WorldWideScience

Sample records for enzyme mnsod suppresses

  1. Detection of novel key residues of MnSOD enzyme and its role in ...

    Indian Academy of Sciences (India)

    avoidance mechanism and morphological changes (Flowers ... The MnSOD proteins of different species available in salinity condition with their uniprot IDs and domain information ...... relative Lycopersicon pennellii to salt-dependent oxidative.

  2. Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett's esophagus by increasing Mn-SOD expression

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan); Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Ma, Ning [Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-0293 (Japan); Iijima, Katsunori; Abe, Yasuhiko; Koike, Tomoyuki; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Hospital, Sendai, Miyaki 980-8574 (Japan); Pinlaor, Somchai [Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Hiraku, Yusuke; Oikawa, Shinji; Murata, Mariko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Kawanishi, Shosuke, E-mail: kawanisi@suzuka-u.ac.jp [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Inflammation by Barrett's esophagus (BE) is a risk factor of its adenocarcinoma (BEA). Black-Right-Pointing-Pointer 8-Nitroguanine and 8-oxodG are inflammation-related DNA lesions. Black-Right-Pointing-Pointer DNA lesions and iNOS expression were higher in the order, BEA > BE > normal tissues. Black-Right-Pointing-Pointer Proton pump inhibitors suppress DNA damage by increasing Mn-SOD via Nrf2 activation. Black-Right-Pointing-Pointer DNA lesions can be useful biomarkers to predict risk of BEA in BE patients. -- Abstract: Barrett's esophagus (BE), an inflammatory disease, is a risk factor for Barrett's esophageal adenocarcinoma (BEA). Treatment of BE patients with proton pump inhibitors (PPIs) is expected to reduce the risk of BEA. We performed an immunohistochemical study to examine the formation of nitrative and oxidative DNA lesions, 8-nitroguanine and 8-oxo-7,8-dihydro-2 Prime -deoxygaunosine (8-oxodG), in normal esophageal, BE with pre- and post-treatment by PPIs and BEA tissues. We also observed the expression of an oxidant-generating enzyme (iNOS) and its transcription factor NF-{kappa}B, an antioxidant enzyme (Mn-SOD), its transcription factor (Nrf2) and an Nrf2 inhibitor (Keap1). The immunoreactivity of DNA lesions was significantly higher in the order of BEA > BE > normal tissues. iNOS expression was significantly higher in the order of BEA > BE > normal tissues, while Mn-SOD expression was significantly lower in the order of BEA < BE < normal tissues. Interestingly, Mn-SOD expression and the nuclear localization of Nrf2 were significantly increased, and the formation of DNA lesions was significantly decreased in BE tissues after PPIs treatment for 3-6 months. Keap1 and iNOS expression was not significantly changed by the PPIs treatment in BE tissues. These results indicate that 8-nitroguanine and 8-oxodG play a role in BE-derived BEA. Additionally, PPIs treatment may trigger the activation and

  3. Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Yainoy, Sakda; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2016-04-01

    Cooperative function of superoxide dismutase (SOD) and catalase (CAT), in protection against oxidative stress, is known to be more effective than the action of either single enzyme. Chemical conjugation of the two enzymes resulted in molecules with higher antioxidant activity and therapeutic efficacy. However, chemical methods holds several drawbacks; e.g., loss of enzymatic activity, low homogeneity, time-consuming, and the need of chemical residues removal. Yet, the conjugated enzymes have never been proven to internalize into target cells. In this study, by employing genetic and protein engineering technologies, we reported designing and production of a bi-functional protein with SOD and CAT activities for the first time. To enable cellular internalization, cell penetrating peptide from HIV-1 Tat (TAT) was incorporated. Co-expression of CAT-MnSOD and MnSOD-TAT fusion genes allowed simultaneous self-assembly of the protein sequences into a large protein complex, which is expected to contained one tetrameric structure of CAT, four tetrameric structures of MnSOD and twelve units of TAT. The protein showed cellular internalization and superior protection against paraquat-induced cell death as compared to either complex bi-functional protein without TAT or to native enzymes fused with TAT. This study not only provided an alternative strategy to produce multifunctional protein complex, but also gained an insight into the development of therapeutic agent against oxidative stress-related conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Manganese superoxide dismutase (MnSOD catalyzes NO-dependent tyrosine residue nitration

