan; Gaspar, Bence; Gogol-Döring, Andreas; Grosse, Ivo; van Gurp, Thomas P; Heer, Katrin; Kronholm, Ilkka; Lampei, Christian; Latzel, Vít; Mirouze, Marie; Opgenoorth, Lars; Paun, Ovidiu; Prohaska, Sonja J; Rensing, Stefan A; Stadler, Peter F; Trucchi, Emiliano; Ullrich, Kristian; Verhoeven, Koen J F

    2017-12-01

    Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  20. Epigenetics and cancer

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2004-01-01

    Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development. This is e......Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development....... This is evident from every aspect of tumor biology including cell growth and differentiation, cell cycle control, DNA repair, angiogenesis, migration, and evasion of host immunosurveillance. In contrast to genetic cancer causes, the possibility of reversing epigenetic codes may provide new targets for therapeutic...

  1. [Nutritional epigenetics and epigenetic effects of human breast milk].

    Science.gov (United States)

    Lukoyanova, O L; Borovik, T E

    The article provides an overview of the current literature on nutritional epigenetics. There are currently actively studied hypothesis that nutrition especially in early life or in critical periods of the development, may have a role in modulating gene expression, and, therefore, have later effects on health in adults. Nutritional epigenetics concerns knowledge about the possible effects of nutrients on gene expression. Human breast milk is well-known for its ability in preventing necrotizing enterocolitis, infectious diseases, and also non-communicable diseases, such as obesity and related disorders. This paper discusses about presumed epigenetic effects of human breast milk and some its components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are stillunclear.

  2. From linkage studies to epigenetics: what we know and what we need to know in the neurobiology of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Ariel eCariaga-Martinez

    2016-05-01

    Full Text Available Schizophrenia is a complex psychiatric disorder characterized by the presence of positive, negative and cognitive symptoms that lacks a unifying neuropathology. In the present paper, we will review the current understanding of molecular dysregulation in schizophrenia, including genetic and epigenetic studies. In relation to the latter, basic research suggests that normal cognition is regulated by epigenetic mechanisms and its dysfunction occurs upon epigenetic misregulation, providing new insights into missing heritability of complex psychiatric diseases, referring to the discrepancy between epidemiological heritability and the proportion of phenotypic variation explained by DNA sequence difference. In schizophrenia the absence of consistently replicated genetic effects together with evidence for lasting changes in gene expression after environmental exposures suggest a role of epigenetic mechanisms. In this review we will focus on epigenetic modifications as a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of psychotic conditions throughout life.

  3. A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance

    Directory of Open Access Journals (Sweden)

    Alexandre Champroux

    2018-05-01

    Full Text Available The past decade has seen a tremendous increase in interest and progress in the field of sperm epigenetics. Studies have shown that chromatin regulation during male germline development is multiple and complex, and that the spermatozoon possesses a unique epigenome. Its DNA methylation profile, DNA-associated proteins, nucleo-protamine distribution pattern and non-coding RNA set up a unique epigenetic landscape which is delivered, along with its haploid genome, to the oocyte upon fertilization, and therefore can contribute to embryogenesis and to the offspring health. An emerging body of compelling data demonstrates that environmental exposures and paternal lifestyle can change the sperm epigenome and, consequently, may affect both the embryonic developmental program and the health of future generations. This short review will attempt to provide an overview of what is currently known about sperm epigenome and the existence of transgenerational epigenetic inheritance of paternally acquired traits that may contribute to the offspring phenotype.

  4. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs.

    Science.gov (United States)

    Schuster, Andrew; Skinner, Michael K; Yan, Wei

    Exposure to the agricultural fungicide vinclozolin during gestation promotes a higher incidence of various diseases in the subsequent unexposed F3 and F4 generations. This phenomenon is termed epigenetic transgenerational inheritance and has been shown to in part involve alterations in DNA methylation, but the role of other epigenetic mechanisms remains unknown. The current study investigated the alterations in small noncoding RNA (sncRNA) in the sperm from F3 generation control and vinclozolin lineage rats. Over 200 differentially expressed sncRNAs were identified and the tRNA-derived sncRNAs, namely 5' halves of mature tRNAs (5' halves), displayed the most dramatic changes. Gene targets of the altered miRNAs and tRNA 5' halves revealed associations between the altered sncRNAs and differentially DNA methylated regions. Dysregulated sncRNAs appear to correlate with mRNA profiles associated with the previously observed vinclozolin-induced disease phenotypes. Data suggest potential connections between sperm-borne RNAs and the vinclozolin-induced epigenetic transgenerational inheritance phenomenon.

  5. Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease.

    Science.gov (United States)

    Ben Maamar, Millissia; Sadler-Riggleman, Ingrid; Beck, Daniel; McBirney, Margaux; Nilsson, Eric; Klukovich, Rachel; Xie, Yeming; Tang, Chong; Yan, Wei; Skinner, Michael K

    2018-04-01

    Epigenetic transgenerational inheritance of disease and phenotypic variation can be induced by several toxicants, such as vinclozolin. This phenomenon can involve DNA methylation, non-coding RNA (ncRNA) and histone retention, and/or modification in the germline (e.g. sperm). These different epigenetic marks are called epimutations and can transmit in part the transgenerational phenotypes. This study was designed to investigate the vinclozolin-induced concurrent alterations of a number of different epigenetic factors, including DNA methylation, ncRNA, and histone retention in rat sperm. Gestating females (F0 generation) were exposed transiently to vinclozolin during fetal gonadal development. The directly exposed F1 generation fetus, the directly exposed germline within the fetus that will generate the F2 generation, and the transgenerational F3 generation sperm were studied. DNA methylation and ncRNA were altered in each generation rat sperm with the direct exposure F1 and F2 generations being distinct from the F3 generation epimutations. Interestingly, an increased number of differential histone retention sites were found in the F3 generation vinclozolin sperm, but not in the F1 or F2 generations. All three different epimutation types were affected in the vinclozolin lineage transgenerational sperm (F3 generation). The direct exposure generations (F1 and F2) epigenetic alterations were distinct from the transgenerational sperm epimutations. The genomic features and gene pathways associated with the epimutations were investigated to help elucidate the integration of these different epigenetic processes. Our results show that the three different types of epimutations are involved and integrated in the mediation of the epigenetic transgenerational inheritance phenomenon.

  6. Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits

    Directory of Open Access Journals (Sweden)

    Balapal S. Basavarajappa

    2016-04-01

    Full Text Available Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS, which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD. Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes. These animal FASD studies have provided several molecular pathways that are likely responsible for the neurobehavioral abnormalities that are associated with prenatal alcohol exposure of the developing CNS. Recently, many laboratories have identified several immediate, as well as long-lasting, epigenetic modifications of DNA methylation, DNA-associated histone proteins and microRNA (miRNA biogenesis by using a variety of epigenetic approaches in rodent FASD models. Because DNA methylation patterns, DNA-associated histone protein modifications and miRNA-regulated gene expression are crucial for synaptic plasticity and learning and memory, they can therefore offer an answer to many of the neurobehavioral abnormalities that are found in FASD. In this review, we briefly discuss the current literature of DNA methylation, DNA-associated histone proteins modification and miRNA and review recent developments concerning epigenetic changes in FASD.

  7. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management.

    Science.gov (United States)

    Zhang, Yingmei; Ren, Jun

    2016-05-01

    Uncorrected obesity has been associated with cardiac hypertrophy and contractile dysfunction. Several mechanisms for this cardiomyopathy have been identified, including oxidative stress, autophagy, adrenergic and renin-angiotensin aldosterone overflow. Another process that may regulate effects of obesity is epigenetics, which refers to the heritable alterations in gene expression or cellular phenotype that are not encoded on the DNA sequence. Advances in epigenome profiling have greatly improved the understanding of the epigenome in obesity, where environmental exposures during early life result in an increased health risk later on in life. Several mechanisms, including histone modification, DNA methylation and non-coding RNAs, have been reported in obesity and can cause transcriptional suppression or activation, depending on the location within the gene, contributing to obesity-induced complications. Through epigenetic modifications, the fetus may be prone to detrimental insults, leading to cardiac sequelae later in life. Important links between epigenetics and obesity include nutrition, exercise, adiposity, inflammation, insulin sensitivity and hepatic steatosis. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissues from obese subjects compared with non-obese controls. In addition, aging and intrauterine environment are associated with differential DNA methylation. Given the intense research on the molecular mechanisms of the etiology of obesity and its complications, this review will provide insights into the current understanding of epigenetics and pharmacological and non-pharmacological (such as exercise) interventions targeting epigenetics as they relate to treatment of obesity and its complications. Particular focus will be on DNA methylation, histone modification and non-coding RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L.

    Science.gov (United States)

    Sáez-Laguna, Enrique; Guevara, María-Ángeles; Díaz, Luis-Manuel; Sánchez-Gómez, David; Collada, Carmen; Aranda, Ismael; Cervera, María-Teresa

    2014-01-01

    There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.

  9. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L.

    Directory of Open Access Journals (Sweden)

    Enrique Sáez-Laguna

    Full Text Available There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments. Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.

  10. Impact of nutrition on noncoding RNA epigenetics in breast and gynecological cancer

    Directory of Open Access Journals (Sweden)

    Rosanna H. E. Krakowsky

    2015-05-01

    Full Text Available Cancer is the second leading cause of death in females. According to the American Cancer Society, there are 327,660 new cases in breast and gynecological cancers estimated in 2014, placing emphasis on the need for cancer prevention and new cancer treatment strategies. One important approach to cancer prevention involves phytochemicals, biologically active compounds derived from plants. A variety of studies on the impact of dietary compounds found in cruciferous vegetables, green tea and spices like curry and black pepper have revealed epigenetic changes in female cancers. Thus, an important emerging topic comprises epigenetic changes due to the modulation of noncoding RNA levels. Since it has been shown that noncoding RNAs such as microRNAs and long noncoding RNAs are aberrantly expressed in cancer and furthermore are linked to distinct cancer phenotypes, understanding the effects of dietary compounds and supplements on the epigenetic modulator noncoding RNA is of great interest. This article reviews the current findings on nutrition-induced changes in breast and gynecological cancers at the noncoding RNA level.

  11. Distinct epigenetic signatures elucidate enhancer-gene relationships that delineate CIMP and non-CIMP colorectal cancers.

    Science.gov (United States)

    Chong, Allen; Teo, Jing Xian; Ban, Kenneth H K

    2016-05-10

    Epigenetic changes, like DNA methylation, affect gene expression and in colorectal cancer (CRC), a distinct phenotype called the CpG island methylator phenotype ("CIMP") has significantly higher levels of DNA methylation at so-called "Type C loci" within the genome. We postulate that enhancer-gene pairs are coordinately controlled through DNA methylation in order to regulate the expression of key genes/biomarkers for a particular phenotype.Firstly, we found 24 experimentally-validated enhancers (VISTA enhancer browser) that contained statistically significant (FDR-adjusted q-value of CIMP versus non-CIMP CRCs. Of these, the methylation of 2 enhancers, 1702 and 1944, were found to be very well correlated with the methylation of the genes Wnt3A and IGDCC3, respectively, in two separate and independent datasets.We show for the first time that there are indeed distinct and dynamic changes in the methylation pattern of specific enhancer-gene pairs in CRCs. Such a coordinated epigenetic event could be indicative of an interaction between (1) enhancer 1702 and Wnt3A and (2) enhancer 1944 and IGDCC3. Moreover, our study shows that the methylation patterns of these 2 enhancer-gene pairs can potentially be used as biomarkers to delineate CIMP from non-CIMP CRCs.

  12. Nutritional epigenetics

    Science.gov (United States)

    This chapter is intended to provide a timely overview of the current state of research at the intersection of nutrition and epigenetics. I begin by describing epigenetics and molecular mechanisms of eigenetic regulation, then highlight four classes of nutritional exposures currently being investiga...

  13. [Autism and epigenetics. A model of explanation for the understanding of the genesis in autism spectrum disorders].

    Science.gov (United States)

    Arberas, Claudia; Ruggieri, Víctor

    2013-01-01

    Autism spectrum disorders are characterized by impairment of social integration and language development and restricted interests. Autism spectrum disorders manifest during childhood and may have a varying clinical expression over the years related to different therapeutic approaches, behavior-modifying drugs, and environmental factors, among others. So far, the genetic alterations identified are not sufficient to explain the genesis of all these processes, as many of the mutations found are also present in unaffected individuals. Findings on the underlying biological and pathophysiological mechanisms of entities strongly associated with autism spectrum disorders, such as Rett, fragile X, Angelman, and fetal alcohol syndromes, point to the role of epigenetic changes in disorders of neurodevelopment. Epigenetic phenomena are normal biological processes necessary for cell and thus human life, especially related to embryonic development. Different phenomena that affect epigenetic processes (changes that change operation or expression of a gene, without modifying the DNA structure) have also been shown to be important in the genesis of neurodevelopmental disorders. Alterations in the epigenetic mechanism may be reversible, which may explain the variation in the autism phenotype over time. Here we analyze the normal epigenetic mechanisms, autism spectrum disorders, their association with specific entities associated with altered epigenetic mechanisms, and possible therapeutic approaches targeting these alterations.

  14. Epigenetic up-regulation of ribosome biogenesis and more aggressive phenotype triggered by the lack of the histone demethylase JHDM1B in mammary epithelial cells.

    Science.gov (United States)

    Galbiati, Alice; Penzo, Marianna; Bacalini, Maria Giulia; Onofrillo, Carmine; Guerrieri, Ania Naila; Garagnani, Paolo; Franceschi, Claudio; Treré, Davide; Montanaro, Lorenzo

    2017-06-06

    The alterations of ribosome biogenesis and protein synthesis play a direct role in the development of tumors. The accessibility and transcription of ribosomal genes is controlled at several levels, with their epigenetic regulation being one of the most important. Here we explored the JmjC domain-containing histone demethylase 1B (JHDM1B) function in the epigenetic control of rDNA transcription. Since JHDM1B is a negative regulator of gene transcription, we focused on the effects induced by JHDM1B knock-down (KD). We studied the consequences of stable inducible JHDM1B silencing in cell lines derived from transformed and untransformed mammary epithelial cells. In these cellular models, prolonged JHDM1B downregulation triggered a surge of 45S pre-rRNA transcription and processing, associated with a re-modulation of the H3K36me2 levels at rDNA loci and with changes in DNA methylation of specific CpG sites in rDNA genes. We also found that after JHDM1B KD, cells showed a higher ribosome content: which were engaged in mRNA translation. JHDM1B KD and the consequent stimulation of ribosomes biogenesis conferred more aggressive features to the tested cellular models, which acquired a greater clonogenic, staminal and invasive potential. Taken together, these data indicate that the reduction of JHDM1B leads to a more aggressive cellular phenotype in mammary gland cells, by virtue of its negative regulatory activity on ribosome biogenesis.

  15. Xenopatients 2.0: reprogramming the epigenetic landscapes of patient-derived cancer genomes.

    Science.gov (United States)

    Menendez, Javier A; Alarcón, Tomás; Corominas-Faja, Bruna; Cuyàs, Elisabet; López-Bonet, Eugeni; Martin, Angel G; Vellon, Luciano

    2014-01-01

    In the science-fiction thriller film Minority Report, a specialized police department called "PreCrime" apprehends criminals identified in advance based on foreknowledge provided by 3 genetically altered humans called "PreCogs". We propose that Yamanaka stem cell technology can be similarly used to (epi)genetically reprogram tumor cells obtained directly from cancer patients and create self-evolving personalized translational platforms to foresee the evolutionary trajectory of individual tumors. This strategy yields a large stem cell population and captures the cancer genome of an affected individual, i.e., the PreCog-induced pluripotent stem (iPS) cancer cells, which are immediately available for experimental manipulation, including pharmacological screening for personalized "stemotoxic" cancer drugs. The PreCog-iPS cancer cells will re-differentiate upon orthotopic injection into the corresponding target tissues of immunodeficient mice (i.e., the PreCrime-iPS mouse avatars), and this in vivo model will run through specific cancer stages to directly explore their biological properties for drug screening, diagnosis, and personalized treatment in individual patients. The PreCog/PreCrime-iPS approach can perform sets of comparisons to directly observe changes in the cancer-iPS cell line vs. a normal iPS cell line derived from the same human genetic background. Genome editing of PreCog-iPS cells could create translational platforms to directly investigate the link between genomic expression changes and cellular malignization that is largely free from genetic and epigenetic noise and provide proof-of-principle evidence for cutting-edge "chromosome therapies" aimed against cancer aneuploidy. We might infer the epigenetic marks that correct the tumorigenic nature of the reprogrammed cancer cell population and normalize the malignant phenotype in vivo. Genetically engineered models of conditionally reprogrammable mice to transiently express the Yamanaka stemness factors

  16. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion.

    Directory of Open Access Journals (Sweden)

    Koen J F Verhoeven

    Full Text Available Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various stresses was previously shown to heritably alter DNA methylation patterns. In this study we explore whether these induced changes are accompanied by heritable effects on offspring phenotypes. We observed effects of parental jasmonic acid treatment on offspring specific leaf area and on offspring interaction with a generalist herbivore; and of parental nutrient stress on offspring root-shoot biomass ratio, tissue P-content and leaf morphology. Some of the effects appeared to enhance offspring ability to cope with the same stresses that their parents experienced. Effects differed between apomictic genotypes and were not always consistently observed between different experiments, especially in the case of parental nutrient stress. While this context-dependency of the effects remains to be further clarified, the total set of results provides evidence for the existence of transgenerational effects in apomictic dandelions. Zebularine treatment affected the within-generation response to nutrient stress, pointing at a role of DNA methylation in phenotypic plasticity to nutrient environments. This study shows that stress exposure in apomictic dandelions can cause transgenerational phenotypic effects, in addition to previously demonstrated transgenerational DNA methylation effects.

  17. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion.

    Science.gov (United States)

    Verhoeven, Koen J F; van Gurp, Thomas P

    2012-01-01

    Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various stresses was previously shown to heritably alter DNA methylation patterns. In this study we explore whether these induced changes are accompanied by heritable effects on offspring phenotypes. We observed effects of parental jasmonic acid treatment on offspring specific leaf area and on offspring interaction with a generalist herbivore; and of parental nutrient stress on offspring root-shoot biomass ratio, tissue P-content and leaf morphology. Some of the effects appeared to enhance offspring ability to cope with the same stresses that their parents experienced. Effects differed between apomictic genotypes and were not always consistently observed between different experiments, especially in the case of parental nutrient stress. While this context-dependency of the effects remains to be further clarified, the total set of results provides evidence for the existence of transgenerational effects in apomictic dandelions. Zebularine treatment affected the within-generation response to nutrient stress, pointing at a role of DNA methylation in phenotypic plasticity to nutrient environments. This study shows that stress exposure in apomictic dandelions can cause transgenerational phenotypic effects, in addition to previously demonstrated transgenerational DNA methylation effects.

  18. Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype

    Directory of Open Access Journals (Sweden)

    Berry Nicholas B

    2008-11-01

    Full Text Available Abstract Aggressive epithelial ovarian cancer (EOC is genetically and epigenetically distinct from normal ovarian surface epithelial cells (OSE and early neoplasia. Co-expression of epithelial and mesenchymal markers in EOC suggests an involvement of epithelial-mesenchymal transition (EMT in cancer initiation and progression. This phenomenon is often associated with acquisition of a stem cell-like phenotype and chemoresistance that correlate with the specific gene expression patterns accompanying transformation, revealing a plasticity of the ovarian cancer cell genome during disease progression. Differential gene expressions between normal and transformed cells reflect the varying mechanisms of regulation including genetic changes like rearrangements within the genome, as well as epigenetic changes such as global genomic hypomethylation with localized promoter CpG island hypermethylation. The similarity of gene expression between ovarian cancer cells and the stem-like ovarian cancer initiating cells (OCIC are surprisingly also correlated with epigenetic mechanisms of gene regulation in normal stem cells. Both normal and cancer stem cells maintain genetic flexibility by co-placement of activating and/or repressive epigenetic modifications on histone H3. The co-occupancy of such opposing histone marks is believed to maintain gene flexibility and such bivalent histones have been described as being poised for transcriptional activation or epigenetic silencing. The involvement of both-microRNA (miRNA mediated epigenetic regulation, as well as epigenetic-induced changes in miRNA expression further highlight an additional complexity in cancer stem cell epigenomics. Recent advances in array-based whole-genome/epigenome analyses will continue to further unravel the genomes and epigenomes of cancer and cancer stem cells. In order to illuminate phenotypic signatures that delineate ovarian cancer from their associated cancer stem cells, a priority must lie

  19. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  20. Early life nutrition, epigenetics and programming of later life disease.

    Science.gov (United States)

    Vickers, Mark H

    2014-06-02

    The global pandemic of obesity and type 2 diabetes is often causally linked to marked changes in diet and lifestyle; namely marked increases in dietary intakes of high energy diets and concomitant reductions in physical activity levels. However, less attention has been paid to the role of developmental plasticity and alterations in phenotypic outcomes resulting from altered environmental conditions during the early life period. Human and experimental animal studies have highlighted the link between alterations in the early life environment and increased risk of obesity and metabolic disorders in later life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. In particular, the nutritional environment in which the fetus or infant develops influences the risk of metabolic disorders in offspring. The late onset of such diseases in response to earlier transient experiences has led to the suggestion that developmental programming may have an epigenetic component, as epigenetic marks such as DNA methylation or histone tail modifications could provide a persistent memory of earlier nutritional states. Moreover, evidence exists, at least from animal models, that such epigenetic programming should be viewed as a transgenerational phenomenon. However, the mechanisms by which early environmental insults can have long-term effects on offspring are relatively unclear. Thus far, these mechanisms include permanent structural changes to the organ caused by suboptimal levels of an important factor during a critical developmental period, changes in gene expression caused by epigenetic modifications (including DNA methylation, histone modification, and microRNA) and permanent changes in cellular ageing. A better understanding of the epigenetic basis of developmental programming and how these effects may be

  1. Early Life Nutrition, Epigenetics and Programming of Later Life Disease

    Directory of Open Access Journals (Sweden)

    Mark H. Vickers

    2014-06-01

    Full Text Available The global pandemic of obesity and type 2 diabetes is often causally linked to marked changes in diet and lifestyle; namely marked increases in dietary intakes of high energy diets and concomitant reductions in physical activity levels. However, less attention has been paid to the role of developmental plasticity and alterations in phenotypic outcomes resulting from altered environmental conditions during the early life period. Human and experimental animal studies have highlighted the link between alterations in the early life environment and increased risk of obesity and metabolic disorders in later life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. In particular, the nutritional environment in which the fetus or infant develops influences the risk of metabolic disorders in offspring. The late onset of such diseases in response to earlier transient experiences has led to the suggestion that developmental programming may have an epigenetic component, as epigenetic marks such as DNA methylation or histone tail modifications could provide a persistent memory of earlier nutritional states. Moreover, evidence exists, at least from animal models, that such epigenetic programming should be viewed as a transgenerational phenomenon. However, the mechanisms by which early environmental insults can have long-term effects on offspring are relatively unclear. Thus far, these mechanisms include permanent structural changes to the organ caused by suboptimal levels of an important factor during a critical developmental period, changes in gene expression caused by epigenetic modifications (including DNA methylation, histone modification, and microRNA and permanent changes in cellular ageing. A better understanding of the epigenetic basis of developmental programming and how

  2. Epigenetics: beyond genes

    CSIR Research Space (South Africa)

    Fossey, A

    2009-06-01

    Full Text Available in forestry breeding. Keywords Gene regulation; chromatin; histone code hyporthesis; RNA silencing; post transcriptional gene silencing; forestry. Introduction to epigenetic phenomena Most living organisms share a vast amount of genetic information... (Rapp and Wendel, 2005). Epigenetic phenomena pervade all aspects of cell proliferation and plant development and are often in conflict with Mendelian models of genetics (Grant-Downton and Dickinson, 2005). A key element in many epigenetic effects...

  3. Epigenetics and obesity

    OpenAIRE

    Stöger, Reinhard

    2008-01-01

    Common DNA sequence variants inadequately explain variability in fat mass among individuals. Abnormal body weights are characteristic of specific imprinted-gene disorders. However, the relevance of imprinted genes to our understanding of obesity among the general population is uncertain. Hitherto unidentified imprinted genes and epigenetic mosaicism are two of the challenges for this emerging field of epigenetics. Subtle epigenetic differences in imprinted genes and gene networks are likely t...

  4. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing?

    Science.gov (United States)

    Dusinska, Maria; Tulinska, Jana; El Yamani, Naouale; Kuricova, Miroslava; Liskova, Aurelia; Rollerova, Eva; Rundén-Pran, Elise; Smolkova, Bozena

    2017-11-01

    The unique properties of nanomaterials (NMs) are beneficial in numerous industrial and medical applications. However, they could also induce unintended effects. Thus, a proper strategy for toxicity testing is essential in human hazard and risk assessment. Toxicity can be tested in vivo and in vitro; in compliance with the 3Rs, alternative strategies for in vitro testing should be further developed for NMs. Robust, standardized methods are of great importance in nanotoxicology, with comprehensive material characterization and uptake as an integral part of the testing strategy. Oxidative stress has been shown to be an underlying mechanism of possible toxicity of NMs, causing both immunotoxicity and genotoxicity. For testing NMs in vitro, a battery of tests should be performed on cells of human origin, either cell lines or primary cells, in conditions as close as possible to an in vivo situation. Novel toxicity pathways, particularly epigenetic modification, should be assessed along with conventional toxicity testing methods. However, to initiate epigenetic toxicity screens for NM exposure, there is a need to better understand their adverse effects on the epigenome, to identify robust and reproducible causal links between exposure, epigenetic changes and adverse phenotypic endpoints, and to develop improved assays to monitor epigenetic toxicity. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Toward understanding of the role of reversibility of phenotypic switching in the evolution of resistance to therapy

    Science.gov (United States)

    Horvath, D.; Brutovsky, B.

    2018-06-01

    Reversibility of state transitions is intensively studied topic in many scientific disciplines over many years. In cell biology, it plays an important role in epigenetic variation of phenotypes, known as phenotypic plasticity. More interestingly, the cell state reversibility is probably crucial in the adaptation of population phenotypic heterogeneity to environmental fluctuations by evolving bet-hedging strategy, which might confer to cancer cells resistance to therapy. In this article, we propose a formalization of the evolution of highly reversible states in the environments of periodic variability. Two interrelated models of heterogeneous cell populations are proposed and their behavior is studied. The first model captures selection dynamics of the cell clones for the respective levels of phenotypic reversibility. The second model focuses on the interplay between reversibility and drug resistance in the particular case of cancer. Overall, our results show that the threshold dependencies are emergent features of the investigated model with eventual therapeutic relevance. Presented examples demonstrate importance of taking into account cell to cell heterogeneity within a system of clones with different reversibility quantified by appropriately chosen genetic and epigenetic entropy measures.

  6. Interplay of Inflammatory Mediators with Epigenetics and Cartilage Modifications in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Swarna Raman

    2018-03-01

    Full Text Available Osteoarthritis (OA, a degenerative disease of diarthrodial joints, is influenced by mechanical and inflammatory factors with aging, obesity, chronic injuries, and secondary diseases thought to be major factors driving the process of articular cartilage degeneration. Chondrocytes, the cellular component of cartilage, reside in an avascular environment and normally have limited potential to replicate. However, extrinsic factors such as injury to the joint or intrinsic alterations to the chondrocytes themselves can lead to an altered phenotype and development of OA. Synovial inflammation is also a pivotal element of the osteoarthritic, degenerative process: influx of pro-inflammatory cytokines and production of matrix metalloproteinases accelerate advanced cellular processes such as synovitis and cartilage damage. As well as a genetic input, recent data have highlighted epigenetic factors as contributing to disease. Studies conducted over the last decade have focused on three key aspects in OA; inflammation and the immune response, genome-wide association studies that have identified important genes undergoing epigenetic modifications, and finally how chondrocytes transform in their function during development and disease. Data highlighted here have identified critical inflammatory genes involved in OA and how these factors impact chondrocyte hypertrophy in the disease. This review also addresses key inflammatory factors in synovial inflammation, epigenetics, and chondrocyte fate, and how agents that inhibit epigenetic mechanisms like DNA methylation and histone modifications could aid in development of long-term treatment strategies for the disease.

  7. Epigenetic modifications in prostate cancer.

    Science.gov (United States)

    Ngollo, Marjolaine; Dagdemir, Aslihan; Karsli-Ceppioglu, Seher; Judes, Gaelle; Pajon, Amaury; Penault-Llorca, Frederique; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique J

    2014-01-01

    Prostate cancer is the most common cancer in men and the second leading cause of cancer deaths in men in France. Apart from the genetic alterations in prostate cancer, epigenetics modifications are involved in the development and progression of this disease. Epigenetic events are the main cause in gene regulation and the three most epigenetic mechanisms studied include DNA methylation, histone modifications and microRNA expression. In this review, we summarized epigenetic mechanisms in prostate cancer. Epigenetic drugs that inhibit DNA methylation, histone methylation and histone acetylation might be able to reactivate silenced gene expression in prostate cancer. However, further understanding of interactions of these enzymes and their effects on transcription regulation in prostate cancer is needed and has become a priority in biomedical research. In this study, we summed up epigenetic changes with emphasis on pharmacologic epigenetic target agents.

  8. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function......). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  9. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    ). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially......Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  10. Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state.

    Science.gov (United States)

    Lim, Yat-Yuen; Wright, Josephine A; Attema, Joanne L; Gregory, Philip A; Bert, Andrew G; Smith, Eric; Thomas, Daniel; Lopez, Angel F; Drew, Paul A; Khew-Goodall, Yeesim; Goodall, Gregory J

    2013-05-15

    The miR-200 family is a key regulator of the epithelial-mesenchymal transition, however, its role in controlling the transition between cancer stem-cell-like and non-stem-cell-like phenotypes is not well understood. We utilized immortalized human mammary epithelial (HMLE) cells to investigate the regulation of the miR-200 family during their conversion to a stem-like phenotype. HMLE cells were found to be capable of spontaneous conversion from a non-stem to a stem-like phenotype and this conversion was accompanied by the loss of miR-200 expression. Stem-like cell fractions isolated from metastatic breast cancers also displayed loss of miR-200 indicating similar molecular changes may occur during breast cancer progression. The phenotypic change observed in HMLE cells was directly controlled by miR-200 because restoration of its expression decreased stem-like properties while promoting a transition to an epithelial phenotype. Investigation of the mechanisms controlling miR-200 expression revealed both DNA methylation and histone modifications were significantly altered in the stem-like and non-stem phenotypes. In particular, in the stem-like phenotype, the miR-200b-200a-429 cluster was silenced primarily through polycomb group-mediated histone modifications whereas the miR-200c-141 cluster was repressed by DNA methylation. These results indicate that the miR-200 family plays a crucial role in the transition between stem-like and non-stem phenotypes and that distinct epigenetic-based mechanisms regulate each miR-200 gene in this process. Therapy targeted against miR-200 family members and epigenetic modifications might therefore be applicable to breast cancer.

  11. Scrutinizing the epigenetics revolution

    Science.gov (United States)

    Meloni, Maurizio; Testa, Giuseppe

    2014-01-01

    Epigenetics is one of the most rapidly expanding fields in the life sciences. Its rise is frequently framed as a revolutionary turn that heralds a new epoch both for gene-based epistemology and for the wider discourse on life that pervades knowledge-intensive societies of the molecular age. The fundamentals of this revolution remain however to be scrutinized, and indeed the very contours of what counts as ‘epigenetic' are often blurred. This is reflected also in the mounting discourse on the societal implications of epigenetics, in which vast expectations coexist with significant uncertainty about what aspects of this science are most relevant for politics or policy alike. This is therefore a suitable time to reflect on the directions that social theory could most productively take in the scrutiny of this revolution. Here we take this opportunity in both its scholarly and normative dimension, that is, proposing a roadmap for social theorizing on epigenetics that does not shy away from, and indeed hopefully guides, the framing of its most socially relevant outputs. To this end, we start with an epistemological reappraisal of epigenetic discourse that valorizes the blurring of meanings as a critical asset for the field and privileged analytical entry point. We then propose three paths of investigation. The first looks at the structuring elements of controversies and visions around epigenetics. The second probes the mutual constitution between the epigenetic reordering of living phenomena and the normative settlements that orient individual and collective responsibilities. The third highlights the material import of epigenetics and the molecularization of culture that it mediates. We suggest that these complementary strands provide both an epistemically and socially self-reflective framework to advance the study of epigenetics as a molecular juncture between nature and nurture and thus as the new critical frontier in the social studies of the life sciences. PMID

  12. Epigenetics of reproductive infertility.

    Science.gov (United States)

    Das, Laxmidhar; Parbin, Sabnam; Pradhan, Nibedita; Kausar, Chahat; Patra, Samir K

    2017-06-01

    Infertility is a complex pathophysiological condition. It may caused by specific or multiple physical and physiological factors, including abnormalities in homeostasis, hormonal imbalances and genetic alterations. In recent times various studies implicated that, aberrant epigenetic mechanisms are associated with reproductive infertility. There might be transgenerational effects associated with epigenetic modifications of gametes and studies suggest the importance of alterations in epigenetic modification at early and late stages of gametogenesis. To determine the causes of infertility it is necessary to understand the altered epigenetic modifications of associated gene and mechanisms involved therein. This review is devoted to elucidate the recent mechanistic advances in regulation of genes by epigenetic modification and emphasizes their possible role related to reproductive infertility. It includes environmental, nutritional, hormonal and physiological factors and influence of internal structural architecture of chromatin nucleosomes affecting DNA and histone modifications in both male and female gametes, early embryogenesis and offspring. Finally, we would like to emphasize that research on human infertility by gene knock out of epigenetic modifiers genes must be relied upon animal models.

