WorldWideScience

Sample records for epidermal growth receptor

  1. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  2. Pattern of hormone receptors and human epidermal growth factor ...

    African Journals Online (AJOL)

    Introduction: Breast cancer is the most common cancer among women globally. With immunohistochemistry (IHC), breast cancer is classified into four groups based on IHC profile of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2/neu) expression, positive (+) and/or ...

  3. Radiotherapy and receptor of epidermal growth factor

    International Nuclear Information System (INIS)

    Deberne, M.

    2009-01-01

    The expression level of the receptor of the epidermal growth factor is in correlation with the tumor cells radiosensitivity. An overexpression of the E.G.F.R. is often present in the bronchi cancer, epidermoid carcinomas of the O.R.L. sphere, esophagus, uterine cervix, and anal duct but also in the rectum cancers and glioblastomas. At the clinical level, the E.G.F.R. expression is in correlation with an unfavourable prognosis after radiotherapy in numerous tumoral localizations. In the rectum cancers it is an independent prognosis factor found in multifactorial analysis: increase of the rate of nodes and local recurrence when the E.G.F.R. is over expressed. In the uterine cervix cancers, the survival is is negatively affected in multifactorial analysis by the E.G.F.R. membranes expression level. At the therapy level, the development of anti E.G.F.R. targeted therapies (tyrosine kinase inhibitors and monoclonal antibodies) opens a new therapy field at radio-sensitivity potentiality. The irradiation makes an activation of the E.G.F.R. way that would be partially responsible of the post irradiation tumoral repopulation. This activation leads the phosphorylation of the PI3 kinase ways and M.A.P. kinase ones, then the Akt protein one that acts an apoptotic modulator part. It has been shown that blocking the E.G.F.R. way acts on three levels: accumulation of ells in phase G1, reduction of the cell repair and increasing of apoptosis. he inhibition of post irradiation action of the E.G.F.R. signal way is a factor explaining the ionizing radiation - anti E.G.F.R. synergy. The preclinical data suggest that the E.G.F.R. blocking by the monoclonal antibodies is more important than the use of tyrosine kinase inhibitors. A first positive randomized study with the cetuximab, published in 2006 in the epidermoid carcinomas of the O.R.L. sphere lead to its authorization on the market with the radiotherapy for this localization. The use of cetuximab in other indication with or in

  4. Steroid hormone and epidermal growth factor receptors in meningiomas.

    Science.gov (United States)

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  5. Epidermal growth factor receptor expression in urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Dayalu S.L. Naik

    2011-01-01

    Full Text Available Objective : To evaluate the expression pattern of epidermal growth factor receptor (EGFR in urinary bladder cancer and its association with human epidermal growth factor receptor 2 (HER2, epidermal growth factor (EGF, interleukin-6 (IL-6, and high risk human papilloma virus (HPV types 16 and 18. Materials and Methods : Thirty cases of urothelial carcinoma were analyzed. EGFR, HER2, EGF, and IL-6 expressions in the tissue were evaluated by immunohistochemical staining. For HPV, DNA from tissue samples was extracted and detection of HPV was done by PCR technique. Furthermore, evaluation of different intracellular molecules associated with EGFR signaling pathways was performed by the western blot method using lysates from various cells and tissues. Results : In this study, the frequencies of immunopositivity for EGFR, HER2, EGF, and IL-6 were 23%, 60%, 47%, and 80%, respectively. No cases were positive for HPV-18, whereas HPV-16 was detected in 10% cases. Overall, expression of EGFR did not show any statistically significant association with the studied parameters. However, among male patients, a significant association was found only between EGFR and HER2. Conclusions : Overexpression of EGFR and/or HER2, two important members of the same family of growth factor receptors, was observed in a considerable proportion of cases. Precise knowledge in this subject would be helpful to formulate a rational treatment strategy in patients with urinary bladder cancer.

  6. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent...

  7. Interaction of epidermal growth factor receptors with the cytoskeleton is related to receptor clustering

    NARCIS (Netherlands)

    van Belzen, N.; Spaargaren, M.; Verkleij, A. J.; Boonstra, J.

    1990-01-01

    Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction,

  8. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

    International Nuclear Information System (INIS)

    Berasain, Carmen; Latasa, María Ujue; Urtasun, Raquel; Goñi, Saioa; Elizalde, María; Garcia-Irigoyen, Oihane; Azcona, María; Prieto, Jesús; Ávila, Matías A.

    2011-01-01

    Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment

  9. Epidermal growth factor receptor in primary human lung cancer

    International Nuclear Information System (INIS)

    Yu Xueyan; Hu Guoqiang; Tian Keli; Wang Mingyun

    1996-01-01

    Cell membranes were prepared from 12 human lung cancers for the study of the expression of epidermal growth factor receptors (EGFR). EGFR concentration was estimated by ligand binding studies using 125 I-radiolabeled EGF. The dissociation constants of the high affinity sites were identical, 1.48 nmol and 1.1 nmol in cancer and normal lung tissues, the EGFR contents were higher in lung cancer tissues (range: 2.25 to 19.39 pmol·g -1 membrane protein) than that in normal tissues from the same patients (range: 0.72 to 7.43 pmol·g -1 membrane protein). These results suggest that EGF and its receptor may play a role in the regulatory mechanisms in the control of lung cellular growth and tumor promotion

  10. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  11. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    International Nuclear Information System (INIS)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-01-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol 125 I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function

  12. Epidermal growth factor and its receptors in human pancreatic carcinoma

    International Nuclear Information System (INIS)

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N.

    1990-01-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells

  13. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  14. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  15. Multistep change in epidermal growth factor receptors during spontaneous neoplastic progression in Chinese hamster embryo fibroblasts

    International Nuclear Information System (INIS)

    Wakshull, E.; Kraemer, P.M.; Wharton, W.

    1985-01-01

    Whole Chinese hamster embryo lineages have been shown to undergo multistep spontaneous neoplastic progression during serial passage in culture. The authors have studied the binding, internalization, and degradation of 125 I-labeled epidermal growth factor at four different stages of transformation. The whole Chinese hamster embryo cells lost cell surface epidermal growth factor receptors gradually during the course of neoplastic progression until only 10% of the receptor number present in the early-passage cells (precrisis) were retained in the late-passage cells (tumorigenic). No differences in internalization rates, chloroquine sensitivity, or ability to degrade hormone between the various passage levels were seen. No evidence for the presence in conditioned medium of transforming growth factors which might mask or down-regulate epidermal growth factor receptor was obtained. These results suggest that a reduction in cell surface epidermal growth factor receptor might be an early event during spontaneous transformation in whole Chinese hamster embryo cells

  16. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials

    DEFF Research Database (Denmark)

    Voldborg, B R; Damstrup, L; Spang-Thomsen, M

    1997-01-01

    The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase in the intr...... aspects of therapeutic targeting of EGFR....

  17. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Ahnen Dennis

    2005-01-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  18. Antibody-induced dimerization activates the epidermal growth factor receptor tyrosine kinase

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; Boonstra, J.; de Laat, S. W.

    1991-01-01

    The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized

  19. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells

    Science.gov (United States)

    Tan, Y; Chiow, KH; Huang, D; Wong, SH

    2010-01-01

    Background and purpose: Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. Experimental approach: We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Key results: Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. Conclusion and implications: This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death. PMID:20233216

  20. Epidermal growth factor receptor: an independent predictor of survival in astrocytic tumors given definitive irradiation

    International Nuclear Information System (INIS)

    An Zhu; Shaeffer, James; Leslie, Susan; Kolm, Paul; El-Mahdi, Anas M.

    1996-01-01

    Purpose: To determine whether the expression of epidermal growth factor receptor (EGFR) protein was predictive of patient survival independently of other prognostic factors in astrocytic tumors. Methods and Materials: Epidermal growth factor receptor protein expression was investigated immunohistochemically in formalin-fixed, paraffin-embedded surgical specimens of 55 glioblastoma multiforme, 14 anaplastic astrocytoma, and 2 astrocytomas given definitive irradiation. We evaluated the relationship of EGFR protein expression and tumor grade, histologic features, age at diagnosis, sex, patient survival, and recurrence-free survival. Results: The percentage of tumor cells which were EGFR positive related to reduced survival by Cox regression analysis in both univariate (p = 0.0424) and multivariate analysis (p = 0.0016). Epidermal growth factor receptor positivity was the only 1 of 11 clinical and histological variables associated with decreased recurrence-free survival by either univariate (p = 0.0353) or multivariate (p = 0.0182) analysis. Epidermal growth factor receptor protein expression was not related to patient age, sex, or histologic features. Conclusion: Epidermal growth factor receptor positivity was a significant and independent prognostic indicator for overall survival and recurrence-free survival for irradiated patients with astrocytic gliomas

  1. Hierarchical classification strategy for Phenotype extraction from epidermal growth factor receptor endocytosis screening

    NARCIS (Netherlands)

    L. Cao (Lu); M. Graauw (Marjo de); K. Yan (Kuan); L.C.J. Winkel (Leah C.J.); F.J. Verbeek (Fons)

    2016-01-01

    textabstractBackground: Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In

  2. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  3. Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Antibodies targeting epidermal growth factor receptor (EGFR), such as cetuximab, may potentially improve outcome in non-small cell lung cancer (NSCLC) patients with high EGFR expression. The EGFR expression may be heterogeneously distributed within tumors, and small biopsies may thus...

  4. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    El-Hariry, Iman; Powles, Thomas; Lau, Mike R

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  5. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs

    DEFF Research Database (Denmark)

    Mi, Li-Zhi; Grey, Michael J; Nishida, Noritaka

    2008-01-01

    Cellular signaling mediated by the epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases plays an important role in regulating normal and oncogenic cellular physiology. While structures of isolated EGFR extracellular domains and intracellular protein tyrosine kinase...... differential functional stability in Triton X-100 versus dodecyl maltoside. Furthermore, the kinase activity can be significantly stabilized by reconstituting purified EGF-bound EGFR dimers in phospholipid nanodiscs or vesicles, suggesting that the environment around the hydrophobic transmembrane...

  6. Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis

    International Nuclear Information System (INIS)

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-01-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that [ 125 I]EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers

  7. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  8. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    Science.gov (United States)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  9. The development of epidermal growth factor receptor molecular imaging in cancer

    International Nuclear Information System (INIS)

    Zhou Xiaoliang; Wang Hao; Shi Peiji; Liu Jianfeng; Meng Aimin

    2013-01-01

    In vivo epidermal growth factor receptor (EGFR) targeted therapy has great potential for cancer diagnosis and the evaluation of curative effects. Enhancement of EGFR-targeted therapy needs a reliable quantitative molecular imaging method which could enable monitoring of receptor drug binding and receptor occupancy in vivo, and identification of the mutation in EGFR. PET or SPECT is the most advanced molecular imaging technology of non-invasively selecting responders, predicting therapeutic outcome and monitoring EGFR-targeted treatment. This review analyzed the present situation and research progress of molecular imaging agents. (authors)

  10. Anti-epidermal growth factor receptor skin toxicity: a matter of topical hydration.

    Science.gov (United States)

    Ferrari, Daris; Codecà, Carla; Bocci, Barbara; Crepaldi, Francesca; Violati, Martina; Viale, Giulia; Careri, Carmela; Caldiera, Sarah; Bordin, Veronica; Luciani, Andrea; Zonato, Sabrina; Cassinelli, Gabriela; Foa, Paolo

    2016-02-01

    Skin toxicity is a frequent complication of anti-epidermal growth factor receptor therapy, which can be an obstacle in maintaining the dose intensity and may negatively impact on the clinical outcome of cancer patients. Skin lesions depend on the disruption of the keratinocyte development pathways and no treatment is clearly effective in resolving the cutaneous alterations frequently found during anti-epidermal growth factor receptor therapy. Among systemic treatments, oral tetracycline proved to be useful in preventing skin manifestations. We describe the case of a patient affected by metastatic colorectal cancer, for whom a combination of chemotherapy and cetuximab was used as second-line treatment. The patient developed a symptomatic papulopustular skin rash that disappeared completely after a twice-daily application of a hydrating and moisturizing cream, mainly consisting of a mixture of paraffin, silicone compounds, and macrogol. The marked cutaneous amelioration allowed the patient to continue cetuximab without any further symptoms and was associated with a partial radiological response.

  11. Personalized Radiation Oncology: Epidermal Growth Factor Receptor and Other Receptor Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Higgins, Geoff S; Krause, Mechthild; McKenna, W Gillies; Baumann, Michael

    Molecular biomarkers are currently evaluated in preclinical and clinical studies in order to establish predictors for treatment decisions in radiation oncology. The receptor tyrosine kinases (RTK) are described in the following text. Among them, the most data are available for the epidermal growth factor receptor (EGFR) that plays a major role for prognosis of patients after radiotherapy, but seems also to be involved in mechanisms of radioresistance, specifically in repopulation of tumour cells between radiotherapy fractions. Monoclonal antibodies against the EGFR improve locoregional tumour control and survival when applied during radiotherapy, however, the effects are heterogeneous and biomarkers for patient selection are warranted. Also other RTK´s such as c-Met and IGF-1R seem to play important roles in tumour radioresistance. Beside the potential to select patients for molecular targeting approaches combined with radiotherapy, studies are also needed to evluate radiotherapy adaptation approaches for selected patients, i.e. adaptation of radiation dose, or, more sophisticated, of target volumes.

  12. Optimal Therapeutic Strategy for Non-small Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Zhong SHI

    2015-02-01

    Full Text Available Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in non-small cell lung cancer (NSCLC patients, it is still controversial about how to combine EGFR-TKI with chemotherapy and other targeted drugs. We have made a summary on the current therapeutic models of EGFR-TKI combined with chemotherapy/bevacizumab in this review and aimed to find the optimal therapeutic strategy for NSCLC patients with EGFR mutation.

  13. The Epidermal Growth Factor Receptor Is a Regulator of Epidermal Complement Component Expression and Complement Activation

    DEFF Research Database (Denmark)

    Abu-Humaidan, Anas H A; Ananthoju, Nageshwar; Mohanty, Tirthankar

    2014-01-01

    The complement system is activated in response to tissue injury. During wound healing, complement activation seems beneficial in acute wounds but may be detrimental in chronic wounds. We found that the epidermal expression of many complement components was only increased to a minor extent in skin...

  14. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of ...

  15. Targeting the epidermal growth factor receptor in solid tumor malignancies

    DEFF Research Database (Denmark)

    Nedergaard, Mette K; Hedegaard, Chris J; Poulsen, Hans S

    2012-01-01

    been proposed as valid targets in many cancer therapy settings. Different strategies have been developed in order to either inhibit EGFR/EGFRvIII activity or to ablate EGFR/EGFRvIII-positive tumor cells. Drugs that inhibit these receptors include monoclonal antibodies (mAbs) that bind...... to the extracellular part of EGFR, blocking the binding sites for the EGFR ligands, and intracellular tyrosine kinase inhibitors (TKIs) that block the ATP binding site of the tyrosine kinase domain. Besides an EGFRvIII-targeted vaccine, conjugated anti-EGFR mAbs have been used in different settings to deliver lethal...... agents to the EGFR/EGFRvIII-positive cells; among these are radio-labelled mAbs and immunotoxins. This article reviews the current status and efficacy of EGFR/EGFRvIII-targeted therapies....

  16. Wnt signalling via the epidermal growth factor receptor: a role in breast cancer?

    International Nuclear Information System (INIS)

    Musgrove, Elizabeth A

    2004-01-01

    Recent data have suggested the epidermal-growth-factor receptor (EGFR) as a point of convergence for several different classes of receptor. Civenni and colleagues have now demonstrated crosstalk between Wnt signalling and the EGFR, showing that in breast epithelial cells Wnts activate downstream targets of the EGFR, including cyclin D1. Given the role of members of these pathways in the aetiology of breast cancer and as markers of outcome and potential therapeutic targets in breast cancer, this observation has a number of potential implications important for both the basic biology of breast cancer and the clinical management of the disease

  17. Radiotherapy and receptor of epidermal growth factor; Radiotherapie et recepteur de l'Epidermal Growth Factor

    Energy Technology Data Exchange (ETDEWEB)

    Deberne, M. [Institut Gustave-Roussy, 94 - Villejuif (France)

    2009-10-15

    The expression level of the receptor of the epidermal growth factor is in correlation with the tumor cells radiosensitivity. An overexpression of the E.G.F.R. is often present in the bronchi cancer, epidermoid carcinomas of the O.R.L. sphere, esophagus, uterine cervix, and anal duct but also in the rectum cancers and glioblastomas. At the clinical level, the E.G.F.R. expression is in correlation with an unfavourable prognosis after radiotherapy in numerous tumoral localizations. In the rectum cancers it is an independent prognosis factor found in multifactorial analysis: increase of the rate of nodes and local recurrence when the E.G.F.R. is over expressed. In the uterine cervix cancers, the survival is is negatively affected in multifactorial analysis by the E.G.F.R. membranes expression level. At the therapy level, the development of anti E.G.F.R. targeted therapies (tyrosine kinase inhibitors and monoclonal antibodies) opens a new therapy field at radio-sensitivity potentiality. The irradiation makes an activation of the E.G.F.R. way that would be partially responsible of the post irradiation tumoral repopulation. This activation leads the phosphorylation of the PI3 kinase ways and M.A.P. kinase ones, then the Akt protein one that acts an apoptotic modulator part. It has been shown that blocking the E.G.F.R. way acts on three levels: accumulation of ells in phase G1, reduction of the cell repair and increasing of apoptosis. he inhibition of post irradiation action of the E.G.F.R. signal way is a factor explaining the ionizing radiation - anti E.G.F.R. synergy. The preclinical data suggest that the E.G.F.R. blocking by the monoclonal antibodies is more important than the use of tyrosine kinase inhibitors. A first positive randomized study with the cetuximab, published in 2006 in the epidermoid carcinomas of the O.R.L. sphere lead to its authorization on the market with the radiotherapy for this localization. The use of cetuximab in other indication with or in

  18. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands

    DEFF Research Database (Denmark)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe

    2013-01-01

    after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist....... Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown...... fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand...

  19. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  20. Immunohistochemical detection of epidermal growth factor receptor in radiation-induced lung tumors in Beagle dogs

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, N A; Haley, P J; Hahn, F F

    1988-12-01

    Increased levels of epidermal growth factor receptor have been reported in a variety of tumors, including pulmonary squamous cell carcinomas in man. The purpose of this study was to determine if increased levels of epidermal growth factor (EGFR) were present in lung tumors from Beagle dogs that had been exposed to {sup 239}PuO{sub 2}- Using immunohistochemical techniques, sections from 17 lung tumors were examined for the presence of EGFR. Seven of the tumors were strongly positive for EGFR; the remainder of the tumors and the normal lung sections were negative. The positive immunostaining could not be correlated with the histologic phenotype of the tumors. Work is in progress to determine the level of EGFR in preneoplastic, proliferative epithelial foci in the Iung. (author)

  1. Epidermal growth factor receptor structural alterations in gastric cancer

    International Nuclear Information System (INIS)

    Moutinho, Cátia; Mateus, Ana R; Milanezi, Fernanda; Carneiro, Fátima; Seruca, Raquel; Suriano, Gianpaolo

    2008-01-01

    EGFR overexpression has been described in many human tumours including gastric cancer. In NSCLC patients somatic EGFR mutations, within the kinase domain of the protein, as well as gene amplification were associated with a good clinical response to EGFR inhibitors. In gastric tumours data concerning structural alterations of EGFR remains controversial. Given its possible therapeutic relevance, we aimed to determine the frequency and type of structural alterations of the EGFR gene in a series of primary gastric carcinomas. Direct sequencing of the kinase domain of the EGFR gene was performed in a series of 77 primary gastric carcinomas. FISH analysis was performed in 30 cases. Association studies between EGFR alterations and the clinical pathological features of the tumours were performed. Within the 77 primary gastric carcinomas we found two EGFR somatic mutations and several EGFR polymorphisms in exon 20. Six different intronic sequence variants of EGFR were also found. Four gastric carcinomas showed balanced polysomy or EGFR gene amplification. We verified that gastric carcinoma with alterations of EGFR (somatic mutations or copy number variation) showed a significant increase of tumour size (p = 0.0094) in comparison to wild-type EGFR carcinomas. We demonstrate that EGFR structural alterations are rare in gastric carcinoma, but whenever present, it leads to tumour growth. We considered that searching for EGFR alterations in gastric cancer is likely to be clinically important in order to identify patients susceptible to respond to tyrosine kinase inhibitors

  2. 99m Tc-anti-epidermal growth factor receptor nanobody for tumor imaging.

    Science.gov (United States)

    Piramoon, Majid; Hosseinimehr, Seyed Jalal; Omidfar, Kobra; Noaparast, Zohreh; Abedi, Seyed Mohammad

    2017-04-01

    Nanobodies are important biomolecules for tumor targeting. In this study, we synthesized and labeled anti-epidermal growth factor receptor (EGFR) nanobody OA-cb6 with 99m Tc(CO) 3 + and evaluated its characteristics for targeting the EGFR in the A431 human epidermal carcinoma cell line. Nanobody radiolabeling was achieved with high yield and radiochemical purity, and the radioconjugate was stable. Biodistribution results in nude mice exhibited a favorable tumor-to-muscle ratio at 4-hr postinjection, and tumor location was visualized at 4 hr after injection of radiolabeled nanobody. Our result showed that the OA-cb6- 99m Tc-tricarbonyl radiolabeled nanobody is a promising radiolabeled biomolecule for tumor imaging in cancers with high EGFR overexpression. © 2016 John Wiley & Sons A/S.

  3. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins....... In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited...

  4. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  5. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors

    DEFF Research Database (Denmark)

    Pandey, A; Podtelejnikov, A V; Blagoev, B

    2000-01-01

    Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2...

  6. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.; (UPENN-MED)

    2009-09-25

    The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.

  7. Antibody-induced activation of the epidermal growth factor receptor tyrosine kinase requires the presence of detergent

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; de Laat, S. W.; Boonstra, J.

    1990-01-01

    Activation of the epidermal growth factor receptor (EGF-R) tyrosine kinase was investigated in membrane preparations as well as intact A431 cells, using anti-EGF-R antibodies directed against extra- and intracellular receptor domains. In vitro assay conditions were mimicked on whole cells by a mild

  8. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L

    NARCIS (Netherlands)

    Real, PJ; Benito, A; Cuevas, J; Berciano, MT; de Juan, A; Coffer, P; Gomez-Roman, J; Lafarga, M; Lopez-Vega, JM; Fernandez-Luna, JL

    2005-01-01

    Epidermal growth factor receptor-1 (EGFR) and EGFR-2 (HER2) have become major targets for cancer treatment. Blocking antibodies and small-molecule inhibitors are being used to silence the activity of these receptors in different tumors with varying efficacy. Thus, a better knowledge on the signaling

  9. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  10. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  11. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  12. Development of epidermal growth factor receptor targeted therapy in pancreatic cancer.

    Science.gov (United States)

    Qing, Liu; Qing, Wang

    2018-02-01

    The epidermal growth factor receptor (EGFR) family are a series of important cancer therapeutic targets involved in cancer biology. These genes play an important role in tumor biological characteristics including angiogenesis, cell survival, invasion and glucose metabolism. In recent years, progresses have been achieved upon the cellular and molecular biological characteristics of EGFR and its role in cancer development based on the study of tumor specimens and experimental animal model. EGFR(HER1/ErbB) is overexpressed in over sixty percent of triple-negative breast cancers and occurs in pancreatic, bladder, lung and head-and-neck cancers. Up to now, EGFR inhibitors have been applied in various of cancer, such as lung, breast, bladder and head and neck cancers etc., in which the combination of EGFR inhibitors plus chemotherapeutic agents is now seen as the standard of care for advanced/metastatic pancreatic cancer. For these reasons, EGFR inhibitors and their therapeutic effect for pancreatic cancer is becoming the focus in Laboratory and clinical research. In this paper, research progress of the development of epidermal growth factor receptor targeted therapy in pancreatic cancer is introduced.

  13. Stepwise Progress in Epidermal Growth Factor Receptor/Radiation Studies for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Harari, Paul M.

    2007-01-01

    The U.S. Food and Drug Administration approval of four new epidermal growth factor receptor (EGFR) inhibitors for cancer therapy (cetuximab, panitumumab, gefitinib, and erlotinib) over the last 3 years is a remarkable milestone in oncology. Indeed, molecular inhibition of EGFR signaling represents one of the most promising current arenas for the development of molecular-targeted cancer therapies. Epidermal growth factor receptor inhibitors from both the monoclonal antibody and tyrosine kinase inhibitor class have demonstrated clinical activity in the treatment of a broad spectrum of common human malignancies. For the discipline of radiation oncology, the 2006 report of a phase III trial demonstrating a survival advantage for advanced head and neck cancer patients with the addition of weekly cetuximab during a 7-week course of radiation is particularly gratifying. Indeed, this is the first phase III trial to confirm a survival advantage with the addition of a molecular-targeted agent to radiation. Furthermore, this result seems to have been achieved with only a modest increment in overall treatment toxicity and with very high compliance to the prescribed treatment regimen. Nevertheless, much remains to be learned regarding the rational integration of EGFR inhibitors into cancer treatment regimens, as well as methods to optimize the selection of patients most likely to benefit from EGFR inhibitor strategies

  14. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    Science.gov (United States)

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  15. A Premature Termination of Human Epidermal Growth Factor Receptor Transcription in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jihene Elloumi-Mseddi

    2014-01-01

    Full Text Available Our success in producing an active epidermal growth factor receptor (EGFR tyrosine kinase in Escherichia coli encouraged us to express the full-length receptor in the same host. Despite its large size, we were successful at producing the full-length EGFR protein fused to glutathione S-transferase (GST that was detected by Western blot analysis. Moreover, we obtained a majoritarian truncated GST-EGFR form detectable by gel electrophoresis and Western blot. This truncated protein was purified and confirmed by MALDI-TOF/TOF analysis to belong to the N-terminal extracellular region of the EGFR fused to GST. Northern blot analysis showed two transcripts suggesting the occurrence of a transcriptional arrest.

  16. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation

    International Nuclear Information System (INIS)

    Yarden, Y.; Schlessinger, J.

    1987-01-01

    The membrane receptor for epidermal growth factor (EGF) is a 170,000 dalton glycoprotein composed of an extracellular EGF-binding domain and a cytoplasmic kinase domain connected by a stretch of 23 amino acids traversing the plasma membrane. The binding of EGF to the extracellular domain activates the cytoplasmic kinase function even in highly purified preparations of EGF receptor, suggesting that the activation occurs exclusively within the EGF receptor moiety. Conceivably, kinase activation may require the transfer of a conformational change through the single transmembrane region from the ligand binding domain to the cytoplasmic kinase region. Alternatively, ligand-induced receptor-receptor interactions may activate the kinase and thus bypass this requirement. Both mechanisms were contrasted by employing independent experimental approaches. On the basis of these results, an allosteric aggregation model is formulated for the activation of the cytoplasmic kinase function of the receptor by EGF. This model may be relevant to the mechanism by which the mitogenic signal of EGF is transferred across the membrane

  17. The under-appreciated promiscuity of the epidermal growth factor receptor family.

    Directory of Open Access Journals (Sweden)

    Sean P Kennedy

    2016-08-01

    Full Text Available Each member of the epidermal growth factor receptor (EGFR family plays a key role in normal development, homeostasis and a variety of pathophysiological conditions, most notably in cancer. According to the prevailing dogma, these four receptor tyrosine kinases (RTKs; EGFR, ERBB2, ERBB3 and ERBB4 function exclusively through the formation of homodimers and heterodimers within the EGFR family. These combinatorial receptor interactions are known to generate increased interactome diversity and therefore influence signalling output, subcellular localization and function of the heterodimer. This molecular plasticity is also thought to play a role in the development of resistance towards targeted cancer therapies aimed at these known oncogenes. Interestingly, many studies now challenge this dogma and suggest that the potential for EGFR family receptors to interact with more distantly related RTKs is much greater than currently appreciated. Here we discuss how the promiscuity of these oncogenic receptors may lead to the formation of many unexpected receptor pairings and the significant implications for the efficiency of many targeted cancer therapies.

  18. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  19. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    International Nuclear Information System (INIS)

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-01-01

    The specific binding of iodinated epidermal growth factor ([ 125 I]iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites [dissociation constant (Kd) = 0.7-1.8 nM]. Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status

  20. Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies.

    Science.gov (United States)

    Mazor, Ohad; Hillairet de Boisferon, Marc; Lombet, Alain; Gruaz-Guyon, Anne; Gayer, Batya; Skrzydelsky, Delphine; Kohen, Fortune; Forgez, Patricia; Scherz, Avigdor; Rostene, William; Salomon, Yoram

    2002-02-01

    We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives. The binding affinity (Kd) of labeled Eu-EGF to human A431 epidermal carcinoid cells was 3.6 +/- 1.2 nM, similar to the reported Kd values of EGF, whereas the Kd of Eu-NT to human HT29 colon cancer cells (7.4 +/- 0.5 nM) or to Chinese hamster ovary (CHO) cells transfected with the high-affinity NT receptor (CHO-NT1) were about 10-fold higher than the Kd values of NT. The bioactivity of the Eu-labeled EGF as determined by stimulation of cultured murine D1 hematopoietic cell proliferation was nearly the same as that obtained with native EGF. The maximal stimulation of Ca2+ influx with NT and Eu-NT in CHO-NT1 cells was similar, but the respective K0.5 values were 20 pM and 1 nM, corresponding to differences in the binding affinities previously described. The results of these studies indicate that Eu labeling of peptide hormones and growth factor molecules ranging from 10(3) to 10(5) Da can be conveniently accomplished. Importantly, the Eu-labeled products are stable for approximately 2 years and are completely safe for laboratory use compared to the biohazardous radioligands. Thus, Eu-labeled peptides present an attractive alternative for commonly used radiolabeled ligands in biological studies in general and in receptor assays in particular.

  1. Optical Molecular Imaging of Epidermal Growth Factor Receptor Expression to Improve Detection of Oral Neoplasia

    Directory of Open Access Journals (Sweden)

    Nitin Nitin

    2009-06-01

    Full Text Available Background: The development of noninvasive molecular imaging approaches has the potential to improve management of cancer. Methods: In this study, we demonstrate the potential of noninvasive topical delivery of an epidermal growth factor-Alexa 647 (EGF-Alexa 647 conjugate to image changes in epidermal growth factor receptor expression associated with oral neoplasia. We report a series of preclinical analyses to evaluate the optical contrast achieved after topical delivery of EGF-Alexa 647 in a variety of model systems, including cells, three-dimensional tissue cultures, and intact human tissue specimens using wide-field and high-resolution fluorescence imaging. Data were collected from 17 different oral cancer patients: eight pairs of normal and abnormal biopsies and nine resected tumors were examined. Results: The EGF-dye conjugate can be uniformly delivered throughout the oral epithelium with a penetration depth exceeding 500 µm and incubation time of less than 30 minutes. After EGF-Alexa 647 incubation, the presence of oral neoplasia is associated with a 1.5- to 6.9-fold increase in fluorescence contrast compared with grossly normal mucosa from the same patient with both wide-field and high-resolution fluorescence imaging. Conclusions: Results illustrate the potential of EGF-targeted fluorescent agents for in vivo molecular imaging, a technique that may aid in the diagnosis and characterization of oral neoplasia and allow real-time detection of tumor margins.

  2. Emerging role of epidermal growth factor receptor inhibition in therapy for advanced malignancy: focus on NSCLC

    International Nuclear Information System (INIS)

    Langer, Corey J.

    2004-01-01

    Combination chemotherapy regimens have emerged as the standard approach in advanced non-small-cell lung cancer. Meta-analyses have demonstrated a 2-month increase in median survival after platinum-based therapy vs. best supportive care, and an absolute 10% improvement in the 1-year survival rate. Just as importantly, cytotoxic therapy has produced benefits in symptom control and quality of life. Newer agents, including the taxanes, vinorelbine, gemcitabine, and irinotecan, have expanded our therapeutic options in the treatment of advanced non-small-cell lung cancer. Despite their contributions, we have reached a therapeutic plateau, with response rates seldom exceeding 30-40% in cooperative group studies and 1-year survival rates stable between 30% and 40%. It is doubtful that substituting one agent for another in various combinations will lead to any further improvement in these rates. The thrust of current research has focused on targeted therapy, and epidermal growth factor receptor inhibition is one of the most promising clinical strategies. Epidermal growth factor receptor inhibitors currently under investigation include the small molecules gefitinib (Iressa, ZD1839) and erlotinib (Tarceva, OSI-774), as well as monoclonal antibodies such as cetuximab (IMC-225, Erbitux). Agents that have only begun to undergo clinical evaluation include CI-1033, an irreversible pan-erbB tyrosine kinase inhibitor, and PKI166 and GW572016, both examples of dual kinase inhibitors (inhibiting epidermal growth factor receptor and Her2). Preclinical models have demonstrated synergy for all these agents in combination with either chemotherapy or radiotherapy, leading to great enthusiasm regarding their ultimate contribution to lung cancer therapy. However, serious clinical challenges persist. These include the identification of the optimal dose(s); the proper integration of these agents into popular, established cytotoxic regimens; and the selection of the optimal setting(s) in which

  3. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Characterization of the epidermal growth factor receptor associated with cytoskeletons of A431 cells

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1989-01-01

    Epidermal growth factor receptors (EGF-R) have been shown to be associated with the detergent-insoluble cytoskeleton of A431 cells, where they retained both a functional ligand-binding domain and tyrosine kinase activity. In the present study we have characterized the tyrosine kinase and ligand binding activities of this cytoskeletally associated EGF-R. The tyrosine kinase activity of the cytoskeletally associated EGF-R was stimulated by EGF treatment of intact cells as evidenced by increased autophosphorylation and phosphorylation of the exogenous substrate angiotensin II (AII). The kinetic behavior of the EGF-R associated with cytoskeletons of EGF-treated cells was similar to that of purified receptors. The stimulation of the receptor kinase activity required EGF treatment of intact cells prior to Triton extraction. If cytoskeletons were prepared from untreated cells and then incubated with EGF, there was no stimulation of the detergent-insoluble receptor kinase activity, indicating that the immobilized receptor was unable to undergo EGF-stimulated activation. Comparison of peptide maps from soluble and cytoskeletally associated EGF-R revealed qualitatively similar patterns; however, they are distinguished by a prominent 46 kD band in digests of the cytoskeletal EGF-R. Saturable binding of 125I-EGF to A431 cytoskeletons prepared from adherent and suspended cells demonstrated the presence of specific receptors on the cytoskeleton. High-affinity EGF-R were preferentially retained upon detergent extraction of adherent cells, whereas both low- and high-affinity receptors were solubilized from the cytoskeletons of suspended cells. Suspension of cells resulted in the solubilization of an additional 15% of the EGF-R to that solubilized in adherent cells, indicating that EGF-R can reversibly associate with the structural elements of the cell

  5. A transcription factor active on the epidermal growth factor receptor gene

    International Nuclear Information System (INIS)

    Kageyama, R.; Merlino, G.T.; Pastan, I.

    1988-01-01

    The authors have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. They found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO 4 /polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I footprinting and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR

  6. Napsin A and Thyroid Transcription Factor-1-Positive Cerebellar Tumor with Epidermal Growth Factor Receptor Mutation

    Directory of Open Access Journals (Sweden)

    Taiji Kuwata

    2011-12-01

    Full Text Available We present a very rare case of cerebellar metastasis of unknown origin, in which a primary lung adenocarcinoma was diagnosed by pathological examination of a cerebellar metastatic tumor, using immunohistochemical markers and epidermal growth factor receptor (EGFR mutation of primary lung cancer. A 69-year-old woman was admitted to our hospital because of a hemorrhagic cerebellar tumor and multiple small brain tumors. She underwent cerebellar tumor resection. On pathological examination, the tumor was diagnosed as adenocarcinoma. However, the primary tumor site was unidentifiable even with several imaging inspections. On immunohistochemical analysis, the resected tumor was positive for napsin A and thyroid transcription factor-1. In addition, an EGFR mutation was detected in the tumor. Therefore, primary lung cancer was diagnosed and the patient was started on gefitinib (250 mg/day therapy.

  7. Association of epidermal growth factor and epidermal growth factor receptor polymorphisms with the risk of hepatitis B virus-related hepatocellular carcinoma in the population of North China.

    Science.gov (United States)

    Wu, Jia; Zhang, Wei; Xu, Aiqiang; Zhang, Li; Yan, Tao; Li, Zhuo; Wu, Xiaopan; Zhu, Xilin; Ma, Juan; Li, Ke; Li, Hui; Liu, Ying

    2013-08-01

    Hepatocellular carcinoma (HCC) is a common solid malignant tumor occurring worldwide that leads to the third largest cause of death compared to other cancers. Genetic and environmental factors are involved in the pathogenesis of HCC. Epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) can stimulate the proliferation of epidermal and epithelial cells. The EGF signal pathway has a relationship with the growth of the embryo, tissue repairing, and tumorigenesis. In this study, 416 patients with hepatitis B virus infection (HBV)-related HCC and 645 individuals who had never been infected with HBV of the Chinese Han population were enrolled. Eight single-nucleotide polymorphisms (SNPs), whose minor allele frequency >20% in the EGF and EGFR genes, were genotyped to examine their associations with hepatocarcinogenesis. Genotyping experiments were carried out using TaqMan. There were significant differences in genotype distributions (p=0.005) and allele frequencies (p=0.001, odds ratio [OR]=1.43, 95% confidence interval [CI]=1.15-1.79) of rs11569017 in the EGF gene between the HCC and control groups. After binary logistic regression to determine independent factors for susceptibility to HCC under an additive model, rs11569017 was still independently associated with the susceptibility to HCC (p=0.021, OR=1.48, 95% CI=1.06-2.07), but no significant differences in other SNPs were found. Additionally, the haplotype T-G constructed by rs11569017 and rs4444903 of the EGF gene might increase the risk of HBV-related HCC (p=0.002, OR=1.44, 95% CI=1.15-1.82). The rs11569017 T allele was associated with susceptibility to HBV-related HCC.

  8. Strong association of epidermal growth factor receptor status with breast cancer FDG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joohee; Moon, Seung Hwan; Hyun, Seung Hyup; Cho, Young Seok; Choi, Joon Young; Kim, Byung-Tae; Lee, Kyung-Han [Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Lee, Eun Jeong [Seoul Medical Center, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kim, Seokhwi [Sungkyunkwan University School of Medicine, Department of Pathology, Samsung Medical Center, Seoul (Korea, Republic of)

    2017-08-15

    Imaging tumor FDG uptake could complement breast cancer biomarkers of risk and treatment response. Although breast cancer FDG uptake is reputedly influenced by major biomarker states, the role of epidermal growth factor receptor (EGFR) expression remains largely unexplored. This is a retrospective study that included 499 patients with primary breast cancer at initial presentation. Tumor FDG uptake was measured on pretreatment PET/CT as maximum standardized uptake value (SUVmax), and biomarkers were assessed by immunohistochemistry of tumor tissue. Regression analysis was performed for predictors of high tumor FDG uptake (SUVmax ≥ 8.6). SUVmax was higher in ER- (36.5%; 11.2 ± 6.0 vs. 8.3 ± 5.3), PR- (42.3%; 10.9 ± 6.0 vs. 8.2 ± 5.2), and triple-negative tumors (19.8%; 12.0 ± 6.9 vs. 8.7 ± 5.2; all p < 0.0001). EGFR expression (28.5%) was more frequent in ER-, PR-, triple-negative, cytokeratin 5/6 (CK5/6) + and mutant P53 (mP53) + tumors (all p < 0.0001). EGFR+ was associated with higher SUVmax among all tumors (11.9 ± 6.0 vs. 8.3 ± 5.3), ER- tumors (p < 0.0001), PR- and + tumors (p < 0.0001 and 0.027), hormone receptor- and + tumors (p < 0.0001 and 0.004), human epidermal growth factor receptor 2 (HER2)- and + tumors (p < 0.0001 and 0.006), non-triple negative tumors (p < 0.0001), CK5/6- and + tumors (p = 0.021 and <0.0001), and mP53- and + tumors (p < 0.0001 and 0.008). Tumors had high FDG uptake in 73.2% of EGFR+ and 40.6% of EGFR- tumors. On regression analysis, significant multivariate predictors of high tumor FDG uptake were large size, EGFR+ and CK5/6+ for the entire subjects, and EGFR+ and CK5/6+ for ER- and hormone receptor negative subgroups. High FDG uptake was able to sub-stratify EGFR+ tumors that were more likely to be ER- and CK5/6+, and EGFR- tumors more likely to be mP53 +. Primary breast tumor FDG uptake is strongly influenced by EGFR status beyond that by other major biomarkers including hormone receptor and HER2 status, and EGFR

  9. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent Anti-epidermal growth factor receptor nanobody

    NARCIS (Netherlands)

    Van Driel, P.B.A.A.; Van Der Vorst, J.R.; Verbeek, F.P.R.; Oliveira, S.|info:eu-repo/dai/nl/304841455; Snoeks, T.J.A.; Keereweer, S.; Chan, B.; Boonstra, M.C.; Frangioni, J.V.; Van Bergen En Henegouwen, P.M.P.|info:eu-repo/dai/nl/071919481; Vahrmeijer, A.L.; Lowik, C.W.G.M.

    2014-01-01

    Intraoperative near-infrared (NIR) fluorescence imaging is a technology with high potential to provide the surgeon with real-time visualization of tumors during surgery. Our study explores the feasibility for clinical translation of an epidermal growth factor receptor (EGFR)-targeting nanobody for

  10. Radiolabeled cetuximab: dose optimization for epidermal growth factor receptor imaging in a head-and-neck squamous cell carcinoma model

    NARCIS (Netherlands)

    Hoeben, B.A.W.; Molkenboer-Kuenen, J.D.M.; Oyen, W.J.G.; Peeters, W.J.M.; Kaanders, J.H.A.M.; Bussink, J.; Boerman, O.C.

    2011-01-01

    Noninvasive imaging of the epidermal growth factor receptor (EGFR) in head-and-neck squamous cell carcinoma could be of value to select patients for EGFR-targeted therapy. We assessed dose optimization of (111) Indium-DTPA-cetuximab ((111) In-cetuximab) for EGFR imaging in a head-and-neck squamous

  11. Limited human epidermal growth factor receptor 2 discordance in metastatic breast cancer patients treated with trastuzumab, a population based study

    NARCIS (Netherlands)

    van Rooijen, J.M.; de Munck, L.; de Graaf, J.C.; Siesling, Sabine; de Vries, Erik G.; Boers, J.E.

    2014-01-01

    Background Accurate assessment of the human epidermal growth factor receptor 2 (HER2) in breast cancer is essential for proper treatment decisions. HER2 positivity confirmation rates in breast cancer trials by central testing pathology laboratories were reported to be approximately 85%. The aim of

  12. Limited human epidermal growth factor receptor 2 discordance in metastatic breast cancer patients treated with trastuzumab, a population based study

    NARCIS (Netherlands)

    van Rooijen, J. M.; de Munck, L.; de Graaf, J. C.; Siesling, S.; de Vries, E. G.; Boers, J. E.

    Background: Accurate assessment of the human epidermal growth factor receptor 2 (HER2) in breast cancer is essential for proper treatment decisions. HER2 positivity confirmation rates in breast cancer trials by central testing pathology laboratories were reported to be approximately 85%. The aim of

  13. Epidermal growth factor treatment of A431 cells alters the binding capacity and electrophoretic mobility of the cytoskeletally associated epidermal growth factor receptor

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1991-01-01

    Epidermal growth factor receptor interacts with structural elements of A431 cells and remains associated with the cytoskeleton following extraction with nonionic detergents. Extraction of cells with 0.15% Triton X-100 resulted in detection of only approximately 40% of the EGF binding sites on the cytoskeleton. If the cells were exposed to EGF prior to extraction, approximately twofold higher levels of low-affinity EGF binding sites were detected. The difference in number of EGF binding sites was not a consequence of differences in numbers of EGF receptors associated with the cytoskeleton; equal amounts of 35S-labeled receptor were immunoprecipitated from the cytoskeletons of both control and EGF-treated cells. The effect of EGF pretreatment on binding activity was coincident with a change in the mobility of the receptor from a doublet of Mr approximately 160-180 kDa to a single sharp band at 180 kDa. The alteration in receptor mobility was not a simple consequence of receptor phosphorylation in that the alteration was not reversed by alkaline phosphatase treatment, nor was the shift produced by treatment of the cells with phorbol ester. The two EGF receptor species demonstrated differential susceptibility to V8 proteinase digestion. The EGF-induced 180 kDa species was preferentially digested by the proteinase relative to the 160 kDa species, indicating that EGF binding results in a conformational change in the receptor. The EGF-mediated preservation of binding activity and altered conformation may be related to receptor oligomerization

  14. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Science.gov (United States)

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  15. [Quantity research on epidermal growth factor in saliva and epidermal growth factor receptor in biopsy samples of recurrent aphthous ulcer patients].

    Science.gov (United States)

    Gu, Yang; Zhang, Gang; Lin, Mei

    2008-02-01

    To examine the change of epidermal growth factor (EGF) concentration in saliva of recurrent aphthous ulcer (RAU) patients during the ulcerous and interval period and epidermal growth factor receptor (EGFR) in ulcer biopsy samples. ECF data of the samples, which were 27 saliva samples from RAU gained not only in the ulcerous period but also in interval period and 33 ones from normal persons, were acquired through enzyme linked immunosorhent assay (ELISA) and EGF standard curve. ECFR-RNA date of RAU biopsies, which were 31 biopsy samples from RAU got during the ulcerous period and 35 ones from normal persons, were surveyed by QF-RT-PCR. All RAU samples were obtained under the same level, which were the whole patients were minor aphthous ulcers and their ulcers occurred not over the first four days. All patients and normal persons were selected seriously under the rule of physical situations without any other diseases and histories of using medicines. The EGF concentration of saliva in RAU group at ulcer occurrence was higher than that in the interval period and the normal control with a significant test (F = 3.24, P ulcer occurrence was higher than the normal control with a significant test (t = 3.15, P ulcer occasion of RAU patients could be related with the decreasing of EGF in saliva during interval period, and that the ulcer sell-cure of RAU patients would be contributed to

  16. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Directory of Open Access Journals (Sweden)

    Béatrice Marquèze-Pouey

    Full Text Available Signaling mediated by the epidermal growth factor (EGF is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer. In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  17. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Science.gov (United States)

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  18. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R

    1983-01-01

    receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry either...... and temporal control of epithelial proliferation....

  19. Inhibitors of the epidermal growth factor receptor in apple juice extract.

    Science.gov (United States)

    Kern, Melanie; Tjaden, Zeina; Ngiewih, Yufanyi; Puppel, Nicole; Will, Frank; Dietrich, Helmut; Pahlke, Gudrun; Marko, Doris

    2005-04-01

    The polyphenol-rich extract of a consumer-relevant apple juice blend was found to potently inhibit the growth of the human colon cancer cell line HT29 in vitro. The epidermal growth factor receptor (EGFR) and its subsequent signaling cascade play an important role in the regulation of cell proliferation in HT29 cells. The protein tyrosine kinase activity of an EGFR preparation was effectively inhibited by the polyphenol-rich apple juice extract. Treatment of intact cells with this extract resulted in the suppression of the subsequent mitogen-activated protein kinase cascade. Amongst the so far identified apple juice constituents, the proanthocyanidins B1 and B2 as well as quercetin-3-glc (isoquercitrin) and quercetin-3-gal (hyperoside) were found to possess substantial EGFR-inhibitory properties. However, as to be expected from the final concentration of these potential EGFR inhibitors in the original polyphenol-rich extract, a synthetic mixture of the apple juice constituents identified and available so far, including both proanthocyanidins and the quercetin glycosides, showed only marginal inhibitory effects on the EGFR. These results permit the assumption that yet unknown constituents contribute substantially to the potent EGFR-inhibitory properties of polyphenol-rich apple juice extract. In summary, the polyphenol composition of apple juice possesses promising growth-inhibitory properties, affecting proliferation-associated signaling cascades in colon tumor cells.

  20. Therapies based on inhibitors of the epidermal growth factor receptor: enclosing the future

    International Nuclear Information System (INIS)

    Diaz, Arlhee; Lage, Agustin

    2007-01-01

    The Epidermal Growth Factor Receptor (EGFR) is considered an important target for rational drug design due to its key role in numerous tumors. Potential contribution of EGFR-related signaling pathways to promote tumorigenic processes, including cell proliferation, angiogenesis, and resistance to apoptosis has been well established. Two classes of anti-EGFR agents in late-stage clinical testing include monoclonal antibodies against extracellular EGFR domain (Cetuximab, Nimotuzumab) and small molecules tyrosine kinase inhibitors, which inhibit the receptor enzyme activity (Gefitinib, Erlotinib). A considerable body of evidence has emerged since its introduction in the treatment of cancer patients. However, important questions such as reliable surrogate markers to predict response to the treatment, or optimal sequence and combination of these agents with conventional therapies remain to be addressed. Identify and validate predictive factors to select patients likely to respond to EGFR inhibitors, such as mutations that confer resistance versus those associated with sensitivity is required. A better understanding of molecular mechanisms associated with antitumor activity will useful to predict the interaction of these agents with other therapies in order to avoid antagonisms or overlapping effects resulting in no adding effects. Finally, the benefits derived from EGFR inhibitors as first-line therapy in selected populations, and the optimal doses and ways to delivery to the tumor site resulting in optimal target modulation should be established by the ongoing investigation. (Author)

  1. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  2. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-01-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 μM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure

  3. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  4. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    Science.gov (United States)

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  5. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild

    2004-01-01

    Background and purpose: Inhibition of the epidermal growth factor receptor (EGFR) is a fastly developing field in preclinical and clinical cancer research. This review presents the current status of knowledge and discusses radiobiological mechanisms which may underly the efficacy of EGFR inhibitors combined with irradiation. Materials and methods: Preclinical and clinical results on combined targeting of the EGFR and irradiation from the literature and from this laboratory are reviewed. Focus is given to the radiobiological rationale of this approach and to endpoints of experimental radiotherapy. Results: Overexpression of the EGFR is associated with decreased local tumour control after radiotherapy, especially when the overall treatment time is long. Inhibition of the EGFR either alone or in combination with irradiation decreases the growth rate of tumours expressing this receptor. Preclinical data provide proof-of-principle that local tumour control may be improved by combining irradiation with C225 mAb. In a randomised phase III clinical trial, simultaneous irradiation and treatment with the EGFR antibody Cetuximab (Erbitux[reg]; C225) in head and neck cancer patients resulted in significantly improved locoregional tumour control and survival compared to curative irradiation alone. Acute skin reactions increased in the experimental arm. The underlying mechanisms of enhanced radiation effects of combined EGFR inhibition with irradiation and of the partly conflicting results in different studies are poorly understood. There is increasing evidence, that important intertumoral heterogeneity in the response to EGFR inhibition alone and combined with irradiation exists, which appears to be at least partly dependent on specific mutations of the receptor as well as of molecules that are involved in the intracellular signal transduction pathway. Conclusions and outlook: Further investigations at all levels of the translational research chain exploring the mechanisms of

  6. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  7. Human Epidermal Growth Factor Receptor 2 Overexpression in Micropapillary and Other Variants of Urothelial Carcinoma.

    Science.gov (United States)

    Behzatoğlu, Kemal; Yörükoğlu, Kutsal; Demir, Hale; Bal, Nebil

    2016-06-21

    Human epidermal growth factor receptor 2 (HER2) protein overexpression or gene amplification has been shown in urothelial bladder cancer. This could be helpful when using targeted anti-HER2 therapy on these tumors. To evaluate HER2 immunohistochemical expression in conventional urothelial carcinoma (UC), in situ UC, and UC variants primarily in micropapillary urothelial carcinoma (MPUC). The study evaluated 60 MPUC cases; 25 invasive, 20 low-grade noninvasive, and 10 high-grade noninvasive UC cases; 8 in situ UC cases; and 69 UC variant cases. The immunohistochemistry staining was scored according to recommendations of the American Society of Clinical Oncology/College of American Pathologists 2013 HER2 test guideline established for breast cancer and only 3+ staining was considered HER2 overexpression. HER2 overexpression was determined by 3+ staining. 34 of 60 MPUC cases (56%) showed HER2 overexpression (3+ staining). We observed 3+ staining HER2 overexpression in nine of 25 conventional invasive UC cases (36%), four of eight in situ UC cases (50%), and three of six lipid cell variant cases (50%). 3+ staining HER2 overexpression was not seen in eight glandular, six small cell, and five sarcomatoid variant cases. HER2 overexpression was negative in the 20 low-grade noninvasive UC cases but positive in two of the 10 high-grade noninvasive UC cases (20%). We observed HER2 overexpression most commonly in MPUC cases. We also found HER2 overexpression in conventional invasive and in situ UC cases. Pure in situ UC and conventional invasive UC, especially MPUC, could be candidate tumors for treatment with anti-HER2 antibody (trastuzumab therapy). Targeted therapy has a limited place in treatment of bladder cancer. In this study, human epidermal growth factor receptor 2 (HER2) overexpression in bladder carcinomas was evaluated in a large number of cases. Anti-HER2 therapy could be used in bladder cancers, as in breast and gastric cancers. Copyright © 2016 European

  8. The epidermal growth factor receptor as a target for gastrointestinal cancer therapy.

    Science.gov (United States)

    Tedesco, Karen L; Lockhart, A Craig; Berlin, Jordan D

    2004-10-01

    The epidermal growth factor receptor (EGFR) is a member of the family of transmembrane protein kinase receptors known as the erbB or HER receptor family. When activated, EGFR phosphorylates and activates other intracellular proteins that affect cell signaling pathways, cellular proliferation, control of apoptosis and angiogenesis. EGFR signaling is best thought of as a network of activating and inactivating proteins with EGFR as the entry point into the network. EGFR overexpression occurs in most GI malignancies and while data are not entirely consistent, EGFR overexpression often confers a poor prognosis in those GI malignancies that have been studied. It often correlates with poorly differentiated histology, more advanced stage and other known poor prognostic markers. The EGFR is a tempting target because of its presence and overexpression on so many tumor types. However, downstream of the EGFR are several proteins that may be activated without EGFR thus allowing blockade to be overcome. Therefore, while blocking the activity of the EGFR protein appears to be a promising anticancer strategy, a simplistic strategy of blocking only EGFR is likely to only impact a minority of patients. It is time for the laboratory and clinical researchers to work closely together to develop this treatment strategy, moving back and forth from clinical to laboratory to best understand how to block this network effectively enough to produce a broader antitumor effect. While multiple methods of targeting the EGFR pathway are under development, including the inhibition of downstream proteins, only two modalities have entered clinical trials in GI malignancies: small molecule inhibitors of the intracellular kinase domain of EGFR and antibodies designed to block the extracellular ligand-binding domain of EGFR. EGFR inhibitors are still experimental in every GI malignancy with the notable exception of cetuximab that is approved for second or third-line therapy of metastatic colorectal

  9. Signal interaction of Hedgehog/GLI and epidermal growth factor receptor signaling in cancer development

    International Nuclear Information System (INIS)

    Eberl, M.

    2012-01-01

    The subject of this PhD thesis is based on the cooperation of Hedgehog (HH)/GLI with epidermal growth factor receptor (EGFR) signaling synergistically promoting oncogenic transformation and cancer growth. In previous studies we have demonstrated that the HH/GLI and EGFR signaling pathways interact synergistically resulting not only in selective induction of HH/GLI-EGFR target genes, but also in the onset of oncogenic transformation and tumor formation (Kasper, Schnidar et al. 2006; Schnidar, Eberl et al. 2009). However, the molecular key mediators acting downstream of HH/GLI and EGFR signal cooperation were largely unknown and the in vivo evidence for the therapeutic relevance of HH/GLI and EGFR signal cooperation in HH-associated cancers was lacking. During my PhD thesis I could demonstrate that the integration of EGFR and HH/GLI signaling involves activation of RAS/MEK/ERK and JUN/AP1 signaling in response to EGFR activation. Furthermore I succeeded in identifying genes, including stem cell- (SOX2, SOX9), tumor growth- (JUN, TGFA, FGF19) and metastasis-associated genes (SPP1/osteopontin, CXCR4) that showed synergistic transcriptional activation by HH/GLI-EGFR signal integration. Importantly, I could demonstrate that these genes arrange themselves within a stable interdependent signaling network, which is required for in vivo growth of basal cell carcinoma (BCC) and tumor-initiating pancreatic cancer cells. These data validate EGFR signaling as additional drug target in HH/GLI driven cancers and provide new therapeutic strategies based on combined targeting of cooperative HH/GLI-EGFR signaling and selected downstream target genes (Eberl, Klingler et al. 2012). (author) [de

  10. Human epidermal growth factor receptor2 expression in unresectable gastric cancers: Relationship with CT characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Sub [Dept. of Radiology, Jeju National University Hospital, Jeju (Korea, Republic of); Kim, Se Hyung; Im, Seock Ah; Kim, Min A; Han, Joon Koo [Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-09-15

    To retrospectively analyze the qualitative CT features that correlate with human epidermal growth factor receptor 2 (HER2)-expression in pathologically-proven gastric cancers. A total of 181 patients with pathologically-proven unresectable gastric cancers with HER2-expression (HER2-positive [n = 32] and negative [n = 149]) were included. CT features of primary gastric and metastatic tumors were reviewed. The prevalence of each CT finding was compared in both groups. Thereafter, binary logistic regression determined the most significant differential CT features. Clinical outcomes were compared using Kaplan-Meier method. HER2-postive cancers showed lower clinical T stage (21.9% vs. 8.1%; p = 0.015), hyperattenuation on portal phase (62.5% vs. 30.9%; p = 0.003), and was more frequently metastasized to the liver (62.5% vs. 32.2%; p = 0.001), than HER2-negative cancers. On binary regression analysis, hyperattenuation of the tumor (odds ratio [OR], 4.68; p < 0.001) and hepatic metastasis (OR, 4.43; p = 0.001) were significant independent factors that predict HER2-positive cancers. Median survival of HER2-positive cancers (13.7 months) was significantly longer than HER2-negative cancers (9.6 months) (p = 0.035). HER2-positive gastric cancers show less-advanced T stage, hyperattenuation on the portal phase, and frequently metastasize to the liver, as compared to HER2-negative cancers.