    Directory of Open Access Journals (Sweden)

    SRDJAN STOJANOVIC

    2005-04-01

    Full Text Available The peroxynitrite-induced nitration of manganese superoxide dismutase (MnSOD tyrosine residue, which causes enzyme inactivation, is well established. This led to suggestions that MnSOD nitration and inactivation in vivo, detected in various diseases associated with oxidative stress and overproduction of nitric monoxide (NO, conditions which favor peroxynitrite formation, is also caused by peroxynitrite. However, our previous in vitro study demonstrated that exposure of MnSOD to NO led to NO conversion into nitrosonium (NO+ and nitroxyl (NO– species, which caused enzyme modifications and inactivation. Here it is reported that MnSOD is tyrosine nitrated upon exposure to NO, as well as that MnSOD nitration contributes to inactivation of the enzyme. Collectively, these observations provide a compelling argument supporting the generation of nitrating species in MnSOD exposed to NO and shed a new light on MnSOD tyrosine nitration and inactivation in vivo. This may represent a novel mechanism by which MnSOD protects cell from deleterious effects associated with overproduction of NO. However, extensive MnSOD modification and inactivation associated with prolonged exposure to NO will amplify the toxic effects caused by increased cell superoxide and NO levels.

  5. A saponin-detoxifying enzyme mediates suppression of plant defences

    Science.gov (United States)

    Bouarab, K.; Melton, R.; Peart, J.; Baulcombe, D.; Osbourn, A.

    2002-08-01

    Plant disease resistance can be conferred by constitutive features such as structural barriers or preformed antimicrobial secondary metabolites. Additional defence mechanisms are activated in response to pathogen attack and include localized cell death (the hypersensitive response). Pathogens use different strategies to counter constitutive and induced plant defences, including degradation of preformed antimicrobial compounds and the production of molecules that suppress induced plant defences. Here we present evidence for a two-component process in which a fungal pathogen subverts the preformed antimicrobial compounds of its host and uses them to interfere with induced defence responses. Antimicrobial saponins are first hydrolysed by a fungal saponin-detoxifying enzyme. The degradation product of this hydrolysis then suppresses induced defence responses by interfering with fundamental signal transduction processes leading to disease resistance.

  6. Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK cells

    Directory of Open Access Journals (Sweden)

    Akira Marine

    2014-01-01

    Full Text Available Superoxide is widely regarded as the primary reactive oxygen species (ROS which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD catalyzes the dismutation of superoxide into hydrogen peroxide which can then be further detoxified by other antioxidant enzymes. MnSOD is critical in maintaining the normal function of mitochondria, thus its inactivation is thought to lead to compromised mitochondria. Previously, our laboratory observed increased mitochondrial biogenesis in a novel kidney-specific MnSOD knockout mouse. The current study used transient siRNA mediated MnSOD knockdown of normal rat kidney (NRK cells as the in vitro model, and confirmed functional mitochondrial biogenesis evidenced by increased PGC1α expression, mitochondrial DNA copy numbers and integrity, electron transport chain protein CORE II, mitochondrial mass, oxygen consumption rate, and overall ATP production. Further mechanistic studies using mitoquinone (MitoQ, a mitochondria-targeted antioxidant and L-NAME, a nitric oxide synthase (NOS inhibitor demonstrated that peroxynitrite (at low micromolar levels induced mitochondrial biogenesis. These findings provide the first evidence that low levels of peroxynitrite can initiate a protective signaling cascade involving mitochondrial biogenesis which may help to restore mitochondrial function following transient MnSOD inactivation.

  7. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.

    Science.gov (United States)

    Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro

    2013-12-01

    Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.

  8. Molecular and expression analysis of manganese superoxide dismutase (Mn-SOD) gene under temperature and starvation stress in rotifer Brachionus calyciflorus.