  13. Epigenetic regulation in dental pulp inflammation

    Science.gov (United States)

    Hui, T; Wang, C; Chen, D; Zheng, L; Huang, D; Ye, L

    2016-01-01

    Dental caries, trauma, and other possible factors could lead to injury of the dental pulp. Dental infection could result in immune and inflammatory responses mediated by molecular and cellular events and tissue breakdown. The inflammatory response of dental pulp could be regulated by genetic and epigenetic events. Epigenetic modifications play a fundamental role in gene expression. The epigenetic events might play critical roles in the inflammatory process of dental pulp injury. Major epigenetic events include methylation and acetylation of histones and regulatory factors, DNA methylation, and small non-coding RNAs. Infections and other environmental factors have profound effects on epigenetic modifications and trigger diseases. Despite growing evidences of literatures addressing the role of epigenetics in the field of medicine and biology, very little is known about the epigenetic pathways involved in dental pulp inflammation. This review summarized the current knowledge about epigenetic mechanisms during dental pulp inflammation. Progress in studies of epigenetic alterations during inflammatory response would provide opportunities for the development of efficient medications of epigenetic therapy for pulpitis. PMID:26901577

  14. Phenotypic alteration of CD8+ T cells in chronic lymphocytic leukemia is associated with epigenetic reprogramming.

    Science.gov (United States)

    Wu, Jiazhu; Xu, Xiaojing; Lee, Eun-Joon; Shull, Austin Y; Pei, Lirong; Awan, Farrukh; Wang, Xiaoling; Choi, Jeong-Hyeon; Deng, Libin; Xin, Hong-Bo; Zhong, Wenxun; Liang, Jinhua; Miao, Yi; Wu, Yujie; Fan, Lei; Li, Jianyong; Xu, Wei; Shi, Huidong

    2016-06-28

    Immunosuppression is a prevalent clinical feature in chronic lymphocytic leukemia (CLL) patients, with many patients demonstrating increased susceptibility to infections as well as increased failure of an antitumor immune response. However, much is currently not understood regarding the precise mechanisms that attribute to this immunosuppressive phenotype in CLL. To provide further clarity to this particular phenomenon, we analyzed the T-cell profile of CLL patient samples within a large cohort and observed that patients with an inverted CD4/CD8 ratio had a shorter time to first treatment as well as overall survival. These observations coincided with higher expression of the immune checkpoint receptor PD-1 in CLL patient CD8+ T cells when compared to age-matched healthy donors. Interestingly, we discovered that increased PD-1 expression in CD8+ T cells corresponds with decreased DNA methylation levels in a distal upstream locus of the PD-1 gene PDCD1. Further analysis using luciferase reporter assays suggests that the identified PDCD1 distal upstream region acts as an enhancer for PDCD1 transcription and this region becomes demethylated during activation of naïve CD8+ T cells by anti-CD3/anti-CD28 antibodies and IL2. Finally, we conducted a genome-wide DNA methylation analysis comparing CD8+ T cells from CLL patients against healthy donors and identified additional differentially methylated genes with known immune regulatory functions including CCR6 and KLRG1. Taken together, our findings reveal the occurrence of epigenetic reprogramming taking place within CLL patient CD8+ T cells and highlight the potential mechanism of how immunosuppression is accomplished in CLL.

  15. Epigenetics: a new frontier in dentistry.

    Science.gov (United States)

    Williams, S D; Hughes, T E; Adler, C J; Brook, A H; Townsend, G C

    2014-06-01

    In 2007, only four years after the completion of the Human Genome Project, the journal Science announced that epigenetics was the 'breakthrough of the year'. Time magazine placed it second in the top 10 discoveries of 2009. While our genetic code (i.e. our DNA) contains all of the information to produce the elements we require to function, our epigenetic code determines when and where genes in the genetic code are expressed. Without the epigenetic code, the genetic code is like an orchestra without a conductor. Although there is now a substantial amount of published research on epigenetics in medicine and biology, epigenetics in dental research is in its infancy. However, epigenetics promises to become increasingly relevant to dentistry because of the role it plays in gene expression during development and subsequently potentially influencing oral disease susceptibility. This paper provides a review of the field of epigenetics aimed specifically at oral health professionals. It defines epigenetics, addresses the underlying concepts and provides details about specific epigenetic molecular mechanisms. Further, we discuss some of the key areas where epigenetics is implicated, and review the literature on epigenetics research in dentistry, including its relevance to clinical disciplines. This review considers some implications of epigenetics for the future of dental practice, including a 'personalized medicine' approach to the management of common oral diseases. © 2014 Australian Dental Association.

  16. Towards a systemic paradigm in carcinogenesis: linking epigenetics and genetics.

    Science.gov (United States)

    Burgio, Ernesto; Migliore, Lucia

    2015-04-01

    For at least 30 years cancer has been defined as a genetic disease and explained by the so-called somatic mutation theory (SMT), which has dominated the carcinogenesis field. Criticism of the SMT has recently greatly increased, although still not enough to force all SMT supporters to recognize its limits. Various researchers point out that cancer appears to be a complex process concerning a whole tissue; and that genomic mutations, although variably deleterious and unpredictably important in determining the establishment of the neoplastic phenotype, are not the primary origin for a malignant neoplasia. We attempt to describe the inadequacies of the SMT and demonstrate that epigenetics is a more logical cause of carcinogenesis. Many previous models of carcinogenesis fall into two classes: (i) in which some biological changes inside cells alone lead to malignancy; and (ii) requiring changes in stroma/extracellular matrix. We try to make clear that in the (ii) model genomic instability is induced by persistent signals coming from the microenvironment, provoking epigenetic and genetic modifications in tissue stem cells that can lead to cancer. In this perspective, stochastic mutations of DNA are a critical by-product rather then the primary cause of cancer. Indirect support for such model of carcinogenesis comes from the in vitro and vivo experiments showing apparent 'reversion' of cancer phenotypes obtained via physiological factors of cellular differentiation (cytokines and other signaling molecules) or drugs, even if the key mutations are not 'reversed'.

  17. Is Glioblastoma an Epigenetic Malignancy?

    International Nuclear Information System (INIS)

    Maleszewska, Marta; Kaminska, Bozena

    2013-01-01

    Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens

  18. Epigenetics in women's health care.

    Science.gov (United States)

    Pozharny, Yevgeniya; Lambertini, Luca; Clunie, Garfield; Ferrara, Lauren; Lee, Men-Jean

    2010-01-01

    Epigenetics refers to structural modifications to genes that do not change the nucleotide sequence itself but instead control and regulate gene expression. DNA methylation, histone modification, and RNA regulation are some of the mechanisms involved in epigenetic modification. Epigenetic changes are believed to be a result of changes in an organism's environment that result in fixed and permanent changes in most differentiated cells. Some environmental changes that have been linked to epigenetic changes include starvation, folic acid, and various chemical exposures. There are periods in an organism's life cycle in which the organism is particularly susceptible to epigenetic influences; these include fertilization, gametogenesis, and early embryo development. These are also windows of opportunity for interventions during the reproductive life cycle of women to improve maternal-child health. New data suggest that epigenetic influences might be involved in the regulation of fetal development and the pathophysiology of adult diseases such as cancer, diabetes, obesity, and neurodevelopmental disorders. Various epigenetic mechanisms may also be involved in the pathogenesis of preeclampsia and intrauterine growth restriction. Additionally, environmental exposures are being held responsible for causing epigenetic changes that lead to a disease process. Exposure to heavy metals, bioflavonoids, and endocrine disruptors, such as bisphenol A and phthalates, has been shown to affect the epigenetic memory of an organism. Their long-term effects are unclear at this point, but many ongoing studies are attempting to elucidate the pathophysiological effects of such gene-environment interactions. (c) 2010 Mount Sinai School of Medicine.

  19. Epigenetic Regulation of Adipokines

    Directory of Open Access Journals (Sweden)

    Tho X. Pham

    2017-08-01

    Full Text Available Adipose tissue expansion in obesity leads to changes in the expression of adipokines, adipocyte-specific hormones that can regulate whole body energy metabolism. Epigenetic regulation of gene expression is a mechanism by which cells can alter gene expression through the modifications of DNA and histones. Epigenetic mechanisms, such as DNA methylation and histone modifications, are intimately tied to energy metabolism due to their dependence on metabolic intermediates such as S-adenosylmethionine and acetyl-CoA. Altered expression of adipokines in obesity may be due to epigenetic changes. The goal of this review is to highlight current knowledge of epigenetic regulation of adipokines.

  20. Epigenetics and obesity.

    Science.gov (United States)

    Campión, Javier; Milagro, Fermin; Martínez, J Alfredo

    2010-01-01

    The etiology of obesity is multifactorial, involving complex interactions among the genetic makeup, neuroendocrine status, fetal programming, and different unhealthy environmental factors, such as sedentarism or inadequate dietary habits. Among the different mechanisms causing obesity, epigenetics, defined as the study of heritable changes in gene expression that occur without a change in the DNA sequence, has emerged as a very important determinant. Experimental evidence concerning dietary factors influencing obesity development through epigenetic mechanisms has been described. Thus, identification of those individuals who present with changes in DNA methylation profiles, certain histone modifications, or other epigenetically related processes could help to predict their susceptibility to gain or lose weight. Indeed, research concerning epigenetic mechanisms affecting weight homeostasis may play a role in the prevention of excessive fat deposition, the prediction of the most appropriate weight reduction plan, and the implementation of newer therapeutic approaches. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives.

    Science.gov (United States)

    Vogt, Gunter

    2018-03-01

    In the last 15 years, considerable attempts have been undertaken to develop the obligately parthenogenetic marbled crayfish Procambarus virginalis as a new model in biology. Its main advantage is the production of large numbers of offspring that are genetically identical to the mother, making this crustacean particularly suitable for research in epigenetics. Now, a draft genome, transcriptome and genome-wide methylome are available opening new windows for research. In this article, I summarize the biological advantages and genomic and epigenetic features of marbled crayfish and, based on first promising data, discuss what this new model could contribute to answering of ''big'' biological questions. Genome mining is expected to reveal new insights into the genetic specificities of decapod crustaceans, the genetic basis of arthropod reproduction, moulting and immunity, and more general topics such as the genetic underpinning of adaptation to fresh water, omnivory, biomineralization, sexual system change, behavioural variation, clonal genome evolution, and resistance to cancer. Epigenetic investigations with the marbled crayfish can help clarifying the role of epigenetic mechanisms in gene regulation, tissue specification, adult stem cell regulation, cell ageing, organ regeneration and disease susceptibility. Marbled crayfish is further suitable to elucidate the relationship between genetic and epigenetic variation, the transgenerational inheritance of epigenetic signatures and the contribution of epigenetic phenotype variation to the establishment of social hierarchies, environmental adaptation and speciation. These issues can be tackled by experiments with highly standardized laboratory lineages, comparison of differently adapted wild populations and the generation of genetically and epigenetically edited strains.

  2. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khin, Sann Sanda [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Pathology Research Unit, Department of Medical Research (Central Myanmar), Naypyitaw, Union of (Myanmar); Kitazawa, Riko [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Haraguchi, Ryuma [Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Mori, Kiyoshi [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Kitazawa, Sohei, E-mail: kitazawa@m.ehime-u.ac.jp [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan)

    2011-03-03

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  3. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    International Nuclear Information System (INIS)

    Khin, Sann Sanda; Kitazawa, Riko; Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo; Haraguchi, Ryuma; Mori, Kiyoshi; Kitazawa, Sohei

    2011-01-01

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression

  4. Epigenetics of autism spectrum disorders.

    Science.gov (United States)

    Schanen, N Carolyn

    2006-10-15

    The autism spectrum disorders (ASD) comprise a complex group of behaviorally related disorders that are primarily genetic in origin. Involvement of epigenetic regulatory mechanisms in the pathogenesis of ASD has been suggested by the occurrence of ASD in patients with disorders arising from epigenetic mutations (fragile X syndrome) or that involve key epigenetic regulatory factors (Rett syndrome). Moreover, the most common recurrent cytogenetic abnormalities in ASD involve maternally derived duplications of the imprinted domain on chromosome 15q11-13. Thus, parent of origin effects on sharing and linkage to imprinted regions on chromosomes 15q and 7q suggest that these regions warrant specific examination from an epigenetic perspective, particularly because epigenetic modifications do not change the primary genomic sequence, allowing risk epialleles to evade detection using standard screening strategies. This review examines the potential role of epigenetic factors in the etiology of ASD.

  5. Epigenetics in Cancer: A Hematological Perspective.

    Directory of Open Access Journals (Sweden)

    Maximilian Stahl

    2016-10-01

    Full Text Available For several decades, we have known that epigenetic regulation is disrupted in cancer. Recently, an increasing body of data suggests epigenetics might be an intersection of current cancer research trends: next generation sequencing, immunology, metabolomics, and cell aging. The new emphasis on epigenetics is also related to the increasing production of drugs capable of interfering with epigenetic mechanisms and able to trigger clinical responses in even advanced phase patients. In this review, we will use myeloid malignancies as proof of concept examples of how epigenetic mechanisms can trigger or promote oncogenesis. We will also show how epigenetic mechanisms are related to genetic aberrations, and how they affect other systems, like immune response. Finally, we will show how we can try to influence the fate of cancer cells with epigenetic therapy.

  6. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  7. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    International Nuclear Information System (INIS)

    Jensen, Taylor J.; Wozniak, Ryan J.; Eblin, Kylee E.; Wnek, Sean M.; Gandolfi, A. Jay; Futscher, Bernard W.

    2009-01-01

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation

  8. The political implications of epigenetics.

    Science.gov (United States)

    Robison, Shea K

    2016-01-01

    Epigenetics, which is just beginning to attract public attention and policy discussion, challenges conventional understanding of gene-environment interaction and intergenerational inheritance and perhaps much more besides. Does epigenetics challenge modern political ideologies? I analyzed the narratives of obesity and epigenetics recently published in the more liberal New York Times and the more conservative Wall Street Journal. For the years 2010 through 2014, 50 articles on obesity and 29 articles on epigenetics were identified, and elements in their causal narratives were quantitatively analyzed using a well described narrative policy framework. The narratives on obesity aligned with the two newspapers' reputed ideologies. However, the narratives on epigenetics aligned with neither ideology but freely mixed liberal and conservative elements. This small study may serve as a starting point for broader studies of epigenetics as it comes to affect political ideologies and, in turn, public policies. The narrative mix reported here could yet prove vulnerable to ideological capture, or, more optimistically, could portend the emergence of a "third-way" narrative using epigenetics to question atomistic individualism and allowing for less divisiveness in public-health domains such as obesity.

  9. The danger of epigenetics misconceptions (epigenetics and stuff…).

    Science.gov (United States)

    Georgel, Philippe T

    2015-12-01

    Within the past two decades, the fields of chromatin structure and function and transcription regulation research started to fuse and overlap, as evidence mounted to support a very strong regulatory role in gene expression that was associated with histone post-translational modifications, DNA methylation, as well as various chromatin-associated proteins (the pillars of the "Epigenetics" building). The fusion and convergence of these complementary fields is now often simply referred to as "Epigenetics". During these same 20 years, numerous new research groups have started to recognize the importance of chromatin composition, conformation, and its plasticity. However, as the field started to grow exponentially, its growth came with the spreading of several important misconceptions, which have unfortunately led to improper or hasty conclusions. The goal of this short "opinion" piece is to attempt to minimize future misinterpretations of experimental results and ensure that the right sets of experiment are used to reach the proper conclusion, at least as far as epigenetic mechanisms are concerned.

  10. Genetic and epigenetic variants influencing the development of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Li, Yu-Yuan

    2012-12-07

    Nonalcoholic fatty liver disease (NAFLD) is common worldwide. The importance of genetic and epigenetic changes in etiology and pathogenesis of NAFLD has been increasingly recognized. However, the exact mechanism is largely unknown. A large number of single nucleotide polymorphisms (SNPs) related to NAFLD has been documented by candidate gene studies (CGSs). Among these genes, peroxisome proliferatoractivated receptor-γ, adiponectin, leptin and tumor necrosis factor-α were frequently reported. Since the introduction of genome-wide association studies (GWASs), there have been significant advances in our understanding of genomic variations of NAFLD. Patatin-like phospholipase domain containing family member A3 (PNPLA3, SNP rs738409, encoding I148M), also termed adiponutrin, has caught most attention. The evidence that PNPLA3 is associated with increased hepatic fat levels and hepatic inflammation has been validated by a series of studies. Epigenetic modification refers to phenotypic changes caused by an adaptive mechanism unrelated to alteration of primary DNA sequences. Epigenetic regulation mainly includes microRNAs (miRs), DNA methylation, histone modifications and ubiquitination, among which miRs are studied most extensively. miRs are small natural single stranded RNA molecules regulating mRNA degradation or translation inhibition, subsequently altering protein expression of target genes. The miR-122, a highly abundant miR accounting for nearly 70% of all miRs in the liver, is significantly under-expressed in NAFLD subjects. Inhibition of miR-122 with an antisense oligonucleotide results in decreased mRNA expression of lipogenic genes and improvement of liver steatosis. The investigation into epigenetic involvement in NAFLD pathogenesis is just at the beginning and needs to be refined. This review summarizes the roles of genetics and epigenetics in the development of NAFLD. The progress made in this field may provide novel diagnostic biomarkers and therapeutic

  11. Epigenetics of Autism Spectrum Disorder.

    Science.gov (United States)

    Siu, Michelle T; Weksberg, Rosanna

    2017-01-01

    Autism spectrum disorder (ASD), one of the most common childhood neurodevelopmental disorders (NDDs), is diagnosed in 1 of every 68 children. ASD is incredibly heterogeneous both clinically and aetiologically. The etiopathogenesis of ASD is known to be complex, including genetic, environmental and epigenetic factors. Normal epigenetic marks modifiable by both genetics and environmental exposures can result in epigenetic alterations that disrupt the regulation of gene expression, negatively impacting biological pathways important for brain development. In this chapter we aim to summarize some of the important literature that supports a role for epigenetics in the underlying molecular mechanism of ASD. We provide evidence from work in genetics, from environmental exposures and finally from more recent studies aimed at directly determining ASD-specific epigenetic patterns, focusing mainly on DNA methylation (DNAm). Finally, we briefly discuss some of the implications of current research on potential epigenetic targets for therapeutics and novel avenues for future work.

  12. Conference Scene: epigenetics eh! The first formal meeting of the Canadian epigenetics community.

    Science.gov (United States)

    Underhill, Alan; Hendzel, Michael J

    2011-08-01

    In recognition of Canada's longstanding interest in epigenetics - and a particular linguistic interjection - the inaugural 'Epigenetics, Eh!' conference was held between 4-7 May 2011 in London, Ontario. The meeting struck an excellent balance between Canadian and international leaders in epigenetic research while also providing a venue to showcase up-and-coming talent. Almost without exception, presentations touched on the wide-ranging and severe consequences of epigenetic dysfunction, as well as current and emerging therapeutic opportunities. While gaining a deeper understanding of how DNA and histone modifications, together with multiple classes of ncRNAs, act to functionalize our genome, participants were also provided with a glimpse of the astounding complexity of chromatin structure, challenging existing dogma.

  13. Epigenetic Alterations in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Johannes eGräff

    2015-12-01

    Full Text Available Alzheimer’s disease (AD is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.

  14. Epigenetic Alterations in Alzheimer's Disease.

    Science.gov (United States)

    Sanchez-Mut, Jose V; Gräff, Johannes

    2015-01-01

    Alzheimer's disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.

  15. Epigenetic Determinism in Science and Society.

    Science.gov (United States)

    Waggoner, Miranda R; Uller, Tobias

    2015-04-03

    The epigenetic "revolution" in science cuts across many disciplines, and it is now one of the fastest growing research areas in biology. Increasingly, claims are made that epigenetics research represents a move away from the genetic determinism that has been prominent both in biological research and in understandings of the impact of biology on society. We discuss to what extent an epigenetic framework actually supports these claims. We show that, in contrast to the received view, epigenetics research is often couched in language as deterministic as genetics research in both science and the popular press. We engage the rapidly emerging conversation about the impact of epigenetics on public discourse and scientific practice, and we contend that the notion of epigenetic determinism - or the belief that epigenetic mechanisms determine the expression of human traits and behaviors - matters for understandings of the influence of biology and society on population health.

  16. Engrampigenetics: Epigenetics of engram memory cells.

    Science.gov (United States)

    Ripoli, Cristian

    2017-05-15

    For long time, the epidemiology of late-onset sporadic Alzheimer's disease (AD) risk factors has centered on adult life-style. Recent studies have, instead, focused on the role of early life experiences in progression of such disease especially in the context of prenatal and postnatal life. Although no single unfavorable environmental event has been shown to be neither necessary nor sufficient for AD development, it is possible that the sum of several environmentally induced effects, over time, contribute to its pathophysiology through epigenetic mechanisms. Indeed, epigenetic changes are influenced by environmental factors and have been proposed to play a role in multifactorial pathologies such as AD. At the same time, recent findings suggest that epigenetic mechanisms are one method that neurons use to translate transient stimuli into stable memories. Thus, the characteristics of epigenetics being a critical link between the environment and genes and playing a crucial role in memory formation make candidate epigenetic mechanisms a natural substrate for AD research. Indeed, independent groups have reported several epigenetically dysregulated genes in AD models; however, the role of epigenetic mechanisms in AD has remained elusive owing to contradictory results. Here, I propose that restricting the analysis of epigenetic changes specifically to subpopulations of neurons (namely, engram memory cells) might be helpful in understanding the role of the epigenetic process in the memory-related specific epigenetic code and might constitute a new template for therapeutic interventions against AD. Copyright © 2016. Published by Elsevier B.V.

  17. Bioinformatics Tools for Genome-Wide Epigenetic Research.

    Science.gov (United States)

    Angarica, Vladimir Espinosa; Del Sol, Antonio

    2017-01-01

    Epigenetics play a central role in the regulation of many important cellular processes, and dysregulations at the epigenetic level could be the source of serious pathologies, such as neurological disorders affecting brain development, neurodegeneration, and intellectual disability. Despite significant technological advances for epigenetic profiling, there is still a need for a systematic understanding of how epigenetics shapes cellular circuitry, and disease pathogenesis. The development of accurate computational approaches for analyzing complex epigenetic profiles is essential for disentangling the mechanisms underlying cellular development, and the intricate interaction networks determining and sensing chromatin modifications and DNA methylation to control gene expression. In this chapter, we review the recent advances in the field of "computational epigenetics," including computational methods for processing different types of epigenetic data, prediction of chromatin states, and study of protein dynamics. We also discuss how "computational epigenetics" has complemented the fast growth in the generation of epigenetic data for uncovering the main differences and similarities at the epigenetic level between individuals and the mechanisms underlying disease onset and progression.

  18. ["Atypical" method for understanding dementia. How can studying epigenetics contribute?].

    Science.gov (United States)

    Iwata, Atsushi

    2011-11-01

    The pathological hallmark of neurodegeneration is presence of intra- and extra neuronal inclusion bodies such as Lewy bodies in Parkinson's disease, senile plaques and neurofibrillary tangles in Alzheimer's disease. These are consisted of aggregated conformationally abnormal proteins. The precise mechanism of aggregation remains unknown, but increased expression of aggregation-prone proteins can lead to their aggregation. For example, in Down syndrome, duplication of the 21(st) chromosome, which contains the amyloid beta precursor protein (APP) gene, leads to accumulation of amyloid beta and Alzheimer's disease pathology and multiplication of APP gene is shown to be the cause of familial Alzheimer's disease. Moreover, in rare cases of PD, duplication or triplication of SNCA gene leads to alpha-synuclein accumulation, with triplication producing a more severe phenotype than duplication, suggesting that SNCA expression level determines the severity of the pathology. Lastly, animal models of neurodegenerative disorders are generated by over-expression of causal genes, further supporting the conclusion that increased gene expression is related to pathogenesis. Additional evidence indicates that SNCA promoter polymorphisms increases alpha-synuclein expression and increases susceptibility to sporadic PD. In addition to promoter polymorphisms, epigenetic modification can alter downstream gene expression. Epigenetic regulation includes histone modification and DNA methylation, of which CpG island methylation can be gene-specific; in several different cancers, CpG methylation inhibits binding of the transcription machinery, causing silencing of a specific oncogene, which leads to carcinogenesis. In central nervous system disorders, CpG methylation has been associated with psychiatric disorders, such as autism and schizophrenia. We found several cases of Parkinson's disease with epigenetic abnormality in SNCA gene. Thus, we believe that studying epigenetics can provide

  19. The role of epigenetic modifiers HDAC1 and DNMT1 in murine brain development and the impact of HDAC1 on tumorigenesis

    International Nuclear Information System (INIS)

    Lagger, S.

    2009-01-01

    During the last decades, epigenetics has expanded the basic information defined by the DNA code and has significantly contributed to our current understanding in essential cellular processes and embryonic development. Epigenetic modifications, such as DNA methylation and reversible acetylation, methylation or phosphorylation of histones alter the highly flexible chromatin structure, thereby resulting in changes of overall eukaryotic gene expression. Disturbances of epigenetic modification equilibriums have been associated with the emergence of a variety of diseases and cancer. The aim of the following work was to clarify the contribution of the epigenetic modification proteins histone deacetylase 1 (HDAC1) and DNA methyltransferase 1 (DNMT1) in mouse brain development and in a murine teratoma tumor model system. In the first part of this thesis, we conditionally deleted HDAC1 in the mouse central nervous system. Interestingly, loss of HDAC1 led to no obvious neurological phenotype. To some extent, the lack of a phenotype could be explained by the fact that HDAC2 was found reactivated in HDAC1 deficient glia cells. In the second part, we investigated the loss of DNMT1 in the mouse central nervous system. In contrast to earlier findings, our DNMT1 deletion led to a severe postnatal neurodevelopmental phenotype, accompanied by a complete arrest in brain development and overrepresentation of astrocytic glia cells. Strikingly, we detected a block in oligodendrocyte differentiation and the failure of DNMT1 deficient brains and spinal cords to be myelinated. In summary, our central nervous system-specific DNMT1 knockout mice revealed similarities to the human neurodevelopmental disease Rett syndrome, which is caused by a mutation of a DNA methyl-binding protein. Finally, we investigated the specific contribution of HDAC1 to tumor formation in an experimental mouse teratoma system. We unexpectedly found that tumors derived from HDAC1 knockout embryonic stem cells resembled

  20. Early life trauma, depression and the glucocorticoid receptor gene--an epigenetic perspective.

    Science.gov (United States)

    Smart, C; Strathdee, G; Watson, S; Murgatroyd, C; McAllister-Williams, R H

    2015-12-01

    Hopes to identify genetic susceptibility loci accounting for the heritability seen in unipolar depression have not been fully realized. Family history remains the 'gold standard' for both risk stratification and prognosis in complex phenotypes such as depression. Meanwhile, the physiological mechanisms underlying life-event triggers for depression remain opaque. Epigenetics, comprising heritable changes in gene expression other than alterations of the nucleotide sequence, may offer a way to deepen our understanding of the aetiology and pathophysiology of unipolar depression and optimize treatments. A heuristic target for exploring the relevance of epigenetic changes in unipolar depression is the hypothalamic-pituitary-adrenal (HPA) axis. The glucocorticoid receptor (GR) gene (NR3C1) has been found to be susceptible to epigenetic modification, specifically DNA methylation, in the context of environmental stress such as early life trauma, which is an established risk for depression later in life. In this paper we discuss the progress that has been made by studies that have investigated the relationship between depression, early trauma, the HPA axis and the NR3C1 gene. Difficulties with the design of these studies are also explored. Future efforts will need to comprehensively address epigenetic natural histories at the population, tissue, cell and gene levels. The complex interactions between the epigenome, genome and environment, as well as ongoing nosological difficulties, also pose significant challenges. The work that has been done so far is nevertheless encouraging and suggests potential mechanistic and biomarker roles for differential DNA methylation patterns in NR3C1 as well as novel therapeutic targets.

  1. A symbiotic liaison between the genetic and epigenetic code

    Directory of Open Access Journals (Sweden)

    Holger eHeyn

    2014-05-01

    Full Text Available With rapid advances in sequencing technologies, we are undergoing a paradigm shift from hypothesis- to data-driven research. Genome-wide profiling efforts gave informative insights into biological processes; however, considering the wealth of variation, the major challenge remains their meaningful interpretation. In particular sequence variation in non-coding contexts is often challenging to interpret. Here, data integration approaches for the identification of functional genetic variability represent a likely solution. Exemplary, functional linkage analysis integrating genotype and expression data determined regulatory quantitative trait loci (QTL and proposed causal relationships. In addition to gene expression, epigenetic regulation and specifically DNA methylation was established as highly valuable surrogate mark for functional variance of the genetic code. Epigenetic modification served as powerful mediator trait to elucidate mechanisms forming phenotypes in health and disease. Particularly, integrative studies of genetic and DNA methylation data yet guided interpretation strategies of risk genotypes, but also proved their value for physiological traits, such as natural human variation and aging. This Perspective seeks to illustrate the power of data integration in the genomic era exemplified by DNA methylation quantitative trait loci (meQTLs. However, the model is further extendable to virtually all traceable molecular traits.

  2. Genotype and phenotype in Klinefelter syndrome - impact of androgen receptor polymorphism and skewed X inactivation

    DEFF Research Database (Denmark)

    Bojesen, A; Hertz, J M; Gravholt, C H

    2011-01-01

    The phenotypic variation of Klinefelter syndrome (KS) is wide and may by caused by various genetic and epigenetic effects. Skewed inactivation of the supra-numerical X chromosome and polymorphism in the androgen receptor (AR) have been suggested as plausible causes. We wanted to describe X...

  3. Effects of HRV-Guided vs. Predetermined Block Training on Performance, HRV and Serum Hormones.

    Science.gov (United States)

    Nuuttila, Olli-Pekka; Nikander, Aku; Polomoshnov, Dmitry; Laukkanen, Jari Antero; Häkkinen, Keijo

    2017-11-01

    The aim of this study was to compare heart rate variability -guided (HRVG) and predetermined (PD) block periodization of high intensity aerobic training (HIT). Endurance performance, neuromuscular performance, heart rate variability (HRV) and serum hormone concentrations were measured before, in the middle and after the 8-week training period in 24 endurance trained males. Both groups improved significantly maximal treadmill velocity (V max ) (pHRV (RMSSD, LF and TP) increased significantly only in HRVG (pHRV and serum testosterone levels observed in HRVG, individually HRV -guided block training may be more optimal compared to predetermined training. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Epigenetics in breast and prostate cancer.

    Science.gov (United States)

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2015-01-01

    Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cutting-edge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy.

  5. Epigenetics and lifestyle.

    Science.gov (United States)

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2011-06-01

    The concept of 'lifestyle' includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and miRNA expression. It has been identified that several lifestyle factors such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress and working on night shifts might modify epigenetic patterns. Most of the studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. This article reviews current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms.

  6. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β Signaling in Cancer

    Directory of Open Access Journals (Sweden)

    Kiyoshi Mori

    2011-03-01

    Full Text Available Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β, induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  7. Environment, epigenetics and reproduction.

    Science.gov (United States)

    Skinner, Michael K

    2017-07-01

    A conference summary of the third biannual Kenya Africa Conference "Environment, Epigenetics and Reproduction" is provided. A partial special Environmental Epigenetics issue containing a number of papers in Volume 3, Issue 3 and 4 are discussed.

  8. Epigenetic variation, inheritance, and parent-of-origin effects of cytosine methylation in maize (Zea mays).

    Science.gov (United States)

    Lauria, Massimiliano; Piccinini, Sara; Pirona, Raul; Lund, Gertrud; Viotti, Angelo; Motto, Mario

    2014-03-01

    Pure epigenetic variation, or epigenetic variation that is independent of genetic context, may provide a mechanism for phenotypic variation in the absence of DNA mutations. To estimate the extent of pure epigenetic variation within and across generations and to identify the DNA regions targeted, a group of eight plants derived from a highly inbred line of maize (Zea mays) was analyzed by the methylation-sensitive amplified polymorphism (MSAP) technique. We found that cytosine methylation (mC) differences among individuals accounted for up to 7.4% of CCGG sites investigated by MSAP. Of the differentially methylated fragments (DMFs) identified in the S0 generation, ∼12% were meiotically inherited for at least six generations. We show that meiotically heritable mC variation was consistently generated for an average of 0.5% CCGG sites per generation and that it largely occurred somatically. We provide evidence that mC variation can be established and inherited in a parent-of-origin manner, given that the paternal lineage is more prone to both forward and reverse mC changes. The molecular characterization of selected DMFs revealed that the variation was largely determined by CG methylation changes that map within gene regions. The expression analysis of genes overlapping with DMFs did not reveal an obvious correlation between mC variation and transcription, reinforcing the idea that the primary function of gene-body methylation is not to control gene expression. Because this study focuses on epigenetic variation in field-grown plants, the data presented herein pertain to spontaneous epigenetic changes of the maize genome in a natural context.

  9. Epigenetics of Obesity.

    Science.gov (United States)

    Lopomo, A; Burgio, E; Migliore, L

    2016-01-01

    Obesity is a metabolic disease, which is becoming an epidemic health problem: it has been recently defined in terms of Global Pandemic. Over the years, the approaches through family, twins and adoption studies led to the identification of some causal genes in monogenic forms of obesity but the origins of the pandemic of obesity cannot be considered essentially due to genetic factors, because human genome is not likely to change in just a few years. Epigenetic studies have offered in recent years valuable tools for the understanding of the worldwide spread of the pandemic of obesity. The involvement of epigenetic modifications-DNA methylation, histone tails, and miRNAs modifications-in the development of obesity is more and more evident. In the epigenetic literature, there are evidences that the entire embryo-fetal and perinatal period of development plays a key role in the programming of all human organs and tissues. Therefore, the molecular mechanisms involved in the epigenetic programming require a new and general pathogenic paradigm, the Developmental Origins of Health and Disease theory, to explain the current epidemiological transition, that is, the worldwide increase of chronic, degenerative, and inflammatory diseases such as obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. Obesity and its related complications are more and more associated with environmental pollutants (obesogens), gut microbiota modifications and unbalanced food intake, which can induce, through epigenetic mechanisms, weight gain, and altered metabolic consequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Challenges in reporting on predetermined objectives to the Auditor-General: The case of Limpopo provincial departments

    OpenAIRE

    Melvin Diedericks

    2017-01-01

    Limpopo provincial departments like all other South African government departments are required to report on performance against predetermined objectives in terms of Section 40 of the Public Finance Management Act 1 of 1999, read in conjunction with Section 5.1.1 of the Treasury Regulations. The purpose of this article is to report on a study that was undertaken to establish the challenges faced by the Limpopo provincial departments in reporting on performance against predetermined objectives...

  11. Challenges in reporting on pre-determined objectives to the Auditor-General : the case of Limpopo Provincial Departments / Hilgard Maputle Mawela

    OpenAIRE

    Mawela, Hilgard Maputle

    2015-01-01

    All provincial departments are required to report on pre-determined objectives in terms of Section 40 of the Public Finance Management Act, read in conjunction with Section 5.1.1. of the Treasury Regulations. The purpose of this study was to establish the challenges faced by the Limpopo provincial departments in reporting pre-determined objectives to the Auditor-General. Reporting pre-determined objectives has been a challenge over the past financial years and this is evident in the Audito...

  12. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience.

    Science.gov (United States)

    Singh-Taylor, A; Molet, J; Jiang, S; Korosi, A; Bolton, J L; Noam, Y; Simeone, K; Cope, J; Chen, Y; Mortazavi, A; Baram, T Z

    2018-03-01

    Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.

  13. Introduction to the Special Section on Epigenetics.

    Science.gov (United States)

    Lester, Barry M; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field accessible to a wide readership. The authors describe the history of human behavioral epigenetic research in the context of other disciplines and graphically illustrate the burgeoning of research in the application of epigenetic methods and principles to the study of human behavior. The role of epigenetics in normal embryonic development and the influence of biological and environmental factors altering behavior through epigenetic mechanisms and developmental programming are discussed. Some basic approaches to the study of epigenetics are reviewed. The authors conclude with a discussion of challenges and opportunities, including intervention, as the field of human behavioral epigenetics continue to grow. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  14. Epigenetic Therapy in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Stephen V Liu

    2013-05-01

    Full Text Available Epigenetic dysregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.