  11. Frequency of Epidermal Growth Factor Receptor Mutation in Smokers with Lung Cancer Without Pulmonary Emphysema.

    Science.gov (United States)

    Takeda, Kenichi; Yamasaki, Akira; Igishi, Tadashi; Kawasaki, Yuji; Ito-Nishii, Shizuka; Izumi, Hiroki; Sakamoto, Tomohiro; Touge, Hirokazu; Kodani, Masahiro; Makino, Haruhiko; Yanai, Masaaki; Tanaka, Natsumi; Matsumoto, Shingo; Araki, Kunio; Nakamura, Hiroshige; Shimizu, Eiji

    2017-02-01

    Chronic obstructive pulmonary disease is a smoking-related disease, and is categorized into the emphysema and airway dominant phenotypes. We examined the relationship between emphysematous changes and epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma. The medical records for 250 patients with lung adenocarcinoma were retrospectively reviewed. All patients were categorized into the emphysema or non-emphysema group. Wild-type EGFR was detected in 136 (54%) and mutant EGFR in 48 (19%). Emphysematous changes were observed in 87 (36%) patients. EGFR mutation was highly frequent in the non-emphysema group (p=0.0014). Multivariate logistic regression analysis showed that emphysema was an independent risk factor for reduced frequency of EGFR mutation (Odds Ratio=3.47, p=0.005). Our data showed a relationship between emphysematous changes and EGFR mutation status. There might be mutually exclusive genetic risk factors for carcinogenesis and development of emphysematous changes. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  13. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. [Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology/Oncology, Boston, MA (United States)

    2014-09-05

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  14. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease.

    Science.gov (United States)

    Cortés-Ramírez, Dionisio-Alejandro; Rodríguez-Tojo, María-Jose; Coca-Meneses, Juan-Carlos; Marichalar-Mendia, Xabier; Aguirre-Urizar, José-Manuel

    2014-09-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk.

  15. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    International Nuclear Information System (INIS)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B.

    2014-01-01

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC

  16. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    Science.gov (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Catalase reverses tumorigenicity in a malignant cell line by an epidermal growth factor receptor pathway.

    Science.gov (United States)

    Finch, Joanne S; Tome, Margaret E; Kwei, Kevin A; Bowden, G Tim

    2006-03-01

    We have used a keratinocyte in vivo/in vitro cell model to test the hypothesis that hydrogen peroxide acts as a signaling molecule, contributing to proliferation and tumorigenesis. A cell line, 6M90, that produces squamous cell carcinoma (SCC), has high levels of ROS and low levels of catalase. A new cell line, MTOC2, generated from parental 6M90 cells by introduction of a Tet-responsive catalase transgene, effectively expressed higher peroxisomal catalase. Increased catalase expression diminished constitutive ROS and enhanced viability after treatment with hydrogen peroxide. Protein tyrosine phosphatase activity was higher in the MTOC2 cells with high catalase, consistent with detection of a lower level of phosphorylation at tyrosine 1068 of the epidermal growth factor receptor (EGF-R). Transcription of downstream c-fos, AP-1 transactivation and cell proliferation were higher in the low catalase cells. An EGF-R inhibitor, AG1478, blocks the higher AP-1 transactivation and cell proliferation of the low catalase 6M90 cells. Tumorigenesis in SCID mice was greatly diminished in the high catalase cells. Our data suggest that hydrogen peroxide functions as a signaling molecule that can modulate activity of a protein tyrosine phosphatase/(s) resulting in phosphorylation of tryrosine/(s) on the EGF-R. Therefore, catalase acts as a tumor-suppressor gene in part by decreasing EGF-R signaling.

  18. Molecular Imaging of Hepatocellular Carcinoma Xenografts with Epidermal Growth Factor Receptor Targeted Affibody Probes

    Directory of Open Access Journals (Sweden)

    Ping Zhao

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is a highly aggressive and lethal cancer. It is typically asymptomatic at the early stage, with only 10%–20% of HCC patients being diagnosed early enough for appropriate surgical treatment. The delayed diagnosis of HCC is associated with limited treatment options and much lower survival rates. Therefore, the early and accurate detection of HCC is crucial to improve its currently dismal prognosis. The epidermal growth factor receptor (EGFR has been reported to be involved in HCC tumorigenesis and to represent an attractive target for HCC imaging and therapy. In this study, an affibody molecule, Ac-Cys-ZEGFR:1907, targeting the extracellular domain of EGFR, was used for the first time to assess its potential to detect HCC xenografts. By evaluating radio- or fluorescent-labeled Ac-Cys-ZEGFR:1907 as a probe for positron emission tomography (PET or optical imaging of HCC, subcutaneous EGFR-positive HCC xenografts were found to be successfully imaged by the PET probe. Thus, affibody-based PET imaging of EGFR provides a promising approach for detecting HCC in vivo.

  19. Epidermal Growth Factor Receptor Is Related to Poor Survival in Glioblastomas: Single-Institution Experience

    Science.gov (United States)

    Choi, Youngmin; Lee, Hyung-Sik; Hur, Won-Joo; Sung, Ki-Han; Kim, Ki-Uk; Choi, Sun-Seob; Kim, Su-Jin; Kim, Dae-Cheol

    2013-01-01

    Purpose There are conflicting results surrounding the prognostic significance of epidermal growth factor receptor (EGFR) status in glioblastoma (GBM) patients. Accordingly, we attempted to assess the influence of EGFR expression on the survival of GBM patients receiving postoperative radiotherapy. Materials and Methods Thirty three GBM patients who had received surgery and postoperative radiotherapy at our institute, between March 1997 and February 2006, were included. The evaluation of EGFR expression with immunohistochemistry was available for 30 patients. Kaplan-Meier survival analysis and Cox regression were used for statistical analysis. Results EGFR was expressed in 23 patients (76.7%), and not expressed in seven (23.3%). Survival in EGFR expressing GBM patients was significantly less than that in non-expressing patients (median survival: 12.5 versus 17.5 months, p=0.013). Patients who received more than 60 Gy showed improved survival over those who received up to 60 Gy (median survival: 17.0 versus 9.0 months, p=0.000). Negative EGFR expression and a higher radiation dose were significantly correlated with improved survival on multivariate analysis. Survival rates showed no differences according to age, sex, and surgical extent. Conclusion The expression of EGFR demonstrated a significantly deleterious effect on the survival of GBM patients. Therefore, approaches targeting EGFR should be considered in potential treatment methods for GBM patients, in addition to current management strategies. PMID:23225805

  20. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Su Jin [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Kim, Tae Jung [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Samsung Medical Center, Department of Radiology, Seoul (Korea, Republic of); Choi, Yo Won [Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Park, Jeong-Soo [Dankook Universicity, Department of Biochemistry, College of Medicine, Cheonan (Korea, Republic of); Chung, Jin-Haeng [Seoul National University Bundang Hospital, Department of Pathology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Lee, Kyung Won [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of)

    2016-10-15

    To correlate imaging features of resected lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutation and the IASLC/ATS/ERS classification histological subtypes. In 250 consecutive patients with resected lung adenocarcinoma, EGFR mutation status was correlated with demographics, imaging features including ground-glass opacity (GGO) proportion and the IASLC/ATS/ERS classification histological subtypes. EGFR mutations were significantly more frequent in women (54.5 % vs. 38.1 %, p = 0.011) and in never-smokers (54.7 % vs. 35.3 %, p = 0.003). GGO proportion was significantly higher in tumours with EGFR mutation than in those without (30.3 ± 33.8 % vs. 19.0 ± 29.3 %, p = 0.005). EGFR mutation was significantly more frequent in tumours with GGO ≥ 50 % and tumours with any GGO (p = 0.026 and 0.008, respectively). Adenocarcinomas with exon 19 or 21 mutation showed significantly higher GGO proportion than that in EGFR wild-type tumours (p = 0.009 and 0.029, respectively). Absence of GGO was an independent predictor of negative EGFR mutation (odds ratio, 1.81; 95 % confidence interval, 1.16-3.04; p = 0.018). GGO proportion in adenocarcinomas with EGFR mutation was significantly higher than that in EGFR wild-type tumours, and the absence of GGO on CT was an independent predictor of negative EGFR mutation. (orig.)

  1. Dialkoxyquinazolines: Screening Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    International Nuclear Information System (INIS)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom, Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor, Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-01-01

    The epidermal growth factor receptor (EGFR), a long-standing drug development target, is also a desirable target for imaging. Sixteen dialkoxyquinazoline analogs, suitable for labeling with positron-emitting isotopes, have been synthesized and evaluated in a battery of in vitro assays to ascertain their chemical and biological properties. These characteristics provided the basis for the adoption of a selection schema to identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of the compounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFR tyrosine kinase. All of the analogs inhibited ligand-induced EGFR tyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimated octanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline as well as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the best combination of characteristics that warrant radioisotope labeling and further evaluation in tumor-bearing mice

  2. Prognostic significance of epidermal growth factor receptor (EGFR) over expression in urothelial carcinoma of urinary bladder.

    Science.gov (United States)

    Hashmi, Atif Ali; Hussain, Zubaida Fida; Irfan, Muhammad; Khan, Erum Yousuf; Faridi, Naveen; Naqvi, Hanna; Khan, Amir; Edhi, Muhammad Muzzammil

    2018-06-07

    Epidermal growth factor receptor (EGFR) has been shown to have abnormal expression in many human cancers and is considered as a marker of poor prognosis. Frequency of over expression in bladder cancer has not been studied in our population; therefore we aimed to evaluate the frequency and prognostic significance of EGFR immunohistochemical expression in locoregional population. We performed EGFR immunohistochemistry on 126 cases of bladder cancer and association of EGFR expression with tumor grade, lamina propria invasion, deep muscle invasion and recurrence of disease was evaluated. High EGFR expression was noted in 26.2% (33 cases), 15.1% (19 cases) and 58.7% (74 cases) revealed low and no EGFR expression respectively. Significant association of EGFR expression was noted with tumor grade, lamina propria invasion, deep muscle invasion and recurrence status while no significant association was seen with age, gender and overall survival. Kaplan- Meier curves revealed significant association of EGFR expression with recurrence while no significant association was seen with overall survival. Significant association of EGFR overexpression with tumor grade, muscularis propria invasion and recurrence signifies its prognostic value; therefore EGFR can be used as a prognostic biomarker in Urothelial bladder carcinoma.

  3. Human epidermal growth factor receptor2 expression in unresectable gastric cancers: Relationship with CT characteristics

    International Nuclear Information System (INIS)

    Lee, Jeong Sub; Kim, Se Hyung; Im, Seock Ah; Kim, Min A; Han, Joon Koo

    2017-01-01

    To retrospectively analyze the qualitative CT features that correlate with human epidermal growth factor receptor 2 (HER2)-expression in pathologically-proven gastric cancers. A total of 181 patients with pathologically-proven unresectable gastric cancers with HER2-expression (HER2-positive [n = 32] and negative [n = 149]) were included. CT features of primary gastric and metastatic tumors were reviewed. The prevalence of each CT finding was compared in both groups. Thereafter, binary logistic regression determined the most significant differential CT features. Clinical outcomes were compared using Kaplan-Meier method. HER2-postive cancers showed lower clinical T stage (21.9% vs. 8.1%; p = 0.015), hyperattenuation on portal phase (62.5% vs. 30.9%; p = 0.003), and was more frequently metastasized to the liver (62.5% vs. 32.2%; p = 0.001), than HER2-negative cancers. On binary regression analysis, hyperattenuation of the tumor (odds ratio [OR], 4.68; p < 0.001) and hepatic metastasis (OR, 4.43; p = 0.001) were significant independent factors that predict HER2-positive cancers. Median survival of HER2-positive cancers (13.7 months) was significantly longer than HER2-negative cancers (9.6 months) (p = 0.035). HER2-positive gastric cancers show less-advanced T stage, hyperattenuation on the portal phase, and frequently metastasize to the liver, as compared to HER2-negative cancers

  4. Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Tae Ryool [Dept. of Radiation Oncology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon (Korea, Republic of); Kim, In Ah [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-03-15

    Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents.

  5. Humanized versus murine anti-human epidermal growth factor receptor monoclonal antibodies for immunoscintigraphic studies

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alejo A. Morales; Duconge, Jorge; Alvarez-Ruiz, Daniel; Becquer-Viart, Maria de Los Angeles; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Caballero-Torres, Idania; Iznaga-Escobar, Normando

    2000-02-01

    The anti-human epidermal growth factor receptor (EGF-R) humanized antibody h-R3 (IgG{sub 1}), which binds to an extracellular domain of EGF-R, was used to evaluate the biodistribution on nude mice xenografted with A431 epidermoid carcinoma cell line. Results are compared with its murine version ior egf/r3 monoclonal antibody (mAb). Twenty-one athymic female 4NMRI nu/nu mice were injected intravenously with 10 {mu}g/100 {mu}Ci of {sup 99m}Tc-labeled mAbs. The mAb ior C5 that recognizes an antigen expressed preferentially on the surface of malignant and cytoplasm of normal colorectal cells was used as negative control. Immunoreactivity of {sup 99m}Tc-labeled mAbs was measured by enzyme linked immunosorbent assay on A431 cell line and the immunoreactive fractions determined by Lindmo method. Among all organs significant accumulation was found in tumor (6.14{+-}2.50 %ID/g, 5.06{+-}2.61 %ID/g for murine and humanized mAbs, respectively) 4 h after injection. The immunoreactive fractions were found to be 0.88 and 0.81 for murine and humanized mAb, respectively. Thus, we expect better results using the humanized mAb h-R3 for diagnostic immunoscintigraphy.

  6. Humanized versus murine anti-human epidermal growth factor receptor monoclonal antibodies for immunoscintigraphic studies

    International Nuclear Information System (INIS)

    Morales, Alejo A. Morales; Duconge, Jorge; Alvarez-Ruiz, Daniel; Becquer-Viart, Maria de Los Angeles; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Caballero-Torres, Idania; Iznaga-Escobar, Normando

    2000-01-01

    The anti-human epidermal growth factor receptor (EGF-R) humanized antibody h-R3 (IgG 1 ), which binds to an extracellular domain of EGF-R, was used to evaluate the biodistribution on nude mice xenografted with A431 epidermoid carcinoma cell line. Results are compared with its murine version ior egf/r3 monoclonal antibody (mAb). Twenty-one athymic female 4NMRI nu/nu mice were injected intravenously with 10 μg/100 μCi of 99m Tc-labeled mAbs. The mAb ior C5 that recognizes an antigen expressed preferentially on the surface of malignant and cytoplasm of normal colorectal cells was used as negative control. Immunoreactivity of 99m Tc-labeled mAbs was measured by enzyme linked immunosorbent assay on A431 cell line and the immunoreactive fractions determined by Lindmo method. Among all organs significant accumulation was found in tumor (6.14±2.50 %ID/g, 5.06±2.61 %ID/g for murine and humanized mAbs, respectively) 4 h after injection. The immunoreactive fractions were found to be 0.88 and 0.81 for murine and humanized mAb, respectively. Thus, we expect better results using the humanized mAb h-R3 for diagnostic immunoscintigraphy

  7. Neutralization of IL-8 prevents the induction of dermatologic adverse events associated with the inhibition of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Houtkamp, Mischa; Schuurhuis, Danita H

    2012-01-01

    Epidermal growth factor receptor (EGFR) inhibitors are widely used in the treatment of cancer. EGFR-targeted treatment is known to be associated with a high incidence of dermatological adverse reactions, including papulopustular rash, which can be dose-limiting and may affect compliance to treatm......Epidermal growth factor receptor (EGFR) inhibitors are widely used in the treatment of cancer. EGFR-targeted treatment is known to be associated with a high incidence of dermatological adverse reactions, including papulopustular rash, which can be dose-limiting and may affect compliance......, characterized by acute follicular neutrophil-rich hair follicle inflammation, and thus mimicked adverse events induced by systemic administration of EGFR inhibitors. In this model, we tested the hypothesis that neutrophils, attracted by IL-8, play a central role in the observed rash. Indeed, concomitant local...

  8. Epidermal Growth Factor Receptor Activating Mutations in Squamous Histology of Lung Cancer Patients of Southern Bulgaria

    Directory of Open Access Journals (Sweden)

    Genova Silvia N.

    2015-12-01

    Full Text Available There is only limited data on the prevalence of epidermal growth factor receptor (EGFR activating mutations in squamous cell carcinomas and adenosquamous carcinomas of the lung in patients of the Southern Bulgarian region and the efficacy of EGFR tyrosine kinase inhibitors. AIM: Previous reports for Bulgarian population showed high incidence of EGFR mutations in the squamous cell carcinomas, so we set the goal to investigate their frequency in Southern Bulgaria, after precise immunohistochemical verification of lung cancers. MATERIALS AND METHODS: Two hundred and thirty-six lung carcinomas were included in this prospective study. All biopsies were initially analysed with p63, TTF1, Napsin A, CK7, CK34βE12, synaptophysin, CK20 and CDX2. Two hundred and twenty-five non-small cell lung carcinomas were studied with real-time PCR technology to assess the status of the EGFR gene. RESULTS: We detected 132 adenocarcinomas (58.7%, 89 squamous cell carcinomas (39.2%, 4 adenosquamous carcinomas (1.8%, 9 large cell neuroendocrine carcinomas (3.8% and 2 metastatic colorectal adenocarcinomas (0.8%. Activating mutations in the EGF receptor had 3 out of 89 squamous cell carcinomas (3.37%. We have established mutations in L858R, deletion in exon 19 and rare mutation in S7681. One out of four adenosquamous carcinomas had a point mutation in the L858R (25%. CONCLUSIONS: The frequency of EGFR mutations we found in lung squamous cell carcinomas in a Southern Bulgarian region is lower than that in European countries. Ethnic diversity in the region does not play role of an independent predictive factor in terms of mutation frequency.

  9. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  10. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  11. Normal epidermal growth factor receptor signaling is dispensable for bone anabolic effects of parathyroid hormone.

    Science.gov (United States)

    Schneider, Marlon R; Dahlhoff, Maik; Andrukhova, Olena; Grill, Jessica; Glösmann, Martin; Schüler, Christiane; Weber, Karin; Wolf, Eckhard; Erben, Reinhold G

    2012-01-01

    Although the bone anabolic properties of intermittent parathyroid hormone (PTH) have long been employed in the treatment of osteoporosis, the molecular mechanisms behind this action remain largely unknown. Previous studies showed that PTH increases the expression and the activity of epidermal growth factor receptor (EGFR) in osteoblasts, and activation of ERK1/2 by PTH in osteoblasts was demonstrated to induce the proteolytical release of EGFR ligands and EGFR transactivation. However, conclusive evidence for an important role of the EGFR system in mediating the anabolic actions of intermittent PTH on bone in vivo is lacking. Here, we evaluated the effects of intermittent PTH on bone in Waved-5 (Wa5) mice which carry an antimorphic Egfr allele whose product acts as a dominant negative receptor. Heterozygous Wa5 females and control littermates received a subcutaneous injection of PTH (80 μg/kg) or buffer on 5 days per week for 4 weeks. Wa5 mice had slightly lower total bone mineral density (BMD), but normal cancellous bone volume and turnover in the distal femoral metaphysis. The presence of the antimorphic Egfr allele neither influenced the PTH-induced increase in serum osteocalcin nor the increases in distal femoral BMD, cortical thickness, cancellous bone volume, and cancellous bone formation rate. Similarly, the PTH-induced rise in lumbar vertebral BMD was unchanged in Wa5 relative to wild-type mice. Wa5-derived osteoblasts showed considerably lower basal extracellular signal-regulated kinase 1/2 (ERK1/2) activation as compared to control osteoblasts. Whereas activation of ERK1/2 by the EGFR ligand amphiregulin was largely blocked in Wa5 osteoblasts, treatment with PTH induced ERK1/2 activation comparable to that observed in control osteoblasts, relative to baseline levels. Our data indicate that impairment of EGFR signaling does not affect the anabolic action of intermittent PTH on cancellous and cortical bone. Copyright © 2011. Published by Elsevier Inc.

  12. Significance of epidermal growth factor receptor signaling for acquisition of meiotic and developmental competence in mammalian oocytes

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Blaha, Milan; Němcová, Lucie

    2017-01-01

    Roč. 97, č. 4 (2017), s. 537-549 ISSN 0006-3363 R&D Projects: GA MZe(CZ) QJ1510138; GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : amphiregulin * cumulus cells * epidermal growth factor receptor Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Reproductive biology (medical aspects to be 3) Impact factor: 3.432, year: 2016

  13. Markers of angiogenesis and epidermal growth factor receptor signalling in patients with pancreatic and gastroesophageal junction cancer

    DEFF Research Database (Denmark)

    Rohrberg, Kristoffer Staal; Skov, Birgit Guldhammer; Lassen, Ulrik

    2010-01-01

    The epidermal growth factor receptor (EGFR) and angiogenesis are well established targets in anti-cancer therapy. Several targeted anti-cancer therapies are in clinical trials in pancreatic and gastroesophageal (GEJ) cancer. However, many patients do not respond to these targeted therapies...... in pancreatic and GEJ cancer patients, and could be investigated further as predictive biomarkers in such patients treated with EGFR or angiogenesis targeted therapies....

  14. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    International Nuclear Information System (INIS)

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-01-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled 239 PuO 2 were evaluated for aberrant expression of transforming growth factor alpha (TGF-α) and epidermal growth factor receptor (EGFR). Expression of TGF-α protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-α. Many neoplasms expressing TGF-α also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-α were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab

  15. Epidermal growth factor receptor inhibition by anti-CD147 therapy in cutaneous squamous cell carcinoma.

    Science.gov (United States)

    Frederick, John W; Sweeny, Larissa; Hartman, Yolanda; Zhou, Tong; Rosenthal, Eben L

    2016-02-01

    Advanced cutaneous squamous cell carcinoma (SCC) is an uncommon and aggressive malignancy. As a result, there is limited understanding of its biology and pathogenesis. CD147 and epidermal growth factor receptor (EGFR) have been identified as oncologically important targets, but their relationship remains undefined in cutaneous SCC. Multiple cutaneous SCC cell lines (Colo-16, SRB-1, and SRB-12), were treated in vitro with a range of chimeric anti-CD147 monoclonal antibody (mAb) (0, 50, 100, and 200 µg/mL) or transfected with a small interfering RNA against CD147 (SiCD147). Cell proliferation, migration (scratch wound healing assay), and protein expression was then assessed. In vivo, Colo-16 flank xenografts were treated anti-CD147 mAb (150 µg i.p. triweekly). After treatment with anti-CD147 (200 µg/mL), there was a significant decrease in proliferation for all cell lines relative to controls (p CD147 (200 µg/mL) resulted in decreased cell migration for all cell lines, with an average of 43% reduction in closure compared to controls (p CD147 antibody therapy and siRNA mediated reduction in CD147 expression were both found to decrease protein expression of EGFR, which correlated with a reduction in downstream total and phosphorylated protein kinase B (pAKT). Tumor growth in vivo was reduced for both the anti-CD147 treatment group and the SiCD147 group relative to controls. Inhibition and downregulation of CD147 in cutaneous SCC resulted in suppression of the malignant phenotype in vitro and in vivo, which may be mediated in part by an alteration in EGFR expression. As a result, CD147 may serve as a potential therapeutic target for advanced cutaneous SCC. © 2014 Wiley Periodicals, Inc.

  16. Effects of epidermal growth factor receptor kinase inhibition on radiation response in canine osteosarcoma cells.

    Science.gov (United States)

    Mantovani, Fernanda B; Morrison, Jodi A; Mutsaers, Anthony J

    2016-05-31

    Radiation therapy is a palliative treatment modality for canine osteosarcoma, with transient improvement in analgesia observed in many cases. However there is room for improvement in outcome for these patients. It is possible that the addition of sensitizing agents may increase tumor response to radiation therapy and prolong quality of life. Epidermal growth factor receptor (EGFR) expression has been documented in canine osteosarcoma and higher EGFR levels have been correlated to a worse prognosis. However, effects of EGFR inhibition on radiation responsiveness in canine osteosarcoma have not been previously characterized. This study examined the effects of the small molecule EGFR inhibitor erlotinib on canine osteosarcoma radiation responses, target and downstream protein expression in vitro. Additionally, to assess the potential impact of treatment on tumor angiogenesis, vascular endothelial growth factor (VEGF) levels in conditioned media were measured. Erlotinib as a single agent reduced clonogenic survival in two canine osteosarcoma cell lines and enhanced the impact of radiation in one out of three cell lines investigated. In cell viability assays, erlotinib enhanced radiation effects and demonstrated single agent effects. Erlotinib did not alter total levels of EGFR, nor inhibit downstream protein kinase B (PKB/Akt) activation. On the contrary, erlotinib treatment increased phosphorylated Akt in these osteosarcoma cell lines. VEGF levels in conditioned media increased after erlotinib treatment as a single agent and in combination with radiation in two out of three cell lines investigated. However, VEGF levels decreased with erlotinib treatment in the third cell line. Erlotinib treatment promoted modest enhancement of radiation effects in canine osteosarcoma cells, and possessed activity as a single agent in some cell lines, indicating a potential role for EGFR inhibition in the treatment of a subset of osteosarcoma patients. The relative radioresistance of

  17. A novel small peptide as an epidermal growth factor receptor targeting ligand for nanodelivery in vitro

    Directory of Open Access Journals (Sweden)

    Han CY

    2013-04-01

    Full Text Available Cui-yan Han,1,2 Li-ling Yue,2 Ling-yu Tai,1 Li Zhou,2 Xue-yan Li,2 Gui-hua Xing,2 Xing-gang Yang,1 Ming-shuang Sun,1 Wei-san Pan1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2Qiqihar Medical University, Qiqihar, People’s Republic of China Abstract: The epidermal growth factor receptor (EGFR serves an important function in the proliferation of tumors in humans and is an effective target for the treatment of cancer. In this paper, we studied the targeting characteristics of small peptides (AEYLR, EYINQ, and PDYQQD that were derived from three major autophosphorylation sites of the EGFR C-terminus domain in vitro. These small peptides were labeled with fluorescein isothiocyanate (FITC and used the peptide LARLLT as a positive control, which bound to putative EGFR selected from a virtual peptide library by computer-aided design, and the independent peptide RALEL as a negative control. Analyses with flow cytometry and an internalization assay using NCI-H1299 and K562 with high EGFR and no EGFR expression, respectively, indicated that FITC-AEYLR had high EGFR targeting activity. Biotin-AEYLR that was specifically bound to human EGFR proteins demonstrated a high affinity for human non-small-cell lung tumors. We found that AEYLR peptide-conjugated, nanostructured lipid carriers enhanced specific cellular uptake in vitro during a process that was apparently mediated by tumor cells with high-expression EGFR. Analysis of the MTT assay indicated that the AEYLR peptide did not significantly stimulate or inhibit the growth activity of the cells. These findings suggest that, when mediated by EGFR, AEYLR may be a potentially safe and efficient delivery ligand for targeted chemotherapy, radiotherapy, and gene therapy. Keywords: EGFR, small peptide, tumor targeting, lung cancer, NLC

  18. Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization

    DEFF Research Database (Denmark)

    Torrisi, M R; Lotti, L V; Belleudi, F

    1999-01-01

    Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential...

  19. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    Science.gov (United States)

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier

  20. Polyethylene Glycol Mediated Colorectal Cancer Chemoprevention: Roles of Epidermal Growth Factor Receptor and Snail

    Science.gov (United States)

    Wali, Ramesh K.; Kunte, Dhananjay P.; Koetsier, Jennifer L.; Bissonnette, Marc; Roy, Hemant K.

    2008-01-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We previously reported that Snail/β-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overepressed in ~80% of human colorectal cancers (CRC), on PEG-mediated anti-proliferative and hence anti-neoplastic effects in azoxymethane (AOM)-rats and HT-29 colon cancer cells. AOM-rats were randomized to either standard diet or one with 10% PEG 3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (pPEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pre-treating cells with gefitinib or stably transfecting with EGFR-shRNA and measured the effect of PEG on proliferation. In either case PEG effect was blunted suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-shRNA cells, besides having reduced membrane EGFR also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/β-catenin pathway playing the central intermediary function. PMID:18790788

  1. Polyethylene glycol-mediated colorectal cancer chemoprevention: roles of epidermal growth factor receptor and Snail.

    Science.gov (United States)

    Wali, Ramesh K; Kunte, Dhananjay P; Koetsier, Jennifer L; Bissonnette, Marc; Roy, Hemant K

    2008-09-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We reported previously that Snail/beta-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overexpressed in approximately 80% of human colorectal cancers, on PEG-mediated antiproliferative and hence antineoplastic effects in azoxymethane (AOM) rats and HT-29 colon cancer cells. AOM rats were randomized to either standard diet or one with 10% PEG-3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (P PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pretreating cells with gefitinib or stably transfecting with EGFR-short hairpin RNA and measured the effect of PEG on proliferation. In either case, PEG effect was blunted, suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-short hairpin RNA cells, besides having reduced membrane EGFR, also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells, PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/beta-catenin pathway playing the central intermediary function.

  2. Divergent epidermal growth factor receptor mutation patterns between smokers and non-smokers with lung adenocarcinoma.

    Science.gov (United States)

    Tseng, Jeng-Sen; Wang, Chih-Liang; Yang, Tsung-Ying; Chen, Chih-Yi; Yang, Cheng-Ta; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tsai, Chi-Ren; Chang, Gee-Chen

    2015-12-01

    Smoking status is an important determinant of the prevalence of epidermal growth factor receptor (EGFR) mutations in lung cancer patients. However, it is unclear whether smoking status could also influence the spectrum of EGFR mutations. We enrolled patients with lung adenocarcinoma from three medical centers in Taiwan. EGFR mutations were assessed by Sanger direct sequencing. The objective of this study was to evaluate the influence of smoking status on both the frequency and patterns of EGFR mutations. From 2001 to 2013, a total of 1175 patients with lung adenocarcinoma were enrolled for EGFR mutation analysis. The overall EGFR mutation rate was 59.6%, which was significantly higher in females than males (69.1% vs. 49.8%) and in non-smokers than current/former smokers (73.8% vs. 29.8%) (both Psmokers expressed L858R mutation less frequently (35.2% vs. 50.2%, P=0.005) and exon 19 deletions more frequently (52.8% vs 38.8%, P=0.008) than non-smokers. Smokers and non-smokers also had divergent exon 19 deletions subtypes (Del E746-A750 82.5% vs. 57.6%, respectively, Psmokers were associated with a higher rate of complex mutations than non-smokers (34.2% vs. 8.4%, P<0.001). Our results suggested that smoking status could influence not only the frequency but also the spectrum of EGFR mutations. These findings provide a clue for further investigation of EGFR mutagenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Retrospective study of adjuvant icotinib in postoperative lung cancer patients harboring epidermal growth factor receptor mutations.

    Science.gov (United States)

    Yao, Shuyang; Zhi, Xiuyi; Wang, Ruotian; Qian, Kun; Hu, Mu; Zhang, Yi

    2016-09-01

    Epidermal growth factor receptor (EGFR) mutations occur in about 50% of Asian patients with non-small cell lung cancer (NSCLC). Patients with advanced NSCLC and EGFR mutations derive clinical benefit from treatment with EGFR-tyrosine kinase inhibitors (TKIs). This study assessed the efficacy and safety of adjuvant icotinib without chemotherapy in EGFR-mutated NSCLC patients undergoing resection of stage IB-IIIA. Our retrospective study enrolled 20 patients treated with icotinib as adjuvant therapy. Survival factors were evaluated by univariate and Cox regression analysis. The median follow-up time was 30 months (range 24-41). At the data cut-off, five patients (25%) had recurrence or metastasis and one patient had died of the disease. The two-year disease-free survival (DFS) rate was 85%. No recurrence occurred in the high-risk stage IB subgroup during the follow-up period. In univariate analysis, the micropapillary pattern had a statistically significant effect on DFS ( P = 0.040). Multivariate logistic regression analysis showed that there was no independent predictor. Drug related adverse events (AEs) occurred in nine patients (45.0%). The most common AEs were skin-related events and diarrhea, but were relatively mild. No grade 3 AEs or occurrences of intolerable toxicity were observed. Icotinib as adjuvant therapy is effective in patients harboring EGFR mutations after complete resection, with an acceptable AE profile. Further trials with larger sample sizes might confirm the efficiency of adjuvant TKI in selected patients. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  4. Correlation between 18F Fluorodeoxyglucose uptake and epidermal growth factor receptor mutations in advanced lung cancer

    International Nuclear Information System (INIS)

    Choi, Yun Jung; Cho, Byoung Chul; Jeong, Youg Hyu; Seo, Hyo Jung; Kim, Hyun Jeong; Cho, Arthur; Lee, Jae Hoon; Yun, Mi Jin; Jeon, Tae Joo; Lee, Jong Doo; Kang, Won Jun

    2012-01-01

    Mutations in the epidermal growth factor receptor (EGFR)gene have been identified as potential targets for the treatment and prognostic factors for non small cell lung cancer (NSCLC). We assessed the correlation between fluorodeoxyglucose (FDG) uptake and EGFR mutations, as well as their prognostic implications. A total of 163 patients with pathologically confirmed NSCLC were enrolled (99 males and 64 females; median age, 60 years). All patients underwent FDG positron emission tomography before treatment, and genetic studies of EGFR mutations were performed. The maximum standardized uptake value (SUVmax)of the primary lung cancer was measured and normalized with regard to liver uptake. The SUVmax between the wild type and EGFR mutant groups was compared. Survival was evaluated according to SUVmax and EGFR mutation status. EGFR mutations were found in 57 patients (60.8%). The SUVmax tended to be higher in wild type than mutant tumors, but was not significantly different (11.1±5.7 vs. 9.8±4.4, P=0.103). The SUVmax was significantly lower in patients with an exon 19 mutation than in those with either an exon 21 mutation or wild type (P=0.003 and 0.009, respectively). The EGFR mutation showed prolonged overall survival (OS) compared to wild type tumors (P=0.004). There was no significant difference in survival according to SUVmax. Both OS and progression free survival of patients with a mutation in exon 19 were significant longer than in patients with wild type tumors. In patients with NSCLC, a mutation in exon 19 was associated with a lower SUVmax and is a reliable predictor for good survival

  5. Radiolabeled pertuzumab for imaging of human epidermal growth factor receptor 2 expression in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Dawei [Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen (China); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Im, Hyung-Jun [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Seoul National University, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Sun, Haiyan; Cho, Steve Y. [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Valdovinos, Hector F.; England, Christopher G.; Ehlerding, Emily B.; Nickles, Robert J. [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Lee, Dong Soo [Seoul National University, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Huang, Peng [Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen (China); Cai, Weibo [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States)

    2017-08-15

    Human epidermal growth factor receptor 2 (HER2) is over-expressed in over 30% of ovarian cancer cases, playing an essential role in tumorigenesis and metastasis. Non-invasive imaging of HER2 is of great interest for physicians as a mean to better detect and monitor the progression of ovarian cancer. In this study, HER2 was assessed as a biomarker for ovarian cancer imaging using {sup 64}Cu-labeled pertuzumab for immunoPET imaging. HER2 expression and binding were examined in three ovarian cancer cell lines (SKOV3, OVCAR3, Caov3) using in vitro techniques, including western blot and saturation binding assays. PET imaging and biodistribution studies in subcutaneous models of ovarian cancer were performed for non-invasive in vivo evaluation of HER2 expression. Additionally, orthotopic models were employed to further validate the imaging capability of {sup 64}Cu-NOTA-pertuzumab. HER2 expression was highest in SKOV3 cells, while OVCAR3 and Caov3 displayed lower HER2 expression. {sup 64}Cu-NOTA-pertuzumab showed high specificity for HER2 (K{sub a} = 3.1 ± 0.6 nM) in SKOV3. In subcutaneous tumors, PET imaging revealed tumor uptake of 41.8 ± 3.8, 10.5 ± 3.9, and 12.1 ± 2.3%ID/g at 48 h post-injection for SKOV3, OVCAR3, and Caov3, respectively (n = 3). In orthotopic models, PET imaging with {sup 64}Cu-NOTA-pertuzumab allowed for rapid and clear delineation of both primary and small peritoneal metastases in HER2-expressing ovarian cancer. {sup 64}Cu-NOTA-pertuzumab is an effective PET tracer for the non-invasive imaging of HER2 expression in vivo, rendering it a potential tracer for treatment monitoring and improved patient stratification. (orig.)

  6. Effect of epidermal growth factor receptor gene polymorphisms on prognosis in glioma patients

    Science.gov (United States)

    Li, Jingjie; Yan, Mengdan; Xie, Zhilan; Zhu, Yuanyuan; Chen, Chao; Jin, Tianbo

    2016-01-01

    Previous studies suggested that single nucleotide polymorphisms (SNPs) in epidermal growth factor receptor (EGFR) are associated with risk of glioma. However, the associations between these SNPs and glioma patient prognosis have not yet been fully investigated. Therefore, the present study was aimed to evaluate the effects of EGFR polymorphisms on the glioma patient prognosis. We retrospectively evaluated 269 glioma patients and investigated associations between EGFR SNPs and patient prognosis using Cox proportional hazard models and Kaplan-Meier curves. Univariate analysis revealed that age, gross-total resection and chemotherapy were associated with the prognosis of glioma patients (p < 0.05). In addition, four EGFR SNPs (rs11506105, rs3752651, rs1468727 and rs845552) correlated with overall survival (OS) (Log-rank p = 0.011, 0.020, 0.008, and 0.009, respectively) and progression-free survival PFS (Log-rank p = 0.026, 0.024, 0.019 and 0.009, respectively). Multivariate analysis indicated that the rs11506105 G/G genotype, the rs3752651 and rs1468727 C/C genotype and the rs845552 A/A genotype correlated inversely with OS and PFS. In addition, OS among patients with the rs730437 C/C genotype (p = 0.030) was significantly lower OS than among patients with A/A genotype. These data suggest that five EGFR SNPs (rs11506105, rs3752651, rs1468727, rs845552 and rs730437) correlated with glioma patient prognosis, and should be furthered validated in studies of ethnically diverse patients. PMID:27437777

  7. Assessment of Epidermal Growth Factor Receptor (EGFR expression in human meningioma

    Directory of Open Access Journals (Sweden)

    Perry Arie

    2010-05-01

    Full Text Available Abstract Purpose This study explores whether meningioma expresses epidermal growth factor receptor (EGFR and determines if there is a correlation between the WHO grade of this tumor and the degree of EGFR expression. Methods Following institutional review board approval, 113 meningioma specimens from 89 patients were chosen. Of these, 85 were used for final analysis. After a blinded review, immunohistochemical stains for EGFR were performed. Staining intensity (SI was scored on a scale 0-3 (from no staining to strong staining. Staining percentage of immunoreactive cells (SP was scored 1-5 (from the least to the maximum percent of the specimen staining. Immunohistochemical score (IHS was calculated as the product of SI and SP. Results Eighty-five samples of meningioma were classified in accordance with World Health Organization (WHO criteria: benign 57/85 (67%, atypical 23/85 (27%, and malignant 5/85 (6%. The majority of samples demonstrated a moderate SI for EGFR. IHS for EGFR demonstrated a significant association between SI and histopathologic subtype. Also, there was a correlation between the SP and histopathologic subtype (p = 0.029. A significant association was determined when the benign and the atypical samples were compared to the malignant with respect to the SP (p = 0.009. While there was a range of the IHS for the benign and the atypical histologic subtypes, malignant tumors exhibited the lowest score and were statistically different from the benign and the atypical specimens (p Conclusions To our knowledge, this represents the largest series of meningioma samples analyzed for EGFR expression reported in the literature. EGFR expression is greatest in benign meningiomas and may serve a potential target for therapeutic intervention with selective EGFR inhibitors.

  8. Epidermal growth factor receptor mutations in lung adenocarcinoma in Malaysian patients.

    Science.gov (United States)

    Liam, Chong-Kin; Wahid, Mohamed Ibrahim A; Rajadurai, Pathmanathan; Cheah, Yoke-Kqueen; Ng, Tiffany Shi-Yeen

    2013-06-01

    Despite available data from other Asian countries, the prevalence of epidermal growth factor receptor (EGFR) mutations among lung adenocarcinoma patients has not been reported in Malaysia. This study sought to determine the frequency of EGFR mutations among multiethnic Malaysian patients diagnosed with lung adenocarcinoma. Demographic and clinical information of patients whose lung adenocarcinoma biopsy specimens were submitted for EGFR mutation testing at Sime Darby Medical Center from 2009 to 2011 were analyzed. EGFR mutations at exons 18, 19, 20, and 21 were detected either through bidirectional sequencing or real-time polymerase chain reaction. Among 812 patients in the study, 49% were female, 63.7% were ethnic Chinese, 29.4% Malay, 4.8% Indian, and 2.1% other ethnic groups. Mutations were present in the tumors of 321 patients (39.5%), with mutations at exons 19 (23.5%) and 21 (14.9%) being the most common. Mutations were significantly more frequent among women than in men (52.5% versus 27.8%, p < 0.001). Although mutations were more common among Chinese (40.8%) compared with Malay (37.2%) or Indian (33.3%) patients, the difference was not statistically significant (p = 0.591). Of 211 patients with smoking history records, never-smokers had a higher mutation rate compared with ever-smokers (54.8% versus 20.7%, p < 0.001). EGFR mutations were present in 39.5% of patients. Mutations were more common in women and never-smokers with no differences in mutation frequency between different ethnicities. Because of the high mutation rates, reflex testing for EGFR mutation should be a routine practice for advanced lung adenocarcinoma patients in Malaysia.

  9. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    International Nuclear Information System (INIS)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-01-01

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K d 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K d 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy

  10. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  11. Correlation of human epidermal growth factor receptor protein expression and colorectal cancer.

    Science.gov (United States)

    Yang, Wen-Juan; Shen, Xing-Jie; Ma, Xiao-Xia; Tan, Zhi-Gang; Song, Yan; Guo, Yi-Tong; Yuan, Mei

    2015-07-28

    To investigate the correlation between human epidermal growth factor receptor (HER-2) protein expression and colorectal cancer (CRC) using a case-control study and meta-analysis. Tumor tissue specimens from 162 CRC patients were selected for the case group. Fifty cases were randomly selected, and normal CRC tissue at least 10 cm away from the tumor margins of these cases was used to generate the control group. The expression of the HER-2 protein in the 162 CRC tissue samples and the 50 adjacent normal mucosa tissue samples was detected via immunohistochemistry. The experimental data were analyzed using SPSS 18.0 software, and R software version 3.1.0 was utilized for further verification. The expression of HER-2 protein in the 162 CRC tissue samples was significantly higher than in the normal tissue specimens. The data showed that the expression of HER-2 in CRC was related to the Dukes' stage, the depth of invasion and lymph node metastasis. The HER-2-positive patients had lower 3- and 5-year OS rates than the HER-2-negative patients, but there was no significant difference. However, there was a statistically significant difference in the 3- and 5-year disease-free survival (DFS) rates of HER-2-positive and HER-2-negative patients. The results of the meta-analysis showed that the expression of HER-2 in CRC patients was statistically significantly increased over that of healthy people. The 3-year DFS rate in HER-2-positive patients was markedly lower than that in HER-2-negative patients. Down-regulation of HER-2 expression might be a dependable strategy for CRC therapy.

  12. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lili; Yang, Min; Ding, Wei [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Zhang, Minmin [Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China); Niu, Jianying [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Qiao, Zhongdong [School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240 (China); Gu, Yong, E-mail: yonggu@vip.163.com [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China)

    2016-08-01

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.

  13. AZD9291 in epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2016-02-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in advanced EGFR mutant non-small cell lung cancer have an objective response rate (ORR) of approximately 60-70% and a median progression free-survival (PFS) of approximately 10-13 months. Studies of tumor biopsies performed after progression on EGFR TKI revealed that 50-60% of EGFR mutant NSCLC developed an EGFR exon 20 T790M mutation as a mechanism of acquired resistance. AZD9291 is a third generation irreversible EGFR TKI with activity against the activating EGFR mutation, the T790M acquired resistance mutation, and relative sparing of the wild-type EGFR. AZD9291 was investigated in a phase I trial with expansion cohorts in patients with disease progression after EGFR TKI. Patients with and without detectable T790M mutations were enrolled in the trial. The ORR in patients with centrally confirmed and without detectable T790M mutations was 61% (95% CI, 52-70%) and 21% (95% CI, 12-34%), respectively. The PFS observed in patients with centrally confirmed and without detectable T790M mutations was 9.6 months (95% CI, 8.3 to not reached) and 2.8 months (95% CI, 2.1-4.3 months), respectively. At the dose for further investigation, 80 mg daily, the rate of all grade 3-5 drug related adverse events was 11%, and the rates of grade 3 diarrhea and rash were 1% and 0%, respectively. The identification of the T790M resistance mutation and the subsequent development of an agent against the mechanism of resistance provide a template for future drug development for acquired resistance to targeted therapy.

  14. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    Science.gov (United States)

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  15. A nomogram for predicting pathological complete response in patients with human epidermal growth factor receptor 2 negative breast cancer

    International Nuclear Information System (INIS)

    Jin, Xi; Jiang, Yi-Zhou; Chen, Sheng; Yu, Ke-Da; Ma, Ding; Sun, Wei; Shao, Zhi-Min; Di, Gen-Hong

    2016-01-01

    The response to neoadjuvant chemotherapy has been proven to predict long-term clinical benefits for patients. Our research is to construct a nomogram to predict pathological complete response of human epidermal growth factor receptor 2 negative breast cancer patients. We enrolled 815 patients who received neoadjuvant chemotherapy from 2003 to 2015 and divided them into a training set and a validation set. Univariate logistic regression was performed to screen for predictors and construct the nomogram; multivariate logistic regression was performed to identify independent predictors. After performing the univariate logistic regression analysis in the training set, tumor size, hormone receptor status, regimens of neoadjuvant chemotherapy and cycles of neoadjuvant chemotherapy were the final predictors for the construction of the nomogram. The multivariate logistic regression analysis demonstrated that T4 status, hormone receptor status and receiving regimen of paclitaxel and carboplatin were independent predictors of pathological complete response. The area under the receiver operating characteristic curve of the training set and the validation set was 0.779 and 0.701, respectively. We constructed and validated a nomogram to predict pathological complete response in human epidermal growth factor receptor 2 negative breast cancer patients. We also identified tumor size, hormone receptor status and paclitaxel and carboplatin regimen as independent predictors of pathological complete response. The online version of this article (doi:10.1186/s12885-016-2652-z) contains supplementary material, which is available to authorized users

  16. The epidermal growth factor receptor (EGFr) as a target for in situ radiation therapy

    International Nuclear Information System (INIS)

    Vallis, K.A.; Reilly, R.M.

    2003-01-01

    In situ radiation therapy traditionally involves the use of a monoclonal antibody (mAb) directed against a specific tumor-associated antigen and labeled with α-particle emitter such as 131-I. An alternative strategy is to use a low molecular weight peptide rather than a mAb as the carrier molecule. Also, recent evidence shows that radioactive elements that emit Auger electrons may be useful for inducing receptor/cell-specific cytotoxicity. Auger electrons provide low energy emissions (<10-20 keV). Although they have a short range in tissue (a few mm), Auger electrons have a high rate of energy deposition that is comparable to high linear energy transfer radiation such as -particles. Human epidermal growth factor (hEGF) is a natural peptide ligand for EGFr, which is frequently overexpressed in breast cancer. EGF is rapidly internalized and translocated to the cell nucleus following binding to EGFr. We are developing a strategy of EGF conjugated to an Auger electron-emitting radionuclide, 111-In, as a treatment for EGFr-overexpressing breast cancers. This strategy has several advantages over the mAb approach, as EGF is an endogenous peptide and should not be immunogenic. Also, its small molecular size should facilitate extravasation and tumor penetration. We have shown that 111In-hEGF is highly and selectively radiotoxic to MDA-MB-468 human breast cancer cells overexpressing EGFr but was not radiotoxic to MCF-7 breast cancer cells with a 100-fold lower level of EGFr expression. We have also demonstrated that 111-In-hEGF was greater than 80-fold more potent on a molar concentration basis at inhibiting the growth of MDA-MB-468 breast cancer cells than paclitaxel (IC50 70 pM vs. 6 nM respectively) and greater than 400-fold more potent than doxorubicin (IC50 20 nM). We have evaluated the therapeutic efficacy of 111-In-hEGF in athymic mice implanted subcutaneously with MDA-MB-468 breast cancer xenografts. Tumour growth was strongly inhibited following administration of

  17. Association of Polymorphisms in Connective Tissue Growth Factor and Epidermal Growth Factor Receptor Genes With Human Longevity.

    Science.gov (United States)

    Donlon, Timothy A; Morris, Brian J; He, Qimei; Chen, Randi; Masaki, Kamal H; Allsopp, Richard C; Willcox, D Craig; Tranah, Gregory J; Parimi, Neeta; Evans, Daniel S; Flachsbart, Friederike; Nebel, Almut; Kim, Duk-Hwan; Park, Joobae; Willcox, Bradley J

    2017-08-01

    Growth pathways play key roles in longevity. The present study tested single-nucleotide polymorphisms (SNPs) in the connective tissue growth factor gene (CTGF) and the epidermal growth factor receptor gene (EGFR) for association with longevity. Comparison of allele and genotype frequencies of 12 CTGF SNPs and 41 EGFR SNPs between 440 American men of Japanese ancestry aged ≥95 years and 374 men of average life span revealed association with longevity at the p cases, consistent with heterozygote advantage in living to extreme old age. No associations of the most significant SNPs were observed in whites or Koreans. In conclusion, the present findings indicate that genetic variation in CTGF and EGFR may contribute to the attainment of extreme old age in Japanese. More research is needed to confirm that genetic variation in CTGF and EGFR contributes to the attainment of extreme old age across human populations. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Alterations in epidermal growth factor receptors 1 and 2 in esophageal squamous cell carcinomas

    International Nuclear Information System (INIS)

    Gonzaga, Isabela Martins; Andreollo, Nelson Adami; Simão, Tatiana Almeida de; Pinto, Luis Felipe Ribeiro; Soares-Lima, Sheila Coelho; Santos, Paulo Thiago Souza de; Blanco, Tania Cristina Moita; Reis, Bruno Souza Bianchi de; Quintella, Danielle Carvalho; Oliveira, Ivanir Martins de; Faria, Paulo Antonio Silvestre de; Kruel, Cleber Dario Pinto

    2012-01-01

    Esophageal squamous cell carcinoma (ESCC) shows a 5-year survival rate below 10%, demonstrating the urgency in improving its treatment. Alterations in epidermal growth factor receptors are closely related to malignancy transformation in a number of tumors and recent successful targeted therapies have been directed to these molecules. Therefore, in this study, we analyzed the expression of EGFR and HER2 and evaluated EGFR mutation profile as well as the presence of mutations in hotspots of KRAS and BRAF in ESCC patients. We performed RT-qPCR, immunohistochemistry and Fluorescent in situ hybridization to determine EGFR and HER2 expression in ESCC patients, and direct sequencing and PCR-RFLP for mutations and polymorphism analysis. Our results showed an increased EGFR mRNA expression in tumors compared to surrounding tissue (p <0.05), with 11% of the cases presenting at least a four-fold difference between tumor and paired adjacent mucosa. EGFR protein overexpression was present only in 4% of the cases. The median expression of HER2 mRNA was not different between tumors and adjacent mucosa. Still, 7% of the tumors presented at least a 25-fold higher expression of this gene when compared to its paired counterpart. Immunohistochemical analysis revealed that 21% of the tumors were positive for HER2 (scores 2+ and 3+), although only 3+ tumors presented amplification of this gene. Mutation analysis for EGFR (exons 18-21), KRAS (codons 12 and 13) and BRAF (V600E) showed no mutations in any of the hotspots of these genes in almost 100 patients analyzed. EGFR presented synonymous polymorphisms at codon 836 (C>T) in 2.1% of the patients, and at codon 787 (G>A) in 79.2% of the cases. This last polymorphism was also evaluated in 304 healthy controls, which presented a similar frequency (73.7%) in comparison with ESCC patients. The absence of mutations of EGFR, KRAS and BRAF as well as the overexpression of EGFR and HER2 in less than 10% of the patients suggest that this

  19. Immunoautoradiographic analysis of epidermal growth factor receptors: a sensitive method for the in situ identification of receptor proteins and for studying receptor specificity

    International Nuclear Information System (INIS)

    Fernandez-Pol, J.A.

    1982-01-01

    The use of an immunoautoradiographic system for the detection and analysis of epidermal growth factor (EGF) receptors in human epidermoid carcinoma A-431 cells is reported. By utilizing this technique, the interaction between EGF and its membrane receptor in A-431 cells can be rapidly visualized. The procedure is simple, rapid, and very sensitive, and it provides conclusive evidence that the 150K dalton protein is the receptor fo EGF in A-431 cells. In summary, the immunoautoradiographic procedure brings to the analysis of hormone rceptor proteins the power that the radioimmunoassay technique has brought to the analysis of hormones. Thus, this assay system is potentially applicable in a wide spectrum in many fields of nuclear medicine and biology

  20. Structure and function of the Juxta membrane domain of the human epidermal growth factor receptor by NMR spectroscopy

    International Nuclear Information System (INIS)

    Choowongkomon, Kiattawee; Carlin, Cathleen; Sonnichsen, Frank D.

    2005-10-01

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family involved in the regulation of cellular proliferation and differentiation. Its juxta membrane domain (JX), the region located between the transmembrane and kinase domains, plays important roles in receptor trafficking since both basolateral sorting in polarized epithelial cells and lysosomal sorting signals are identified in this region. In order to understand the regulation of these signals, we characterized the structural properties of recombinant JX domain in dodecyl phosphocholine detergent (DPC) by nuclear magnetic resonance (NMR) spectroscopy. In DPC micelles, structures derived from NMR data showed three amphipathic, helical segments. Two equivalent average structural models on the surface of micelles were obtained that differ only in the relative orientation between the first and second helices. Our data suggests that the activity of sorting signals may be regulated by their membrane association and restricted accessibility in the intact receptor

  1. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  2. Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mai Yamauchi

    Full Text Available PURPOSE: To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy. PATIENTS AND METHODS: Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF in the presence or absence of a clinically used EGF receptor tyrosine kinase (RTK-specific inhibitor, gefitinib. The data were subjected to a mathematical simulation using the State Space Model (SSM. "Gefitinib-sensitive" genes, the expressional dynamics of which were altered by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical specimens of lung cancer. RESULTS: The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American cohort for overall survival (OS with a hazard ratio (HR of 7.16 (P = 0.029 and 3.26 (P = 0.0072, respectively. It also enabled the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC histology in a Japanese cohort for OS and recurrence-free survival (RFS with HRs of 8.79 (P = 0.001 and 3.72 (P = 0.0049, respectively. CONCLUSION: The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-stage lung adenocarcinoma patients with a poor prognosis. TRIAL REGISTRATION: The Gene Expression Omnibus (GEO GSE31210.

  3. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors.

    Science.gov (United States)

    Heimberger, Amy B; Crotty, Laura E; Archer, Gary E; Hess, Kenneth R; Wikstrand, Carol J; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2003-09-15

    The epidermal growth factor receptor (EGFR) is often amplified and structurally rearranged in malignant gliomas and other tumors such as breast and lung, with the most common mutation being EGFRvIII. In the study described here, we tested in mouse models a vaccine consisting of a peptide encompassing the tumor-specific mutated segment of EGFRvIII (PEP-3) conjugated to keyhole limpet hemocyanin [KLH (PEP-3-KLH)]. C57BL/6J or C3H mice were vaccinated with PEP-3-KLH and subsequently challenged either s.c. or intracerebrally with a syngeneic melanoma cell line stably transfected with a murine homologue of EGFRvIII. Control mice were vaccinated with KLH. To test its effect on established tumors, C3H mice were also challenged intracerebrally and subsequently vaccinated with PEP-3-KLH. S.c. tumors developed in all of the C57BL/6J mice vaccinated with KLH in Freund's adjuvant, and there were no long-term survivors. Palpable tumors never developed in 70% of the PEP-3-KLH-vaccinated mice. In the C57BL/6J mice receiving the PEP-3-KLH vaccine, the tumors that did develop were significantly smaller than those in the control group (P PEP-3-KLH vaccination did not result in significant cytotoxic responses in standard cytotoxicity assays; however, antibody titers against PEP-3 were enhanced. The passive transfer of sera from the immunized mice to nonimmunized mice protected 31% of the mice from tumor development (P PEP-3-KLH-vaccinated mice. Peptide vaccination was also sufficiently potent to have marked efficacy against intracerebral tumors, resulting in a >173% increase in median survival time, with 80% of the C3H mice achieving long-term survival (P = 0.014). In addition, C3H mice with established intracerebral tumor that received a single treatment of PEP-3-KLH showed a 26% increase in median survival time, with 40% long-term survival (P = 0.007). Vaccination with an EGFRvIII-specific peptide is efficacious against both s.c. and established intracerebral tumors. The

  4. Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1985-01-01

    , the eccrine sweat glands, capillary system, and the hair follicle outer root sheath, generally similar in pattern to that previously reported for full-thickness rat skin and human epidermis. The same areas also bound EGF-R1 but in addition the monoclonal antibody recognized a cone of melanin containing......Two methods have been used to examine epidermal growth factor (EGF) receptor distribution in human scalp and foreskin. The first employed [125I]EGF viable explants and autoradiography to determine the EGF binding pattern while the second used a monoclonal antibody to the human EGF receptor to map...... whether EGF-R1 could recognize molecules unrelated to the EGF receptor, the EGF binding and EGF-R1 recognition profiles were compared on cultures of SVK14 cells, a SV40 transformed human keratinocyte cell line. EGF binding and EGF-R1 monoclonal antibody distribution on these cells was found to be similar...