    Science.gov (United States)

    Yang, Jianghua; Dong, Siming; Zhu, Huanxi; Jiang, Qichen; Yang, Jiaxin

    2013-04-01

    Superoxide dismutase (SOD) is an important antioxidant enzyme that protects organs from damage by reactive oxygen species. We cloned cDNA encoding SOD activated with manganese (Mn-SOD) from the rotifer Brachionus calyciflorus Pallas. The full-length cDNA of Mn-SOD was 1,016 bp and had a 669 bp open reading frame encoding 222 amino acids. The deduced amino acid sequence of B. calyciflorus Mn-SOD showed 89.1, 71.3, and 62.1 % similarity with the Mn-SOD of the marine rotifer Brachionus plicatilis, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, respectively. The phylogenetic tree constructed based on the amino acid sequences of Mn-SODs from B. calyciflorus and other organisms revealed that this rotifer is closely related to nematodes. Analysis of the mRNA expression of Mn-SOD under different conditions revealed that expression was enhanced 5.6-fold (p 0.05). Moderate starvation promoted Mn-SOD mRNA expression (p 12 < 0.01, p 36 < 0.05), which reached a maximum value (15.3 times higher than control, p 24 < 0.01) at 24 h. SOD and CAT activities also elevated at the 12 h-starved group. These results indicate that induction of Mn-SOD expression by stressors likely plays an important role in aging of B. calyciflorus.

  9. Age-Related Hearing Loss in Mn-SOD Heterozygous Knockout Mice

    Directory of Open Access Journals (Sweden)

    Makoto Kinoshita

    2013-01-01

    Full Text Available Age-related hearing loss (AHL reduces the quality of life for many elderly individuals. Manganese superoxide dismutase (Mn-SOD, one of the antioxidant enzymes acting within the mitochondria, plays a crucial role in scavenging reactive oxygen species (ROS. To determine whether reduction in Mn-SOD accelerates AHL, we evaluated auditory function in Mn-SOD heterozygous knockout (HET mice and their littermate wild-type (WT C57BL/6 mice by means of auditory brainstem response (ABR. Mean ABR thresholds were significantly increased at 16 months when compared to those at 4 months in both WT and HET mice, but they did not significantly differ between them at either age. The extent of hair cell loss, spiral ganglion cell density, and thickness of the stria vascularis also did not differ between WT and HET mice at either age. At 16 months, immunoreactivity of 8-hydroxydeoxyguanosine was significantly greater in the SGC and SV in HET mice compared to WT mice, but that of 4-hydroxynonenal did not differ between them. These findings suggest that, although decrease of Mn-SOD by half may increase oxidative stress in the cochlea to some extent, it may not be sufficient to accelerate age-related cochlear damage under physiological aging process.

  10. Dietary resveratrol administration increases MnSOD expression and activity in mouse brain

    International Nuclear Information System (INIS)

    Robb, Ellen L.; Winkelmolen, Lieke; Visanji, Naomi; Brotchie, Jonathan; Stuart, Jeffrey A.

    2008-01-01

    trans-Resveratrol (3,4',5-trihydroxystilbene; RES) is of interest for its reported protective effects in a variety of pathologies, including neurodegeneration. Many of these protective properties have been attributed to the ability of RES to reduce oxidative stress. In vitro studies have shown an increase in antioxidant enzyme activities following exposure to RES, including upregulation of mitochondrial superoxide dismutase, an enzyme that is capable of reducing both oxidative stress and cell death. We sought to determine if a similar increase in endogenous antioxidant enzymes is observed with RES treatment in vivo. Three separate modes of RES delivery were utilized; in a standard diet, a high fat diet and through a subcutaneous osmotic minipump. RES given in a high fat diet proved to be effective in elevating antioxidant capacity in brain resulting in an increase in both MnSOD protein level (140%) and activity (75%). The increase in MnSOD was not due to a substantial proliferation of mitochondria, as RES treatment induced a 10% increase in mitochondrial abundance (Citrate Synthase activity). The potential neuroprotective properties of MnSOD have been well established, and we demonstrate that a dietary delivery of RES is able to increase the expression and activity of this enzyme in vivo

  11. The suppression of manganese superoxide dismutase decreased the survival of human glioblastoma multiforme T98G cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2017-05-01