  15. Eating Disorders and Epigenetics.

    Science.gov (United States)

    Thaler, Lea; Steiger, Howard

    2017-01-01

    Eating disorders (EDs) are characterized by intense preoccupation with shape and weight and maladaptive eating practices. The complex of symptoms that characterize EDs often arise through the activation of latent genetic potentials by environmental exposures, and epigenetic mechanisms are believed to link environmental exposures to gene expression. This chapter provides an overview of genetic factors acting in the etiology of EDs. It then provides a background to the hypothesis that epigenetic mechanisms link stresses such as obstetric complications and childhood abuse as well as effects of malnutrition to eating disorders (EDs). The chapter then summarizes the emerging body of literature on epigenetics and EDs-mainly studies on DNA methylation in samples of anorexia and bulimia. The available evidence base suggests that an epigenetically informed perspective contributes in valuable ways to the understanding of why people develop EDs.

  16. Epigenetics and Therapeutic Targets Mediating Neuroprotection

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020

  17. Epigenetic Modifications: Therapeutic Potential in Cancer

    Directory of Open Access Journals (Sweden)

    Manisha Sachan

    2015-08-01

    Full Text Available Epigenetic modifications and alterations in chromatin structure and function contribute to the cumulative changes observed as normal cells undergo malignant transformation. These modifications and enzymes (DNA methyltransferases, histone deacetylases, histone methyltransferases, and demethylases related to them have been deeply studied to develop new drugs, epigenome-targeted therapies and new diagnostic tools. Epigenetic modifiers aim to restore normal epigenetic modification patterns through the inhibition of epigenetic modifier enzymes. Four of them (azacitidine, decitabine, vorinostat and romidepsin are approved by the U.S. Food and Drug Administration. This article provides an overview about the known functional roles of epigenetic enzymes in cancer development.

  18. EPA Workshop on Epigenetics and Cumulative Risk ...

    Science.gov (United States)

    Agenda Download the Workshop Agenda (PDF) The workshop included presentations and discussions by scientific experts pertaining to three topics (i.e., epigenetic changes associated with diverse stressors, key science considerations in understanding epigenetic changes, and practical application of epigenetic tools to address cumulative risks from environmental stressors), to address several questions under each topic, and included an opportunity for attendees to participate in break-out groups, provide comments and ask questions. Workshop Goals The workshop seeks to examine the opportunity for use of aggregate epigenetic change as an indicator in cumulative risk assessment for populations exposed to multiple stressors that affect epigenetic status. Epigenetic changes are specific molecular changes around DNA that alter expression of genes. Epigenetic changes include DNA methylation, formation of histone adducts, and changes in micro RNAs. Research today indicates that epigenetic changes are involved in many chronic diseases (cancer, cardiovascular disease, obesity, diabetes, mental health disorders, and asthma). Research has also linked a wide range of stressors including pollution and social factors with occurrence of epigenetic alterations. Epigenetic changes have the potential to reflect impacts of risk factors across multiple stages of life. Only recently receiving attention is the nexus between the factors of cumulative exposure to environmental

  19. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  20. The CpG island methylator phenotype (CIMP) in colorectal cancer.

    Science.gov (United States)

    Nazemalhosseini Mojarad, Ehsan; Kuppen, Peter Jk; Aghdaei, Hamid Asadzadeh; Zali, Mohammad Reza

    2013-01-01

    It is clear that colorectal cancer (CRC) develops through multiple genetic and epigenetic pathways. These pathways may be determined on the basis of three molecular features: (i) mutations in DNA mismatch repair genes, leading to a DNA microsatellite instability (MSI) phenotype, (ii) mutations in APC and other genes that activate Wnt pathway, characterized by chromosomal instability (CIN) phenotype, and (iii) global genome hypermethylation, resulting in switch off of tumor suppressor genes, indicated as CpG island methylator phenotype (CIMP). Each of these pathways is characterized by specific pathological features, mechanisms of carcinogenesis and process of tumor development. The molecular aspects of these pathways have been used clinically in the diagnosis, screening and management of patients with colorectal cancer. In this review we especially describe various aspects of CIMP, one of the important and rather recently discovered pathways that lead to colorectal cancer.

  1. Impaired Sulfate Metabolism and Epigenetics: Is There a Link in Autism?

    Directory of Open Access Journals (Sweden)

    Samantha Hartzell

    2012-10-01

    Full Text Available Autism is a brain disorder involving social, memory, and learning deficits, that normally develops prenatally or early in childhood. Frustratingly, many research dollars have as yet failed to identify the cause of autism. While twin concordance studies indicate a strong genetic component, the alarming rise in the incidence of autism in the last three decades suggests that environmental factors play a key role as well. This dichotomy can be easily explained if we invoke a heritable epigenetic effect as the primary factor. Researchers are just beginning to realize the huge significance of epigenetic effects taking place during gestation in influencing the phenotypical expression. Here, we propose the novel hypothesis that sulfates deficiency in both the mother and the child, brought on mainly by excess exposure to environmental toxins and inadequate sunlight exposure to the skin, leads to widespread hypomethylation in the fetal brain with devastating consequences. We show that many seemingly disparate observations regarding serum markers, neuronal pathologies, and nutritional deficiencies associated with autism can be integrated to support our hypothesis.

  2. Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development

    Directory of Open Access Journals (Sweden)

    Victor Greiff

    2017-05-01

    Full Text Available Antibody repertoire diversity and plasticity is crucial for broad protective immunity. Repertoires change in size and diversity across multiple B cell developmental stages and in response to antigen exposure. However, we still lack fundamental quantitative understanding of the extent to which repertoire diversity is predetermined. Therefore, we implemented a systems immunology framework for quantifying repertoire predetermination on three distinct levels: (1 B cell development (pre-B cell, naive B cell, plasma cell, (2 antigen exposure (three structurally different proteins, and (3 four antibody repertoire components (V-gene usage, clonal expansion, clonal diversity, repertoire size extracted from antibody repertoire sequencing data (400 million reads. Across all three levels, we detected a dynamic balance of high genetic (e.g., >90% for V-gene usage and clonal expansion in naive B cells and antigen-driven (e.g., 40% for clonal diversity in plasma cells predetermination and stochastic variation. Our study has implications for the prediction and manipulation of humoral immunity.

  3. Epigenetics, autism spectrum, and neurodevelopmental disorders.

    Science.gov (United States)

    Rangasamy, Sampathkumar; D'Mello, Santosh R; Narayanan, Vinodh

    2013-10-01

    Epigenetic marks are modifications of DNA and histones. They are considered to be permanent within a single cell during development, and are heritable across cell division. Programming of neurons through epigenetic mechanisms is believed to be critical in neural development. Disruption or alteration in this process causes an array of neurodevelopmental disorders, including autism spectrum disorders (ASDs). Recent studies have provided evidence for an altered epigenetic landscape in ASDs and demonstrated the central role of epigenetic mechanisms in their pathogenesis. Many of the genes linked to the ASDs encode proteins that are involved in transcriptional regulation and chromatin remodeling. In this review we highlight selected neurodevelopmental disorders in which epigenetic dysregulation plays an important role. These include Rett syndrome, fragile X syndrome, Prader-Willi syndrome, Angelman syndrome, and Kabuki syndrome. For each of these disorders, we discuss how advances in our understanding of epigenetic mechanisms may lead to novel therapeutic approaches.

  4. Nature, Nurture and Epigenetics

    Science.gov (United States)

    Crews, David; Gillette, Ross; Miller-Crews, Isaac; Gore, Andrea C.; Skinner, Michael K.

    2015-01-01

    Real life by definition combines heritability (e.g., the legacy of exposures) and experience (e.g. stress during sensitive or ‘critical’ periods), but how to study or even model this interaction has proven difficult. The hoary concept of evaluating traits according to nature vs. nurture continues to persist despite repeated demonstrations that it retards, rather than advances, our understanding of biological processes. Behavioral genetics has proven the obvious, that genes influences behavior and, vice versa, that behavior influences genes. The concept of Genes X Environment (G X E) and its modern variants was viewed as an improvement on nature-nurture but has proven that, except in rare instances, it is not possible to fractionate phenotypes into these constituent elements. The entanglement inherent in terms such as nature-nurture or GXE is a Gordian knot that cannot be dissected or even split. Given that the world today is not what it was less than a century ago, yet the arbitrator (differential survival and reproduction) has stayed constant, de novo principles and practices are needed to better predict what the future holds. Put simply, the transformation that is now occurring within and between individuals as a product of global endocrine disruption is quite independent of what has been regarded as evolution by selection. This new perspective should focus on how epigenetic modifications might revise approaches to understand how the phenotype and, in particular its components, is shaped. In this review we summarize the literature in this developing area, focusing on our research on the fungicide vinclozolin. PMID:25102229

  5. EpiGeNet: A Graph Database of Interdependencies Between Genetic and Epigenetic Events in Colorectal Cancer.

    Science.gov (United States)

    Balaur, Irina; Saqi, Mansoor; Barat, Ana; Lysenko, Artem; Mazein, Alexander; Rawlings, Christopher J; Ruskin, Heather J; Auffray, Charles

    2017-10-01

    The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.

  6. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease

    OpenAIRE

    Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K

    2008-01-01

    Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1–F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti...

  7. Dietary regulation of developmental programming in ruminants: epigenetic modifications in the germline.

    Science.gov (United States)

    Sinclair, K D; Karamitri, A; Gardner, D S

    2010-01-01

    Ruminants have been utilised extensively to investigate the developmental origins of health and disease, with the sheep serving as the model species of choice to complement dietary studies in the rat and mouse. Surprisingly few studies, however, have investigated delayed effects of maternal undernutrition during pregnancy on adult offspring health and a consistent phenotype, together with underlying mechanistic pathways, has not emerged. Nevertheless, when broad consideration is given to all studies with ruminants it is apparent that interventions that are initiated very early in gestation, and/or prior to conception, lead to greater effects on adult physiology than those that are specifically targeted to late gestation. Effects induced following dietary interventions at the earliest stages of mammalian development have been shown to arise as a consequence of alterations to key epigenetic processes that occur in germ cells and pluripotent embryonic cells. Currently, our understanding of epigenetic programming in the germline is greatest for the mouse, and is considered in detail in this article together with what is known in ruminants. This species imbalance, however, looks set to change as fully annotated genomic maps are developed for domesticated large animal species, and with the advent of 'next-generation' DNA sequencing technologies that have the power to globally map the epigenome at single-base-pair resolution. These developments would help to address such issues as sexually dimorphic epigenetic alterations to DNA methylation that have been found to arise following dietary restrictions during the peri-conceptional period, the effects of paternal nutritional status on epigenetic programming through the germline, and transgenerational studies where, in future, greater emphasis in domesticated ruminants should be placed on traits of agricultural importance.

  8. New insights in oncology: Epi-genetics and cancer stem cells; Nouvelles perspectives en oncologie: epigenetique et cellules souches cancereuses

    Energy Technology Data Exchange (ETDEWEB)

    Krutovskikh, V.; Partensky, C. [Centre international de recherche sur le cancer, 150, cours Albert-Thomas, 69372 Lyon cedex 08 (France)

    2011-12-15

    Cancer is a multi-etiologic, multistage disease with a prevalent genetic component, which happens when a large number of genes, critical for cell growth, death, differentiation, migration, and metabolic plasticity are altered irreversibly, so as to either 'gain' (oncogenes) or 'lose' (tumour suppressors) their function. Recent discoveries have revealed the previously underestimated etiologic importance of multiple epigenetic, that is to say, reversible factors (histone modifications, DNA methylation, non-coding RNA) involved in the transcriptional and post-transcriptional regulation of proteins, indispensable for the control of cancerous phenotype. Stable alterations of epigenetic machinery ('epi-mutations') turn out to play a critical role at different steps of carcinogenesis. In addition, due to substantial recent progress in stem cell biology, the new concept of cancer stem cells has emerged. This, along with newly discovered epigenetic cancer mechanisms, gives rise to a hope to overcome radio- and chemo-resistance and to eradicate otherwise incurable neoplasms. (authors)

  9. Genetics and epigenetics of small bowel adenocarcinoma: the interactions of CIN, MSI, and CIMP.

    Science.gov (United States)

    Warth, Arne; Kloor, Matthias; Schirmacher, Peter; Bläker, Hendrik

    2011-04-01

    Characterization of tumor genetics and epigenetics allows to stratify a tumor entity according to molecular pathways and may shed light on the interactions of different types of DNA alterations during tumorigenesis. Small intestinal adenocarcinoma is rare, and to date the interrelation of genomic instability and epigenetics has not been investigated in this tumor type. We therefore analyzed 37 primary small bowel carcinomas with known microsatellite instability and KRAS status for chromosomal instability using comparative genomic hybridization, for the presence of aberrant methylation (CpG island methylation phenotype) by methylation-specific polymerase chain reaction, and for BRAF mutations. Chromosomal instability was detected in 22 of 37 (59%) tumors (3 of 9 microsatellite instable, and 19 of 28 microsatellite stable carcinomas). Nine carcinomas (24%) were microsatellite and chromosomally stable. High-level DNA methylation was found in 16% of chromosomal instable tumors and in 44% of both microsatellite instable and microsatellite and chromosomally stable carcinomas. KRAS was mutated in 55, 0, and 10% of chromosomal instable, microsatellite instable, and microsatellite and chromosomally stable tumors, respectively whereas the frequencies of BRAF mutations were 6% for chromosomal instable and 22% for both microsatellite instable and microsatellite and chromosomally stable carcinomas. In conclusion, in this study we show that chromosomal instable carcinomas of the small intestine are distinguished from microsatellite instable and microsatellite and chromosomally stable tumors by a high frequency of KRAS mutations, low frequencies of CpG island methylation phenotype, and BRAF mutations. In microsatellite instable and microsatellite and chromosomally stable cancers, CpG island methylation phenotype and BRAF/KRAS mutations are similarly distributed, indicating common mechanisms of tumor initiation or progression in their molecular pathogenesis.

  10. Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases.

    Science.gov (United States)

    Chandran, Parwathy; Kavalakatt, Anu; Malarvizhi, Giridharan Loghanathan; Vasanthakumari, Divya Rani Vikraman Nair; Retnakumari, Archana Payickattu; Sidharthan, Neeraj; Pavithran, Keechilat; Nair, Shantikumar; Koyakutty, Manzoor

    2014-05-01

    Aberrant epigenetics play a key role in the onset and progression of acute myeloid leukemia (AML). Herein we report in silico modelling based development of a novel, protein-vorinostat nanomedicine exhibiting selective and superior anti-leukemic activity against heterogeneous population of AML patient samples (n=9), including refractory and relapsed cases, and three representative cell lines expressing CD34(+)/CD38(-) stem cell phenotype (KG-1a), promyelocytic phenotype (HL-60) and FLT3-ITD mutation (MV4-11). Nano-vorinostat having ~100nm size exhibited enhanced cellular uptake rendering significantly lower IC50 in AML cell lines and patient samples, and induced enhanced HDAC inhibition, oxidative injury, cell cycle arrest and apoptosis compared to free vorinostat. Most importantly, nanomedicine showed exceptional single-agent activity against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. Collectively, this epigenetics targeted nanomedicine appears to be a promising therapeutic strategy against various French-American-British (FAB) classes of AML. Through the use of a protein-vorinostat agent, exceptional single-agent activity was demonstrated against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. The studied epigenetics targeted nanomedicine approach is a promising therapeutic strategy against various French-American-British classes of acute myeloid leukemia. © 2014 Elsevier Inc. All rights reserved.

  11. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs

    International Nuclear Information System (INIS)

    Ma, Jing; Chen, Xi; Liu, Yanan; Xie, Qunhui; Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan; Zhao, Bin; Tang, Naijun

    2015-01-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8–14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue. - Highlights: • Ancestral TCDD exposure induces epigenetic transgenerational inheritance. • Ancestral TCDD exposure affects methylation status in ICR and DMR2 region of Igf2. • DNMTs play a role in TCDD induced epigenetic transgenerational changes of Igf2.

  12. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jing; Chen, Xi; Liu, Yanan [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China); Xie, Qunhui [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China); Zhao, Bin, E-mail: binzhao@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Tang, Naijun, E-mail: tangnaijun@tijmu.edu.cn [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China)

    2015-12-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8–14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue. - Highlights: • Ancestral TCDD exposure induces epigenetic transgenerational inheritance. • Ancestral TCDD exposure affects methylation status in ICR and DMR2 region of Igf2. • DNMTs play a role in TCDD induced epigenetic transgenerational changes of Igf2.

  13. The multifaceted interplay between lipids and epigenetics.

    Science.gov (United States)

    Dekkers, Koen F; Slagboom, P Eline; Jukema, J Wouter; Heijmans, Bastiaan T

    2016-06-01

    The interplay between lipids and epigenetic mechanisms has recently gained increased interest because of its relevance for common diseases and most notably atherosclerosis. This review discusses recent advances in unravelling this interplay with a particular focus on promising approaches and methods that will be able to establish causal relationships. Complementary approaches uncovered close links between circulating lipids and epigenetic mechanisms at multiple levels. A characterization of lipid-associated genetic variants suggests that these variants exert their influence on lipid levels through epigenetic changes in the liver. Moreover, exposure of monocytes to lipids persistently alters their epigenetic makeup resulting in more proinflammatory cells. Hence, epigenetic changes can both impact on and be induced by lipids. It is the combined application of technological advances to probe epigenetic modifications at a genome-wide scale and methodological advances aimed at causal inference (including Mendelian randomization and integrative genomics) that will elucidate the interplay between circulating lipids and epigenetics. Understanding its role in the development of atherosclerosis holds the promise of identifying a new category of therapeutic targets, since epigenetic changes are amenable to reversal.

  14. Epigenetic Modifications and Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Renu A. Kowluru

    2013-01-01

    Full Text Available Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modifications, which can alter the gene expression without permanent changes in DNA sequence. The role of epigenetics in diabetic retinopathy is now an emerging area, and recent work has shown that genes encoding mitochondrial superoxide dismutase (Sod2 and matrix metalloproteinase-9 (MMP-9 are epigenetically modified, activates of epigenetic modification enzymes, histone lysine demethylase 1 (LSD1, and DNA methyltransferase are increased, and the micro RNAs responsible for regulating nuclear transcriptional factor and VEGF are upregulated. With the growing evidence of epigenetic modifications in diabetic retinopathy, better understanding of these modifications has potential to identify novel targets to inhibit this devastating disease. Fortunately, the inhibitors and mimics targeted towards histone modification, DNA methylation, and miRNAs are now being tried for cancer and other chronic diseases, and better understanding of the role of epigenetics in diabetic retinopathy will open the door for their possible use in combating this blinding disease.

  15. Epigenetic Mechanisms and Therapeutic Perspectives for Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Kunio Miyake

    2012-04-01

    Full Text Available The number of children with mild neurodevelopmental disorders, such as autism, has been recently increasing in advanced countries. This increase is probably caused by environmental factors rather than genetic factors, because it is unlikely that genetic mutation rates suddenly increased within a short period. Epigenetics is a mechanism that regulates gene expression, depending not on the underlying DNA sequence but on the chemical modifications of DNA and histone proteins. Because mental stress can alter the epigenetic status in neuronal cells, environmental factors may alter brain function through epigenetic changes. However, one advantage of epigenetic changes is their reversibility. Therefore, diseases due to abnormal epigenetic regulation are theoretically treatable. In fact, several drugs for treating mental diseases are known to have restoring effects on aberrant epigenetic statuses, and a novel therapeutic strategy targeting gene has been developed. In this review, we discuss epigenetic mechanisms of congenital and acquired neurodevelopmental disorders, drugs with epigenetic effects, novel therapeutic strategies for epigenetic diseases, and future perspectives in epigenetic medicine.

  16. Behavioral epigenetics.

    Science.gov (United States)

    Moore, David S

    2017-01-01

    Why do we grow up to have the traits we do? Most 20th century scientists answered this question by referring only to our genes and our environments. But recent discoveries in the emerging field of behavioral epigenetics have revealed factors at the interface between genes and environments that also play crucial roles in development. These factors affect how genes work; scientists now know that what matters as much as which genes you have (and what environments you encounter) is how your genes are affected by their contexts. The discovery that what our genes do depends in part on our experiences has shed light on how Nature and Nurture interact at the molecular level inside of our bodies. Data emerging from the world's behavioral epigenetics laboratories support the idea that a person's genes alone cannot determine if, for example, he or she will end up shy, suffering from cardiovascular disease, or extremely smart. Among the environmental factors that can influence genetic activity are parenting styles, diets, and social statuses. In addition to influencing how doctors treat diseases, discoveries about behavioral epigenetics are likely to alter how biologists think about evolution, because some epigenetic effects of experience appear to be transmissible from generation to generation. This domain of research will likely change how we think about the origins of human nature. WIREs Syst Biol Med 2017, 9:e1333. doi: 10.1002/wsbm.1333 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  17. Epigenetics and depression: return of the repressed.

    Science.gov (United States)

    Dalton, Victoria S; Kolshus, Erik; McLoughlin, Declan M

    2014-02-01

    Epigenetics has recently emerged as a potential mechanism by which adverse environmental stimuli can result in persistent changes in gene expression. Epigenetic mechanisms function alongside the DNA sequence to modulate gene expression and ultimately influence protein production. The current review provides an introduction and overview of epigenetics with a particular focus on preclinical and clinical studies relevant to major depressive disorder (MDD). PubMed and Web of Science databases were interrogated from January 1995 up to December 2012 using combinations of search terms, including "epigenetic", "microRNA" and "DNA methylation" cross referenced with "depression", "early life stress" and "antidepressant". There is an association between adverse environmental stimuli, such as early life stress, and epigenetic modification of gene expression. Epigenetic changes have been reported in humans with MDD and may serve as biomarkers to improve diagnosis. Antidepressant treatments appear to reverse or initiate compensatory epigenetic alterations that may be relevant to their mechanism of action. As a narrative review, the current report was interpretive and qualitative in nature. Epigenetic modification of gene expression provides a mechanism for understanding the link between long-term effects of adverse life events and the changes in gene expression that are associated with depression. Although still a developing field, in the future, epigenetic modifications of gene expression may provide novel biomarkers to predict future susceptibility and/or onset of MDD, improve diagnosis, and aid in the development of epigenetics-based therapies for depression. © 2013 Published by Elsevier B.V.

  18. Epigenetic architecture and miRNA: reciprocal regulators

    DEFF Research Database (Denmark)

    Wiklund, Erik D; Kjems, Jørgen; Clark, Susan J

    2010-01-01

    Deregulation of epigenetic and microRNA (miRNA) pathways are emerging as key events in carcinogenesis. miRNA genes can be epigenetically regulated and miRNAs can themselves repress key enzymes that drive epigenetic remodeling. Epigenetic and miRNA functions are thus tightly interconnected......RNAs) are considered especially promising in clinical applications, and their biogenesis and function is a subject of active research. In this review, the current status of epigenetic miRNA regulation is summarized and future therapeutic prospects in the field are discussed with a focus on cancer....

  19. Epigenetic Alterations in Alzheimer’s Disease

    Science.gov (United States)

    Sanchez-Mut, Jose V.; Gräff, Johannes

    2015-01-01

    Alzheimer’s disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD. PMID:26734709

  20. Generational comparisons (F1 versus F3) of vinclozolin induced epigenetic transgenerational inheritance of sperm differential DNA methylation regions (epimutations) using MeDIP-Seq.

    Science.gov (United States)

    Beck, Daniel; Sadler-Riggleman, Ingrid; Skinner, Michael K

    2017-07-01

    Environmentally induced epigenetic transgenerational inheritance of disease and phenotypic variation has been shown to involve DNA methylation alterations in the germline (e.g. sperm). These differential DNA methylation regions (DMRs) are termed epimutations and in part transmit the transgenerational phenotypes. The agricultural fungicide vinclozolin exposure of a gestating female rat has previously been shown to promote transgenerational disease and epimutations in F3 generation (great-grand-offspring) animals. The current study was designed to investigate the actions of direct fetal exposure on the F1 generation rat sperm DMRs compared to the F3 transgenerational sperm DMRs. A protocol involving methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing (Seq) was used in the current study. Bioinformatics analysis of the MeDIP-Seq data was developed and several different variations in the bioinformatic analysis were evaluated. Observations indicate needs to be considered. Interestingly, the F1 generation DMRs were found to be fewer in number and for the most part distinct from the F3 generation epimutations. Observations suggest the direct exposure induced F1 generation sperm DMRs appear to promote in subsequent generations alterations in the germ cell developmental programming that leads to the distinct epimutations in the F3 generation. This may help explain the differences in disease and phenotypes between the direct exposure F1 generation and transgenerational F3 generation. Observations demonstrate a distinction between the direct exposure versus transgenerational epigenetic programming induced by environmental exposures and provide insights into the molecular mechanisms involved in the epigenetic transgenerational inheritance phenomenon.

  1. Anxiety and Epigenetics.

    Science.gov (United States)

    Bartlett, Andrew A; Singh, Rumani; Hunter, Richard G

    2017-01-01

    Anxiety disorders are highly prevalent psychiatric disorders often comorbid with depression and substance abuse. Twin studies have shown that anxiety disorders are moderately heritable. Yet, genome-wide association studies (GWASs) have failed to identify gene(s) significantly associated with diagnosis suggesting a strong role for environmental factors and the epigenome. A number of anxiety disorder subtypes are considered "stress related." A large focus of research has been on the epigenetic and anxiety-like behavioral consequences of stress. Animal models of anxiety-related disorders have provided strong evidence for the role of stress on the epigenetic control of the hypothalamic-pituitary-adrenal (HPA) axis and of stress-responsive brain regions. Neuroepigenetics may continue to explain individual variation in susceptibility to environmental perturbations and consequently anxious behavior. Behavioral and pharmacological interventions aimed at targeting epigenetic marks associated with anxiety may prove fruitful in developing treatments.

  2. Epigenetic alterations of sedimentary rocks at deposits

    International Nuclear Information System (INIS)

    Komarova, G.V.; Kondrat'eva, I.A.; Zelenova, O.I.

    1980-01-01

    Notions are explained, and technique for studying epigenetic alterations of sedimentary rocks at uranium deposits is described. Main types of epigenetic transformations and their mineralogic-geochemical characteristics are considered. Rock alterations, accompanying uranium mineralization, can be related to 2 types: oxidation and reduction. The main mineralogic-geochemical property of oxidation transformations is epigenetic limonitization. Stratal limonitization in primary grey-coloured terrigenic rocks and in epigenetically reduced (pyritized) rocks, as well as in rock, subjected to epigenetic gleying, are characterized. Reduction type of epigenetic transformations is subdivided into sulphidic and non-sulphidic (gley) subtypes. Sulphidic transformations in grey-coloured terrigenic rocks with organic substance of carbonic row, in rocks, containing organic substance of oil row, sulphide transformations of sedimentary rocks, as well as gley transformations, are considered

  3. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA.

    Directory of Open Access Journals (Sweden)

    Andrea D McCue

    2012-02-01

    Full Text Available The epigenetic activity of transposable elements (TEs can influence the regulation of genes; though, this regulation is confined to the genes, promoters, and enhancers that neighbor the TE. This local cis regulation of genes therefore limits the influence of the TE's epigenetic regulation on the genome. TE activity is suppressed by small RNAs, which also inhibit viruses and regulate the expression of genes. The production of TE heterochromatin-associated endogenous small interfering RNAs (siRNAs in the reference plant Arabidopsis thaliana is mechanistically distinct from gene-regulating small RNAs, such as microRNAs or trans-acting siRNAs (tasiRNAs. Previous research identified a TE small RNA that potentially regulates the UBP1b mRNA, which encodes an RNA-binding protein involved in stress granule formation. We demonstrate that this siRNA, siRNA854, is under the same trans-generational epigenetic control as the Athila family LTR retrotransposons from which it is produced. The epigenetic activation of Athila elements results in a shift in small RNA processing pathways, and new 21-22 nucleotide versions of Athila siRNAs are produced by protein components normally not responsible for processing TE siRNAs. This processing results in siRNA854's incorporation into ARGONAUTE1 protein complexes in a similar fashion to gene-regulating tasiRNAs. We have used reporter transgenes to demonstrate that the UPB1b 3' untranslated region directly responds to the epigenetic status of Athila TEs and the accumulation of siRNA854. The regulation of the UPB1b 3' untranslated region occurs both on the post-transcriptional and translational levels when Athila TEs are epigenetically activated, and this regulation results in the phenocopy of the ubp1b mutant stress-sensitive phenotype. This demonstrates that a TE's epigenetic activity can modulate the host organism's stress response. In addition, the ability of this TE siRNA to regulate a gene's expression in trans blurs

  4. Adolescent idiopathic scoliosis (AIS, environment, exposome and epigenetics: a molecular perspective of postnatal normal spinal growth and the etiopathogenesis of AIS with consideration of a network approach and possible implications for medical therapy

    Directory of Open Access Journals (Sweden)

    Burwell R Geoffrey

    2011-12-01

    Full Text Available Abstract Genetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS. Discordant findings for monozygotic (MZ twins with AIS show that environmental factors including different intrauterine environments are important in etiology, but what these environmental factors may be is unknown. Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ twin discordance, and be the link between environmental factors and phenotypic differences. DNA methylation is one important epigenetic mechanism operating at the interface between genome and environment to regulate phenotypic plasticity with a complex regulation across the genome during the first decade of life. The word exposome refers to the totality of environmental exposures from conception onwards, comprising factors in external and internal environments. The word exposome is used here also in relation to physiologic and etiopathogenetic factors that affect normal spinal growth and may induce the deformity of AIS. In normal postnatal spinal growth we propose a new term and concept, physiologic growth-plate exposome for the normal processes particularly of the internal environments that may have epigenetic effects on growth plates of vertebrae. In AIS, we propose a new term and concept pathophysiologic scoliogenic exposome for the abnormal processes in molecular pathways particularly of the internal environment currently expressed as etiopathogenetic hypotheses; these are suggested to have deforming effects on the growth plates of vertebrae at cell, tissue, structure and/or organ levels that are considered to be epigenetic. New research is required for chromatin modifications including DNA methylation in AIS subjects and vertebral growth plates excised at surgery. In addition, consideration is needed for a possible network approach to etiopathogenesis by constructing AIS diseasomes. These approaches may

  5. DNA Methylation in Pediatric Obstructive Sleep Apnea: An Overview of Preliminary Findings.

    Science.gov (United States)

    Perikleous, Evanthia; Steiropoulos, Paschalis; Tzouvelekis, Argyris; Nena, Evangelia; Koffa, Maria; Paraskakis, Emmanouil

    2018-01-01

    Obstructive sleep apnea (OSA) is characterized by phenotypic variations, which can be partly attributed to specific gene polymorphisms. Recent studies have focused on the role of epigenetic mechanisms in order to permit a more precise perception about clinical phenotyping and targeted therapies. The aim of this review was to synthesize the current state of knowledge on the relation between DNA methylation patterns and the development of pediatric OSA, in light of the apparent limited literature in the field. We performed an electronic search in PubMed, EMBASE, and Google Scholar databases, including all types of articles written in English until January 2017. Literature was apparently scarce; only 2 studies on pediatric populations and 3 animal studies were identified. Forkhead Box P3 (FOXP3) DNA methylation levels were associated with inflammatory biomarkers and serum lipids. Hypermethylation of the core promoter region of endothelial Nitric Oxide Synthase (eNOS) gene in OSA children were related with decreased eNOS expression. Additionally, increased expression of genes encoding pro-oxidant enzymes and decreased expression of genes encoding anti-oxidant enzymes suggested that disturbances in oxygen homeostasis throughout neonatal period predetermined increased hypoxic sensing in adulthood. In conclusion, epigenetic modifications may be crucial in pediatric sleep disorders to enable in-depth understanding of genotype-phenotype interactions and lead to risk assessment. Epigenome-wide association studies are urgently needed to validate certain epigenetic alterations as reliable, novel biomarkers for the molecular prognosis and diagnosis of OSA patients with high risk of end-organ morbidity.

  6. DNA Methylation in Pediatric Obstructive Sleep Apnea: An Overview of Preliminary Findings

    Directory of Open Access Journals (Sweden)

    Evanthia Perikleous

    2018-05-01

    Full Text Available Obstructive sleep apnea (OSA is characterized by phenotypic variations, which can be partly attributed to specific gene polymorphisms. Recent studies have focused on the role of epigenetic mechanisms in order to permit a more precise perception about clinical phenotyping and targeted therapies. The aim of this review was to synthesize the current state of knowledge on the relation between DNA methylation patterns and the development of pediatric OSA, in light of the apparent limited literature in the field. We performed an electronic search in PubMed, EMBASE, and Google Scholar databases, including all types of articles written in English until January 2017. Literature was apparently scarce; only 2 studies on pediatric populations and 3 animal studies were identified. Forkhead Box P3 (FOXP3 DNA methylation levels were associated with inflammatory biomarkers and serum lipids. Hypermethylation of the core promoter region of endothelial Nitric Oxide Synthase (eNOS gene in OSA children were related with decreased eNOS expression. Additionally, increased expression of genes encoding pro-oxidant enzymes and decreased expression of genes encoding anti-oxidant enzymes suggested that disturbances in oxygen homeostasis throughout neonatal period predetermined increased hypoxic sensing in adulthood. In conclusion, epigenetic modifications may be crucial in pediatric sleep disorders to enable in-depth understanding of genotype-phenotype interactions and lead to risk assessment. Epigenome-wide association studies are urgently needed to validate certain epigenetic alterations as reliable, novel biomarkers for the molecular prognosis and diagnosis of OSA patients with high risk of end-organ morbidity.

  7. The epigenetic landscape of transgenerational acclimation to ocean warming

    KAUST Repository

    Ryu, Tae Woo; Veilleux, Heather D.; Donelson, Jennifer M.; Munday, Philip L.; Ravasi, Timothy

    2018-01-01

    Epigenetic inheritance is a potential mechanism by which the environment in one generation can influence the performance of future generations1. Rapid climate change threatens the survival of many organisms; however, recent studies show that some species can adjust to climate-related stress when both parents and their offspring experience the same environmental change2,3. Whether such transgenerational acclimation could have an epigenetic basis is unknown. Here, by sequencing the liver genome, methylomes and transcriptomes of the coral reef fish, Acanthochromis polyacanthus, exposed to current day (+0 °C) or future ocean temperatures (+3 °C) for one generation, two generations and incrementally across generations, we identified 2,467 differentially methylated regions (DMRs) and 1,870 associated genes that respond to higher temperatures within and between generations. Of these genes, 193 were significantly correlated to the transgenerationally acclimating phenotypic trait, aerobic scope, with functions in insulin response, energy homeostasis, mitochondrial activity, oxygen consumption and angiogenesis. These genes may therefore play a key role in restoring performance across generations in fish exposed to increased temperatures associated with climate change. Our study is the first to demonstrate a possible association between DNA methylation and transgenerational acclimation to climate change in a vertebrate.