  5. Epidermal growth factor receptor-induced activato protein 1 activity controls density-dependent growht inhibition in normal rat kidney fibroblasts.

    NARCIS (Netherlands)

    Hornberg, J.J.; Dekker, H.; Peters, P.H.J.; Langerak, P.; Westerhoff, H.V.; Lankelma, J.; Zoelen, E.J.J.

    2006-01-01

    Density-dependent growth inhibition secures tissue homeostasis. Dysfunction of the mechanisms, which regulate this type of growth control is a major cause of neoplasia. In confluent normal rat kidney (NRK) fibroblasts, epidermal growth factor (EGF) receptor levels decline, ultimately rendering these

  6. Immunohistochemical expression of the epidermal growth factor receptor (EGFR in colorectal carcinoma: relation with clinicopathological parameters

    Directory of Open Access Journals (Sweden)

    Maurício Andrade Azevedo

    2011-09-01

    Full Text Available Introduction: The study of tissue immunostaining of the epidermal growth factor receptor (EGFR may contribute with the understanding of its role in the prognosis of colorectal carcinoma. Objective: To analyze the immunohistochemical expression of EGFR in colorectal carcinoma tissues and transitional tumor-mucosa and mucosa adjacent to neoplasia, and its relation with cancer. Method: The study was conducted with 40 patients with colorectal carcinoma who had surgery with curative intent in order to analyze the immunoexpression of EGFR with anti-EGFR. We used parametric and nonparametric tests. Results: The immunohistochemical expression of EGFR in tumor samples showed a significant difference as to the level of immunostaining in tissue specimens of transitional tumor-mucosa (p=0.01 and the level of immunoreactivity in tissues of the adjacent mucosa (p=0, 04. The immunoexpression of EGFR showed no significant relation with the size of the tumor, angiolymphatic invasion, neural invasion, cellular differentiation, level of carcinoma infiltration in the intestinal wall, lymph node metastases and liver metastases. Conclusions: The EGFR showed a more intense expression in the mucosa of colorectal carcinoma than in the transitional epithelium and adjacent non-neoplastic mucosa. The immunoexpression of EGFR did not correlate with pathological parameters of colorectal carcinoma and liver metastases.Introdução: O estudo da imunoexpressão tecidual do receptor do fator de crescimento epitelial (EGFR pode contribuir para o entendimento de seu papel no prognóstico do carcinoma colorretal. Objetivo: Analisar a expressão imuno-histoquímica do EGFR no carcinoma colorretal e nos tecidos da transição tumor-mucosa e da mucosa adjacente à neoplasia, e avaliar a relação com os aspectos anatomopatológicos da neoplasia. Método: Em 40 doentes com carcinoma colorretal operados com intenção curativa, estudou-se a imunoexpressão do EGFR com anticorpo anti

  7. A single amino acid substitution is sufficient to modify the mitogenic properties of the epidermal growth factor receptor to resemble that of gp185erbB-2

    DEFF Research Database (Denmark)

    Di Fiore, P P; Helin, K; Kraus, M H

    1992-01-01

    The epidermal growth factor (EGF) receptor (EGFR) and the erbB-2 gene product, gp185erbB-2, exhibit distinct abilities to stimulate mitogenesis in different target cells. By using chimeric molecules between these two receptors, we have previously shown that their intracellular juxtamembrane regio...

  8. Diagnostic values of vascular endothelial growth factor and epidermal growth factor receptor for benign and malignant hydrothorax.

    Science.gov (United States)

    Gu, Yan; Zhang, Min; Li, Guo-Hua; Gao, Jun-Zhen; Guo, Liping; Qiao, Xiao-Juan; Wang, Li-Hong; He, Lan; Wang, Mei-Ling; Yan, Li; Fu, Xiu-Hua

    2015-02-05

    Hydrothorax, as one of the common complications of malignant tumors, still cannot be sensitively detected in clinical practice, thus requiring a sensitive, specific method for diagnosis. The aim of this study was to analyze the correlation between levels of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) in patients with benign and malignant hydrothorax. The contents of VEGF in the pleural effusion and serum of the patients with malignant pleural effusion (n = 35) and benign pleural effusion (n = 30) were detected by double antibody sandwich enzyme linked immunosorbent assay. The gene copy number level of EGFR in pleural effusion was detected by fluorescence in situ hybridization (FISH). The points with the highest sensitivity and specificity were selected as the critical values to calculate the diagnostic value of the VEGF in pleural effusion and serum, and EGFR gene copy number in pleural effusion. The contents of VEGF in pleural effusion and serum of patients with malignant hydrothorax were (384.91 ± 120.18), and (129.62 ± 46.35) ng/L, respectively, which were significantly higher than those of the patients with benign hydrothorax (207.97 ± 64.04), (63.49 ± 24.58) ng/L (P benign and malignant hydrothorax. The sensitivity and specificity of serum were 74.3% and 96.7%, respectively (the boundary value was 99.21 ng/L) for diagnosing benign and malignant hydrothorax. The diagnostic efficiencies of EGFR and VEGF in hydrothorax were similar. There was a significant correlation between EGFR and VEGF in hydrothorax (P benign and malignant pleural effusions, which contributed to differential diagnosis results of benign and malignant pleural effusions. It is feasible to detect the gene copy number of the pleural effusion cell mass EGFR by FISH technique. Joint detection can improve the diagnostic sensitivity.

  9. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding.

    Science.gov (United States)

    Taylor, Eric S; Pol-Fachin, Laercio; Lins, Roberto D; Lower, Steven K

    2017-04-01

    The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Detection of epidermal growth factor receptor mutation in lung cancer by droplet digital polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Xu Q

    2015-06-01

    Full Text Available Qing Xu,1,* Yazhen Zhu,2,* Yali Bai,1 Xiumin Wei,1 Xirun Zheng,2 Mao Mao,1 Guangjuan Zheng21Translational Bioscience and Diagnostics, WuXi AppTec, Shanghai, 2Department of Pathology, Guangdong Provincial Hospital of TCM, Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, People’s Republic of China*These authors contributed equally to this workBackground: Two types of epidermal growth factor receptor (EGFR mutations in exon 19 and exon 21 (ex19del and L858R are prevalent in lung cancer patients and sensitive to targeted EGFR inhibition. A resistance mutation in exon 20 (T790M has been found to accompany drug treatment when patients relapse. These three mutations are valuable companion diagnostic biomarkers for guiding personalized treatment. Quantitative polymerase chain reaction (qPCR-based methods have been widely used in the clinic by physicians to guide treatment decisions. The aim of this study was to evaluate the technical and clinical sensitivity and specificity of the droplet digital polymerase chain reaction (ddPCR method in detecting the three EGFR mutations in patients with lung cancer.Methods: Genomic DNA from H1975 and PC-9 cells, as well as 92 normal human blood specimens, was used to determine the technical sensitivity and specificity of the ddPCR assays. Genomic DNA of formalin-fixed, paraffin-embedded specimens from 78 Chinese patients with lung adenocarcinoma were assayed using both qPCR and ddPCR.Results: The three ddPCR assays had a limit of detection of 0.02% and a wide dynamic range from 1 to 20,000 copies measurement. The L858R and ex19del assays had a 0% background level in the technical and clinical settings. The T790M assay appeared to have a 0.03% technical background. The ddPCR assays were robust for correct determination of EGFR mutation status in patients, and the dynamic range appeared to be better than qPCR methods. The ddPCR assay for T790M could detect

  11. The biological activity of the human epidermal growth factor receptor is positively regulated by its C-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Velu, T; Martin, P

    1991-01-01

    mutants in the full length receptor. EGF-dependent transforming ability of the single point mutants is similar to that of the wild type, while that of double mutants is decreased and an even lower activity is present in the triple mutant. In each bioassay, including EGF-dependent focal transformation...... biologically. The EGF-R kinase activity is affected by tyrosine substitution since in vitro phosphorylation of exogenous substrates is reduced in the double and triple mutants. Autophosphorylation, in vivo and in vitro, is also reduced, but not totally abolished in the triple point mutant and Dc123 indicating......The epidermal growth factor receptor (EGF-R) C-terminus contains three conserved tyrosines (Y-1068, Y-1148, Y-1173) which are phosphorylated upon EGF activation. To clarify the functional role of these tyrosines, each has been mutated to phenylalanine and studied as single, double and triple...

  12. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    BACKGROUND/AIM: Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor...... I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS: Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth.......8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well...

  13. Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1984-01-01

    on the binding distribution of [125I]EGF, representing the tissue localization of available EGF receptors, during embryonic rat skin development including hair follicle formation and the adult hair growth cycle. At 16 days embryonic development a relatively low receptor density is seen over all the epidermal...... condensates marking the first stage of hair follicle development. This restricted and temporary loss of EGF receptors above these specialized mesenchymal condensates implies a role for the EGF receptor and possibly EGF or an EGF-like ligand in stimulating the epithelial downgrowth required for hair follicle...... development. In the anagen hair bulb, receptors for EGF are detected over the outer root sheath and the epithelial cell layers at the base of the follicle and show a correlation with the areas of epithelial proliferation in the hair bulb. During the catagen and telogen phases of the hair cycle, receptors...

  14. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    Energy Technology Data Exchange (ETDEWEB)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  15. Phase III randomized study comparing docetaxel plus trastuzumab with vinorelbine plus trastuzumab as first-line therapy of metastatic or locally advanced human epidermal growth factor receptor 2-positive breast cancer: the HERNATA study

    DEFF Research Database (Denmark)

    Andersson, Michael; Lidbrink, Elisabeth; Bjerre, Karsten

    2011-01-01

    To evaluate docetaxel or vinorelbine, both with trastuzumab, as first-line therapy of human epidermal growth factor receptor 2-positive advanced breast cancer.......To evaluate docetaxel or vinorelbine, both with trastuzumab, as first-line therapy of human epidermal growth factor receptor 2-positive advanced breast cancer....

  16. Epidermal growth factor receptor antibody plus recombinant human endostatin in treatment of hepatic metastases after remnant gastric cancer resection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We report a 55-year-old male who developed advanced hepatic metastasis and peritoneal carcinomatosis after resection of remnant gastric cancer resection 3 mo ago. The patient only received epidermal growth factor (EGF) receptor antibody (Cetuximab) plus recombinant human endostatin (Endostar).Anti-tumor activity was assessed by 18F-fluorodeoxyglucose (18F-FDG)positron emission tomography/computer tomography (PET/CT) at baseline and then every 4 wk. The case illustrates that 18FDG-PET/CT could make an early prediction of the response to Cetuximab plus Endostar in such clinical situations. 18FDG-PET/CT is a useful molecular imaging modality to evaluate the biological response advanced hepatic metastasis and peritoneal carcinomatosis to Cetuximab plus Endostar in patients after remnant gastric cancer resection.

  17. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine.

    Science.gov (United States)

    Pool, Martin; de Boer, H Rudolf; Hooge, Marjolijn N Lub-de; van Vugt, Marcel A T M; de Vries, Elisabeth G E

    2017-01-01

    Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.

  18. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Dajani Olav

    2011-10-01

    Full Text Available Abstract Background Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells. Methods Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF. DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting. Results Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC, whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K, TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells. Conclusions While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116

  19. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    International Nuclear Information System (INIS)

    Müller, Kristin M; Tveteraas, Ingun H; Aasrum, Monica; Ødegård, John; Dawood, Mona; Dajani, Olav; Christoffersen, Thoralf; Sandnes, Dagny L

    2011-01-01

    Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells. Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF). DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting. Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK) and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC), whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K), TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR) transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells. While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116 cells. In these cells, neurotensin-induced activation of ERK

  20. PANC-1 pancreatic cancer cell growth inhibited by cucurmosin alone and in combination with an epidermal growth factor receptor-targeted drug.

    Science.gov (United States)

    Wang, Congfei; Yang, Aiqin; Zhang, Baoming; Yin, Qiang; Huang, Heguang; Chen, Minghuang; Xie, Jieming

    2014-03-01

    To investigate the inhibition of PANC-1 pancreatic cancer cell growth by cucurmosin (CUS) and its possible mechanism. We observed the inhibition of PANC-1 cell growth by sulforhodamine B and colony-forming experiments in vitro and established nonobese diabetic/severe combined immunodeficiency mouse subcutaneous tumor models in vivo. We used Western blot to analyze protein levels related to apoptosis and epidermal growth factor receptor (EGFR) signaling pathways after drug intervention, whereas the messenger RNA expression of EGFR was analyzed by quantitative real-time polymerase chain reaction. Sulforhodamine B and colony-forming experiments indicated that CUS inhibited PANC-1 cell proliferation in a dose- and time-dependent manner. A stronger inhibitory effect was observed when CUS was combined with gefitinib. The subcutaneous tumor growth was also inhibited. Western blot showed that all the examined proteins decreased, except for 4E-BP1 and the active fragments of caspase 3 and caspase 9 increased. Epidermal growth factor receptor expression did not change significantly in quantitative real-time polymerase chain reaction. Cucurmosin can strongly inhibit the growth of PANC-1 cells in vitro and in vivo. Cucurmosin can down-regulate EGFR protein expression, but not at the messenger RNA level. Cucurmosin can also inhibit the ras/raf and phosphatidylinositol 3-kinase/Akt downstream signaling pathways and enhance the sensitivity of the EGFR-targeted drug gefitinib.

  1. Three generations of epidermal growth factor receptor tyrosine kinase inhibitors developed to revolutionize the therapy of lung cancer

    Directory of Open Access Journals (Sweden)

    Zhang H

    2016-11-01

    Full Text Available Haijun Zhang Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China Abstract: Lung cancer, ~80%–85% of which is non-small-cell lung cancer (NSCLC, is the leading cause of cancer-related mortality worldwide. Sensitizing mutations in epidermal growth factor receptor (EGFR gene (EGFRm+, such as exon 19 deletions and exon 21 L858R point mutations, are the most important drivers in NSCLC patients. In this respect, small-molecule EGFR tyrosine kinase inhibitors (TKIs have been designed and developed, which launched the era of targeted, personalized and precise medicine for lung cancer. Patients with EGFRm+ could achieve good responses to the treatment with the first-generation EGFR TKIs, such as erlotinib and gefitinib. However, most patients develop acquired drug resistance mostly driven by the T790M mutation occurring within exon 20. Although the second-generation EGFR TKIs, such as afatinib, dacomitinib and neratinib, demonstrated promising activity against T790M in preclinical models, they have failed to overcome resistance in patients due to dose-limiting toxicity. Recently, the third-generation EGFR TKIs have shown to be effective against cell lines and murine models harboring T790M mutations while sparing wild-type EGFR, which represents a promising breakthrough approach in overcoming T790M-mediated resistance in NSCLC patients. This article provides a comprehensive review of the therapy revolution for NSCLC with three generations of EGFR TKIs. Keywords: lung cancer, epidermal growth factor receptor, tyrosine kinase inhibitors, T790M mutation

  2. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer

    NARCIS (Netherlands)

    Wolff, Antonio C.; Hammond, M. Elizabeth H.; Schwartz, Jared N.; Hagerty, Karen L.; Allred, D. Craig; Cote, Richard J.; Dowsett, Mitchell; Fitzgibbons, Patrick L.; Hanna, Wedad M.; Langer, Amy; McShane, Lisa M.; Paik, Soonmyung; Pegram, Mark D.; Perez, Edith A.; Press, Michael F.; Rhodes, Anthony; Sturgeon, Catharine; Taube, Sheila E.; Tubbs, Raymond; Vance, Gail H.; van de Vijver, Marc; Wheeler, Thomas M.; Hayes, Daniel F.

    2007-01-01

    PURPOSE: To develop a guideline to improve the accuracy of human epidermal growth factor receptor 2 (HER2) testing in invasive breast cancer and its utility as a predictive marker. METHODS: The American Society of Clinical Oncology and the College of American Pathologists convened an expert panel,

  3. 111In-cetuximab-F(ab')2 SPECT imaging for quantification of accessible epidermal growth factor receptors (EGFR) in HNSCC xenografts

    NARCIS (Netherlands)

    Dijk, L.K. van; Hoeben, B.A.W.; Stegeman, H.; Kaanders, J.H.A.M.; Franssen, G.M.; Boerman, O.C.; Bussink, J.

    2013-01-01

    BACKGROUND AND PURPOSE: Immunohistochemical epidermal growth factor receptor (EGFR) expression does not correlate with treatment response in head and neck squamous cell carcinomas (HNSCC). Aim was to apply the tracer (111)In-cetuximab-F(ab')2 for EGFR microSPECT imaging and to investigate if tracer

  4. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    OpenAIRE

    Boeckx, Carolien; Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against epidermal growth factor receptor (EGFR) is one of the most promising therapeutics for head and neck squamous cell carcinoma, and EGFR is overexpressed in a wide range of malignancies. An improved understanding of the resistance to EGFR inhibitors may provide new treatment options. This review summarizes some mechanisms and decribes strategies to overcome this resistance.

  5. Higher Expression of Epidermal Growth Factor Receptor Is Associated with Extracellular Matrix Metalloprotease Inducer in Colorectal Adenocarcinoma: Tissue Microarray Analysis of Immunostaining Score with Clinicopathological Parameters

    Directory of Open Access Journals (Sweden)

    Jong-Shiaw Jin

    2006-01-01

    Full Text Available Aim: Extracellular matrix metalloprotease inducer (EMMPRIN expression was demonstrated in several cancers, but its expression profile in colorectal cancers remains unclear. Epidermal growth factor receptor (EGFR was reported to regulate EMMPRIN expression in human epithelial cancers. Our purpose was to determine EMMPRIN expression and its relationship with EGFR in colorectal cancers.

  6. Imaging of Epidermal Growth Factor Receptor Expression in Head and Neck Cancer with SPECT/CT and 111In-Labeled Cetuximab-F(ab')2

    NARCIS (Netherlands)

    Dijk, L.K. van; Hoeben, B.A.W.; Kaanders, J.H.A.M.; Franssen, G.M.; Boerman, O.C.; Bussink, J.

    2013-01-01

    Combined treatment of advanced head and neck squamous cell carcinomas (HNSCC) with radiotherapy and the epidermal growth factor receptor (EGFR) inhibitor cetuximab improves clinical outcome in comparison to radiotherapy alone but is effective only in a few cases. To select those patients most likely

  7. The intestinotrophic peptide, GLP-2, counteracts the gastrointestinal atrophy in mice induced by the epidermal growth factor receptor inhibitor, erlotinib, and cisplatin

    DEFF Research Database (Denmark)

    Rasmussen, Andreas Rosén; Viby, Niels-Erik; Hare, Kristine Juul

    2010-01-01

    Erlotinib, an epidermal-growth-factor receptor inhibitor, belongs to a new generation of targeted cancer therapeutics. Gastrointestinal side-effects are common and have been markedly aggravated when erlotinib is combined with cytostatics. We examined the effects of erlotinib alone and combined wi...

  8. Experimental radioimmunotherapy of a xenografted human glioma using [sup 131]I-labeled monoclonal antibody to epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Nakazawa, Shozo [Nippon Medical School, Tokyo (Japan); Herlyn, D

    1993-09-01

    [sup 131]I-labeled F (ab')[sub 2] fragments of murine monoclonal antibodies (MAb) 425 specific to the epidermal growth factor receptor expressed on human gliomas were used in experimental human malignant glioma immunotherapy. Two injections of 150 [mu]Ci [sup 131]I-labeled 425 F(ab')[sub 2] achieved growth inhibition of U-87MG human malignant glioma xenografts in nude mice. This radiolabeled specific MAb F(ab')[sub 2] was significantly superior to radiolabeled fragments of an anti-hepatitis virus control MAb A5C3 in influencing tumor growth. However, similar treatment of established human malignant glioma xenografts did not inhibit progressive tumor growth significantly. No clear tumor inhibition was produced by unlabeled MAb 425F(ab')[sub 2]. These studies suggest that [sup 131]I-labeled MAbs have a significant antitumor effect where unmodified antibody is ineffective. Multiple doses of antibody may achieve an increase in labeled MAb concentration in tumors. (author).

  9. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing

    OpenAIRE

    Turk, Harmony F.; Monk, Jennifer M.; Fan, Yang-Yi; Callaway, Evelyn S.; Weeks, Brad; Chapkin, Robert S.

    2013-01-01

    Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its m...

  10. Inhibition of iodine-125-labeled human follitropin binding to testicular receptor by epidermal growth factor and synthetic peptides

    International Nuclear Information System (INIS)

    Sluss, P.M.; Krystek, S.R. Jr.; Andersen, T.T.; Melson, B.E.; Huston, J.S.; Ridge, R.; Reichert, L.E. Jr.

    1986-01-01

    Two tetrapeptide sequence homologies between mouse epidermal growth factor precursor (mEGFP) and human follitropin (FSH) were revealed by a computer program that identifies identical residues among polypeptide sequences. The two tetrapeptides, Lys-Thr-Cys-Thr (KTCT) and Thr-Arg-Asp-Leu (TRDL), are present in the hormone-specific beta subunit of FSH from all species studied. These tetrapeptides are not present in the alpha subunit, which is common to all pituitary glycoprotein hormones. Both tetrapeptides are also found in mEGFP, and one tetrapeptide, TRDL, is located within the 53-residue form of mEGF purified from mouse submaxillary glands. Computer-generated hydropathy profiles predicted that both tetrapeptides are located in hydrophilic portions of the FSH beta subunit and that TRDL is in a hydrophilic portion of commercially available mEGF. Therefore, the tetrapeptides might be accessible to receptor binding sites for FSH. We report that mEGF inhibits binding of 125 I-labeled human FSH to receptors in testis by 50% (I50) at a concentration of 1.8 X 10(-5) M. No binding inhibition was observed by GnRH or arginine-vasopressin at 10(-4) M, neither of which contain the tetrapeptide sequences. FSH beta subunit, which contains both tetrapeptides, also inhibited binding (I50 = 9 X 10(-8) M) of 125 I-labeled human FSH to testis receptor. Thus, it appears that FSH beta subunit and mEGF are capable of inhibiting binding of FSH to testicular FSH receptors, presumably through interactions that include the homologous tetrapeptides. This presumption was supported by the observation that the synthetic tetrapeptides (KTCT or TRDL) were also active in inhibiting binding of 125 I-labeled human FSH to testis receptor

  11. The Epidermal Growth Factor Receptor Responsive miR-125a Represses Mesenchymal Morphology in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karen D. Cowden Dahl

    2009-11-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT that occurs during embryonic development is recapitulated during tumor metastasis. Important regulators of this process include growth factors, transcription factors, and adhesion molecules. New evidence suggests that microRNA (miRNA activity contributes to metastatic progression and EMT; however, the mechanisms leading to altered miRNA expression during cancer progression remain poorly understood. Importantly, overexpression of the epidermal growth factor receptor (EGFR in ovarian cancer correlates with poor disease outcome and induces EMT in ovarian cancer cells. We report that EGFR signaling leads to transcriptional repression of the miRNA miR-125a through the ETS family transcription factor PEA3. Overexpression of miR-125a induces conversion of highly invasive ovarian cancer cells from a mesenchymal to an epithelial morphology, suggesting miR-125a is a negative regulator of EMT. We identify AT-rich interactive domain 3B (ARID3B as a target of miR-125a and demonstrate that ARID3B is overexpressed in human ovarian cancer. Repression of miR-125a through growth factor signaling represents a novel mechanism for regulating ovarian cancer invasive behavior.

  12. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland

    2014-01-01

    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  13. Degradation of Epidermal Growth Factor Receptor Mediates Dasatinib-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chin Lin

    2012-06-01

    Full Text Available Epidermal growth factor receptor (EGFR is an important oncoprotein that promotes cell growth and proliferation. Dasatinib, a bcr-abl inhibitor, has been approved clinically for the treatment of chronic myeloid leukemia and demonstrated to be effective against solid tumors in vitro through Src inhibition. Here, we disclose that EGFR degradation mediated dasatinib-induced apoptosis in head and neck squamous cell carcinoma (HNSCC cells. HNSCC cells, including Ca9-22, FaDu, HSC3, SAS, SCC-25, and UMSCC1, were treated with dasatinib, and cell viability, apoptosis, and underlying signal transduction were evaluated. Dasatinib exhibited differential sensitivities against HNSCC cells. Growth inhibition and apoptosis were correlated with its inhibition on Akt, Erk, and Bcl-2, irrespective of Src inhibition. Accordingly, we found that down-regulation of EGFR was a determinant of dasatinib sensitivity. Lysosome inhibitor reversed dasatinib-induced EGFR down-regulation, and c-cbl activity was increased by dasatinib, indicating that dasatinib-induced EGFR down-regulation might be through c-cbl-mediated lysosome degradation. Increased EGFR activation by ligand administration rescued cells from dasatinib-induced apoptosis, whereas inhibition of EGFR enhanced its apoptotic effect. Estrogen receptor α (ERα was demonstrated to play a role in Bcl-2 expression, and dasatinib inhibited ERα at the pretranslational level. ERα was associated with EGFR in dasatinib-treated HNSCC cells. Furthermore, the xenograft model showed that dasatinib inhibited HSC3 tumor growth through in vivo down-regulation of EGFR and ERα. In conclusion, degradation of EGFR is a novel mechanism responsible for dasatinib-induced apoptosis in HNSCC cells.

  14. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    Science.gov (United States)

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  15. Cytogenetic evaluation of human glial tumors: correlation of overexpression of epidermal growth factor receptor (EGFB) with abnormalities of chromosome 7

    International Nuclear Information System (INIS)

    Bell, C.W.

    1987-01-01

    Chromosome banding analysis of human glial tumors were performed using G- and Q-banding techniques in an attempt to establish recurring sites of chromosome change. Results revealed a nonrandom karyotypic profile including aneuploidy and considerable variation in chromosome number (range 40 → 200). All tumors examined displayed numerical abnormalities, with the most common numeric change being a gain of chromosome 7. An attempt was then made to correlate the observed chromosome 7 changes with activation of the cellular proto-oncogene c-erb-B, whose produce is the epidermal growth factor receptor (EGFR). Six human glial tumors were analyzed for 125 I-EGF binding, EGFR gene copy number, EGFR gene rearrangement, mRNA expression, and karyotypic profile. Saturation analysis at 4 0 C revealed significant numbers of EGFR's in all 6 tumors. Southern blotting analysis utilizing cDNA probes for the EGFR failed to demonstrate significant amplification or structural rearrangement of the EFGR gene. The results suggest that overexpression of the EGFR may be related to an alternative mechanism, other than gene amplification and elevated mRNA levels, such as the regulation of receptor biosynthesis and degradation. In summary, findings indicate that alterations of chromosome 7 are the most prevalent chromosomal change in human glial tumors, and that these alterations may lead to overexpression of the protooncogene c-erb-B

  16. Sendai viroplexes for epidermal growth factor receptor-directed delivery of interleukin-12 and salmosin genes to cancer cells.

    Science.gov (United States)

    Kim, Jung Seok; Kim, Min Woo; Jeong, Hwa Yeon; Kang, Seong Jae; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-07-01

    The effective delivery of therapeutic genes to target cells has been a fundamental goal in cancer gene therapy because of its advantages with respect to both safety and transfection efficiency. In the present, study we describe a tumor-directed gene delivery system that demonstrates remarkable efficacy in gene delivery and minimizes the off-target effects of gene transfection. The system consists of a well-verified cationic O,O'-dimyristyl-N-lysyl glutamate (DMKE), Sendai virus fusion (F) protein and hemagglutinin-neuraminidase (HN) protein, referred to as cationic Sendai F/HN virosomes. To achieve tumor-specific recognition, anti-epidermal growth factor (EGF) receptor antibody was coupled to the surface of the virosomes containing interleukin-12 (IL-12) and/or salmosin genes that have potent anti-angiogenetic functions. Among the virosomal formulations, the anti-EGF receptor (EGFR) viroplexes, prepared via complexation of plasmid DNA (pDNA) with cationic DMKE lipid, exhibited more efficient gene transfection to tumor cells over-expressing EGF receptors compared to the neutrally-charged anti-EGFR virosomes encapsulating pDNA. In addition, the anti-EGFR viroplexes with IL-12 and salmosin genes exhibited the most effective therapeutic efficacy in a mouse tumor model. Especially when combined with doxorubicin, transfection of the two genes via the anti-EGFR viroplexes exhibited an enhanced inhibitory effect on tumor growth and metastasis in lungs. The results of the present study suggest that anti-EGFR viroplexes can be utilized as an effective strategy for tumor-directed gene delivery. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    International Nuclear Information System (INIS)

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed

  18. Mechanisms of Inhibition of the Epidermal Growth Factor Receptor: Implications for Novel Anti-Cancer Therapies

    National Research Council Canada - National Science Library

    Klein, Daryl E

    2005-01-01

    .... No secreted or extracellular ErbB receptor inhibitors have been reported in mammals. However, two natural inhibitors of the highly homologous Drosophila EGF receptor are found in Drosophila melanogaster...

  19. Epidermal growth factor receptor and B7-H3 expression in esophageal squamous tissues correlate to patient prognosis

    Directory of Open Access Journals (Sweden)

    Song J

    2016-10-01

    Full Text Available Jianxiang Song,1,2,* Woda Shi,1,2,* Yajun Zhang,2 Mingzhong Sun,3 Xiaodong Liang,3,4 Shiying Zheng1 1Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China; 2Department of Cardiothoracic Surgery, 3Department of Clinical Laboratory, 4Department of Pathology, The Third People’s Hospital of Yancheng City, Yancheng, Jiangsu Province, People’s Republic of China *These authors contributed equally to this work Abstract: Biomarkers that can serve as diagnostic and prognostic indicators of esophageal squamous cell carcinoma (ESCC are urgently needed to help improve patient outcomes. Here, the expression of epidermal growth factor receptor (EGFR and costimulatory molecule B7-H3, both of which have been implicated in tumor onset and progression in certain tumors, was investigated in relation to the clinical characteristics and survival outcomes of patients with ESCC. ESCC tissue samples were analyzed for 100 patients. Tumor and patient characteristics were recorded. Tissues were investigated for EGFR and B7-H3 staining by immunohistochemistry. Patients were followed for up to 96 months to determine overall survival (OS and progression-free survival (PFS. High expression for EGFR (68.0% and B7-H3 (66.0% was observed in the majority of cases. High expression of either EGFR or B7-H3 was correlated with tumor invasion depth and clinical stage (P<0.05. Further, high expression of either EGFR or B7-H3 was correlated with worse survival outcomes. The estimated OS (38.1 months and PFS (13.4 months of patients with high expression of EGFR were lower than those of patients with low expression (69.3 and 68.1 months, P<0.05. The estimated OS (31.1 months and PFS (13.1 months of patients with high expression of B7-H3 were also lower than those of patients with low expression (69.3 and 66.6 months, P<0.05. Indeed, Cox multiple regression showed that OS and PFS were

  20. Increased Epidermal Growth Factor Receptor (EGFR Associated with Hepatocyte Growth Factor (HGF and Symptom Severity in Children with Autism Spectrum Disorders (ASDs

    Directory of Open Access Journals (Sweden)

    Anthony J. Russo

    2014-01-01

    Full Text Available Background One in 88 children in the US is thought to have one of the autism spectrum disorders (ASDs. ASDs are characterized by social impairments and communication problems. Growth factors and their receptors may play a role in the etiology of ASDs. Research has shown that epidermal growth factor receptor (EGFR activation is associated with nerve cell development and repair. This study was designed to measure plasma levels of EGFR in autistic children and correlate these levels with its ligand, epidermal growth factor, other related putative biomarkers such as hepatocyte growth factor (HGF, the ligand for MET (MNNG HOS transforming gene receptor, as well as the symptom severity of 19 different behavioral symptoms. Subjects and Methods Plasma EGFR concentration was measured in 33 autistic children and 34 age- and gender-similar neurotypical controls, using an enzyme-linked immunosorbent assay. Plasma EGFR levels were compared to putative biomarkers known to be associated with EGFR and MET and severity levels of 19 autism-related symptoms. Results We found plasma EGFR levels significantly higher in autistic children, when compared to neurotypical controls. EGFR levels correlated with HGF and high-mobility group protein B1 (HMGB1 levels, but not other tested putative biomarkers, and EGFR levels correlated significantly with severity of expressive language, conversational language, focus/attention, hyperactivity, eye contact, and sound sensitivity deficiencies. Conclusions These results suggest a relationship between increased plasma EGFR levels and designated symptom severity in autistic children. A strong correlation between plasma EGFR and HGF and HMGB1 suggests that increased EGFR levels may be associated with the HGF/Met signaling pathway, as well as inflammation.

  1. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  2. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    Science.gov (United States)

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  3. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    Science.gov (United States)

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  4. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Li, Ping; Veldwijk, Marlon R; Zhang, Qing; Li, Zhao-bin; Xu, Wen-cai; Fu, Shen

    2013-01-01

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF 10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  5. Icotinib combined whole brain radiotherapy for patients with brain metastasis from lung adenocarcinoma harboring epidermal growth factor receptor mutation.

    Science.gov (United States)

    Li, Jin-Rui; Zhang, Ye; Zheng, Jia-Lian

    2016-07-01

    The brain is a metastatic organ that is most prone to lung adenocarcinoma (LAC). However, the prognosis of patients with brain metastasis remains very poor. In this study, we evaluated the efficacy of icotinib plus whole brain radiation therapy (WBRT) for treating patients with brain metastasis from epidermal growth factor receptor (EGFR)-mutated LAC. All patients received standard WBRT administered to the whole brain in 30 Gy in 10 daily fractions. Each patient was also instructed to take 125 mg icotinib thrice per day beginning from the first day of the WBRT. After completing the WBRT, maintenance icotinib was administered until the disease progressed or intolerable adverse effects were observed. Cranial progression-free survival (CPFS) and overall survival (OS) times were the primary endpoints. A total of 43 patients were enrolled in this study. Two patients (4.7%) presented a complete response (CR), whereas 20 patients (46.5%) presented a partial response (PR). The median CPFS and OS times were 11.0 and 15.0 months, respectively. The one-year CPFS rate was 40.0% for the patients harboring EGFR exon 19 deletion and 16.7% for the patients with EGFR exon 21 L858R (P=0.027). The concurrent administration of icotinib and WBRT exhibited favorable effects on the patients with brain metastasis. EGFR exon 19 deletion was predictive of a long CPFS following icotinib plus WBRT.

  6. Herceptin Enhances the Antitumor Effect of Natural Killer Cells on Breast Cancer Cells Expressing Human Epidermal Growth Factor Receptor-2

    Directory of Open Access Journals (Sweden)

    Xiao Tian

    2017-10-01

    Full Text Available Optimal adoptive cell therapy (ACT should contribute to effective cancer treatment. The unique ability of natural killer (NK cells to kill cancer cells independent of major histocompatibility requirement makes them suitable as ACT tools. Herceptin, an antihuman epidermal growth factor receptor-2 (anti-HER2 monoclonal antibody, is used to treat HER2+ breast cancer. However, it has limited effectiveness and possible severe cardiotoxicity. Given that Herceptin may increase the cytotoxicity of lymphocytes, we explored the possible augmentation of NK cell cytotoxicity against HER2+ breast cancer cells by Herceptin. We demonstrated that Herceptin could interact with CD16 on NK cells to expand the cytotoxic NK (specifically, CD56dim cell population. Additionally, Herceptin increased NK cell migration and cytotoxicity against HER2+ breast cancer cells. In a pilot study, Herceptin-treated NK cells shrunk lung nodular metastasis in a woman with HER2+ breast cancer who could not tolerate the cardiotoxic side effects of Herceptin. Our findings support the therapeutic potential of Herceptin-treated NK cells in patients with HER2+ and Herceptin-intolerant breast cancer.

  7. Epidermal Growth Factor Receptor Expression As Prognostic Marker in Patients With Anal Carcinoma Treated With Concurrent Chemoradiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fraunholz, Ingeborg, E-mail: inge.fraunholz@kgu.de [Department of Radiotherapy and Oncology, Goethe University, Frankfurt/Main (Germany); Rödel, Franz; Kohler, Daniela [Department of Radiotherapy and Oncology, Goethe University, Frankfurt/Main (Germany); Diallo-Georgiopoulou, Margarita [Department of Radiotherapy and Oncology, Goethe University, Frankfurt/Main (Germany); Department of Radiation Oncology, Klinikum Offenbach, Offenbach/Main (Germany); Distel, Luitpold [Department of Radiation Oncology, Friedrich Alexander University, Erlangen (Germany); Falk, Stefan [Pathology Associates, Frankfurt/Main (Germany); Rödel, Claus [Department of Radiotherapy and Oncology, Goethe University, Frankfurt/Main (Germany)

    2013-08-01

    Purpose: To investigate the prognostic value of epidermal growth factor receptor (EGFR) expression in pretreatment tumor biopsy specimens of patients with anal cancer treated with concurrent 5-fluorouracil and mitomycin C-based chemoradiation therapy (CRT). Methods and Materials: Immunohistochemical staining for EGFR was performed in pretreatment biopsy specimens of 103 patients with anal carcinoma. EGFR expression was correlated with clinical and histopathologic characteristics and with clinical endpoints, including local failure-free survival (LFFS), colostomy-free survival (CFS), distant metastases-free survival (DMFS), cancer-specific survival (CSS), and overall survival (OS). Results: EGFR staining intensity was absent in 3%, weak in 23%, intermediate in 36% and intense in 38% of the patients. In univariate analysis, the level of EGFR staining was significantly correlated with CSS (absent/weak vs intermediate/intense expression: 5-year CSS, 70% vs 86%, P=.03). As a trend, this was also observed for DMFS (70% vs 86%, P=.06) and LFFS (70% vs 87%, P=.16). In multivariate analysis, N stage, tumor differentiation, and patients’ sex were independent prognostic factors for CSS, whereas EGFR expression only reached borderline significance (hazard ratio 2.75; P=.08). Conclusion: Our results suggest that elevated levels of pretreatment EGFR expression could be correlated with favorable clinical outcome in anal cancer patients treated with CRT. Further studies are warranted to elucidate how EGFR is involved in the response to CRT.

  8. Structural model for the interaction of a designed Ankyrin Repeat Protein with the human epidermal growth factor receptor 2.

    Directory of Open Access Journals (Sweden)

    V Chandana Epa

    Full Text Available Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2. HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84-1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions.

  9. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    Science.gov (United States)

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  10. CD147, CD44, and the Epidermal Growth Factor Receptor (EGFR) Signaling Pathway Cooperate to Regulate Breast Epithelial Cell Invasiveness*

    Science.gov (United States)

    Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.

    2013-01-01

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049

  11. Establishment of H2Mab-119, an Anti-Human Epidermal Growth Factor Receptor 2 Monoclonal Antibody, Against Pancreatic Cancer.

    Science.gov (United States)

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Chang, Yao-Wen; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kaneko, Mika K; Kato, Yukinari

    2017-12-01

    Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer and is associated with poor clinical outcomes. In addition, HER2 expression has been reported in other cancers, such as gastric, colorectal, lung, and pancreatic cancers. An anti-HER2 humanized antibody, trastuzumab, leads to significant survival benefits in patients with HER2-overexpressing breast cancers and gastric cancers. Herein, we established a novel anti-HER2 monoclonal antibody (mAb), H 2 Mab-119 (IgG 1 , kappa), and characterized its efficacy against pancreatic cancers using flow cytometry, Western blot, and immunohistochemical analyses. H 2 Mab-119 reacted with pancreatic cancer cell lines, such as KLM-1, Capan-2, and MIA PaCa-2, but did not react with PANC-1 in flow cytometry analysis. Western blot analysis also revealed a moderate signal for KLM-1 and a weak signal for MIA PaCa-2, although H 2 Mab-119 reacted strongly with LN229/HER2 cells. Finally, immunohistochemical analyses with H 2 Mab-119 revealed sensitive and specific reactions against breast and colon cancers but did not react with pancreatic cancers, indicating that H 2 Mab-119 is useful for detecting HER2 overexpression in pancreatic cancers using flow cytometry and Western blot analyses.

  12. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification

    International Nuclear Information System (INIS)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-01-01

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  13. Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels.

    Science.gov (United States)

    Mikhitarian, Kaidi; Pollen, Maressa; Zhao, Zhiguo; Shyr, Yu; Merchant, Nipun B; Parikh, Alexander; Revetta, Frank; Washington, M Kay; Vnencak-Jones, Cindy; Shi, Chanjuan

    2014-05-01

    Our objective was to explore alteration of the epidermal growth factor receptor (EGFR) signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of EGFR. A lab-developed assay was used to identify mutations in the EGFR pathway genes, including KRAS, BRAF, PIK3CA, PTEN, and AKT1. A total of 52 ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors, with the intestinal type being associated with a younger age at diagnosis (P=0.03) and a better prognosis (PSMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not adversely affect overall survival. In conclusion, EGFR expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared with its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the EGFR pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma.

  14. R497K polymorphism in epidermal growth factor receptor gene is associated with the risk of acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Pan Xin-Min

    2008-07-01

    Full Text Available Abstract Background Previous studies suggested that genetic polymorphisms in the epidermal growth factor receptor (EGFR gene had been implicated in the susceptibility to some tumors and inflammatory diseases. EGFR has been recently implicated in vascular pathophysiological processes associated with excessive remodeling and atherosclerosis. Acute coronary syndrome (ACS is a clinical manifestation of preceding atherosclerosis. Our purpose was to investigate the association of the EGFR polymorphism with the risk of ACS. In this context, we analyzed the HER-1 R497K and EGFR intron 1 (CAn repeat polymorphisms in 191 patients with ACS and 210 age- and sex-matched controls in a Chinese population, using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP strategy and direct sequencing. Results There were significant differences in the genotype and allele distribution of R497K polymorphism of the EGFR gene between cases and controls. The Lys allele had a significantly increased risk of ACS compared with the Arg allele (adjusted OR = 1.49, 95% CI: 1.12–1.98, adjusted P = 0.006. However, no significant relationship between the number of (CAn repeats of EGFR intron 1 (both alleles P = 0.911. Considering these two polymorphisms together, there was no statistically significant difference between the two groups. Conclusion R497K polymorphism of the EGFR gene is significantly associated with the risk of ACS. Our data suggests that R497K polymorphism may be used as a genetic susceptibility marker of the ACS.

  15. EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR AND HUMAN PAPILLOMAVIRUS (HPV L1 CAPSID PROTEIN IN CERVICAL SQUAMOUS INTRAEPITHELIAL LESIONS

    Directory of Open Access Journals (Sweden)

    Balan Raluca

    2010-09-01

    Full Text Available We analyzed the immunohistochemical pattern of epidermal growth factor receptor (EGFR in cervical squamous intraepithelial lesions (SILs in correlation with L1 HPV capsid protein, in order to determine the relationship between EGFR expression and the infection status of human papillomavirus (HPV. The study included 40 cases, 24 LSIL (low grade SIL (CIN1, cervical intraepithelial neoplasia and 16 HSIL (high grade SIL (6 cases of CIN2 and 10 cases of CIN3. The immunoexpression of L1 HPV protein was assessed on conventional cervico-vaginal smears and EGFR was immunohistochemically evaluated on the corresponding cervical biopsies. The HPV L1 capsid protein was expressed in 45.83% of LSIL and 25% of HSIL. EGFR was overexpressed in 62,4% of HSIL (58,4% CIN2 and 41,6% CIN3 and 37,6% LSIL. The immunoexpression of L1 HPV has clinical application in the progression assessment of the cervical precancerous lesions without a correlation to the grade of the cervical SIL. EGFR is expressed by all proliferating squamous epithelial cells, thus corresponding with the grade of SIL. The evaluation of EGFR status, correlated with L1 HPV protein expression, can provide useful data of progression risk of cervical squamous intraepithelial lesions

  16. Aptamer-conjugated gold nanorod for photothermal ablation of epidermal growth factor receptor-overexpressed epithelial cancer

    Science.gov (United States)

    Choi, Jihye; Park, Yeonji; Choi, Eun Bi; Kim, Hyun-Ouk; Kim, Dong Joo; Hong, Yoochan; Ryu, Sung-Ho; Lee, Jung Hwan; Suh, Jin-Suck; Yang, Jaemoon; Huh, Yong-Min; Haam, Seungjoo

    2014-05-01

    Biomarker-specific photothermal nanoparticles that can efficiently sense markers that are overexpressed in distinguished adenocarcinomas have attracted much interest in an aspect of efficacy increase of cancer treatment. We demonstrated a promising prospect of a smart photothermal therapy agent employing anti-epidermal growth factor receptor aptamer (AptEGFR)-conjugated polyethylene glycol (PEG) layted gold nanorods (AptEGFR-PGNRs). The cetyltrimethylammonium bromide bilayer on GNRs was replaced with heterobifunctional PEG (COOH-PEG-SH) not only to serve as a biocompatible stabilizer and but also to conjugate Apt. Subsequently, to direct photothermal therapy agent toward epithelial cancer cells, the carboxylated PEGylated GNRs (PGNRs) were further functionalized with Apt using carbodiimide chemistry. Then, to assess the potential as biomarker-specific photothermal therapy agent of synthesized Apt-PGNRs, the optical properties, biocompatibility, colloidal stability, binding affinity, and epicellial cancer cell killing efficacy in vitro/in vivo under near-infrared laser irradiation were investigated. As a result, Apt-PGNRs exhibit excellent tumor targeting ability and feasibility of effective photothermal ablation cancer therapy.

  17. Epidermal growth factor receptor gene copy number in 101 advanced colorectal cancer patients treated with chemotherapy plus cetuximab

    Directory of Open Access Journals (Sweden)

    Zeuli Massimo

    2010-04-01

    Full Text Available Abstract Background Responsiveness to Cetuximab alone can be mediated by an increase of Epidermal Growth factor Receptor (EGFR Gene Copy Number (GCN. Aim of this study was to assess the role of EGFR-GCN in advanced colorectal cancer (CRC patients receiving chemotherapy plus Cetuximab. Methods One hundred and one advanced CRC patients (43 untreated- and 58 pre-treated were retrospectively studied by fluorescence in situ hybridization (FISH to assess EGFR-GCN and by immunohistochemistry (IHC to determine EGFR expression. Sixty-one out of 101 patients were evaluated also for k-ras status by direct sequencing. Clinical end-points were response rate (RR, progression-free survival (PFS and overall survival (OS. Results Increased EGFR-GCN was found in 60/101 (59% tumor samples. There was no correlation between intensity of EGFR-IHC and EGFR-GCN (p = 0.43. Patients receiving chemotherapy plus Cetuximab as first line treatment had a RR of 70% (30/43 while it was 18% (10/56 in the group with previous lines of therapy (p Conclusion In metastatic CRC patients treated with chemotherapy plus Cetuximab number of chemotherapy lines and increased EGFR-GCN were significantly associated with a better clinical outcome, independent of k-ras status.

  18. Chimeric Monoclonal Antibody Cetuximab Targeting Epidermal Growth Factor-Receptor in Advanced Non-Melanoma Skin Cancer.

    Science.gov (United States)

    Wollina, Uwe; Tchernev, Georgi; Lotti, Torello

    2018-01-25

    Non-melanoma skin cancer (NMSC) is the most common malignancy in humans. Targeted therapy with monoclonal antibody cetuximab is an option in case of advanced tumor or metastasis. We present and update of the use of cetuximab in NMSC searching PUBMED 2011-2017. The monoclonal antibody cetuximab against epidermal growth factor receptor (EGFR) has been investigated for its use in NMSC during the years 2011 to 2017 by a PUBMED research using the following items: "Non-melanoma skin cancer AND cetuximab," "cutaneous squamous cell carcinoma AND cetuximab," and "basal cell carcinoma AND cetuximab", and "cetuximab AND skin toxicity". Available data were analyzed including case reports. Current evidence of cetuximab efficacy in NMSC was mainly obtained in cutaneous SCC and to a lesser extend in BCC. Response rates vary for neoadjuvant, adjuvant, mono- and combined therapy with cetuximab. Management of cutaneous toxicities is necessary. Guidelines are available. Cetuximab is an option for recurrent or advanced NMSC of the skin. It seems to be justified particularly in very high-risk tumors. There is a need for phase III trials.

  19. Evolving landscape of human epidermal growth factor receptor 2-positive breast cancer treatment and the future of biosimilars.

    Science.gov (United States)

    Jackisch, Christian; Lammers, Philip; Jacobs, Ira

    2017-04-01

    Human epidermal growth factor receptor 2-positive (HER2+) breast cancer comprises approximately 15%-20% of all breast cancers and is associated with a poor prognosis. The introduction of anti-HER2 therapy has significantly improved clinical outcomes for patients with HER2+ breast cancer, and multiple HER2-directed agents (ie, trastuzumab, pertuzumab, lapatinib, and ado-trastuzumab emtansine [T-DM1]) are approved for clinical use in various settings. The treatment landscape for patients with HER2+ breast cancer is continuing to evolve. While novel agents and therapeutic strategies are emerging, biologic therapies, particularly trastuzumab, are likely to remain a mainstay of treatment. However, access issues create barriers to the use of biologics, and there is evidence for underuse of trastuzumab worldwide. A biosimilar is a biologic product that is highly similar to a licensed biologic in terms of product safety and effectiveness. Biosimilars of trastuzumab are in development and may soon become available. The introduction of biosimilars may improve access to anti-HER2 therapies by providing additional treatment options and lower-cost alternatives. Because HER2-targeted drugs may be administered for extended periods of time and in combination with other systemic therapies, biosimilars have the potential to result in significant savings for healthcare systems. Herein we review current and emerging treatment options for, and discuss the possible role of biosimilars in, treating patients with HER2+ breast cancer. Copyright © 2017 Authors, Pfizer Inc. Published by Elsevier Ltd.. All rights reserved.

  20. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer.

    Science.gov (United States)

    Liu, Bing; Huang, XinPing; Hu, YunLong; Chen, TingTing; Peng, BoYa; Gao, NingNing; Jin, ZhenChao; Jia, TieLiu; Zhang, Na; Wang, ZhuLin; Jin, GuangYi

    2016-09-06

    Prolonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling. While the α,β-unsaturated-keto structure of EA is similar to that of irreversible TKIs, the mechanism of action of EA when combined with irreversible EGFR TKIs in breast cancer remains unknown. We therefore investigated the combination of irreversible EGFR TKIs and EA. We found that irreversible EGFR TKIs and EA synergistically inhibit breast cancer both in vitro and in vivo. The combination of EGFR TKIs and EA induces necrosis and cell cycle arrest and represses WNT/β-catenin signaling as well as MAPK-ERK1/2 signaling. We conclude that EA synergistically enhances the antitumor effects of irreversible EGFR TKIs in breast cancer.

  1. Potential role for epidermal growth factor receptor inhibitors in combined-modality therapy for non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Choy, Hak

    2004-01-01

    There has been a surge of interest in the translation of discoveries in molecular biology into clinically relevant therapies in the field of hematology/oncology. The epidermal growth factor receptor (EGFR) has been a molecular target of significant interest and investigation, and preclinical and clinical studies support a role for targeted therapy in a variety of cancers, including non-small-cell lung cancer (NSCLC) via compounds that specifically inhibit EGFR. ZD1839, IMC-C225, and OSI-774 are the most clinically developed of these compounds. Interestingly, preclinical studies have demonstrated that EGFR inhibitors may have radiation-sensitizing properties, as well as increased cytotoxic activity in combination with chemotherapeutic agents, suggesting a potential role for EGFR inhibitors as an adjunct to the current combined-modality approach for therapy of Stage III NSCLC. Therefore, clinical trials have been proposed and initiated to address the issue of determining the impact of the addition of EGFR inhibitors to the standard combined-modality regimen (chemotherapy/radiation therapy ± surgery) for Stage III NSCLC. This article reviews preclinical and clinical data supporting the role for EGFR inhibitors alone or in combination with chemotherapy/radiation therapy for locally advanced NSCLC. Also, it will provide an overview of ongoing and proposed clinical studies investigating the potential role for EGFR inhibitors in Stage III NSCLC

  2. An Immunohistochemical Study of Anaplastic Lymphoma Kinase and Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Carcinoma.

    Science.gov (United States)

    Verma, Sonal; Kumar, Madhu; Kumari, Malti; Mehrotra, Raj; Kushwaha, R A S; Goel, Madhumati; Kumar, Ashutosh; Kant, Surya

    2017-07-01

    Lung cancer is one of the leading causes of cancer related death. Targeted treatment for specific markers may help in reducing the cancer related morbidity and mortality. To study expression of Anaplastic Lymphoma Kinase (ALK)and Epidermal Growth Factor Receptor (EGFR) mutations in patients of Non-Small Cell Lung Cancer NSCLC, that are the targets for specific ALK inhibitors and EGFR tyrosine kinase inhibitors. Total 69 cases of histologically diagnosed NSCLC were examined retrospectively for immunohistochemical expression of EGFR and ALK, along with positive control of normal placental tissue and anaplastic large cell lymphoma respectively. Of the NSCLC, Squamous Cell Carcinoma (SCC) accounted for 71.0% and adenocarcinoma was 26.1%. ALK expression was seen in single case of 60-year-old female, non-smoker with adenocarcinoma histology. EGFR expression was seen in both SCC (59.18%) and adenocarcinoma in (77.78%) accounting for 63.77% of all cases. Both ALK and EGFR mutation were mutually exclusive. EGFR expression was seen in 63.77% of cases, highlighting the importance of its use in routine analysis, for targeted therapy and better treatment results. Although, ALK expression was seen in 1.45% of all cases, it is an important biomarker in targeted cancer therapy. Also, the mutually exclusive expression of these two markers need further studies to develop a diagnostic algorithm for NSCLC patients.

  3. Epidermal growth factor receptor (EGFR) mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    International Nuclear Information System (INIS)

    Abedi-Ardekani, Behnoush; Malekzadeh, Reza; Hainaut, Pierre; Dar, Nazir Ahmad; Mir, Mohammad Muzaffar; Zargar, Showkat Ahmad; Lone, M Muqbool; Martel-Planche, Ghyslaine; Villar, Stéphanie; Mounawar, Mounia; Saidi, Farrokh

    2012-01-01

    Esophageal squamous cell carcinoma (ESCC) shows geographic variations in incidence, with high incidences (>50/10 5 person-years) in central Asia, including North Eastern Iran (Golestan) and Northern India (Kashmir). In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR) are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province) and North India (Kashmir Valley) have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. A total of 14 (9.2%) EGFR variations were detected, including seven variations in exons. Among those, four (2.6%) were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65%) of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs

  4. Nonmuscle Myosin II Is Required for Internalization of the Epidermal Growth Factor Receptor and Modulation of Downstream Signaling*

    Science.gov (United States)

    Kim, Jong Hyun; Wang, Aibing; Conti, Mary Anne; Adelstein, Robert S.

    2012-01-01

    Ligand-induced internalization of the epidermal growth factor receptor (EGFR) is an important process for regulating signal transduction, cellular dynamics, and cell-cell communication. Here, we demonstrate that nonmuscle myosin II (NM II) is required for the internalization of the EGFR and to trigger the EGFR-dependent activation of ERK and AKT. The EGFR was identified as a protein that interacts with NM II by co-immunoprecipitation and mass spectrometry analysis. This interaction requires both the regulatory light chain 20 (RLC20) of NM II and the kinase domain of the EGFR. Two paralogs of NM II, NM II-A, and NM II-B can act to internalize the EGFR, depending on the cell type and paralog content of the cell line. Loss (siRNA) or inhibition (25 μm blebbistatin) of NM II attenuates the internalization of the EGFR and impairs EGFR-dependent activation of ERK and AKT. Both internalization of the EGFR and downstream signaling to ERK and AKT can be partially restored in siRNA-treated cells by introduction of wild type (WT) GFP-NM II, but cannot be restored by motor mutant NM II. Taken together, these results suggest that NM II plays a role in the internalization of the EGFR and EGFR-mediated signaling pathways. PMID:22718763

  5. Noise Stress Induces an Epidermal Growth Factor Receptor/Xeroderma Pigmentosum-A Response in the Auditory Nerve.

    Science.gov (United States)

    Guthrie, O'neil W

    2017-03-01

    In response to toxic stressors, cancer cells defend themselves by mobilizing one or more epidermal growth factor receptor (EGFR) cascades that employ xeroderma pigmentosum-A (XPA) to repair damaged genes. Recent experiments discovered that neurons within the auditory nerve exhibit basal levels of EGFR+XPA co-expression. This finding implied that auditory neurons in particular or neurons in general have the capacity to mobilize an EGFR+XPA defense. Therefore, the current study tested the hypothesis that noise stress would alter the expression pattern of EGFR/XPA within the auditory nerve. Design-based stereology was used to quantify the proportion of neurons that expressed EGFR, XPA, and EGFR+XPA with and without noise stress. The results revealed an intricate neuronal response that is suggestive of alterations to both co-expression and individual expression of EGFR and XPA. In both the apical and middle cochlear coils, the noise stress depleted EGFR+XPA expression. Furthermore, there was a reduction in the proportion of neurons that expressed XPA-alone in the middle coils. However, the noise stress caused a significant increase in the proportion of neurons that expressed EGFR-alone in the middle coils. The basal cochlear coils failed to mobilize a significant response to the noise stress. These results suggest that EGFR and XPA might be part of the molecular defense repertoire of the auditory nerve.