    Full Text Available Background: Glioblastoma multiforme (GBM is a primary malignant brain tumor which has poor prognosis. High incidence of oxidative stress-based therapy resistance could be related to the high antioxidant status of GBM cells. Our previous study has reported that manganese superoxide dismutase (MnSOD antioxidant expression was significantly higher in high grade glioma than in low grade. The aim of this study was to analyze the impact of MnSOD suppression toward GBM cell survival.Methods: This study is an experimental study using human glioblastoma multiforme T98G cell line. Suppression of MnSOD expression was performed using in vitro transfection MnSOD-siRNA. The MnSOD expression was analyzed by measuring the mRNA using real time RT-PCR, protein using ELISA technique, and specific activity of enzyme using inhibition of xantine oxidase. Concentration of reactive oxygen species (ROS intracellular was determined by measuring superoxide radical and hydrogen peroxide. Cell survival was analyzed by measuring viability, proliferation, and cell apoptosis.Results: In vitro transfection of MnSOD-siRNA suppressed the mRNA, protein, and specific activity of MnSOD. This treatment significantly increased the concentration of superoxide radical; however, it did not influence the concentration of hydrogen peroxide. Moreover, viability MnSOD-suppressing cell significantly decreased, accompanied by increase of cell apoptosis without affecting cell proliferation.Conclusion: The suppression of MnSOD expression leads to decrease glioblastoma multiforme cell survival, which was associated to the increase of cell apoptotic.

  12. Post-translational suppression of expression of intestinal brush border enzymes by fructose

    DEFF Research Database (Denmark)

    Danielsen, E M

    1989-01-01

    The two major dietary sugars, fructose and sucrose, were found to suppress effectively the biosynthetic renewal of brush border enzymes in the gut. When studied in cultured explants of pig small intestine mucosa, 10-50 mM concentrations of fructose completely prevented the expression of mature...... cotranslational glycosylation that in turn triggers a rapid proteolytic breakdown. Our findings suggest that renewal of digestive brush border enzymes is transiently suppressed during intake of fructose- or sucrose-rich meals....

  13. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård

    2012-01-01

    is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...... yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...

  14. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    International Nuclear Information System (INIS)

    Sheng, Y.; Cabelli, D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O 2 - ). This behavior limits the amount of H 2 O 2 produced at high [O 2 - ]; its desirability can be explained by the multiple roles of H 2 O 2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O 2 - ], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn 3+ species in yeast Mn 3+ SODs, including the well-characterized 5-coordinate Mn 3+ species and a 6-coordinate L-Mn 3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O 2 - ].

  15. Hepatic Flavin-Containing Monooxygenase 3 Enzyme Suppressed by Type 1 Allergy-Produced Nitric Oxide.

    Science.gov (United States)

    Tanino, Tadatoshi; Bando, Toru; Komada, Akira; Nojiri, Yukie; Okada, Yuna; Ueda, Yukari; Sakurai, Eiichi

    2017-11-01

    Flavin-containing monooxygenases (FMOs) are major mammalian non-cytochrome P450 oxidative enzymes. T helper 2 cell-activated allergic diseases produce excess levels of nitric oxide (NO) that modify the functions of proteins. However, it remains unclear whether allergy-induced NO affects the pharmacokinetics of drugs metabolized by FMOs. This study investigated alterations of hepatic microsomal FMO1 and FMO3 activities in type 1 allergic mice and further examined the interaction of FMO1 and FMO3 with allergy-induced NO. Imipramine (IMP; FMO1 substrate) N- oxidation activity was not altered in allergic mice with high serum NO and immunoglobulin E levels. At 7 days after primary sensitization (PS7) or secondary sensitization (SS7), benzydamine (BDZ; FMO1 and FMO3 substrate) N- oxygenation was significantly decreased to 70% of individual controls. The expression levels of FMO1 and FMO3 proteins were not significantly changed in the sensitized mice. Hepatic inducible NO synthase (iNOS) mRNA level increased 5-fold and 15-fold in PS7 and SS7 mice, respectively, and hepatic tumor necrosis factor- α levels were greatly enhanced. When a selective iNOS inhibitor was injected into allergic mice, serum NO levels and BDZ N- oxygenation activity returned to control levels. NO directly suppressed BDZ N- oxygenation, which was probably related to FMO3-dependent metabolism in comparison with IMP N- oxidation. In hepatic microsomes from PS7 and SS7 mice, the suppression of BDZ N- oxygenation was restored by ascorbate. Therefore, type 1 allergic mice had differentially suppressed FMO3-dependent BDZ N- oxygenation. The suppression of FMO3 metabolism related to reversible S- nitrosyl modifications of iNOS-derived NO. NO is expected to alter FMO3-metabolic capacity-limited drug pharmacokinetics in humans. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Mitochondrial oxidative stress and nitrate tolerance – comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/- mice