  8. The epigenetic landscape of transgenerational acclimation to ocean warming

    KAUST Repository

    Ryu, Tae Woo

    2018-04-26

    Epigenetic inheritance is a potential mechanism by which the environment in one generation can influence the performance of future generations1. Rapid climate change threatens the survival of many organisms; however, recent studies show that some species can adjust to climate-related stress when both parents and their offspring experience the same environmental change2,3. Whether such transgenerational acclimation could have an epigenetic basis is unknown. Here, by sequencing the liver genome, methylomes and transcriptomes of the coral reef fish, Acanthochromis polyacanthus, exposed to current day (+0 °C) or future ocean temperatures (+3 °C) for one generation, two generations and incrementally across generations, we identified 2,467 differentially methylated regions (DMRs) and 1,870 associated genes that respond to higher temperatures within and between generations. Of these genes, 193 were significantly correlated to the transgenerationally acclimating phenotypic trait, aerobic scope, with functions in insulin response, energy homeostasis, mitochondrial activity, oxygen consumption and angiogenesis. These genes may therefore play a key role in restoring performance across generations in fish exposed to increased temperatures associated with climate change. Our study is the first to demonstrate a possible association between DNA methylation and transgenerational acclimation to climate change in a vertebrate.

  9. Epigenetic silencing of CYP24 in the tumor microenvironment

    Science.gov (United States)

    Johnson, Candace S.; Chung, Ivy; Trump, Donald L.

    2010-01-01

    Calcitriol (1,25 dihydroxycholecalciferol) has significant antitumor activity in vitro and in vivo in a number of tumor model systems. We developed a system for isolation of fresh endothelial cells from tumors and Matrigel environments which demonstrate that CYP24, the catabolic enzyme involved in vitamin D signaling, is epigenetically silenced selectively in tumor-derived endothelial cells (TDEC). TDEC maintain phenotypic characteristics which are distinct from endothelial cells isolated from normal tissues and from Matrigel plugs (MDEC). In TDEC, calcitriol induces G0/G1 arrest, modulates p27 and p21, and induces apoptotic cell death and decreases P-Erk and P-Akt. In contrast, endothelial cells isolated from normal tissues and MDEC are unresponsive to calcitriol-mediated anti-proliferative effects despite intact signaling through the vitamin D receptor (VDR). In TDEC, which is sensitive to calcitriol, the CYP24 promoter is hypermethylated in two CpG island regions located at the 5′end; this hypermethylation may contribute to gene silencing of CYP24. The extent of methylation in these two regions is significantly less in MDEC. Lastly, treatment of TDEC with a DNA methyltransferase inhibitor restores calcitriol-mediated induction of CYP24 and resistance to calcitriol. These data suggest that epigenetic silencing of CYP24 modulates cellular responses to calcitriol. PMID:20304059

  10. Epigenetics reloaded: the single-cell revolution.

    Science.gov (United States)

    Bheda, Poonam; Schneider, Robert

    2014-11-01

    Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Epigenetic Silencing of DKK3 in Medulloblastoma

    Directory of Open Access Journals (Sweden)

    André Oberthuer

    2013-04-01

    Full Text Available Medulloblastoma (MB is a malignant pediatric brain tumor arising in the cerebellum consisting of four distinct subgroups: WNT, SHH, Group 3 and Group 4, which exhibit different molecular phenotypes. We studied the expression of Dickkopf (DKK 1–4 family genes, inhibitors of the Wnt signaling cascade, in MB by screening 355 expression profiles derived from four independent datasets. Upregulation of DKK1, DKK2 and DKK4 mRNA was observed in the WNT subgroup, whereas DKK3 was downregulated in 80% MBs across subgroups with respect to the normal cerebellum (p < 0.001. Since copy number aberrations targeting the DKK3 locus (11p15.3 are rare events, we hypothesized that epigenetic factors could play a role in DKK3 regulation. Accordingly, we studied 77 miRNAs predicting to repress DKK3; however, no significant inverse correlation between miRNA/mRNA expression was observed. Moreover, the low methylation levels in the DKK3 promoters (median: 3%, 5% and 5% for promoter 1, 2 and 3, respectively excluded the downregulation of gene expression by methylation. On the other hand, the treatment of MB cells with Trichostatin A (TSA, a potent inhibitor of histone deacetylases (HDAC, was able to restore both DKK3 mRNA and protein. In conclusion, DKK3 downregulation across all MB subgroups may be due to epigenetic mechanisms, in particular, through chromatin condensation.

  12. Peromyscus as a Mammalian Epigenetic Model

    Directory of Open Access Journals (Sweden)

    Kimberly R. Shorter

    2012-01-01

    Full Text Available Deer mice (Peromyscus offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.

  13. Embryonic left-right separation mechanism allows confinement of mutation-induced phenotypes to one lateral body half of bilaterians.

    Science.gov (United States)

    Ma, Kun

    2013-12-01

    A fundamental question in developmental biology is how a chimeric animal such as a bilateral gynandromorphic animal can have different phenotypes confined to different lateral body halves, and how mutation-induced phenotypes, such as genetic diseases, can be confined to one lateral body half in patients. Here, I propose that embryos of many, if not all, bilaterian animals are divided into left and right halves at a very early stage (which may vary among different types of animals), after which the descendants of the left-sided and right-sided cells will almost exclusively remain on their original sides, respectively, throughout the remaining development. This embryonic left-right separation mechanism allows (1) mutations and the mutation-induced phenotypes to be strictly confined to one lateral body half in animals and humans; (2) mothers with bilateral hereditary primary breast cancer to transmit their disease to their offspring at twofold of the rate compared to mothers with unilateral hereditary breast cancer; and (3) a mosaic embryo carrying genetic or epigenetic mutations to develop into either an individual with the mutation-induced phenotype confined unilaterally, or a pair of twins displaying complete, partial, or mirror-image discordance for the phenotype. Further, this left-right separation mechanism predicts that the two lateral halves of a patient carrying a unilateral genetic disease can each serve as a case and an internal control, respectively, for genetic and epigenetic comparative studies to identify the disease causations. © 2013 Wiley Periodicals, Inc.

  14. DNA-methylation profiling of fetal tissues reveals marked epigenetic differences between chorionic and amniotic samples.

    Directory of Open Access Journals (Sweden)

    Christel Eckmann-Scholz

    Full Text Available Epigenetic mechanisms including DNA methylation are supposed to play a key role in fetal development. Here we have investigated fetal DNA-methylation levels of 27,578 CpG loci in 47 chorionic villi (CVS and 16 amniotic cell (AC samples. Methylation levels differed significantly between karyotypically normal AC and CVS for 2,014 genes. AC showed more extreme DNA-methylation levels of these genes than CVS and the differentially methylated genes are significantly enriched for processes characteristic for the different cell types sampled. Furthermore, we identified 404 genes differentially methylated in CVS with trisomy 21. These genes were significantly enriched for high CG dinucleotid (CpG content and developmental processes associated with Down syndrome. Our study points to major tissue-specific differences of fetal DNA-methylation and gives rise to the hypothesis that part of the Down syndrome phenotype is epigenetically programmed in the first trimester of pregnancy.

  15. Transgenerational epigenetics: Inheritance of global cytosine methylation and methylation-related epigenetic markers in the shrub Lavandula latifolia.

    Science.gov (United States)

    Herrera, Carlos M; Alonso, Conchita; Medrano, Mónica; Pérez, Ricardo; Bazaga, Pilar

    2018-04-01

    The ecological and evolutionary significance of natural epigenetic variation (i.e., not based on DNA sequence variants) variation will depend critically on whether epigenetic states are transmitted from parents to offspring, but little is known on epigenetic inheritance in nonmodel plants. We present a quantitative analysis of transgenerational transmission of global DNA cytosine methylation (= proportion of all genomic cytosines that are methylated) and individual epigenetic markers (= methylation status of anonymous MSAP markers) in the shrub Lavandula latifolia. Methods based on parent-offspring correlations and parental variance component estimation were applied to epigenetic features of field-growing plants ('maternal parents') and greenhouse-grown progenies. Transmission of genetic markers (AFLP) was also assessed for reference. Maternal parents differed significantly in global DNA cytosine methylation (range = 21.7-36.7%). Greenhouse-grown maternal families differed significantly in global methylation, and their differences were significantly related to maternal origin. Methylation-sensitive amplified polymorphism (MSAP) markers exhibited significant transgenerational transmission, as denoted by significant maternal variance component of marker scores in greenhouse families and significant mother-offspring correlations of marker scores. Although transmission-related measurements for global methylation and MSAP markers were quantitatively lower than those for AFLP markers taken as reference, this study has revealed extensive transgenerational transmission of genome-wide global cytosine methylation and anonymous epigenetic markers in L. latifolia. Similarity of results for global cytosine methylation and epigenetic markers lends robustness to this conclusion, and stresses the value of considering both types of information in epigenetic studies of nonmodel plants. © 2018 Botanical Society of America.

  16. Epigenetics and assisted reproductive technologies

    DEFF Research Database (Denmark)

    Pinborg, Anja; Loft, Anne; Romundstad, Liv Bente

    2016-01-01

    Epigenetic modification controls gene activity without changes in the DNA sequence. The genome undergoes several phases of epigenetic programming during gametogenesis and early embryo development coinciding with assisted reproductive technologies (ART) treatments. Imprinting disorders have been...

  17. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Frequency of WT1 and 11p15 constitutional aberrations and phenotypic correlation in childhood Wilms tumour patients

    NARCIS (Netherlands)

    Segers, H.; Kersseboom, R.; Alders, M.; Pieters, R.; Wagner, A.; van den Heuvel-Eibrink, M. M.

    2012-01-01

    Introduction: In 9-17% of Wilms tumour patients a predisposing syndrome is present, in particular WT1-associated syndromes and overgrowth syndromes. Constitutional WT1 mutations or epigenetic changes on chromosome 11p15 have also been described in Wilms tumour patients without phenotypic

  19. Epigenetics in autism and other neurodevelopmental diseases.

    Science.gov (United States)

    Miyake, Kunio; Hirasawa, Takae; Koide, Tsuyoshi; Kubota, Takeo

    2012-01-01

    Autism was previously thought to be caused by environmental factors. However, genetic factors are now considered to be more contributory to the pathogenesis of autism, based on the recent findings of mutations in the genes which encode synaptic molecules associated with the communication between neurons. Epigenetic is a mechanism that controls gene expression without changing DNA sequence but by changing chromosomal histone modifications and its abnormality is associated with several neurodevelopmental diseases. Since epigenetic modifications are known to be affected by environmental factors such as nutrition, drugs and mental stress, autistic diseases are not only caused by congenital genetic defects, but may also be caused by environmental factors via epigenetic mechanism. In this chapter, we introduce autistic diseases caused by epigenetic failures and discuss epigenetic changes by environmental factors and discuss new treatments for neurodevelopmental diseases based on the recent epigenetic findings.

  20. Epigenetics and Neural developmental disorders: Washington DC, September 18 and 19, 2006.

    Science.gov (United States)

    Zhao, Xinyu; Pak, ChangHui; Smrt, Richard D; Jin, Peng

    2007-01-01

    Neural developmental disorders, such as autism, Rett Syndrome, Fragile X syndrome, and Angelman syndrome manifest during early postnatal neural development. Although the genes responsible for some of these disorders have been identified, how the mutations of these genes affect neural development is currently unclear. Emerging evidence suggest that these disorders share common underlying defects in neuronal morphology, synaptic connectivity and brain plasticity. In particular, alterations in dendritic branching and spine morphology play a central role in the pathophysiology of most mental retardation disorders, suggesting that common pathways regulating neuronal function may be affected. Epigenetic modulations, mediated by DNA methylation, RNA-associated silencing, and histone modification, can serve as an intermediate process that imprints dynamic environmental experiences on the "fixed" genome, resulting in stable alterations in phenotypes. Disturbance in epigenetic regulations can lead to inappropriate expression or silencing of genes, causing an array of multi-system disorders and neoplasias. Rett syndrome, the most common form of mental retardation in young girls, is due to l mutation of MECP2, encoding a methylated DNA binding protein that translates DNA methylation into gene repression. Angelman syndrome is due to faulty genomic imprinting or maternal mutations in UBE3A. Fragile X Syndrome, in most cases, results from the hypermethylation of FMR1 promoter, hence the loss of expression of functional FMRP protein. Autism, with its complex etiology, may have strong epigenetic link. Together, these observations strongly suggest that epigenetic mechanisms may play a critical role in brain development and etiology of related disorders. This report summarizes the scientific discussions and major conclusions from a recent conference that aimed to gain insight into the common molecular pathways affected among these disorders and discover potential therapeutic targets

  1. Nature, nurture and epigenetics.

    Science.gov (United States)

    Crews, David; Gillette, Ross; Miller-Crews, Isaac; Gore, Andrea C; Skinner, Michael K

    2014-12-01

    Real life by definition combines heritability (e.g., the legacy of exposures) and experience (e.g. stress during sensitive or 'critical' periods), but how to study or even model this interaction has proven difficult. The hoary concept of evaluating traits according to nature versus nurture continues to persist despite repeated demonstrations that it retards, rather than advances, our understanding of biological processes. Behavioral genetics has proven the obvious, that genes influence behavior and, vice versa, that behavior influences genes. The concept of Genes X Environment (G X E) and its modern variants was viewed as an improvement on nature-nurture but has proven that, except in rare instances, it is not possible to fractionate phenotypes into these constituent elements. The entanglement inherent in terms such as nature-nurture or G X E is a Gordian knot that cannot be dissected or even split. Given that the world today is not what it was less than a century ago, yet the arbitrator (differential survival and reproduction) has stayed constant, de novo principles and practices are needed to better predict what the future holds. Put simply, the transformation that is now occurring within and between individuals as a product of global endocrine disruption is quite independent of what has been regarded as evolution by selection. This new perspective should focus on how epigenetic modifications might revise approaches to understand how the phenotype and, in particular its components, is shaped. In this review we summarize the literature in this developing area, focusing on our research on the fungicide vinclozolin. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Epigenetics: general characteristics and implications for oral health

    Directory of Open Access Journals (Sweden)

    Ji-Yun Seo

    2015-02-01

    Full Text Available Genetic information such as DNA sequences has been limited to fully explain mechanisms of gene regulation and disease process. Epigenetic mechanisms, which include DNA methylation, histone modification and non-coding RNAs, can regulate gene expression and affect progression of disease. Although studies focused on epigenetics are being actively investigated in the field of medicine and biology, epigenetics in dental research is at the early stages. However, studies on epigenetics in dentistry deserve attention because epigenetic mechanisms play important roles in gene expression during tooth development and may affect oral diseases. In addition, understanding of epigenetic alteration is important for developing new therapeutic methods. This review article aims to outline the general features of epigenetic mechanisms and describe its future implications in the field of dentistry.

  3. Epigenetics and colorectal cancer pathogenesis.

    Science.gov (United States)

    Bardhan, Kankana; Liu, Kebin

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  4. Epigenetics and Colorectal Cancer Pathogenesis

    International Nuclear Information System (INIS)

    Bardhan, Kankana; Liu, Kebin

    2013-01-01

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy

  5. Epigenetics and Colorectal Cancer Pathogenesis

    Directory of Open Access Journals (Sweden)

    Kebin Liu

    2013-06-01

    Full Text Available Colorectal cancer (CRC develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  6. Epigenetics and Colorectal Cancer Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, Kankana; Liu, Kebin, E-mail: Kliu@gru.edu [Department of Biochemistry and Molecular Biology, Medical College of Georgia, and Cancer Center, Georgia Regents University, Augusta, GA 30912 (United States)

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  7. The epigenetic landscape of alcoholism.

    Science.gov (United States)

    Krishnan, Harish R; Sakharkar, Amul J; Teppen, Tara L; Berkel, Tiffani D M; Pandey, Subhash C

    2014-01-01

    Alcoholism is a complex psychiatric disorder that has a multifactorial etiology. Epigenetic mechanisms are uniquely capable of accounting for the multifactorial nature of the disease in that they are highly stable and are affected by environmental factors, including alcohol itself. Chromatin remodeling causes changes in gene expression in specific brain regions contributing to the endophenotypes of alcoholism such as tolerance and dependence. The epigenetic mechanisms that regulate changes in gene expression observed in addictive behaviors respond not only to alcohol exposure but also to comorbid psychopathology such as the presence of anxiety and stress. This review summarizes recent developments in epigenetic research that may play a role in alcoholism. We propose that pharmacologically manipulating epigenetic targets, as demonstrated in various preclinical models, hold great therapeutic potential in the treatment and prevention of alcoholism. © 2014 Elsevier Inc. All rights reserved.

  8. Epigenetics: the language of the cell?

    Science.gov (United States)

    Huang, Biao; Jiang, Cizhong; Zhang, Rongxin

    2014-02-01

    Epigenetics is one of the most rapidly developing fields of biological research. Breakthroughs in several technologies have enabled the possibility of genome-wide epigenetic research, for example the mapping of human genome-wide DNA methylation. In addition, with the development of various high-throughput and high-resolution sequencing technologies, a large number of functional noncoding RNAs have been identified. Massive studies indicated that these functional ncRNA also play an important role in epigenetics. In this review, we gain inspiration from the recent proposal of the ceRNAs hypothesis. This hypothesis proposes that miRNAs act as a language of communication. Accordingly, we further deduce that all of epigenetics may functionally acquire such a unique language characteristic. In summary, various epigenetic markers may not only participate in regulating cellular processes, but they may also act as the intracellular 'language' of communication and are involved in extensive information exchanges within cell.

  9. Epigenetic inheritance in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.

    2016-01-01

    Epigenetic variation, such as changes in DNA methylations, regulatory small RNAs (sRNAs) and chromatin modifications can be induced by environmental stress. There is increasing information that such induced epigenetic modifications can be transmitted to offspring, potentially mediating adaptive

  10. Environmental chemical exposures and human epigenetics

    Science.gov (United States)

    Hou, Lifang; Zhang, Xiao; Wang, Dong; Baccarelli, Andrea

    2012-01-01

    Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes. PMID:22253299

  11. Methyl vitamins contribute to obesogenic effects of a high multivitamin gestational diet and epigenetic alterations in hypothalamic feeding pathways in Wistar rat offspring.

    Science.gov (United States)

    Cho, Clara E; Pannia, Emanuela; Huot, Pedro S P; Sánchez-Hernández, Diana; Kubant, Ruslan; Dodington, David W; Ward, Wendy E; Bazinet, Richard P; Anderson, G Harvey

    2015-03-01

    High multivitamin (HV, tenfold AIN-93G) gestational diets fed to Wistar rats increase food intake, obesity, and characteristics of metabolic syndrome in the offspring. We hypothesized that methyl vitamins, and specifically folate, in the HV gestational diet contribute to the obesogenic phenotypes consistent with their epigenetic effects on hypothalamic food intake regulatory mechanisms. Male offspring of dams fed the AIN-93G diet with high methyl vitamins (HMethyl; tenfold folate, vitamins B12, and B6) (Study 1) and HV with recommended folate (HVRF) (Study 2) were compared with those from HV and recommended vitamin (RV) fed dams. All offspring were weaned to a high fat diet for 8 wks. HMethyl diet, similar to HV, and compared to RV, resulted in higher food intake, body weight, and metabolic disturbances. Removing folate additions to the HV diet in HVRF offspring normalized the obesogenic phenotype. Methyl vitamins, and folate in HV diets, altered hypothalamic gene expression toward increased food intake concurrent with DNA methylation and leptin and insulin receptor signaling dysfunction. Methyl vitamins in HV gestational diets contribute to obesogenic phenotypes and epigenetic alterations in the hypothalamic feeding pathways in the offspring. Folate alone accounts for many of these effects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Epigenetic Variance, Performing Cooperative Structure with Genetics, Is Associated with Leaf Shape Traits in Widely Distributed Populations of Ornamental Tree Prunus mume

    Directory of Open Access Journals (Sweden)

    Kaifeng Ma

    2018-01-01

    Full Text Available Increasing evidence shows that epigenetics plays an important role in phenotypic variance. However, little is known about epigenetic variation in the important ornamental tree Prunus mume. We used amplified fragment length polymorphism (AFLP and methylation-sensitive amplified polymorphism (MSAP techniques, and association analysis and sequencing to investigate epigenetic variation and its relationships with genetic variance, environment factors, and traits. By performing leaf sampling, the relative total methylation level (29.80% was detected in 96 accessions of P. mume. And the relative hemi-methylation level (15.77% was higher than the relative full methylation level (14.03%. The epigenetic diversity (I∗ = 0.575, h∗ = 0.393 was higher than the genetic diversity (I = 0.484, h = 0.319. The cultivated population displayed greater epigenetic diversity than the wild populations in both southwest and southeast China. We found that epigenetic variance and genetic variance, and environmental factors performed cooperative structures, respectively. In particular, leaf length, width and area were positively correlated with relative full methylation level and total methylation level, indicating that the DNA methylation level played a role in trait variation. In total, 203 AFLP and 423 MSAP associated markers were detected and 68 of them were sequenced. Homologous analysis and functional prediction suggested that the candidate marker-linked genes were essential for leaf morphology development and metabolism, implying that these markers play critical roles in the establishment of leaf length, width, area, and ratio of length to width.

  13. Epigenetic Variance, Performing Cooperative Structure with Genetics, Is Associated with Leaf Shape Traits in Widely Distributed Populations of Ornamental Tree Prunus mume.

    Science.gov (United States)

    Ma, Kaifeng; Sun, Lidan; Cheng, Tangren; Pan, Huitang; Wang, Jia; Zhang, Qixiang

    2018-01-01

    Increasing evidence shows that epigenetics plays an important role in phenotypic variance. However, little is known about epigenetic variation in the important ornamental tree Prunus mume . We used amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques, and association analysis and sequencing to investigate epigenetic variation and its relationships with genetic variance, environment factors, and traits. By performing leaf sampling, the relative total methylation level (29.80%) was detected in 96 accessions of P . mume . And the relative hemi-methylation level (15.77%) was higher than the relative full methylation level (14.03%). The epigenetic diversity ( I ∗ = 0.575, h ∗ = 0.393) was higher than the genetic diversity ( I = 0.484, h = 0.319). The cultivated population displayed greater epigenetic diversity than the wild populations in both southwest and southeast China. We found that epigenetic variance and genetic variance, and environmental factors performed cooperative structures, respectively. In particular, leaf length, width and area were positively correlated with relative full methylation level and total methylation level, indicating that the DNA methylation level played a role in trait variation. In total, 203 AFLP and 423 MSAP associated markers were detected and 68 of them were sequenced. Homologous analysis and functional prediction suggested that the candidate marker-linked genes were essential for leaf morphology development and metabolism, implying that these markers play critical roles in the establishment of leaf length, width, area, and ratio of length to width.

  14. Epigenetic Dysregulation in Laryngeal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Thian-Sze Wong

    2012-01-01

    Full Text Available Laryngeal carcinoma is a common head and neck cancer with poor prognosis. Patients with laryngeal carcinoma usually present late leading to the reduced treatment efficacy and high rate of recurrence. Despite the advance in the use of molecular markers for monitoring human cancers in the past decades, there are still no reliable markers for use to screen laryngeal carcinoma and follow the patients after treatment. Epigenetics emerged as an important field in understanding the biology of the human malignancies. Epigenetic alterations refer to the dysregulation of gene, which do not involve the alterations of the DNA sequence. Major epigenetic changes including methylation imbalance, histone modification, and small RNA dysregulation could play a role in the development of human malignancies. Global epigenetic change is now regarded as a molecular signature of cancer. The characteristics and behavior of a cancer could be predicted based on the specific epigenetic pattern. We here provide a review on the understanding of epigenetic dysregulation in laryngeal carcinoma. Further knowledge on the initiation and progression of laryngeal carcinoma at epigenetic level could promote the translation of the knowledge to clinical use.

  15. Evolutionary significance of epigenetic variation

    NARCIS (Netherlands)

    Richards, C.L.; Verhoeven, K.J.F.; Bossdorf, O.; Wendel, J.F.; Greilhuber, J.; Dolezel, J.; Leitch, I.J.

    2012-01-01

    Several chapters in this volume demonstrate how epigenetic work at the molecular level over the last few decades has revolutionized our understanding of genome function and developmental biology. However, epigenetic processes not only further our understanding of variation and regulation at the

  16. Conference scene: Select Biosciences Epigenetics Europe 2010.

    Science.gov (United States)

    Razvi, Enal S

    2011-02-01

    The field of epigenetics is now on a geometric rise, driven in a large part by the realization that modifiers of chromatin are key regulators of biological processes in vivo. The three major classes of epigenetic effectors are DNA methylation, histone post-translational modifications (such as acetylation, methylation or phosphorylation) and small noncoding RNAs (most notably microRNAs). In this article, I report from Select Biosciences Epigenetics Europe 2010 industry conference held on 14-15 September 2010 at The Burlington Hotel, Dublin, Ireland. This industry conference was extremely well attended with a global pool of delegates representing the academic research community, biotechnology companies and pharmaceutical companies, as well as the technology/tool developers. This conference represented the current state of the epigenetics community with cancer/oncology as a key driver. In fact, it has been estimated that approximately 45% of epigenetic researchers today identify cancer/oncology as their main area of focus vis-à-vis their epigenetic research efforts.

  17. Using Epigenetic Therapy to Overcome Chemotherapy Resistance.

    Science.gov (United States)

    Strauss, Julius; Figg, William D

    2016-01-01

    It has been known for decades that as cancer progresses, tumors develop genetic alterations, making them highly prone to developing resistance to therapies. Classically, it has been thought that these acquired genetic changes are fixed. This has led to the paradigm of moving from one cancer therapy to the next while avoiding past therapies. However, emerging data on epigenetic changes during tumor progression and use of epigenetic therapies have shown that epigenetic modifications leading to chemotherapy resistance have the potential to be reversible with epigenetic therapy. In fact, promising clinical data exist that treatment with epigenetic agents can diminish chemotherapy resistance in a number of tumor types including chronic myelogenous leukemia, colorectal, ovarian, lung and breast cancer. The potential for epigenetic-modifying drugs to allow for treatment of resistant disease is exciting and clinical trials have just begun to evaluate this area. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Mitochondrial-epigenetic crosstalk in environmental toxicology.

    Science.gov (United States)

    Weinhouse, Caren

    2017-11-01

    Crosstalk between the nuclear epigenome and mitochondria, both in normal physiological function and in responses to environmental toxicant exposures, is a developing sub-field of interest in environmental and molecular toxicology. The majority (∼99%) of mitochondrial proteins are encoded in the nuclear genome, so programmed communication among nuclear, cytoplasmic, and mitochondrial compartments is essential for maintaining cellular health. In this review, we will focus on correlative and mechanistic evidence for direct impacts of each system on the other, discuss demonstrated or potential crosstalk in the context of chemical insult, and highlight biological research questions for future study. We will first review the two main signaling systems: nuclear signaling to the mitochondria [anterograde signaling], best described in regulation of oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis in response to environmental signals received by the nucleus, and mitochondrial signals to the nucleus [retrograde signaling]. Both signaling systems can communicate intracellular energy needs or a need to compensate for dysfunction to maintain homeostasis, but both can also relay inappropriate signals in the presence of dysfunction in either system and contribute to adverse health outcomes. We will first review these two signaling systems and highlight known or biologically feasible epigenetic contributions to both, then briefly discuss the emerging field of epigenetic regulation of the mitochondrial genome, and finally discuss putative "crosstalk phenotypes", including biological phenomena, such as caloric restriction, maintenance of stemness, and circadian rhythm, and states of disease or loss of function, such as cancer and aging, in which both the nuclear epigenome and mitochondria are strongly implicated. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia.

    Science.gov (United States)

    Dobosy, Joseph R; Roberts, J Lea W; Fu, Vivian X; Jarrard, David F

    2007-03-01

    Prostate cancer research has focused significant attention on the mutation, deletion or amplification of the DNA base sequence that encodes critical growth or suppressor genes. However, these changes have left significant gaps in our understanding of the development and progression of disease. It has become clear that epigenetic changes or modifications that influence phenotype without altering the genotype present a new and entirely different mechanism for gene regulation. Several interrelated epigenetic modifications that are altered in abnormal growth states are DNA methylation changes, histone modifications and genomic imprinting. We discuss the status of epigenetic alterations in prostate cancer and benign prostatic hyperplasia progression. In addition, the rationale and status of ongoing clinical trials altering epigenetic processes in urological diseases are reviewed. An online search of current and past peer reviewed literature on DNA methylation, histone acetylation and methylation, imprinting and epigenetics in prostate cancer and benign prostatic hyperplasia was performed. Relevant articles and reviews were examined and a synopsis of reproducible data was generated with the goal of informing the practicing urologist of these advances and their implications. Only 20 years ago the first study was published demonstrating global changes in DNA methylation patterns in tumors. Accumulating data have now identified specific genes that are commonly hypermethylated and inactivated during prostate cancer progression, including GSTpi, APC, MDR1, GPX3 and 14-3-3sigma. Altered histone modifications, including acetylation and methylation, were also recently described that may modify gene function, including androgen receptor function. These epigenetic changes are now being used to assist in prostate cancer diagnosis and cancer outcome prediction. Epigenetic changes appear to have a role in benign prostatic hyperplasia development as well as in the susceptibility of

  20. The transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid during pregnancy.

    Science.gov (United States)

    Choi, Chang Soon; Gonzales, Edson Luck; Kim, Ki Chan; Yang, Sung Min; Kim, Ji-Woon; Mabunga, Darine Froy; Cheong, Jae Hoon; Han, Seol-Heui; Bahn, Geon Ho; Shin, Chan Young

    2016-11-07

    Autism spectrum disorder (ASD) is a heterogeneously pervasive developmental disorder in which various genetic and environmental factors are believed to underlie its development. Recently, epigenetics has been suggested as a novel concept for ASD aetiology with a proposition that epigenetic marks can be transgenerationally inherited. Based on this assumption of epigenetics, we investigated the transgenerational inheritance of ASD-like behaviours and their related synaptic changes in the VPA animal model of ASD. The first generation (F1) VPA-exposed offspring exhibited autistic-like impaired sociability and increased marble burying. They also showed increased seizure susceptibility, hyperactivity and decreased anxiety. We mated the VPA-exposed F1 male offspring with naïve females to produce the second generation (F2), and then similarly mated the F2 to deliver the third generation (F3). Remarkably, the autism-like behavioural phenotypes found in F1 persisted to the F2 and F3. Additionally, the frontal cortices of F1 and F3 showed some imbalanced expressions of excitatory/inhibitory synaptic markers, suggesting a transgenerational epigenetic inheritance. These results open the idea that E/I imbalance and ASD-like behavioural changes induced by environmental insults in mice can be epigenetically transmitted, at least, to the third generation. This study could help explain the unprecedented increase in ASD prevalence.

  1. The physics of epigenetics

    Science.gov (United States)

    Cortini, Ruggero; Barbi, Maria; Caré, Bertrand R.; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc

    2016-04-01

    In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multiscale physical mechanisms that govern the biological processes behind the initiation, spreading, and inheritance of epigenetic states. These include not only the changes in the molecular properties associated with the chemical modifications of DNA and histone proteins, such as methylation and acetylation, but also less conventional changes, typically in the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of many different physical principles, such as the universal behavior of polymers and copolymers, the general features of dynamical systems, and the electrostatic and mechanical properties related to chemical modifications of DNA and histones. By putting the complex biological literature in this new light, the emerging picture is that a limited set of general physical rules play a key role in initiating, shaping, and transmitting this crucial "epigenetic landscape." This new perspective not only allows one to rationalize the normal cellular functions, but also helps to understand the emergence of pathological states, in which the epigenetic landscape becomes dysfunctional.

  2. Epigenetics and Cellular Metabolism

    OpenAIRE

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  3. Tertiary Epimutations – A Novel Aspect of Epigenetic Transgenerational Inheritance Promoting Genome Instability

    Science.gov (United States)

    McCarrey, John R.; Lehle, Jake D.; Raju, Seetha S.; Wang, Yufeng; Nilsson, Eric E.; Skinner, Michael K.

    2016-01-01

    Exposure to environmental factors can induce the epigenetic transgenerational inheritance of disease. Alterations to the epigenome termed “epimutations” include “primary epimutations” which are epigenetic alterations in the absence of genetic change and “secondary epimutations” which form following an initial genetic change. To determine if secondary epimutations contribute to transgenerational transmission of disease following in utero exposure to the endocrine disruptor vinclozolin, we exposed pregnant female rats carrying the lacI mutation-reporter transgene to vinclozolin and assessed the frequency of mutations in kidney tissue and sperm recovered from F1 and F3 generation progeny. Our results confirm that vinclozolin induces primary epimutations rather than secondary epimutations, but also suggest that some primary epimutations can predispose a subsequent accelerated accumulation of genetic mutations in F3 generation descendants that have the potential to contribute to transgenerational phenotypes. We therefore propose the existence of “tertiary epimutations” which are initial primary epimutations that promote genome instability leading to an accelerated accumulation of genetic mutations. PMID:27992467

  4. Epigenetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    EI-Naggar, A.M.

    2007-01-01

    Data generated during the last three decades provide evidence of Epigenetic Effects that ave-induced by ionizing radiation, particularly those of high LET values, and low level dose exposures. Epigenesist is defined as the stepwise process by which genetic information, as modified by environmental influences, is translated into the substance and behavior of cells, tissues, organism.The epigenetic effects cited in the literature are essentially classified into fine types depending on the type and nature of the effect induced.The most accepted postulation, for the occurrence of these epigenetic effects, is a radiation induced bio electric disturbances in the environment of the non-irradiated cellular volume. This will trigger signals that will induce effects in the unirradiated cells.The epigenetic effects referenced in the literature up to date are five types; namely, Genomic Instability, Bystander. Effects, Clastogenic Plasma Factors,, Abscopal Effects, and Tran generational Effects.The demonstration of Epigenetic Effects associated with exposure to ionizing radiation indicates the need to re- examine the concept of radiation dose and target size. Also an improved understanding of qualifiring and quantifying radiation risk estimates may be attained. Also, a more logical means to understand the underlying mechanisms of radiation induced carcinogenic transformation of cells

  5. Genetics and epigenetics of obesity.

    Science.gov (United States)

    Herrera, Blanca M; Keildson, Sarah; Lindgren, Cecilia M

    2011-05-01

    Obesity results from interactions between environmental and genetic factors. Despite a relatively high heritability of common, non-syndromic obesity (40-70%), the search for genetic variants contributing to susceptibility has been a challenging task. Genome wide association (GWA) studies have dramatically changed the pace of detection of common genetic susceptibility variants. To date, more than 40 genetic variants have been associated with obesity and fat distribution. However, since these variants do not fully explain the heritability of obesity, other forms of variation, such as epigenetics marks, must be considered. Epigenetic marks, or "imprinting", affect gene expression without actually changing the DNA sequence. Failures in imprinting are known to cause extreme forms of obesity (e.g. Prader-Willi syndrome), but have also been convincingly associated with susceptibility to obesity. Furthermore, environmental exposures during critical developmental periods can affect the profile of epigenetic marks and result in obesity. We review the most recent evidence for genetic and epigenetic mechanisms involved in the susceptibility and development of obesity. Only a comprehensive understanding of the underlying genetic and epigenetic mechanisms, and the metabolic processes they govern, will allow us to manage, and eventually prevent, obesity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. CROSSOVERS BETWEEN EPIGENESIS AND EPIGENETICS. A MULTICENTER APPROACH TO THE HISTORY OF EPIGENETICS (1901-1975).