  6. Noise Stress Induces an Epidermal Growth Factor Receptor/Xeroderma Pigmentosum–A Response in the Auditory Nerve

    Science.gov (United States)

    Guthrie, O’neil W.

    2017-01-01

    In response to toxic stressors, cancer cells defend themselves by mobilizing one or more epidermal growth factor receptor (EGFR) cascades that employ xeroderma pigmentosum–A (XPA) to repair damaged genes. Recent experiments discovered that neurons within the auditory nerve exhibit basal levels of EGFR+XPA co-expression. This finding implied that auditory neurons in particular or neurons in general have the capacity to mobilize an EGFR+XPA defense. Therefore, the current study tested the hypothesis that noise stress would alter the expression pattern of EGFR/XPA within the auditory nerve. Design-based stereology was used to quantify the proportion of neurons that expressed EGFR, XPA, and EGFR+XPA with and without noise stress. The results revealed an intricate neuronal response that is suggestive of alterations to both co-expression and individual expression of EGFR and XPA. In both the apical and middle cochlear coils, the noise stress depleted EGFR+XPA expression. Furthermore, there was a reduction in the proportion of neurons that expressed XPA-alone in the middle coils. However, the noise stress caused a significant increase in the proportion of neurons that expressed EGFR-alone in the middle coils. The basal cochlear coils failed to mobilize a significant response to the noise stress. These results suggest that EGFR and XPA might be part of the molecular defense repertoire of the auditory nerve. PMID:28056182

  7. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  8. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  9. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer?

    Science.gov (United States)

    Wu, Victoria Shang; Kanaya, Noriko; Lo, Chiao; Mortimer, Joanne; Chen, Shiuan

    2015-09-01

    Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e., estrogen receptor [ER] and progesterone receptor [PgR]) and human epidermal growth factor receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2-) breast cancer and HR-negative (HR-) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Epidermal growth factor receptor overexpression and outcomes in early breast cancer: A systematic review and a meta-analysis.

    Science.gov (United States)

    Gonzalez-Conchas, Galileo A; Rodriguez-Romo, Laura; Hernandez-Barajas, David; Gonzalez-Guerrero, Juan F; Rodriguez-Fernandez, Ivan A; Verdines-Perez, Adrian; Templeton, Arnoud J; Ocana, Alberto; Seruga, Bostjan; Tannock, Ian F; Amir, Eitan; Vera-Badillo, Francisco E

    2018-01-01

    The epidermal growth factor receptor (EGFR) is a member of the ErbB family of membrane tyrosine-kinase receptors. Studies exploring the prognostic role of EGFR-overexpression in early breast cancer have shown variable results, and the true prognostic value of EGFR is unknown. A systematic review of identified publications exploring the association between EGFR-overexpression (as defined from different techniques and cut-offs) and outcomes [disease-free (DFS) and, overall survival (OS)] in women with early breast cancer. The hazard ratios (HR) for DFS and OS were weighted and pooled in a meta-analysis using generic inverse variance and random effects modeling. Fifty-three studies comprising 21,418 women were included. EGFR-overexpression was found in 27% of the patients. Primary analysis included studies reporting HRs from multivariable analyses (10 studies including 4857 patients with HRs for OS and 17 studies comprising 8747 patients with HRs for DFS), EGFR-overexpression was associated with worse OS (HR 1.98, 95% CI: 1.59-2.47, p overexpression on DFS was greater in women with triple negative tumors compared to women with non-triple negative tumors (HR 2.35 versus HR 1.45, respectively; p = .01). Analysis looking at odd ratios for both 5-year and 10-year for DFS and OS showed similar results. EGFR-overexpression appears to be associated with reduced OS and DFS in women with early breast cancer. Patients with triple negative and EGFR-overexpression have poorer OS and DFS than those with triple negative tumors and normal EGFR expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor.

    Directory of Open Access Journals (Sweden)

    Fanny Kortüm

    Full Text Available Endosomal sorting is an essential control mechanism for signaling through the epidermal growth factor receptor (EGFR. We report here that the guanine nucleotide exchange factor αPIX, which modulates the activity of Rho-GTPases, is a potent bimodal regulator of EGFR trafficking. αPIX interacts with the E3 ubiquitin ligase c-Cbl, an enzyme that attaches ubiquitin to EGFR, thereby labelling this tyrosine kinase receptor for lysosomal degradation. We show that EGF stimulation induces αPIX::c-Cbl complex formation. Simultaneously, αPIX and c-Cbl protein levels decrease, which depends on both αPIX binding to c-Cbl and c-Cbl ubiquitin ligase activity. Through interaction αPIX sequesters c-Cbl from EGFR and this results in reduced EGFR ubiquitination and decreased EGFR degradation upon EGF treatment. However, quantitatively more decisive for cellular EGFR distribution than impaired EGFR degradation is a strong stimulating effect of αPIX on EGFR recycling to the cell surface. This function depends on the GIT binding domain of αPIX but not on interaction with c-Cbl or αPIX exchange activity. In summary, our data demonstrate a previously unappreciated function of αPIX as a strong promoter of EGFR recycling. We suggest that the novel recycling regulator αPIX and the degradation factor c-Cbl closely cooperate in the regulation of EGFR trafficking: uncomplexed αPIX and c-Cbl mediate a positive and a negative feedback on EGFR signaling, respectively; αPIX::c-Cbl complex formation, however, results in mutual inhibition, which may reflect a stable condition in the homeostasis of EGF-induced signal flow.

  12. Combined inhibition of EMMPRIN and epidermal growth factor receptor prevents the growth and migration of head and neck squamous cell carcinoma cells.

    Science.gov (United States)

    Suzuki, Shinsuke; Ishikawa, Kazuo

    2014-03-01

    It has been reported that the epidermal growth factor receptor (EGFR) expression is associated with the extracellular matrix metalloproteinase inducer (EMMPRIN) in some solid tumors; however, the relationship of EMMPRIN with EGFR in head and neck cancers is not fully understood. To determine the relationship between EMMPRIN and EGFR in head and neck squamous cell carcinoma (HNSCC), HNSCC cells were stimulated with epidermal growth factor (EGF), a ligand of EGFR. EMMPRIN expression in HNSCC cells was upregulated by EGF. In addition, EGF stimulation induced HNSCC cell invasion and MMP-9 expression. This increase in invasion and MMP-9 expression was abrogated by downmodulation of EMMPRIN. Furthermore, to determine the effects of combined EMMPRIN and EGFR targeting in HNSCC, HNSCC cells were treated with an EMMPRIN function-blocking antibody and the EGFR inhibitor AG1478. This combined treatment resulted in greater inhibition of HNSCC cell proliferation and migration compared with the individual agents alone. These results suggest that EMMPRIN mediates EGFR-induced tumorigenicity and that combined targeting of EMMPRIN and EGFR may be an efficacious treatment approach.

  13. Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation

    International Nuclear Information System (INIS)

    Diermeier, Simone; Horvath, Gabor; Knuechel-Clarke, Ruth; Hofstaedter, Ferdinand; Szoellosi, Janos; Brockhoff, Gero

    2005-01-01

    Background: Growth factors and Herceptin specifically and differentially modulate cell proliferation of tumor cells. However, the mechanism of action on erbB-receptor level is incompletely understood. We evaluated Herceptin's capacity to modulate erbB-receptor activation and interaction on the cell surface level and thereby potentially impair cell proliferation of HER2/neu (c-erbB2) overexpressing breast cancer cells, both in the presence and absence of relevant growth factors. Methods: BT474 and SK-BR-3 breast cancer cell lines were treated with Epidermal Growth Factor (EGF), Heregulin, and with Herceptin in different combinations. Kinetics of cell proliferation were evaluated flow cytometrically based on BrdU-labeling. Fluorescence Resonance Energy Transfer, ELISAs and phosphorylation site specific Western Blotting was performed to investigate erbB-receptor interaction and activation. Results: EGF induced EGFR/EGFR and EGFR/c-erbB2 interactions correlate with stimulation of cell proliferation in BT474 cells. Both homo- and heterodimerization are considerably less pronounced in SK-BR-3 cells and heterointeraction is additionally reduced by EGF treatment, causing inhibition of cell proliferation. Heregulin stimulates cell proliferation extensively in both cell lines. Herceptin drives BT474 cells more efficiently into quiescence than it does with SK-BR-3 cells and thereby blocks cell cycle progress. In SK-BR-3 Herceptin treatment causes c-erbB2 phosphorylation of Y877 and Y1248, EGF induces Y877 and Y1112 phosphorylation. The Y1112 phosphorylation site, activated by EGF in SK-BR-3 cell, is bypassed in BT474. In addition the inhibitory capacity of Herceptin on BT474 and SK-BR-3 cell proliferation depends on the presence and absence of growth factors to a various extent. Conclusion: The growth inhibitory effect of Herceptin on c-erbB2 overexpressing breast cancer cells is considerably modulated by EGFR coexpression and consequently EGFR/c-erbB2 homo- and

  14. The combined status of estrogen receptor (ER) and epidermal growth factor (EGFR) predicts a poor outcome in primary breast cancer

    International Nuclear Information System (INIS)

    Artagaveytia, N.; Román, E.; Alonso, I.; Sabini, G.; Garófalo, E.

    2004-01-01

    The aim of this study was to investigate retrospectively the presence of ER, PR, Db Receptor and Epidermal Growth Factor (EGFR) in 678 patients carrying primary breast cancer, its correlation with clinic pathological parameters and evolution. the determination of ER, PR and EGFR was performed by Scatchard biochemical technique, based cutoff 10 fmoles / mg of protein. The RE-b detection performed by RT-PCR from total RNA, using the GAPDH gene as a control. Statistical analyzes were applied the Chi2 tests, Spearman and Kruskal-Wallis. The disease-free survival (SVLE) and survival overall (SVG) were analyzed using Kaplan Meier / Log Rank Test and analysis Cox regression. Median follow-up was 28 months (range 1-218 months). sixty Four percent of the patients were post-menopausal and 83% occurred in stages Early disease (I-II, pTNM UICC). The receptor positivity was 68%, 47%, 23% and 58% for ER, PR, EGFR and ER-b-mRNA, respectively. A correlation was found positive between the content of ER and PR (p = 1.10-5) and negative between these receptors and EGFR (n = 359, p = 0.014 and p = 0.018, respectively). We observed a trend to increased expression ER-b when ER, PR or both receptors were negative comparable to that observed with EGFR. Also, a gradual decrease in the content of ER and PR was observed with the progression to more advanced stages (p = 0.04 and p = 0.03). Of a total of 501 evaluable patients 23% relapsed and 12% died. ER positivity was associated with a greater SVLE and SVG 24 and 60 months follow up (p = 0.06). A major impact did the RE content, levels less than 45 fmol / mg protein were associated with disease recurrence (p = 0.03 and p = 0.006 for 24 and 60 months). Although less significant EGFR status influenced SVLE and SVG. In particular, the presence of EGFR in ER + group affected the evolution tripling relapses and deaths (p = 0.058). The presence of ER-b also had a negative impact on this patient group. In Cox regression analysis, N + and T> 2cm

  15. Development of an affinity-matured humanized anti-epidermal growth factor receptor antibody for cancer immunotherapy.

    Science.gov (United States)

    Nakanishi, Takeshi; Maru, Takamitsu; Tahara, Kazuhiro; Sanada, Hideaki; Umetsu, Mitsuo; Asano, Ryutaro; Kumagai, Izumi

    2013-02-01

    We showed previously that humanization of 528, a murine anti-epidermal growth factor receptor (EGFR) antibody, causes reduced affinity for its target. Here, to improve the affinity of the humanized antibody for use in cancer immunotherapy, we constructed phage display libraries focused on the complementarity-determining regions (CDRs) of the antibody and carried out affinity selection. Two-step selections using libraries constructed in a stepwise manner enabled a 32-fold affinity enhancement of humanized 528 (h528). Thermodynamic analysis of the interactions between the variable domain fragment of h528 (h528Fv) mutants and the soluble extracellular domain of EGFR indicated that the h528Fv mutants obtained from the first selection showed a large increase in negative enthalpy change due to binding, resulting in affinity enhancement. Furthermore, mutants from the second selection showed a decrease in entropy loss, which led to further affinity maturation. These results suggest that a single mutation in the heavy chain variable domain (i.e. Tyr(52) to Trp) enthalpically contributed for overcoming the energetic barrier to the antigen-antibody interaction, which was a major hurdle for the in vitro affinity maturation of h528. We reported previously that the humanized bispecific diabody hEx3 Db, which targets EGFR and CD3, shows strong anti-tumor activity. hEx3 Db mutants, in which the variable domains of h528 were replaced with those of the affinity-enhanced mutants, were prepared and characterized. In a growth inhibition assay of tumor cells, the hEx3 Db mutants showed stronger anti-tumor activity than that of hEx3 Db, suggesting that affinity enhancement of h528Fv enhances the anti-tumor activity of the bispecific diabody.

  16. Baseline and Trend of Lymphocyte-to-Monocyte Ratio as Prognostic Factors in Epidermal Growth Factor Receptor Mutant Non-Small Cell Lung Cancer Patients Treated with First-Line Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors.

    Directory of Open Access Journals (Sweden)

    Yu-Mu Chen

    Full Text Available Patients with early-stage lung cancer who have a high baseline lymphocyte-to-monocyte ratio (LMR have a favorable prognosis. However, the prognostic significance of LMR in patients with advanced-stage EGFR-mutant non-small cell lung cancer (NSCLC receiving first-line epidermal growth factor receptor (EGFR-tyrosine kinase inhibitors (TKIs has not been established. We conducted a retrospective analysis to investigate the influence of LMR on clinical outcomes including progression-free survival (PFS and overall survival (OS in EGFR-mutant patients with NSCLC.Of 1310 lung cancer patients diagnosed between January 2011 and October 2013, 253 patients receiving first-line EGFR-TKIs for EGFR-mutant NSCLC were included. The cut-off values for baseline and the 1-month-to-baseline ratio of LMR (MBR, determined by using receiver operating characteristic curves, were 3.29 and 0.63, respectively. Patients were divided into 3 prognostic groups: high LMR and MBR, high LMR or MBR, and low LMR and MBR.The mean patient age was 65.2 years, and 41% were men. The median PFS and OS were 10.3 and 22.0 months, respectively. The PFS in patients with high LMR and MBR, high LMR or MBR, and low LMR and MBR were 15.4, 7.1, and 2.0 months, respectively (p < 0.001, whereas the OS were 32.6, 13.7, and 5.1 months, respectively (p < 0.001.A combination of baseline and trend of LMR can be used to identify patients with a high mortality risk in EGFR-mutant NSCLC patients receiving first-line EGFR-TKIs.

  17. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  18. 15-Deoxy-Δ12,14-prostaglandin J2 and thiazolidinediones transactivate epidermal growth factor and platelet-derived growth factor receptors in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Ichiki, Toshihiro; Tokunou, Tomotake; Fukuyama, Kae; Iino, Naoko; Masuda, Satoko; Takeshita, Akira

    2004-01-01

    Proliferation of vascular smooth muscle cells (VSMCs) is induced by various mitogens through activation of extracellular signal-regulated protein kinase (ERK) pathway. We recently reported that peroxisome proliferator-activated receptor (PPAR)γ activators such as 15-deoxy-Δ 12,14 -prostaglandin J2 (15-d-PGJ2) and thiazolidinediones (TZDs) activated MEK/ERK pathway through phosphatidylinositol 3-kinase (PI3-K) and induced proliferation of VSMCs. However, the precise mechanisms of PPARγ activators-induced activation of PI3-K/ERK pathway have not been determined. We examined whether transactivation of growth factor receptor is involved in this process. Stimulation of VSMCs with 15-d-PGJ2 or TZDs for 15 min induced phosphorylation of ERK1/2 and Akt. 15-d-PGJ2- or TZDs-induced phosphorylation of ERK1/2 and Akt was inhibited by AG1478, an inhibitor of epidermal growth factor receptor (EGF-R) as well as AG1295, an inhibitor of platelet derived growth factor receptor (PDGF-R). 15-d-PGJ2-induced phosphorylation of both EGF-R and PDGF-R. GM6001, a matrix metalloproteinase inhibitor, and PP2, a Src family protein kinase inhibitor, suppressed 15-d-PGJ2- and TZDs-induced phosphorylation of EGF-R and PDGFβ-R as well as activation of ERK1/2 and Akt. PDGFβ-R was co-immunoprecipitated with EGF-R, regardless of the presence or absence of 15-d-PGJ2. These data suggest that 15-d-PGJ2 and TZDs activate PI3-K/ERK pathway through Src family kinase- and matrix metalloproteinase-dependent transactivation of EGF-R and PDGF-R. Both receptors seemed to associate constitutively. This novel signaling mechanisms may contribute to diverse biological functions of PPARγ activators

  19. Recycling of epidermal growth factor-receptor complexes in A431 cells: Identification of dual pathways

    International Nuclear Information System (INIS)

    Sorkin, A.; Krolenko, S.; Kudrjavtceva, N.; Lazebnik, J.; Teslenko, L.; Soderquist, A.M.; Nikolsky, N.

    1991-01-01

    The intracellular sorting of EGF-receptor complexes (EGF-RC) has been studied in human epidermoid carcinoma A431 cells. Recycling of EGF was found to occur rapidly after internalization at 37 degrees C. The initial rate of EGF recycling was reduced at 18 degrees C. A significant pool of internalized EGF was incapable of recycling at 18 degrees C but began to recycle when cells were warmed to 37 degrees C. The relative rate of EGF outflow at 37 degrees C from cells exposed to an 18 degrees C temperature block was slower (t1/2 approximately 20 min) than the rate from cells not exposed to a temperature block (t1/2 approximately 5-7 min). These data suggest that there might be both short- and long-time cycles of EGF recycling in A431 cells. Examination of the intracellular EGF-RC dissociation and dynamics of short- and long-time recycling indicated that EGF recycled as EGF-RC. Moreover, EGF receptors that were covalently labeled with a photoactivatable derivative of 125 I-EGF recycled via the long-time pathway at a rate similar to that of 125 I-EGF. Since EGF-RC degradation was also blocked at 18 degrees C, we propose that sorting to the lysosomal and long-time recycling pathway may occur after a highly temperature-sensitive step, presumably in the late endosomes

  20. Impact of palbociclib combinations on treatment of advanced estrogen receptor-positive/human epidermal growth factor 2-negative breast cancer

    Directory of Open Access Journals (Sweden)

    Boér K

    2016-10-01

    Full Text Available Katalin Boér Department of Medical Oncology, Szent Margit Hospital, Budapest, Hungary Abstract: Breast cancer is a heterogeneous disease with multiple subgroups based on clinical and molecular characteristics. For the largest subgroup of breast cancers, hormone receptor-positive/human epidermal growth factor 2 (HER2-negative tumors, hormone treatment is the mainstay of therapy and is likely to result in significant improvement in disease outcomes. However, some of these cancers demonstrate de novo or acquired resistance to endocrine therapy. Despite intensive research to develop new strategies to enhance the efficacy of currently available treatment options for hormone receptor-positive breast cancer, progress has been slow, and there were few advances for a period of 10 years. In 2012, a new molecularly targeted therapeutic strategy, inhibition of mammalian target of rapamycin with everolimus, was introduced into clinical practice. Everolimus, in combination with a steroidal aromatase inhibitor, exemestane, resulted in an increase in progression-free survival, but not overall survival in patients with estrogen receptor (ER+ve advanced disease who had progressed on hormone therapy. In 2015, the first cyclin-dependent kinases 4/6 (CDK4/6 inhibitor, palbociclib, received accelerated US Food and Drug Administration approval for use in combination with letrozole for the treatment of postmenopausal ER+ve/HER2-ve advanced breast cancer as initial, endocrine-based therapy. The addition of palbociclib to endocrine therapy resulted in longer progression-free survival than letrozole alone. One year later, palbociclib received a new indication, use in combination with fulvestrant, in both premenopausal and postmenopausal females with advanced breast cancer of the same subtype with disease progression following endocrine therapy. Adding palbociclib to fulvestrant resulted in a significantly increased median progression-free survival compared to fulvestrant

  1. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  2. Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition

    International Nuclear Information System (INIS)

    Tal, Tamara L.; Bromberg, Philip A.; Kim, Yumee; Samet, James M.

    2008-01-01

    Exposure to particulate matter (PM) is associated with increased cardiopulmonary morbidity and mortality. Diesel exhaust particles (DEP) are a major component of ambient PM and may contribute to PM-induced pulmonary inflammation. Proinflammatory signaling is mediated by phosphorylation-dependent signaling pathways whose activation is opposed by the activity of protein tyrosine phosphatases (PTPases) which thereby function to maintain signaling quiescence. PTPases contain an invariant catalytic cysteine that is susceptible to electrophilic attack. DEP contain electrophilic oxy-organic compounds that may contribute to the oxidant effects of PM. Therefore, we hypothesized that exposure to DEP impairs PTPase activity allowing for unopposed basal kinase activity. Here we report that exposure to 30 μg/cm 2 DEP for 4 h induces differential activation of signaling in primary cultures of human airway epithelial cells (HAEC), a primary target cell in PM inhalation. In-gel kinase activity assay of HAEC exposed to DEPs of low (L-DEP), intermediate (I-DEP) or high (H-DEP) organic content showed differential activation of intracellular kinases. Exposure to these DEP also induced varying levels of phosphorylation of the receptor tyrosine kinase EGFR in a manner that requires EGFR kinase activity but does not involve receptor dimerization. We demonstrate that treatment with DEP results in an impairment of total and EGFR-directed PTPase activity in HAEC with a potency that is independent of the organic content of these particles. These data show that DEP-induced EGFR phosphorylation in HAEC is the result of a loss of PTPase activities which normally function to dephosphorylate EGFR in opposition to baseline EGFR kinase activity

  3. Transcriptional changes associated with resistance to inhibitors of epidermal growth factor receptor revealed using metaanalysis

    International Nuclear Information System (INIS)

    Younis, Sidra; Javed, Qamar; Blumenberg, Miroslav

    2015-01-01

    EGFR is important in maintaining metabolic homeostasis in healthy cells, but in tumors it activates downstream signaling pathways, causing proliferation, angiogenesis, invasion and metastasis. Consequently, EGFR is targeted in cancers using reversible, irreversible or antibody inhibitors. Unfortunately, tumors develop inhibitor resistance by mutations or overexpressing EGFR, or its ligand, or activating secondary, EGFR-independent pathways. Here we present a global metaanalysis comparing transcriptional profiles from matched pairs of EGFR inhibitor-sensitive vs. -resistant cell lines, using 15 datasets comprising 274 microarrays. We also analyzed separately pairs of cell lines derived using reversible, irreversible or antibody inhibitors. The metaanalysis identifies commonalities in cell lines resistant to EGFR inhibitors: in sensitive cell lines, the ontological categories involving the ErbB receptors pathways, cell adhesion and lipid metabolism are overexpressed; however, resistance to EGFR inhibitors is associated with overexpression of genes for ErbB receptors-independent oncogenic pathways, regulation of cell motility, energy metabolism, immunity especially inflammatory cytokines biosynthesis, cell cycle and responses to exogenous and endogenous stimuli. Specifically in Gefitinib-resistant cell lines, the immunity-associated genes are overexpressed, whereas in Erlotinib-resistant ones so are the mitochondrial genes and processes. Unexpectedly, lines selected using EGFR-targeting antibodies overexpress different gene ontologies from ones selected using kinase inhibitors. Specifically, they have reduced expression of genes for proliferation, chemotaxis, immunity and angiogenesis. This metaanalysis suggests that ‘combination therapies’ can improve cancer treatment outcomes. Potentially, use of mitochondrial blockers with Erlotinib, immunity blockers with Gefitinib, tyrosine kinase inhibitors with antibody inhibitors, may have better chance of avoiding

  4. A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans.

    Science.gov (United States)

    Bongers, Gerold; Muniz, Luciana R; Pacer, Michelle E; Iuga, Alina C; Thirunarayanan, Nanthakumar; Slinger, Erik; Smit, Martine J; Reddy, E Premkumar; Mayer, Lloyd; Furtado, Glaucia C; Harpaz, Noam; Lira, Sergio A

    2012-09-01

    Epithelial cancers can be initiated by activating mutations in components of the mitogen-activated protein kinase signaling pathway such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), or epidermal growth factor receptor (EGFR). Human intestinal serrated polyps are a heterogeneous group of benign lesions, but some progress to colorectal cancer. Tumors that arise from these polyps frequently contain activating mutations in BRAF or KRAS, but little is known about the role of EGFR activation in their development. Polyp samples were obtained from adults during screening colonoscopies at Mount Sinai Hospital in New York. We measured levels of EGFR protein and phosphorylation in human serrated polyps by immunohistochemical and immunoblot analyses. We generated transgenic mice that express the ligand for EGFR, Heparin-binding EGF-like growth factor (HB-EGF), in the intestine. EGFR and the extracellular-regulated kinases (ERK)1/2 were phosphorylated in serrated areas of human hyperplastic polyps (HPPs), sessile serrated adenomas, and traditional serrated adenomas. EGFR and ERK1/2 were phosphorylated in the absence of KRAS or BRAF activating mutations in a subset of HPP. Transgenic expression of the EGFR ligand HB-EGF in the intestines of mice promoted development of small cecal serrated polyps. Mice that expressed a combination of HB-EGF and US28 (a constitutively active, G-protein-coupled receptor that increases processing of HB-EGF from the membrane) rapidly developed large cecal serrated polyps. These polyps were similar to HPPs and had increased phosphorylation of EGFR and ERK1/2 within the serrated epithelium. Administration of pharmacologic inhibitors of EGFR or MAPK to these transgenic mice significantly reduced polyp development. Activation of EGFR signaling in the intestine of mice promotes development of serrated polyps. EGFR signaling also is activated in human HPPs, sessile serrated adenomas

  5. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation

    International Nuclear Information System (INIS)

    Moerkens, Marja; Zhang, Yinghui; Wester, Lynn; Water, Bob van de; Meerman, John HN

    2014-01-01

    Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER) α -positive breast cancer patients. Although the mechanisms behind tamoxifen resistance are still not completely understood, clinical data suggests that increased expression of receptor tyrosine kinases is involved. Here, we studied the estrogen and anti-estrogen sensitivity of human breast cancer MCF7 cells that have a moderate, retroviral-mediated, ectopic expression of epidermal growth factor receptor (MCF7-EGFR). Proliferation of MCF7-EGFR and parental cells was induced by 17β-estradiol (E2), epidermal growth factor (EGF) or a combination of these. Inhibition of proliferation under these conditions was investigated with 4-hydroxy-tamoxifen (TAM) or fulvestrant at 10 -12 to 10 -6 M. Cells were lysed at different time points to determine the phosphorylation status of EGFR, MAPK 1/3 , AKT and the expression of ERα. Knockdown of target genes was established using smartpool siRNAs. Transcriptomics analysis was done 6 hr after stimulation with growth factors using Affymetrix HG-U133 PM array plates. While proliferation of parental MCF7 cells could only be induced by E2, proliferation of MCF7-EGFR cells could be induced by either E2 or EGF. Treatment with TAM or fulvestrant did significantly inhibit proliferation of MCF7-EGFR cells stimulated with E2 alone. EGF treatment of E2/TAM treated cells led to a marked cell proliferation thereby overruling the anti-estrogen-mediated inhibition of cell proliferation. Under these conditions, TAM however did still inhibit ERα- mediated transcription. While siRNA-mediated knock-down of EGFR inhibited the EGF- driven proliferation under TAM/E2/EGF condition, knock down of ERα did not. The TAM resistant cell proliferation mediated by the conditional EGFR-signaling may be dependent on the PI3K/Akt pathway but not the MEK/MAPK pathway, since a MEK inhibitor (U0126), did not block the proliferation. Transcriptomic analysis under the various E2/TAM

  6. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody.

    Science.gov (United States)

    van Driel, P B A A; van der Vorst, J R; Verbeek, F P R; Oliveira, S; Snoeks, T J A; Keereweer, S; Chan, B; Boonstra, M C; Frangioni, J V; van Bergen en Henegouwen, P M P; Vahrmeijer, A L; Lowik, C W G M

    2014-06-01

    Intraoperative near-infrared (NIR) fluorescence imaging is a technology with high potential to provide the surgeon with real-time visualization of tumors during surgery. Our study explores the feasibility for clinical translation of an epidermal growth factor receptor (EGFR)-targeting nanobody for intraoperative imaging and resection of orthotopic tongue tumors and cervical lymph node metastases. The anti-EGFR nanobody 7D12 and the negative control nanobody R2 were conjugated to the NIR fluorophore IRDye800CW (7D12-800CW and R2-800CW). Orthotopic tongue tumors were induced in nude mice using the OSC-19-luc2-cGFP cell line. Tumor-bearing mice were injected with 25 µg 7D12-800CW, R2-800CW or 11 µg 800CW. Subsequently, other mice were injected with 50 or 75 µg of 7D12-800CW. The FLARE imaging system and the IVIS spectrum were used to identify, delineate and resect the primary tumor and cervical lymph node metastases. All tumors could be clearly identified using 7D12-800CW. A significantly higher tumor-to-background ratio (TBR) was observed in mice injected with 7D12-800CW compared to mice injected with R2-800CW and 800CW. The highest average TBR (2.00 ± 0.34 and 2.72 ± 0.17 for FLARE and IVIS spectrum, respectively) was observed 24 hr after administration of the EGFR-specific nanobody. After injection of 75 µg 7D12-800CW cervical lymph node metastases could be clearly detected. Orthotopic tongue tumors and cervical lymph node metastases in a mouse model were clearly identified intraoperatively using a recently developed fluorescent EGFR-targeting nanobody. Translation of this approach to the clinic would potentially improve the rate of radical surgical resections. © 2013 UICC.

  7. Correlation between {sup 18}F Fluorodeoxyglucose uptake and epidermal growth factor receptor mutations in advanced lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Jung; Cho, Byoung Chul; Jeong, Youg Hyu; Seo, Hyo Jung; Kim, Hyun Jeong; Cho, Arthur; Lee, Jae Hoon; Yun, Mi Jin; Jeon, Tae Joo; Lee, Jong Doo; Kang, Won Jun [Yonsei Univ., Health System, Seoul (Korea, Republic of)

    2012-09-15

    Mutations in the epidermal growth factor receptor (EGFR)gene have been identified as potential targets for the treatment and prognostic factors for non small cell lung cancer (NSCLC). We assessed the correlation between fluorodeoxyglucose (FDG) uptake and EGFR mutations, as well as their prognostic implications. A total of 163 patients with pathologically confirmed NSCLC were enrolled (99 males and 64 females; median age, 60 years). All patients underwent FDG positron emission tomography before treatment, and genetic studies of EGFR mutations were performed. The maximum standardized uptake value (SUVmax)of the primary lung cancer was measured and normalized with regard to liver uptake. The SUVmax between the wild type and EGFR mutant groups was compared. Survival was evaluated according to SUVmax and EGFR mutation status. EGFR mutations were found in 57 patients (60.8%). The SUVmax tended to be higher in wild type than mutant tumors, but was not significantly different (11.1{+-}5.7 vs. 9.8{+-}4.4, P=0.103). The SUVmax was significantly lower in patients with an exon 19 mutation than in those with either an exon 21 mutation or wild type (P=0.003 and 0.009, respectively). The EGFR mutation showed prolonged overall survival (OS) compared to wild type tumors (P=0.004). There was no significant difference in survival according to SUVmax. Both OS and progression free survival of patients with a mutation in exon 19 were significant longer than in patients with wild type tumors. In patients with NSCLC, a mutation in exon 19 was associated with a lower SUVmax and is a reliable predictor for good survival.

  8. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR mutation

    Directory of Open Access Journals (Sweden)

    Bulent Erdogan

    2016-11-01

    Full Text Available Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01, however, smoking status had no impact on the response rate (p = 0.1. The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01. The overall survival (OS of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively. Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49 but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01.The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03. Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively. Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  9. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    Science.gov (United States)

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  10. Chronic activation of wild-type epidermal growth factor receptor and loss of Cdkn2a cause mouse glioblastoma formation.

    Science.gov (United States)

    Acquaviva, Jaime; Jun, Hyun Jung; Lessard, Julie; Ruiz, Rolando; Zhu, Haihao; Donovan, Melissa; Woolfenden, Steve; Boskovitz, Abraham; Raval, Ami; Bronson, Roderick T; Pfannl, Rolf; Whittaker, Charles A; Housman, David E; Charest, Al

    2011-12-01

    Glioblastoma multiforme (GBM) is characterized by overexpression of epidermal growth factor receptor (EGFR) and loss of the tumor suppressors Ink4a/Arf. Efforts at modeling GBM using wild-type EGFR in mice have proven unsuccessful. Here, we present a unique mouse model of wild-type EGFR-driven gliomagenesis. We used a combination of somatic conditional overexpression and ligand-mediated chronic activation of EGFR in cooperation with Ink4a/Arf loss in the central nervous system of adult mice to generate tumors with the histopathologic and molecular characteristics of human GBMs. Sustained, ligand-mediated activation of EGFR was necessary for gliomagenesis, functionally substantiating the clinical observation that EGFR-positive GBMs from patients express EGFR ligands. To gain a better understanding of the clinically disappointing EGFR-targeted therapies for GBM, we investigated the molecular responses to EGFR tyrosine kinase inhibitor (TKI) treatment in this model. Gefitinib treatment of primary GBM cells resulted in a robust apoptotic response, partially conveyed by mitogen-activated protein kinase (MAPK) signaling attenuation and accompanied by BIM(EL) expression. In human GBMs, loss-of-function mutations in the tumor suppressor PTEN are a common occurrence. Elimination of PTEN expression in GBM cells posttumor formation did not confer resistance to TKI treatment, showing that PTEN status in our model is not predictive. Together, these findings offer important mechanistic insights into the genetic determinants of EGFR gliomagenesis and sensitivity to TKIs and provide a robust discovery platform to better understand the molecular events that are associated with predictive markers of TKI therapy.

  11. Suppression of the epidermal growth factor receptor inhibits epithelial-mesenchymal transition in human pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Chang, Zhi-Gang; Wei, Jun-Min; Qin, Chang-Fu; Hao, Kun; Tian, Xiao-Dong; Xie, Kun; Xie, Xue-Hai; Yang, Yin-Mo

    2012-05-01

    Aberrant expression of epidermal growth factor receptor (EGFR) has been detected in pancreatic cancer; however, the mechanisms of EGFR in inducing pancreatic cancer development have not been adequately elucidated. The objective of this study was to determine the role of EGFR in mediating epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. Pancreatic cancer cell line PANC-1 was transfected with small interfering RNA of EGFR by use of a lentiviral expression vector to establish an EGFR-knockdown cell line (si-PANC-1). PANC-1 cells transfected with lentiviral vector expressing negative control sequence were used as negative control (NC-PANC-1). Scratch assay and transwell study were used to analyze cell migration and invasion. Real-time PCR and Western blotting were used to detect the expression of EMT markers E-cadherin, N-cadherin, vimentin, and fibronectin and transcription factors snail, slug, twist1, and sip1 in PANC-1, NC-PANC-1, and si-PANC-1 cells. Immunofluorescent staining with these antibodies and confocal microscopy were used to observe their cellular location and morphologic changes. After RNA interference of EGFR, the migration and invasion ability of si-PANC-1 cells decreased significantly. The expression of epithelial phenotype marker E-cadherin increased and the expression of mesenchymal phenotype markers N-cadherin, vimentin, and fibronectin decreased, indicating reversion of EMT. We also observed intracellular translocation of E-cadherin. Expression of transcription factors snail and slug in si-PANC-1 cells decreased significantly. Suppression of EGFR expression can significantly inhibit EMT of pancreatic cancer PANC-1 cells. The mechanism may be related with the down-regulation of the expression of transcription factors snail and slug.

  12. Occurrence of mutations in the epidermal growth factor receptor gene in X-ray-induced rat lung tumors

    International Nuclear Information System (INIS)

    Kitahashi, Tsukasa; Takahashi, Mami; Yamada, Yutaka

    2008-01-01

    Epidermal growth factor receptor (EGFR) gene alterations have been found in human lung cancers. However, there is no information on the factors inducing EGFR mutations. In rodents, K-ras mutations are frequently found in many lung carcinogenesis models, but hitherto, Egfr mutations have not been reported. Their presence was therefore investigated in representative lung carcinogenesis models with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosobis(2-hydroxypropyl)amine (BHP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx) and ethyl carbamate (urethane), as well as X-ray irradiation. With the chemical carcinogenesis models, no mutations were detected in Egfr, which is in clear contrast to the high rates observed in either codon 12 or 61 of K-ras (21/23 of the lung tumors induced with NNK, 4/5 with MelQx, 1/4 with urethane and 7/18 with BHP). However, in the X-ray-induced lung tumors, Egfr mutations with amino acid substitution were observed in exons 18 and 21 (4/12, 33%), but no activating mutation of K-ras was detected. In addition, one and four silent mutations were identified in K-ras (exon 1) and Egfr (exons 18, 20 and 21), respectively. Most mutations in both Egfr and K-ras were G/C→A/T transitions (7/8, 88% and 31/34, 91%, respectively). Although, the mutational patterns in equivalent human lesions were not completely coincident, this first report of Egfr mutations in an experimental lung tumor model suggests that X-rays or other factors producing oxygen radicals could cause EGFR mutations in some proportion of lung cancers in humans. (author)

  13. Epidermal Growth Factor Receptor Signaling Enhances the Proinflammatory Effects of Staphylococcus aureus Gamma-Toxin on the Mucosa.

    Science.gov (United States)

    Gillman, Aaron N; Breshears, Laura M; Kistler, Charles K; Finnegan, Patrick M; Torres, Victor J; Schlievert, Patrick M; Peterson, Marnie L

    2017-06-28

    Staphylococcus aureus ( S. aureus ) produces many different exotoxins including the gamma-toxins, HlgAB and HlgCB. Gamma-toxins form pores in both leukocyte and erythrocyte membranes, resulting in cell lysis. The genes encoding gamma-toxins are present in most strains of S. aureus, and are commonly expressed in clinical isolates recovered from menstrual Toxic Shock Syndrome (mTSS) patients. This study set out to investigate the cytotoxic and proinflammatory effects of gamma-toxins on vaginal epithelial surfaces. We found that both HlgAB and HlgCB were cytotoxic to cultured human vaginal epithelial cells (HVECs) and induced cytokine production at sub-cytotoxic doses. Cytokine production induced by gamma-toxin treatment of HVECs was found to involve epidermal growth factor receptor (EGFR) signaling and mediated by shedding of EGFR ligands from the cell surface. The gamma-toxin subunits displayed differential binding to HVECs (HlgA 93%, HlgB 97% and HlgC 28%) with both components (HlgAB or HlgCB) required for maximum detectable binding and significant stimulation of cytokine production. In studies using full thickness ex vivo porcine vaginal mucosa, HlgAB or HlgCB stimulated a dose-dependent cytokine response, which was reduced significantly by inhibition of EGFR signaling. The effects of gamma-toxins on porcine vaginal tissue and cultured HVECs were validated using ex vivo human ectocervical tissue. Collectively, these studies have identified the EGFR-signaling pathway as a key component in gamma-toxin-induced proinflammatory changes at epithelial surfaces and highlight a potential therapeutic target to diminish toxigenic effects of S. aureus infections.

  14. Not all epidermal growth factor receptor mutations in lung cancer are created equal: Perspectives for individualized treatment strategy.

    Science.gov (United States)

    Kobayashi, Yoshihisa; Mitsudomi, Tetsuya

    2016-09-01

    Somatic mutations in the epidermal growth factor receptor (EGFR) gene are present in approximately 20% (in Caucasians) to 40% (in East Asians) of adenocarcinomas of the lung. Targeted therapy for these lung cancers has been established based on evidence regarding mainly common mutations; that is, exon 19 deletions (Del19) and L858R. EGFR-tyrosine kinase inhibitors (TKI), gefitinib, erlotinib or afatinib showed high objective response rates (ORR) of approximately 60%. Several studies suggested that Del19 might be more sensitive to EGFR-TKI than L858R. On the other hand, it has been difficult to establish evidence for other less common mutations, accounting for 12% of all EGFR mutations, because there are many variants and many studies have excluded patients with these uncommon mutations. However, recent studies revealed that these rare genotypes could be targetable if appropriate TKI are selected. For example, G719X (X denotes A, S, C and so on), Del18, E709K, insertions in exon 19 (Ins19), S768I or L861Q showed moderate sensitivities to gefitinib or erlotinb with ORR of 30%-50%. However, afatinib appeared to be especially effective for these tumors. Although Ins20s (except for insFQEA) have been regarded as resistant mutations, osimertinib may be effective for rare subtypes of them and nazartinib (EGF816) is promising for the majority of them. For the further development of targeted therapy in all EGFR mutations, it is important to precisely detect targetable mutations, to select the most appropriate TKI for each mutation, and to continue investigating in vitro studies and collecting clinical data on even rare mutations. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  15. Epidermal growth factor receptor (EGFR mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    Directory of Open Access Journals (Sweden)

    Abedi-Ardekani Behnoush

    2012-12-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC shows geographic variations in incidence, with high incidences (>50/105 person-years in central Asia, including North Eastern Iran (Golestan and Northern India (Kashmir. In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. Methods In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province and North India (Kashmir Valley have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. Results A total of 14 (9.2% EGFR variations were detected, including seven variations in exons. Among those, four (2.6% were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65% of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Conclusion Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs.

  16. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells.

    Science.gov (United States)

    Sangar, Vineet; Funk, Cory C; Kusebauch, Ulrike; Campbell, David S; Moritz, Robert L; Price, Nathan D

    2014-10-01

    Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    Science.gov (United States)

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. Copyright © 2016 by the Genetics Society of America.

  18. Fixation effect of SurePath preservative fluids using epidermal growth factor receptor mutation-specific antibodies for immunocytochemistry.

    Science.gov (United States)

    Kawahara, Akihiko; Taira, Tomoki; Abe, Hideyuki; Watari, Kosuke; Murakami, Yuichi; Fukumitsu, Chihiro; Takase, Yorihiko; Yamaguchi, Tomohiko; Azuma, Koichi; Akiba, Jun; Ono, Mayumi; Kage, Masayoshi

    2014-02-01

    Cytological diagnosis of respiratory disease has become important, not only for histological typing using immunocytochemistry (ICC) but also for molecular DNA analysis of cytological material. The aim of this study was to investigate the fixation effect of SurePath preservative fluids. Human lung cancer PC9 and 11-18 cell lines, and lung adenocarcinoma cells in pleural effusion, were fixed in CytoRich Blue, CytoRich Red, 15% neutral-buffered formalin, and 95% ethanol, respectively. PC9 and 11-18 cell lines were examined by ICC with epidermal growth factor receptor (EGFR) mutation-specific antibodies, the EGFR mutation DNA assay, and fluorescence in situ hybridization. The effect of antigenic storage time was investigated in lung adenocarcinoma cells in pleural effusion by ICC using the lung cancer detection markers. PC9 and 11-18 cell lines in formalin-based fixatives showed strong staining of EGFR mutation-specific antibodies and lung cancer detection markers by ICC as compared with ethanol-based fixatives. DNA preservation with CytoRich Blue and CytoRich Red was superior to that achieved with 95% ethanol and 15% neutral-buffered formalin fixatives, whereas EGFR mutations by DNA assay and EGFR gene amplification by fluorescence in situ hybridization were successfully identified in all fixative samples. Although cytoplasmic antigens maintained high expression levels, expression levels in nuclear antigens fell as storage time increased. These results indicate that CytoRich Red is not only suitable for ICC with EGFR mutation-specific antibodies, but also for DNA analysis of cytological material, and is useful in molecular testing of lung cancer, for which various types of analyses will be needed in future. © 2013 American Cancer Society.

  19. Human epidermal growth factor receptor 2 status of gastric cancer patients in Asia: results from a large, multicountry study.

    Science.gov (United States)

    Pathmanathan, Nirmala; Geng, Jing-Shu; Li, Wencai; Nie, Xiu; Veloso, Januario; Wang, John; Hill, Julie; Mccloud, Philip; Bilous, Michael

    2017-06-01

    Current estimates of the human epidermal growth factor receptor 2 (HER2)-positivity rate in gastric cancer vary widely in the literature, and there are limited data from countries in Asia. The primary aim of this study was to conduct a clinical audit of laboratories across seven countries in Asia to determine the incidence of HER2-positive gastric cancer in this region. Pathologists were asked to collect data on patient gender, age, cancer site, specimen type, tumor spread, type and grade, HER2 test results, including protein and/or gene copy enumeration, and final HER2 status on consecutive gastric cancer cases tested for HER2 in their laboratory over a 2-year period. HER2 results from 5,301 gastric cancers were submitted by 50 laboratories. The overall HER2-positivity rate was 9.7% which, after the exclusion of China, increased to 18.1%. The rate between countries ranged from 0% to 23.1%, and from 0% to 50.0% between laboratories. An equivocal HER2 result was recorded in 19.5% of cases. Despite the lack of centralized testing to confirm the accuracy of HER2 diagnoses, the incidence of HER2-positive gastric cancer observed here was comparable to that reported in the literature. Nevertheless, rates were highly variable between countries and laboratories, which suggests a lack of HER2 testing expertise in gastric cancer. Given that the mortality rates for gastric cancer in Eastern Asia are the highest in the world, efforts should focus on improving HER2 testing expertise in the region so that patients receive the appropriate treatment early in their disease. © 2016 The Authors. Asia-Pacific Journal of Clinical Oncology Published by John Wiley & Sons Australia, Ltd.

  20. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II.

    Science.gov (United States)

    Takayanagi, Takehiko; Kawai, Tatsuo; Forrester, Steven J; Obama, Takashi; Tsuji, Toshiyuki; Fukuda, Yamato; Elliott, Katherine J; Tilley, Douglas G; Davisson, Robin L; Park, Joon-Young; Eguchi, Satoru

    2015-06-01

    The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension. © 2015 American Heart Association, Inc.

  1. [Construction and screening of phage antibody libraries against epidermal growth factor receptor and soluble expression of single chain Fv].

    Science.gov (United States)

    Sheng, Wei-Jin; Miao, Qing-Fang; Zhen, Yong-Su

    2009-06-01

    Recent studies have shown that epidermal growth factor receptor (EGFR) is an important target for cancer therapy. The present study prepared single chain Fv (scFv) directed against EGFR. Balb/c mice were immunized by human carcinoma A431 cells, and total RNA of the splenic cells was extracted. VH and VL gene fragments were amplified by RT-PCR and further joined into scFv gene with a linker, then scFv gene fragments were ligated into the phagemid vector pCANTAB 5E. The phagemid containing scFv were transformed into electro-competent E. coli TG1 cells. The recombinant phage antibody library was constructed through rescuing the transformed cells with help phage M13K07. The specified recombinant phages were enriched through 5 rounds of affinity panning and the anti-EGFR phage scFv clones were screened and identified with ELISA. A total of 48 clones from the library were selected randomly and 45 clones were identified positive. After infecting E. coli HB2151 cells with one positive clone, soluble recombinant antibodies about 27 kD were produced and located in the periplasm and the supernatant. The result of sequencing showed that the scFv gene was 768 bp, which encoded 256 amino acid residues. VH and VL including 3 CDRs and 4 FRs, respectively, were all homologous to mouse Ig. The soluble scFv showed the specific binding activity to purified EGFR and EGFR located in carcinoma cell membrane. The successful preparation of anti-EGFR scFv will provide an EGFR targeted molecule for the development of antibody-based drugs and biological therapy of cancer.

  2. [Construction of a phage antibody library and screening of anti-epidermal growth factor receptor variant III single chain antibody].

    Science.gov (United States)

    Han, Dong-gang; Duan, Xiao-yi; Guo, You-min; Zhou, Qi; Wang, Quan-ying; Yang, Guang-xiao

    2010-01-01

    To obtain specific anti-epidermal growth factor receptor variant III (EGFRvIII) single chain antibody (ScFv) by phage antibody library display system. The total RNA was extracted from the spleen B cells of BALB/c mice immunized with pep-3-OVA protein, and the first-strand cDNA was synthesized by reverse transcription. Antibody VH and VL gene fragments were amplified and joined to a ScFv gene with the linker. The ScFv gene was ligated into the phagemid vector pCANTAB5E, which was transformed into competent E. coli TG1. The transformed cells were then infected with M13KO7 helper phage to yield the recombinant phage to construct the phage ScFv library. Pep-3-BSA protein was used to screen the phage antibody library and ELISA carried out to characterize the activity of the antibody. The VH and VL gene fragments of the antibody were about 350 bp and 320 bp in length as analyzed by agarose gel electrophoresis. The ScFv gene was 780 bp, consistent with the expected length. The recombinant phagemid with ScFv gene insert was rescued, and an immune phage ScFv library with the content of 5.0x10(6) was constructed. The recombinant ScFv phage had a titer of 3.0x10(4) cfu/ml, and the fourth phage harvest yielded 56 times as much as that of the first one. SDS-PAGE demonstrated a molecular mass of the soluble ScFv of about 28 kD. ELISA results indicated good specificity of the ScFv to bind EGFRvIII. An immune phage ScFv library is successfully constructed, and the ScFv antibody fragment is capable of specific binding to EGFRvIII.

  3. Cutaneous side-effects in patients on long-term treatment with epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Osio, A; Mateus, C; Soria, J-C; Massard, C; Malka, D; Boige, V; Besse, B; Robert, C

    2009-09-01

    Acute and subacute cutaneous side-effects of epidermal growth factor receptor inhibitors (EGFRIs) are very frequent and well known. Much less is known about the chronic cutaneous effects of these drugs and about their potential psychosocial impact on patients. We performed a retrospective study of patients treated with EGFRIs for more than 6 months. All patients had a detailed dermatological examination. The primary cancer, associated chemotherapies, skin treatment, evolution of skin symptoms and their impact on quality of life (QoL) as evaluated by the Dermatology Life Quality Index (DLQI) were noted. Seven men and nine women were identified. The mean length of EGFRI treatment was 10 months (range 6-27). At the time of examination, all patients (100%) had cutaneous side-effects. Grade I or II folliculitis was found in 37.5% of the patients. Additional skin manifestations were xerosis (100%), mucositis (69%), hair abnormalities (87.5%), eyelash trichomegaly (62.5%), facial hypertrichosis (56%), painful paronychia (56%) and onycholysis (44%). Dose reduction or EGFRI discontinuation for skin toxicity were needed in six patients (37.5%). DLQI evaluation showed a moderate to strong impact on QoL in four patients (25%). Cutaneous side-effects are found in 100% of patients treated with EGFRIs for more than 6 months and have a significant effect on patients' QoL. The clinical spectrum of skin manifestation varies over time. As the use of EGFRIs rapidly increases, it is critical for us to improve our knowledge in the understanding and managment of these skin manifestations.

  4. Efficacy of epidermal growth factor receptor targeting in advanced chordoma: case report and literature review

    Directory of Open Access Journals (Sweden)

    Guiramand Jérôme

    2011-10-01

    Full Text Available Abstract Background Chordomas are very rare low-grade malignant bone tumors that arise from the embryonic rests of the notochord. They are characterized by slow growth and long history with frequent local relapses, and sometimes metastases. While chemotherapy is not efficient, imatinib has shown antitumor activity. Case presentation We report on a 76-year-old patient with EGFR-overexpressing advanced chordoma that progressed on imatinib and subsequently responded to erlotinib during 12 months. Conclusions We report the fourth case of advanced chordoma treated with an EGFR inhibitor. We also review the literature concerning the rationale and potential of EGFR targeting in chordoma.

  5. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells.

    Science.gov (United States)

    González-Vallinas, Margarita; Molina, Susana; Vicente, Gonzalo; Sánchez-Martínez, Ruth; Vargas, Teodoro; García-Risco, Mónica R; Fornari, Tiziana; Reglero, Guillermo; Ramírez de Molina, Ana

    2014-06-01

    Breast cancer is the leading cause of cancer-related mortality among females worldwide, and therefore the development of new therapeutic approaches is still needed. Rosemary (Rosmarinus officinalis L.) extract possesses antitumor properties against tumor cells from several organs, including breast. However, in order to apply it as a complementary therapeutic agent in breast cancer, more information is needed regarding the sensitivity of the different breast tumor subtypes and its effect in combination with the currently used chemotherapy. Here, we analyzed the antitumor activities of a supercritical fluid rosemary extract (SFRE) in different breast cancer cells, and used a genomic approach to explore its effect on the modulation of ER-α and HER2 signaling pathways, the most important mitogen pathways related to breast cancer progression. We found that SFRE exerts antitumor activity against breast cancer cells from different tumor subtypes and the downregulation of ER-α and HER2 receptors by SFRE might be involved in its antitumor effect against estrogen-dependent (ER+) and HER2 overexpressing (HER2+) breast cancer subtypes. Moreover, SFRE significantly enhanced the effect of breast cancer chemotherapy (tamoxifen, trastuzumab, and paclitaxel). Overall, our results support the potential utility of SFRE as a complementary approach in breast cancer therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway.

    LENUS (Irish Health Repository)

    Bergin, David A

    2008-11-14

    Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE\\/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR\\/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.

  7. Human epidermal growth factor receptor 2-positive breast cancer: which cytotoxic agent best complements trastuzumab's efficacy in vitro?

    Directory of Open Access Journals (Sweden)

    Hurrell T

    2013-06-01

    Full Text Available Tracey Hurrell, Kim OuthoffDepartment of Pharmacology, University of Pretoria, Pretoria, South AfricaIntroduction: Despite trastuzumab having enhanced selectivity for human epidermal growth factor receptor 2 (HER-2 overexpressing breast cancer cells, treatment is hampered by interindividual variation and tumors with high mitogenic potential. The lack of significant clinical benefit in certain patient cohorts suggests that HER-2 expression is ineffective as a sole prognostic indicator of response to therapy. Therefore, optimizing the clinical role of trastuzumab in drug combinations remains critical for clinical success.Aim: To investigate the effects of trastuzumab in combination with either doxorubicin or geldanamycin on in vitro cell viability, cell cycling, apoptosis and relative HER-2 expression in HER-2-positive (SK-BR-3 and estrogen receptor-positive (MCF-7 breast adenocarcinoma models.Results: HER-2-rich SK-BR-3 cells demonstrated a greater sensitivity to the effects of doxorubicin than MCF-7 cells. Concurrent trastuzumab exposure resulted in a further reduction in cell viability. This decreased cell viability induced by doxorubicin was associated with activation of executioner caspases as well as with alterations in cell-cycle kinetics, primarily promoting S-phase accumulation. Doxorubicin had no effect on surface HER-2 density expression. Geldanamycin reduced cell viability significantly greater in SK-BR-3 than MCF-7 cells, and was associated with G2 cell-cycle accumulation. The addition of trastuzumab did not augment these effects. Geldanamycin promoted substantial reductions in relative surface HER-2 density in SK-BR-3 cells.Conclusion: The in vitro data supported the rationale for using doxorubicin in trastuzumab-based therapies. Therefore, despite the incidence of cardiotoxicity, doxorubicin could retain a fundamental role in treating HER-2-positive breast cancer. While geldanamycin is a potent cytotoxic agent, its concurrent use

  8. Human epidermal growth factor receptor 2 testing in invasive breast cancer: should histological grade, type and oestrogen receptor status influence the decision to repeat testing?

    Science.gov (United States)

    Rakha, Emad A; Pigera, Marian; Shin, Sandra J; D'Alfonso, Timothy; Ellis, Ian O; Lee, Andrew H S

    2016-07-01

    The recent American Society of Clinical Oncology/College of American Pathologists guidelines for human epidermal growth factor receptor 2 (HER2) testing in breast cancer recommend repeat testing based on tumour grade, tumour type, and hormone receptor status. The aim of this study was to test the value of these criteria. HER2 status was concordant in the core biopsies and excision specimens in 392 of 400 invasive carcinomas. The major reasons for discordance were amplification around the cut-off for positivity and tumour heterogeneity. Of 116 grade 3 carcinomas that were HER2-negative in the core biopsy, four were HER2-positive in the excision specimen. Three of these four either showed borderline negative amplification in the core biopsy or were heterogeneous. None of the 55 grade 1 carcinomas were HER2-positive. Review of repeat testing of HER2 in routine practice suggested that it may also be of value for multifocal tumours and if recommended by the person assessing the in-situ hybridization. Mandatory repeat HER2 testing of grade 3 HER2-negative carcinomas is not appropriate. This is particularly true if repeat testing is performed after borderline negative amplification in the core biopsy or in HER2-negative heterogeneous carcinomas. © 2015 John Wiley & Sons Ltd.

  9. Development of EMab-51, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in Flow Cytometry, Western Blot, and Immunohistochemistry.

    Science.gov (United States)

    Itai, Shunsuke; Kaneko, Mika K; Fujii, Yuki; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Chang, Yao-Wen; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-10-01

    The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG 1 , kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.

  10. Androgen and retinoic acid interaction in LNCaP cells, effects on cell proliferation and expression of retinoic acid receptors and epidermal growth factor receptor

    International Nuclear Information System (INIS)

    Li, Ming-tang; Richter, Frank; Chang, Chawnshang; Irwin, Robert J; Huang, Hosea FS

    2002-01-01

    Modulation of the expression of retinoic acid receptors (RAR) α and γ in adult rat prostate by testosterone (T) suggests that RAR signaling events might mediate some of the androgen effects on prostate cells. In this study, we examined the interactions between T and retinoic acid (RA) in cell growth of human prostate carcinoma cells, LNCaP, and their relationship with the expression of RAR and epidermal growth factor receptor (EGF-R). Both T and RA, when administered alone, stimulated 3 H-thymidine incorporation in LNCaP cells in a dose-dependent manner; the effect of each agent was reciprocally attenuated by the other agent. Testosterone treatment of LNCaP cells also resulted in dose dependent, biphasic increases in RAR α and γ mRNAs; increases paralleled that of 3 H-thymidine incorporation and were attenuated by the presence of 100 nM RA. These results suggest a link between RAR signaling and the effect of T on LNCaP cell growth. Gel electrophoretic mobility shift assays revealed the presence of putative androgen responsive element (ARE) in the promoter region of RAR α gene, suggesting that a direct AR-DNA interaction might mediate the effects of T on RAR α gene. Furthermore, treatment of LNCaP cells with 20 nM T resulted in an increase in EGF-R. In contrast, EGF-R was suppressed by 100 nM RA that also suppressed the effect of T. Current results demonstrate interactions between T and RA in the expression of RARs and cell growth in LNCaP cells. The presence of putative ARE in the promoter of the RAR α gene suggests that AR-DNA interaction might mediate the effects of T on RAR α gene. The opposite effects of T and RA on the expression of RAR and EGF-R suggest that signal events of these receptors might be involved in the interaction between T and RA in the control of LNCaP cell growth

  11. Androgen and retinoic acid interaction in LNCaP cells, effects on cell proliferation and expression of retinoic acid receptors and epidermal growth factor receptor

    Directory of Open Access Journals (Sweden)

    Irwin Robert J

    2002-06-01

    Full Text Available Abstract Background Modulation of the expression of retinoic acid receptors (RAR α and γ in adult rat prostate by testosterone (T suggests that RAR signaling events might mediate some of the androgen effects on prostate cells. Method In this study, we examined the interactions between T and retinoic acid (RA in cell growth of human prostate carcinoma cells, LNCaP, and their relationship with the expression of RAR and epidermal growth factor receptor (EGF-R. Results Both T and RA, when administered alone, stimulated 3H-thymidine incorporation in LNCaP cells in a dose-dependent manner; the effect of each agent was reciprocally attenuated by the other agent. Testosterone treatment of LNCaP cells also resulted in dose dependent, biphasic increases in RAR α and γ mRNAs; increases paralleled that of 3H-thymidine incorporation and were attenuated by the presence of 100 nM RA. These results suggest a link between RAR signaling and the effect of T on LNCaP cell growth. Gel electrophoretic mobility shift assays revealed the presence of putative androgen responsive element (ARE in the promoter region of RAR α gene, suggesting that a direct AR-DNA interaction might mediate the effects of T on RAR α gene. Furthermore, treatment of LNCaP cells with 20 nM T resulted in an increase in EGF-R. In contrast, EGF-R was suppressed by 100 nM RA that also suppressed the effect of T. Conclusions Current results demonstrate interactions between T and RA in the expression of RARs and cell growth in LNCaP cells. The presence of putative ARE in the promoter of the RAR α gene suggests that AR-DNA interaction might mediate the effects of T on RAR α gene. The opposite effects of T and RA on the expression of RAR and EGF-R suggest that signal events of these receptors might be involved in the interaction between T and RA in the control of LNCaP cell growth.

  12. Utility of the CPS+EG staging system in hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer treated with neoadjuvant chemotherapy.

    Science.gov (United States)

    Marmé, Frederik; Lederer, Bianca; Blohmer, Jens-Uwe; Costa, Serban Dan; Denkert, Carsten; Eidtmann, Holger; Gerber, Bernd; Hanusch, Claus; Hilfrich, Jörn; Huober, Jens; Jackisch, Christian; Kümmel, Sherko; Loibl, Sibylle; Paepke, Stefan; Untch, Michael; von Minckwitz, Gunter; Schneeweiss, Andreas

    2016-01-01

    Pathologic complete response after neoadjuvant chemotherapy (NACT) correlates with overall survival (OS) in primary breast cancer. A recently described staging system based on pre-treatment clinical stage (CS), final pathological stage (PS), estrogen receptor (ER) status and nuclear grade (NG) leads to a refined estimation of prognosis in unselected patients. Its performance in luminal type breast cancers has not been determined. This study investigates the clinical utility of this CPS+EG score when restricted to hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) patients and compares the results to a cohort of unselected patients. The CPS+EG score was calculated for 6637 unselected patients and 2454 patients with HR+/HER2- tumours who received anthracycline/taxane-based NACT within 8 prospective German trials. Five-year disease-free survival (DFS) and OS were 75.6% and 84.1% for the unselected cohort and 80.6% and 87.8% for the HR+/HER2- subgroup, respectively. The CPS+EG system distinguished different prognostic groups with 5-year DFS ranging from 0% to 91%. The CPS+EG system leads to an improved categorisation of patients by outcome compared to CS, PS, ER or NG alone. When applying the CPS+EG score to the HR+/HER2- subgroup, a shift to lower scores was observed compared to the overall population, but 5-year DFS and OS for the individual scores were identical to that observed in the overall population. In HR+/HER2- patients, the CPS+EG staging system retains its ability to facilitate a refined stratification of patients according to outcome. It can help to select candidates for post-neoadjuvant clinical trials in luminal breast cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Prognostic impact of p53, c-erbB-2 and epidermal growth factor receptor on head and neck carcinoma

    Directory of Open Access Journals (Sweden)

    Orlando Parise Junior

    Full Text Available CONTEXT: p53, c-erbB-2 and epidermal growth factor receptor (EGFR are cancer-related proteins that are usually expressed in head and neck squamous cell carcinoma (SCC. Their prognostic value remains controversial. OBJECTIVE: To evaluate the prognostic impact of p53, c-erbB-2 and EGFR expression in head and neck SCC. TYPE OF STUDY: Prospective. SETTING: Head and Neck Surgery Department, Hospital AC Camargo, São Paulo. METHODS: Fifty-four patients were studied for p53, c-erbB-2 and EGFR expression in head and neck SCC and adjacent mucosa, via immunohistochemistry. These data were correlated with histoclinical data and survival. RESULTS: There was a direct association of p53 expression in SCC and mucosa (p = 0.001; loss of c-erbB-2 expression (- from normal mucosa to SCC (p = 0.04; lower frequency of association of c-erbB-2 (+ with EGFR (- in SCC (p = 0.02; and a direct association of EGFR (+ expression in SCC and mitotic index (p = 0.03. The 60-month actuarial survival rates for patients presenting lymph node metastasis were higher when there was no capsule rupture by SCC (48.3%; p = 0.02, no more than one positive lymph node (52.3%; p = 0.004 or clear surgical margins (47.0%; p = 0.01, in comparison with patients presenting capsule rupture (20.2%, two or more positive lymph nodes (18.7% or compromised surgical margins (0.0%, respectively. Patients presenting SCC p53 (+ and EGFR (- demonstrated greater survival (75.0%; p = 0.03 than for the remaining group (33.1%. Multivariate analysis confirmed the positive impact of p53 (+ and EGFR (- on survival (p = 0.02. DISCUSSION: Associations were found for p53, c-erbB-2 and EGFR expression with histoclinical data and prognosis. Interestingly, these results suggest that loss of mucosal c-erbB-2 expression could be involved in SCC carcinogenesis; EGFR expression in SCC is related to tumor mitotic index; and presence of p53 with absence of EGFR expression in head and neck SCC may be a prognostic factor for

  14. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma.

    Science.gov (United States)

    Tang, Jiaze; Huang, Ning; Zhang, Xiang; Zhou, Tao; Tan, Ying; Pi, Jiangli; Pi, Li; Cheng, Si; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD)-labeled aptamer (QD-Apt) nanoprobe by conjugating aptamer 32 (A32) to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII) specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs) were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood-brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma

  15. Targeted delivery of polyamidoamine-paclitaxel conjugate functionalized with anti-human epidermal growth factor receptor 2 trastuzumab

    Directory of Open Access Journals (Sweden)

    Ma P

    2015-03-01

    Full Text Available Pengkai Ma,1 Xuemei Zhang,1 Ling Ni,2 Jinming Li,2 Fengpu Zhang,1 Zheng Wang,1 Shengnan Lian,1 Kaoxiang Sun1 1School of Pharmacy, Yantai University, Yantai, Shandong Province, People’s Republic of China; 2State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People’s Republic of China Background: Antibody-dendrimer conjugates have the potential to improve the targeting and release of chemotherapeutic drugs at the tumor site while reducing adverse side effects caused by drug accumulation in healthy tissues. In this study, trastuzumab (TMAB, which binds to human epidermal growth factor receptor 2 (HER2, was used as a targeting agent in a TMAB-polyamidoamine (PAMAM conjugate carrying paclitaxel (PTX specifically to cells overexpressing HER2. Methods: TMAB was covalently linked to a PAMAM dendrimer via bifunctional polyethylene glycol (PEG. PTX was conjugated to PAMAM using succinic anhydride as a cross-linker, yielding TMAB-PEG-PAMAM-PTX. Dynamic light scattering and transmission electron microscopy were used to characterize the conjugates. The cellular uptake and in vivo biodistribution were studied by fluorescence microscopy, flow cytometry, and Carestream In Vivo FX, respectively. Results: Nuclear magnetic resonance spectroscopy demonstrated that PEG, PTX, fluorescein isothiocyanate, and cyanine7 were conjugated to PAMAM. Ultraviolet-visible spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that TMAB was conjugated to PEG-PAMAM. Dynamic light scattering and transmission electron microscopy measurements revealed that the different conjugates ranged in size between 10 and 35 nm and had a spherical shape. In vitro cellular uptake demonstrated that the TMAB-conjugated PAMAM was taken up by HER2-overexpressing BT474 cells more efficiently than MCF-7 cells that expressed lower levels of HER2. Co-localization experiments indicated that TMAB-conjugated PAMAM was

  16. Characterization of hormonal receptors and human epidermal growth factor receptor-2 in tissues of women with breast cancer at Muhimbili National Hospital, Dar es salaam, Tanzania.

    Science.gov (United States)

    Mwakigonja, Amos Rodger; Lushina, Nyanda Elias; Mwanga, Ally

    2017-01-01

    Breast cancer is a leading cause of morbidity and deaths among women worldwide. In Tanzania there is no published data on human epidermal growth receptor-2 (HER2/neu) expression in breast carcinoma. Hormonal receptors and HER2/neu status reportedly influence post-mastectomy adjuvant therapy and predict treatment outcome and prognosis. Here we evaluate hormonal receptors and HER-2 status in biopsies of women with breast cancer at Muhimbili National Hospital (MNH). A cross-sectional study of female breast post-modified radical mastectomy (MRM)/incisional biopsies confirmed to be carcinoma at the Histopathology Unit (January-December 2013). Tissue blocks having poor morphology, without tumor, secondary tumors, cases outside the study period and male patients were excluded. Routine staining was done followed by immunohistochemistry for estrogen (ER), and progesterone (PgR) receptors and HER2. Data analyzed using Statistical Package for Social Sciences (SPSS). A total of 218 cases were confirmed to be carcinoma including 70 meeting inclusion criteria. Age at diagnosis ranged 18-75 years and mean age was 48.36 years. Majority (64.3%) were in the 36-55 years age-group. Histologically, most (88.6%) women had invasive ductal carcinoma including 43.1% of intermediate grade. A great majority (78%) were stage three. Due to logistical constrains, 75.7% ( n  = 53/70) cases where immunostained for hormones including 43.4% (ER+), 26.4% (PgR+), and 28% (ER+/PgR+). Furthermore, 65.7% ( n  = 46/70) cases were immunostained for HER-2 and 15.2% ( n  = 7/46) were positive, 45.6% were triple negative (ER-,PgR-,HER2-), 23.9% (ER+,PgR+,HER2-) or luminal B, 2.2% (ER+,PgR-,HER2+),13% (ER-,PgR-,HER2+) and 15% (ER+,PgR-,HER2-) with none being triple positive. Hormonal receptors and HER2 expression at MNH appears to be comparable to previous Africans/African Americans reports but not with studies among Caucasians and the current proportion of triple negative breast carcinomas (TNBC) is

  17. Characterization of hormonal receptors and human epidermal growth factor receptor-2 in tissues of women with breast cancer at Muhimbili National Hospital, Dar es salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Amos Rodger Mwakigonja

    2017-11-01

    Full Text Available Abstract Background Breast cancer is a leading cause of morbidity and deaths among women worldwide. In Tanzania there is no published data on human epidermal growth receptor-2 (HER2/neu expression in breast carcinoma. Hormonal receptors and HER2/neu status reportedly influence post-mastectomy adjuvant therapy and predict treatment outcome and prognosis. Here we evaluate hormonal receptors and HER-2 status in biopsies of women with breast cancer at Muhimbili National Hospital (MNH. Methods A cross-sectional study of female breast post-modified radical mastectomy (MRM/incisional biopsies confirmed to be carcinoma at the Histopathology Unit (January–December 2013. Tissue blocks having poor morphology, without tumor, secondary tumors, cases outside the study period and male patients were excluded. Routine staining was done followed by immunohistochemistry for estrogen (ER, and progesterone (PgR receptors and HER2. Data analyzed using Statistical Package for Social Sciences (SPSS. Results A total of 218 cases were confirmed to be carcinoma including 70 meeting inclusion criteria. Age at diagnosis ranged 18–75 years and mean age was 48.36 years. Majority (64.3% were in the 36–55 years age-group. Histologically, most (88.6% women had invasive ductal carcinoma including 43.1% of intermediate grade. A great majority (78% were stage three. Due to logistical constrains, 75.7% (n = 53/70 cases where immunostained for hormones including 43.4% (ER+, 26.4% (PgR+, and 28% (ER+/PgR+. Furthermore, 65.7% (n = 46/70 cases were immunostained for HER-2 and 15.2% (n = 7/46 were positive, 45.6% were triple negative (ER-,PgR-,HER2-, 23.9% (ER+,PgR+,HER2- or luminal B, 2.2% (ER+,PgR-,HER2+,13% (ER-,PgR-,HER2+ and 15% (ER+,PgR-,HER2- with none being triple positive. Conclusions Hormonal receptors and HER2 expression at MNH appears to be comparable to previous Africans/African Americans reports but not with studies among Caucasians and the current proportion

  18. Everolimus Plus Endocrine Therapy for Postmenopausal Women With Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: A Clinical Trial.

    Science.gov (United States)

    Royce, Melanie; Bachelot, Thomas; Villanueva, Cristian; Özgüroglu, Mustafa; Azevedo, Sergio J; Cruz, Felipe Melo; Debled, Marc; Hegg, Roberto; Toyama, Tatsuya; Falkson, Carla; Jeong, Joon; Srimuninnimit, Vichien; Gradishar, William J; Arce, Christina; Ridolfi, Antonia; Lin, Chinjune; Cardoso, Fatima

    2018-03-22

    Cotargeting the mammalian target of rapamycin pathway and estrogen receptor may prevent or delay endocrine resistance in patients receiving first-line treatment for advanced breast cancer. To investigate the combination of everolimus plus endocrine therapy in first-line and second-line treatment settings for postmenopausal women with estrogen receptor-positive, human epidermal growth receptor 2-negative advanced breast cancer. In the multicenter, open-label, single-arm, phase 2 BOLERO-4 (Breast Cancer Trials of Oral Everolimus) clinical trial, 245 patients were screened for eligibility; 202 were enrolled between March 7, 2013, and December 17, 2014. A median follow-up of 29.5 months had been achieved by the data cutoff date (December 17, 2016). Patients received first-line treatment with everolimus, 10 mg/d, plus letrozole, 2.5 mg/d. Second-line treatment with everolimus, 10 mg/d, plus exemestane, 25 mg/d, was offered at the investigator's discretion upon initial disease progression. The primary end point was investigator-assessed progression-free survival in the first-line setting per Response Evaluation Criteria in Solid Tumors, version 1.0. Safety was assessed in patients who received at least 1 dose of study medication and at least 1 postbaseline safety assessment. A total of 202 women treated in the first-line setting had a median age of 64.0 years (interquartile range, 58.0-70.0 years) with metastatic (194 [96.0%]) or locally advanced (8 [4.0%]) breast cancer. Median progression-free survival was 22.0 months (95% CI, 18.1-25.1 months) with everolimus and letrozole. Median overall survival was not reached; 24-month estimated overall survival rate was 78.7% (95% CI, 72.1%-83.9%). Fifty patients started second-line treatment; median progression-free survival was 3.7 months (95% CI, 1.9-7.4 months). No new safety signals were observed. In the first-line setting, the most common all-grade adverse event was stomatitis (139 [68.8%]); the most common grade 3 to 4

  19. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars

    2005-01-01

    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  20. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer.

    Science.gov (United States)

    Merkin, Ross D; Vanner, Elizabeth A; Romeiser, Jamie L; Shroyer, A Laurie W; Escobar-Hoyos, Luisa F; Li, Jinyu; Powers, Robert S; Burke, Stephanie; Shroyer, Kenneth R

    2017-04-01

    Clinicopathological features of breast cancer have limited accuracy to predict survival. By immunohistochemistry (IHC), keratin 17 (K17) expression has been correlated with triple-negative status (estrogen receptor [ER]/progesterone receptor/human epidermal growth factor receptor-2 [HER2] negative) and decreased survival, but K17 messenger RNA (mRNA) expression has not been evaluated in breast cancer. K17 is a potential prognostic cancer biomarker, targeting p27, and driving cell cycle progression. This study compared K17 protein and mRNA expression to ER/progesterone receptor/HER2 receptor status and event-free survival. K17 IHC was performed on 164 invasive breast cancers and K17 mRNA was evaluated in 1097 breast cancers. The mRNA status of other keratins (16/14/9) was evaluated in 113 ER - /HER2 - ductal carcinomas. IHC demonstrated intense cytoplasmic and membranous K17 localization in myoepithelial cells of benign ducts and lobules and tumor cells of ductal carcinoma in situ. In ductal carcinomas, K17 protein was detected in most triple-negative tumors (28/34, 82%), some non-triple-negative tumors (52/112, 46%), but never in lobular carcinomas (0/15). In ductal carcinomas, high K17 mRNA was associated with reduced 5-year event-free survival in advanced tumor stage (n = 149, hazard ratio [HR] = 3.68, P = .018), and large (n = 73, HR = 3.95, P = .047), triple-negative (n = 103, HR = 2.73, P = .073), and ER - /HER2 - (n = 113, HR = 2.99, P = .049) tumors. There were significant correlations among keratins 17, 16, 14, and 9 mRNA levels suggesting these keratins (all encoded on chromosome 17) could be coordinately expressed in breast cancer. Thus, K17 is expressed in a subset of triple-negative breast cancers, and is a marker of poor prognosis in patients with advanced stage and ER - /HER2 - breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Disease management patterns for postmenopausal women in Europe with hormone-receptor-positive, human epidermal growth factor receptor-2 negative advanced breast cancer.

    Science.gov (United States)

    André, Fabrice; Neven, Patrick; Marinsek, Nina; Zhang, Jie; Baladi, Jean-Francois; Degun, Ravi; Benelli, Giancarlo; Saletan, Stephen; Jerusalem, Guy

    2014-06-01

    International guidelines for hormone-receptor-positive (HR(+)), human epidermal growth factor receptor-2 negative (HER2(-)) advanced breast cancer (BC) recommend sequential lines of hormonal therapy (HT), and only recommend chemotherapy for patients with extensive visceral involvement or rapidly progressive disease. This study evaluated actual physician-reported treatments for advanced BC in Europe. We conducted a retrospective chart review of 355 postmenopausal women with HR(+), HER2(-) advanced BC who progressed on ≥1 line of HT (adjuvant or advanced) and completed ≥1 line of chemotherapy (advanced). Treatment choice was evaluated for each line of therapy. Of 355 patients, 111 (31%) received first-line chemotherapy, whereas 218 (61%) and 26 (7%) switched from HT to chemotherapy in second and third line, respectively. More patients receiving first-line HT had bone metastases (73% vs 27% chemotherapy). Patients treated with first-line chemotherapy had more brain (12% vs 3% HT) or extensive liver (13% vs 6% HT) metastases. Subgroup analysis of 188 patients who received first-line HT and had de novo advanced BC or relapsed/recurrent disease more than 1 year after adjuvant therapy found that the majority (89%; n = 167) of these patients switched to chemotherapy in second line. However, among these 167 patients, 27% had no significant changes in metastases between first and second line. Among the 73% of patients who had significant changes in metastases, 20% had no brain metastases or extensive visceral disease. Our study suggests that the guideline-recommended use of multiple HT lines is open to interpretation and that optimal treatment for European postmenopausal women with HR(+), HER2(-) advanced BC who responded to HT may not be achieved.

  2. Flipped script for gefitinib: A reapproved tyrosine kinase inhibitor for first-line treatment of epidermal growth factor receptor mutation positive metastatic nonsmall cell lung cancer.

    Science.gov (United States)

    Bogdanowicz, Brian S; Hoch, Matthew A; Hartranft, Megan E

    2017-04-01

    Purpose The approval history, pharmacology, pharmacokinetics, clinical trials, efficacy, dosing recommendations, drug interactions, safety, place in therapy, and economic considerations of gefitinib are reviewed. Summary Lung cancer is one of the most commonly diagnosed cancers and is the leading cause of cancer death. Platinum-based chemotherapy and tyrosine kinase inhibitors, such as erlotinib and afatinib, are recommended therapies for nonsmall cell lung cancer. The European Medicines Association based their approval of gefitinib on the randomized, multicenter Iressa Pan-Asia Study (IPASS, NCT00322452) and a single-arm study showing effectiveness in Caucasians (IFUM, NCT01203917). Both studies were recently referenced by the United States Food & Drug Administration to reapprove gefitinib for the first-line treatment of advanced nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions or exon 21 substitution. Diarrhea, acneiform rash, and interstitial lung disease are known side effects of gefitinib. Conclusion Use of gefitinib for the first-line therapy of metastatic nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions (residues 747-750) or exon 21 substitution mutation (L858R) is well-documented and supported.

  3. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    Science.gov (United States)

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  4. Rapid and Simple Detection of Hot Spot Point Mutations of Epidermal Growth Factor Receptor, BRAF, and NRAS in Cancers Using the Loop-Hybrid Mobility Shift Assay

    Science.gov (United States)

    Matsukuma, Shoichi; Yoshihara, Mitsuyo; Kasai, Fumio; Kato, Akinori; Yoshida, Akira; Akaike, Makoto; Kobayashi, Osamu; Nakayama, Haruhiko; Sakuma, Yuji; Yoshida, Tsutomu; Kameda, Yoichi; Tsuchiya, Eiju; Miyagi, Yohei

    2006-01-01

    A simple and rapid method to detect the epidermal growth factor receptor hot spot mutation L858R in lung adenocarcinoma was developed based on principles similar to the universal heteroduplex generator technology. A single-stranded oligonucleotide with an internal deletion was used to generate heteroduplexes (loop-hybrids) bearing a loop in the complementary strand derived from the polymerase chain reaction product of the normal or mutant allele. By placing deletion in the oligonucleotide adjacent to the mutational site, difference in electrophoretic mobility between loop-hybrids with normal and mutated DNA was distinguishable in a native polyacrylamide gel. The method was also modified to detect in-frame deletion mutations of epidermal growth factor receptor in lung adenocarcinomas. In addition, the method was adapted to detect hot spot mutations in the B-type Raf kinase (BRAF) at V600 and in a Ras-oncogene (NRAS) at Q61, the mutations commonly found in thyroid carcinomas. Our mutation detection system, designated the loop-hybrid mobility shift assay was sensitive enough to detect mutant DNA comprising 7.5% of the total DNA. As a simple and straightforward mutation detection technique, loop-hybrid mobility shift assay may be useful for the molecular diagnosis of certain types of clinical cancers. Other applications are also discussed. PMID:16931592

  5. Human epidermal growth factor receptor 2/neu overexpression in urothelial carcinoma of the bladder and its prognostic significance: Is it worth hype?

    Directory of Open Access Journals (Sweden)

    Santosh Kumar

    2015-01-01

    Full Text Available Aims: In urothelial tumors of the urinary bladder, human epidermal growth factor receptor 2 (HER-2/neu expression has been reported over 10 years, but there is no clear correlation between prognosis and recurrence rate. The present study evaluates prognostic implication of HER-2/neu expression. Subjects and Methods: In this study, 100 formalin-fixed paraffin-embedded specimens of primary transitional cell carcinoma of the bladder were processed. HER-2/neu monoclonal antibody immunohistochemistry staining procedure used for the study. Results: A total of 70 (70% patients were positive for overexpression of HER-2/neu. HER-2/neu was positive in patients with 42 (70% superficial tumor, 28 (70% muscle invasive tumor, 41 (75.9% high-grade tumor, 29 (63% low grade tumor, 31 (68.9% recurrent tumor, and 6 (66.6% had positive lymph nodes. Conclusions: Human epidermal growth factor receptor 2/neu over expression was not correlated with the tumor stage, lymphnode metastasis or recurrence of the disease. HER-2/neu overexpression was statistically insignificantly correlated with the differentiation grade (P < 0.161 as compared to previous studies. Future studies on HER-2 expression with chemo-sensitivity and efficacy of HER-2-targeted therapies in urothelial carcinomas is needed.

  6. Analysis of Epidermal Growth Factor Receptor Related Gene Expression Changes in a Cellular and Animal Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    In-Su Kim

    2017-02-01

    Full Text Available We employed transcriptome analysis of epidermal growth factor receptor related gene expression changes in cellular and animal models of Parkinson’s disease (PD. We used a well-known Parkinsonian toxin 1-methyl-4-phenylpyridine (MPP+ to induce neuronal apoptosis in the human neuroblastoma SH-SY5Y cell line. The MPP+-treatment of SH-SY5Y cells was capable of inducing neuro-apoptosis, but it remains unclear what kinds of transcriptional genes are affected by MPP+ toxicity. Therefore the pathways that were significantly perturbed in MPP+ treated human neuroblastoma SH-SY5Y cells were identified based on genome-wide gene expression data at two time points (24 and 48 h. We found that the Epidermal Growth Factor Receptor (EGFR pathway-related genes showed significantly differential expression at all time points. The EGFR pathway has been linked to diverse cellular events such as proliferation, differentiation, and apoptosis. Further, to evaluate the functional significance of the altered EGFR related gene expression observed in MPP+-treated SH-SY5Y cells, the EGFR related GJB2 (Cx26 gene expression was analyzed in an MPP+-intoxicated animal PD model. Our findings identify that the EGFR signaling pathway and its related genes, such as Cx26, might play a significant role in dopaminergic (DAergic neuronal cell death during the process of neuro-apoptosis and therefore can be focused on as potential targets for therapeutic intervention.

  7. Combination treatment with ionising radiation and gefitinib ('Iressa', ZD1839), an epidermal growth factor receptor (EGFR) inhibitor, significantly inhibits bladder cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Colquhoun, AJ; Mchugh, LA; Tulchinsky, E.; Kriajevska, M.; Mellon, JK

    2007-01-01

    External beam radiotherapy (EBRT) is the principal bladder-preserving monotherapy for muscle-invasive bladder cancer. Seventy percent of muscle-invasive bladder cancers express epidermal growth factor receptor (EGFR), which is associated with poor prognosis. Ionising radiation (IR) stimulates EGFR causing activation of cytoprotective signalling cascades and thus may be an underlying cause of radioresistance in bladder tumours. We assessed the ability of IR to activate EGFR in bladder cancer cells and the effect of the anti-EGFR therapy, gefitinib on potential radiation-induced activation. Subsequently we assessed the effect of IR on signalling pathways downstream of EGFR. Finally we assessed the activity of gefitinib as a monotherapy, and in combination with IR, using clonogenic assay in vitro, and a murine model in vivo. IR activated EGFR and gefitinib partially inhibited this activation. Radiation-induced activation of EGFR activated the MAPK and Akt pathways. Gefitinib partially inhibited activation of the MAPK pathway but not the Akt pathway. Treatment with combined gefitinib and IR significantly inhibited bladder cancer cell colony formation more than treatment with gefitinib alone (p=0.001-0.03). J82 xenograft tumours treated with combined gefitinib and IR showed significantly greater growth inhibition than tumours treated with IR alone (p=0.04). Combining gefitinib and IR results in significantly greater inhibition of invasive bladder cancer cell colony formation in vitro and significantly greater tumour growth inhibition in vivo. Given the high frequency of EGFR expression by bladder tumours and the low toxicity of gefitinib there is justification to translate this work into a clinical trial. (author)

  8. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma

    Directory of Open Access Journals (Sweden)

    Tang J

    2017-05-01

    Full Text Available Jiaze Tang,1 Ning Huang,1 Xiang Zhang,1,2 Tao Zhou,3 Ying Tan,1,4 Jiangli Pi,5 Li Pi,1 Si Cheng,6 Huzhi Zheng,5 Yuan Cheng1 1Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 2Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, 3Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, 4Institute of Life Sciences, Chongqing Medical University, 5Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 6Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China Abstract: The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD-labeled aptamer (QD-Apt nanoprobe by conjugating aptamer 32 (A32 to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling

  9. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using (64)Cu-DOTA-trastuzumab PET.

    Science.gov (United States)

    Mortimer, Joanne E; Bading, James R; Colcher, David M; Conti, Peter S; Frankel, Paul H; Carroll, Mary I; Tong, Shan; Poku, Erasmus; Miles, Joshua K; Shively, John E; Raubitschek, Andrew A

    2014-01-01

    Women with human epidermal growth factor receptor 2 (HER2)-positive breast cancer are candidates for treatment with the anti-HER2 antibody trastuzumab. Assessment of HER2 status in recurrent disease is usually made by core needle biopsy of a single lesion, which may not represent the larger tumor mass or other sites of disease. Our long-range goal is to develop PET of radiolabeled trastuzumab for systemically assessing tumor HER2 expression and identifying appropriate use of anti-HER2 therapies. The purpose of this study was to evaluate PET/CT of (64)Cu-DOTA-trastuzumab for detecting and measuring tumor uptake of trastuzumab in patients with HER2-positive metastatic breast cancer. Eight women with biopsy-confirmed HER2-positive metastatic breast cancer and no anti-HER2 therapy for 4 mo or longer underwent complete staging, including (18)F-FDG PET/CT. For 6 of the 8 patients, (64)Cu-DOTA-trastuzumab injection (364-512 MBq, 5 mg of trastuzumab) was preceded by trastuzumab infusion (45 mg). PET/CT (PET scan duration 1 h) was performed 21-25 (day 1) and 47-49 (day 2) h after (64)Cu-DOTA-trastuzumab injection. Scan fields of view were chosen on the basis of (18)F-FDG PET/CT. Tumor detection sensitivity and uptake analyses were limited to lesions identifiable on CT; lesions visualized relative to adjacent tissue on PET were considered PET-positive. Radiolabel uptake in prominent lesions was measured as maximum single-voxel standardized uptake value (SUVmax). Liver uptake of (64)Cu was reduced approximately 75% with the 45-mg trastuzumab predose, without significant effect on tumor uptake. The study included 89 CT-positive lesions. Detection sensitivity was 77%, 89%, and 93% for day 1, day 2, and (18)F-FDG, respectively. On average, tumor uptake was similar for (64)Cu-DOTA-trastuzumab and (18)F-FDG (SUVmax and range, 8.1 and 3.0-22.5 for day 1 [n = 48]; 8.9 and 0.9-28.9 for day 2 [n = 38]; 9.7 and 3.3-25.4 for (18)F-FDG [n = 56]), but same-lesion SUVmax was not correlated

  10. Relationship between body mass index and the expression of hormone receptors or human epidermal growth factor receptor 2 with respect to breast cancer survival

    International Nuclear Information System (INIS)

    Jeon, Ye Won; Kang, Su Hwan; Park, Min Ho; Lim, Woosung; Cho, Se Heun; Suh, Young Jin

    2015-01-01

    The association between body mass index (BMI) at the time of breast cancer diagnosis and the prognosis of breast cancer patients remains controversial. Furthermore, the association between BMI and prognosis with respect to different breast cancer subtypes is not clearly defined. We analyzed data from 41,021 invasive breast cancer patients between January 1988 and February 2008 from the Korean Breast Cancer Registry (KBCR) database. Overall survival (OS) and breast cancer-specific survival (BCSS) were analyzed using the Kaplan-Meier method and Cox’s proportional hazard regression model among all patients and specific breast cancer subtypes with respect to BMI categories. A U-shaped association between BMI and mortality was observed in the total cohort. Underweight and obese individuals exhibited worse OS (hazard ratio, 1.23 [95 % confidence interval {CI}, 1.05 to 1.44] and 1.29 [1.13 to 1.48], respectively) and BCSS (1.26 [1.03 to 1.54] and 1.21 [1.02 to 1.43], respectively) than normal-weight individuals. In the estrogen receptor (ER) and/or progesterone receptor (PR)+/human epidermal growth factor receptor 2 (HER2) - subgroup, obese individuals exhibited worse OS (1.48 [1.18 to 1.85]) and BCSS (1.31 [1.13 to 1.52]) than normal-weight individuals. Conversely, in the ER and PR-/HER2+ subgroup, underweight individuals exhibited worse OS (1.68 [1.12 to 2.47]) and BCSS (1.79 [1.11 to 2.90]) than normal-weight individuals. We observed a U-shaped relationship between BMI at diagnosis and poor OS and BCSS among all breast cancer patients. However, obesity in the ER and/or PR+/HER2- subgroup and underweight in the ER and PR-/HER2+ subgroup were poor prognostic factors. Therefore, BMI at diagnosis and breast cancer subtype should be considered simultaneously in various treatment decision processes and surveillance schedules

  11. Near Infrared Optical Visualization of Epidermal Growth Factor Receptors Levels in COLO205 Colorectal Cell Line, Orthotopic Tumor in Mice and Human Biopsies

    Directory of Open Access Journals (Sweden)

    Philip Lazarovici

    2013-07-01

    Full Text Available In this study, we present the applicability of imaging epidermal growth factor (EGF receptor levels in preclinical models of COLO205 carcinoma cells in vitro, mice with orthotopic tumors and ex vivo colorectal tumor biopsies, using EGF-labeled with IRDye800CW (EGF-NIR. The near infrared (NIR bio-imaging of COLO205 cultures indicated specific and selective binding, reflecting EGF receptors levels. In vivo imaging of tumors in mice showed that the highest signal/background ratio between tumor and adjacent tissue was achieved 48 hours post-injection. Dissected colorectal cancer tissues from different patients demonstrated ex vivo specific imaging using the NIR bio-imaging platform of the heterogeneous distributed EGF receptors. Moreover, in the adjacent gastrointestinal tissue of the same patients, which by Western blotting was demonstrated as EGF receptor negative, no labeling with EGF-NIR probe was detected. Present results support the concept of tumor imaging by measuring EGF receptor levels using EGF-NIR probe. This platform is advantageous for EGF receptor bio-imaging of the NCI-60 recommended panel of tumor cell lines including 6–9 colorectal cell lines, since it avoids radioactive probes and is appropriate for use in the clinical setting using NIR technologies in a real-time manner.

  12. Transmembrane signalling at the epidermal growth factor receptor. Positive regulation by the C-terminal phosphotyrosine residues

    DEFF Research Database (Denmark)

    Magni, M; Pandiella, A; Helin, K

    1991-01-01

    a positive role in the regulation of transmembrane signalling at the EGF receptor. The stepwise decrease in signal generation observed in single, double and triple point mutants suggest that the role of phosphotyrosine residues is not in the participation in specific amino acid sequences, but rather...... in the double and the triple mutants. In the latter mutant, expression of the EGF-receptor-activated lipolytic enzyme phospholipase C gamma was unchanged, whereas its tyrosine phosphorylation induced by the growth factor was lowered to approx. 25% of that in the controls. In all of the cell clones employed......, the accumulation of inositol phosphates induced by treatment with fetal calf serum varied only slightly, whereas the same effect induced by EGF was consistently lowered in those lines expressing mutated receptors. This decrease was moderate for those receptors missing only the distal tyrosine (point and deletion...

  13. EFFICACY EVALUATION OF A MONOCLONAL ANTIBODY AGAINST THE EPIDERMAL GROWTH FACTORS RECEPTOR IN THE MODEL OF SUBCUTANEOUS XENOGRAFT IN IMMUNODEFICIENT MICE

    Directory of Open Access Journals (Sweden)

    Ya. Yu. Ustyugov

    2015-01-01

    Full Text Available This article presents the results of the comparative antitumor efficacy study of two test articles of therapeutic humanized monoclonal antibodies against epidermal growth factor receptor (EGFR manufactured by Russian biopharmaceutical company CJSC “Biocad” and the commercial drug “Erbitux®” (Merck, Germany in subcutaneous xenografts model using human epidermoid carcinoma A431NS cell line. EGFR overexpression in epithelial tumor cells is a commonly known fact that determines use of this receptor as a target for therapeutic monoclonal antibodies. The basic mechanism of action of such drugs is blocking of epithelial cells proliferation through competitive binding to EGFR. Evaluation of tumor growth dynamics in immunodeficient (Nu/Nu mice was performed during in vivo experiment using two parameters: tumor growth index and tumor growth inhibition (TGI, %. The results received with used study design show that antitumor effects of the test articles manufactured by CJSC “Biocad” and the commercial comparator drug “Erbitux®” estimated by values of TGI and tumor growth index are comparable.

  14. Budget impact analysis of everolimus for the treatment of hormone receptor positive, human epidermal growth factor receptor-2 negative (HER2-) advanced breast cancer in the United States.

    Science.gov (United States)

    Xie, Jipan; Diener, Melissa; De, Gourab; Yang, Hongbo; Wu, Eric Q; Namjoshi, Madhav

    2013-01-01

    To estimate the budget impact of everolimus as the first and second treatment option after letrozole or anastrozole (L/A) failure for post-menopausal women with hormone receptor positive (HR+), human epidermal growth factor receptor-2 negative (HER2-) advanced breast cancer (ABC). Pharmacy and medical budget impacts (2011 USD) were estimated over the first year of everolimus use in HR+, HER2- ABC from a US payer perspective. Epidemiology data were used to estimate target population size. Pre-everolimus entry treatment options included exemestane, fulvestrant, and tamoxifen. Pre- and post-everolimus entry market shares were estimated based on market research and assumptions. Drug costs were based on wholesale acquisition cost. Patients were assumed to be on treatment until progression or death. Annual medical costs were calculated as the average of pre- and post-progression medical costs weighted by the time in each period, adjusted for survival. One-way and two-way sensitivity analyses were conducted to assess the model robustness. In a hypothetical 1,000,000 member plan, 72 and 159 patients were expected to be candidates for everolimus treatment as first and second treatment option, respectively, after L/A failure. The total budget impact for the first year post-everolimus entry was $0.044 per member per month [PMPM] (pharmacy budget: $0.058 PMPM; medical budget: -$0.014 PMPM), assuming 10% of the target population would receive everolimus. The total budget impacts for the first and second treatment options after L/A failure were $0.014 PMPM (pharmacy budget: $0.018; medical budget: -$0.004) and $0.030 PMPM (pharmacy budget: $0.040; medical budget: -$0.010), respectively. Results remained robust in sensitivity analyses. Assumptions about some model input parameters were necessary and may impact results. Increased pharmacy costs for HR+, HER2- ABC following everolimus entry are expected to be partially offset by reduced medical service costs. Pharmacy and total

  15. Engineering of PDMS surfaces for use in microsystems for capture and isolation of complex and biomedically important proteins: epidermal growth factor receptor as a model system.

    Science.gov (United States)

    Lowe, Aaron M; Ozer, Byram H; Wiepz, Gregory J; Bertics, Paul J; Abbott, Nicholas L

    2008-08-01

    Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the

  16. Comparison of the efficacy of icotinib in patients with non-small-cell lung cancer according to the type of epidermal growth factor receptor mutation.

    Science.gov (United States)

    Xue, Zhang Xiao; Wen, Wang Xiu; Zhuang, Yu; Hua, Zang Jian; Xia, Yang Ni

    2016-09-01

    Icotinib hydrochloride is a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with preclinical and clinical activity in non-small-cell lung cancer (NSCLC). Exon 19 deletion and L858R point mutation are the most commonly encountered EGFR mutations in NSCLC, and they predict improved clinical outcomes following treatment with icotinib. The objective of this study was to evaluate the differential clinical efficacy of icotinib in patients with exon 19 deletion or L858R point mutation of the EGFR gene. A total of 104 patients with advanced NSCLC, who harbored exon 19 deletion or L858R point mutation of EGFR and were treated with icotinib, were enrolled in this study. The tumor response and progression-free survival were evaluated. There were no significant differences between patients with EGFR exon 19 deletion and those with L858R point mutation who received treatment with icotinib.

  17. Antibody guided irradiation of brain glioma by arterial infusion of radioactive monoclonal antibody against epidermal growth factor receptor and blood group A antigen

    Energy Technology Data Exchange (ETDEWEB)

    Epenetos, A.A.; Courtenay-Luck, N.; Pickering, D.; Hooker, G.; Lavender, J.P.; McKenzie, C.G. (Hammersmith Hospital, London (UK)); Durbin, H. (Imperial Cancer Research Fund, London (UK). Labs.)

    1985-05-18

    In a patient with recurrent grade IV glioma of the brain resistant to conventional treatment an antibody guided isotopic scan showed uptake by the tumour of a monoclonal antibody (9A) that was developed against epidermal growth factor receptor but cross reacted with blood group A antigen. As a therapeutic attempt antibody labelled with 1665 MBq (45.0 mCi) iodine-131 was delivered to the tumour area by infusion into the internal carotid artery. Computed tomography showed regression of the tumour after treatment, and an appreciable and sustained clinical improvement was noted without any toxicity. Delivery of irradiation guided by monoclonal antibody delivered by arterial infusion of the tumour area may be of clinical value in the treatment of brain gliomas resistant to conventional forms of treatment.

  18. Molecular dynamics simulation analysis of the effect of T790M mutation on epidermal growth factor receptor protein architecture in non-small cell lung carcinoma.

    Science.gov (United States)

    Peng, Xiao-Nu; Wang, Jing; Zhang, Wei

    2017-08-01

    Non-small cell lung cancer etiology and its treatment failure are due to epidermal growth factor receptor (EGFR) kinase domain mutations at amino acid position 790. The mutational change from threonine to methionine at position 790 (T790M) is responsible for tyrosine kinase inhibition failure. Using molecular dynamic simulation, the present study investigated the architectural changes occurring at the atomic scale. The 50-nsec runs using a GROMOS force field for wild-type and mutant EGFR's kinase domains were investigated for contrasting variations using Gromacs inbuilt tools. The adenosine triphosphate binding domain and the active site of EGFR were studied extensively in order to understand the structural changes. All the parameters investigated in the present study revealed considerable changes in the studied structures, and the knowledge gained from this may be used to develop novel kinase inhibitors that will be effective irrespective of the structural alterations in kinase domain.

  19. Establishment and characterization of a new cell line, FPS-1, derived from human undifferentiated pleomorphic sarcoma, overexpressing epidermal growth factor receptor and cyclooxygenase-2.

    Science.gov (United States)

    Hakozaki, Michiyuki; Hojo, Hiroshi; Sato, Michiko; Tajino, Takahiro; Yamada, Hitoshi; Kikuchi, Shinichi; Abe, Masafumi

    2006-01-01

    Undifferentiated pleomorphic sarcoma (UPS) is among the most common soft tissue sarcomas in adults. In order to improve its aggressive course or prognosis and establish new therapeutic methods, molecular genetic and biological characterizations of UPS are required. A new human UPS cell line (FPS-1) was established from UPS of the upper arm of a 79-year-old man. The cell line has been maintained for over 14 months with more than 60 passages. FPS-1 cells were characterized using molecular biological methods. FPS-1 cells showed the same morphological and immunophenotypical characteristics as the primary tumor. Cytogenetic and molecular analyses revealed a nonsense mutation in exon 6 of the p53 gene. Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) were expressed in FPS-1 cells. FPS-1 cells might be useful for investigating biological behavior and developing new molecular targeting antitumor drugs for UPS with EGFR or COX-2 expression.

  20. Response to Therapy and Outcomes in Oropharyngeal Cancer Are Associated With Biomarkers Including Human Papillomavirus, Epidermal Growth Factor Receptor, Gender, and Smoking

    International Nuclear Information System (INIS)

    Kumar, Bhavna; Cordell, Kitrina G.; Lee, Julia S.; Prince, Mark E.; Tran, Huong H.; Wolf, Gregory T.; Urba, Susan G.; Worden, Francis P.; Chepeha, Douglas B.; Teknos, Theodoros N.; Eisbruch, Avraham; Tsien, Christina I.; Taylor, Jeremy; D'Silva, Nisha J.; Yang, Kun; Kurnit, David M.; Bradford, Carol R.

    2007-01-01

    Induction chemotherapy and concurrent chemoradiation for responders or immediate surgery for non-responders is an effective treatment strategy head and neck squamous cell carcinoma (HNSCC) of the larynx and oropharynx. Biomarkers that predict outcome would be valuable in selecting patients for therapy. In this study, the presence and titer of high risk human papilloma virus (HPV) and expression of epidermal growth factor receptor (EGFR) in pre-treatment biopsies, as well as smoking and gender were examined in oropharynx cancer patients enrolled in an organ sparing trial. HPV16 copy number was positively associated with response to therapy and with overall and disease specific survival, whereas EGFR expression, current or former smoking behavior, and female gender (in this cohort) were associated with poor response and poor survival in multivariate analysis. Smoking cessation and strategies to target EGFR may be useful adjuncts for therapy to improve outcome in the cases with the poorest biomarker profile

  1. Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a german breast group 26/breast international group 03-05 study

    DEFF Research Database (Denmark)

    von Minckwitz, Gunter; du Bois, Andreas; Schmidt, Marcus

    2009-01-01

    PURPOSE: Trastuzumab shows clinical activity in human epidermal growth factor receptor 2 (HER-2)-positive early and advanced breast cancer. In the German Breast Group 26/Breast International Group 03-05 trial, we investigated if trastuzumab treatment should be continued beyond progression. METHODS......: Patients with HER-2-positive breast cancer that progresses during treatment with trastuzumab were randomly assigned to receive capecitabine (2,500 mg/m(2) body-surface area on days 1 through 14 [1,250 mg/m(2) semi-daily]) alone or with continuation of trastuzumab (6 mg/kg body weight) in 3-week cycles....... The primary end point was time to progression. RESULTS: We randomly assigned 78 patients to capecitabine and 78 patients to capecitabine plus trastuzumab. Sixty-five events and 38 deaths in the capecitabine group and 62 events and 33 deaths in the capecitabine-plus-trastuzumab group occurred during 15...

  2. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    Full Text Available The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP-induced radicals on the epidermal growth factor receptor (EGFR, which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  3. Prognostic significance of equivocal human epidermal growth factor receptor 2 results and clinical utility of alternative chromosome 17 genes in patients with invasive breast cancer: A cohort study.

    Science.gov (United States)

    Sneige, Nour; Hess, Kenneth R; Multani, Asha S; Gong, Yun; Ibrahim, Nuhad K

    2017-04-01

    The 2013 testing guidelines for determining the human epidermal growth factor receptor 2 (HER2) status include new cutoff points for the HER2/chromosome enumeration probe 17 (CEP17) ratio and the average HER2 copy number per cell, and they recommend using a reflex test with alternative chromosome 17 probes (Ch17Ps) to resolve equivocal HER2 results. This study sought to determine the clinical utility of alternative Ch17Ps in equivocal cases and the effects of equivocal results and/or a change in the HER2 status on patients' outcomes. The University of Texas MD Anderson Cancer Center database of HER2 dual-probe fluorescence in situ hybridization results from 2000 to 2010 was searched for cases of invasive breast cancer with HER2/CEP17 ratios Cancer 2017;123:1115-1123. © 2016 American Cancer Society. © 2016 American Cancer Society.

  4. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  5. Impact of Deferring Radiation Therapy in Patients With Epidermal Growth Factor Receptor-Mutant Non-Small Cell Lung Cancer Who Develop Brain Metastases.

    Science.gov (United States)

    Magnuson, William J; Yeung, Jacky T; Guillod, Paul D; Gettinger, Scott N; Yu, James B; Chiang, Veronica L

    2016-06-01

    To perform a retrospective analysis of patients with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma who developed brain metastases (BM) to evaluate our hypothesis that the use of upfront EGFR-tyrosine kinase inhibitors (TKIs), and deferral of radiation therapy (RT), would result in inferior intracranial progression-free survival but similar overall survival (OS). Of 202 patients diagnosed with EGFR-mutant NSCLC between July 1, 2008, and December 31, 2014, 71 developed BM. Twenty-one patients were excluded owing to prior EGFR-TKI use, EGFR-TKI resistance mutation, failure to receive EGFR-TKI after whole-brain radiation therapy (WBRT)/stereotactic radiosurgery (SRS) or develop brain metastases. A prospective, multi-institutional, randomized trial of upfront EGFR-TKI with RT at intracranial progression versus upfront RT followed by EGFR-TKI is urgently needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer : a systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    Westwood, Marie; Joore, Manuela; Whiting, Penny; van Asselt, Thea; Ramaekers, Bram; Armstrong, Nigel; Misso, Kate; Severens, Johan; Kleijnen, Jos

    BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment with standard chemotherapy.

  7. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    M. Westwood (Marie); M.A. Joore (Manuela); P. Whiting (Penny); T. van Asselt (Thea); B.L.T. Ramaekers (Bram); N. Armstrong (Nigel); K. Misso (Kate); J.L. Severens (Hans); J. Kleijnen (Jos)

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment

  8. Gemcitabine Plus Docetaxel Versus Docetaxel in Patients With Predominantly Human Epidermal Growth Factor Receptor 2-Negative Locally Advanced or Metastatic Breast Cancer: A Randomized, Phase III Study by the Danish Breast Cancer Cooperative Group

    DEFF Research Database (Denmark)

    Nielsen, Dorte L; Bjerre, Karsten D; Jakobsen, Erik H

    2011-01-01

    PURPOSE The objective of this phase III study was to compare the efficacy of gemcitabine plus docetaxel (GD) versus docetaxel in patients with advanced breast cancer. PATIENTS AND METHODS Predominantly human epidermal growth factor receptor 2 (HER2) -negative patients were randomly assigned...

  9. The prognostic value of epidermal growth factor receptor is related to tumor differentiation and the overall treatment time of radiotherapy in squamous cell carcinomas of the head and neck

    DEFF Research Database (Denmark)

    Eriksen, Jesper Grau; Steiniche, Torben; Askaa, Jon

    2004-01-01

    Accelerated repopulation in head-and-neck carcinomas might be related to the expression of proliferative factors such as epidermal growth factor receptor (EGFr). The present study focuses on the prognostic value of EGFr for T-site control and the relation to tumor cell differentiation and overall...

  10. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors

    International Nuclear Information System (INIS)

    Abourbeh, Galith; Dissoki, Samar; Jacobson, Orit; Litchi, Amir; Daniel, Revital Ben; Laki, Desirediu; Levitzki, Alexander; Mishani, Eyal

    2007-01-01

    Overexpression of epidermal growth factor receptor (EGFR) has been implicated in tumor development and malignancy. Evaluating the degree of EGFR expression in tumors could aid in identifying patients for EGFR-targeted therapies and in monitoring treatment. Nevertheless, no currently available assay can reliably quantify receptor content in tumors. Radiolabeled inhibitors of EGFR-TK could be developed as bioprobes for positron emission tomography imaging. Such imaging agents would not only provide a noninvasive quantitative measurement of EGFR content in tumors but also serve as radionuclide carriers for targeted radiotherapy. The potency, reversibility, selectivity and specific binding characteristics of ML04, an alleged irreversible inhibitor of EGFR, were established in vitro. The distribution of the F-18-labeled compound and the extent of EGFR-specific tumor uptake were evaluated in tumor-bearing mice. ML04 demonstrated potent, irreversible and selective inhibition of EGFR, combined with specific binding to the receptor in intact cells. In vivo distribution of the radiolabeled compound revealed tumor/blood and tumor/muscle activity uptake ratios of about 7 and 5, respectively, 3 h following administration of a radiotracer. Nevertheless, only minor EGFR-specific uptake of the compound was detected in these studies, using either EGFR-negative tumors or blocking studies as controls. To improve the in vivo performance of ML04, administration via prolonged intravenous infusion is proposed. Detailed pharmacokinetic characterization of this bioprobe could assist in the development of a kinetic model that would afford accurate measurement of EGFR content in tumors

  11. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  12. Epidermal growth factor in the rat prostate

    DEFF Research Database (Denmark)

    Tørring, Niels; Jørgensen, P E; Poulsen, Steen Seier

    1998-01-01

    Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate.......Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate....

  13. AST1306, a novel irreversible inhibitor of the epidermal growth factor receptor 1 and 2, exhibits antitumor activity both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hua Xie

    Full Text Available Despite the initial response to the reversible, ATP-competitive quinazoline inhibitors that target ErbB-family, such a subset of cancer patients almost invariably develop resistance. Recent studies have provided compelling evidence that irreversible ErbB inhibitors have the potential to override this resistance. Here, we found that AST1306, a novel anilino-quinazoline compound, inhibited the enzymatic activities of wild-type epidermal growth factor receptor (EGFR and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. Importantly, AST1306 functions as an irreversible inhibitor, most likely through covalent interaction with Cys797 and Cys805 in the catalytic domains of EGFR and ErbB2, respectively. Further studies showed that AST1306 inactivated pathways downstream of these receptors and thereby inhibited the proliferation of a panel of cancer cell lines. Although the activities of EGFR and ErbB2 were similarly sensitive to AST1306, ErbB2-overexpressing cell lines consistently exhibited more sensitivity to AST1306 antiproliferative effects. Consistent with this, knockdown of ErbB2, but not EGFR, decreased the sensitivity of SK-OV-3 cells to AST1306. In vivo, AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/N(neu transgenic breast cancer mouse models, but weakly inhibited the growth of EGFR-overexpressing tumor xenografts. Tumor growth inhibition induced by a single dose of AST1306 in the SK-OV-3 xenograft model was accompanied by a rapid (within 2 h and sustained (≥24 h inhibition of both EGFR and ErbB2, consistent with an irreversible inhibition mechanism. Taken together, these results establish AST1306 as a selective, irreversible ErbB2 and EGFR inhibitor whose growth-inhibitory effects are more potent in ErbB2-overexpressing cells.

  14. Interference by 2,3,7,8-tetrachlorodibenzo-p-dioxin with cultured mouse submandibular gland branching morphogenesis involves reduced epidermal growth factor receptor signaling

    International Nuclear Information System (INIS)

    Kiukkonen, Anu; Sahlberg, Carin; Partanen, Anna-Maija; Alaluusua, Satu; Pohjanvirta, Raimo; Tuomisto, Jouko; Lukinmaa, Pirjo-Liisa

    2006-01-01

    Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to mouse embryonic teeth, sharing features of early development with salivary glands in common, involves enhanced apoptosis and depends on the expression of epidermal growth factor (EGF) receptor. EGF receptor signaling, on the other hand, is essential for salivary gland branching morphogenesis. To see if TCDD impairs salivary gland morphogenesis and if the impairment is associated with EGF receptor signaling, we cultured mouse (NMRI) E13 submandibular glands with TCDD or TCDD in combination with EGF or fibronectin (FN), both previously found to enhance branching morphogenesis. Explants were examined stereomicroscopically and processed to paraffin sections. TCDD exposure impaired epithelial branching and cleft formation, resulting in enlarged buds. The glands were smaller than normal. EGF and FN alone concentration-dependently stimulated or inhibited branching morphogenesis but when co-administered with TCDD, failed to compensate for its effect. TCDD induced cytochrome P4501A1 expression in the glandular epithelium, indicating activation of the aryl hydrocarbon receptor. TCDD somewhat increased epithelial apoptosis as observed by terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method but the increase could not be correlated with morphological changes. The frequency of proliferating cells was not altered. Corresponding to the reduced cleft sites in TCDD-exposed explants, FN immunoreactivity in the epithelium was reduced. The results show that TCDD, comparably with EGF and FN at morphogenesis-inhibiting concentrations, impaired salivary gland branching morphogenesis in vitro. Together with the failure of EGF and FN at morphogenesis-stimulating concentrations to compensate for the effect of TCDD this implies that TCDD toxicity to developing salivary gland involves reduced EGF receptor signaling

  15. Significance of Interleukin-6 Signaling in the Resistance of Pharyngeal Cancer to Irradiation and the Epidermal Growth Factor Receptor Inhibitor

    International Nuclear Information System (INIS)

    Chen, C.-C.; Chen, W.-C.; Lu, C.-H.; Wang, W.-H.; Lin, P.-Y.; Lee, K.-D.; Chen, M.-F.