    Science.gov (United States)

    Costa, Rossella; Frezza, Giulia

    2014-01-01

    The origin of epigenetics has been traditionally traced back to Conrad Hal Waddington's foundational work in 1940s. The aim of the present paper is to reveal a hidden history of epigenetics, by means of a multicenter approach. Our analysis shows that genetics and embryology in early XX century--far from being non-communicating vessels--shared similar questions, as epitomized by Thomas Hunt Morgan's works. Such questions were rooted in the theory of epigenesis and set the scene for the development of epigenetics. Since the 1950s, the contribution of key scientists (Mary Lyon and Eduardo Scarano), as well as the discussions at the international conference of Gif-sur-Yvette (1957) paved the way for three fundamental shifts of focus: 1. From the whole embryo to the gene; 2. From the gene to the complex extranuclear processes of development; 3. From cytoplasmic inheritance to the epigenetics mechanisms.

  7. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala.

    Science.gov (United States)

    Hari Dass, Shantala Arundhati; Vyas, Ajai

    2014-12-01

    Male rats (Rattus novergicus) infected with protozoan Toxoplasma gondii relinquish their innate aversion to the cat odours. This behavioural change is postulated to increase transmission of the parasite to its definitive felid hosts. Here, we show that the Toxoplasma gondii infection institutes an epigenetic change in the DNA methylation of the arginine vasopressin promoter in the medial amygdala of male rats. Infected animals exhibit hypomethylation of arginine vasopressin promoter, leading to greater expression of this nonapeptide. The infection also results in the greater activation of the vasopressinergic neurons after exposure to the cat odour. Furthermore, we show that loss of fear in the infected animals can be rescued by the systemic hypermethylation and recapitulated by directed hypomethylation in the medial amygdala. These results demonstrate an epigenetic proximate mechanism underlying the extended phenotype in the Rattus novergicus-Toxoplasma gondii association. © 2014 John Wiley & Sons Ltd.

  8. Epigenetics in Breast and Prostate Cancer

    OpenAIRE

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V.

    2015-01-01

    Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methy...

  9. lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer

    NARCIS (Netherlands)

    Wang, Zehua; Yang, Bo; Zhang, Min; Guo, Weiwei; Wu, Zhiyuan; Wang, Yue; Jia, Lin; Li, Song; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; Bruijn, Inode; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Gonzalez, Ana Maria Angulo; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Pinero, Edna M.Mora; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Xie, Wen; Yang, Da

    2018-01-01

    We characterized the epigenetic landscape of genes encoding long noncoding RNAs (lncRNAs) across 6,475 tumors and 455 cancer cell lines. In stark contrast to the CpG island hypermethylation phenotype in cancer, we observed a recurrent hypomethylation of 1,006 lncRNA genes in cancer, including EPIC1

  10. New insights into the epigenetics of inflammatory rheumatic diseases.

    Science.gov (United States)

    Ballestar, Esteban; Li, Tianlu

    2017-10-01

    Over the past decade, awareness of the importance of epigenetic alterations in the pathogenesis of rheumatic diseases has grown in parallel with a general recognition of the fundamental role of epigenetics in the regulation of gene expression. Large-scale efforts to generate genome-wide maps of epigenetic modifications in different cell types, as well as in physiological and pathological contexts, illustrate the increasing recognition of the relevance of epigenetics. To date, although several reports have demonstrated the occurrence of epigenetic alterations in a wide range of inflammatory rheumatic conditions, epigenomic information is rarely used in a clinical setting. By contrast, several epigenetic biomarkers and treatments are currently in use for personalized therapies in patients with cancer. This Review highlights advances from the past 5 years in the field of epigenetics and their application to inflammatory rheumatic diseases, delineating the future lines of development for a rational use of epigenetic information in clinical settings and in personalized medicine. These advances include the identification of epipolymorphisms associated with clinical outcomes, DNA methylation as a contributor to disease susceptibility in rheumatic conditions, the discovery of novel epigenetic mechanisms that modulate disease susceptibility and the development of new epigenetic therapies.

  11. Epigenetics and cerebral organoids

    DEFF Research Database (Denmark)

    Forsberg, Sheena Louise; Ilieva, Mirolyuba; Maria Michel, Tanja

    2018-01-01

    also play a role. Some studies indicate a set of candidate genes with different DNA methylation profiles in ASD compared to healthy individuals. Thus epigenetic alterations could help bridging the gene-environment gap in deciphering the underlying neurobiology of autism. However, epigenome......-wide association studies (EWAS) have mainly included a very limited number of postmortem brain samples. Hence, cellular models mimicking brain development in vitro will be of great importance to study the critical epigenetic alterations and when they might happen. This review will give an overview of the state...... of the art concerning knowledge on epigenetic changes in autism and how new, cutting edge expertise based on three-dimensional (3D) stem cell technology models (brain organoids) can contribute in elucidating the multiple aspects of disease mechanisms....

  12. Obesity and diabetes: from genetics to epigenetics.

    Science.gov (United States)

    Burgio, Ernesto; Lopomo, Angela; Migliore, Lucia

    2015-04-01

    Obesity is becoming an epidemic health problem. During the last years not only genetic but also, and primarily, environmental factors have been supposed to contribute to the susceptibility to weight gain or to develop complications such as type 2 diabetes. In spite of the intense efforts to identify genetic predisposing variants, progress has been slow and success limited, and the common obesity susceptibility variants identified only explains a small part of the individual variation in risk. Moreover, there is evidence that the current epidemic of obesity and diabetes is environment-driven. Recent studies indicate that normal metabolic regulation during adulthood besides requiring a good balance between energy intake and energy expenditure, can be also affected by pre- and post-natal environments. In fact, maternal nutritional constraint during pregnancy can alter the metabolic phenotype of the offspring by means of epigenetic regulation of specific genes, and this can be passed to the next generations. Studies focused on epigenetic marks in obesity found altered methylation and/or histone acetylation levels in genes involved in specific but also in more general metabolic processes. Recent researches point out the continuous increase of "obesogens", in the environment and food chains, above all endocrine disruptors, chemicals that interfere with many homeostatic mechanisms. Taken into account the already existing data on the effects of obesogens, and the multiple potential targets with which they might interfere daily, it seems likely that the exposure to obesogens can have an important role in the obesity and diabesity pandemic.

  13. Genome-Wide Locations of Potential Epimutations Associated with Environmentally Induced Epigenetic Transgenerational Inheritance of Disease Using a Sequential Machine Learning Prediction Approach

    OpenAIRE

    Haque, M. Muksitul; Holder, Lawrence B.; Skinner, Michael K.

    2015-01-01

    Environmentally induced epigenetic transgenerational inheritance of disease and phenotypic variation involves germline transmitted epimutations. The primary epimutations identified involve altered differential DNA methylation regions (DMRs). Different environmental toxicants have been shown to promote exposure (i.e., toxicant) specific signatures of germline epimutations. Analysis of genomic features associated with these epimutations identified low-density CpG regions (

  14. In search of epigenetic marks in testes and sperm cells of differentially fed boars.

    Directory of Open Access Journals (Sweden)

    Rémy Bruggmann

    Full Text Available In search of transmittable epigenetic marks we investigated gene expression in testes and sperm cells of differentially fed F0 boars from a three generation pig feeding experiment that showed phenotypic differences in the F2 generation. RNA samples from 8 testes of boars that received either a diet enriched in methylating micronutrients or a control diet were analyzed by microarray analysis. We found moderate differential expression between testes of differentially fed boars with a high FDR of 0.82 indicating that most of the differentially expressed genes were false positives. Nevertheless, we performed a pathway analysis and found disparate pathway maps of development_A2B receptor: action via G-protein alpha s, cell adhesion_Tight junctions and cell adhesion_Endothelial cell contacts by junctional mechanisms which show inconclusive relation to epigenetic inheritance. Four RNA samples from sperm cells of these differentially fed boars were analyzed by RNA-Seq methodology. We found no differential gene expression in sperm cells of the two groups (adjusted P-value>0.05. Nevertheless, we also explored gene expression in sperm by a pathway analysis showing that genes were enriched for the pathway maps of bacterial infections in cystic fibrosis (CF airways, glycolysis and gluconeogenesis p.3 and cell cycle_Initiation of mitosis. Again, these pathway maps are miscellaneous without an obvious relationship to epigenetic inheritance. It is concluded that the methylating micronutrients moderately if at all affects RNA expression in testes of differentially fed boars. Furthermore, gene expression in sperm cells is not significantly affected by extensive supplementation of methylating micronutrients and thus RNA molecules could not be established as the epigenetic mark in this feeding experiment.

  15. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids.

    Science.gov (United States)

    Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao

    2013-05-05

    Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice

  16. Epigenetic Mechanisms Underlie Genome Development

    Science.gov (United States)

    Lamm, Ehud

    2013-01-01

    Technological and methodological advances, in particular next-generation sequencing and chromatin profiling, has led to a deluge of data on epigenetic mechanisms and processes. Epigenetic regulation in the brain is no exception. In this commentary, Ehud Lamm writes that extending existing frameworks for thinking about psychological development to…

  17. Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: insights in depression.

    Science.gov (United States)

    Ignácio, Z M; Réus, G Z; Abelaira, H M; Quevedo, J

    2014-09-05

    Epidemiological studies have shown significant results in the interaction between the functions of brain-derived neurotrophic factor (BDNF) and 5-HT in mood disorders, such as major depressive disorder (MDD). The latest research has provided convincing evidence that gene transcription of these molecules is a target for epigenetic changes, triggered by stressful stimuli that starts in early childhood and continues throughout life, which are subsequently translated into structural and functional phenotypes culminating in depressive disorders. The short variants of 5-HTTLPR and BDNF-Met are seen as forms which are predisposed to epigenetic aberrations, which leads individuals to a susceptibility to environmental adversities, especially when subjected to stress in early life. Moreover, the polymorphic variants also feature epistatic interactions in directing the functional mechanisms elicited by stress and underlying the onset of depressive disorders. Also emphasized are works which show some mediators between stress and epigenetic changes of the 5-HTT and BDNF genes, such as the hypothalamic-pituitary-adrenal (HPA) axis and the cAMP response element-binding protein (CREB), which is a cellular transcription factor. Both the HPA axis and CREB are also involved in epistatic interactions between polymorphic variants of 5-HTTLPR and Val66Met. This review highlights some research studying changes in the epigenetic patterns intrinsic to genes of 5-HTT and BDNF, which are related to lifelong environmental adversities, which in turn increases the risks of developing MDD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. MicroRNAs, epigenetics and disease

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli; Stenvang, Jan

    2010-01-01

    Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules...... which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3' UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation...... diseases. In the present chapter we will mainly focus on microRNAs and methylation and their implications in human disease, mainly in cancer....

  19. Epigenetic Epidemiology of Complex Diseases Using Twins

    DEFF Research Database (Denmark)

    Tan, Qihua

    2013-01-01

    through multiple epigenetic mechanisms. This paper reviews the new developments in using twins to study disease-related epigenetic alterations, links them to lifetime environmental exposure with a focus on the discordant twin design and proposes novel data-analytical approaches with the aim of promoting...... a more efficient use of twins in epigenetic studies of complex human diseases....

  20. Epigenetic inheritance, prions and evolution

    Indian Academy of Sciences (India)

    The field of epigenetics has grown explosively in the past two decades or so. As currently defined, epigenetics deals with heritable, metastable and usually reversible changes that do not involve alterations in DNA sequence, but alter the way that information encoded inDNAis utilized.The bulk of current research in ...

  1. [Epigenetics and obesity].

    Science.gov (United States)

    Casanello, Paola; Krause, Bernardo J; Castro-Rodríguez, José A; Uauy, Ricardo

    Current evidence supports the notion that exposure to various environmental conditions in early life may induce permanent changes in the epigenome that persist throughout the life-course. This article focuses on early changes associated with obesity in adult life. A review is presented on the factors that induce changes in whole genome (DNA) methylation in early life that are associated with adult onset obesity and related disorders. In contrast, reversal of epigenetic changes associated with weight loss in obese subjects has not been demonstrated. This contrasts with well-established associations found between obesity related DNA methylation patterns at birth and adult onset obesity and diabetes. Epigenetic markers may serve to screen indivuals at risk for obesity and assess the effects of interventions in early life that may delay or prevent obesity in early life. This might contribute to lower the obesity-related burden of death and disability at the population level. The available evidence indicates that epigenetic marks are in fact modifiable, based on modifications in the intrauterine environment and changes in food intake, physical activity and dietary patterns patterns during pregnancy and early years of adult life. This offers the opportunity to intervene before conception, during pregnancy, infancy, childhood, and also in later life. There must be documentation on the best preventive actions in terms of diet and physical activity that will modify or revert the adverse epigenetic markers, thus preventing obesity and diabetes in suceptible individuals and populations. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Epigenetic Consequences of Artificial Reproductive Technologies to the Bovine Imprinted Genes SNRPN, H19/IGF2 and IGF2R

    Directory of Open Access Journals (Sweden)

    Lawrence C. Smith

    2015-02-01

    Full Text Available Animal breeders have made widespread use of assisted reproductive technologies to accelerate genetic improvement programs aimed at obtaining more, better and cheaper food products. Selection approaches have traditionally focused on Mendel’s laws of inheritance using parental phenotypic characteristics and quantitative genetics approaches to choose the best parents for the next generation, regardless of their gender. However, apart from contributing DNA sequence variants, male and female gametes carry parental-specific epigenetic marks that play key roles during pre- and post-natal development and growth of the offspring. We herein review the epigenetic anomalies that are associated with artificial reproductive technologies in current use in animal breeding programs. For instance, we demonstrate that bovine embryos and foetuses derived by in vitro culture and somatic cell nuclear transfer show epigenetic anomalies in the differentially methylated regions controlling the expression of some imprinted genes. Although these genomic imprinting errors are undetected in the somatic tissues after birth, further research is warranted to examine potential germ cell transmission of epimutations and the potential risks of reproducing cattle using artificial reproductive technologies.

  3. Epigenetic Modulation of the Biophysical Properties of Drug-Resistant Cell Lipids to Restore Drug Transport and Endocytic Functions

    OpenAIRE

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-01-01

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g....

  4. Analysis and Optimization of Three-Resonator Wireless Power Transfer System for Predetermined-Goals Wireless Power Transmission

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-04-01

    Full Text Available Three-resonator wireless power transfer (WPT systems have been proposed to improve the power transfer efficiency (PTE and power delivered to the load (PDL in recent years. However, analysis formulas of a three-resonator WPT system are complicated, and the parameters for clarifying the transfer characteristics of this system are difficult to extract. In this paper, concise formulas for analyzing PTE and PDL of the three-resonator system are derived by introducing three factors. Diagram discriminance based on the derived formulas is proposed to obtain the frequency splitting criterions of PTE and PDL in this system. Further, at the transfer distances, where the PTE and PDL are low at original frequency due to frequency splitting phenomenon, the two predetermined-goals of maximizing PTE and PDL are achieved by optimizing coupling strength between the three resonators. The third predetermined-goal of obtaining a constant amount of PDL transfer at maximum PTE is also implemented based on basic algorithms in numerical software. Finally, Simulation and measurement results verify the correctness of analyzing the transfer characteristics of three-resonator WPT system using the presented concise formulas and discriminance. Moreover, effectiveness of realizing the three predetermined-goals via the proposed optimization method is confirmed with experiments.

  5. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Science.gov (United States)

    Sarkar, Sibaji; Horn, Garrick; Moulton, Kimberly; Oza, Anuja; Byler, Shannon; Kokolus, Shannon; Longacre, McKenna

    2013-01-01

    Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics. PMID:24152442

  6. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Directory of Open Access Journals (Sweden)

    McKenna Longacre

    2013-10-01

    Full Text Available Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.

  7. Epigenetics in Prostate Cancer

    OpenAIRE

    Albany, Costantine; Alva, Ajjai S.; Aparicio, Ana M.; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M.

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequ...

  8. Importance of investigating epigenetic alterations for industry and regulators: An appraisal of current efforts by the Health and Environmental Sciences Institute

    International Nuclear Information System (INIS)

    Miousse, Isabelle R.; Currie, Richard; Datta, Kaushik; Ellinger-Ziegelbauer, Heidrun; French, John E.; Harrill, Alison H.; Koturbash, Igor; Lawton, Michael; Mann, Derek; Meehan, Richard R.; Moggs, Jonathan G.; O’Lone, Raegan; Rasoulpour, Reza J.

    2015-01-01

    Recent technological advances have led to rapid progress in the characterization of epigenetic modifications that control gene expression in a generally heritable way, and are likely involved in defining cellular phenotypes, developmental stages and disease status from one generation to the next. On November 18, 2013, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) held a symposium entitled “Advances in Assessing Adverse Epigenetic Effects of Drugs and Chemicals” in Washington, D.C. The goal of the symposium was to identify gaps in knowledge and highlight promising areas of progress that represent opportunities to utilize epigenomic profiling for risk assessment of drugs and chemicals. Epigenomic profiling has the potential to provide mechanistic information in toxicological safety assessments; this is especially relevant for the evaluation of carcinogenic or teratogenic potential and also for drugs that directly target epigenetic modifiers, like DNA methyltransferases or histone modifying enzymes. Furthermore, it can serve as an endpoint or marker for hazard characterization in chemical safety assessment. The assessment of epigenetic effects may also be approached with new model systems that could directly assess transgenerational effects or potentially sensitive stem cell populations. These would enhance the range of safety assessment tools for evaluating xenobiotics that perturb the epigenome. Here we provide a brief synopsis of the symposium, update findings since that time and then highlight potential directions for future collaborative efforts to incorporate epigenetic profiling into risk assessment

  9. Epigenetic differences in monozygotic twins discordant for major depressive disorder.

    Science.gov (United States)

    Malki, K; Koritskaya, E; Harris, F; Bryson, K; Herbster, M; Tosto, M G

    2016-06-14

    Although monozygotic (MZ) twins share the majority of their genetic makeup, they can be phenotypically discordant on several traits and diseases. DNA methylation is an epigenetic mechanism that can be influenced by genetic, environmental and stochastic events and may have an important impact on individual variability. In this study we explored epigenetic differences in peripheral blood samples in three MZ twin studies on major depressive disorder (MDD). Epigenetic data for twin pairs were collected as part of a previous study using 8.1-K-CpG microarrays tagging DNA modification in white blood cells from MZ twins discordant for MDD. Data originated from three geographical regions: UK, Australia and the Netherlands. Ninety-seven MZ pairs (194 individuals) discordant for MDD were included. Different methods to address non independently-and-identically distributed (non-i.i.d.) data were evaluated. Machine-learning methods with feature selection centered on support vector machine and random forest were used to build a classifier to predict cases and controls based on epivariations. The most informative variants were mapped to genes and carried forward for network analysis. A mixture approach using principal component analysis (PCA) and Bayes methods allowed to combine the three studies and to leverage the increased predictive power provided by the larger sample. A machine-learning algorithm with feature reduction classified affected from non-affected twins above chance levels in an independent training-testing design. Network analysis revealed gene networks centered on the PPAR-γ (NR1C3) and C-MYC gene hubs interacting through the AP-1 (c-Jun) transcription factor. PPAR-γ (NR1C3) is a drug target for pioglitazone, which has been shown to reduce depression symptoms in patients with MDD. Using a data-driven approach we were able to overcome challenges of non-i.i.d. data when combining epigenetic studies from MZ twins discordant for MDD. Individually, the studies yielded

  10. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma; Kinouchi, Kenichiro; Sassone-Corsi, Paolo

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  11. Enduring epigenetic landmarks define the cancer microenvironment

    Science.gov (United States)

    Pidsley, Ruth; Lawrence, Mitchell G.; Zotenko, Elena; Niranjan, Birunthi; Statham, Aaron; Song, Jenny; Chabanon, Roman M.; Qu, Wenjia; Wang, Hong; Richards, Michelle; Nair, Shalima S.; Armstrong, Nicola J.; Nim, Hieu T.; Papargiris, Melissa; Balanathan, Preetika; French, Hugh; Peters, Timothy; Norden, Sam; Ryan, Andrew; Pedersen, John; Kench, James; Daly, Roger J.; Horvath, Lisa G.; Stricker, Phillip; Frydenberg, Mark; Taylor, Renea A.; Stirzaker, Clare; Risbridger, Gail P.; Clark, Susan J.

    2018-01-01

    The growth and progression of solid tumors involves dynamic cross-talk between cancer epithelium and the surrounding microenvironment. To date, molecular profiling has largely been restricted to the epithelial component of tumors; therefore, features underpinning the persistent protumorigenic phenotype of the tumor microenvironment are unknown. Using whole-genome bisulfite sequencing, we show for the first time that cancer-associated fibroblasts (CAFs) from localized prostate cancer display remarkably distinct and enduring genome-wide changes in DNA methylation, significantly at enhancers and promoters, compared to nonmalignant prostate fibroblasts (NPFs). Differentially methylated regions associated with changes in gene expression have cancer-related functions and accurately distinguish CAFs from NPFs. Remarkably, a subset of changes is shared with prostate cancer epithelial cells, revealing the new concept of tumor-specific epigenome modifications in the tumor and its microenvironment. The distinct methylome of CAFs provides a novel epigenetic hallmark of the cancer microenvironment and promises new biomarkers to improve interpretation of diagnostic samples. PMID:29650553

  12. Intergenerational epigenetic inheritance in reef-building corals

    KAUST Repository

    Liew, Yi Jin

    2018-02-22

    The notion that intergenerational or transgenerational inheritance operates solely through genetic means is slowly being eroded: epigenetic mechanisms have been shown to induce heritable changes in gene activity in plants and metazoans. Inheritance of DNA methylation provides a potential pathway for environmentally induced phenotypes to contribute to evolution of species and populations. However, in basal metazoans, it is unknown whether inheritance of CpG methylation patterns occurs across the genome (as in plants) or as rare exceptions (as in mammals). Here, we demonstrate genome-wide intergenerational transmission of CpG methylation patterns from parents to sperm and larvae in a reef-building coral. We also show variation in hypermethylated genes in corals from distinct environments, indicative of responses to variations in temperature and salinity. These findings support a role of DNA methylation in the transgenerational inheritance of traits in corals, which may extend to enhancing their capacity to adapt to climate change.

  13. Intergenerational epigenetic inheritance in reef-building corals

    KAUST Repository

    Liew, Yi Jin; Howells, Emily J.; Wang, Xin; Michell, Craig; Burt, John A.; Idaghdour, Youssef; Aranda, Manuel

    2018-01-01

    The notion that intergenerational or transgenerational inheritance operates solely through genetic means is slowly being eroded: epigenetic mechanisms have been shown to induce heritable changes in gene activity in plants and metazoans. Inheritance of DNA methylation provides a potential pathway for environmentally induced phenotypes to contribute to evolution of species and populations. However, in basal metazoans, it is unknown whether inheritance of CpG methylation patterns occurs across the genome (as in plants) or as rare exceptions (as in mammals). Here, we demonstrate genome-wide intergenerational transmission of CpG methylation patterns from parents to sperm and larvae in a reef-building coral. We also show variation in hypermethylated genes in corals from distinct environments, indicative of responses to variations in temperature and salinity. These findings support a role of DNA methylation in the transgenerational inheritance of traits in corals, which may extend to enhancing their capacity to adapt to climate change.

  14. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  15. Epigenetic Impact on EBV Associated B-Cell Lymphomagenesis

    Directory of Open Access Journals (Sweden)

    Shatadru Ghosh Roy

    2016-11-01

    Full Text Available Epigenetic modifications leading to either transcriptional repression or activation, play an indispensable role in the development of human cancers. Epidemiological study revealed that approximately 20% of all human cancers are associated with tumor viruses. Epstein-Barr virus (EBV, the first human tumor virus, demonstrates frequent epigenetic alterations on both viral and host genomes in associated cancers—both of epithelial and lymphoid origin. The cell type-dependent different EBV latent gene expression patterns appear to be determined by the cellular epigenetic machinery and similarly viral oncoproteins recruit epigenetic regulators in order to deregulate the cellular gene expression profile resulting in several human cancers. This review elucidates the epigenetic consequences of EBV–host interactions during development of multiple EBV-induced B-cell lymphomas, which may lead to the discovery of novel therapeutic interventions against EBV-associated B-cell lymphomas by alteration of reversible patho-epigenetic markings.

  16. Epigenetic reprogramming in the porcine germ line

    DEFF Research Database (Denmark)

    Matzen, Sara Maj Hyldig; Croxall, Nicola; Contreras, David A.

    2011-01-01

    BACKGROUND: Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next...... an increased proportion of cells in G2. CONCLUSIONS: Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic...... DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in mice, suggesting that epigenetic reprogramming of germ cells is conserved in mammals. A better understanding...

  17. Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition

    Science.gov (United States)

    Wang, Qian; Gosik, Kirk; Xing, Sujuan; Jiang, Libo; Sun, Lidan; Chinchilli, Vernon M.; Wu, Rongling

    2017-03-01

    Epigenetic reprogramming is thought to play a critical role in maintaining the normal development of embryos. How the methylation state of paternal and maternal genomes regulates embryogenesis depends on the interaction and coordination of the gametes of two sexes. While there is abundant research in exploring the epigenetic interactions of sperms and oocytes, a knowledge gap exists in the mechanistic quantitation of these interactions and their impact on embryo development. This review aims at formulating a modeling framework to address this gap through the integration and synthesis of evolutionary game theory and the latest discoveries of the epigenetic control of embryo development by next-generation sequencing. This framework, named epigenetic game theory or epiGame, views embryogenesis as an ecological system in which two highly distinct and specialized gametes coordinate through either cooperation or competition, or both, to maximize the fitness of embryos under Darwinian selection. By implementing a system of ordinary differential equations, epiGame quantifies the pattern and relative magnitude of the methylation effects on embryogenesis by the mechanisms of cooperation and competition. epiGame may gain new insight into reproductive biology and can be potentially applied to design personalized medicines for genetic disorder intervention.

  18. Epigenetics in prostate cancer.

    Science.gov (United States)

    Albany, Costantine; Alva, Ajjai S; Aparicio, Ana M; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a "normal" epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  19. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu

    2011-07-28

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  20. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu; Mithani, Aziz; Gan, Xiangchao; Belfield, Eric J.; Klingler, John  P.; Zhu, Jian-Kang; Ragoussis, Jiannis; Mott, Richard; Harberd, Nicholas  P.

    2011-01-01

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  1. Detection vs. selection: integration of genetic, epigenetic and environmental cues in fluctuating environments.

    Science.gov (United States)

    McNamara, John M; Dall, Sasha R X; Hammerstein, Peter; Leimar, Olof

    2016-10-01

    There are many inputs during development that influence an organism's fit to current or upcoming environments. These include genetic effects, transgenerational epigenetic influences, environmental cues and developmental noise, which are rarely investigated in the same formal framework. We study an analytically tractable evolutionary model, in which cues are integrated to determine mature phenotypes in fluctuating environments. Environmental cues received during development and by the mother as an adult act as detection-based (individually observed) cues. The mother's phenotype and a quantitative genetic effect act as selection-based cues (they correlate with environmental states after selection). We specify when such cues are complementary and tend to be used together, and when using the most informative cue will predominate. Thus, we extend recent analyses of the evolutionary implications of subsets of these effects by providing a general diagnosis of the conditions under which detection and selection-based influences on development are likely to evolve and coexist. © 2016 John Wiley & Sons Ltd/CNRS.

  2. Epigenetics of hypoxic pulmonary arterial hypertension following intrauterine growth retardation rat: epigenetics in PAH following IUGR

    Directory of Open Access Journals (Sweden)

    Xu Xue-Feng

    2013-02-01

    Full Text Available Abstract Background Accumulating evidence reveals that intrauterine growth retardation (IUGR can cause varying degrees of pulmonary arterial hypertension (PAH later in life. Moreover, epigenetics plays an important role in the fetal origin of adult disease. The goal of this study was to investigate the role of epigenetics in the development of PAH following IUGR. Methods The IUGR rats were established by maternal undernutrition during pregnancy. Pulmonary vascular endothelial cells (PVEC were isolated from the rat lungs by magnetic-activated cell sorting (MACS. We investigated epigenetic regulation of the endothelin-1 (ET-1 gene in PVEC of 1-day and 6-week IUGR rats, and response of IUGR rats to hypoxia. Results The maternal nutrient restriction increased the histone acetylation and hypoxia inducible factor-1α (HIF-1α binding levels in the ET-1 gene promoter of PVEC in IUGR newborn rats, and continued up to 6 weeks after birth. These epigenetic changes could result in an IUGR rat being highly sensitive to hypoxia later in life, causing more significant PAH or pulmonary vascular remodeling. Conclusions These findings suggest that epigenetics is closely associated with the development of hypoxic PAH following IUGR, further providing a new insight for improved prevention and treatment of IUGR-related PAH.

  3. Epigenetic impact of curcumin on stroke prevention

    OpenAIRE

    Kalani, Anuradha; Kamat, Pradip K; Kalani, Komal; Tyagi, Neetu

    2014-01-01

    The epigenetic impact of curcumin in stroke and neurodegenerative disorders is curiosity-arousing. It is derived from Curcuma longa (spice), possesses anti-oxidative, anti-inflammatory, anti-lipidemic, neuro-protective and recently shown to exhibit epigenetic modulatory properties. Epigenetic studies include DNA methylation, histone modifications and RNA-based mechanisms which regulate gene expression without altering nucleotide sequences. Curcumin has been shown to affect cancer by altering ...

  4. The evolutionary implications of epigenetic inheritance.

    Science.gov (United States)

    Jablonka, Eva

    2017-10-06

    The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.

  5. Hypothesis: Genetic and epigenetic risk factors interact to modulate vulnerability and resilience to FASD

    Directory of Open Access Journals (Sweden)

    Elif eTunc-Ozcan

    2014-08-01

    Full Text Available Fetal alcohol spectrum disorder (FASD presents a collection of symptoms representing physiological and behavioral phenotypes caused by maternal alcohol consumption. Symptom severity is modified by genetic differences in fetal susceptibility and resistance as well as maternal genetic factors such as maternal alcohol sensitivity. Animal models demonstrate that both maternal and paternal genetics contribute to the variation in the fetus’ vulnerability to alcohol exposure. Maternal and paternal genetics define the variations in these phenotypes even without the effect of alcohol in utero, as most of these traits are polygenic, non-Mendelian, in their inheritance. In addition, the epigenetic alterations that instigate the alcohol induced neurodevelopmental deficits can interact with the polygenic inheritance of respective traits. Here, based on specific examples, we present the hypothesis that the principles of non-Mendelian inheritance, or ‘exceptions’ to Mendelian genetics, can be the driving force behind the severity of the prenatal alcohol-exposed individual’s symptomology. One such exception is when maternal alleles lead to an altered intrauterine hormonal environment and, therefore, produce variations in the long-term consequences on the development of the alcohol-exposed fetus. Another exception is when epigenetic regulation of allele-specific gene expression generates disequilibrium between the maternal versus paternal genetic contributions, and thereby, modifies the effect of prenatal alcohol exposure on the fetus. We propose that these situations in which one parent has an exaggerated influence over the offspring’s vulnerability to prenatal alcohol are major contributing mechanisms responsible for the variations in the symptomology of FASD in the exposed generation and beyond.

  6. To What Extent Does DNA Methylation Affect Phenotypic Variation in Cattle?

    Directory of Open Access Journals (Sweden)

    Stephanie McKAY

    2015-07-01

    Full Text Available DNA methylation is an environmentally influenced epigenetic modification that regulates gene transcription and has the potential to influence variation in economically important phenotypes in agricultural species. We have utilized a novel approach to evaluate the relationship between genetic and epigenetic variation and downstream phenotypes. To begin with, we have integrated RNA-Seq and methyl binding domain sequencing (MBD-Seq data in order to determine the extent to which DNA methylation affects phenotypic variation in economically important traits of cattle. MBD-Seq is a technique that involves the sample enrichment of methylated genomic regions followed by their next-generation sequencing. This study utilized Illumina next generation sequencing technology to perform both RNA-Seq and MBD-Seq. NextGENe software (SoftGenetics, State College, PA was employed for quality trimming and aligning the sequence reads to the UMD3.1 bovine reference genome, generating counts of matched reads and methylated peak identification. Subsequently, we identified and quantified genome-wide methylated regions and characterized the extent of differential methylation and differential expression between two groups of animals with extreme phenotypes. The program edgeR from the R software package (version 3.0.1 was employed for identifying differentially methylated regions and regions of differential expression. Finally, Partial Correlation with Information Theory (PCIT was performed to identify transcripts and methylation events that exhibit differential hubbing. A differential hub is defined as a gene network hub that is more highly connected in one treatment group than the other. This analysis produced every possible pair-wise interaction that subsequently enabled us to look at network interactions of how methylation affects expression. (co-expression, co-methylation, methylation x expression. Genomic regions of interest derived from this analysis were then aligned

  7. Environmentally induced epigenetic toxicity: potential public health concerns.

    Science.gov (United States)

    Marczylo, Emma L; Jacobs, Miriam N; Gant, Timothy W

    2016-09-01

    Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.

  8. Transgenerational epigenetics and environmental justice.

    Science.gov (United States)

    Rothstein, Mark A; Harrell, Heather L; Marchant, Gary E

    2017-07-01

    Human transmission to offspring and future generations of acquired epigenetic modifications has not been definitively established, although there are several environmental exposures with suggestive evidence. This article uses three examples of hazardous substances with greater exposures in vulnerable populations: pesticides, lead, and diesel exhaust. It then considers whether, if there were scientific evidence of transgenerational epigenetic inheritance, there would be greater attention given to concerns about environmental justice in environmental laws, regulations, and policies at all levels of government. To provide a broader perspective on environmental justice the article discusses two of the most commonly cited approaches to environmental justice. John Rawls's theory of justice as fairness, a form of egalitarianism, is frequently invoked for the principle that differential treatment of individuals is justified only if actions are designed to benefit those with the greatest need. Another theory, the capabilities approach of Amartya Sen and Martha Nussbaum, focuses on whether essential capabilities of society, such as life and health, are made available to all individuals. In applying principles of environmental justice the article considers whether there is a heightened societal obligation to protect the most vulnerable individuals from hazardous exposures that could adversely affect their offspring through epigenetic mechanisms. It concludes that unless there were compelling evidence of transgenerational epigenetic harms, it is unlikely that there would be a significant impetus to adopt new policies to prevent epigenetic harms by invoking principles of environmental justice.

  9. Aebp2 as an epigenetic regulator for neural crest cells.

    Directory of Open Access Journals (Sweden)

    Hana Kim

    Full Text Available Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2. We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung's disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism.