    2010-01-01

    Purpose: Tumor eradication by chemoradiotherapy for pharyngeal cancer has not been particularly successful. Targeting epithelial growth factor receptor (EGFR) could be a potential treatment strategy providing additional benefits, but only a subset of these tumors gives a clinically significant response to EGFR inhibitors. The aim has been to identify the role of interleukin-6 (IL-6) signaling and its predictive power in the treatment response of pharyngeal cancer. Methods and Materials: Human pharyngeal cancer cell lines, including the hypopharyngeal cancer cell line FaDu and its derived cell line FaDu-C225-R, were selected. Changes in tumor growth, response to treatment, and responsible signaling pathway were investigated in vitro. Furthermore, 95 pharyngeal cancer tissue specimens were analyzed by immunohistochemical staining, and correlations were made between levels of IL-6, IL-6 receptor (IL-6R), p-AKT, and p-STAT3 expression and the clinical outcome of patients. Results: In vitro, either extrinsic IL-6 stimulation of cancer cells or intrinsically activated IL-6 signaling detected in FADu-C225-R cells results in resistance to irradiation and EGFR inhibitor. Blocking IL-6 signaling attenuated aggressive tumor behavior and sensitized the cells to treatments. The responsible mechanisms included decreased p-STAT3, less nuclear translocation of EGFR, and subsequently attenuated epithelial-mesenchymal transition. Regarding clinical data, staining of p-STAT3 and IL-6 was significantly linked with lower response rates to treatments and shorter survival in pharyngeal cancer patients. Conclusions: IL-6 and p-STAT3 may be significant predictors of pharyngeal carcinoma, and regulating IL-6 signaling can be considered a promising therapeutic approach.

  16. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, Yoji, E-mail: cd147@naramed-u.ac.jp [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Ota, Hiroyo [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Takasawa, Shin [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Kimura, Hiroshi [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Uno, Masayuki [Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Yoshizumi, Masanori [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan)

    2013-11-15

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  17. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    International Nuclear Information System (INIS)

    Kyotani, Yoji; Ota, Hiroyo; Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo; Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu; Takasawa, Shin; Kimura, Hiroshi; Uno, Masayuki; Yoshizumi, Masanori

    2013-01-01

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  18. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1

    International Nuclear Information System (INIS)

    Tao Yongguang; Song Xing; Deng Xiyun; Xie Daxin; Lee, Leo M.; Liu Yiping; Li Wei; Li Lili; Deng Lin; Wu Qiao; Gong Jianping; Cao Ya

    2005-01-01

    Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV-encoded proteins and has always been the core of the oncogenic mechanism of EBV. Advanced studies on nuclear translocation of the epidermal growth factor receptor (EGFR) family have greatly improved our knowledge of the biological function of cell surface receptors. In this study, we used the Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1-integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 which could be regulated by the Tet system. We found that LMP1 could regulate the nuclear accumulation of EGFR in a dose-dependent manner quantitatively and qualitatively. We also demonstrated that the nuclear localization sequence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation and EGFR in the nucleus could bind to the promoters of cyclinD1 and cyclinE, respectively. We further demonstrated that EGFR is involved in the acceleration of the G1/S phase transition by LMP1 through binding to cyclinD1 and cyclinE directly. These findings provided a novel view that the acceleration of LMP1 on the G1/S transition via the nuclear accumulation of EGFR was critical in the process of nasopharyngeal carcinoma

  19. A FRET-based probe for epidermal growth factor receptor bound non-covalently to a pair of synthetic amphipathic helixes

    International Nuclear Information System (INIS)

    Itoh, Reina E.; Kurokawa, Kazuo; Fujioka, Aki; Sharma, Alok; Mayer, Bruce J.; Matsuda, Michiyuki

    2005-01-01

    Epidermal growth factor (EGF) receptor plays a pivotal role in a variety of cellular functions, such as proliferation, differentiation, and migration. To monitor the EGF receptor (EGFR) activity in living cells, we developed a probe for EGFR activity based on the principle of fluorescence resonance energy transfer (FRET). Previously, we developed a probe designated as Picchu (Phosphorylation indicator of the CrkII chimeric unit), which detects the tyrosine phosphorylation of the CrkII adaptor protein. We used a pair of synthetic amphipathic helixes, WinZipA2 and WinZipB1, to bind Picchu non-covalently to the carboxyl-terminus of the EGFR. Using this modified probe named Picchu-Z, the activity of EGFR was followed in EGF-stimulated Cos7 cells. We found that a high level of tyrosine phosphorylation of Picchu-Z probe remained after endocytosis until the point when the EGFR was translocated to the perinuclear region. These findings are in agreement with the previously reported 'signaling endosome' model. Furthermore, by pulse stimulation with EGF and by acute ablation of EGFR activity with AG1478, it was suggested that the phosphorylation of Picchu-Z probe, and probably the phosphorylation of EGFR also, underwent a rapid equilibrium (τ 1/2 < 2 min) between the phosphorylated and dephosphorylated states in the presence of EGF

  20. Rapid Visualization of Human Tumor Xenografts through Optical Imaging with a Near-Infrared Fluorescent Anti–Epidermal Growth Factor Receptor Nanobody

    Directory of Open Access Journals (Sweden)

    Sabrina Oliveira

    2012-01-01

    Full Text Available Given that overexpression of the epidermal growth factor receptor (EGFR is found in many types of human epithelial cancers, noninvasive molecular imaging of this receptor is of great interest. A number of studies have employed monoclonal antibodies as probes; however, their characteristic long half-life in the bloodstream has encouraged the development of smaller probes. In this study, an anti-EGFR nanobody-based probe was developed and tested in comparison with cetuximab for application in optical molecular imaging. To this aim, the anti-EGFR nanobody 7D12 and cetuximab were conjugated to the near-infrared fluorophore IRDye800CW. 7D12-IR allowed the visualization of tumors as early as 30 minutes postinjection, whereas with cetuximab-IR, no signal above background was observed at the tumor site. Quantification of the IR-conjugated proteins in the tumors revealed ≈ 17% of injected dose per gram 2 hours after injection of 7D12-IR, which was significantly higher than the tumor uptake obtained 24 hours after injection of cetuximab-IR. This difference is associated with the superior penetration and distribution of 7D12-IR within the tumor. These results demonstrate that this anti-EGFR nanobody conjugated to the NIR fluorophore has excellent properties for rapid preclinical optical imaging, which holds promise for its future use as a complementary diagnostic tool in humans.

  1. Epidermal Growth Factor Receptor (EGFR) and its Cross-Talks with Topoisomerases: Challenges and Opportunities for Multi-Target Anticancer Drugs.

    Science.gov (United States)

    Chauhan, Monika; Sharma, Gourav; Joshi, Gaurav; Kumar, Raj

    2016-01-01

    The interactions of Epidermal Growth Factor Receptor (EGFR) and topoisomerases have been seen in various cancer including brain, breast, ovarian, colorectal, gastric, etc. The studies in adenocarcinoma patients, chromogenic in situ hybridization, western blotting, receptor binding assay and electromobility shift assays, etc. threw light on the biophysical and biochemical features of EGFR and Topoisomerase cross-talks. It has been revealed that both the isomers of topoisomerase (Topo I and Topo II) interact via different mechanisms with EGFR. Topo II and HER2 share the same location i.e. 17q12-21 regions which could be a possible cause of predominant interactions seen between them. Topo I and EGFR interactions are mechanically related to the nucleolar translocation of heparenase by EGF and c-Jun. We compiled literature findings including the mechanistic interventions, signaling pathways, patents, in vitro and in vivo data of tested inhibitors and combinations in clinical trials, which provide convincing confirmations for the interactions of EGFR and topoisomerases. These interactions may be used for deriving a consistent route of mechanism, design and development of standard drug combinations and dual or multi inhibitors.

  2. Von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1.

    Science.gov (United States)

    Lee, S Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W Marston; Bottaro, Donald P; Vasselli, James R

    2008-10-01

    Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-alpha (TGF-alpha), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knock-down cells had escaped shRNA suppression. EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen.

  3. Von Hippel-Lindau Tumor Suppressor Gene Loss in Renal Cell Carcinoma Promotes Oncogenic Epidermal Growth Factor Receptor Signaling via Akt-1 and MEK1

    Science.gov (United States)

    Lee, S. Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W. Marston; Bottaro, Donald P.; Vasselli, James R.

    2008-01-01

    Objectives Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-α (TGF-α), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Methods Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. Results RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knockdown cells had escaped shRNA suppression. Conclusions EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen. PMID:18243508

  4. The combi-targeting concept: synthesis of stable nitrosoureas designed to inhibit the epidermal growth factor receptor (EGFR).

    Science.gov (United States)

    Domarkas, Juozas; Dudouit, Fabienne; Williams, Christopher; Qiyu, Qiu; Banerjee, Ranjita; Brahimi, Fouad; Jean-Claude, Bertrand Jacques

    2006-06-15

    According to the "combi-targeting" concept, the EGFR tyrosine kinase (TK) inhibitory potency of compounds termed "combi-molecules" is critical for selective growth inhibition of tumor cells with disordered expression of EGFR or its closest family member erbB2. Here we report on the optimization of the EGFR TK inhibitory potency of the combi-molecules of the nitrosourea class by comparison with their aminoquinazoline and ureidoquinazoline precursors. This led to the discovery of a new structural parameter that influences their EGFR TK inhibitory potency, i.e., the torsion angle between the plane of the quinazoline ring and the ureido or the nitrosoureido moiety of the synthesized drugs. Compounds (3'-Cl and Br series) with small angles (0.5-3 degrees ) were generally stronger EGFR TK inhibitors than those with large angles (18-21 degrees ). This was further corroborated by ligand-receptor van der Waals interaction calculations that showed significant binding hindrance imposed by large torsion angles in the narrow ATP cleft of EGFR. Selective antiproliferative studies in a pair of mouse fibroblast NIH3T3 cells, one of which NIH3T3/neu being transfected with the erbB2 oncogene, showed that IC(50) values for inhibition of EGFR TK could be good predictors of their selective potency against the serum-stimulated growth of the erbB2-tranfected cell line (Pearson r = 0.8). On the basis of stability (t(1/2)), EGFR TK inhibitory potency (IC(50)), and selective erbB2 targeting, compound 23, a stable nitrosourea, was considered to have the structural requirements for further development.

  5. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    Science.gov (United States)

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  6. Structure-based pharmacophore design and virtual screening for novel potential inhibitors of epidermal growth factor receptor as an approach to breast cancer chemotherapy.

    Science.gov (United States)

    Mahernia, Shabnam; Hassanzadeh, Malihe; Sharifi, Niusha; Mehravi, Bita; Paytam, Fariba; Adib, Mehdi; Amanlou, Massoud

    2018-02-01

    Cancer cells are described with features of uncontrolled growth, invasion and metastasis. The epidermal growth factor receptor subfamily of tyrosine kinases (EGFR-TK) plays a crucial regulatory role in the control of cellular proliferation and progression of various cancers. Therefore, its inhibition might lead to the discovery of a new generation of anticancer drugs. In the present study, structure-based pharmacophore modeling, molecular docking and molecular dynamics simulations were applied to identify potential hits, which exhibited good inhibition on the proliferation of MCF-7 breast cancer cell line and favorable binding interactions on EGFR-TK. Selected compounds were examined for their anticancer activity against the Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line which overexpresses EGFR using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay. Compounds 1 and 2, with an isoindoline-1-one core, induced significant inhibition of breast cancer cells proliferation with IC[Formula: see text] values 327 and 370 nM, respectively.

  7. Simultaneous screening of four epidermal growth factor receptor antagonists from Curcuma longa via cell membrane chromatography online coupled with HPLC-MS.

    Science.gov (United States)

    Sun, Meng; Ma, Wei-na; Guo, Ying; Hu, Zhi-gang; He, Lang-chong

    2013-07-01

    The epidermal growth factor receptors (EGFRs) are significant targets for screening active compounds. In this work, an analytical method was established for rapid screening, separation, and identification of EGFRs antagonists from Curcuma longa. Human embryonic kidney 293 cells with a steadily high expression of EGFRs were used to prepare the cell membrane stationary phase in a cell membrane chromatography model for screening active compounds. Separation and identification of the retention chromatographic peaks was achieved by HPLC-MS. The active sites, docking extents and inhibitory effects of the active compounds were also demonstrated. The screening result found that ar-turmerone, curcumin, demethoxycurcumin, and bisdemethoxycurcumin from Curcuma longa could be active components in a similar manner to gefitinib. Biological trials showed that all of four compounds can inhibit EGFRs protein secretion and cell growth in a dose-dependent manner, and downregulate the phosphorylation of EGFRs. This analytical method demonstrated fast and effective characteristics for screening, separation and identification of the active compounds from a complex system and should be useful for drug discovery with natural medicinal herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Relationship between serum carcinoembryonic antigen level and epidermal growth factor receptor mutations with the influence on the prognosis of non-small-cell lung cancer patients

    Directory of Open Access Journals (Sweden)

    Cai ZX

    2016-06-01

    Full Text Available Zuxun Cai Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou City, People’s Republic of China Objective: To investigate the relationship between serum carcinoembryonic antigen (CEA level and epidermal growth factor receptor (EGFR gene mutations in non-small-cell lung cancer (NSCLC patients and to analyze the influence of CEA level on postoperative survival time in lung cancer patients. Methods: A total of 296 patients who were treated in Thoracic Surgery Department of Henan Provincial Chest Hospital from September 2011 to September 2013 were recruited. The level of tumor markers, such as CEA, was determined before the surgery, and EGFR gene mutations were detected after surgery. Thereby, the relationship between tumor makers, including CEA, and EGFR mutation and its influence on prognosis could be investigated. Results: Among 296 patients, the positive rate of EGFR gene mutation was 37.84% (112/296; the mutation occurred more frequently in nonsmokers, adenocarcinoma patients, women, and patients aged <60 years (P<0.05. Both tumor markers and chemosensitivity indicators were related to the profile of EGFR mutations. Elevated squamous cell carcinoma and Cyfra21-1 as well as positively expressed ERCC1 were more common in patients with wild-type EGFR (P<0.05, whereas increased CEA level was observed more frequently in patients with EGFR gene mutation (P=0.012. The positive rate of EGFR gene mutations was higher as the serum CEA level increased, that is, the positive rate in patients with serum CEA level <5, 5–20, and >20 µg/L was 39.81%, 45.32%, and 65.47%, respectively (P=0.004. Logistic regression analysis showed that CEA level was an independent factor in predicting EGFR gene mutations, and serum CEA level was also an independent factor in affecting the prognosis of NSCLC patients, as the overall 2-year survival rate was 73.86% in elevated CEA group and 86.43% in normal group (P<0.01. Conclusion: The prognosis of

  9. Location of Primary Tumor and Benefit From Anti-Epidermal Growth Factor Receptor Monoclonal Antibodies in Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer

    Science.gov (United States)

    Moretto, Roberto; Cremolini, Chiara; Rossini, Daniele; Pietrantonio, Filippo; Battaglin, Francesca; Mennitto, Alessia; Bergamo, Francesca; Loupakis, Fotios; Marmorino, Federica; Berenato, Rosa; Marsico, Valentina Angela; Caporale, Marta; Antoniotti, Carlotta; Masi, Gianluca; Salvatore, Lisa; Borelli, Beatrice; Fontanini, Gabriella; Lonardi, Sara; De Braud, Filippo

    2016-01-01

    Introduction. Right- and left-sided colorectal cancers (CRCs) differ in clinical and molecular characteristics. Some retrospective analyses suggested that patients with right-sided tumors derive less benefit from anti-epidermal growth factor receptor (EGFR) antibodies; however, molecular selection in those studies was not extensive. Patients and Methods. Patients with RAS and BRAF wild-type metastatic CRC (mCRC) who were treated with single-agent anti-EGFRs or with cetuximab-irinotecan (if refractory to previous irinotecan) were included in the study. Differences in outcome between patients with right- and left-sided tumors were investigated. Results. Of 75 patients, 14 and 61 had right- and left-sided tumors, respectively. None of the right-sided tumors responded according to RECIST, compared with 24 left-sided tumors (overall response rate: 0% vs. 41%; p = .0032), and only 2 patients with right-sided tumors (15%) versus 47 patients with left-sided tumors (80%) achieved disease control (p < .0001). The median duration of progression-free survival was 2.3 and 6.6 months in patients with right-sided and left-sided tumors, respectively (hazard ratio: 3.97; 95% confidence interval: 2.09–7.53; p < .0001). Conclusion. Patients with right-sided RAS and BRAF wild-type mCRC seemed to derive no benefit from single-agent anti-EGFRs. Implications for Practice: Right- and left-sided colorectal tumors have peculiar epidemiological and clinicopathological characteristics, distinct gene expression profiles and genetic alterations, and different prognoses. This study assessed the potential predictive impact of primary tumor site with regard to anti-epidermal growth factor receptor (EGFR) monoclonal antibody treatment in patients with RAS and BRAF wild-type metastatic colorectal cancer. The results demonstrated the lack of activity of anti-EGFRs in RAS and BRAF wild-type, right-sided tumors, thus suggesting a potential role for primary tumor location in driving treatment choices

  10. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    International Nuclear Information System (INIS)

    Páez, David; Salazar, Juliana; Paré, Laia; Pertriz, Lourdes; Targarona, Eduardo; Rio, Elisabeth del; Barnadas, Agusti; Marcuello, Eugenio; Baiget, Montserrat

    2011-01-01

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerase chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5′UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The ∗3/∗3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in ∗3/∗3 vs. 35% in ∗2/∗2 and ∗2/∗3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the ∗3/∗3 patients and 84 months for the ∗2/∗2 and ∗2/∗3 patients (p = .039). For XRCC1 Arg399Gln SNP, the median progression-free survival was 101 months for the G/G, 78 months for the G/A, and 31 months for the A/A patients (p = .048). Conclusions: The thymidylate

  11. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    Energy Technology Data Exchange (ETDEWEB)

    Paez, David, E-mail: dpaez@santpau.cat [Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Salazar, Juliana; Pare, Laia [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Pertriz, Lourdes [Department of Radiotherapy, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Targarona, Eduardo [Department of Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Rio, Elisabeth del [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Barnadas, Agusti; Marcuello, Eugenio [Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Baiget, Montserrat [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain)

    2011-12-01

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerase chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5 Prime UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The Asterisk-Operator 3/ Asterisk-Operator 3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in Asterisk-Operator 3/ Asterisk-Operator 3 vs. 35% in Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk-Operator 3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the Asterisk-Operator 3/ Asterisk-Operator 3 patients and 84 months for the Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk

  12. Breast cancer oestrogen independence mediated by BCAR1 or BCAR3 genes is transmitted through mechanisms distinct from the oestrogen receptor signalling pathway or the epidermal growth factor receptor signalling pathway

    International Nuclear Information System (INIS)

    Dorssers, Lambert CJ; Agthoven, Ton van; Brinkman, Arend; Veldscholte, Jos; Smid, Marcel; Dechering, Koen J

    2005-01-01

    Tamoxifen is effective for endocrine treatment of oestrogen receptor-positive breast cancers but ultimately fails due to the development of resistance. A functional screen in human breast cancer cells identified two BCAR genes causing oestrogen-independent proliferation. The BCAR1 and BCAR3 genes both encode components of intracellular signal transduction, but their direct effect on breast cancer cell proliferation is not known. The aim of this study was to investigate the growth control mediated by these BCAR genes by gene expression profiling. We have measured the expression changes induced by overexpression of the BCAR1 or BCAR3 gene in ZR-75-1 cells and have made direct comparisons with the expression changes after cell stimulation with oestrogen or epidermal growth factor (EGF). A comparison with published gene expression data of cell models and breast tumours is made. Relatively few changes in gene expression were detected in the BCAR-transfected cells, in comparison with the extensive and distinct differences in gene expression induced by oestrogen or EGF. Both BCAR1 and BCAR3 regulate discrete sets of genes in these ZR-75-1-derived cells, indicating that the proliferation signalling proceeds along distinct pathways. Oestrogen-regulated genes in our cell model showed general concordance with reported data of cell models and gene expression association with oestrogen receptor status of breast tumours. The direct comparison of the expression profiles of BCAR transfectants and oestrogen or EGF-stimulated cells strongly suggests that anti-oestrogen-resistant cell proliferation is not caused by alternative activation of the oestrogen receptor or by the epidermal growth factor receptor signalling pathway

  13. Expression and Prognostic Significance of Human Epidermal Growth Factor Receptors 1, 2 and 3 in Periampullary Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Jacob Elebro

    Full Text Available Periampullary adenocarcinoma, including pancreatic cancer, is a heterogeneous group of tumours with dismal prognosis, for which there is an urgent need to identify novel treatment strategies. The human epithelial growth factor receptors EGFR, HER2 and HER3 have been studied in several tumour types, and HER-targeting drugs have a beneficial effect on survival in selected types of cancer. However, these effects have not been evident in pancreatic cancer, and remain unexplored in other types of periampullary cancer. The prognostic impact of HER-expression in these cancers also remains unclear. The aim of this study was therefore to examine the expression and prognostic value of EGFR, HER2 and HER3 in periampullary cancer, with particular reference to histological subtype. To this end, protein expression of EGFR, HER2 and HER3, and HER2 gene amplification was assessed by immunohistochemistry and silver in situ hybridization, respectively, on tissue microarrays with tumours from 175 periampullary adenocarcinomas, with follow-up data on recurrence-free survival (RFS and overall survival (OS for up to 5 years. EGFR expression was similar in pancreatobiliary (PB and intestinal (I type tumours, but high HER2 and HER3 expression was significantly more common in I-type tumours. In PB-type cases receiving adjuvant gemcitabine, but not in untreated cases, high EGFR expression was significantly associated with a shorter OS and RFS, with a significant treatment interaction in relation to OS (pinteraction = 0.042. In I-type cases, high EGFR expression was associated with a shorter OS and RFS in univariable, but not in multivariable, analysis. High HER3 expression was associated with a prolonged RFS in univariable, but not in multivariable, analysis. Neither HER2 protein expression nor gene amplification was prognostic. The finding of a potential interaction between the expression of EGFR and response to adjuvant chemotherapy in PB-type tumours needs validation

  14. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells.

    Science.gov (United States)

    Kang, Minyong; Lee, Kyoung-Hwa; Lee, Hye Sun; Jeong, Chang Wook; Kwak, Cheol; Kim, Hyeon Hoe; Ku, Ja Hyeon

    2017-02-04

    Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR) inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1), chloroquine (CQ) and 3-methyladenine (3-MA) were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8) assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI) was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA) remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating a novel

  15. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2017-02-01

    Full Text Available Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1, chloroquine (CQ and 3-methyladenine (3-MA were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8 assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating

  16. Trastuzumab Emtansine in Treating Older Patients With Human Epidermal Growth Factor Receptor 2-Positive Stage I-III Breast Cancer

    Science.gov (United States)

    2018-02-01

    Estrogen Receptor Status; HER2 Positive Breast Carcinoma; Progesterone Receptor Status; Stage I Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  17. Complete remission through icotinib treatment in Non-small cell lung cancer epidermal growth factor receptor mutation patient with brain metastasis: A case report

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2016-01-01

    Full Text Available Brain metastasis (BM has been universally recognized as a poor prognostic factor in non-small cell lung cancer (NSCLC. Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs have shown efficacy in treating BM with an EGFR mutation. This paper reports a case of BM patient with EGFR-mutated NSCLC. According to the findings, a complete remission (CR of the BM was achieved by icotinib treatment without conducting a radiotherapy, which was followed by a resection of the primary lung cancer lesion and lymph nodes. After one-year follow-up, the disease progressed to liver metastasis and liver lesion biopsy showed a T790M mutation. The patient responded well to the combination treatment of AZD9291 and icotinib after the failure of transcatheter arterial chemoembolization (TACE. This case report suggests that icotinib has a sustainable anticancer response to BM and the combination with icotinib and AZD9291 is effective for liver metastasis with T790M.

  18. Computed Tomography-Guided Core-Needle Biopsy Specimens Demonstrate Epidermal Growth Factor Receptor Mutations in Patients with Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Chen, C.M.; Chang, J.W.C.; Cheung, Y.C.; Lin, G.; Hsieh, J.J.; Hsu, T.; Huang, S.F.

    2008-01-01

    Background: Target therapy with a new class of epidermal growth factor receptor (EGFR) inhibitors shows improved clinical response in EGFR gene-mutated lung cancers. Purpose: To evaluate the use of computed tomography (CT)-guided core-needle biopsy specimens for the assessment of EGFR gene mutation in non-small-cell lung cancer (NSCLC). Material and Methods: Seventeen (nine males, eight females) patients with advanced NSCLC were enrolled in this study. All patients underwent CT-guided core-needle biopsy of the lung tumor prior to treatment with the EGFR inhibitor gefitinib. There were no life-threatening complications of biopsy. The specimens were sent fresh-frozen for EGFR mutation analysis and histopathological study. Results: There were 12 (70.6%) EGFR gene mutants and five (29.4%) nonmutants. The objective response rate to gefitinib therapy was 73.3% (11 of 15 patients), with 91.7% (11 of 12 mutants) for the mutant group and 0% for the nonmutant group. Conclusion: CT-guided core-needle biopsy of advanced NSCLC enables the acquisition of sufficient tissue for EGFR gene mutation analysis

  19. Comparison of numerical change of epidermal growth factor receptor gene among pre- and postradiation glioma, and gliosis, and its clinical use

    International Nuclear Information System (INIS)

    Okada, Yoshifumi; Ohno, Chihiro; Ueki, Keisuke; Ogino, Masahiro; Kawamoto, Shunsuke; Kim, Phyo

    2007-01-01

    Surgery with following chemoradiotherapy is the mainstream glioma treatment. In the course of postradiation events, however, it is sometimes difficult for neurosurgeons, radiologists, and pathologists to discriminate tumor recurrence from radiation necrosis. The epidermal growth factor receptor (EGFR) gene, on chromosome 7, is known to gain in copy number frequently in high-grade gliomas. The authors applied the fluorescence in situ hybridization (FISH) method to observe the gene's numerical status in pre- and postradiation glioma samples to elucidate whether this technique is useful in the discrimination of glioma recurrence from radiation necrosis. When 15 postradiation glioma samples and 4 postradiation nonglioma samples were tested, all the recurrent glioma tissue harbored numerical aberrations of the gene, whereas no abnormality could be observed in necrosis or in nonglioma gliosis. FISH could even prove a residual glioma cell in a gliotic tissue taken by needle biopsy after gamma-knife radiosurgery, which had been executed on a supposed metastatic brain tumor. FISH is considered to be of help in accurate diagnosis, especially when the usual histopathological diagnosis is difficult because of radiation effects or small sample size. (author)

  20. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts

    Directory of Open Access Journals (Sweden)

    Delfina Costa

    2018-05-01

    Full Text Available Mesenchymal stromal cells (MSC present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF] can exert immunosuppressive effects on T and natural killer (NK lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16. In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR; thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3− NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3− cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy.

  1. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts

    Science.gov (United States)

    Costa, Delfina; Venè, Roberta; Benelli, Roberto; Romairone, Emanuele; Scabini, Stefano; Catellani, Silvia; Rebesco, Barbara; Mastracci, Luca; Grillo, Federica; Minghelli, Simona; Loiacono, Fabrizio; Zocchi, Maria Raffaella; Poggi, Alessandro

    2018-01-01

    Mesenchymal stromal cells (MSC) present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF)] can exert immunosuppressive effects on T and natural killer (NK) lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC) and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16). In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR); thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3− NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3− cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF) of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy. PMID:29910806

  2. Nutritional status in the era of target therapy: poor nutrition is a prognostic factor in non-small cell lung cancer with activating epidermal growth factor receptor mutations.

    Science.gov (United States)

    Park, Sehhoon; Park, Seongyeol; Lee, Se-Hoon; Suh, Beomseok; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Kim, Young Whan; Heo, Dae Seog

    2016-11-01

    Pretreatment nutritional status is an important prognostic factor in patients treated with conventional cytotoxic chemotherapy. In the era of target therapies, its value is overlooked and has not been investigated. The aim of our study is to evaluate the value of nutritional status in targeted therapy. A total of 2012 patients with non-small cell lung cancer (NSCLC) were reviewed and 630 patients with activating epidermal growth factor receptor (EGFR) mutation treated with EGFR tyrosine kinase inhibitor (TKI) were enrolled for the final analysis. Anemia, body mass index (BMI), and prognostic nutritional index (PNI) were considered as nutritional factors. Hazard ratio (HR), progression-free survival (PFS) and overall survival (OS) for each group were calculated by Cox proportional analysis. In addition, scores were applied for each category and the sum of scores was used for survival analysis. In univariable analysis, anemia (HR, 1.29; p = 0.015), BMI lower than 18.5 (HR, 1.98; p = 0.002), and PNI lower than 45 (HR, 1.57; p nutritional status is a prognostic marker in NSCLC patients treated with EGFR TKI. Hence, baseline nutritional status should be more carefully evaluated and adequate nutrition should be supplied to these patients.

  3. Advances in molecular-based personalized non-small-cell lung cancer therapy: targeting epidermal growth factor receptor and mechanisms of resistance

    International Nuclear Information System (INIS)

    Jotte, Robert M; Spigel, David R

    2015-01-01

    Molecularly targeted therapies, directed against the features of a given tumor, have allowed for a personalized approach to the treatment of advanced non-small-cell lung cancer (NSCLC). The reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib had undergone turbulent clinical development until it was discovered that these agents have preferential activity in patients with NSCLC harboring activating EGFR mutations. Since then, a number of phase 3 clinical trials have collectively shown that EGFR-TKI monotherapy is more effective than combination chemotherapy as first-line therapy for EGFR mutation-positive advanced NSCLC. The next generation of EGFR-directed agents for EGFR mutation-positive advanced NSCLC is irreversible TKIs against EGFR and other ErbB family members, including afatinib, which was recently approved, and dacomitinib, which is currently being tested in phase 3 trials. As research efforts continue to explore the various proposed mechanisms of acquired resistance to EGFR-TKI therapy, agents that target signaling pathways downstream of EGFR are being studied in combination with EGFR TKIs in molecularly selected advanced NSCLC. Overall, the results of numerous ongoing phase 3 trials involving the EGFR TKIs will be instrumental in determining whether further gains in personalized therapy for advanced NSCLC are attainable with newer agents and combinations. This article reviews key clinical trial data for personalized NSCLC therapy with agents that target the EGFR and related pathways, specifically based on molecular characteristics of individual tumors, and mechanisms of resistance

  4. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    Science.gov (United States)

    Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against the epidermal growth factor receptor (EGFR) is one of the most promising molecular therapeutics for head and neck squamous cell carcinoma (HNSCC). EGFR is overexpressed in a wide range of malignancies, including HNSCC, and initiates important signal transduction pathways in HNSCC carcinogenesis. However, primary and acquired resistance are serious problems and are responsible for low single-agent response rate and tumor recurrence. Therefore, an improved understanding of the molecular mechanisms of resistance to EGFR inhibitors may provide valuable indications to identify biomarkers that can be used clinically to predict response to EGFR blockade and to establish new treatment options to overcome resistance. To date, no predictive biomarker for HNSCC is available in the clinic. Therapeutic resistance to anti-EGFR therapy may arise from mechanisms that can compensate for reduced EGFR signaling and/or mechanisms that can modulate EGFR-dependent signaling. In this review, we will summarize some of these molecular mechanisms and describe strategies to overcome that resistance. PMID:23821327

  5. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    Science.gov (United States)

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  6. Radiotherapy for asymptomatic brain metastasis in epidermal growth factor receptor mutant non-small cell lung cancer without prior tyrosine kinase inhibitors treatment: a retrospective clinical study

    International Nuclear Information System (INIS)

    Liu, SongRan; Qiu, Bo; Chen, LiKun; Wang, Fang; Liang, Ying; Cai, PeiQiang; Zhang, Li; Chen, ZhaoLin; Liu, ShiLiang; Liu, MengZhong; Liu, Hui

    2015-01-01

    Non-small cell lung cancer (NSCLC) with brain metastasis (BM) harboring an epidermal growth factor receptor (EGFR) mutation shows good response to tyrosine kinase inhibitors (TKIs). This study is to assess the appropriate timing of brain radiotherapy (RT) for asymptomatic BM in EGFR mutant NSCLC patients. There were 628 patients diagnosed with EGFR mutant NSCLC between October 2005 and December 2011. Treatment outcomes had been retrospectively evaluated in 96 patients with asymptomatic BM without prior TKI treatment. 39 patients received first-line brain RT, 23 patients received delayed brain RT, and 34 patients did not receive brain RT. With a median follow-up of 26 months, the 2-year OS was 40.6 %. Univariate analyses revealed that ECOG performance status (p = 0.006), other distant metastases (p = 0.002) and first line systemic treatment (p = 0.032) were significantly associated with overall survival (OS). Multivariate analyses revealed that other sites of distant metastases (p = 0.030) were prognostic factor. The timing of brain RT was not significantly related to OS (p = 0.246). The 2-year BM progression-free survival (PFS) was 26.9 %. Brain RT as first-line therapy failed to demonstrate a significant association with BM PFS (p = 0.643). First-line brain RT failed to improve long-term survival in TKI-naïve EGFR mutant NSCLC patients with asymptomatic BM. Prospective studies are needed to validate these clinical findings

  7. Epidermal growth factor receptor signaling promotes metastatic prostate cancer through microRNA-96-mediated downregulation of the tumor suppressor ETV6.

    Science.gov (United States)

    Tsai, Yuan-Chin; Chen, Wei-Yu; Siu, Man Kit; Tsai, Hong-Yuan; Yin, Juan Juan; Huang, Jiaoti; Liu, Yen-Nien

    2017-01-01

    It has been suggested that ETV6 serves as a tumor suppressor; however, its molecular regulation and cellular functions remain unclear. We used prostate cancer as a model system and demonstrated a molecular mechanism in which ETV6 can be regulated by epidermal growth factor receptor (EGFR) signaling through microRNA-96 (miR-96)-mediated downregulation. In addition, EGFR acts as a transcriptional coactivator that binds to the promoter of primary miR-96 and transcriptionally regulates miR-96 levels. We analyzed two sets of clinical prostate cancer samples, confirmed association patterns that were consistent with the EGFR-miR-96-ETV6 signaling model and demonstrated that the reduced ETV6 levels were associated with malignant prostate cancer. Based on results derived from multiple approaches, we identified the biological functions of ETV6 as a tumor suppressor that inhibits proliferation and metastasis in prostate cancer. We present a molecular mechanism in which EGFR activation leads to the induction of miR-96 expression and suppression of ETV6, which contributes to prostate cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American Society of Clinical Oncology clinical practice guideline.

    Science.gov (United States)

    Ramakrishna, Naren; Temin, Sarah; Chandarlapaty, Sarat; Crews, Jennie R; Davidson, Nancy E; Esteva, Francisco J; Giordano, Sharon H; Gonzalez-Angulo, Ana M; Kirshner, Jeffrey J; Krop, Ian; Levinson, Jennifer; Modi, Shanu; Patt, Debra A; Perez, Edith A; Perlmutter, Jane; Winer, Eric P; Lin, Nancy U

    2014-07-01

    To provide formal expert consensus-based recommendations to practicing oncologists and others on the management of brain metastases for patients with human epidermal growth factor receptor 2 (HER2) -positive advanced breast cancer. The American Society of Clinical Oncology (ASCO) convened a panel of medical oncology, radiation oncology, guideline implementation, and advocacy experts and conducted a systematic review of the literature. When that failed to yield sufficiently strong quality evidence, the Expert Panel undertook a formal expert consensus-based process to produce these recommendations. ASCO used a modified Delphi process. The panel members drafted recommendations, and a group of other experts joined them for two rounds of formal ratings of the recommendations. No studies or existing guidelines met the systematic review criteria; therefore, ASCO conducted a formal expert consensus-based process. Patients with brain metastases should receive appropriate local therapy and systemic therapy, if indicated. Local therapies include surgery, whole-brain radiotherapy, and stereotactic radiosurgery. Treatments depend on factors such as patient prognosis, presence of symptoms, resectability, number and size of metastases, prior therapy, and whether metastases are diffuse. Other options include systemic therapy, best supportive care, enrollment onto a clinical trial, and/or palliative care. Clinicians should not perform routine magnetic resonance imaging (MRI) to screen for brain metastases, but rather should have a low threshold for MRI of the brain because of the high incidence of brain metastases among patients with HER2-positive advanced breast cancer. © 2014 by American Society of Clinical Oncology.

  9. A new analysis approach of epidermal growth factor receptor pathway activation patterns provides insights into cetuximab resistance mechanisms in head and neck cancer

    Directory of Open Access Journals (Sweden)

    von der Heyde Silvia

    2012-05-01

    Full Text Available Abstract The pathways downstream of the epidermal growth factor receptor (EGFR have often been implicated to play crucial roles in the development and progression of various cancer types. Different authors have proposed models in cell lines in which they study the modes of pathway activities after perturbation experiments. It is prudent to believe that a better understanding of these pathway activation patterns might lead to novel treatment concepts for cancer patients or at least allow a better stratification of patient collectives into different risk groups or into groups that might respond to different treatments. Traditionally, such analyses focused on the individual players of the pathways. More recently in the field of systems biology, a plethora of approaches that take a more holistic view on the signaling pathways and their downstream transcriptional targets has been developed. Fertig et al. have recently developed a new method to identify patterns and biological process activity from transcriptomics data, and they demonstrate the utility of this methodology to analyze gene expression activity downstream of the EGFR in head and neck squamous cell carcinoma to study cetuximab resistance. Please see related article: http://www.biomedcentral.com/1471-2164/13/160

  10. Dasatinib blocks cetuximab- and radiation-induced nuclear translocation of the epidermal growth factor receptor in head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Li Chunrong; Iida, Mari; Dunn, Emily F.; Wheeler, Deric L.

    2010-01-01

    Background and purpose: The aberrant expression of epidermal growth factor receptor (EGFR) has been linked to the etiology of head and neck squamous cell carcinoma (HNSCC). The first major phase III trial combining cetuximab with radiation confirmed a strong survival advantage. However, both cetuximab and radiation can promote EGFR translocation to the nucleus where it enhances resistance to both of these modalities. In this report we sought to determine how to block cetuximab- and radiation-induced translocation of EGFR to the nucleus in HNSCC cell lines. Material and methods: We utilized three established HNSCC cell lines, SCC1, SCC6 and SCC1483 and measured nuclear translocation of EGFR after treatment with cetuximab or radiation. We then utilized dasatinib (BMS-354825), a potent, orally bioavailable inhibitor of several tyrosine kinases, including the Src family kinases, to determine if SFKs blockade could abrogate cetuximab- and radiation-induced nuclear EGFR translocation. Results: Cetuximab and radiation treatment of all three HNSCC lines lead to translocation of the EGFR to the nucleus. Blockade of SFKs abrogated cetuximab- and radiation-induced EGFR translocation to the nucleus. Conclusions: The data presented in this report suggest that both cetuximab and radiation can promote EGFR translocation to the nucleus and dasatinib can inhibit this process. Collectively these findings may suggest that dasatinib can limit EGFR translocation to the nucleus and may enhance radiotherapy plus cetuximab in HNSCC.

  11. Characteristics and treatment of human epidermal growth factor receptor 2 positive breast cancer: 43,485 cases from the National Cancer Database treated in 2010 and 2011.

    Science.gov (United States)

    Killelea, Brigid K; Chagpar, Anees B; Horowitz, Nina R; Lannin, Donald R

    2017-02-01

    Although identification of human epidermal growth factor receptor 2 (Her2) positive breast cancer represents one of the greatest advances over the past 3 decades, it has not been studied extensively on a national level. The National Cancer Database is a joint project of the American Cancer Society and the American College of Surgeons and contains data on about 70% of the cancer cases in the United States. Data on Her2 have been collected since 2010 and was used for this study. Of 298,937 cases of invasive breast cancer with known Her2 status diagnosed in 2010 and 2011, 43,485 (14.5%) were Her2 positive. Her2 positivity was greatest in Asian/Pacific Islanders and least in non-Hispanic Whites and was markedly more common in younger women. The incidence of Her2 positive tumors ranged from a low of 13.9% in the Mountain West region to a high of 16.0% in the West South Central region (P breast preservation (odds ratio = .78, confidence interval = .76 to .80). Her2 positive tumors have distinct epidemiologic, clinical, and treatment characteristics. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Use of CT-guided fine needle aspiration biopsy in epidermal growth factor receptor mutation analysis in patients with advanced lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Yi-Ping; Wang, Hai-Yan; Zhang, Jin; Feng, Yong (Dept. of Radiology, Jiangsu Cancer Inst. and Hospital, Nanjing, Jiangsu (China)), email: yipingzhuang2010@sina.com; Shi, Mei-Qi (Dept. of Chemotherapy, Jiangsu Cancer Inst. and Hospital, Nanjing, Jiangsu (China))

    2011-12-15

    Background. The safety of using a cutting needle when performing a core-needle biopsy is of major concern, in particular for small lung tumors or tumors near the hilum. Purpose. To investigate the usefulness of CT-guided fine needle aspiration biopsy (FNAB) of the lung in obtaining tumor tissue for epidermal growth factor receptor (EGFR) mutation analysis in advanced lung cancer patients. Material and Methods. Forty-three patients with stage IIIB-IV lung cancer were enrolled. In all patients, CT-guided FNAB was performed using an 18-gauge or 20-gauge Chiba aspiration needle for histology diagnosis and EGFR mutation analysis. Complications associated with CT-guided FNAB were observed, and the specimen mutational assessments were recorded. Results. The obtained tumor samples ranged from 0.5-1.5 cm in length and were adequate for histological and DNA analyses in all patients. No patient had a pneumothorax or hemoptysis. Minor needle tract bleeding appeared in eight patients. Mutation analysis was satisfactorily demonstrated in 23 mutations and 20 non-mutations. Ten and 13 mutations were identified by 18-gauge and 20-gauge needle biopsies, respectively. EFGR mutations, including 12 cases of EGFR exon 19 deletion and 11 cases of exon 21 point mutation, were present in 21 patients with adenocarcinomas, one with squamous cell carcinoma, and one with undifferentiated carcinoma. Conclusion. CT-guided FNAB is a feasible and safe technique for obtaining lung tumor tissues for EGFR gene mutation analysis

  13. In Vivo Imaging of Xenograft Tumors Using an Epidermal Growth Factor Receptor-Specific Affibody Molecule Labeled with a Near-infrared Fluorophore

    Directory of Open Access Journals (Sweden)

    Haibiao Gong

    2010-02-01

    Full Text Available Overexpression of epidermal growth factor receptor (EGFR is associated with many types of cancers. It is of great interest to noninvasively image the EGFR expression in vivo. In this study, we labeled an EGFR-specific Affibody molecule (Eaff with a near-infrared (NIR dye IRDye800CW maleimide and tested the binding of this labeled molecule (Eaff800 in cell culture and xenograft mouse tumor models. Unlike EGF, Eaff did not activate the EGFR signaling pathway. Results showed that Eaff800 was bound and taken up specifically by EGFR-overexpressing A431 cells. When Eaff800 was intravenously injected into nude mice bearing A431 xenograft tumors, the tumor could be identified 1 hour after injection and it became most prominent after 1 day. Images of dissected tissue sections demonstrated that the accumulation of Eaff800 was highest in the liver, followed by the tumor and kidney. Moreover, in combination with a human EGFR type 2 (HER2-specific probe Haff682, Eaff800 could be used to distinguish between EGFR- and HER2-overexpressing tumors. Interestingly, the organ distribution pattern and the clearance rate of Eaff800 were different from those of Haff682. In conclusion, Eaff molecule labeled with a NIR fluorophore is a promising molecular imaging agent for EGFR-overexpressing tumors.

  14. The expression of epidermal growth factor receptor results in a worse prognosis for patients with rectal cancer treated with preoperative radiotherapy: a multicenter, retrospective analysis

    International Nuclear Information System (INIS)

    Giralt, Jordi; Heras, Manuel de las; Cerezo, Laura; Eraso, Aranzazu; Hermosilla, Edurado; Velez, Dolores; Lujan, Juan; Espin, Eloi; Rossello, Jose; Majo, Joaquin; Benavente, Sergi; Armengol, Manel; Torres, I. de

    2005-01-01

    Background and purpose: Expression of epidermal growth factor receptor (EGFR) is observed in 50-70% of colorectal carcinoma and is associated with poor prognosis. The aim of this study was to determine the prognostic value of EGFR status before radiotherapy in a group of patients with locally advanced rectal cancer treated with preoperative radiotherapy. Patients and methods: Eighty-seven patients were studied retrospectively. Treatment consisted of pelvic radiotherapy, in 50 patients with concomitant chemotherapy and surgical resection. Immunohistochemistry for EGFR was determined at the preradiation biopsy and in the resected specimens. Immunohistochemical analysis for EGFR expression was evaluated according to extension and staining intensity. We defined positive staining (EGFR positive), when extension was 5% or more. Results: A total of 52 of 87 tumors showed EGFR positive status at biopsy (60%) and EGFR expression was associated neither with clinical tumor stage nor with clinical nodal stage. EGFR positive expression was linked to a lack of pathologic complete response to preoperative radiotherapy (P=0.006). Disease-free survival was lower among patients with EGFR positive status before radiotherapy (P=0.003). In a multivariate analysis EGFR expression at biopsy was a statistically significant predictor of disease-free survival, RR=2.88 (1.1-7.8), P=0.036. Conclusions: EGFR is expressed in a significant number of rectal tumors. EGFR-positive expression before radiotherapy is an indicator for poor response and low disease-free survival

  15. Discordance of Mutation Statuses of Epidermal Growth Factor Receptor and K-ras between Primary Adenocarcinoma of Lung and Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Kun-Ming Rau

    2016-04-01

    Full Text Available Mutations on epidermal growth factor receptor (EGFR of adenocarcinomas of lung have been found to be associated with increased sensitivity to EGFR tyrosine kinase inhibitors and K-ras mutations may correlate with primary resistance. We aimed to explore the discordant mutation statuses of EGFR and K-ras between primary tumors and matched brain metastases in adenocarcinomas of lung. We used a sensitive Scorpion ARMS method to analyze EGFR mutation, and Sanger sequencing followed by allele-specific real-time polymerase chain reaction to analyze K-ras mutation. Forty-nine paired tissues with both primary adenocarcinoma of lung and matched brain metastasis were collected. Thirteen patients (26.5% were discordant for the status of EGFR between primary and metastatic sites. K-ras gene could be checked in paired specimens from 33 patients, thirteen patients (39.6% were discordant for the status of K-ras. In primary lung adenocarcinoma, there were 14 patients of mutant EGFR had mutant K-ras synchronously. This study revealed that the status of EGFR mutation in lung adenocarcinomas is relatively consistent between primary and metastatic sites compared to K-ras mutation. However, there are still a few cases of adenocarcinoma of lung showing discordance for the status of EGFR mutation. Repeated analysis of EGFR mutation is highly recommended if tissue from metastatic or recurrent site is available for the evaluation of target therapy.

  16. Clinical features and treatment outcome of non-small cell lung cancer (NSCLC) patients with uncommon or complex epidermal growth factor receptor (EGFR) mutations

    Science.gov (United States)

    Fassan, Matteo; Indraccolo, Stefano; Calabrese, Fiorella; Favaretto, Adolfo; Bonanno, Laura; Polo, Valentina; Zago, Giulia; Lunardi, Francesca; Attili, Ilaria; Pavan, Alberto; Rugge, Massimo; Guarneri, Valentina; Conte, PierFranco; Pasello, Giulia

    2017-01-01

    Introduction Tyrosine-kinase inhibitors (TKIs) represent the best treatment for advanced non-small cell lung cancer (NSCLC) with common exon 19 deletion or exon 21 epidermal growth factor receptor mutation (EGFRm). This is an observational study investigating epidemiology, clinical features and treatment outcome of NSCLC cases harbouring rare/complex EGFRm. Results Among 764 non-squamous NSCLC cases with known EGFRm status, 26(3.4%) harboured rare/complex EGFRm. Patients receiving first-line TKIs (N = 17) achieved median Progression Free Survival (PFS) and Overall Survival (OS) of 53 (IC 95%, 2–105) and 84 (CI 95%, 27–141) weeks respectively, without significant covariate impact. Response Rate and Disease Control Rate (DCR) were 47% and 65%, respectively. Uncommon exon 19 mutations achieved longer OS and PFS and higher DCR compared with exon 18 and 20 mutations. No additional gene mutation was discovered by MassARRAY analysis. TKIs were globally well tolerated. Materials and methods A retrospective review of advanced non-squamous NSCLC harbouring rare/complex EGFRm referred to our Center between 2010 and 2015 was performed. Additional molecular pathways disregulation was explored in selected cases, through MassARRAY analysis. Conclusions Peculiar clinical features and lower TKIs sensitivity of uncommon/complex compared with common EGFRm were shown. Exon 19 EGFRm achieved the best TKIs treatment outcome, while the optimal treatment of exon 18 and 20 mutations should be further clarified. PMID:28427238

  17. Antibody guided diagnosis and therapy of brain gliomas using radiolabeled monoclonal antibodies against epidermal growth factor receptor and placental alkaline phosphatase

    International Nuclear Information System (INIS)

    Kalofonos, H.P.; Pawlikowska, T.R.; Hemingway, A.

    1989-01-01

    Twenty-seven patients with brain glioma were scanned using 123 I-labeled monoclonal antibodies against epidermal growth factor receptor (EGFR1) or placental alkaline phosphatase (H17E2). Successful localization was achieved in 18 out of 27 patients. Eleven out of 27 patients were also studied using a nonspecific control antibody (11.4.1) of the same immunoglobulin subclass and observable tumor localization was also achieved in five patients. The specificity of targeting was assessed by comparing images obtained with specific and nonspecific antibodies and by examining tumor and normal tissue biopsies after dual antibody administration. Ten patients with recurrent grade III or IV glioma who showed good localization of radiolabeled antibody were treated with 40-140 mCi of 131 I-labeled antibody delivered to the tumor area intravenously (n = 5) or by infusion into the internal carotid artery (n = 5). Six patients showed clinical improvement lasting from 6 mo to 3 yr. One patient continues in remission (3 yr after therapy), but the other five who responded initially relapsed 6-9 mo after therapy and died. No major toxicity was attributable to antibody-guided irradiation. Targeted irradiation by monoclonal antibody may be clinically useful and should be explored further in the treatment of brain gliomas resistant to conventional forms of treatment

  18. Specific receptors for epidermal growth factor in human bone tumour cells and its effect on synthesis of prostaglandin E2 by cultured osteosarcoma cell line

    International Nuclear Information System (INIS)

    Hirata, Y.; Uchihashi, M.; Nakashima, H.; Fujita, T.; Matsukura, S.; Matsui, K.

    1984-01-01

    Using tumour cell lines derived from human bone tumours, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator in many tissues, and its effect on synthesis of prostaglandin (PG) E 2 , a potent bone-resorbing factor, by cultured osteosarcoma cell line were studied. Three tumour cell lines, one osteosarcoma (HOSO) and two giant cell tumours of the bone (G-1 and G-2), all possessed specific binding sites for 125 I-labelled EGF: the apparent dissociation constant was approximately 4-10 x 10 -10 M and the maximal binding capacity was 50 000-80 000 sites/cell. EGF had no mitogenic effect in these cell lines. However, these cell lines did not have specific binding sites for 125 I-labelled parathyroid hormone (PTH) or calcitonin. HOSO line produced and secreted PGE 2 into medium, while no significant amount of PGE 2 was demonstrated in G-1 or G-2 line. EGF significantly stimulated PGE 2 production in HOSO line in a dose-dependent manner (0.5-50 ng/ml); its stimulatory effect was completely abolished by indomethacin, an inhibitor of PG biosynthesis. Exogenous PGE 1 significantly stimulated cyclic AMP formation in HOSO line, whereas PGFsub(2α) PTH, calcitonin, or EGF had no effect. None of these calcium-regulating hormones affected cyclic AMP generation in either G-1 of G-2 line. These data indicate that human bone tumour cells have specific EGF receptors unrelated to cell growth, and suggest that EGF may be involved in bone resorption through a PGE 2 -mediated process in human osseous tissues. (author)

  19. Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7.

    Directory of Open Access Journals (Sweden)

    Felicity C Kalinowski

    Full Text Available Elevated expression and activity of the epidermal growth factor receptor (EGFR/protein kinase B (Akt signaling pathway is associated with development, progression and treatment resistance of head and neck cancer (HNC. Several studies have demonstrated that microRNA-7 (miR-7 regulates EGFR expression and Akt activity in a range of cancer cell types via its specific interaction with the EGFR mRNA 3'-untranslated region (3'-UTR. In the present study, we found that miR-7 regulated EGFR expression and Akt activity in HNC cell lines, and that this was associated with reduced growth in vitro and in vivo of cells (HN5 that were sensitive to the EGFR tyrosine kinase inhibitor (TKI erlotinib (Tarceva. miR-7 acted synergistically with erlotinib to inhibit growth of erlotinib-resistant FaDu cells, an effect associated with increased inhibition of Akt activity. Microarray analysis of HN5 and FaDu cell lines transfected with miR-7 identified a common set of downregulated miR-7 target genes, providing insight into the tumor suppressor function of miR-7. Furthermore, we identified several target miR-7 mRNAs with a putative role in the sensitization of FaDu cells to erlotinib. Together, these data support the coordinate regulation of Akt signaling by miR-7 in HNC cells and suggest the therapeutic potential of miR-7 alone or in combination with EGFR TKIs in this disease.

  20. Evaluation of 4-[(18)F]fluorobenzoyl-FALGEA-NH(2) as a positron emission tomography tracer for epidermal growth factor receptor mutation variant III imaging in cancer

    DEFF Research Database (Denmark)

    Denholt, Charlotte Lund; Binderup, Tina; Stockhausen, Marie-Thérése

    2011-01-01

    This study describes the radiosynthesis, in vitro and in vivo evaluation of the novel small peptide radioligand, 4-[(18)F]fluorobenzoyl-Phe-Ala-Leu-Gly-Glu-Ala-NH(2,) ([(18)F]FBA-FALGEA-NH(2)) as a positron emission tomography (PET) tracer for imaging of the cancer specific epidermal growth facto...

  1. Effects of icotinib on early-stage non-small-cell lung cancer as neoadjuvant treatment with different epidermal growth factor receptor phenotypes

    Directory of Open Access Journals (Sweden)

    Wang T

    2016-03-01

    , epidermal growth factor receptor, tyrosine kinase inhibitor, neoadjuvant

  2. Epidermal growth factor receptor inhibitor PKI-166 governs cardiovascular protection without beneficial effects on the kidney in hypertensive 5/6 nephrectomized rats.

    Science.gov (United States)

    Ulu, Nadir; Mulder, Gemma M; Vavrinec, Peter; Landheer, Sjoerd W; Duman-Dalkilic, Basak; Gurdal, Hakan; Goris, Maaike; Duin, Marry; van Dokkum, Richard P E; Buikema, Hendrik; van Goor, Harry; Henning, Robert H

    2013-06-01

    Transactivation of epidermal growth factor receptor (EGFR) signaling by G protein-coupled receptors has been implicated in several cardiovascular (CV) conditions, including hypertension, heart failure, and cardiac and vascular hypertrophy. However, the therapeutic potential of EGFR inhibition in these conditions is currently unknown. The main objective of the present study was to investigate cardiac, vascular, and renal effects of EGFR inhibition by 4-[4-[[(1R)-1-phenylethyl]amino]-7H-pyrrolo[2,3-d]pyrimidin-6-yl]phenol (PKI-166) in the hypertensive chronic kidney disease model. Rats underwent 5/6 nephrectomy (5/6Nx) and were treated with PKI-166, lisinopril or vehicle from week 6 after disease induction until week 12. Sham animals received either PKI-166 or vehicle. Treatment with PKI-166 did not affect the development of the characteristic renal features in 5/6Nx, including proteinuria, diminished creatinine clearance, and increased glomerulosclerosis, whereas these were attenuated by lisinopril. Despite absence of effects on progressive renal damage, PKI-166 attenuated the progression of hypertension and maintained cardiac function (left ventricle end-diastolic pressure) to a similar extent as lisinopril. Also, PKI-166 attenuated the increase in phosphorylated EGFR in the heart as induced by 5/6Nx. Moreover, PKI-166 and lisinopril restored the impaired contraction of isolated thoracic aortic rings to phenylephrine and angiotensin II and impaired myogenic constriction of small mesenteric arteries in 5/6Nx rats. Blockade of the EGFR displays a CV benefit independent of limiting the progression of renal injury. Our findings extend the evidence on EGFR signaling as a target in CV disorders.

  3. Establishment of EMab-134, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody for Detecting Squamous Cell Carcinoma Cells of the Oral Cavity.