  10. Epigenetic diet: impact on the epigenome and cancer

    Science.gov (United States)

    Hardy, Tabitha M; Tollefsbol, Trygve O

    2011-01-01

    A number of bioactive dietary components are of particular interest in the field of epigenetics. Many of these compounds display anticancer properties and may play a role in cancer prevention. Numerous studies suggest that a number of nutritional compounds have epigenetic targets in cancer cells. Importantly, emerging evidence strongly suggests that consumption of dietary agents can alter normal epigenetic states as well as reverse abnormal gene activation or silencing. Epigenetic modifications induced by bioactive dietary compounds are thought to be beneficial. Substantial evidence is mounting proclaiming that commonly consumed bioactive dietary factors act to modify the epigenome and may be incorporated into an ‘epigenetic diet’. Bioactive nutritional components of an epigenetic diet may be incorporated into one’s regular dietary regimen and used therapeutically for medicinal or chemopreventive purposes. This article will primarily focus on dietary factors that have been demonstrated to influence the epigenome and that may be used in conjunction with other cancer prevention and chemotherapeutic therapies. PMID:22022340

  11. The up-stream regulation of polymerase-1 and transcript release factor(PTRF/Cavin-1 in prostate cancer: an epigenetic analysis

    Directory of Open Access Journals (Sweden)

    Helen D. Nicholson

    2016-09-01

    Full Text Available The expression of PTRF is down-regulated in prostate cell lines and tissues. Restorationof PTRF expression leads to a reduction in aggressive phenotypes of prostate cancer cells both in vitro and in vivo. Epigenetics examines the changes in gene expression that occur without changing DNA sequences. Two main epigenetic mechanisms include hypermethylation of the gene’s promoter region and changes to the chromatin structure through histone modification. We investigated the involvement of possible epigenetic up-stream regulatory mechanisms that may down-regulate PTRF in prostate cancer cells. Normal (RWPE-1 and prostate cancer (LNCaP and PC3 cell lines were treated with DNA methylation inhibitor, 5-aza-2Ꞌ-deoxycytidine (5AZA and histone deacetylase inhibitor, Trichostatin-A (TSA either independently or in combination. A bioinformatics approach was also used to investigate the changes of epigenetic driver genes in silico. In normal prostate cells(RWPE-1, and androgen independent prostate cancer cells (PC3, treatment with 5AZA and/or TSA did not affect PTRF expression. However, TSA and TSA + 5AZA treatments, but not 5AZA alone,up-regulated the expression of PTRF in LNCaP cells. Bioinformatic analysis of the potential histone deacetylase (HDAC genes involved showed that HDAC2, HDAC6 and HDAC10 may be potential candidate genes for the regulation of PTRF. This corroborative study describes the possible role of an epigenetic mechanism onPTRF, further studies are required to allow a better understanding of theup-stream mechanisms that regulate PTRF expression.

  12. Assessment of genetic and epigenetic changes in virus-free garlic (Allium sativum L.) plants obtained by meristem culture followed by in vitro propagation.

    Science.gov (United States)

    Gimenez, Magalí Diana; Yañez-Santos, Anahí Mara; Paz, Rosalía Cristina; Quiroga, Mariana Paola; Marfil, Carlos Federico; Conci, Vilma Cecilia; García-Lampasona, Sandra Claudia

    2016-01-01

    This is the first report assessing epigenetic variation in garlic. High genetic and epigenetic polymorphism during in vitro culture was detected.Sequencing of MSAP fragments revealed homology with ESTs. Garlic (Allium sativum) is a worldwide crop of economic importance susceptible to viral infections that can cause significant yield losses. Meristem tissue culture is the most employed method to sanitize elite cultivars.Often the virus-free garlic plants obtained are multiplied in vitro (micro propagation). However, it was reported that micro-propagation frequently produces somaclonal variation at the phenotypic level, which is an undesirable trait when breeders are seeking to maintain varietal stability. We employed amplification fragment length polymorphism and methylation sensitive amplified polymorphism (MSAP) methodologies to assess genetic and epigenetic modifications in two culture systems: virus-free plants obtained by meristem culture followed by in vitro multiplication and field culture. Our results suggest that garlic exhibits genetic and epigenetic polymorphism under field growing conditions. However, during in vitro culture system both kinds of polymorphisms intensify indicating that this system induces somaclonal variation. Furthermore, while genetic changes accumulated along the time of in vitro culture, epigenetic polymorphism reached the major variation at 6 months and then stabilize, being demethylation and CG methylation the principal conversions.Cloning and sequencing differentially methylated MSAP fragments allowed us to identify coding and unknown sequences of A. sativum, including sequences belonging to LTR Gypsy retrotransposons. Together, our results highlight that main changes occur in the initial 6 months of micro propagation. For the best of our knowledge, this is the first report on epigenetic assessment in garlic.

  13. Cancer Control and Prevention by Nutrition and Epigenetic Approaches

    OpenAIRE

    Verma, Mukesh

    2012-01-01

    Significance: Epigenetics involves alterations in gene expression without changing the nucleotide sequence. Because some epigenetic changes can be reversed chemically, epigenetics has tremendous implications for disease intervention and treatment. Recent Advances: After epigenetic components in cancer were characterized, genes and pathways are being characterized in other diseases such as diabetes, obesity, and neurological disorders. Observational, experimental, and clinical studies in diffe...

  14. Epigenetic variation in asexually reproducing organisms

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Preite, V.

    2014-01-01

    The role that epigenetic inheritance can play in adaptation may differ between sexuals and asexuals because (1) the dynamics of adaptation differ under sexual and asexual reproduction and the opportunities offered by epigenetic inheritance may affect these dynamics differently; and (2) in asexual

  15. Challenges in reporting on predetermined objectives to the Auditor-General: The case of Limpopo provincial departments

    Directory of Open Access Journals (Sweden)

    Melvin Diedericks

    2017-04-01

    Full Text Available Limpopo provincial departments like all other South African government departments are required to report on performance against predetermined objectives in terms of Section 40 of the Public Finance Management Act 1 of 1999, read in conjunction with Section 5.1.1 of the Treasury Regulations. The purpose of this article is to report on a study that was undertaken to establish the challenges faced by the Limpopo provincial departments in reporting on performance against predetermined objectives to the Auditor-General (AG. Reporting on predetermined objectives has been a challenge over the past financial years and this is evident in the AG’s reports, in which Limpopo provincial departments continued to receive qualified audit reports. The literature review carried out for purposes of this study revealed that performance management is fundamental to enhancing organisational performance. A qualitative research design was used to collect and analyse data. Key findings of the study included that management should prioritise strategic planning, performance reporting, monitoring and evaluation to enable it to be in a position to make a determination as to whether what was planned by the department was actually realised. It is also of paramount importance that performance reporting is highly prioritised at strategic, tactical and operational management meetings to ensure more effective and efficient organisational performance.

  16. Epigenetic Regulation in Prostate Cancer Progression.

    Science.gov (United States)

    Ruggero, Katia; Farran-Matas, Sonia; Martinez-Tebar, Adrian; Aytes, Alvaro

    2018-01-01

    An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.

  17. Epigenetics in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Costantine Albany

    2011-01-01

    Full Text Available Prostate cancer (PC is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  18. Biosemiotic Entropy of the Genome: Mutations and Epigenetic Imbalances Resulting in Cancer

    Directory of Open Access Journals (Sweden)

    Samuel S. Shepard

    2013-01-01

    Full Text Available Biosemiotic entropy involves the deterioration of biological sign systems. The genome is a coded sign system that is connected to phenotypic outputs through the interpretive functions of the tRNA/ribosome machinery. This symbolic sign system (semiosis at the core of all biology has been termed “biosemiosis”. Layers of biosemiosis and cellular information management are analogous in varying degrees to the semiotics of computer programming, spoken, and written human languages. Biosemiotic entropy — an error or deviation from a healthy state — results from errors in copying functional information (mutations and errors in the appropriate context or quantity of gene expression (epigenetic imbalance. The concept of biosemiotic entropy is a deeply imbedded assumption in the study of cancer biology. Cells have a homeostatic, preprogrammed, ideal or healthy state that is rooted in genomics, strictly orchestrated by epigenetic regulation, and maintained by DNA repair mechanisms. Cancer is an eminent illustration of biosemiotic entropy, in which the corrosion of genetic information via substitutions, deletions, insertions, fusions, and aberrant regulation results in malignant phenotypes. However, little attention has been given to explicitly outlining the paradigm of biosemiotic entropy in the context of cancer. Herein we distill semiotic theory (from the familiar and well understood spheres of human language and computer code to draw analogies useful for understanding the operation of biological semiosis at the genetic level. We propose that the myriad checkpoints, error correcting mechanisms, and immunities are all systems whose primary role is to defend against the constant pressure of biosemiotic entropy, which malignancy must shut down in order to achieve advanced stages. In lieu of the narrower tumor suppressor/oncogene model, characterization of oncogenesis into the biosemiotic framework of sign, index, or object entropy may allow for more

  19. Heat Acclimation-Mediated Cross-Tolerance: Origins in within-Life Epigenetics?

    Directory of Open Access Journals (Sweden)

    Michal Horowitz

    2017-07-01

    Full Text Available The primary outcome of heat acclimation is increased thermotolerance, which stems from enhancement of innate cytoprotective pathways. These pathways produce “ON CALL” molecules that can combat stressors to which the body has never been exposed, via cross-tolerance mechanisms (heat acclimation-mediated cross-tolerance—HACT. The foundation of HACT lies in the sharing of generic stress signaling, combined with tissue/organ- specific protective responses. HACT becomes apparent when acclimatory homeostasis is achieved, lasts for several weeks, and has a memory. HACT differs from other forms of temporal protective mechanisms activated by exposure to lower “doses” of the stressor, which induce adaptation to higher “doses” of the same/different stressor; e.g., preconditioning, hormesis. These terms have been adopted by biochemists, toxicologists, and physiologists to describe the rapid cellular strategies ensuring homeostasis. HACT employs two major protective avenues: constitutive injury attenuation and abrupt post-insult release of help signals enhanced by acclimation. To date, the injury-attenuating features seen in all organs studied include fast-responding, enlarged cytoprotective reserves with HSPs, anti-oxidative, anti-apoptotic molecules, and HIF-1α nuclear and mitochondrial target gene products. Using cardiac ischemia and brain hypoxia models as a guide to the broader framework of phenotypic plasticity, HACT is enabled by a metabolic shift induced by HIF-1α and there are less injuries caused by Ca+2 overload, via channel or complex-protein remodeling, or decreased channel abundance. Epigenetic markers such as post-translational histone modification and altered levels of chromatin modifiers during acclimation and its decline suggest that dynamic epigenetic mechanisms controlling gene expression induce HACT and acclimation memory, to enable the rapid return of the protected phenotype. In this review the link between in vivo

  20. Introduction to the Special Section on Epigenetics

    Science.gov (United States)

    Lester, Barry M.; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field…

  1. Comparative in silico profiling of epigenetic modifiers in human tissues.

    Science.gov (United States)

    Son, Mi-Young; Jung, Cho-Rok; Kim, Dae-Soo; Cho, Hyun-Soo

    2018-04-06

    The technology of tissue differentiation from human pluripotent stem cells has attracted attention as a useful resource for regenerative medicine, disease modeling and drug development. Recent studies have suggested various key factors and specific culture methods to improve the successful tissue differentiation and efficient generation of human induced pluripotent stem cells. Among these methods, epigenetic regulation and epigenetic signatures are regarded as an important hurdle to overcome during reprogramming and differentiation. Thus, in this study, we developed an in silico epigenetic panel and performed a comparative analysis of epigenetic modifiers in the RNA-seq results of 32 human tissues. We demonstrated that an in silico epigenetic panel can identify epigenetic modifiers in order to overcome epigenetic barriers to tissue-specific differentiation.

  2. Potential of epigenetic therapies in the management of solid tumors

    International Nuclear Information System (INIS)

    Valdespino, Victor; Valdespino, Patricia M

    2015-01-01

    Cancer is a complex disease with both genetic and epigenetic origins. The growing field of epigenetics has contributed to our understanding of oncogenesis and tumor progression, and has allowed the development of novel therapeutic drugs. First-generation epigenetic inhibitor drugs have obtained modest clinical results in two types of hematological malignancy. Second-generation epigenetic inhibitors are in development, and have intrinsically greater selectivity for their molecular targets. Solid tumors are more genetic and epigenetically complex than hematological malignancies, but the transcriptome and epigenome biomarkers have been identified for many of these malignancies. This solid tumor molecular aberration profile may be modified using specific or quasi-specific epidrugs together with conventional and innovative anticancer treatments. In this critical review, we briefly analyze the strategies to select the targeted epigenetic changes, enumerate the second-generation epigenetic inhibitors, and describe the main signs indicating the potential of epigenetic therapies in the management of solid tumors. We also highlight the work of consortia or academic organizations that support the undertaking of human epigenetic therapeutic projects as well as some examples of transcriptome/epigenome profile determination in clinical assessment of cancer patients treated with epidrugs. There is a good chance that epigenetic therapies will be able to be used in patients with solid tumors in the future. This may happen soon through collaboration of diverse scientific groups, making the selection of targeted epigenetic aberration(s) more rapid, the design and probe of drug candidates, accelerating in vitro and in vivo assays, and undertaking new cancer epigenetic-therapy clinical trails

  3. Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition.

    Science.gov (United States)

    Wang, Qian; Gosik, Kirk; Xing, Sujuan; Jiang, Libo; Sun, Lidan; Chinchilli, Vernon M; Wu, Rongling

    2017-03-01

    Epigenetic reprogramming is thought to play a critical role in maintaining the normal development of embryos. How the methylation state of paternal and maternal genomes regulates embryogenesis depends on the interaction and coordination of the gametes of two sexes. While there is abundant research in exploring the epigenetic interactions of sperms and oocytes, a knowledge gap exists in the mechanistic quantitation of these interactions and their impact on embryo development. This review aims at formulating a modeling framework to address this gap through the integration and synthesis of evolutionary game theory and the latest discoveries of the epigenetic control of embryo development by next-generation sequencing. This framework, named epigenetic game theory or epiGame, views embryogenesis as an ecological system in which two highly distinct and specialized gametes coordinate through either cooperation or competition, or both, to maximize the fitness of embryos under Darwinian selection. By implementing a system of ordinary differential equations, epiGame quantifies the pattern and relative magnitude of the methylation effects on embryogenesis by the mechanisms of cooperation and competition. epiGame may gain new insight into reproductive biology and can be potentially applied to design personalized medicines for genetic disorder intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Potential of Epigenetic Therapies in Non-cancerous Conditions

    Directory of Open Access Journals (Sweden)

    Raymond eYung

    2014-12-01

    Full Text Available There has been an explosion of knowledge in the epigenetics field in the past 20 years. The first epigenetic therapies have arrived in the clinic for cancer treatments. In contrast, much of the promise of epigenetic therapies for non-cancerous conditions remains in the laboratories. The current review will focus on the recent progress that has been made in understanding the pathogenic role of epigenetics in immune and inflammatory conditions, and how the knowledge may provide much needed new therapeutic targets for many autoimmune diseases. Dietary factors are increasingly recognized as potential modifiers of epigenetic marks that can influence health and diseases across generations. The current epigenomics revolution will almost certainly complement the explosion of personal genetics medicine to help guide treatment decisions and disease risk stratification.

  5. Epigenetic modifications and diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Marpadga A. Reddy

    2012-09-01

    Full Text Available Diabetic nephropathy (DN is a major complication associated with both type 1 and type 2 diabetes, and a leading cause of end-stage renal disease. Conventional therapeutic strategies are not fully efficacious in the treatment of DN, suggesting an incomplete understanding of the gene regulation mechanisms involved in its pathogenesis. Furthermore, evidence from clinical trials has demonstrated a “metabolic memory” of prior exposure to hyperglycemia that continues to persist despite subsequent glycemic control. This remains a major challenge in the treatment of DN and other vascular complications. Epigenetic mechanisms such as DNA methylation, nucleosomal histone modifications, and noncoding RNAs control gene expression through regulation of chromatin structure and function and post-transcriptional mechanisms without altering the underlying DNA sequence. Emerging evidence indicates that multiple factors involved in the etiology of diabetes can alter epigenetic mechanisms and regulate the susceptibility to diabetes complications. Recent studies have demonstrated the involvement of histone lysine methylation in the regulation of key fibrotic and inflammatory genes related to diabetes complications including DN. Interestingly, histone lysine methylation persisted in vascular cells even after withdrawal from the diabetic milieu, demonstrating a potential role of epigenetic modifications in metabolic memory. Rapid advances in high-throughput technologies in the fields of genomics and epigenomics can lead to the identification of genome-wide alterations in key epigenetic modifications in vascular and renal cells in diabetes. Altogether, these findings can lead to the identification of potential predictive biomarkers and development of novel epigenetic therapies for diabetes and its associated complications.

  6. Epigenetics: A way to bridge the gap between biological fields.

    Science.gov (United States)

    Nicoglou, Antonine; Merlin, Francesca

    2017-12-01

    The concept of epigenetics has evolved since Waddington defined it from the late 1930s as the study of the causal mechanisms at work in development. It has become a multi-faceted notion with different meanings, depending on the disciplinary context it is used. In this article, we first analyse the transformations of the concept of epigenetics, from Waddington to contemporary accounts, in order to identify its different meanings and traditions, and to come up with a typology of epigenetics throughout its history. Second, we show on this basis that epigenetics has progressively turned its main focus from biological problems regarding development, toward issues concerning evolution. Yet, both these different epistemological aspects of epigenetics still coexist. Third, we claim that the classical opposition between epigenesis and preformationism as ways of thinking about the developmental process is part of the history of epigenetics and has contributed to its current various meanings. With these objectives in mind, we first show how Waddington introduced the term "epigenetics" in a biological context in order to solve a developmental problem, and we then build on this by presenting Nanney's, Riggs' and Holliday's definitions, which form the basis for the current conception of "molecular epigenetics". Then, we show that the evo-devo research field is where some particular uses of epigenetics have started shifting from developmental issues to evolutionary problems. We also show that epigenetics has progressively focused on the issue of epigenetic inheritance within the Extended Evolutionary Synthesis' framework. Finally, we conclude by presenting a typology of the different conceptions of epigenetics throughout time, and analyse the connections between them. We argue that, since Waddington, epigenetics, as an integrative research area, has been used to bridge the gap between different biological fields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Imaging epigenetics in Alzheimer's disease.

    Science.gov (United States)

    Lista, Simone; Garaci, Francesco G; Toschi, Nicola; Hampel, Harald

    2013-01-01

    Sporadic Alzheimer's disease (AD) is a prevalent, complex and chronically progressive brain disease. Its course is non-linear, dynamic, adaptive to maladaptive, and compensatory to decompensatory, affecting large-scale neural networks through a plethora of mechanistic and signaling pathway alterations that converge into regional and cell type-specific neurodegeneration and, finally, into clinically overt cognitive and behavioral decline. This decline includes reductions in the activities of daily living, quality of life, independence, and life expectancy. Evolving lines of research suggest that epigenetic mechanisms may play a crucial role during AD development and progression. Epigenetics designates molecular mechanisms that alter gene expression without modifications of the genetic code. This topic includes modifications on DNA and histone proteins, the primary elements of chromatin structure. Accumulating evidence has revealed the relevant processes that mediate epigenetic modifications and has begun to elucidate how these processes are apparently dysregulated in AD. This evidence has led to the clarification of the roles of specific classes of therapeutic compounds that affect epigenetic pathways and characteristics of the epigenome. This insight is accompanied by the development of new methods for studying the global patterns of DNA methylation and chromatin alterations. In particular, high-throughput sequencing approaches, such as next-generation DNA sequencing techniques, are beginning to drive the field into the next stage of development. In parallel, genetic imaging is beginning to answer additional questions through its ability to uncover genetic variants, with or without genome-wide significance, that are related to brain structure, function and metabolism, which impact disease risk and fundamental network-based cognitive processes. Neuroimaging measures can further be used to define AD systems and endophenotypes. The integration of genetic neuroimaging

  8. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  9. Epigenetics and the Developmental Origins of Health and ...

    Science.gov (United States)

    Epigenetic programming is likely to be an important mechanism underlying the lasting influence of the developmental environment on lifelong health, a concept known as the Developmental Origins of Health and Disease (DOHaD). DNA methylation, posttranslational histone protei n modifications, noncoding RNAs and recruited protein complexes are elements of the epigenetic regulation of gene transcription. These heritable but reversible changes in gene function are dynamic and labile during specific stages of the reproductive cycle and development. Epigenetic marks may be maintained throughout an individual's lifespan and can alter the life-long risk of disease; the nature of these epigenetic marks and their potential alteration by environmental factors is an area of active research. This chapter provides an overview of epigenetic regulation, particularly as it occurs as an essential component of embryo-fetal development. In this chapter we will present key features of DNA methylation and histone protein modifications, including the enzymes involved and the effects of these modifications on gene transcription. We will discuss the interplay of these dynamic modifications and the emerging role of noncoding RNAs in epigenetic gene regulation.

  10. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  11. Adjusting to global change through clonal growth and epigenetic variation

    Directory of Open Access Journals (Sweden)

    Richard S Dodd

    2016-07-01

    Full Text Available The earth is experiencing major changes in global and regional climates and changes are predicted to accelerate in the future. Many species will be under considerable pressure to evolve, to migrate, or be faced with extinction. Clonal plants would appear to be at a particular disadvantage due to their limited mobility and limited capacity for adaptation. However, they have outlived previous environmental shifts and clonal species have persisted for millenia. Clonal spread offers unique ecological advantages, such as resource sharing, risk sharing, and economies of scale among ramets within genotypes. We suggest that ecological attributes of clonal plants, in tandem with variation in gene regulation through epigenetic mechanisms that facilitate and optimize phenotype variation in response to environmental change may permit them to be well suited to projected conditions.

  12. Discussing epigenetics in Southern California

    Science.gov (United States)

    2012-01-01

    With the goal of discussing how epigenetic control and chromatin remodeling contribute to the various processes that lead to cellular plasticity and disease, this symposium marks the collaboration between the Institut National de la Santé et de la Recherche Médicale (INSERM) in France and the University of California, Irvine (UCI). Organized by Paolo Sassone-Corsi (UCI) and held at the Beckman Center of the National Academy of Sciences at the UCI campus December 15–16, 2011, this was the first of a series of international conferences on epigenetics dedicated to the scientific community in Southern California. The meeting also served as the official kick off for the newly formed Center for Epigenetics and Metabolism at the School of Medicine, UCI (http://cem.igb.uci.edu). PMID:22414797

  13. Epigenetic Mechanisms of Depression and Antidepressants Action

    Science.gov (United States)

    Vialou, Vincent; Feng, Jian; Robison, Alfred J.; Nestler, Eric J.

    2013-01-01

    Epigenetic mechanisms, which control chromatin structure and function, mediate changes in gene expression that occur in response to diverse stimuli. Recent research has established that environmental events and behavioral experience induce epigenetic changes at particular gene loci that help shape neuronal plasticity and function, and hence behavior, and that some of these changes can be very stable and even persist for a lifetime. Increasing evidence supports the hypothesis that aberrations in chromatin remodeling and subsequent effects on gene expression within limbic brain regions contribute to the pathogenesis of depression and other stress-related disorders such as post-traumatic stress disorder and other anxiety syndromes. Likewise, the gradually developing but persistent therapeutic effects of antidepressant medications may be achieved in part via epigenetic mechanisms. This review discusses recent advances in understanding epigenetic regulation of stress-related disorders and focuses on three distinct aspects of stress-induced epigenetic pathology: the effects of stress and antidepressant treatment during adulthood, the life-long effects of early life stress on subsequent stress vulnerability, and the possible trans-generational transmission of stress-induced abnormalities. PMID:23020296

  14. Targeting Epigenetics to Prevent Obesity Promoted Cancers.

    Science.gov (United States)

    Berger, Nathan A; Scacheri, Peter C

    2018-03-01

    Epigenetic changes in DNA and associated chromatin proteins are increasingly being considered as important mediators of the linkage between obesity and cancer. Although multiple agents, targeted at epigenetic changes, are being tested for therapy of established cancers, this issue of Cancer Prevention Research carries two articles demonstrating that the bromodomain inhibitor I-BET-762 can attenuate adipose tissue-promoted cancers. Although I-BET-762 significantly delayed, rather than completely prevented, the onset of adiposity-promoted transformation and malignancy, these experiments provide important proof of principle for the strategies of targeting epigenetic changes to disrupt the obesity-cancer linkage. Because bromodomain proteins represent only one of multiple epigenetic mediators, it is probable that targeting other epigenetic processes, alone or in combination, may serve to even more effectively disrupt the obesity promotion of cancer. Given the magnitude of the current obesity pandemic and its impact on cancer, preventive measures to disrupt this linkage are critically important. Cancer Prev Res; 11(3); 125-8. ©2018 AACR See related article by Chakraborty et al., p. 129 . ©2018 American Association for Cancer Research.

  15. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    and produce qualitatively different allozymes and the two alleles are expressed equally within and across all three genotypes and and play an equal role in the epigenetics of dominance. Subunit interaction in the heterodimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for ...

  16. The epigenetic switches for neural development and psychiatric disorders.

    Science.gov (United States)

    Lv, Jingwen; Xin, Yongjuan; Zhou, Wenhao; Qiu, Zilong

    2013-07-20

    The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted. Copyright © 2013. Published by Elsevier Ltd.

  17. Epigenetics and Vasculitis: a Comprehensive Review.

    Science.gov (United States)

    Renauer, Paul; Coit, Patrick; Sawalha, Amr H

    2016-06-01

    Vasculitides represent a group of relatively rare systemic inflammatory diseases of the blood vessels. Despite recent progress in understanding the genetic basis and the underlying pathogenic mechanisms in vasculitis, the etiology and pathogenesis of vasculitis remain incompletely understood. Epigenetic dysregulation plays an important role in immune-mediated diseases, and the contribution of epigenetic aberrancies in vasculitis is increasingly being recognized. Histone modifications in the PR3 and MPO gene loci might be mechanistically involved in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Similarly, other studies revealed important epigenetic contribution to other vasculitides, including Kawasaki disease and IgA vasculitis. More recently, genome-wide epigenomic studies have been performed in several vasculitides. A recent genome-wide DNA methylation study uncovered an important role for epigenetic remodeling of cytoskeleton-related genes in the pathogenesis of Behçet's disease and suggested that reversal of some of these DNA methylation changes associates with disease remission. Genome-wide DNA methylation profiling characterized the inflammatory response in temporal artery tissue from patients with giant cell arteritis and showed increased activation of calcineurin/nuclear factor of activated T cells (NFAT) signaling, prompting the suggestion that a specific calcineurin/NFAT inhibitor that is well tolerated and with the added beneficial anti-platelet activity, such as dipyridamole, might be of therapeutic potential in giant cell arteritis. While epigenetic studies in systemic vasculitis are still in their infancy, currently available data clearly indicate that investigating the epigenetic mechanisms underlying these diseases will help to better understand the pathogenesis of vasculitis and provide novel targets for the development of disease biomarkers and new therapies.

  18. Epigenetic modifications and their relation to caste and sex determination and adult division of labor in the stingless bee Melipona scutellaris.

    Science.gov (United States)

    Cardoso-Júnior, Carlos A M; Fujimura, Patrícia Tieme; Santos-Júnior, Célio Dias; Borges, Naiara Araújo; Ueira-Vieira, Carlos; Hartfelder, Klaus; Goulart, Luiz Ricardo; Bonetti, Ana Maria

    2017-01-01

    Stingless bees of the genus Melipona, have long been considered an enigmatic case among social insects for their mode of caste determination, where in addition to larval food type and quantity, the genotype also has a saying, as proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a single gene crucial for sex determination in bees was evidenced to be sex-specifically spliced and also caste-specifically expressed in a Melipona species. Since alternative splicing is frequently associated with epigenetic marks, and the epigenetic status plays a major role in setting the caste phenotype in the honey bee, we investigated here epigenetic chromatin modification in the stingless bee Melipona scutellaris. We used an ELISA-based methodology to quantify global methylation status and western blot assays to reveal histone modifications. The results evidenced DNA methylation/demethylation events in larvae and pupae, and significant differences in histone methylation and phosphorylation between newly emerged adult queens and workers. The epigenetic dynamics seen in this stingless bee species represent a new facet in the caste determination process in Melipona bees and suggest a possible mechanism that is likely to link a genotype component to the larval diet and adult social behavior of these bees.

  19. Epigenetic modifications and their relation to caste and sex determination and adult division of labor in the stingless bee Melipona scutellaris

    Directory of Open Access Journals (Sweden)

    Carlos A.M. Cardoso-Júnior

    2017-03-01

    Full Text Available Abstract Stingless bees of the genus Melipona, have long been considered an enigmatic case among social insects for their mode of caste determination, where in addition to larval food type and quantity, the genotype also has a saying, as proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a single gene crucial for sex determination in bees was evidenced to be sex-specifically spliced and also caste-specifically expressed in a Melipona species. Since alternative splicing is frequently associated with epigenetic marks, and the epigenetic status plays a major role in setting the caste phenotype in the honey bee, we investigated here epigenetic chromatin modification in the stingless bee Melipona scutellaris. We used an ELISA-based methodology to quantify global methylation status and western blot assays to reveal histone modifications. The results evidenced DNA methylation/demethylation events in larvae and pupae, and significant differences in histone methylation and phosphorylation between newly emerged adult queens and workers. The epigenetic dynamics seen in this stingless bee species represent a new facet in the caste determination process in Melipona bees and suggest a possible mechanism that is likely to link a genotype component to the larval diet and adult social behavior of these bees.

  20. Design of small-molecule epigenetic modulators

    Science.gov (United States)

    Pachaiyappan, Boobalan

    2013-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be catagorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. PMID:24300735

  1. Derangement of a factor upstream of RARalpha triggers the repression of a pleiotropic epigenetic network.

    Directory of Open Access Journals (Sweden)

    Francesca Corlazzoli

    Full Text Available Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha, can impair the integration of the retinoic acid (RA signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha.To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2, which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function.Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes.

  2. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2004-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulating cellular gene expression...

  3. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2005-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulating cellular gene expression...

  4. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle

    2003-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulation cellular gene expression...

  5. Epigenetic Reprogramming of Muscle Progenitors: Inspiration for Clinical Therapies

    Directory of Open Access Journals (Sweden)

    Silvia Consalvi

    2016-01-01

    Full Text Available In the context of regenerative medicine, based on the potential of stem cells to restore diseased tissues, epigenetics is becoming a pivotal area of interest. Therapeutic interventions that promote tissue and organ regeneration have as primary objective the selective control of gene expression in adult stem cells. This requires a deep understanding of the epigenetic mechanisms controlling transcriptional programs in tissue progenitors. This review attempts to elucidate the principle epigenetic regulations responsible of stem cells differentiation. In particular we focus on the current understanding of the epigenetic networks that regulate differentiation of muscle progenitors by the concerted action of chromatin-modifying enzymes and noncoding RNAs. The novel exciting role of exosome-bound microRNA in mediating epigenetic information transfer is also discussed. Finally we show an overview of the epigenetic strategies and therapies that aim to potentiate muscle regeneration and counteract the progression of Duchenne Muscular Dystrophy (DMD.

  6. Transgenerational Inheritance of Paternal Neurobehavioral Phenotypes: Stress, Addiction, Ageing and Metabolism.

    Science.gov (United States)

    Yuan, Ti-Fei; Li, Ang; Sun, Xin; Ouyang, Huan; Campos, Carlos; Rocha, Nuno B F; Arias-Carrión, Oscar; Machado, Sergio; Hou, Gonglin; So, Kwok Fai

    2016-11-01

    Epigenetic modulation is found to get involved in multiple neurobehavioral processes. It is believed that different types of environmental stimuli could alter the epigenome of the whole brain or related neural circuits, subsequently contributing to the long-lasting neural plasticity of certain behavioral phenotypes. While the maternal influence on the health of offsprings has been long recognized, recent findings highlight an alternative way for neurobehavioral phenotypes to be passed on to the next generation, i.e., through the male germ line. In this review, we focus specifically on the transgenerational modulation induced by environmental stress, drugs of abuse, and other physical or mental changes (e.g., ageing, metabolism, fear) in fathers, and recapitulate the underlying mechanisms potentially mediating the alterations in epigenome or gene expression of offsprings. Together, these findings suggest that the inheritance of phenotypic traits through male germ-line epigenome may represent the unique manner of adaptation during evolution. Hence, more attention should be paid to the paternal health, given its equivalently important role in affecting neurobehaviors of descendants.

  7. [Epigenetics' implication in autism spectrum disorders: A review].

    Science.gov (United States)

    Hamza, M; Halayem, S; Mrad, R; Bourgou, S; Charfi, F; Belhadj, A

    2017-08-01

    The etiology of autism spectrum disorders (ASD) is complex and multifactorial, and the roles of genetic and environmental factors in its emergence have been well documented. Current research tends to indicate that these two factors act in a synergistic manner. The processes underlying this interaction are still poorly known, but epigenetic modifications could be the mediator in the gene/environment interface. The epigenetic mechanisms have been implicated in susceptibility to stress and also in the pathogenesis of psychiatric disorders including depression and schizophrenia. Currently, several studies focus on the consideration of the etiological role of epigenetic regulation in ASD. The object of this review is to present a summary of current knowledge of an epigenetic hypothesis in ASD, outlining the recent findings in this field. Using Pubmed, we did a systematic review of the literature researching words such as: autism spectrum disorders, epigenetics, DNA methylation and histone modification. Epigenetic refers to the molecular process modulating gene expression without changes in the DNA sequence. The most studied epigenetic mechanisms are those that alter the chromatin structure including DNA methylation of cytosine residues in CpG dinucleotides and post-translational histone modifications. In ASD several arguments support the epigenetic hypothesis. In fact, there is a frequent association between ASD and genetic diseases whose epigenetic etiologies are recognized. A disturbance in the expression of genes involved in the epigenetic regulation has also been described in this disorder. Some studies have demonstrated changes in the DNA methylation of several autism candidate genes including the gene encoding the oxytocin receptor (OXTR), the RELN and the SHANK3 genes. Beyond the analysis of candidate genes, recent epigenome-wide association studies have investigated the methylation level of several other genes and showed hypomethylation of the whole DNA in brain

  8. Individuality and epigenetics in obesity.

    Science.gov (United States)

    Campión, J; Milagro, F I; Martínez, J A

    2009-07-01

    Excessive weight gain arises from the interactions among environmental factors, genetic predisposition and the individual behavior. However, it is becoming evident that interindividual differences in obesity susceptibility depend also on epigenetic factors. Epigenetics studies the heritable changes in gene expression that do not involve changes to the underlying DNA sequence. These processes include DNA methylation, covalent histone modifications, chromatin folding and, more recently described, the regulatory action of miRNAs and polycomb group complexes. In this review, we focus on experimental evidences concerning dietary factors influencing obesity development by epigenetic mechanisms, reporting treatment doses and durations. Moreover, we present a bioinformatic analysis of promoter regions for the search of future epigenetic biomarkers of obesity, including methylation pattern analyses of several obesity-related genes (epiobesigenes), such as FGF2, PTEN, CDKN1A and ESR1, implicated in adipogenesis, SOCS1/SOCS3, in inflammation, and COX7A1 LPL, CAV1, and IGFBP3, in intermediate metabolism and insulin signalling. The identification of those individuals that at an early age could present changes in the methylation profiles of specific genes could help to predict their susceptibility to later develop obesity, which may allow to prevent and follow-up its progress, as well as to research and develop newer therapeutic approaches.