    Science.gov (United States)

    Itai, Shunsuke; Yamada, Shinji; Kaneko, Mika K; Chang, Yao-Wen; Harada, Hiroyuki; Kato, Yukinari

    2017-12-01

    Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, activates downstream signaling cascades in many tumors. In this study, we established novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. We immunized mice with a combination of the extracellular domain of EGFR and EGFR-overexpressing LN229 glioblastoma cells (LN229/EGFR) and performed the first screening using enzyme-linked immunosorbent assay. Next, we selected mAbs using flow cytometry. Among 156 established clones, two mAbs, EMab-51 (IgG 1 , kappa) and EMab-134 (IgG 1 , kappa), reacted with EGFR in Western blot analysis; EMab-134 showed a much higher sensitivity compared with EMab-51. We compared the binding affinities of EMab-51 and EMab-134 using flow cytometry; the calculated K D values for EMab-51 and EMab-134 against SAS cells/HSC-2 cells were 9.2 × 10 -9 M/9.9 × 10 -9 M and 2.6 × 10 -9 M/8.3 × 10 -9 M, respectively, indicating that EMab-134 has a higher affinity to EGFR-expressing cells. Immunohistochemical analysis of EMab-51 and EMab-134 showed sensitive and specific reactions against oral cancer cells; EMab-134 demonstrated a much higher sensitivity (36/38 cases; 94.7%) to oral squamous cell carcinomas compared with EMab-51 (6/38 cases; 15.8%). This novel anti-EGFR mAb, EMab-134, could be advantageous for detecting EGFR in the pathological analysis of EGFR-expressing cancers.

  4. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing.

    Science.gov (United States)

    Turk, Harmony F; Monk, Jennifer M; Fan, Yang-Yi; Callaway, Evelyn S; Weeks, Brad; Chapkin, Robert S

    2013-05-01

    Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its metabolic precursor eicosapentaenoic acid (EPA) reduced wound-induced EGFR transactivation compared with control (no fatty acid or linoleic acid). Under wounding conditions, the suppression of EGFR activation was associated with a reduction in downstream activation of cytoskeletal remodeling proteins (PLCγ1, Rac1, and Cdc42). Subsequently, DHA and EPA reduced cell migration in response to wounding. Mice were fed a corn oil-, DHA-, or EPA-enriched diet prior to intestinal wounding (2.5% dextran sodium sulfate for 5 days followed by termination after 0, 3, or 6 days of recovery). Mortality was increased in EPA-fed mice and colonic histological injury scores were increased in EPA- and DHA-fed mice compared with corn oil-fed (control) mice. Although kinetics of colonic EGFR activation and downstream signaling (PLCγ1, Rac1, and Cdc42) were delayed by both n-3 PUFA, colonic repair was increased in EPA- relative to DHA-fed mice. These results indicate that, during the early response to intestinal wounding, DHA and EPA uniquely delay the activation of key wound-healing processes in the colon. This effect is mediated, at least in part, via suppression of EGFR-mediated signaling and downstream cytoskeletal remodeling.

  5. Immunohistochemically determined total epidermal growth factor receptor levels not of prognostic value in newly diagnosed glioblastoma multiforme: Report from the Radiation Therapy Oncology Group

    International Nuclear Information System (INIS)

    Chakravarti, Arnab; Seiferheld, Wendy; Tu Xiaoyu; Wang Huijun; Zhang Huazhong; Ang, K. Kian; Hammond, Elizabeth; Curran, Walter; Mehta, Minesh

    2005-01-01

    Purpose: The Radiation Therapy Oncology Group (RTOG) performed an analysis of patterns of immunohistochemically detected total epidermal growth factor receptor (EGFR) protein expression levels and their prognostic significance on archival tissue in newly diagnosed glioblastoma multiforme (GBM) patients from prior prospective RTOG clinical trials. Methods and materials: Patients in this study had been treated on previous RTOG GBM trials (RTOG 7401, 7918, 8302, 8409, 9006, 9305, 9602, and 9806). Tissue microarrays were prepared from 155 patients enrolled in these trials. These specimens were stained using a mouse monoclonal antibody specific for the extracellular binding domain of EGFR to detect total EGFR (including both wild-type phosphorylated and wild-type unphosphorylated isoforms with some cross-reactivity with EGFRvIII). The intensity of total EGFR protein expression was measured by computerized quantitative image analysis using the SAMBA 4000 Cell Image Analysis System. The parameters measured were the mean optical densities over the labeled areas and the staining index, which represents the proportion of stained area relative to the mean stain concentration. Both parameters were correlated with the clinical outcome. Results: No differences in either overall or progression-free survival could be demonstrated by the mean optical density class or mean optical density quartile or the staining index of total EGFR immunostaining among the representative RTOG GBM cases. Conclusion: Total EGFR protein expression levels, as measured immunohistochemically, do not appear to be of prognostic value in newly diagnosed GBM patients. Given the accumulating clinical evidence of the activity of anti-EGFR agents in GBM and the preclinical data suggesting the important role of downstream mediators as effectors of EGFR signaling, the RTOG is conducting additional investigations into the prognostic value of activation patterns of EGFR signaling, both at the level of the receptor

  6. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    OpenAIRE

    Westwood, Marie; Joore, Manuela; Whiting, Penny; Asselt, Thea; Ramaekers, Bram; Armstrong, Nigel; Misso, Kate; Severens, Hans; Kleijnen, Jos

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment with standard chemotherapy. Patients with NSCLC are therefore tested for EGFR-TK tumour gene mutations to inform treatment decisions. There are a variety of tests available to detect these mutations. T...

  7. Internalization and down-regulation of the human epidermal growth factor receptor are regulated by the carboxyl-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Beguinot, L

    1991-01-01

    with receptors in which 1, 2, or all 3 tyrosines were changed to phenylalanines. The triple point mutant EGF-R, expressed in NIH-3T3, exhibited low autophosphorylation in vivo, low biological and reduced kinase activities. Single and double point mutants were down-regulated, as well as wild type EGF......-R in response to EGF showing a half-life of about 1 h. Degradation of the triple point mutant, however, was impaired and resulted in a half-life of 4 h in the presence of EGF. EGF-dependent down-regulation of surface receptors was decreased in the triple point mutant EGF-R as was internalization and degradation...... of EGF. The specific rate of internalization of the triple point mutant was reduced. By contrast, intracellular processing of ligand previously internalized at 20 degrees C was similar between wild type and mutant receptors. Taken together the data indicate that the delay in degradation observed in cells...

  8. Epidermal growth factor and growth in vivo

    International Nuclear Information System (INIS)

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of 3 H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of 3 H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated

  9. The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans

    NARCIS (Netherlands)

    Stacey, Martin; Chang, Gin-Wen; Davies, John Q.; Kwakkenbos, Mark J.; Sanderson, Ralph D.; Hamann, Jörg; Gordon, Siamon; Lin, Hsi-Hsien

    2003-01-01

    Using multivalent protein probes, an evolutionarily conserved endogenous ligand for EMR2, a human myeloid cell-restricted EGF-TM7 receptor, was identified on the surface of a number of adherent cell lines. In addition, in situ staining of the ligand has revealed specific in vivo patterns consistent

  10. Suppressors for Human Epidermal Growth Factor Receptor 2/4 (HER2/4): A New Family of Anti-Toxoplasmic Agents in ARPE-19 Cells.

    Science.gov (United States)

    Kim, Yeong Hoon; Bhatt, Lokraj; Ahn, Hye-Jin; Yang, Zhaoshou; Lee, Won-Kyu; Nam, Ho-Woo

    2017-10-01

    The effects of tyrosine kinase inhibitors (TKIs) were evaluated on growth inhibition of intracellular Toxoplasma gondii in host ARPE-19 cells. The number of tachyzoites per parasitophorous vacuolar membrane (PVM) was counted after treatment with TKIs. T. gondii protein expression was assessed by western blot. Immunofluorescence assay was performed using Programmed Cell Death 4 (PDCD4) and T. gondii GRA3 antibodies. The TKIs were divided into 3 groups; non-epidermal growth factor receptor (non-EGFR), anti-human EGFR 2 (anti-HER2), and anti-HER2/4 TKIs, respectively. Group I TKIs (nintedanib, AZD9291, and sunitinib) were unable to inhibit proliferation without destroying host cells. Group II TKIs (lapatinib, gefitinib, erlotinib, and AG1478) inhibited proliferation up to 98% equivalent to control pyrimethamine (5 μM) at 20 μM and higher, without affecting host cells. Group III TKIs (neratinib, dacomitinib, afatinib, and pelitinib) inhibited proliferation up to 98% equivalent to pyrimethamine at 1-5 μM, but host cells were destroyed at 10-20 μM. In Group I, TgHSP90 and SAG1 inhibitions were weak, and GRA3 expression was moderately inhibited. In Group II, TgHSP90 and SAG1 expressions seemed to be slightly enhanced, while GRA3 showed none to mild inhibition; however, AG1478 inhibited all proteins moderately. Protein expression was blocked in Group III, comparable to pyrimethamine. PDCD4 and GRA3 were well localized inside the nuclei in Group I, mildly disrupted in Group II, and were completely disrupted in Group III. This study suggests the possibility of a vital T. gondii TK having potential HER2/4 properties, thus anti-HER2/4 TKIs may inhibit intracellular parasite proliferation with minimal adverse effects on host cells.

  11. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    Directory of Open Access Journals (Sweden)

    Bruno Pereira Carreira

    2014-10-01

    Full Text Available Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO, which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSC, and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (LPS plus IFN-γ, using a culture system of subventricular zone (SVZ-derived NSC mixed with microglia cells obtained from wild-type mice (iNOS+/+ or from iNOS knockout mice (iNOS-/-. We found an impairment of NSC cell proliferation in iNOS+/+ mixed cultures, which was not observed in iNOS-/- mixed cultures. Furthermore, the increased release of NO by activated iNOS+/+ microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite, or using the peroxynitrite degradation catalyst FeTMPyP, cell proliferation and ERK signaling were restored to basal levels in iNOS+/+ mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 µM, for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the

  12. Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab

    Directory of Open Access Journals (Sweden)

    Chen Gang

    2012-03-01

    Full Text Available Abstract Background The epidermal growth factor receptor (EGFR is a validated therapeutic target in non-small cell lung cancer (NSCLC. However, current single agent receptor targeting does not achieve a maximal therapeutic effect, and some mutations confer resistance to current available agents. In the current study we have examined, in different NSCLC cell lines, the combined effect of RNA interference targeting the EGFR mRNA, and inactivation of EGFR signaling using different receptor tyrosine kinase inhibitors (TKIs or a monoclonal antibody cetuximab. Methods NSCLC cells (cell lines HCC827, H292, H358, H1650, and H1975 were transfected with EGFR siRNA and/or treated with the TKIs gefitinib, erlotinib, and afatinib, and/or with the monoclonal antibody cetuximab. The reduction of EGFR mRNA expression was measured by real-time quantitative RT-PCR. The down-regulation of EGFR protein expression was measured by western blot, and the proliferation, viability, caspase3/7 activity, and apoptotic morphology were monitored by spectrophotometry, fluorimetry, and fluorescence microscopy. The combined effect of EGFR siRNA and different drugs was evaluated using a combination index. Results EGFR-specific siRNA strongly inhibited EGFR protein expression almost equally in all cell lines and inhibited cell growth and induced cell apoptosis in all NSCLC cell lines studied, albeit with a different magnitude. The effects on growth obtained with siRNA was strikingly different from the effects obtained with TKIs. The effects of siRNA probably correlate with the overall oncogenic significance of the receptor, which is only partly inhibited by the TKIs. The cells which showed weak response to TKIs, such as the H1975 cell line containing the T790M resistance mutation, were found to be responsive to siRNA knockdown of EGFR, as were cell lines with downstream TKI resistance mutations. The cell line HCC827, harboring an exon 19 deletion mutation, was more than 10-fold

  13. Transforming growth factor alpha and epidermal growth factor in laryngeal carcinomas demonstrated by immunohistochemistry

    DEFF Research Database (Denmark)

    Christensen, M E; Therkildsen, M H; Poulsen, Steen Seier

    1993-01-01

    the basal cell layer. The present investigation and our previous results confirm the existence of EGF receptors, TGF-alpha and EGF in laryngeal carcinomas. In addition, we conclude that the conditions do exist for growth factors to act through an autocrine system in poorly differentiated tumours and through......Fifteen laryngeal squamous cell carcinomas were investigated for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) using immunohistochemical methods. In a recent study the same material was characterized for epidermal growth factor receptors (EGF...... receptors) which were confined predominantly to the undifferentiated cells. The expression of this growth factor system in malignant cells may play a role in carcinogenesis and/or tumour growth. All carcinomas were positive for TGF-alpha and 12 were positive for EGF. In moderately-to-well differentiated...

  14. Night work and breast cancer risk defined by human epidermal growth factor receptor-2 (HER2) and hormone receptor status: A population-based case-control study in France.

    Science.gov (United States)

    Cordina-Duverger, Emilie; Koudou, Yves; Truong, Thérèse; Arveux, Patrick; Kerbrat, Pierre; Menegaux, Florence; Guénel, Pascal

    Night work has been associated with risk of breast cancer but this association needs to be confirmed. Because breast cancer is an etiologically heterogeneous disease, we explored the association of night work with breast cancer subtypes defined by tumor status (positive of negative) for estrogen-receptor (ER), progesterone-receptor (PR) and human epidermal growth factor-receptor 2 (HER2). Using the data from a case-control study in France including 975 cases and 1317 controls, we found that the odds ratios for ER+, PR+ or HER2+ breast cancers subtypes were significantly elevated, while no association with night shift work was observed for ER, PR or HER2-negative tumors. After stratification by menopausal status, the associations of night work with receptor-positive breast tumor subtypes were clearly seen in premenopausal women (odds ratios 2.04, 1.98 and 2.80, respectively) but did not appear in postmenopausal women. This study provides evidence that working at night may increase risk of ER, PR and HER2-positive subtypes of breast cancer particularly among premenopausal women.

  15. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot...... analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...

  16. Targeting tumour re-wiring by triple blockade of mTORC1, epidermal growth factor, and oestrogen receptor signalling pathways in endocrine-resistant breast cancer.

    Science.gov (United States)

    Ribas, Ricardo; Pancholi, Sunil; Rani, Aradhana; Schuster, Eugene; Guest, Stephanie K; Nikitorowicz-Buniak, Joanna; Simigdala, Nikiana; Thornhill, Allan; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dowsett, Mitch; Johnston, Stephen R; Martin, Lesley-Ann

    2018-06-08

    -mediated transactivation and ER recruitment, an effect reduced by the addition of RAD001. In-vivo analysis of an LTED model showed the triple combination of RAD001, neratinib, and fulvestrant was most effective at reducing tumour volume. Gene set enrichment analysis revealed that the addition of neratinib negated the epidermal growth factor (EGF)/EGF receptor feedback loops associated with RAD001. Our data support the combination of therapies targeting ERBB2/3 and mTORC1 signalling, together with fulvestrant, in patients who relapse on endocrine therapy and retain a functional ER.

  17. Imaging characteristics of stage I non-small cell lung cancer on CT and FDG-PER; Relationship with epidermal growth factor receptor protein expression status and survival

    International Nuclear Information System (INIS)

    Lee, Youkyung; Lee, Hyun Ju; Kim, Young Tae; Kang, Chang Hyun; Goo, Jin Mo; Park, Chang Min; Paeng, Jin Chul; Chung, Doo Hyun; Jeon, Yoon Kyung

    2013-01-01

    To identify CT and FDG-PET features associated with epidermal growth factor receptor (EGFR) protein overexpression, and to evaluate whether imaging features and EGFR-overexpression can help predict clinical outcome. In 214 patients (M : F = 129 : 85; mean age, 63.2) who underwent curative resection of stage I non-small cell lung cancer, EGFR protein expression status was determined through immunohistochemical analysis. Imaging characteristics on CT and FDG-PET was assessed in relation to EGFR-overexpression. Imaging features and EGFR-overexpression were also evaluated for clinical outcome by using the Cox proportional hazards model. EGFR-overexpression was found in 51 patients (23.8%). It was significantly more frequent in tumors with an SUVmax > 5.0 (p 2.43 cm (p 5.0 (OR, 3.113; 95% CI, 1.375-7.049; p = 0.006) and diameter > 2.43 cm (OR, 2.799; 95% CI, 1.285-6.095; p = 0.010) were independent predictors of EGFR overexpression. Multivariate analysis showed that SUVmax > 4.0 (hazard ratio, 10.660; 95% CI, 1.370-82.966; p = 0.024), and the presence of cavitation within a tumor (hazard ratio, 3.122; 95% CI, 1.143-8.532; p = 0.026) were factors associated with poor prognosis. EGFR-overexpression is associated with high SUVmax, large tumor diameter, and small GGO proportion. CT and FDG-PET findings, which are closely related to EGFR overexpression, can be valuable in the prediction of clinical outcome.

  18. In vivo detection of small tumour lesions by multi-pinhole SPECT applying a (99m)Tc-labelled nanobody targeting the Epidermal Growth Factor Receptor.

    Science.gov (United States)

    Krüwel, Thomas; Nevoltris, Damien; Bode, Julia; Dullin, Christian; Baty, Daniel; Chames, Patrick; Alves, Frauke

    2016-02-25

    The detection of tumours in an early phase of tumour development in combination with the knowledge of expression of tumour markers such as epidermal growth factor receptor (EGFR) is an important prerequisite for clinical decisions. In this study we applied the anti-EGFR nanobody (99m)Tc-D10 for visualizing small tumour lesions with volumes below 100 mm(3) by targeting EGFR in orthotopic human mammary MDA-MB-468 and MDA-MB-231 and subcutaneous human epidermoid A431 carcinoma mouse models. Use of nanobody (99m)Tc-D10 of a size as small as 15.5 kDa enables detection of tumours by single photon emission computed tomography (SPECT) imaging already 45 min post intravenous administration with high tumour uptake (>3% ID/g) in small MDA-MB-468 and A431 tumours, with tumour volumes of 52.5 mm(3) ± 21.2 and 26.6 mm(3) ± 16.7, respectively. Fast blood clearance with a serum half-life of 4.9 min resulted in high in vivo contrast and ex vivo tumour to blood and tissue ratios. In contrast, no accumulation of (99m)Tc-D10 in MDA-MB-231 tumours characterized by a very low expression of EGFR was observed. Here we present specific and high contrast in vivo visualization of small human tumours overexpressing EGFR by preclinical multi-pinhole SPECT shortly after administration of anti-EGFR nanobody (99m)Tc-D10.

  19. In vivo detection of small tumour lesions by multi-pinhole SPECT applying a 99mTc-labelled nanobody targeting the Epidermal Growth Factor Receptor

    Science.gov (United States)

    Krüwel, Thomas; Nevoltris, Damien; Bode, Julia; Dullin, Christian; Baty, Daniel; Chames, Patrick; Alves, Frauke

    2016-01-01

    The detection of tumours in an early phase of tumour development in combination with the knowledge of expression of tumour markers such as epidermal growth factor receptor (EGFR) is an important prerequisite for clinical decisions. In this study we applied the anti-EGFR nanobody 99mTc-D10 for visualizing small tumour lesions with volumes below 100 mm3 by targeting EGFR in orthotopic human mammary MDA-MB-468 and MDA-MB-231 and subcutaneous human epidermoid A431 carcinoma mouse models. Use of nanobody 99mTc-D10 of a size as small as 15.5 kDa enables detection of tumours by single photon emission computed tomography (SPECT) imaging already 45 min post intravenous administration with high tumour uptake (>3% ID/g) in small MDA-MB-468 and A431 tumours, with tumour volumes of 52.5 mm3 ± 21.2 and 26.6 mm3 ± 16.7, respectively. Fast blood clearance with a serum half-life of 4.9 min resulted in high in vivo contrast and ex vivo tumour to blood and tissue ratios. In contrast, no accumulation of 99mTc-D10 in MDA-MB-231 tumours characterized by a very low expression of EGFR was observed. Here we present specific and high contrast in vivo visualization of small human tumours overexpressing EGFR by preclinical multi-pinhole SPECT shortly after administration of anti-EGFR nanobody 99mTc-D10. PMID:26912069

  20. Phase II study of paclitaxel given once per week along with trastuzumab and pertuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer.

    Science.gov (United States)

    Dang, Chau; Iyengar, Neil; Datko, Farrah; D'Andrea, Gabriella; Theodoulou, Maria; Dickler, Maura; Goldfarb, Shari; Lake, Diana; Fasano, Julie; Fornier, Monica; Gilewski, Theresa; Modi, Shanu; Gajria, Devika; Moynahan, Mary Ellen; Hamilton, Nicola; Patil, Sujata; Jochelson, Maxine; Norton, Larry; Baselga, Jose; Hudis, Clifford

    2015-02-10

    The CLEOPATRA (Clinical Evaluation of Trastuzumab and Pertuzumab) study demonstrated superior progression-free survival (PFS) and overall survival when pertuzumab was added to trastuzumab and docetaxel. Paclitaxel given once per week is effective and less toxic than docetaxel. We performed a phase II study to evaluate the efficacy and safety of pertuzumab and trastuzumab with paclitaxel given once per week. Patients with metastatic human epidermal growth factor receptor 2-positive breast cancer with zero to one prior therapy were enrolled. Treatment consisted of paclitaxel 80 mg/m(2) once per week plus trastuzumab (8 mg/kg loading dose → 6 mg/kg) once every 3 weeks plus pertuzumab (840 mg loading dose → 420 mg) once every 3 weeks, all given intravenously. The primary end point was 6-month PFS assessed by Kaplan-Meier methods. From January 2011 to December 2013, we enrolled 69 patients: 51 (74%) and 18 (26%) treated in first- and second-line metastatic settings, respectively. At a median follow-up of 21 months (range, 3 to 38 months), 6-month PFS was 86% (95% CI, 75% to 92%). The median PFS was 19.5 months (95% CI, 14 to 26 months) overall. PFS was 24.2 months (95% CI, 14 months to not reached [NR]) and 16.4 months (95% CI, 8.5 months to NR) for those without and with prior treatment, respectively. At 1 year, Kaplan-Meier PFS was 70% (95% CI, 56% to 79%) overall, 71% (95% CI, 55% to 82%) for those without prior therapy, and 66% (95% CI, 40% to 83%) for those with prior therapy. Treatment was well-tolerated; there was no febrile neutropenia or symptomatic left ventricular systolic dysfunction. Paclitaxel given once per week with trastuzumab and pertuzumab is highly active and well tolerated and seems to be an effective alternative to docetaxel-based combination therapy. © 2014 by American Society of Clinical Oncology.

  1. Acquired resistance L747S mutation in an epidermal growth factor receptor-tyrosine kinase inhibitor-naïve patient: A report of three cases.

    Science.gov (United States)

    Yamaguchi, Fumihiro; Fukuchi, Kunihiko; Yamazaki, Yohei; Takayasu, Hiromi; Tazawa, Sakiko; Tateno, Hidetsugu; Kato, Eisuke; Wakabayashi, Aya; Fujimori, Mami; Iwasaki, Takuya; Hayashi, Makoto; Tsuchiya, Yutaka; Yamashita, Jun; Takeda, Norikazu; Kokubu, Fumio

    2014-02-01

    The purpose of the present study was to report cases of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-naïve patients carrying a mutation associated with acquired resistance to the drug. Gene alterations in 77 lung carcinoma patients were analyzed by collecting and studying curette lavage fluid at the time of diagnosis. PCRs were performed to amplify mutation hotspot regions in EGFR genes. The PCR products were direct-sequenced and the mutations confirmed by resequencing using different primers. Case 1 was a 78-year-old Japanese male diagnosed with stage IB lung adenocarcinoma who was found to have two EGFR mutations, G719S and L747S. Case 2 was a 73-year-old Japanese male diagnosed with stage IV squamous cell lung carcinoma and bone metastasis who had the EGFR mutation, L747S. Case 3 was an 82-year-old Japanese male diagnosed with hyponatremia due to inappropriate secretion of antidiuretic hormone and stage IIIB small cell lung carcinoma (SCLC) who had the EGFR mutation, L747S. Thus, the EGFR mutation L747S associated with acquired EGFR-TKI resistance was detected in two non-small cell lung carcinoma (NSCLC) patients and one SCLC patient, none of whom had ever received EGFR-TKI. The patients were current smokers with stages at diagnosis ranging from IB to IV, and their initial tumors contained resistant clones carrying L747S. L747S may be associated with primary resistance. To the best of our knowledge, this study is the first report of an EGFR mutation associated with resistance to EGFR-TKI in SCLC patients. The early detection of EGFR-TKI resistance mutations may be beneficial in making treatment decisions for lung carcinoma patients, including those with SCLC.

  2. Customized chemotherapy based on epidermal growth factor receptor mutation status for elderly patients with advanced non-small-cell lung cancer: a phase II trial

    International Nuclear Information System (INIS)

    Fujita, Shiro; Mio, Tadashi; Katakami, Nobuyuki; Masago, Katsuhiro; Yoshioka, Hiroshige; Tomii, Keisuke; Kaneda, Toshihiko; Hirabayashi, Masataka; Kunimasa, Kei; Morizane, Toshio

    2012-01-01

    Elderly patients are more vulnerable to toxicity from chemotherapy. Activating epidermal growth factor receptor (EGFR) mutations in non-small-cell lung cancer (NSCLC) are associated with enhanced response to EGFR tyrosine-kinase inhibitors. We studied patients with advanced NSCLC for whom treatment was customized based on EGFR mutation status. We screened 57 chemotherapy-naïve patients with histologically or cytologically confirmed NSCLC, stage IIIB or IV, aged 70 years or older, and with an Eastern Cooperative Oncology Group performance status 0 or 1, for EGFR exon 19 codon 746–750 deletion and exon 21 L858R mutation. Twenty-two patients with EGFR mutations received gefitinib; 32 patients without mutations received vinorelbine or gemcitabine. The primary endpoint was the response rate. The response rate was 45.5% (95% confidence interval [CI]: 24.4%, 67.8%) in patients with EGFR mutations and 18.8% (95% CI: 7.2%, 36.4%) in patients without EGFR mutations. The median overall survival was 27.9 months (95%CI: 24.4 months, undeterminable months) in patients with EGFR mutations and 14.9 months (95%CI: 11.0 months, 22.4 months) in patients without EGFR mutations. In the gefitinib group, grade 3/4 hepatic dysfunction and dermatitis occurred in 23% and 5% of patients, respectively. In patients treated with vinorelbine or gemcitabine, the most common grade 3 or 4 adverse events were neutropenia (47%; four had febrile neutropenia), anemia (13%), and anorexia (9%). No treatment-related deaths occurred. Treatment customization based on EGFR mutation status deserves consideration, particularly for elderly patients who often cannot receive second-line chemotherapy due to poor organ function or comorbidities. This trial is registered at University hospital Medical Information Network-clinical trial registration (http://www.umin.ac.jp/ctr/index/htm) with the registration identification number C000000436

  3. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Zhou, Yan; Li, Yuan; Ni, Hong-Min; Ding, Wen-Xing; Zhong, Hua

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to the resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.

  4. Effects of icotinib on early-stage non-small-cell lung cancer as neoadjuvant treatment with different epidermal growth factor receptor phenotypes.

    Science.gov (United States)

    Wang, Tao; Liu, Yang; Zhou, Bin; Wang, Zhi; Liang, Naichao; Zhang, Yundong; Dong, Zhouhuan; Li, Jie

    2016-01-01

    Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated efficacy in treating advanced non-small-cell lung cancer (NSCLC). Preliminary findings suggested that EGFR-TKIs might also be beneficial in neoadjuvant therapy in treating NSCLC. Therefore, this study aimed to evaluate the efficacy and safety of neoadjuvant therapy with icotinib in patients with early-stage NSCLC. We retrospectively reviewed the medical history of patients who were initially diagnosed with stage IA-IIIA NSCLC and were under icotinib administration before surgery between December 2011 and December 2014. Tumor assessment was conducted between the second and fourth week from initial icotinib treatment. The association between personal characteristics, smoking status, disease stage, EGFR mutation status, and clinical outcomes were investigated using multivariate logistic regression analysis. A total of 67 patients with NSCLC were reviewed, and approximately half (38/67) of them were identified as having EGFR-mutant tumors. The overall response rate of all patients was 26.7% at 2-4 weeks' assessment. Multivariate analysis showed that female sex (38.5% versus 10.7% in males, P=0.028) and EGFR mutation status (42.1% versus 6.9% in EGFR wild type, P=0.011) were independent predictive factors. The analysis also showed that the most common adverse effects were rash (43.3%) and dry skin (34.4%), which were tolerable. Icotinib induced clinical response with minimal toxicity as neoadjuvant treatment in early NSCLC, especially in patients with common EGFR mutations. Further studies are warranted to confirm our findings.

  5. Correlation between familial cancer history and epidermal growth factor receptor mutations in Taiwanese never smokers with non-small cell lung cancer: a case-control study.

    Science.gov (United States)

    Cheng, Po-Chung; Cheng, Yun-Chung

    2015-03-01

    Lung cancer is a leading cause of cancer deaths in the world. Cigarette smoking remains a prominent risk factor, but lung cancer incidence has been increasing in never smokers. Genetic abnormalities including epidermal growth factor receptor (EGFR) mutations predominate in never smoking lung cancer patients. Furthermore, familial aggregations of patients with these mutations reflect heritable susceptibility to lung cancer. The correlation between familial cancer history and EGFR mutations in never smokers with lung cancer requires investigation. This was a retrospective case-control study that evaluated the prevalence of EGFR mutations in lung cancer patients with familial cancer history. Never smokers with lung cancer treated at a hospital in Taiwan between April 2012 and May 2014 were evaluated. Inclusion criteria were never smokers with non-small cell lung cancer (NSCLC). Exclusion criteria involved patients without records of familial cancer history or tumor genotype. This study included 246 never smokers with lung cancer. The study population mainly involved never smoking women with a mean age of 60 years, and the predominant tumor histology was adenocarcinoma. Lung cancer patients with familial cancer history had an increased prevalence of EGFR mutations compared to patients without family history [odds ratio (OR): 5.9; 95% confidence interval (CI): 3.3-10.6; Pnon-pulmonary cancers (OR: 5.0; 95% CI: 2.5-10.0; Pnever smoking lung cancer patients with familial cancer history. Moreover, a sizable proportion of never smoking cancer patients harbored these mutations. These observations have implications for the treatment of lung cancer in never smokers.

  6. Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    Science.gov (United States)

    Gadgeel, Shirish M; Wozniak, Antoinette

    2013-07-01

    Mutations in the epidermal growth factor receptor gene (EGFR) are frequently observed in non-small-cell lung cancer (NSCLC), occurring in about 40% to 60% of never-smokers and in about 17% of patients with adenocarcinomas. EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, have transformed therapy for patients with EGFR-mutant NSCLC and have proved superior to chemotherapy as first-line treatment for this patient group. Despite these benefits, there are currently 2 key challenges associated with EGFR inhibitor therapy for patients with NSCLC. First, only 85% to 90% of patients with the EGFR mutation derive clinical benefit from EGFR TKIs, with the remainder demonstrating innate resistance to therapy. Second, acquired resistance to EGFR TKIs inevitably occurs in patients who initially respond to therapy, with a median duration of response of about 10 months. Mutant EGFR activates various subcellular signaling cascades, including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, which demonstrates maintained activity in a variety of TKI-resistant cancers. Given the fundamental role of the PI3K/Akt/mTOR pathway in tumor oncogenesis, proliferation, and survival, PI3K pathway inhibitors have emerged as a possible solution to the problem of EGFR TKI resistance. However resistance to EGFR TKIs is associated with considerable heterogeneity and complexity. Preclinical experiments investigating these phenomena suggest that in some patients, PI3K inhibitors will have to be paired with other targeted agents if they are to be effective. This review discusses the preclinical data supporting PI3K/Akt/mTOR pathway inhibitor combinations in EGFR TKI-resistant NSCLC from the perspective of the various agents currently being investigated in clinical trials. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.

    Science.gov (United States)

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (Psolar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage.

  8. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    International Nuclear Information System (INIS)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe; Makboul, Rania; Chadalawada, Gita; Chen, Ying; Crawford, Susan E.; Savkovic, Suzana D.

    2016-01-01

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  9. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    Energy Technology Data Exchange (ETDEWEB)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Makboul, Rania [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Pathology Department, Assiut University, Assiut (Egypt); Chadalawada, Gita; Chen, Ying [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Crawford, Susan E. [Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd, Saint Louis, MO 63104 (United States); Savkovic, Suzana D., E-mail: ssavkovi@tulane.edu [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States)

    2016-01-15

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  10. Impaired degradation followed by enhanced recycling of epidermal growth factor receptor caused by hypo-phosphorylation of tyrosine 1045 in RBE cells

    International Nuclear Information System (INIS)

    Gui, Anping; Kobayashi, Akira; Motoyama, Hiroaki; Kitazawa, Masato; Takeoka, Michiko; Miyagawa, Shinichi

    2012-01-01

    Since cholangiocarcinoma has a poor prognosis, several epidermal growth factor receptor (EGFR)-targeted therapies with antibody or small molecule inhibitor treatment have been proposed. However, their effect remains limited. The present study sought to understand the molecular genetic characteristics of cholangiocarcinoma related to EGFR, with emphasis on its degradation and recycling. We evaluated EGFR expression and colocalization by immunoblotting and immunofluorescence, cell surface EGFR expression by fluorescence-activated cell sorting (FACS), and EGFR ubiquitination and protein binding by immunoprecipitation in the human cholangiocarcinoma RBE and immortalized cholangiocyte MMNK-1 cell lines. Monensin treatment and Rab11a depletion by siRNA were adopted for inhibition of EGFR recycling. Upon stimulation with EGF, ligand-induced EGFR degradation was impaired and the expression of phospho-tyrosine 1068 and phospho-p44/42 MAPK was sustained in RBE cells as compared with MMNK-1 cells. In RBE cells, the process of EGFR sorting for lysosomal degradation was blocked at the early endosome stage, and non-degradated EGFR was recycled to the cell surface. A disrupted association between EGFR and the E3 ubiquitin ligase c-Cbl, as well as hypo-phosphorylation of EGFR at tyrosine 1045 (Tyr1045), were also observed in RBE cells. In RBE cells, up-regulation of EGFR Tyr1045 phosphorylation is a potentially useful molecular alteration in EGFR-targeted therapy. The combination of molecular-targeted therapy determined by the characteristics of individual EGFR phosphorylation events and EGFR recycling inhibition show promise in future treatments of cholangiocarcinoma

  11. Molecular subclassification determined by human papillomavirus and epidermal growth factor receptor status is associated with the prognosis of oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Nakano, Takafumi; Yamamoto, Hidetaka; Nakashima, Torahiko; Nishijima, Toshimitsu; Satoh, Masanobu; Hatanaka, Yui; Shiratsuchi, Hideki; Yasumatsu, Ryuji; Toh, Satoshi; Komune, Shizuo; Oda, Yoshinao

    2016-04-01

    Human papillomavirus (HPV) infection is an indicator of good response to chemoradiotherapy in oropharyngeal squamous cell carcinoma (OPSCC), and epidermal growth factor receptor (EGFR) is a molecular-therapeutic target in head and neck squamous cell carcinoma. Here we investigated the prevalence and prognostic significance of HPV infection and EGFR alteration in OPSCC. We analyzed the presence of high-risk HPV using in situ hybridization, protein expressions of p16 and EGFR using immunohistochemistry, and the EGFR gene copy number gain using chromogenic in situ hybridization (CISH) in 105 cases of OPSCC. The biopsy specimens before chemoradiotherapy were used for these analyses. HPV infection and p16 protein overexpression were detected in 53.3% and 52.4% of the OPSCCs, and each factor was associated with better overall survival (P = .0026 and P = .0026) and nonkeratinizing histology (P = .0002 and P = .0004), respectively. EGFR gene copy number gain (high polysomy or amplification) was detected in 12.4% of the OPSCCs and was correlated with EGFR protein overexpression (P = .0667) and worse overall survival (P CISH positive) were mutually exclusive. The HPV-negative/EGFR CISH-positive OPSCCs had significantly worse overall survival than did the HPV-positive/EGFR CISH-negative OPSCCs and HPV-negative/EGFR CISH-negative OPSCCs (P CISH-negative OPSCCs had favorable prognosis irrespective of HPV infection. Our results suggest that EGFR gene copy number gain-positive tumors represent an HPV-negative, aggressive subgroup of OPSCCs. The molecular subclassification of OPSCCs based on HPV infection and EGFR status may serve as important information for appropriate therapeutic strategy. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Amplification of the epidermal growth factor receptor gene in glioblastoma: an analysis of the relationship between genotype and phenotype by CISH method.

    Science.gov (United States)

    Miyanaga, Tomomi; Hirato, Junko; Nakazato, Yoichi

    2008-04-01

    We examined epidermal growth factor receptor (EGFR) overexpression and EGFR gene amplification using immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH) in 109 glioblastomas, including 98 primary glioblastomas and 11 secondary glioblastomas. EGFR overexpression and EGFR gene amplification were found in 33% and 24% of glioblastoma, respectively, and all of those cases were primary glioblastoma. Large ischemic necrosis was significantly more frequent in primary glioblastomas than in secondary glioblastomas (54% vs. 18%), but pseudopalisading necrosis was not (65% vs. 54%). EGFR gene amplification was detected significantly more frequently in cases with both types of necrosis. Although glioblastomas with EGFR gene amplification invariably exhibited EGFR overexpression at the level of the whole tumor, tumor cells with EGFR gene amplification did not always show EGFR overexpression at the level of individual tumor cells. Cases of "strong" EGFR overexpression on IHC could be regarded as having EGFR gene amplification, and cases without EGFR overexpression could not. Cases of "weak" EGFR overexpression should be tested with CISH to confirm the presence of EGFR gene amplification. We found that 54% of glioblastomas with EGFR gene amplification were composed of areas with and without EGFR gene amplification; however, there were no obvious differences in morphology between tumor cells with and without EGFR gene amplification. Although small cell architecture might be associated with EGFR gene amplification at the level of the whole tumor, it did not always suggest amplification of the EGFR gene at the level of individual tumor cells. In one case, it seemed to suggest that a clone with EGFR gene amplification may arise in pre-existing tumor tissue and extend into the surrounding area. In cases of overall EGFR amplification, CISH would be a useful tool to decide the tumor border in areas infiltrated by tumor cells.

  13. The curative effects of radiotherapy-based therapies for human epidermal growth factor receptor 2-positive breast cancer: A meta-analysis.

    Science.gov (United States)

    Shao, Minghai; Zhang, Chi; Qin, Qin; Zhang, Zhaoyue; Zhu, Hongcheng; Di, Xiaoke; Sun, Xinchen

    2017-09-01

    This meta-analysis was designed to fully assess the curative effects of radiotherapy-based therapies for human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC). English articles were retrieved through searching Cochrane library, PubMed, and Embase databases updated to February 2017. Studies were selected based on the inclusion and exclusion criteria. The curative effects of radiotherapy-based therapies forHER2+ BC patients were assessed using hazard rates (HRs) or odds ratios (ORs), as well as their 95% confidence intervals (CIs). In addition, Egger test was used to assess publication bias, followed by sensitivity analysis. All statistic methods were conducted using R 3.12 software. A total of 9 eligible studies were included into this meta-analysis, which involved 2236 HER2+ BC patients. Egger test showed that the eligible studies had no publication bias (t = 2.198, P = .05918). Sensitivity analysis demonstrated that the results were stable. HER2+ BC patients in radiotherapy group had lower locoregional recurrences than those in other groups. Moreover, meta-analysis showed that no significant difference was found between HER2+ BC patients in radiotherapy group and other groups on the 1-year overall survival (P = 0.5263, I = 65.4%), 3-year overall survival (P = 0.4591, I = 0), and 5-year overall survival (P = 0.06277, I = 0). Radiotherapy-based therapies might have certain advantages in treating HER2+ BC patients.

  14. Patterns of resource utilization and cost for postmenopausal women with hormone-receptor–positive, human epidermal growth factor receptor-2–negative advanced breast cancer in Europe

    International Nuclear Information System (INIS)

    Jerusalem, Guy; Neven, Patrick; Marinsek, Nina; Zhang, Jie; Degun, Ravi; Benelli, Giancarlo; Saletan, Stephen; Ricci, Jean-François; Andre, Fabrice

    2015-01-01

    Healthcare resource utilization in breast cancer varies by disease characteristics and treatment choices. However, lack of clarity in guidelines can result in varied interpretation and heterogeneous treatment management and costs. In Europe, the extent of this variability is unclear. Therefore, evaluation of chemotherapy use and costs versus hormone therapy across Europe is needed. This retrospective chart review (N = 355) examined primarily direct costs for chemotherapy versus hormone therapy in postmenopausal women with hormone-receptor–positive (HR+), human epidermal growth factor receptor-2–negative (HER2–) advanced breast cancer across 5 European countries (France, Germany, The Netherlands, Belgium, and Sweden). Total direct costs across the first 3 treatment lines were approximately €10 000 to €14 000 lower for an additional line of hormone therapy-based treatment versus switching to chemotherapy-based treatment. Direct cost difference between chemotherapy-based and hormone therapy-based regimens was approximately €1900 to €2500 per month. Chemotherapy-based regimens were associated with increased resource utilization (managing side effects; concomitant targeted therapy use; and increased frequencies of hospitalizations, provider visits, and monitoring tests). The proportion of patients taking sick leave doubled after switching from hormone therapy to chemotherapy. These results suggest chemotherapy is associated with increased direct costs and potentially with increased indirect costs (lower productivity of working patients) versus hormone therapy in HR+, HER2– advanced breast cancer. The online version of this article (doi:10.1186/s12885-015-1762-3) contains supplementary material, which is available to authorized users

  15. Value of {sup 18}F-FDG uptake on PET/CT and CEA level to predict epidermal growth factor receptor mutations in pulmonary adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kai-Hsiung; Hsu, Hsian-He; Chang, Wei-Chou; Hsu, Yi-Chih; Chang, Tsun-Hou [Tri-Service General Hospital and National Defense Medical Center, Department of Radiology, Taipei 114 (China); Huang, Tsai-Wang; Chang, Hung [Tri-Service General Hospital and National Defense Medical Center, Department of Thoracic Surgery, Taipei (China); Gao, Hong-Wei [Tri-Service General Hospital and National Defense Medical Center, Department of Pathology, Taipei (China); Shen, Daniel H.Y. [Tri-Service General Hospital and National Defense Medical Center, Department of Nuclear medicine, Taipei (China); Chu, Chi-Ming [Institute of Public Health, National Defense Medical Center and University, Section of Health Informatics, Taipei (China); Ho, Ching-Liang [Tri-Service General Hospital and National Defense Medical Center, Division of Hematology-Oncology, Department of Internal Medicine, Taipei (China)

    2014-10-15

    The identification of the mutation status of the epidermal growth factor receptor (EGFR) is important for the optimization of treatment in patients with pulmonary adenocarcinoma. The acquisition of adequate tissues for EGFR mutational analysis is sometimes not feasible, especially in advanced-stage patients. The aim of this study was to predict EGFR mutation status in patients with pulmonary adenocarcinoma based on {sup 18}F-fluorodeoxyglucose (FDG) uptake and imaging features in positron emission tomography/computed tomography (PET/CT), as well as on the serum carcinoembryonic antigen (CEA) level. We retrospectively reviewed 132 pulmonary adenocarcinoma patients who underwent EGFR mutation testing, pretreatment FDG PET/CT and serum CEA analysis. The associations between EGFR mutations and patient characteristics, maximal standard uptake value (SUVmax) of primary tumors, serum CEA level and CT imaging features were analyzed. Receiver-operating characteristic (ROC) curve analysis was performed to quantify the predictive value of these factors. EGFR mutations were identified in 69 patients (52.2 %). Patients with SUVmax ≥6 (p = 0.002) and CEA level ≥5 (p = 0.013) were more likely to have EGFR mutations. The CT characteristics of larger tumors (≥3 cm) (p = 0.023) and tumors with a nonspiculated margin (p = 0.026) were also associated with EGFR mutations. Multivariate analysis showed that higher SUVmax and CEA level, never smoking and a nonspiculated tumor margin were the most significant predictors of EGFR mutation. The combined use of these four criteria yielded a higher area under the ROC curve (0.82), suggesting a good discrimination. The combined evaluation of FDG uptake, CEA level, smoking status and tumor margins may be helpful in predicting EGFR mutation status in patients with pulmonary adenocarcinoma, especially when the tumor sample is inadequate for genetic analysis or genetic testing is not available. Further large-scale prospective studies are

  16. In Vitro Responsiveness of Glioma Cell Lines to Multimodality Treatment With Radiotherapy, Temozolomide, and Epidermal Growth Factor Receptor Inhibition With Cetuximab

    International Nuclear Information System (INIS)

    Combs, Stephanie E.; Schulz-Ertner, Daniela; Roth, Wilfried; Herold-Mende, Christel; Debus, Juergen; Weber, Klaus-Josef

    2007-01-01

    Background: The majority of glioblastoma multiforme (GBM) cells express the epidermal growth factor receptor (EGFR). The present study evaluates the combination of temozolomide (TMZ), EGFR inhibition, and radiotherapy (RT) in GBM cell lines. Methods and Materials: Human GBM cell lines U87, LN229, LN18, NCH 82, and NCH 89 were treated with various combinations of TMZ, RT, and the monoclonal EGFR antibody cetuximab. Responsiveness of glioma cells to the combination treatment was measured by clonogenic survival. Results: Overall, double and triple combinations of RT, TMZ, and cetuximab lead to additive cytotoxic effects (independent toxicity). A notable exception was observed for U87 and LN 18 cell lines, where the combination of TMZ and cetuximab showed substantial antagonism. Interestingly, in these two cell lines, the combination of RT with cetuximab resulted in a substantial increase in cell killing over that expected for independent toxicity. The triple combination with RT, cetuximab, and TMZ was nearly able to overcome the antagonism for the TMZ/cetuximab combination in U87, however only marginally in LN18, GBM cell lines. Conclusion: It appears that EGFR expression is not correlated with cytotoxic effects exerted by cetuximab. Combination treatment with TMZ, cetuximab and radiation resulted in independent toxicity in three out of five cell lines evaluated, the antagonistic effect of the TMZ/cetuximab combination in two cell lines could indicate that TMZ preferentially kills cetuximab-resistant cells, suggesting for some cross-talk between toxicity mechanisms. Expression of EGFR was no surrogate marker for responsiveness to cetuximab, alone or in combination with RT and TMZ

  17. Evaluation of human epidermal growth factor receptor 2 (HER2) single nucleotide polymorphisms (SNPs) in normal and breast tumor tissues and their link with breast cancer prognostic factors.

    Science.gov (United States)

    Furrer, Daniela; Lemieux, Julie; Côté, Marc-André; Provencher, Louise; Laflamme, Christian; Barabé, Frédéric; Jacob, Simon; Michaud, Annick; Diorio, Caroline

    2016-12-01

    Amplification of the human epidermal growth factor receptor 2 (HER2) gene is associated with worse prognosis and decreased overall survival in breast cancer patients. The HER2 gene contains several polymorphisms; two of the best-characterized HER2 polymorphisms are Ile655Val and Ala1170Pro. The aim of this study was to evaluate the association between these two HER2 polymorphisms in normal breast and breast cancer tissues and known breast cancer prognostic factors in a retrospective cohort study of 73 women with non-metastatic HER2-positive breast cancer. HER2 polymorphisms were assessed in breast cancer tissue and normal breast tissue using TaqMan assay. Ala1170Pro polymorphism in normal breast tissue was associated with age at diagnosis (p = 0.007), tumor size (p = 0.004) and lymphovascular invasion (p = 0.06). Similar significant associations in cancer tissues were observed. No association between the Ile655Val polymorphism and prognostic factors were observed. However, we found significant differences in the distribution of Ile655Val (p = 0.03) and Ala1170Pro (p = 0.01) genotypes between normal breast and breast tumor tissues. This study demonstrates that only the Ala1170Pro polymorphism is associated with prognostic factors in HER2-positive breast cancer patients. Moreover, our results suggest that both HER2 polymorphisms could play a significant role in carcinogenesis in non-metastatic HER2-positive breast cancer women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Gene expression profiling of histologically normal breast tissue in females with human epidermal growth factor receptor 2‑positive breast cancer.

    Science.gov (United States)

    Zubor, Pavol; Hatok, Jozef; Moricova, Petra; Kapustova, Ivana; Kajo, Karol; Mendelova, Andrea; Sivonova, Monika Kmetova; Danko, Jan

    2015-02-01

    Gene expression profile‑based taxonomy of breast cancer (BC) has been described as a significant breakthrough in comprehending the differences in the origin and behavior of cancer to allow individually tailored therapeutic approaches. In line with this, we hypothesized that the gene expression profile of histologically normal epithelium (HNEpi) could harbor certain genetic abnormalities predisposing breast tissue cells to develop human epidermal growth factor receptor 2 (HER2)‑positive BC. Thus, the aim of the present study was to assess gene expression in normal and BC tissue (BCTis) from patients with BC in order to establish its value as a potential diagnostic marker for cancer development. An array study evaluating a panel of 84 pathway‑ and disease‑specific genes in HER2‑positive BC and tumor‑adjacent HNEpi was performed using quantitative polymerase chain reaction in 12 patients using microdissected samples from frozen tissue. Common prognostic and predictive parameters of BC were assessed by immunohistochemistry and in situ hybridization. In the BCTis and HNEpi samples of 12 HER2‑positive subjects with BC, the expression of 2,016 genes was assessed. A total of 39.3% of genes were deregulated at a minimal two‑fold deregulation rate and 10.7% at a five‑fold deregulation rate in samples of HNEpi or BCTis. Significant differences in gene expression between BCTis and HNEpi samples were revealed for BCL2L2, CD44, CTSD, EGFR, ERBB2, ITGA6, NGFB, RPL27, SCBG2A1 and SCGB1D2 genes (Pbreast tissue revealed gene expression abnormalities that may represent potential markers of increased risk for HER2‑positive malignant transformation of breast tissue, and may be able to be employed as predictors of prognosis.

  19. Gene protein detection platform--a comparison of a new human epidermal growth factor receptor 2 assay with conventional immunohistochemistry and fluorescence in situ hybridization platforms.

    Science.gov (United States)

    Stålhammar, Gustav; Farrajota, Pedro; Olsson, Ann; Silva, Cristina; Hartman, Johan; Elmberger, Göran

    2015-08-01

    Human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are widely used semiquantitative assays for selecting breast cancer patients for HER2 antibody therapy. However, both techniques have been shown to have disadvantages. Our aim was to test a recent automated technique of combined IHC and brightfield dual in situ hybridization-gene protein detection platform (GPDP)-in breast cancer HER2 protein, gene, and chromosome 17 centromere status evaluations, comparing the results in accordance to the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from both 2007 and 2013. The GPDP technique performance was evaluated on 52 consecutive whole slide invasive breast cancer cases with HER2 IHC 2/3+ scoring results. Applying in turns the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from 2007 and 2013 to both FISH and GPDP DISH assays, the HER2 gene amplification results showed 100% concordance among amplified/nonamplified cases, but there was a shift in 4 cases toward positive from equivocal results and toward equivocal from negative results. This might be related to the emphasis on the average HER2 copy number in the 2013 criteria. HER2 expression by IVD market IHC kit (Pathway®) has a strong correlation with GPDP HER2 protein, including a full concordance for all cases scored as 3+ and a reduction from 2+ to 1+ in 7 cases corresponding to nonamplified cases. Gene protein detection platform HER2 protein "solo" could have spared the need for 7 FISH studies. In addition, the platform offered advantages on interpretation reassurance including selecting areas for counting gene signals paralleled with protein IHC expression, on heterogeneity detection, interpretation time, technical time, and tissue expense. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Safety and efficacy of neratinib in combination with capecitabine in patients with metastatic human epidermal growth factor receptor 2-positive breast cancer.

    Science.gov (United States)

    Saura, Cristina; Garcia-Saenz, Jose A; Xu, Binghe; Harb, Wael; Moroose, Rebecca; Pluard, Timothy; Cortés, Javier; Kiger, Corinne; Germa, Caroline; Wang, Kongming; Martin, Miguel; Baselga, José; Kim, Sung-Bae

    2014-11-10

    Neratinib is a potent irreversible pan-tyrosine kinase inhibitor with antitumor activity and acceptable tolerability in patients with human epidermal growth factor receptor 2 (HER2) -positive breast cancer. A multinational, open-label, phase I/II trial was conducted to determine the maximum-tolerated dose (MTD) of neratinib plus capecitabine in patients with solid tumors (part one) and to evaluate the safety and efficacy of neratinib plus capecitabine in patients with HER2-positive metastatic breast cancer (part two). Part one was a 3 + 3 dose-escalation study in which patients with advanced solid tumors received oral neratinib once per day continuously plus capecitabine twice per day on days 1 to 14 of a 21-day cycle at predefined dose levels. In part two, patients with trastuzumab-pretreated HER2-positive metastatic breast cancer received neratinib plus capecitabine at the MTD. The primary end point in part two was objective response rate (ORR). In part one (n = 33), the combination of neratinib 240 mg per day plus capecitabine 1,500 mg/m(2) per day was defined as the MTD, which was further evaluated in part 2 (n = 72). The most common drug-related adverse events were diarrhea (88%) and palmar-plantar erythrodysesthesia syndrome (48%). In part two, the ORR was 64% (n = 39 of 61) in patients with no prior lapatinib exposure and 57% (n = 4 of 7) in patients previously treated with lapatinib. Median progression-free survival was 40.3 and 35.9 weeks, respectively. Neratinib in combination with capecitabine had a manageable toxicity profile and showed promising antitumor activity in patients with HER2-positive metastatic breast cancer pretreated with trastuzumab and lapatinib. © 2014 by American Society of Clinical Oncology.

  1. Human Papillomavirus and Epidermal Growth Factor Receptor in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma: Correlation With Dynamic Contrast-Enhanced MRI Parameters.

    Science.gov (United States)

    Choi, Yoon Seong; Park, Mina; Kwon, Hyeong Ju; Koh, Yoon Woo; Lee, Seung-Koo; Kim, Jinna

    2016-02-01

    The objective of this study was to investigate differences in dynamic contrast-enhanced MRI (DCE-MRI) parameters on the basis of the status of human papillomavirus (HPV) and epidermal growth factor receptor (EGFR) biomarkers in patients with squamous cell carcinoma (SCC) of the oral cavity and oropharynx by use of histogram analysis. A total of 22 consecutive patients with oral cavity and oropharyngeal SCC underwent DCE-MRI before receiving treatment. DCE parameter maps of the volume transfer constant (K(trans)), the flux rate constant (kep), and the extravascular extracellular volume fraction (ve) were obtained. The histogram parameters were calculated using the entire enhancing tumor volume and were compared between the patient subgroups on the basis of HPV and EGFR biomarker statuses. The cumulative histogram parameters of K(trans) and kep showed lower values in the HPV-negative and EFGR-overexpression group than in the HPV-positive EGFR-negative group. These differences were statistically significant for the mean (p = 0.009), 25th, 50th, and 75th percentile values of K(trans) and for the 25th percentile value of kep when correlated with HPV status in addition to the mean K(trans) value (p = 0.047) and kep value (p = 0.004) when correlated with EGFR status. No statistically significant difference in ve was found on the basis of HPV and EGFR status. DCE-MRI is useful for the assessment of the tumor microenvironment associated with HPV and EGFR biomarkers before treatment of patients with oral cavity and oropharyngeal SCC.

  2. THE SIGNIFICANCE OF EPIDERMAL GROWTH FACTOR RECEPTOR AND SURVIVIN EXPRESSION IN BLADDER CANCER TISSUE AND URINE CYTOLOGY OF PATIENTS WITH TRANSITIONAL CELL CARCINOMA OF THE URINARY BLADDER.

    Science.gov (United States)

    Kehinde, E O; Al-Maghrebi, M; Anim, J T; Kapila, K; George, S S; Al-Juwaiser, A; Memon, A

    2013-01-01

    To assess whether epidermal growth factor receptor (EGFR) and survivin immunostaining of tumour cells in urinary cytology and tissue of patients with bladder cancer has a prognostic significance. Prospective study Department of Surgery (Division of Urology), Mubarak Al-Kabeer Teaching Hospital and Faculty of Medicine, Kuwait University, Kuwait Urine cytology smears obtainedpriorto cystoscopy in patients with transitional cell carcinoma (TCC) of the bladder were immunostained for EGFR and survivin. Bladder cancer tissue resected at surgery was also immunostained for EGFR and survivin expression. Tissue expression of EGFR and survivin in TCC of the bladder was compared to their expression in urine cytology and relationship to tumour grade and stage. 178 patients were studied (43 newly diagnosed bladder cancer, 58 with recurrent TCC and 77 in disease remission). Twenty five patients with normal urothelium served as controls. The mean sensitivity of urine cytology, tissue survivin immunohistochemistry (IHC) and tissue EGFR IHC was 30.5%, 62% and 59% respectively. The corresponding mean specificity was 95%, 79% and 38% respectively. For grades 1, 2 and 3 bladder tumors, tissue expression positivity for EGFR was 47.8%, 92.9%, 100% and for tissue survivin it was 27.8%, 18.2% and 33.3% respectively. For grades 1, 2 and 3 bladder tumors, urine expression positivity for EGFR was 35.7%, 40% and 67.7% and for urine survivin it was 8.3%, 42.9% and 33.3% respectively. Positive EGFR immunostaining of urine cytology specimen or tumour tissue increases with histological grade of TCC of the bladder. Survivin expression is less consistent in both urine cytology specimen and tissue samples. EGFR immunostaining may provide a useful tool in the grading of bladder TCC and aid in the selection of patients that may benefit from administration of EGFR inhibitors.

  3. Clinical impact of minocycline on afatinib-related rash in patients with non-small cell lung cancer harboring epidermal growth factor receptor mutations.