  9. Epigenetics in prostate cancer: biologic and clinical relevance.

    Science.gov (United States)

    Jerónimo, Carmen; Bastian, Patrick J; Bjartell, Anders; Carbone, Giuseppina M; Catto, James W F; Clark, Susan J; Henrique, Rui; Nelson, William G; Shariat, Shahrokh F

    2011-10-01

    Prostate cancer (PCa) is one of the most common human malignancies and arises through genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications, and microRNAs (miRNA) and produce heritable changes in gene expression without altering the DNA coding sequence. To review progress in the understanding of PCa epigenetics and to focus upon translational applications of this knowledge. PubMed was searched for publications regarding PCa and DNA methylation, histone modifications, and miRNAs. Reports were selected based on the detail of analysis, mechanistic support of data, novelty, and potential clinical applications. Aberrant DNA methylation (hypo- and hypermethylation) is the best-characterized alteration in PCa and leads to genomic instability and inappropriate gene expression. Global and locus-specific changes in chromatin remodeling are implicated in PCa, with evidence suggesting a causative dysfunction of histone-modifying enzymes. MicroRNA deregulation also contributes to prostate carcinogenesis, including interference with androgen receptor signaling and apoptosis. There are important connections between common genetic alterations (eg, E twenty-six fusion genes) and the altered epigenetic landscape. Owing to the ubiquitous nature of epigenetic alterations, they provide potential biomarkers for PCa detection, diagnosis, assessment of prognosis, and post-treatment surveillance. Altered epigenetic gene regulation is involved in the genesis and progression of PCa. Epigenetic alterations may provide valuable tools for the management of PCa patients and be targeted by pharmacologic compounds that reverse their nature. The potential for epigenetic changes in PCa requires further exploration and validation to enable translation to the clinic. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  10. Natural epigenetic variation within and among six subspecies of the house sparrow, Passer domesticus.

    Science.gov (United States)

    Riyahi, Sepand; Vilatersana, Roser; Schrey, Aaron W; Ghorbani Node, Hassan; Aliabadian, Mansour; Senar, Juan Carlos

    2017-11-01

    Epigenetic modifications can respond rapidly to environmental changes and can shape phenotypic variation in accordance with environmental stimuli. One of the most studied epigenetic marks is DNA methylation. In the present study, we used the methylation-sensitive amplified polymorphism (MSAP) technique to investigate the natural variation in DNA methylation within and among subspecies of the house sparrow, Passer domesticus We focused on five subspecies from the Middle East because they show great variation in many ecological traits and because this region is the probable origin for the house sparrow's commensal relationship with humans. We analysed house sparrows from Spain as an outgroup. The level of variation in DNA methylation was similar among the five house sparrow subspecies from the Middle East despite high phenotypic and environmental variation, but the non-commensal subspecies was differentiated from the other four (commensal) Middle Eastern subspecies. Further, the European subspecies was differentiated from all other subspecies in DNA methylation. Our results indicate that variation in DNA methylation does not strictly follow subspecies designations. We detected a correlation between methylation level and some morphological traits, such as standardized bill length, and we suggest that part of the high morphological variation in the native populations of the house sparrow is influenced by differentially methylated regions in specific loci throughout the genome. We also detected 10 differentially methylated loci among subspecies and three loci that differentiated between commensal or non-commensal status. Therefore, the MSAP technique detected larger scale differences among the European and non-commensal subspecies, but did not detect finer scale differences among the other Middle Eastern subspecies. © 2017. Published by The Company of Biologists Ltd.

  11. Chromatin resetting mechanisms preventing trangenerational inheritance of epigenetic states

    Directory of Open Access Journals (Sweden)

    Mayumi eIwasaki

    2015-05-01

    Full Text Available Epigenetic regulation can be altered by environmental cues including abiotic and biotic stresses. In most cases, environmentally-induced epigenetic changes are transient, but in some cases they are maintained for extensive periods of time and may even be transmitted to the next generation. However, the underlying mechanisms of transgenerational transmission of environmentally-induced epigenetic states remain largely unknown. Such traits can be adaptive, but also can have negative consequences if the parentally inherited epigenetic memory interferes with canonical environmental responses of the progeny. This review highlights recent insights into the mechanisms preventing transgenerational transmission of environmentally-induced epigenetic states in plants, which resemble those of germline reprogramming in mammals.

  12. Maintaining epigenetic inheritance during DNA replication in plants

    Directory of Open Access Journals (Sweden)

    Francisco eIglesias

    2016-02-01

    Full Text Available Biotic and abiotic stresses alter the pattern of gene expression in plants. Depending on the frequency and duration of stress events, the effects on the transcriptional state of genes are remembered temporally or transmitted to daughter cells and, in some instances, even to offspring (transgenerational epigenetic inheritance. This memory effect, which can be found even in the absence of the original stress, has an epigenetic basis, through molecular mechanisms that take place at the chromatin and DNA level but do not imply changes in the DNA sequence. Many epigenetic mechanisms have been described and involve covalent modifications on the DNA and histones, such as DNA methylation, histone acetylation and methylation, and RNAi dependent silencing mechanisms. Some of these chromatin modifications need to be stable through cell division in order to be truly epigenetic. During DNA replication, histones are recycled during the formation of the new nucleosomes and this process is tightly regulated. Perturbations to the DNA replication process and/or the recycling of histones lead to epigenetic changes. In this mini-review, we discuss recent evidence aimed at linking DNA replication process to epigenetic inheritance in plants.

  13. Phenotype heterogeneity in cancer cell populations

    International Nuclear Information System (INIS)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-01-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  14. Phenotype heterogeneity in cancer cell populations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luis [CNRS UMR 7598, LJLL, & INRIA MAMBA team, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, luis@ann.jussieu.fr (France); Chisholm, Rebecca [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia, rebecca.chisholm@gmail.com (Australia); Clairambault, Jean [INRIA MAMBA team & LJLL, UMR 7598, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, jean.clairambault@inria.fr, Corresponding author (France); Escargueil, Alexandre [INSERM “Cancer Biology and Therapeutics”, Sorbonne Universités, UPMC Univ Paris 06, UMR-S 938, CDR St Antoine, Hôpital St Antoine, 184 Fbg. St Antoine, 75571 Paris cedex 12, France, alexandre.escargueil@upmc.fr (France); Lorenzi, Tommaso [CMLA, ENS Cachan, 61, Av. du Président Wilson, 94230 Cachan cedex & INRIA MAMBA team, & LJLL, UMR 7598, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, tommaso.lorenzi@gmail.com (France); Lorz, Alexander [Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598 & INRIA Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, alex.lorz@ann.jussieu.fr (France); Trélat, Emmanuel [Institut Universitaire de France, Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598, Boîte courrier 187, UPMC Univ Paris 06, 4 Pl. Jussieu, 75252 Paris cedex 05, France, emmanuel.trelat@upmc.fr (France)

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  15. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  16. The political implications of epigenetics Emerging narratives and ideologies.

    Science.gov (United States)

    Robison, Shea K

    2016-01-01

    Epigenetics, which is just beginning to attract public attention and policy discussion, challenges conventional understanding of gene-environment interaction and intergenerational inheritance and perhaps much more besides. Does epigenetics challenge modern political ideologies? I analyzed the narratives of obesity and epigenetics recently published in the more liberal New York Times and the more conservative Wall Street Journal. For the years 2010 through 2014, 50 articles on obesity and 29 articles on epigenetics were identified, and elements in their causal narratives were quantitatively analyzed using a well described narrative policy framework. The narratives on obesity aligned with the two newspapers' reputed ideologies. However, the narratives on epigenetics aligned with neither ideology but freely mixed liberal and conservative elements. This small study may serve as a starting point for broader studies of epigenetics as it comes to affect political ideologies and, in turn, public policies. The narrative mix reported here could yet prove vulnerable to ideological capture, or, more optimistically, could portend the emergence of a "third-way" narrative using epigenetics to question atomistic individualism and allowing for less divisiveness in public-health domains such as obesity.

  17. Epigenetic cell response to an influence of ionizing radiation

    International Nuclear Information System (INIS)

    Mikheev, A.N.; Gushcha, N.I.; Malinovskij, Yu.Yu.

    1999-01-01

    Importance of radiation modification of epigenetic activity in the general mechanism of radiobiological reactions is proved. Inheritable epigenetic changes induced by irradiation are one of the basic reasons of formation of the remote radiation pathology. It is noted that epigenetic inheritable changes of cells have the determined character distinguishing them mutation changes, being individual and not directed. It is underlined the ability of ionizing radiation to modify level of spontaneous genetic instability inherited in a number of cell generations on epigenetic mechanism [ru

  18. The Zebrafish Models to Explore Genetic and Epigenetic Impacts on Evolutionary Developmental Origins of Aging

    Science.gov (United States)

    Kishi, Shuji

    2014-01-01

    Can we reset, reprogram, rejuvenate or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be further manipulated into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact/noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes, in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages (“embryonic/larval senescence”). Subsequently, at least some of these mutant animals were found to show shortened lifespan, while some others would be expected to live longer in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other

  19. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    Directory of Open Access Journals (Sweden)

    Patil NA

    2016-09-01

    Full Text Available Nayana A Patil,1,2 WN Gade,2 Deepti D Deobagkar1 1Department of Zoology, Molecular Biology Research Laboratory, Centre of Advanced Studies, 2Department of Biotechnology, Proteomic Research Laboratory, Savitribai Phule Pune University, Pune, India Abstract: Titanium dioxide (TiO2 and zinc oxide (ZnO nanoparticles (NPs are promising candidates for numerous applications in consumer products. This will lead to increased human exposure, thus posing a threat to human health. Both these types of NPs have been studied for their cell toxicity, immunotoxicity, and genotoxicity. However, effects of these NPs on epigenetic modulations have not been studied. Epigenetics is an important link in the genotype and phenotype modulation and misregulation can often lead to lifestyle diseases. In this study, we have evaluated the DNA methylation-based epigenetic changes upon exposure to various concentrations of NPs. The investigation was designed to evaluate global DNA methylation, estimating the corresponding methyltransferase activity and expression of Dnmt gene using lung fibroblast (MRC5 cell line as lungs are the primary route of entry and target of occupational exposure to TiO2 and ZnO NPs. Enzyme-linked immunosorbent assay-based immunochemical assay revealed dose-related decrease in global DNA methylation and DNA methyltransferase activity. We also found direct correlation between the concentration of NPs, global methylation levels, and expression levels of Dnmt1, 3A, and 3B genes upon exposure. This is the first study to investigate effect of exposure to TiO2 and ZnO on DNA methylation levels in MRC5 cells. Epigenetic processes are known to play an important role in reprogramming and adaptation ability of an organism and can have long-term consequences. We suggest that changes in DNA methylation can serve as good biomarkers for early exposure to NPs since they occur at concentrations well below the sublethal levels. Our results demonstrate a clear

  20. Age-related epigenetic drift in the pathogenesis of MDS and AML.

    Science.gov (United States)

    Maegawa, Shinji; Gough, Sheryl M; Watanabe-Okochi, Naoko; Lu, Yue; Zhang, Nianxiang; Castoro, Ryan J; Estecio, Marcos R H; Jelinek, Jaroslav; Liang, Shoudan; Kitamura, Toshio; Aplan, Peter D; Issa, Jean-Pierre J

    2014-04-01

    The myelodysplastic syndrome (MDS) is a clonal hematologic disorder that frequently evolves to acute myeloid leukemia (AML). Its pathogenesis remains unclear, but mutations in epigenetic modifiers are common and the disease often responds to DNA methylation inhibitors. We analyzed DNA methylation in the bone marrow and spleen in two mouse models of MDS/AML, the NUP98-HOXD13 (NHD13) mouse and the RUNX1 mutant mouse model. Methylation array analysis showed an average of 512/3445 (14.9%) genes hypermethylated in NHD13 MDS, and 331 (9.6%) genes hypermethylated in RUNX1 MDS. Thirty-two percent of genes in common between the two models (2/3 NHD13 mice and 2/3 RUNX1 mice) were also hypermethylated in at least two of 19 human MDS samples. Detailed analysis of 41 genes in mice showed progressive drift in DNA methylation from young to old normal bone marrow and spleen; to MDS, where we detected accelerated age-related methylation; and finally to AML, which markedly extends DNA methylation abnormalities. Most of these genes showed similar patterns in human MDS and AML. Repeat element hypomethylation was rare in MDS but marked the transition to AML in some cases. Our data show consistency in patterns of aberrant DNA methylation in human and mouse MDS and suggest that epigenetically, MDS displays an accelerated aging phenotype.

  1. Multiple sporadic colorectal cancers display a unique methylation phenotype.

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalo

    Full Text Available Epigenetics are thought to play a major role in the carcinogenesis of multiple sporadic colorectal cancers (CRC. Previous studies have suggested concordant DNA hypermethylation between tumor pairs. However, only a few methylation markers have been analyzed. This study was aimed at describing the epigenetic signature of multiple CRC using a genome-scale DNA methylation profiling. We analyzed 12 patients with synchronous CRC and 29 age-, sex-, and tumor location-paired patients with solitary tumors from the EPICOLON II cohort. DNA methylation profiling was performed using the Illumina Infinium HM27 DNA methylation assay. The most significant results were validated by Methylight. Tumors samples were also analyzed for the CpG Island Methylator Phenotype (CIMP; KRAS and BRAF mutations and mismatch repair deficiency status. Functional annotation clustering was performed. We identified 102 CpG sites that showed significant DNA hypermethylation in multiple tumors with respect to the solitary counterparts (difference in β value ≥0.1. Methylight assays validated the results for 4 selected genes (p = 0.0002. Eight out of 12(66.6% multiple tumors were classified as CIMP-high, as compared to 5 out of 29(17.2% solitary tumors (p = 0.004. Interestingly, 76 out of the 102 (74.5% hypermethylated CpG sites found in multiple tumors were also seen in CIMP-high tumors. Functional analysis of hypermethylated genes found in multiple tumors showed enrichment of genes involved in different tumorigenic functions. In conclusion, multiple CRC are associated with a distinct methylation phenotype, with a close association between tumor multiplicity and CIMP-high. Our results may be important to unravel the underlying mechanism of tumor multiplicity.

  2. Epigenetics in radiotherapy: Where are we heading?

    International Nuclear Information System (INIS)

    Smits, Kim M.; Melotte, Veerle; Niessen, Hanneke E.C.; Dubois, Ludwig; Oberije, Cary; Troost, Esther G.C.; Starmans, Maud H.W.; Boutros, Paul C.; Vooijs, Marc; Engeland, Manon van; Lambin, Philippe

    2014-01-01

    Radiotherapy is an important component of anti-cancer treatment. However, not all cancer patients respond to radiotherapy, and with current knowledge clinicians are unable to predict which patients are at high risk of recurrence after radiotherapy. There is therefore an urgent need for biomarkers to guide clinical decision-making. Although the importance of epigenetic alterations is widely accepted, their application as biomarkers in radiotherapy has not been studied extensively. In addition, it has been suggested that radiotherapy itself introduces epigenetic alterations. As epigenetic alterations can potentially be reversed by drug treatment, they are interesting candidate targets for anticancer therapy or radiotherapy sensitizers. The application of demethylating drugs or histone deacetylase inhibitors to sensitize patients for radiotherapy has been studied in vitro, in vivo as well as in clinical trials with promising results. This review describes the current knowledge on epigenetics in radiotherapy

  3. Exploiting Epigenetic Alterations in Prostate Cancer.

    Science.gov (United States)

    Baumgart, Simon J; Haendler, Bernard

    2017-05-09

    Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.

  4. Exploiting Epigenetic Alterations in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Simon J. Baumgart

    2017-05-01

    Full Text Available Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.

  5. The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Naimark, Oleg B.; Nikitiuk, Aleksandr S. [Institute of Continuous Media Mechanics UrB RAS, Perm, 614013 (Russian Federation); Baudement, Marie-Odile; Forné, Thierry [Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, Université de Montpellier, 1919 route de Mende, Montpellier cedex 5, 34293 France (France); Lesne, Annick, E-mail: annick.lesne@igmm.cnrs.fr [Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, Université de Montpellier, 1919 route de Mende, Montpellier cedex 5, 34293 France (France); Laboratoire de Physique Théorique de la Matière Condensée UMR 7600, CNRS, UPMC, Sorbonne Universités, 4 place Jussieu, Paris cedex 5, 75252 France (France)

    2016-08-02

    Cancer progression is generally described in terms of accumulated genetic alterations and ensuing changes in cell properties. However, intermediary modifications are involved in the establishment of cancer cell phenotypes, at different levels of nuclear organization: DNA damages and their structural consequences, epigenetic modifications and their impact on chromatin architecture, changes in chromosome 3D organization. We review some of these alterations with a focus on their physical aspects. The challenge is to understand the multiscale interplay between generic physical mechanisms and specific biological factors in cancer cells. We argue that such an interdisciplinary perspective offers a novel viewpoint on cancer progression, early diagnosis and possibly therapeutic targets.

  6. Neurofibromatosis-Noonan Syndrome: A Possible Paradigm of the Combination of Genetic and Epigenetic Factors.

    Science.gov (United States)

    Yapijakis, Christos; Pachis, Nikos; Voumvourakis, Costas

    2017-01-01

    Neurofibromatosis-Noonan syndrome (NFNS) is a clinical entity possessing traits of autosomal dominant disorders neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). Germline mutations that disrupt the RAS/MAPK pathway are involved in the pathogenesis of both NS and NF1. In light of a studied Greek family, a new theory for etiological pathogenesis of NFNS is suggested. The NFNS phenotype may be the final result of a combination of a genetic factor (a mutation in the NF1 gene) and an environmental factor with the epigenetic effects of muscle hypotonia (such as hydantoin in the reported Greek family), causing hypoplasia of the face and micrognathia.

  7. Epigenetic targets in the diagnosis and treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Murugesan Manoharan

    2007-02-01

    Full Text Available Prostate cancer (PC is one of leading cause of cancer related deaths in men. Various aspects of cancer epigenetics are rapidly evolving and the role of 2 major epigenetic changes including DNA methylation and histone modifications in prostate cancer is being studied widely. The epigenetic changes are early event in the cancer development and are reversible. Novel epigenetic markers are being studied, which have the potential as sensitive diagnostic and prognostic marker. Variety of drugs targeting epigenetic changes are being studied, which can be effective individually or in combination with other conventional drugs in PC treatment. In this review, we discuss epigenetic changes associated with PC and their potential diagnostic and therapeutic applications including future areas of research.

  8. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2005-01-01

    .... Recently, several labs have published manuscripts identifying RNA interference as being crucial for the establishment of such epigenetic changes in species as diverse as Drosophila, plants, and the fission yeast S. pombe...

  9. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2004-01-01

    .... Recently, several labs have published manuscripts identifying RNA interference as being crucial for the establishment of such epigenetic changes in species as diverse as Drosophila, plants, and the fission yeast S. pombe...

  10. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle

    2003-01-01

    .... Recently, several labs have published manuscripts identifying RNA interference as being crucial for the establishment of such epigenetic changes in species as diverse as Drosphilia, plants, and the fission yeast S. pombe...

  11. Sex differences in prenatal epigenetic programming of stress pathways.

    Science.gov (United States)

    Bale, Tracy L

    2011-07-01

    Maternal stress experience is associated with neurodevelopmental disorders including schizophrenia and autism. Recent studies have examined mechanisms by which changes in the maternal milieu may be transmitted to the developing embryo and potentially translated into programming of the epigenome. Animal models of prenatal stress have identified important sex- and temporal-specific effects on offspring stress responsivity. As dysregulation of stress pathways is a common feature in most neuropsychiatric diseases, molecular and epigenetic analyses at the maternal-embryo interface, especially in the placenta, may provide unique insight into identifying much-needed predictive biomarkers. In addition, as most neurodevelopmental disorders present with a sex bias, examination of sex differences in the inheritance of phenotypic outcomes may pinpoint gene targets and specific windows of vulnerability in neurodevelopment, which have been disrupted. This review discusses the association and possible contributing mechanisms of prenatal stress in programming offspring stress pathway dysregulation and the importance of sex.

  12. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  13. Imagining roles for epigenetics in health promotion research.

    Science.gov (United States)

    McBride, Colleen M; Koehly, Laura M

    2017-04-01

    Discoveries from the Human Genome Project have invigorated discussions of epigenetic effects-modifiable chemical processes that influence DNA's ability to give instructions to turn gene expression on or off-on health outcomes. We suggest three domains in which new understandings of epigenetics could inform innovations in health promotion research: (1) increase the motivational potency of health communications (e.g., explaining individual differences in health outcomes to interrupt optimistic biases about health exposures); (2) illuminate new approaches to targeted and tailored health promotion interventions (e.g., relapse prevention targeted to epigenetic responses to intervention participation); and (3) inform more sensitive measures of intervention impact, (e.g., replace or augment self-reported adherence). We suggest a three-step process for using epigenetics in health promotion research that emphasizes integrating epigenetic mechanisms into conceptual model development that then informs selection of intervention approaches and outcomes. Lastly, we pose examples of relevant scientific questions worth exploring.

  14. Machine learning for epigenetics and future medical applications

    OpenAIRE

    Holder, Lawrence B.; Haque, M. Muksitul; Skinner, Michael K.

    2017-01-01

    ABSTRACT Understanding epigenetic processes holds immense promise for medical applications. Advances in Machine Learning (ML) are critical to realize this promise. Previous studies used epigenetic data sets associated with the germline transmission of epigenetic transgenerational inheritance of disease and novel ML approaches to predict genome-wide locations of critical epimutations. A combination of Active Learning (ACL) and Imbalanced Class Learning (ICL) was used to address past problems w...

  15. Epigenetic game theory and its application in plants. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    Science.gov (United States)

    Zhang, Yuan-Ming; Zhang, Yinghao; Guo, Mingyue

    2017-03-01

    Wang's et al. article [1] is the first to integrate game theory (especially evolutionary game theory) with epigenetic modification of zygotic genomes. They described and assessed a modeling framework based on evolutionary game theory to quantify, how sperms and oocytes interact through epigenetic processes, to determine embryo development. They also studied the internal mechanisms for normal embryo development: 1) evolutionary interactions between DNA methylation of the paternal and maternal genomes, and 2) the application of game theory to formulate and quantify how different genes compete or cooperate to regulate embryogenesis through methylation. Although it is not very comprehensive and profound regarding game theory modeling, this article bridges the gap between evolutionary game theory and the epigenetic control of embryo development by powerful ordinary differential equations (ODEs). The epiGame framework includes four aspects: 1) characterizing how epigenetic game theory works by the strategy matrix, in which the pattern and relative magnitude of the methylation effects on embryogenesis, are described by the cooperation and competition mechanisms, 2) quantifying the game that the direction and degree of P-M interactions over embryo development can be explained by the sign and magnitude of interaction parameters in model (2), 3) modeling epigenetic interactions within the morula, especially for two coupled nonlinear ODEs, with explicit functions in model (4), which provide a good fit to the observed data for the two sexes (adjusted R2 = 0.956), and 4) revealing multifactorial interactions in embryogenesis from the coupled ODEs in model (2) to triplet ODEs in model (6). Clearly, this article extends game theory from evolutionary game theory to epigenetic game theory.

  16. Environmentally induced epigenetic transgenerational inheritance of disease susceptibility.

    Science.gov (United States)

    Nilsson, Eric E; Skinner, Michael K

    2015-01-01

    Environmental insults, such as exposure to toxicants or nutritional abnormalities, can lead to epigenetic changes that are in turn related to increased susceptibility to disease. The focus of this review is on the transgenerational inheritance of such epigenetic abnormalities (epimutations), and how it is that these inherited epigenetic abnormalities can lead to increased disease susceptibility, even in the absence of continued environmental insult. Observations of environmental toxicant specificity and exposure-specific disease susceptibility are discussed. How epimutations are transmitted across generations and how epigenetic changes in the germline are translated into an increased disease susceptibility in the adult is reviewed with regard to disease etiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Epigenetics and Child Psychiatry: Ethical and Legal Issues.

    Science.gov (United States)

    Thomas, Christopher R

    2015-10-01

    Epigenetics has the potential to revolutionize diagnosis and treatment in psychiatry, especially child psychiatry, as it may offer the opportunity for early detection and prevention, as well as development of new treatments. As with the previous introduction of genetic research in psychiatry, there is also the problem of unrealistic expectations and new legal and ethical problems. This article reviews the potential contributions and problems of epigenetic research in child psychiatry. Previous legal and ethical issues in genetic research serve as a guide to those in epigenetic research. Recommendations for safeguards and guidelines on the use of epigenetics with children and adolescents are outlined based on the identified issues. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    Science.gov (United States)

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  19. Advances on research epigenetic change of hybrid and polyploidy ...

    African Journals Online (AJOL)

    A large proportion of these variations are epigenetic in nature. Epigenetic can be defined as a change of the study in the regulation of gene activity and expression that are not driven by gene sequence information. However, the ramifications of epigenetic in plant biology are immense, yet unappreciated. In contrast to the ...

  20. Re: Epigenetics of Cellular Reprogramming

    Directory of Open Access Journals (Sweden)

    Fehmi Narter

    2016-12-01

    Full Text Available EDITORIAL COMMENT Cells have some specific molecular and physiological properties that act their functional process. However, many cells have an ability of efficient transition from one type to another. This ability is named plasticity. This process occurs due to epigenetic reprogramming that involves changes in transcription and chromatin structure. Some changes during reprogramming that have been identified in recent years as genomic demethylation (both histone and DNA, histone acetylation and loss of heterochromatin during the development of many diseases such as infertility and cancer progression. In this review, the authors focused on the latest work addressing the mechanisms surrounding the epigenetic regulation of various types of reprogramming, including somatic cell nuclear transfer, cell fusion and transcription factor- and microRNA-induced pluripotency. There are many responsible factors such as genes, cytokines, proteins, co-factors (i.e. vitamin C in this local area network. The exact mechanisms by which these changes are achieved and the detailed interplay between the players responsible, however, remain relatively unclear. In the treatment of diseases, such as infertility, urooncology, reconstructive urology, etc., epigenetic changes and cellular reprogramming will be crucial in the near future. Central to achieving that goal is a more thorough understanding of the epigenetic state of fully reprogrammed cells. By the progress of researches on this topic, new treatment modalities will be identified for these diseases.

  1. Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes

    Science.gov (United States)

    2013-01-01

    . Conclusions Collectively, these findings provide the first direct evidence for a functionally conserved and enzymatically active DNA methylation system throughout the Platyhelminthes. Defining how this epigenetic feature shapes phenotypic diversity and development within the phylum represents an exciting new area of metazoan biology. PMID:23837670

  2. What obesity research tells us about epigenetic mechanisms

    OpenAIRE

    Youngson, Neil A.; Morris, Margaret J.

    2013-01-01

    The pathophysiology of obesity is extremely complex and is associated with extensive gene expression changes in tissues throughout the body. This situation, combined with the fact that all gene expression changes are thought to have associated epigenetic changes, means that the links between obesity and epigenetics will undoubtedly be vast. Much progress in identifying epigenetic changes induced by (or inducing) obesity has already been made, with candidate and genome-wide approaches. These d...

  3. Design of small molecule epigenetic modulators.

    Science.gov (United States)

    Pachaiyappan, Boobalan; Woster, Patrick M

    2014-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be categorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Computer-Aided Drug Design in Epigenetics

    Science.gov (United States)

    Lu, Wenchao; Zhang, Rukang; Jiang, Hao; Zhang, Huimin; Luo, Cheng

    2018-03-01

    Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field.

  5. Computer-Aided Drug Design in Epigenetics

    Science.gov (United States)

    Lu, Wenchao; Zhang, Rukang; Jiang, Hao; Zhang, Huimin; Luo, Cheng

    2018-01-01

    Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation, and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field. PMID:29594101

  6. A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells.

    Science.gov (United States)

    Li, Bing; Su, Trent; Ferrari, Roberto; Li, Jing-Yu; Kurdistani, Siavash K

    2014-02-01

    The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.

  7. Epigenetics in adipose tissue, obesity, weight loss, and diabetes.

    Science.gov (United States)

    Martínez, J Alfredo; Milagro, Fermín I; Claycombe, Kate J; Schalinske, Kevin L

    2014-01-01

    Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them.

  8. Epigenetic information in gametes: Gaming from before fertilization. Comment on ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    Science.gov (United States)

    Shi, Junchao; Zhang, Xudong; Liu, Ying; Chen, Qi

    2017-03-01

    In their interesting article [1] Wang et al. proposed a mathematical model based on evolutionary game theory [2] to tackle the fundamental question in embryo development, that how sperm and egg interact with each other, through epigenetic processes, to form a zygote and direct successful embryo development. This work is based on the premise that epigenetic reprogramming (referring to the erasure and reconstruction of epigenetic marks, such as DNA methylation and histone modifications) after fertilization might be of paramount importance to maintain the normal development of embryos, a premise we fully agree, given the compelling experimental evidence reported [3]. Wang et al. have specifically chosen to employ the well-studied DNA methylation reprogramming process during mammalian early embryo development, as a basis to develop their mathematical model, namely epigenetic game theory (epiGame). They concluded that the DNA methylation pattern in mammalian early embryo could be formulated and quantified, and their model can be further used to quantify the interactions, such as competition and/or cooperation of expressed genes that maximize the fitness of embryos. The efforts by Wang et al. in quantitatively and systematically analyzing the beginning of life apparently hold value and represent a novel direction for future embryo development research from both theoretical and experimental biologists. On the other hand, we see their theory still at its infancy, because there are plenty more parameters to consider and there are spaces for debates, such as the cases of haploid embryo development [4]. Here, we briefly comment on the dynamic process of epigenetic reprogramming that goes beyond DNA methylation, a dynamic interplay that involves histone modifications, non-coding RNAs, transposable elements et al., as well as the potential input of the various types of 'hereditary' epigenetic information in the gametes - a game that has started before the fertilization.

  9. Applications and extensions of epigenetic game theory. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    Science.gov (United States)

    Wang, Yaqun

    2017-03-01

    The authors are to be congratulated for a thought-provoking article [1], which reviews the epigenetic game theory (epiGame) that utilizes differential equations to study the epigenetic control of embryo development. It is a novel application of evolutionary game theory and provides biology researchers with useful methodologies to address scientific questions related to biological coordination of competition and cooperation.

  10. Epigenetic changes detected in micropropagated hop plants.

    Science.gov (United States)

    Peredo, Elena L; Arroyo-García, Rosa; Revilla, M Angeles

    2009-07-01

    Micropropagation is a widely used technique in hops (Humulus lupulus L.). However, to the best of our knowledge, the genetic and epigenetic stability of the microplants has never been tested before. In the present study, two hop accessions were established in vitro and micropropagated for 2 years. The genetic and epigenetic stability of the in vitro plants was analyzed with several molecular techniques: random amplified DNA polymorphism (RAPD), retrotransposon microsatellite amplified polymorphism (REMAP), and methylation-sensitive amplification polymorphism (MSAP). No genetic variation among control and treated plants was found, even after 12 cycles of micropropagation. Epigenetic variation was detected, first, when field and in vitro samples were compared. Nearly a 30% of the detected fragments presented the same pattern of alterations in all the vitroplants. Second, lower levels of epigenetic variation were detected among plants from the different subcultures. Part of this detected variation seemed to be accumulated along the 12 sequential subcultures tested.

  11. Graft fixation with predetermined tension using a new device, the double spike plate.

    Science.gov (United States)

    Shino, Konsei; Mae, Tatsuo; Maeda, Akira; Miyama, Takahide; Shinjo, Hirotaka; Kawakami, Hideo

    2002-10-01

    To biomechanically evaluate a new fixation device, DSP (Double Spike Plate; Meira Corp, Nagoya, Aichi, Japan), for pullout graft fixation. Biomechanical study. A porcine tibia in which 8-mm diameter drill holes had been made from the medial tibial metaphysis to the anterior cruciate ligament attachment was rigidly fixed to a tension analyzer. A quadrupled graft consisting of 2 double-looped bovine tendons was prepared with No. 3 polyester sutures placed distally. The graft was passed through the drill hole, and its proximal loop ends were rigidly fixed to a load cell for monitoring graft tension. The graft's distal ends were connected to the DSP by tying the sutures to the top hole in the DSP. The graft tension was predetermined at 49 N (n = 5) or 98 N (n = 5). This tension was maintained for 5 minutes with a suture passed through the bottom hole of the DSP. The plate was fixed to the tibia by hammering its spikes into the bone under the index tension. Finally, the fixation was completed by inserting a screw. Although the graft tension immediately increased to 69 +/- 11 N or 133 +/- 14 N during hammering, it gradually reduced to 49 +/- 10 N or 100 +/- 7 N 5 minutes later. This study shows that graft fixation under a predetermined tension can be achieved with the DSP.

  12. Machine learning for epigenetics and future medical applications.

    Science.gov (United States)

    Holder, Lawrence B; Haque, M Muksitul; Skinner, Michael K

    2017-07-03

    Understanding epigenetic processes holds immense promise for medical applications. Advances in Machine Learning (ML) are critical to realize this promise. Previous studies used epigenetic data sets associated with the germline transmission of epigenetic transgenerational inheritance of disease and novel ML approaches to predict genome-wide locations of critical epimutations. A combination of Active Learning (ACL) and Imbalanced Class Learning (ICL) was used to address past problems with ML to develop a more efficient feature selection process and address the imbalance problem in all genomic data sets. The power of this novel ML approach and our ability to predict epigenetic phenomena and associated disease is suggested. The current approach requires extensive computation of features over the genome. A promising new approach is to introduce Deep Learning (DL) for the generation and simultaneous computation of novel genomic features tuned to the classification task. This approach can be used with any genomic or biological data set applied to medicine. The application of molecular epigenetic data in advanced machine learning analysis to medicine is the focus of this review.

  13. The epigenetics of nuclear envelope organization and disease

    International Nuclear Information System (INIS)

    Schirmer, Eric C.

    2008-01-01

    Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics

  14. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  15. Epigenetics in mammary gland biology and cancer

    Science.gov (United States)

    In the post genome era, the focus has shifted to understanding the mechanisms that regulate the interpretation of the genetic code. "Epigenetics" as a research field is taking center stage. Epigenetics is a term which is now being used throughout the scientific community in different contexts from p...

  16. Epigenetic modifications: An important mechanism in diabetic disturbances.

    Science.gov (United States)

    Rorbach-Dolata, Anna; Kubis, Adriana; Piwowar, Agnieszka

    2017-11-29

    In the search for explanations of diabetes pathomechanisms, especially the development of its vascular complications (micro- and macrovascular ), although current, good metabolic control of diabetes, attention was drawn to the role of epigenetic inheritance associated with epigenetic modifications of histone proteins and DNA in hyperglycemia conditions. This study showed the significant role of DNA methylation and histone epigenetic modifications (a different nature and a different degree) in the transmission of information that is not connected with gene inheritance but concerns the persistent changes induced by hyperglycemia..Attention was paid to the role of DNA methylation of pancreatic cells in the pathogenesis of type 1 diabetes, but also type 2. The important role of DNA methylation changes in a so-called intrauterine growth restriction (IUGR) as reason of subsequent development of diabetes was particularly emphasized. In the pathogenesis of type 2 diabetes and its complications, especially microvascular complications, the greatest share and importance of epigenetic modifications on mitochondrial DNA metylation are the most important. The multidirectionality Complicaand complexity of epigenetic modifications of histone proteins indicate their importance in the development of diabetic disturbances. An especially important role is attributed to methylation and acetylation of histone proteins, in particular on arginine and lysine, whose changes occur most frequently. Moreover, epigenetic modifications of the enzymes, especially methylases, responsible for these processes are the underlying. It has been indicated that the identification of epigenetic differences within the DNA or histone proteins may be a useful prognostic biomarker of susceptibility to the disease development in the future. Moreover, they may become a potential target for future therapeutic interventions for clinical disorders in diabetes.