    Science.gov (United States)

    Goto, Ayano; Ozawa, Yuichi; Koda, Keigo; Akahori, Daisuke; Koyauchi, Takashi; Amano, Yusuke; Kakutani, Takuya; Sato, Yoshiko; Hasegawa, Hirotsugu; Matsui, Takashi; Yokomura, Koshi; Suda, Takafumi

    2018-03-01

    The management of skin toxicity is crucial for efficient afatinib treatment, but the role of tetracycline class antibiotics (TCs) in managing these rashes is relatively unknown. We reviewed the clinical records of patients who were administered afatinib for the treatment of non-small cell lung cancer harboring epidermal growth factor receptor mutations between October 2014 and November 2016. Twenty-five patients, who received TCs for the management of afatinib-related skin disorders, were enrolled. Minocycline was administered orally to participants. Afatinib-related toxic effects, such as rash, diarrhea, and paronychia, were observed in 92%, 92%, and 40% of cases, respectively. Although 24% of diarrhea and 4% of paronychia cases were rated grade 3 or higher, no severe cases of rash were observed during afatinib treatment. Of the 18 afatinib dose reductions, 14 (78%), three (17%), and one (6%) resulted from diarrhea, paronychia, and stomatitis, respectively; no patients required a dose reduction because of rash. When minocycline treatment started, 21 patients (84%) had a rash of grade 1 or less, and three patients had a grade 2 rash. A response to afatinib was observed in 18 patients (72%) and the median duration of afatinib administration was 501 days. An adverse event related to minocycline (grade 1 nausea) was observed in one patient. A large proportion of the study patients started minocycline before grade 2 rash development and the severity of afatinib-related rash was lower than that previously reported. Oral TCs may be beneficial, especially if started early. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  4. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030 (China); Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160 (United States); Li, Yuan; Ni, Hong-Min; Ding, Wen-Xing [Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zhong, Hua, E-mail: eddiedong8@hotmail.com [Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2016-11-01

    Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to the resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.

  5. Matched-pair analysis of a multi-institutional cohort reveals that epidermal growth factor receptor mutation is not a risk factor for postoperative recurrence of lung adenocarcinoma.

    Science.gov (United States)

    Matsumura, Yuki; Suzuki, Hiroyuki; Ohira, Tetsuya; Shiono, Satoshi; Abe, Jiro; Sagawa, Motoyasu; Sakurada, Akira; Katahira, Masato; Machida, Yuichiro; Takahashi, Satomi; Okada, Yoshinori

    2017-12-01

    It is unclear whether epidermal growth factor receptor (EGFR) mutation status is a risk factor for postoperative recurrence of surgically resected lung adenocarcinoma (ADC). Therefore, we conducted a multi-institutional study employing matched-pair analysis to compare recurrence-free survival (RFS) and overall survival (OS) of patients with lung ADC according to EGFR mutation status. We collected the records of 909 patients who underwent surgical resection for lung ADC between 2005 and 2012 at five participating institutions and were also examined their EGFR mutation status. For each patient with an EGFR mutation, we selected one with the wild-type EGFR sequence and matched them according to institution, age, gender, smoking history, pathological stage (pStage), and adjuvant treatment. We compared RFS and OS of the matched cohort. The patients were allocated into groups (n=181 each) with mutated or wild-type EGFR sequences. Both cohorts had identical characteristics as follows: institution, median age (68 years), men (85, 47%), ever smokers (77, 43%), and pStage (IA, 108, 60%; IB, 48, 27%; II, 14, 8%; III, 11, 6%). The 3- and 5-year RFS rates of patients with mutated or wild-type EGFR sequence were 79%, 68% and 77%, 68%, respectively (p=0.557). The respective OS rates were 92%, 81%, and 89%, 79% (p=0.574). Matched-pair and multi-institutional analysis reveals that an EGFR mutation was not a significant risk factor for recurrence of patients with surgically resected lung adenocarcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Localization and distribution of neurons that co-express xeroderma pigmentosum-A and epidermal growth factor receptor within Rosenthal's canal.

    Science.gov (United States)

    Guthrie, O'neil W

    2015-10-01

    Xeroderma pigmentosum-A (XPA) is a C4-type zinc-finger scaffolding protein that regulates the removal of bulky-helix distorting DNA damage products from the genome. Phosphorylation of serine residues within the XPA protein is associated with improved protection of genomic DNA and cell death resistance. Therefore, kinase signaling is one important mechanism for regulating the protective function of XPA. Previous experiments have shown that spiral ganglion neurons (SGNs) may mobilize XPA as a general stress response to chemical and physical ototoxicants. Therapeutic optimization of XPA via kinase signaling could serve as a means to improve DNA repair capacity within neurons following injury. The kinase signaling activity of the epidermal growth factor receptor (EGFR) has been shown in tumor cell lines to increase the repair of DNA damage products that are primarily repaired by XPA. Such observations suggest that EGFR may regulate the protective function of XPA. However, it is not known whether SGNs in particular or neurons in general could co-express XPA and EGFR. In the current study gene and protein expression of XPA and EGFR were determined from cochlear homogenates. Immunofluorescence assays were then employed to localize neurons expressing both EGFR and XPA within the ganglion. This work was then confirmed with double-immunohistochemistry. Rosenthal's canal served as the reference space in these experiments and design-based stereology was employed in first-order stereology quantification of immunoreactive neurons. The results confirmed that a population of SGNs that constitutively express XPA may also express the EGFR. These results provide the basis for future experiments designed to therapeutically manipulate the EGFR in order to regulate XPA activity and restore gene function in neurons following DNA damage. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Pharmacokinetics, biodistribution and dosimetry of {sup 99m}Tc-labeled anti-human epidermal growth factor receptor humanized monoclonal antibody R3 in rats

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Normando Iznaga; Morales, Alejo Morales; Duconge, Jorge; Torres, Idania Caballero; Fernandez, Eduardo; Gomez, Jose A

    1998-01-01

    The pharmacokinetics, biodistribution and dosimetry of {sup 99m}Tc-labeled anti-human epidermal growth factor receptor (anti-hEGF-r) humanized monoclonal antibody (MAb) R3 was investigated following intravenous injection in normal Wistar rats. Serum disappearance curves were best fit by a two-compartment model having a mean distribution half-life (t{sub (1(2{alpha}}{sub ))}) of 0.250 h and a mean elimination (t{sub (1(2{beta}}{sub ))}) of 13.89 h. Among the various organs, a little accumulation of the radiolabeled antibody was found only in kidneys. Biodistribution and dosimetry studies in humans were performed by extrapolation of the animal data to humans. Absorbed dose to normal organs and the remainder of the whole body were estimated using the medical internal radiation dose formula, and dose contributions from radioactivity in transit through the gastrointestinal tract were estimated using a compartment model. Extrapolated values of radiation absorbed dose to normal organs in rads per millicurie administered were whole body, 0.0085; lower large intestine wall, 0.0898; small intestine, 0.0530; upper large intestine wall, 0.0731; and kidneys, 0.0455. The effective dose equivalent predicted was 0.0162 rem/mCi and the effective dose was found to be 0.015 rem/mCi. On the basis of the pharmacokinetics, biodistribution and internal radiation dosimetry information obtained in this study, a diagnostic phase I clinical trial with {sup 99m}Tc-labeled humanized MAb R3 conjugate in patients should be supported.

  8. Pharmacokinetics, biodistribution and dosimetry of 99mTc-labeled anti-human epidermal growth factor receptor humanized monoclonal antibody R3 in rats

    International Nuclear Information System (INIS)

    Escobar, Normando Iznaga; Morales, Alejo Morales; Duconge, Jorge; Torres, Idania Caballero; Fernandez, Eduardo; Gomez, Jose A.

    1998-01-01

    The pharmacokinetics, biodistribution and dosimetry of 99m Tc-labeled anti-human epidermal growth factor receptor (anti-hEGF-r) humanized monoclonal antibody (MAb) R3 was investigated following intravenous injection in normal Wistar rats. Serum disappearance curves were best fit by a two-compartment model having a mean distribution half-life (t (1(2α)) ) of 0.250 h and a mean elimination (t (1(2β)) ) of 13.89 h. Among the various organs, a little accumulation of the radiolabeled antibody was found only in kidneys. Biodistribution and dosimetry studies in humans were performed by extrapolation of the animal data to humans. Absorbed dose to normal organs and the remainder of the whole body were estimated using the medical internal radiation dose formula, and dose contributions from radioactivity in transit through the gastrointestinal tract were estimated using a compartment model. Extrapolated values of radiation absorbed dose to normal organs in rads per millicurie administered were whole body, 0.0085; lower large intestine wall, 0.0898; small intestine, 0.0530; upper large intestine wall, 0.0731; and kidneys, 0.0455. The effective dose equivalent predicted was 0.0162 rem/mCi and the effective dose was found to be 0.015 rem/mCi. On the basis of the pharmacokinetics, biodistribution and internal radiation dosimetry information obtained in this study, a diagnostic phase I clinical trial with 99m Tc-labeled humanized MAb R3 conjugate in patients should be supported

  9. The Effect of Adjuvant Trastuzumab on Locoregional Recurrence of Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer Treated with Mastectomy.

    Science.gov (United States)

    Lanning, Ryan M; Morrow, Monica; Riaz, Nadeem; McArthur, Heather L; Dang, Chau; Moo, Tracy-Ann; El-Tamer, Mahmoud; Krause, Kate; Siu, Chun; Hsu, Meier; Zhang, Zhigang; Pei, Xin; McCormick, Beryl; Powell, Simon N; Ho, Alice

    2015-08-01

    Human epidermal growth factor receptor 2 (HER2) overexpression was associated with locoregional recurrence (LRR) in the preadjuvant trastuzumab era. This study aimed to examine the effect of trastuzumab on LRR in mastectomy patients and whether it varied with postmastectomy radiation (PMRT). From the authors' institutional database, 501 women with stages I-III HER2-positive breast cancer who underwent mastectomy from 1998 to 2007 were identified. A landmark analysis was performed to compare two cohorts: 170 women who received trastuzumab and 281 who did not. Kaplan-Meier methods were used to estimate locoregional recurrence-free survival (LRRFS). A propensity score analysis was used to balance the treatment groups with respect to multiple covariates. Analogous methods were used to study the effect of PMRT. The women in the trastuzumab group were more likely to be node positive and to receive systemic therapy or PMRT (p < 0.01). The 5-year LRRFS was 98 % in the trastuzumab troup versus 94 % in the no trastuzumab group [hazard ratio (HR) 0.31; 95 % confidence interval (CI) 0.09-1.09; p = 0.07]. After adjustment for multiple covariates, including receipt of chemotherapy and PMRT, trastuzumab decreased LRR rates (HR 0.21; 95 % CI 0.04-0.94; p = 0.04). Among the women who received PMRT, trastuzumab reduced the 5-year LRR rate (0 vs 5 %; p = 0.06). Among those who did not receive PMRT, trastuzumab did not significantly decrease LRR (3 vs 6 %; p = 0.26). High rates of locoregional control (5-year rate, 98 %) were observed among patients who received trastuzumab and mastectomy ± PMRT. Trastuzumab decreased LRR in HER2-positive women who received mastectomy and PMRT, suggesting that the largest benefit is seen in a higher-risk subset of patients.

  10. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report

    Directory of Open Access Journals (Sweden)

    Lincer Robert

    2010-10-01

    Full Text Available Abstract Background Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. Case presentation A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2 on day 1 and 8 every 21 days as well as daily erlotinib (100 mg. After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. Conclusion This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status.

  11. Sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in males, smokers, and non-adenocarcinoma lung cancer in patients with EGFR mutations.

    Science.gov (United States)

    Zeng, Zhu; Chen, Hua-Jun; Yan, Hong-Hong; Yang, Jin-Ji; Zhang, Xu-Chao; Wu, Yi-Long

    2013-09-27

    The demographical/clinical characteristics of being Asian, having an adenocarcinoma, being female, and being a "never-smoker" are regarded as favorable predictors for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) efficacy in non-small cell lung cancer (NSCLC) with unknown EGFR gene status. In this study, we examined the effects of the supposedly unfavorable clinical variables in EGFR-mutant patients. In total, 159 EGFR-mutant NSCLC patients' clinical features were correlated with progression-free survival (PFS), response rate (RR), and overall survival (OS). Multivariate analysis of clinical characteristics was performed using the Cox and logistic regression methods. There were 90 females (56.6%), 112 never-smokers (70.4%), and 153 patients with adenocarcinomas (96.2%). All patients were treated with EGFR-TKI, and 52.8% received TKI in a first-line setting. The median PFS of patients receiving first-line TKI was similar, regardless of gender (males vs females: 9.1 vs 9.7 months, p=0.793), smoking status (never-smokers vs smokers: 9.9 vs 9.1 months, p=0.570), or histology (adenocarcinoma vs non-adenocarcinoma: 9.7 vs 9.2 months, p=0.644). OS curves of first-line TKI-treated patients were also not associated with gender (p=0.722), smoking status (p=0.579), or histology (p=0.480). Similar results of PFS and OS were obtained for patients who received TKI beyond first-line. Multivariate analysis indicated that none of these clinical factors was an independent predictor of survival. The supposedly 'favorable' clinical factors of female gender, non-smoking status, and adenocarcinoma were not independent predictive factors for PFS or OS in this population of EGFR-mutant NSCLC patients.

  12. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report

    International Nuclear Information System (INIS)

    Mody, Kabir; Strauss, Edward; Lincer, Robert; Frank, Richard C

    2010-01-01

    Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR) is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI) to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2) on day 1 and 8 every 21 days as well as daily erlotinib (100 mg). After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status

  13. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report.

    Science.gov (United States)

    Mody, Kabir; Strauss, Edward; Lincer, Robert; Frank, Richard C

    2010-10-20

    Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR) is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI) to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2) on day 1 and 8 every 21 days as well as daily erlotinib (100 mg). After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status.

  14. CRISPR/Cas9 Genome Editing of Epidermal Growth Factor Receptor Sufficiently Abolished Oncogenicity in Anaplastic Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Li-Chi Huang

    2018-01-01

    Full Text Available Anaplastic carcinoma of the thyroid (ATC, also called undifferentiated thyroid cancer, is the least common but most aggressive and deadly thyroid gland malignancy of all thyroid cancers. The aim of this study is to explore essential biomarker and use CRISPR/Cas9 with lentivirus delivery to establish a gene-target therapeutic platform in ATC cells. At the beginning, the gene expression datasets from 1036 cancers from CCLE and 8215 tumors from TCGA were collected and analyzed, showing EGFR is predominantly overexpressed in thyroid cancers than other type of cancers (P=0.017 in CCLE and P=0.001 in TCGA. Using CRISPR/Cas9 genomic edit system, ATC cells with EGFR sgRNA lentivirus transfection obtained great disruptions on gene and protein expression, resulting in cell cycle arrest, cell growth inhibition, and most importantly metastasis turn-off ability. In addition, the FDA-approved TKI of afatinib for EGFR targeting also illustrates great anticancer activity on cancer cell death occurrence, cell growth inhibition, and cell cycle arrest in SW579 cells, an EGFR expressing human ATC cell line. Furthermore, off-target effect of using EGFR sgRNAs was measured and found no genomic editing can be detected in off-target candidate gene. To conclude, this study provides potential ATC therapeutic strategies for current and future clinical needs, which may be possible in increasing the survival rate of ATC patients by translational medicine.

  15. Cbl-family ubiquitin ligases and their recruitment of CIN85 are largely dispensable for epidermal growth factor receptor endocytosis

    Science.gov (United States)

    Ahmad, Gulzar; Mohapatra, Bhopal; Schulte, Nancy A.; Nadeau, Scott; Luan, Haitao; Zutshi, Neha; Tom, Eric; Ortega-Cava, Cesar; Tu, Chun; Sanada, Masashi; Ogawa, Seishi; Toews, Myron L.; Band, Vimla; Band, Hamid

    2014-01-01

    Members of the Casitas B-Lineage Lymphoma (Cbl) family (Cbl, Cbl-b and Cbl-c) of ubiquitin ligases serve as negative regulators of receptor tyrosine kinases (RTKs). An essential role of Cbl-family protein-dependent ubiquitination for efficient ligand-induced lysosomal targeting and degradation is now well-accepted. However, a more proximal role of Cbl and Cbl-b as adapters for CIN85-endophilin recruitment to mediate ligand-induced initial internalization of RTKs is supported by some studies but refuted by others. Overexpression and/or incomplete depletion of Cbl proteins in these studies is likely to have contributed to this dichotomy. To address the role of endogenous Cbl and Cbl-b in the internalization step of RTK endocytic traffic, we established Cbl/Cbl-b double-knockout (DKO) mouse embryonic fibroblasts (MEFs) and demonstrated that these cells lack the expression of both Cbl-family members as well as endophilin A, while they express CIN85. We show that ligand-induced ubiquitination of EGFR, as a prototype RTK, was abolished in DKO MEFs, and EGFR degradation was delayed. These traits were reversed by ectopic human Cbl expression. EGFR endocytosis, assessed using the internalization of 125I-labeled or fluorescent EGF, or of EGFR itself, was largely retained in Cbl/Cbl-b DKO compared to wild type MEFs. EGFR internalization was also largely intact in Cbl/Cbl-b depleted MCF-10A human mammary epithelial cell line. Inducible shRNA-mediated knockdown of CIN85 in wild type or Cbl/Cbl-b DKO MEFs had no impact on EGFR internalization. Our findings, establish that, at physiological expression levels, Cbl, Cbl-b and CIN85 are largely dispensable for EGFR internalization. Our results support the model that Cbl-CIN85-endophilin complex is not required for efficient internalization of EGFR, a prototype RTK. PMID:25449262

  16. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    Science.gov (United States)

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents.

  17. Alterations of the genes involved in the PI3K and estrogen-receptor pathways influence outcome in human epidermal growth factor receptor 2-positive and hormone receptor-positive breast cancer patients treated with trastuzumab-containing neoadjuvant chemotherapy

    International Nuclear Information System (INIS)

    Takada, Mamoru; Miyazaki, Masaru; Sato-Otsubo, Aiko; Ogawa, Seishi; Kaneko, Yasuhiko; Higuchi, Toru; Tozuka, Katsunori; Takei, Hiroyuki; Haruta, Masayuki; Watanabe, Junko; Kasai, Fumio; Inoue, Kenichi; Kurosumi, Masafumi

    2013-01-01

    Chemotherapy with trastuzumab is widely used for patients with human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but a significant number of patients with the tumor fail to respond, or relapse. The mechanisms of recurrence and biomarkers that indicate the response to the chemotherapy and outcome are not fully investigated. Genomic alterations were analyzed using single-nucleotide polymorphism arrays in 46 HER2 immunohistochemistry (IHC) 3+ or 2+/fluorescent in situ hybridization (FISH)+ breast cancers that were treated with neoadjuvant chemotherapy with paclitaxel, cyclophosphamid, epirubicin, fluorouracil, and trastuzumab. Patients were classified into two groups based on presence or absence of alterations of 65 cancer-associated genes, and the two groups were further classified into four groups based on genomic HER2 copy numbers or hormone receptor status (HR+/−). Pathological complete response (pCR) and relapse-free survival (RFS) rates were compared between any two of the groups. The pCR rate was 54% in 37 patients, and the RFS rate at 3 years was 72% (95% CI, 0.55-0.89) in 42 patients. The analysis disclosed 8 tumors with nonamplified HER2 and 38 tumors with HER2 amplification, indicating the presence of discordance in tumors diagnosed using current HER2 testing. The 8 patients showed more difficulty in achieving pCR (P=0.019), more frequent relapse (P=0.018), and more frequent alterations of genes in the PI3K pathway (P=0.009) than the patients with HER2 amplification. The alterations of the PI3K and estrogen receptor (ER) pathway genes generally indicated worse RFS rates. The prognostic significance of the alterations was shown in patients with a HR+ tumor, but not in patients with a HR- tumor when divided. Alterations of the PI3K and ER pathway genes found in patients with a HR+ tumor with poor outcome suggested that crosstalk between the two pathways may be involved in resistance to the current chemotherapy with trastuzumab. We

  18. Progesterone receptor (PR) polyproline domain (PPD) mediates inhibition of epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer cells.

    Science.gov (United States)

    Kawprasertsri, Sornsawan; Pietras, Richard J; Marquez-Garban, Diana C; Boonyaratanakornkit, Viroj

    2016-05-01

    Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer.

    Science.gov (United States)

    Cheng, Qing; Chang, Jeffrey T; Geradts, Joseph; Neckers, Leonard M; Haystead, Timothy; Spector, Neil L; Lyerly, H Kim

    2012-04-17

    Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of additional molecular factors, especially those characterized by aggressive behavior and poor prognosis, could prioritize interventional opportunities to improve the diagnosis and treatment of breast cancer. We compiled a collection of 4,010 breast tumor gene expression data derived from 23 datasets that have been posted on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We performed a genome-scale survival analysis using Cox-regression survival analyses, and validated using Kaplan-Meier Estimates survival and Cox Proportional-Hazards Regression survival analyses. We conducted a genome-scale analysis of chromosome alteration using 481 breast cancer samples obtained from The Cancer Genome Atlas (TCGA), from which combined expression and copy number data were available. We assessed the correlation between somatic copy number alterations and gene expression using analysis of variance (ANOVA). Increased expression of each of the heat shock protein (HSP) 90 isoforms, as well as HSP transcriptional factor 1 (HSF1), was correlated with poor prognosis in different subtypes of breast cancer. High-level expression of HSP90AA1 and HSP90AB1, two cytoplasmic HSP90 isoforms, was driven by chromosome coding region amplifications and were independent factors that led to death from breast cancer among patients with triple-negative (TNBC) and HER2-/ER+ subtypes, respectively. Furthermore, amplification of HSF1 was correlated with higher HSP90AA1 and HSP90AB1 mRNA expression among the breast cancer cells without amplifications of these two genes. A collection of HSP90AA1, HSP90AB1 and HSF

  20. Inhibitory Activities of Epidermal Growth Factor Receptor Tyrosine Kinase-Targeted Dihydroxyisoflavone and Trihydroxydeoxybenzoin Derivatives on Sarcocystis neurona, Neospora caninum, and Cryptosporidium parvum Development

    Science.gov (United States)

    Gargala, G.; Baishanbo, A.; Favennec, L.; François, A.; Ballet, J. J.; Rossignol, J.-F.

    2005-01-01

    Several gene sequences of parasitic protozoa belonging to protein kinase gene families and epidermal growth factor (EGF)-like peptides, which act via binding to receptor tyrosine kinases of the EGF receptor (EGFR) family, appear to mediate host-protozoan interactions. As a clue to EGFR protein tyrosine kinase (PTK) mediation and a novel approach for identifying anticoccidial agents, activities against Sarcocystis neurona, Neospora caninum, and Cryptosporidium parvum grown in BM and HCT-8 cell cultures of 52 EGFR PTK inhibitor isoflavone analogs (dihydroxyisoflavone and trihydroxydeoxybenzoine derivatives) were investigated. Their cytotoxicities against host cells were either absent, mild, or moderate by a nitroblue tetrazolium test. At concentrations ranging from 5 to 10 μg/ml, 20 and 5 analogs, including RM-6427 and RM-6428, exhibited an in vitro inhibitory effect of ≥95% against at least one parasite or against all three, respectively. In immunosuppressed Cryptosporidium parvum-infected Mongolian gerbils orally treated with either 200 or 400 mg of agent RM-6427/kg of body weight/day for 8 days, fecal microscopic oocyst shedding was abolished in 6/10 animals (P of 0.05, respectively). After RM-6427 therapy (200 mg/kg/day for 8 days), the reduction in the ratio of animals with intracellular parasites was nearly significant in ileum (P = 0.067) and more marked in the biliary tract (P < 0.0013) than after nitazoxanide or paromomycin treatment (0.05 < P < 0.004). RM-6428 treatment at a regimen of 400 mg/kg/day for 12 days inhibited oocyst shedding, measured using flow cytometry from day 4 (P < 0.05) to day 12 (P < 0.02) of therapy, when 2/15 animals had no shedding (P < 0.0001) and 11/15 were free of gut and/or biliary tract parasites (P < 0.01). No mucosal alteration was microscopically observed for treated or untreated infected gerbils. To our knowledge, this report is the first to suggest that the isoflavone class of agents has the potential for

  1. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    International Nuclear Information System (INIS)

    Kang, Khong Bee; Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-01-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)–Akt-DNA–dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H 2 AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H 2 AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G 2 /M arrest and increased γ-H 2 AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H 2 AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are resistant to irradiation

  2. Gefitinib radiosensitizes stem-like glioma cells: inhibition of epidermal growth factor receptor-Akt-DNA-PK signaling, accompanied by inhibition of DNA double-strand break repair.

    Science.gov (United States)

    Kang, Khong Bee; Zhu, Congju; Wong, Yin Ling; Gao, Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H(2)AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H(2)AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G(2)/M arrest and increased γ-H(2)AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H(2)AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Stem-like gliomaspheres are resistant to irradiation-induced cytotoxicity, G(2)/M arrest, and DNA DSBs, compared with nonstem

  3. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore); Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore)

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  4. Rapid point-of-care testing for epidermal growth factor receptor gene mutations in patients with lung cancer using cell-free DNA from cytology specimen supernatants.

    Science.gov (United States)

    Asaka, Shiho; Yoshizawa, Akihiko; Saito, Kazusa; Kobayashi, Yukihiro; Yamamoto, Hiroshi; Negishi, Tatsuya; Nakata, Rie; Matsuda, Kazuyuki; Yamaguchi, Akemi; Honda, Takayuki

    2018-06-01

    Epidermal growth factor receptor (EGFR) mutations are associated with responses to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC). Our previous study revealed a rapid point-of-care system for detecting EGFR mutations. This system analyzes cell pellets from cytology specimens using droplet-polymerase chain reaction (d-PCR), and has a reaction time of 10 min. The present study aimed to validate the performance of the EGFR d-PCR assay using cell-free DNA (cfDNA) from supernatants obtained from cytology specimens. Assay results from cfDNA supernatant analyses were compared with those from cell pellets for 90 patients who were clinically diagnosed with, or suspected of having, lung cancer (80 bronchial lavage fluid samples, nine pleural effusion samples and one spinal fluid sample). EGFR mutations were identified in 12 and 15 cases using cfDNA supernatants and cell pellets, respectively. The concordance rates between cfDNA-supernatant and cell‑pellet assay results were 96.7% [kappa coefficient (K)=0.87], 98.9% (K=0.94), 98.9% (K=0.79) and 98.9% (K=0.79) for total EGFR mutations, L858R, E746_A750del and T790M, respectively. All 15 patients with EGFR mutation-positive results, as determined by EGFR d-PCR assay using cfDNA supernatants or cell pellets, also displayed positive results by conventional EGFR assays using tumor tissue or cytology specimens. Notably, EGFR mutations were even detected in five cfDNA supernatants for which the cytological diagnoses of the corresponding cell pellets were 'suspicious for malignancy', 'atypical' or 'negative for malignancy.' In conclusion, this rapid point-of-care system may be considered a promising novel screening method that may enable patients with NSCLC to receive EGFR-TKI therapy more rapidly, whilst also reserving cell pellets for additional morphological and molecular analyses.

  5. Translational Breast Cancer Research Consortium (TBCRC) 022: A Phase II Trial of Neratinib for Patients With Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer and Brain Metastases.

    Science.gov (United States)

    Freedman, Rachel A; Gelman, Rebecca S; Wefel, Jeffrey S; Melisko, Michelle E; Hess, Kenneth R; Connolly, Roisin M; Van Poznak, Catherine H; Niravath, Polly A; Puhalla, Shannon L; Ibrahim, Nuhad; Blackwell, Kimberly L; Moy, Beverly; Herold, Christina; Liu, Minetta C; Lowe, Alarice; Agar, Nathalie Y R; Ryabin, Nicole; Farooq, Sarah; Lawler, Elizabeth; Rimawi, Mothaffar F; Krop, Ian E; Wolff, Antonio C; Winer, Eric P; Lin, Nancy U

    2016-03-20

    Evidence-based treatments for metastatic, human epidermal growth factor receptor 2 (HER2)-positive breast cancer in the CNS are limited. Neratinib is an irreversible inhibitor of erbB1, HER2, and erbB4, with promising activity in HER2-positive breast cancer; however, its activity in the CNS is unknown. We evaluated the efficacy of treatment with neratinib in patients with HER2-positive breast cancer brain metastases in a multicenter, phase II open-label trial. Eligible patients were those with HER2-positive brain metastases (≥ 1 cm in longest dimension) who experienced progression in the CNS after one or more line of CNS-directed therapy, such as whole-brain radiotherapy, stereotactic radiosurgery, and/or surgical resection. Patients received neratinib 240 mg orally once per day, and tumors were assessed every two cycles. The primary endpoint was composite CNS objective response rate (ORR), requiring all of the following: ≥ 50% reduction in volumetric sum of target CNS lesions and no progression of non-target lesions, new lesions, escalating corticosteroids, progressive neurologic signs/symptoms, or non-CNS progression--the threshold for success was five of 40 responders. Forty patients were enrolled between February 2012 and June 2013; 78% of patients had previous whole-brain radiotherapy. Three women achieved a partial response (CNS objective response rate, 8%; 95% CI, 2% to 22%). The median number of cycles received was two (range, one to seven cycles), with a median progression-free survival of 1.9 months. Five women received six or more cycles. The most common grade ≥ 3 event was diarrhea (occurring in 21% of patients taking prespecified loperamide prophylaxis and 28% of those without prophylaxis). Patients in the study experienced a decreased quality of life over time. Although neratinib had low activity and did not meet our threshold for success, 12.5% of patients received six or more cycles. Studies combining neratinib with chemotherapy in patients

  6. Survival significance of epidermal growth factor receptor tyrosine kinase inhibitors and current staging system for survival after recurrence in patients with completely resected lung adenocarcinoma

    Science.gov (United States)

    Saji, Hisashi; Sakai, Hiroki; Kimura, Hiroyuki; Miyazawa, Tomoyuki; Marushima, Hideki; Nakamura, Haruhiko

    2017-01-01

    Objective We previously reported that the staging system and epidermal growth factor receptor (EGFR) mutation status are key factors for treatment strategy and predicting survival. However, the significance of these factors as predictors of overall survival (OS) and postoperative recurrence survival (PRS) has not been sufficiently elucidated. The objective here was to investigate EGFR mutation status and p-stage, which affect PRS and OS in patients with completely resected lung adenocarcinoma, using a different database. Patients and methods We retrospectively reviewed 56 consecutive lung adenocarcinoma patients with disease recurrence in St. Marianna University Hospital between January 2010 and December 2014. Results EGFR mutants (M) were detected in 16/56 patients (29%). The patients with EGFR M had a better OS than those with EGFR wild-type (WT) status (5-year survival: 50.3% vs 43.1, P=0.133). There was no significant difference in the 3-year recurrence-free survival rate between patients with M and WT (6.3% vs 7.7%, P=0.656), and the patients with EGFR M had a significantly better 3-year PRS than those with WT (77.4% vs 51.7%, P=0.033). The 3-year PRS rate for patients with M/pathologic stage (p-stage) I–II (87.5%) was better than that for patients with M/p-stage III (60.0%), WT/p-stage I–II (52.7%), and WT/p-stage III (43.8%). There was a significant difference between patients with M/p-stage I and WT/p-stage I–II or WT/p-stage III (P=0.021 and 0.030, respectively). During the study period, of the 16 patients with mutants, 12 patients (75%) received EGFR-tyrosine kinase inhibitor (TKI) therapy and among the 40 patients with WT, no patient received EGFR-TKI therapy. Multivariate survival analysis showed that patients with EGFR-TKI therapy had a statistically significant association with favorable PRS (hazard ratio 0.271; 95% confidence interval 0.074–1.000; P=0.050). Conclusion EGFR status and p-stage were found to be essential prognostic factors for

  7. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    Directory of Open Access Journals (Sweden)

    Tanaka Y

    2016-08-01

    Full Text Available Yohei Tanaka,1,2 Jun Nakayama2 1Department of Plastic Surgery, Clinica Tanaka Plastic, Reconstructive Surgery and Anti-aging Center, 2Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan Background and objective: Humans are increasingly exposed to near-infrared (NIR radiation from both natural (eg, solar and artificial (eg, electrical appliances sources. Although the biological effects of sun and ultraviolet (UV exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues.Materials and methods: DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C. The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths.Results: A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05.Conclusion: We found that NIR irradiation induced the

  8. Non-small-cell lung cancer cells combat epidermal growth factor receptor tyrosine kinase inhibition through immediate adhesion-related responses

    Directory of Open Access Journals (Sweden)

    Wang HY

    2016-05-01

    Full Text Available Hsian-Yu Wang,1,2 Min-Kung Hsu,3,4 Kai-Hsuan Wang,1 Ching-Ping Tseng,2,4 Feng-Chi Chen,3,4 John T-A Hsu1,4 1Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University (NCTU, Hsinchu, 3Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes (NHRI, Zhunan, Miaoli County, 4Department of Biological Science and Technology, National Chiao Tung University (NCTU, Hsinchu, Taiwan, Republic of China Background: Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs, such as gefitinib, erlotinib, and afatinib, have greatly improved treatment efficacy in non-small cell lung cancer (NSCLC patients with drug-sensitive EGFR mutations. However, in some TKI responders, the benefits of such targeted therapies are limited by the rapid development of resistance, and strategies to overcome this resistance are urgently needed. Studies of drug resistance in cancer cells typically involve long term in vitro induction to obtain stably acquired drug-resistant cells followed by elucidation of resistance mechanisms, but the immediate responses of cancer cells upon drug treatment have been ignored. The aim of this study was to investigate the immediate responses of NSCLC cells upon treatment with EGFR TKIs.Results: Both NSCLC cells, ie, PC9 and H1975, showed immediate enhanced adhesion-related responses as an apoptosis-countering mechanism upon first-time TKI treatment. By gene expression and pathway analysis, adhesion-related pathways were enriched in gefitinib-treated PC9 cells. Pathway inhibition by small-hairpin RNAs or small-molecule drugs revealed that within hours of EGFR TKI treatment, NSCLC cells used adhesion-related responses to combat the drugs. Importantly, we show here that the Src family inhibitor, dasatinib, dramatically inhibits

  9. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response.

    Science.gov (United States)

    Zhang, Xu; Maity, Tapan; Kashyap, Manoj K; Bansal, Mukesh; Venugopalan, Abhilash; Singh, Sahib; Awasthi, Shivangi; Marimuthu, Arivusudar; Charles Jacob, Harrys Kishore; Belkina, Natalya; Pitts, Stephanie; Cultraro, Constance M; Gao, Shaojian; Kirkali, Guldal; Biswas, Romi; Chaerkady, Raghothama; Califano, Andrea; Pandey, Akhilesh; Guha, Udayan

    2017-05-01

    Mutations in the Epidermal growth factor receptor (EGFR) kinase domain, such as the L858R missense mutation and deletions spanning the conserved sequence 747 LREA 750 , are sensitive to tyrosine kinase inhibitors (TKIs). The gatekeeper site residue mutation, T790M accounts for around 60% of acquired resistance to EGFR TKIs. The first generation EGFR TKIs, erlotinib and gefitinib, and the second generation inhibitor, afatinib are FDA approved for initial treatment of EGFR mutated lung adenocarcinoma. The predominant biomarker of EGFR TKI responsiveness is the presence of EGFR TKI-sensitizing mutations. However, 30-40% of patients with EGFR mutations exhibit primary resistance to these TKIs, underscoring the unmet need of identifying additional biomarkers of treatment response. Here, we sought to characterize the dynamics of tyrosine phosphorylation upon EGFR TKI treatment of mutant EGFR-driven human lung adenocarcinoma cell lines with varying sensitivity to EGFR TKIs, erlotinib and afatinib. We employed stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometry to identify and quantify tyrosine phosphorylated peptides. The proportion of tyrosine phosphorylated sites that had reduced phosphorylation upon erlotinib or afatinib treatment correlated with the degree of TKI-sensitivity. Afatinib, an irreversible EGFR TKI, more effectively inhibited tyrosine phosphorylation of a majority of the substrates. The phosphosites with phosphorylation SILAC ratios that correlated with the TKI-sensitivity of the cell lines include sites on kinases, such as EGFR-Y1197 and MAPK7-Y221, and adaptor proteins, such as SHC1-Y349/350, ERRFI1-Y394, GAB1-Y689, STAT5A-Y694, DLG3-Y705, and DAPP1-Y139, suggesting these are potential biomarkers of TKI sensitivity. DAPP1, is a novel target of mutant EGFR signaling and Y-139 is the major site of DAPP1 tyrosine phosphorylation. We also uncovered several off-target effects of these TKIs, such as MST1R-Y1238

  10. Lapatinib or Trastuzumab Plus Taxane Therapy for Human Epidermal Growth Factor Receptor 2-Positive Advanced Breast Cancer: Final Results of NCIC CTG MA.31.

    Science.gov (United States)

    Gelmon, Karen A; Boyle, Frances M; Kaufman, Bella; Huntsman, David G; Manikhas, Alexey; Di Leo, Angelo; Martin, Miguel; Schwartzberg, Lee S; Lemieux, Julie; Aparicio, Samuel; Shepherd, Lois E; Dent, Susan; Ellard, Susan L; Tonkin, Katia; Pritchard, Kathleen I; Whelan, Timothy J; Nomikos, Dora; Nusch, Arnd; Coleman, Robert E; Mukai, Hirofumi; Tjulandin, Sergei; Khasanov, Rustem; Rizel, Shulamith; Connor, Anne P; Santillana, Sergio L; Chapman, Judith-Anne W; Parulekar, Wendy R

    2015-05-10

    The efficacy of lapatinib versus trastuzumab combined with taxanes in the first-line setting of human epidermal growth factor receptor 2 (HER2) -positive metastatic breast cancer (BC) is unknown. The MA.31 trial compared a combination of first-line anti-HER2 therapy (lapatinib or trastuzumab) and taxane therapy for 24 weeks, followed by the same anti-HER2 monotherapy until progression. Stratification was by prior (neo)adjuvant anti-HER2 therapy, prior (neo)adjuvant taxane, planned taxane, and liver metastases. The primary end point was intention-to-treat (ITT) progression-free survival (PFS), defined as time from random assignment to progression by RECIST (version 1.0) criteria, or death for patients with locally assessed HER2-positive tumors. The primary test statistic was a stratified log-rank test for noninferiority. PFS was also assessed for patients with centrally confirmed HER2-positive tumors. From July 17, 2008, to December 1, 2011, 652 patients were accrued from 21 countries, resulting in 537 patients with centrally confirmed HER2-positive tumors. Median follow-up was 21.5 months. Median ITT PFS was 9.0 months with lapatinib and 11.3 months with trastuzumab. By ITT analysis, PFS was inferior for lapatinib compared with trastuzumab, with a stratified hazard ratio (HR) of 1.37 (95% CI, 1.13 to 1.65; P = .001). In patients with centrally confirmed HER2-positive tumors, median PFS was 9.1 months with lapatinib and 13.6 months with trastuzumab (HR, 1.48; 95% CI, 1.20 to 1.83; P < .001). More grade 3 or 4 diarrhea and rash were observed with lapatinib (P < .001). PFS results were supported by the secondary end point of overall survival, with an ITT HR of 1.28 (95% CI, 0.95 to 1.72; P = .11); in patients with centrally confirmed HER2-positive tumors, the HR was 1.47 (95% CI, 1.03 to 2.09; P = .03). As first-line therapy for HER2-positive metastatic BC, lapatinib combined with taxane was associated with shorter PFS and more toxicity compared with trastuzumab

  11. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors.

    Directory of Open Access Journals (Sweden)

    Mohammad Harun-Or-Rashid

    Full Text Available Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR system and extracellular signal-regulated kinase (ERK signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173 EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2, EGFR-inhibitor (AG1478, EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001, consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in

  12. Development of Nano-Liposomal Formulations of Epidermal Growth Factor Receptor Inhibitors and their Pharmacological Interactions on Drug-Sensitive and Drug-Resistant Cancer Cell Lines

    Science.gov (United States)

    Trummer, Brian J.

    A rapidly expanding understanding of molecular derangements in cancer cell function has led to the development of selective, targeted chemotherapeutic agents. Growth factor signal transduction networks are frequently activated in an aberrant fashion, particularly through the activity of receptor tyrosine kinases (RTK). This has spurred an intensive effort to develop receptor tyrosine kinase inhibitors (RTKI) that are targeted to specific receptors, or receptor subfamilies. Chapter 1 reviews the pharmacology, preclinical, and clinical aspects of RTKIs that target the epidermal growth factor receptor (EGFR). EGFR inhibitors demonstrate significant success at inhibiting phosphorylation-based signaling pathways that promote cancer cell proliferation. Additionally RTKIs have physicochemical and structural characteristics that enable them to function as inhibitors of multi-drug resistance transport proteins. Thus EGFR inhibitors and other RTKIs have both on-target and off-target activities that could be beneficial in cancer therapy. However, these agents exert a number of side effects, some of which arise from their hydrophobic nature and large in vivo volume of distribution. Side effects of the EGFR inhibitor gefitinib include skin rash, severe myelotoxicity when combined with certain chemotherapeutic agents, and impairment of the blood brain barrier to xenobiotics. Weighing the preclinical and clinical observations with the EGFR inhibitors, we developed the primary overall hypothesis of this research: that drug-carrier formulations of RTKIs such as the EGFR inhibitors could be developed based on nanoparticulate liposomal carriers. Theoretically, this carrier strategy would ameliorate toxicity and improve the biodistribution and tumor selectivity of these agents. We hypothesized specifically that liposomal formulations could shift the biodistribution of EGFR inhibitors such as gefitinib away from skin, bone marrow, and the blood brain barrier, and toward solid tumors

  13. Reliability of using circulating tumor cells for detecting epidermal growth factor receptor mutation status in advanced non-small-cell lung cancer patients: a meta-analysis and systematic review

    Directory of Open Access Journals (Sweden)

    Hu F

    2018-03-01

    Full Text Available Fang Hu,* Xiaowei Mao,* Yujun Zhang, Xiaoxuan Zheng, Ping Gu, Huimin Wang, Xueyan ZhangDepartment of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this workPurpose: To evaluate the clinical value of circulating tumor cells as a surrogate to detect epidermal growth factor receptor mutation in advanced non-small-cell lung cancer (NSCLC patients.Methods: We searched the electronic databases, and all articles meeting predetermined selection criteria were included in this study. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. The evaluation indexes of the diagnostic performance were the summary receiver operating characteristic curve and area under the summary receiver operating characteristic curve.Results: Eight eligible publications with 255 advanced NSCLC patients were included in this meta-analysis. Taking tumor tissues as reference, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of circulating tumor cells for detecting the epidermal growth factor receptor mutation status were found to be 0.82 (95% confidence interval [CI]: 0.50–0.95, 0.95 (95% CI: 0.24–1.00, 16.81 (95% CI: 0.33–848.62, 0.19 (95% CI: 0.06–0.64, and 86.81 (95% CI: 1.22–6,154.15, respectively. The area under the summary receiver operating characteristic curve was 0.92 (95% CI: 0.89–0.94. The subgroup analysis showed that the factors of blood volume, histological type, EGFR-tyrosine kinase inhibitor therapy, and circulating tumor cell and tissue test methods for EGFR accounted for the significant difference of the pooled specificity. No significant difference was found between the pooled sensitivity of the subgroup.Conclusion: Our meta-analysis confirmed that circulating tumor cells are a good surrogate for

  14. Epidermal growth factor and active caspase-3 expression in the levator ani muscle of dogs with and without perineal hernia.

    Science.gov (United States)

    Pérez-Gutiérrez, J F; Argüelles, J C; Iglesias-Núñez, M; Oliveira, K S; De La Muela, M Sánchez

    2011-07-01

    To perform a histological and immunohistochemical study of epidermal growth factor, transforming growth factor-alpha and their receptor, as well as the apoptotic signal active caspase-3 in the levator ani muscle of dogs with and without perineal hernia. Biopsy specimens of the levator ani muscle were obtained from 25 dogs with perineal hernia and 4 non-affected dogs and were processed for Masson and immunohistochemical staining. The affected dogs exhibited myopathological features, internalised nuclei, destruction and abnormal size of muscle fibres, which were replaced by collagen. The immunohistochemical study revealed active caspase-3, epidermal growth factor, transforming growth factor-alpha and epidermal growth factor receptor in the levator ani. Compared to the healthy muscle, transforming growth factor-alpha staining intensity was lower in the affected muscle, whereas epidermal growth factor receptor and active caspase-3 staining were higher. Pelvic diaphragm muscle weakening is the leading cause of perineal hernia in the dog. Survival and death signals expressed in these muscles may contribute to the pathogenesis of this disease. This study reports epidermal growth factor, transforming growth factor-alpha and epidermal growth factor receptor immunohistochemical expression in the skeletal muscle and suggests that perineal hernia in the dog is accompanied by levator ani muscle atrophy, increased expression of epidermal growth factor receptor, caspase-3 activation, and decreased expression of transforming growth factor-alpha. © 2011 British Small Animal Veterinary Association.

  15. Systemic treatment with epidermal growth factor in pigs induces ductal proliferations in the pancreas

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Juhl, C O; Teglbjaerg, P S

    1997-01-01

    Epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), and the EGF receptor are often overexpressed in chronic pancreatitis and in malignant pancreatic growth. Transgenic mice overexpressing TGF-alpha develop tissue changes in the pancrease resembling changes found in chronic...... pancreatitis. The effects of systemic treatment with EGF on the porcine pancrease were investigated in this study....

  16. Prospective study of the impact of the Prosigna assay on adjuvant clinical decision-making in unselected patients with estrogen receptor positive, human epidermal growth factor receptor negative, node negative early-stage breast cancer.

    Science.gov (United States)

    Martín, Miguel; González-Rivera, Milagros; Morales, Serafín; de la Haba-Rodriguez, Juan; González-Cortijo, Lucía; Manso, Luis; Albanell, Joan; González-Martín, Antonio; González, Sónia; Arcusa, Angels; de la Cruz-Merino, Luis; Rojo, Federico; Vidal, María; Galván, Patricia; Aguirre, Elena; Morales, Cristina; Ferree, Sean; Pompilio, Kristen; Casas, Maribel; Caballero, Rosalía; Goicoechea, Uxue; Carrasco, Eva; Michalopoulos, Steven; Hornberger, John; Prat, Aleix

    2015-06-01

    Improved understanding of risk of recurrence (ROR) is needed to reduce cases of recurrence and more effectively treat breast cancer patients. The purpose of this study was to examine how a gene-expression profile (GEP), identified by Prosigna, influences physician adjuvant treatment selection for early breast cancer (EBC) and the effects of this influence on optimizing adjuvant treatment recommendations in clinical practice. A prospective, observational, multicenter study was carried out in 15 hospitals across Spain. Participating medical oncologists completed pre-assessment, post-assessment, and follow-up questionnaires recording their treatment recommendations and confidence in these recommendations, before and after knowing the patient's ROR. Patients completed questionnaires on decision-making, anxiety, and health status. Between June 2013 and January 2014, 217 patients enrolled and a final 200 were included in the study. Patients were postmenopausal, estrogen receptor positive, human epidermal growth hormone factor negative, and node negative with either stage 1 or stage 2 tumors. After receiving the GEP results, treatment recommendations were changed for 40 patients (20%). The confidence of medical oncologists in their treatment recommendations increased in 41.6% and decreased in 6.5% of total cases. Patients reported lower anxiety after physicians made treatment recommendations based on the GEP results (p anxiety about the selected adjuvant therapy decreased with use of the GEP.

  17. Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET.

    Science.gov (United States)

    Vosjan, Maria J W D; Perk, Lars R; Roovers, Rob C; Visser, Gerard W M; Stigter-van Walsum, Marijke; van Bergen En Henegouwen, Paul M P; van Dongen, Guus A M S

    2011-04-01

    The ∼15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies®) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with (68)Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for (89)Zr immuno-positron emission tomography (PET). Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified (68)Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml(-1) gentisic acid, pH 5.5) at 4°C or in human serum at 37°C, a mixture of (67)Ga and (68)Ga was used. Biodistribution and immuno-PET studies of (68)Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using (89)Zr-Df-Bz-NCS-7D12 as the reference conjugate. The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall (68)Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. (68/67)Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period (Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 ± 1.3 to 7.2 ± 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was similar to that of the reference conjugate (89)Zr-Df-Bz-NCS-7D12. Tumours were clearly visualized in a PET imaging study. Via a rapid

  18. Facile labelling of an anti-epidermal growth factor receptor nanobody with {sup 68}Ga via a novel bifunctional desferal chelate for immuno-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vosjan, Maria J.W.D.; Perk, Lars R.; Stigter van Walsum, Marijke [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); Roovers, Rob C.; Bergen en Henegouwen, Paul M.P. van [Utrecht University, Cellular Dynamics, Science Faculty, Utrecht (Netherlands); Visser, Gerard W.M. [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Dongen, Guus A.M.S. van [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands)

    2011-04-15

    The {proportional_to}15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies {sup registered}) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with {sup 68}Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for {sup 89}Zr immuno-positron emission tomography (PET). Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified {sup 68}Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml{sup -1} gentisic acid, pH 5.5) at 4 C or in human serum at 37 C, a mixture of {sup 67}Ga and {sup 68}Ga was used. Biodistribution and immuno-PET studies of {sup 68}Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using {sup 89}Zr-Df-Bz-NCS-7D12 as the reference conjugate. The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall {sup 68}Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. {sup 68/67}Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period (<2% radioactivity loss). In biodistribution studies the {sup 68}Ga-labelled Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 {+-} 1.3 to 7.2 {+-} 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was

  19. Facile labelling of an anti-epidermal growth factor receptor nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET

    International Nuclear Information System (INIS)

    Vosjan, Maria J.W.D.; Perk, Lars R.; Stigter van Walsum, Marijke; Roovers, Rob C.; Bergen en Henegouwen, Paul M.P. van; Visser, Gerard W.M.; Dongen, Guus A.M.S. van

    2011-01-01

    The ∝15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies registered ) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with 68 Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for 89 Zr immuno-positron emission tomography (PET). Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified 68 Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml -1 gentisic acid, pH 5.5) at 4 C or in human serum at 37 C, a mixture of 67 Ga and 68 Ga was used. Biodistribution and immuno-PET studies of 68 Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using 89 Zr-Df-Bz-NCS-7D12 as the reference conjugate. The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall 68 Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. 68/67 Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period ( 68 Ga-labelled Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 ± 1.3 to 7.2 ± 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was similar to that of the reference conjugate 89 Zr-Df-Bz-NCS-7D12. Tumours were clearly visualized in a PET imaging study. Via a rapid

  20. Survival significance of epidermal growth factor receptor tyrosine kinase inhibitors and current staging system for survival after recurrence in patients with completely resected lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Saji H

    2017-08-01

    Full Text Available Hisashi Saji,1,2 Hiroki Sakai,1 Hiroyuki Kimura,1 Tomoyuki Miyazawa,1 Hideki Marushima,1 Haruhiko Nakamura1 1Department of Chest Surgery, St Marianna University School of Medicine, Miyamae-ku, Kawasaki, Kanagawa, Japan; 2Department of Thoracic Surgery, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan Objective: We previously reported that the staging system and epidermal growth factor receptor (EGFR mutation status are key factors for treatment strategy and predicting survival. However, the significance of these factors as predictors of overall survival (OS and postoperative recurrence survival (PRS has not been sufficiently elucidated. The objective here was to investigate EGFR mutation status and p-stage, which affect PRS and OS in patients with completely resected lung adenocarcinoma, using a different database.Patients and methods: We retrospectively reviewed 56 consecutive lung adenocarcinoma patients with disease recurrence in St. Marianna University Hospital between January 2010 and December 2014.Results: EGFR mutants (M were detected in 16/56 patients (29%. The patients with EGFR M had a better OS than those with EGFR wild-type (WT status (5-year survival: 50.3% vs 43.1, P=0.133. There was no significant difference in the 3-year recurrence-free survival rate between patients with M and WT (6.3% vs 7.7%, P=0.656, and the patients with EGFR M had a significantly better 3-year PRS than those with WT (77.4% vs 51.7%, P=0.033. The 3-year PRS rate for patients with M/pathologic stage (p-stage I–II (87.5% was better than that for patients with M/p-stage III (60.0%, WT/p-stage I–II (52.7%, and WT/p-stage III (43.8%. There was a significant difference between patients with M/p-stage I and WT/p-stage I–II or WT/p-stage III (P=0.021 and 0.030, respectively. During the study period, of the 16 patients with mutants, 12 patients (75% received EGFR-tyrosine kinase inhibitor (TKI therapy and among the 40 patients with WT, no patient received

  1. Reacções cutâneas adversas aos inibidores do receptor do factor de crescimento epidérmico: estudo de 14 doentes Adverse cutaneous reactions to epidermal growth factor receptor inhibitors: a study of 14 patients

    Directory of Open Access Journals (Sweden)

    Felicidade Santiago

    2011-06-01

    Full Text Available FUNDAMENTOS: O cetuximab e o erlotinib, inibidores do receptor do factor de crescimento epidérmico, provocam frequentemente reacções cutâneas adversas peculiares. OBJETIVOS: Caracterizar do ponto de vista clínico-evolutivo as reacções cutâneas adversas e avaliar a sua abordagem terapêutica. METODOLOGIA: Entre março/2005 e setembro/2009 foram seguidos 14 doentes com idade média de 59,6 anos, em tratamento com cetuximab (7 ou erlotinib (7, por neoplasia pulmonar (10 ou colorrectal (4. Retrospectivamente foi avaliado o padrão clínico evolutivo de reacção cutânea, o intervalo entre a introdução do fármaco e o início dos sintomas e a resposta ao tratamento. RESULTADOS: Doze doentes apresentaram erupção papulopustulosa predominantemente na face, decote e dorso, em média 13,5 dias após o início do fármaco. Efectuaram tratamento oral com minociclina ou doxiciclina e tópico com metronidazol, peróxido de benzoílo e/ou corticoide. Ocorreu melhoria das lesões em todos os doentes. Cinco doentes, em média oito semanas após o início da terapia, apresentaram granulomas piogénicos periungueais, em quatro casos associados a paroníquia, melhorados com tratamento tópico (antibióticos, corticoides e antissépticos. Observou-se xerose em alguns doentes e, de forma isolada, outros efeitos adversos, como telangiectasias e angiomas, alterações dos cabelos e cílios e nevos melanocíticos eruptivos. Na maioria dos doentes, a terapêutica com o inibidor do receptor do factor de crescimento epidérmico foi mantida. CONCLUSÃO: Com o crescente uso destas terapêuticas-alvo, torna-se obrigatório reconhecer e tratar os seus efeitos cutâneos adversos, assegurando uma intervenção atempada de forma a permitir a manutenção desta terapêuticaBACKGROUND: Cetuximab and erlotinib, epidermal growth factor receptor inhibitors, often cause peculiar adverse cutaneous reactions. OBJECTIVES: Our aim was to evaluate adverse cutaneous reactions

  2. Differences in expression of the cancer stem cell marker aldehyde dehydrogenase 1 among estrogen receptor-positive/human epidermal growth factor receptor type 2-negative breast cancer cases with early, late, and no recurrence.

    Science.gov (United States)

    Miyoshi, Yuichiro; Shien, Tadahiko; Ogiya, Akiko; Ishida, Naoko; Yamazaki, Kieko; Horii, Rie; Horimoto, Yoshiya; Masuda, Norikazu; Yasojima, Hiroyuki; Inao, Touko; Osako, Tomofumi; Takahashi, Masato; Tomioka, Nobumoto; Endo, Yumi; Hosoda, Mitsuchika; Doihara, Hiroyoshi; Miyoshi, Shinichiro; Yamashita, Hiroko

    2016-07-02

    The significance of the expression of aldehyde dehydrogenase 1 (ALDH1), a cancer stem cell marker, for predicting the recurrence of estrogen receptor (ER)-positive/human epidermal growth factor receptor type 2 (HER2)-negative breast cancer is still poorly understood. The value of ALDH1 in predicting the time of recurrence remains unknown. In total, 184 patients with early distant recurrence, 134 patients with late distant recurrence, and 321 control patients without recurrence for more than 10 years after starting initial treatment for ER-positive/HER2-negative breast cancer, registered in 9 institutions, were analyzed. We assessed relationships between ALDH1 and other clinicopathological features, and ALDH1 expression was compared among the three groups. The relationship between ALDH1 expression and overall survival after recurrence was also evaluated in each group. The rates of ALDH1 expression positivity (more than 1 %) in the early, late, and no recurrence groups were 18.4 %, 13.4 %, and 8.4 %, respectively. ALDH1 expression correlated significantly with lymph node metastases (p = 0.048) and the Ki-67 labeling index (p factor independently predicting overall survival after the detection of recurrence (adjusted OR 1.451, 95 % CI 0.985-2.085, p = 0.059). Among patients with ER-positive/HER2-negative breast cancer, ALDH1 expression was more common in those with early recurrence, and this expression was found to be associated with a more aggressive breast cancer phenotype than that in the patients without recurrence. Further study is needed to clarify the prognostic significance of the heterogeneity of cancer stem cells and to confirm their role in resistance to chemotherapy.

  3. Epidermal growth factor pathway substrate 15, Eps15

    DEFF Research Database (Denmark)

    Salcini, A E; Chen, H; Iannolo, G

    1999-01-01

    Eps15 was originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR). Eps15 has a tripartite structure compris