  17. Epigenetic alteration of sedimentary rocks at hydrogenic uranium deposit

    International Nuclear Information System (INIS)

    Ding Wanlie; Shen Kefeng

    2001-01-01

    The author introduces the concept, the recognition criteria, the genesis and classification of the epigenetic alteration of sedimentary rocks in brief, and expounds the mineral-geochemical indications and characteristics of oxidation and reduction alterations in different geochemical zones in detail, and proposes the two models of ore-controlling zonation of epigenetic alteration. The authors finally introduce research methods of epigenetic alteration

  18. Epigenetics Europe conference. Munich, Germany, 8-9 September 2011.

    Science.gov (United States)

    Jeltsch, Albert

    2011-12-01

    At the Epigenetics Europe conference in Munich, Germany, held on 8-9 September 2011, 19 speakers from different European countries were presenting novel data and concepts on molecular epigenetics. The talks were mainly focused on questions of the generation, maintenance, flexibility and erasure of DNA methylation patterns in context of other epigenetic signals like histone tail modifications and ncRNAs.

  19. [Multiple coronary arteriovenous fistulae. Hazard or predetermination?].

    Science.gov (United States)

    Rangel, Alberto; Muñoz-Castellanos, Luis; Solorio, Sergio

    2003-01-01

    The authors present the clinical cases of three adult patients (49, 53 and 61 year-old), with rheumatic cardiac valvulopathy, and bilateral coronary arteriovenous fistulae draining in the main pulmonary artery. Based on documental investigation, the authors speculate about the predeterminate origin of coronary arteriovenous fistulae. At first glance, it seems obvious that congenital cardiopathies occur at random, i.e., embryonic development deviate or stops due to unknown reasons, originating the persistence of lacunar blood spaces prior to the development of coronary arteries cords. There are two factors involved in the genesis of congenital malformations: a genomic preexisting factor and the presence of an environmental precipitating factor, i.e., isolated pulmonary valve atresia or left ventricular hypoplastic syndrome, with mitral and aortic valve stenosis, can predispose development of coronary arteriovenous fistulae. Recently, the question has been raised whether there is a relation of coronary arteries fistulae with: ethnic groups, hereditary gigantism, autoimmune diseases, such as polymyositis, hereditary hemorrhagic telangiectasia, and apical hypertrophic myocardiopathy. Coronary arteriovenous fistulae, as well as some congenital cardiopathies, could be due to chromosome alterations or might be related to hereditary diseases, such as hemorrhagic telangiectasia, induced by a disturbed genetic program. Although, there is no concrete evidence that a genetic factor is related to the development of coronary arteriovenous fistulae, there are signs that suggest that such a possibility could be investigated.

  20. Computer-Aided Drug Design in Epigenetics

    Directory of Open Access Journals (Sweden)

    Wenchao Lu

    2018-03-01

    Full Text Available Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation, and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field.

  1. Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: "Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition" by Qian Wang et al.

    Science.gov (United States)

    Zhang, Le; Zhang, Shaoxiang

    2017-03-01

    A body of research [1-7] has already shown that epigenetic reprogramming plays a critical role in maintaining the normal development of embryos. However, the mechanistic quantitation of the epigenetic interactions between sperms and oocytes and the related impact on embryo development are still not clear [6,7]. In this study, Wang et al., [8] develop a modeling framework that addresses this question by integrating game theory and the latest discoveries of the epigenetic control of embryo development. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Obesity-Associated Alterations in Inflammation, Epigenetics, and Mammary Tumor Growth Persist in Formerly Obese Mice.

    Science.gov (United States)

    Rossi, Emily L; de Angel, Rebecca E; Bowers, Laura W; Khatib, Subreen A; Smith, Laura A; Van Buren, Eric; Bhardwaj, Priya; Giri, Dilip; Estecio, Marcos R; Troester, Melissa A; Hair, Brionna Y; Kirk, Erin L; Gong, Ting; Shen, Jianjun; Dannenberg, Andrew J; Hursting, Stephen D

    2016-05-01

    Using a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively. Mice on the DIO regimen were then randomized to continue the DIO diet or were switched to the control diet, resulting in formerly obese (FOb) mice with weights comparable with control mice. At week 24, all mice were orthotopically injected with MMTV-Wnt-1 mouse mammary tumor cells. Mean tumor volume, serum IL6 levels, expression of proinflammatory genes in the mammary fat pad, and mammary DNA methylation profiles were similar in DIO and FOb mice and higher than in controls. Many of the genes found to have obesity-associated hypermethylation in mice were also found to be hypermethylated in the normal breast tissue of obese versus nonobese human subjects, and nearly all of these concordant genes remained hypermethylated after significant weight loss in the FOb mice. Our findings suggest that weight normalization may not be sufficient to reverse the effects of chronic obesity on epigenetic reprogramming and inflammatory signals in the microenvironment that are associated with breast cancer progression. Cancer Prev Res; 9(5); 339-48. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Transgenerational stress-adaption: an opportunity for ecological epigenetics.

    Science.gov (United States)

    Weinhold, Arne

    2018-01-01

    In the recent years, there has been considerable interest to investigate the adaptive transgenerational plasticity of plants and how a "stress memory" can be transmitted to the following generation. Although, increasing evidence suggests that transgenerational adaptive responses have widespread ecological relevance, the underlying epigenetic processes have rarely been elucidated. On the other hand, model plant species have been deeply investigated in their genome-wide methylation landscape without connecting this to the ecological reality of the plant. What we need is the combination of an ecological understanding which plant species would benefit from transgenerational epigenetic stress-adaption in their natural habitat, combined with a deeper molecular analysis of non-model organisms. Only such interdisciplinary linkage in an ecological epigenetic study could unravel the full potential that epigenetics could play for the transgenerational stress-adaption of plants.

  4. Erwin Schroedinger, Francis Crick and epigenetic stability

    Directory of Open Access Journals (Sweden)

    Ogryzko Vasily V

    2008-04-01

    Full Text Available Abstract Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  5. Erwin Schroedinger, Francis Crick and epigenetic stability.

    Science.gov (United States)

    Ogryzko, Vasily V

    2008-04-17

    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  6. HPV epigenetic mechanisms related to Oropharyngeal and Cervix cancers.

    Science.gov (United States)

    Di Domenico, Marina; Giovane, Giancarlo; Kouidhi, Soumaya; Iorio, Rosamaria; Romano, Maurizio; De Francesco, Francesco; Feola, Antonia; Siciliano, Camilla; Califano, Luigi; Giordano, Antonio

    2017-03-31

    Human Papilloma Virus infection is very frequent in humans and is mainly transmitted sexually. The majority of infections are transient and asymptomatic, however, if the infection persists, it can occur with a variety of injuries to skin and mucous membranes, depending on the type of HPV involved. Some types of HPV are classified as high oncogenic risk as associated with the onset of cancer. The tumors most commonly associated with HPV are cervical and oropharyngeal cancer, epigenetic mechanisms related to HPV infection include methylation changes to host and viral DNA and chromatin modification in host species. This review is focused about epigenethic mechanism, such as MiRNAs expression, related to cervix and oral cancer. Specifically it discuss about molecular markers associated to a more aggressive phenotype. In this way we will analyze genes involved in meiotic sinaptonemal complex, transcriptional factors, of orthokeratins, sinaptogirin, they are all expressed in cancer in a way not more dependent on cell differentiation but HPV-dependent.

  7. Xenopus reduced folate carrier regulates neural crest development epigenetically.

    Directory of Open Access Journals (Sweden)

    Jiejing Li

    Full Text Available Folic acid deficiency during pregnancy causes birth neurocristopathic malformations resulting from aberrant development of neural crest cells. The Reduced folate carrier (RFC is a membrane-bound receptor for facilitating transfer of reduced folate into the cells. RFC knockout mice are embryonic lethal and develop multiple malformations, including neurocristopathies. Here we show that XRFC is specifically expressed in neural crest tissues in Xenopus embryos and knockdown of XRFC by specific morpholino results in severe neurocristopathies. Inhibition of RFC blocked the expression of a series of neural crest marker genes while overexpression of RFC or injection of 5-methyltetrahydrofolate expanded the neural crest territories. In animal cap assays, knockdown of RFC dramatically reduced the mono- and trimethyl-Histone3-K4 levels and co-injection of the lysine methyltransferase hMLL1 largely rescued the XRFC morpholino phenotype. Our data revealed that the RFC mediated folate metabolic pathway likely potentiates neural crest gene expression through epigenetic modifications.

  8. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra

    2011-01-01

    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  9. Epigenetics and human obesity.

    Science.gov (United States)

    van Dijk, S J; Molloy, P L; Varinli, H; Morrison, J L; Muhlhausler, B S

    2015-01-01

    Recent technological advances in epigenome profiling have led to an increasing number of studies investigating the role of the epigenome in obesity. There is also evidence that environmental exposures during early life can induce persistent alterations in the epigenome, which may lead to an increased risk of obesity later in life. This paper provides a systematic review of studies investigating the association between obesity and either global, site-specific or genome-wide methylation of DNA. Studies on the impact of pre- and postnatal interventions on methylation and obesity are also reviewed. We discuss outstanding questions, and introduce EpiSCOPE, a multidisciplinary research program aimed at increasing the understanding of epigenetic changes in emergence of obesity. An electronic search for relevant articles, published between September 2008 and September 2013 was performed. From the 319 articles identified, 46 studies were included and reviewed. The studies provided no consistent evidence for a relationship between global methylation and obesity. The studies did identify multiple obesity-associated differentially methylated sites, mainly in blood cells. Extensive, but small, alterations in methylation at specific sites were observed in weight loss intervention studies, and several associations between methylation marks at birth and later life obesity were found. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Eventually this may help in predicting an individual's obesity risk at a young age and opens possibilities for introducing targeted prevention strategies. It has also become clear that several epigenetic marks are modifiable, by changing the exposure in utero, but also by lifestyle changes in adult life, which implies that there is the potential for interventions to be introduced in postnatal life to modify

  10. Epigenetics and obesity: a relationship waiting to be explained.

    Science.gov (United States)

    Symonds, Michael E; Budge, Helen; Frazier-Wood, Alexis C

    2013-01-01

    Obesity can have multifactorial causes that may change with development and are not simply attributable to one's genetic constitution. To date, expensive and laborious genome-wide association studies have only ascribed a small contribution of genetic variants to obesity. The emergence of the field of epigenetics now offers a new paradigm with which to study excess fat mass. Currently, however, there are no compelling epigenetic studies to explain the role of epigenetics in obesity, especially from a developmental perspective. It is clear that until there are advances in the understanding of the main mechanisms by which different fat types, i.e. brown, beige, and white, are established and how these differ between depots and species, population-based studies designed to determine specific aspects of epigenetics will be potentially limited. Obesity is a slowly evolving condition that is not simply explained by changes in the intake of one macronutrient. The latest advances in epigenetics, coupled with the establishment of relevant longitudinal models of obesity, which incorporate functionally relevant end points, may now permit the precise contribution of epigenetic modifications to excess fat mass to be effectively studied. © 2013 S. Karger AG, Basel.

  11. Study on epigenetic alterations of ore-enclosing sedimentary rocks

    International Nuclear Information System (INIS)

    Kondrat'eva, I.A.; Komarova, G.V.

    1985-01-01

    Epigenetic alterations of sedimentary rocks under effect of exogenous undeground waters of various types: near-surface, ground, stratum, and deep circulation waters, are considered. Association to postsedimentary tectonic structures, confinement of neogenesis to areas of high permeability (porous or crack one), geochemical contradictions between mineral neogenis and facial outlook of deposits, noncoincidence of variability gradient of authigenous mineral associations with variability of primary facial signs of deposits, regular position of mineral formations and ore concentrations in epigenetic mineralogo-geochemical zonation are referred to epigenetic criteria. The complex of epigenetic alterations accompanying mineralization is frequently used as a search sign of uranium deposit of a certain type

  12. Schistosoma mansoni mucin gene (SmPoMuc expression: epigenetic control to shape adaptation to a new host.

    Directory of Open Access Journals (Sweden)

    Cecile Perrin

    Full Text Available The digenetic trematode Schistosoma mansoni is a human parasite that uses the mollusc Biomphalaria glabrata as intermediate host. Specific S. mansoni strains can infect efficiently only certain B. glabrata strains (compatible strain while others are incompatible. Strain-specific differences in transcription of a conserved family of polymorphic mucins (SmPoMucs in S. mansoni are the principle determinants for this compatibility. In the present study, we investigated the bases of the control of SmPoMuc expression that evolved to evade B. glabrata diversified antigen recognition molecules. We compared the DNA sequences and chromatin structure of SmPoMuc promoters of two S. mansoni strains that are either compatible (C or incompatible (IC with a reference snail host. We reveal that although sequence differences are observed between active promoter regions of SmPoMuc genes, the sequences of the promoters are not diverse and are conserved between IC and C strains, suggesting that genetics alone cannot explain the evolution of compatibility polymorphism. In contrast, promoters carry epigenetic marks that are significantly different between the C and IC strains. Moreover, we show that modifications of the structure of the chromatin of the parasite modify transcription of SmPoMuc in the IC strain compared to the C strain and correlate with the presence of additional combinations of SmPoMuc transcripts only observed in the IC phenotype. Our results indicate that transcription polymorphism of a gene family that is responsible for an important adaptive trait of the parasite is epigenetically encoded. These strain-specific epigenetic marks are heritable, but can change while the underlying genetic information remains stable. This suggests that epigenetic changes may be important for the early steps in the adaptation of pathogens to new hosts, and might be an initial step in adaptive evolution in general.

  13. Epigenetic features of testicular germ cell tumours in relation to epigenetic characteristics of foetal germ cells

    DEFF Research Database (Denmark)

    Kristensen, Dina Graae; Skakkebæk, Niels E; Rajpert-De Meyts, Ewa

    2013-01-01

    in humans. However, the common precursor of testicular cancers- the carcinoma in situ (CIS) cell- is thought to be an arrested foetal germ cell. Therefore studies of CIS cells may leverage information on human foetal germ cell development and, in particular, when neoplastic transformation is initiated....... In this review, we will focus on current knowledge of the epigenetics of CIS cells and relate it to the epigenetic changes occurring in early developing germ cells of mice during specification, migration and colonization. We will focus on DNA methylation and some of the best studied histone modifications like H3...... event in the initiation of testicular germ cell cancer. Even though only sparse information is available on epigenetic cues in human foetal germ cells, these indicate that the developmental patterns differ from the findings in mice and emphasize the need for further studies of foetal germ cell...

  14. Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells

    DEFF Research Database (Denmark)

    Hattori, Naoko; Niwa, Tohru; Kimura, Kana

    2013-01-01

    . Bivalent modification was clearly visualized by iChmo in wild-type embryonic stem cells (ESCs) known to have it, whereas rarely in Suz12 knockout ESCs and mouse embryonic fibroblasts known to have little of it. iChmo was applied to analysis of epigenetic and phenotypic changes of heterogeneous cell......Combinations of histone modifications have significant biological roles, such as maintenance of pluripotency and cancer development, but cannot be analyzed at the single cell level. Here, we visualized a combination of histone modifications by applying the in situ proximity ligation assay, which...... population, namely, ESCs at an early stage of differentiation, and this revealed that the bivalent modification disappeared in a highly concerted manner, whereas phenotypic differentiation proceeded with large variations among cells. Also, using this method, we were able to visualize a combination...

  15. Mapping the Technological Knowledge Landscape: The Case of Epigenetics.

    Science.gov (United States)

    Song, Chie Hoon; Yoon, Janghyeok; Ko, Namuk; Han, Jeung-Whan

    2016-01-01

    Epigenetics is a biomedical novelty in drug design and disease control whose mechanisms play a significant role in transferring environmental signals to determine patterns of gene expression. Systematic identification of the main trends in epigenetics patenting activity provides insights into fundamental building blocks of this research field and policy guidance to funding agencies. The review aims at providing a comprehensive overview of the research and development trend in epigenetics by mapping the knowledge structure in patent landscape. Citation-based patent network analysis was performed to visualize the technological landscape. We focus on identifying the structure of the knowledge networks to study the technological trajectories. Patents that play an integral part in the dissemination and bridging of the technical knowledge are located and ranked. The latent topics in patent documents are highlighted by means of a topic modeling technique. Visualization of the patent network results in four main clusters. The first two clusters deal with the inhibition of histone deacetylase (HDAC). The third cluster covers inventions related to DNA methylation, which represents an epigenetic signaling tool that cells use to control gene expression. The fourth cluster encompasses computing systems and data mining techniques for identifying combinations of genetic and epigenetic attributes related to health and lifestyle improvements. We are in the growth period of gathering knowledge on various mechanisms of epigenetic regulation. There is enormous potential for improving healthcare through better understanding of the interrelationships between epigenetic control of gene expression and compounds that trigger these modifications.

  16. Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer.

    Science.gov (United States)

    Angus, Steven P; Zawistowski, Jon S; Johnson, Gary L

    2018-01-06

    Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change-often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell-like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.

  17. Epigenetic effects of human breast milk.

    Science.gov (United States)

    Verduci, Elvira; Banderali, Giuseppe; Barberi, Salvatore; Radaelli, Giovanni; Lops, Alessandra; Betti, Federica; Riva, Enrica; Giovannini, Marcello

    2014-04-24

    A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant's health and his later life.

  18. Epigenetic Effects of Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Elvira Verduci

    2014-04-01

    Full Text Available A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant’s health and his later life.

  19. Epigenetic Markers of Renal Function in African Americans

    Directory of Open Access Journals (Sweden)

    Samantha M. Bomotti

    2013-01-01

    Full Text Available Chronic kidney disease (CKD is an increasing concern in the United States due to its rapidly rising prevalence, particularly among African Americans. Epigenetic DNA methylation markers are becoming important biomarkers of chronic diseases such as CKD. To better understand how these methylation markers play a role in kidney function, we measured 26,428 DNA methylation sites in 972 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA study. We then evaluated (1 whether epigenetic markers are associated with estimated glomerular filtration rate (eGFR, (2 whether the significantly associated markers are also associated with traditional risk factors and/or novel biomarkers for eGFR, and (3 how much additional variation in eGFR is explained by epigenetic markers beyond established risk factors and biomarkers. The majority of methylation markers most significantly associated with eGFR (24 out of the top 30 appeared to function, at least in part, through pathways related to aging, inflammation, or cholesterol. However, six epigenetic markers were still able to significantly predict eGFR after adjustment for other risk factors. This work shows that epigenetic markers may offer valuable new insight into the complex pathophysiology of CKD in African Americans.

  20. Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers

    Science.gov (United States)

    Hopp, Lydia; Nersisyan, Lilit; Löffler-Wirth, Henry; Arakelyan, Arsen; Binder, Hans

    2015-01-01

    We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation. PMID:26506391

  1. Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers

    Directory of Open Access Journals (Sweden)

    Lydia Hopp

    2015-10-01

    Full Text Available We systematically studied the expression of more than fifty histone and DNA (demethylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation.

  2. Clinical implications of epigenetic regulation in oral cancer.

    Science.gov (United States)

    D'Souza, Wendy; Saranath, Dhananjaya

    2015-12-01

    Oral cancer is a high incidence cancer which is of major public health concern in India being the most common cancer in males and fifth most common cancer in females in India, contributing to 26% of the global oral cancer burden. The major risk factors of oral cancer are tobacco, alcohol and high risk Human Papilloma Virus type 16/18. However, only 3-12% of the high risk individuals with dysplasia develop oral cancer. Thus, individual genomic variants representing the genomic constitution and epigenetic alterations play a critical role in the development of oral cancer. Extensive epigenetic studies on the molecular lesions including oncogenes, tumor suppressor genes, genes associated with apoptosis, DNA damage repair have been reported. The current review highlights epigenetic regulation with a focus on molecular biomarkers and epidrug therapy in oral cancer. Epigenetic regulation by hypermethylation, histone modifications and specific microRNAs are often associated with early events and advanced stages in oral cancer, and thus indicate epidrug therapy for intervention. The presence of epigenetic marks in oral lesions, cancers and tumor associated mucosa emphasizes indications as biomarkers and epidrugs with therapeutic potential for better patient management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Endocrine control of epigenetic mechanisms in male reproduction.

    Science.gov (United States)

    Ankolkar, Mandar; Balasinor, N H

    2016-01-01

    Endocrine control of reproduction is very well known and has been echoed by many research groups. However, recent developments point to the ability of toxic endocrine disrupting chemicals (EDC) to alter epigenetic information of the gametes which gets transferred to the developing embryo and affects the immediate reproductive outcome or even persists transgenerationally. These epigenetic aberrations contribute to the ensuing pathophysiology of reproductive disorders. Investigations of the female in cases of poor reproductive outcome have been the main strategy towards diagnosis. However, despite the male partner contributing half of his genome to the progeny, thorough investigations in the male have been ignored. Environmental pollutants are all pervading and are encountered in our day-to-day life. Many of these pollutants have potential to disrupt the endocrine system. Here, we discuss how the male gametes (spermatozoa) are susceptible to a myriad of epigenetic insults inflicted by exposure to endocrine disruptors and how important is the contribution of the epigenetic marks of the spermatozoa in healthy reproduction. We advocate that sperm epigenetics should be considered as a significant contributor to reproductive health and should be researched further and be subsequently included in routine diagnostic workup in cases of poor reproductive outcome.

  4. Epigenetic drift in the aging genome

    DEFF Research Database (Denmark)

    Tan, Qihua; Heijmans, Bastiaan T; Hjelmborg, Jacob V B

    2016-01-01

    for 10 years (age at intake 73-82 years). Biological pathway analysis and survival analysis were also conducted on CpGs showing longitudinal change in their DNA-methylation levels. Classical twin models were fitted to each CpG site to estimate the genetic and environmental effects on DNA...... × 10-07. Pathway analysis of genes linked to these CpGs identified biologically meaningful gene-sets involved in cellular-signalling events and in transmission across chemical synapses, which are important molecular underpinnings of aging-related degenerative disorders. CONCLUSION: Our epigenome......BACKGROUND: Current epigenetic studies on aging are dominated by the cross-sectional design that correlates subjects' ages or age groups with their measured epigenetic profiles. Such studies have been more aimed at age prediction or building up the epigenetic clock of age rather than focusing...

  5. Epigenetics application in the diagnosis and treatment of bladder cancer.

    Science.gov (United States)

    Harb-de la Rosa, Alfredo; Acker, Matthew; Kumar, Raj A; Manoharan, Murugesan

    2015-10-01

    Bladder cancer is the sixth most common cancer in the Western world. Patients with bladder cancer require close monitoring, which may include frequent cystoscopy and urine cytology. Such monitoring results in significant health care cost. The application of epigenetics may allow for a risk adapted approach and more cost-effective method of monitoring. A number of epigenetic changes have been described for many cancer sites, including the urinary bladder. In this review, we discuss the use of epigenetics in bladder cancer and the potential diagnostic and therapeutic applications. A comprehensive search of the English medical literature was conducted in PubMed using the terms microRNA regulation, DNA methylation, histone modification and bladder cancer. The most important epigenetic changes include DNA methylation, histone modification and microRNA regulation. Both DNA hypomethylation and hypermethylation have been associated with higher rate of cancer. The association of epigenetic changes with bladder cancer has led to the research of its diagnostic and prognostic implications as well as to the development of novel drugs to target these changes with the aim of achieving a survival benefit. Recently, epigenetics has been shown to play a much greater role than previously anticipated in the initiation and propagation of many tumors. The use of epigenetics for the diagnosis and treatment of bladder cancer is an evolving and promising field. The possibility of reversing epigenetic changes may facilitate additional cancer treatment options in the future.

  6. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Thomas A. Milne

    2012-09-01

    Full Text Available Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  7. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ballabio, Erica; Milne, Thomas A., E-mail: thomas.milne@imm.ox.ac.uk [MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital Headington, Oxford OX3 9DS (United Kingdom)

    2012-09-10

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  8. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    International Nuclear Information System (INIS)

    Ballabio, Erica; Milne, Thomas A.

    2012-01-01

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis

  9. Epigenetic regulation of caloric restriction in aging

    Directory of Open Access Journals (Sweden)

    Daniel Michael

    2011-08-01

    Full Text Available Abstract The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases.

  10. Imbalanced class learning in epigenetics.

    Science.gov (United States)

    Haque, M Muksitul; Skinner, Michael K; Holder, Lawrence B

    2014-07-01

    In machine learning, one of the important criteria for higher classification accuracy is a balanced dataset. Datasets with a large ratio between minority and majority classes face hindrance in learning using any classifier. Datasets having a magnitude difference in number of instances between the target concept result in an imbalanced class distribution. Such datasets can range from biological data, sensor data, medical diagnostics, or any other domain where labeling any instances of the minority class can be time-consuming or costly or the data may not be easily available. The current study investigates a number of imbalanced class algorithms for solving the imbalanced class distribution present in epigenetic datasets. Epigenetic (DNA methylation) datasets inherently come with few differentially DNA methylated regions (DMR) and with a higher number of non-DMR sites. For this class imbalance problem, a number of algorithms are compared, including the TAN+AdaBoost algorithm. Experiments performed on four epigenetic datasets and several known datasets show that an imbalanced dataset can have similar accuracy as a regular learner on a balanced dataset.

  11. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes.

    Science.gov (United States)

    Xu, Ning; Chua, Angela K; Jiang, Hong; Liu, Ning-Ai; Goodarzi, Mark O

    2014-08-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study.

  12. Functions and Epigenetic Regulation of Wwox in Bone Metastasis from Breast Carcinoma: Comparison with Primary Tumors

    Directory of Open Access Journals (Sweden)

    Paola Maroni

    2017-01-01

    Full Text Available Epigenetic mechanisms influence molecular patterns important for the bone-metastatic process, and here we highlight the role of WW-domain containing oxidoreductase (Wwox. The tumor-suppressor Wwox lacks in almost all cancer types; the variable expression in osteosarcomas is related to lung-metastasis formation, and exogenous Wwox destabilizes HIF-1α (subunit of Hypoxia inducible Factor-1, HIF-1 affecting aerobic glycolysis. Our recent studies show critical functions of Wwox present in 1833-osteotropic clone, in the corresponding xenograft model, and in human bone metastasis from breast carcinoma. In hypoxic-bone metastatic cells, Wwox enhances HIF-1α stabilization, phosphorylation, and nuclear translocation. Consistently, in bone-metastasis specimens Wwox localizes in cytosolic/perinuclear area, while TAZ (transcriptional co-activator with PDZ-binding motif and HIF-1α co-localize in nuclei, playing specific regulatory mechanisms: TAZ is a co-factor of HIF-1, and Wwox regulates HIF-1 activity by controlling HIF-1α. In vitro, DNA methylation affects Wwox-protein synthesis; hypoxia decreases Wwox-protein level; hepatocyte growth factor (HGF phosphorylates Wwox driving its nuclear shuttle, and counteracting a Twist program important for the epithelial phenotype and metastasis colonization. In agreement, in 1833-xenograft mice under DNA-methyltransferase blockade with decitabine, Wwox increases in nuclei/cytosol counteracting bone metastasis with prolongation of the survival. However, Wwox seems relevant for the autophagic process which sustains metastasis, enhancing more Beclin-1 than p62 protein levels, and p62 accumulates under decitabine consistent with adaptability of metastasis to therapy. In conclusion, Wwox methylation as a bone-metastasis therapeutic target would depend on autophagy conditions, and epigenetic mechanisms regulating Wwox may influence the phenotype of bone metastasis.

  13. Diagnostic and prognostic epigenetic biomarkers in cancer.

    Science.gov (United States)

    Costa-Pinheiro, Pedro; Montezuma, Diana; Henrique, Rui; Jerónimo, Carmen

    2015-01-01

    Growing cancer incidence and mortality worldwide demands development of accurate biomarkers to perfect detection, diagnosis, prognostication and monitoring. Urologic (prostate, bladder, kidney), lung, breast and colorectal cancers are the most common and despite major advances in their characterization, this has seldom translated into biomarkers amenable for clinical practice. Epigenetic alterations are innovative cancer biomarkers owing to stability, frequency, reversibility and accessibility in body fluids, entailing great potential of assay development to assist in patient management. Several studies identified putative epigenetic cancer biomarkers, some of which have been commercialized. However, large multicenter validation studies are required to foster translation to the clinics. Herein we review the most promising epigenetic detection, diagnostic, prognostic and predictive biomarkers for the most common cancers.

  14. 2009 Epigenetics Gordon Research Conference (August 9 - 14, 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanie Lee

    2009-08-14

    Epigenetics refers to the study of heritable changes in genome function that occur without a change in primary DNA sequence. The 2009 Gordon Conference in Epigenetics will feature discussion of various epigenetic phenomena, emerging understanding of their underlying mechanisms, and the growing appreciation that human, animal, and plant health all depend on proper epigenetic control. Special emphasis will be placed on genome-environment interactions particularly as they relate to human disease. Towards improving knowledge of molecular mechanisms, the conference will feature international leaders studying the roles of higher order chromatin structure, noncoding RNA, repeat elements, nuclear organization, and morphogenic evolution. Traditional and new model organisms are selected from plants, fungi, and metazoans.

  15. Dietary factors and epigenetic regulation for prostate cancer prevention.

    Science.gov (United States)

    Ho, Emily; Beaver, Laura M; Williams, David E; Dashwood, Roderick H

    2011-11-01

    The role of epigenetic alterations in various human chronic diseases has gained increasing attention and has resulted in a paradigm shift in our understanding of disease susceptibility. In the field of cancer research, e.g., genetic abnormalities/mutations historically were viewed as primary underlying causes; however, epigenetic mechanisms that alter gene expression without affecting DNA sequence are now recognized as being of equal or greater importance for oncogenesis. Methylation of DNA, modification of histones, and interfering microRNA (miRNA) collectively represent a cadre of epigenetic elements dysregulated in cancer. Targeting the epigenome with compounds that modulate DNA methylation, histone marks, and miRNA profiles represents an evolving strategy for cancer chemoprevention, and these approaches are starting to show promise in human clinical trials. Essential micronutrients such as folate, vitamin B-12, selenium, and zinc as well as the dietary phytochemicals sulforaphane, tea polyphenols, curcumin, and allyl sulfur compounds are among a growing list of agents that affect epigenetic events as novel mechanisms of chemoprevention. To illustrate these concepts, the current review highlights the interactions among nutrients, epigenetics, and prostate cancer susceptibility. In particular, we focus on epigenetic dysregulation and the impact of specific nutrients and food components on DNA methylation and histone modifications that can alter gene expression and influence prostate cancer progression.

  16. Distinguishing epigenetic marks of developmental and imprinting regulation

    Directory of Open Access Journals (Sweden)

    McEwen Kirsten R

    2010-01-01

    Full Text Available Abstract Background The field of epigenetics is developing rapidly, however we are only beginning to comprehend the complexity of its influence on gene regulation. Using genomic imprinting as a model we examine epigenetic profiles associated with different forms of gene regulation. Imprinting refers to the expression of a gene from only one of the chromosome homologues in a parental-origin-specific manner. This is dependent on heritable germline epigenetic control at a cis-acting imprinting control region that influences local epigenetic states. Epigenetic modifications associated with imprinting regulation can be compared to those associated with the more canonical developmental regulation, important for processes such as differentiation and tissue specificity. Here we test the hypothesis that these two mechanisms are associated with different histone modification enrichment patterns. Results Using high-throughput data extraction with subsequent analysis, we have found that particular histone modifications are more likely to be associated with either imprinting repression or developmental repression of imprinted genes. H3K9me3 and H4K20me3 are together enriched at imprinted genes with differentially methylated promoters and do not show a correlation with developmental regulation. H3K27me3 and H3K4me3, however, are more often associated with developmental regulation. We find that imprinted genes are subject to developmental regulation through bivalency with H3K4me3 and H3K27me3 enrichment on the same allele. Furthermore, a specific tri-mark signature comprising H3K4me3, H3K9me3 and H4K20me3 has been identified at all imprinting control regions. Conclusion A large amount of data is produced from whole-genome expression and epigenetic profiling studies of cellular material. We have shown that such publicly available data can be mined and analysed in order to generate novel findings for categories of genes or regulatory elements. Comparing two

  17. Nutritional influences on epigenetics and age-related disease

    Science.gov (United States)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  18. Theory of epigenetic coding.

    Science.gov (United States)

    Elder, D

    1984-06-07

    The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.

  19. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics

    Directory of Open Access Journals (Sweden)

    Dipanjan Bhattacharjee

    2016-01-01

    Full Text Available Epigenetics deals with the interactions between genes and the immediate cellular environment. These interactions go a long way in shaping up each and every person’s individuality. Further, reversibility of epigenetic interactions may offer a dynamic control over the expression of various critical genes. Thus, tweaking the epigenetic machinery may help cause or cure diseases, especially cancer. Therefore, cancer epigenetics, especially at a molecular level, needs to be scrutinised closely, as it could potentially serve as the future pharmaceutical goldmine against neoplastic diseases. However, in view of its rapidly enlarging scope of application, it has become difficult to keep abreast of scientific information coming out of various epigenetic studies directed against cancer. Using this review, we have attempted to shed light on two of the most important mechanisms implicated in cancer, that is, DNA (deoxyribonucleic acid methylation and histone modifications, and their place in cancer pathogenesis. Further, we have attempted to take stock of the new epigenetic drugs that have emerged onto the market as well as those in the pipeline that offer hope in mankind’s fight against cancer.

  20. Epigenetics in Medullary Thyroid Cancer: From Pathogenesis to Targeted Therapy.

    Science.gov (United States)

    Vitale, Giovanni; Dicitore, Alessandra; Messina, Erika; Sciammarella, Concetta; Faggiano, Antongiulio; Colao, Annamaria

    2016-01-01

    Medullary thyroid carcinoma (MTC) originates from the parafollicular C cells of the thyroid gland. Mutations of the RET proto-oncogene are implicated in the pathogenesis of MTC. Germline activating mutations of this gene have been reported in about 88-98% of familial MTCs, while somatic mutations of RET gene have been detected in about 23-70% of sporadic forms. Although these genetic events are well characterized, much less is known about the role of epigenetic abnormalities in MTC. The present review reports a detailed description of epigenetic abnormalities (DNA methylation, histone modifications and miRNA profile), probably involved in the pathogenesis and progression of MTC. A systematic review was performed using Pubmed and Google patents databases. We report the current understanding of epigenetic patterns in MTC and discuss the potential use of current knowledge in designing novel therapeutic strategies through epigenetic drugs, focusing on recent patents in this field. Taking into account the reversibility of epigenetic alterations and the recent development in this field, epigenetic therapy may emerge for clinical use in the near future for patients with advanced MTC.