    Directory of Open Access Journals (Sweden)

    Stalleicken Dirk

    2006-11-01

    Full Text Available Abstract Background Chronic therapy with nitroglycerin (GTN results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS. According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2 play an important role for the development of nitrate and cross-tolerance. Methods Tolerance was induced by infusion of wild type (WT and heterozygous manganese superoxide dismutase mice (Mn-SOD+/- with ethanolic solution of GTN (12.5 μg/min/kg for 4 d. For comparison, the tolerance-free pentaerithrityl tetranitrate (PETN, 17.5 μg/min/kg for 4 d was infused in DMSO. Vascular reactivity was measured by isometric tension studies of isolated aortic rings. ROS formation and aldehyde dehydrogenase (ALDH-2 activity was measured in isolated heart mitochondria. Results Chronic GTN infusion lead to impaired vascular responses to GTN and acetylcholine (ACh, increased the ROS formation in mitochondria and decreased ALDH-2 activity in Mn-SOD+/- mice. In contrast, PETN infusion did not increase mitochondrial ROS formation, did not decrease ALDH-2 activity and accordingly did not lead to tolerance and cross-tolerance in Mn-SOD+/- mice. PETN but not GTN increased heme oxygenase-1 mRNA in EA.hy 926 cells and bilirubin efficiently scavenged GTN-derived ROS. Conclusion Chronic GTN infusion stimulates mitochondrial ROS production which is an important mechanism leading to tolerance and cross-tolerance. The tetranitrate PETN is devoid of mitochondrial oxidative stress induction and according to the present animal study as well as numerous previous clinical studies can be used without limitations due to tolerance and cross-tolerance.

  17. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  18. Phosphatidylinositol response and proliferation of oxidative enzyme-activated human T lymphocytes: suppression by plasma lipoproteins

    International Nuclear Information System (INIS)

    Akeson, A.L.; Scupham, D.W.; Harmony, J.A.

    1984-01-01

    The phosphatidylinositol (PI) response and DNA synthesis of neuraminidase and galactose oxidase (NAGO)-stimulated human T lymphocytes are suppressed by low density lipoproteins (LDL). To understand the mechanism of lymphocyte activation more fully, the PI response and DNA synthesis and suppression of these events by LDL in NAGO-stimulated T lymphocytes were characterized. Between 30 min and 6 hr after NAGO stimulation, there was an increase of 32 Pi incorporation into PI without increased incorporation into the phosphorylated forms of PI or into other phospholipids. DNA synthesis as determined by [ 3 H]thymidine incorporation depended on the lymphocyte-accessory monocyte ratio and total cell density. Optimal stimulation of the PI response and DNA synthesis occurred at the same concentration of neuraminidase and galactose oxidase. While the PI response was only partially suppressed by LDL with optimal suppression at 10 to 20 micrograms of protein/ml, DNA synthesis was completely suppressed although at much higher LDL concentrations, greater than 100 micrograms protein/ml. As monocyte numbers are increased, LDL suppression of DNA synthesis is decreased. The ability of NAGO to stimulate the PI response and DNA synthesis in a similar way, and the suppression of both events by LDL, suggests the PI response is important for lymphocyte activation and proliferation. Stimulation of human T lymphocytes by oxidative mitogens, neuraminidase, and galactose oxidase caused increased phosphatidylinositol metabolism and increased DNA synthesis. Both responses were suppressed by low density lipoproteins

  19. Sodium nitroprusside may modulate Escherichia coli antioxidant enzyme expression by interacting with the ferric uptake regulator.

    Science.gov (United States)

    Bertrand, R; Danielson, D; Gong, V; Olynik, B; Eze, M O

    2012-01-01

    Efforts to explore possible relationships between nitric oxide (NO) and antioxidant enzymes in an Escherichia coli model have uncovered a possible interaction between sodium nitroprusside (SNP), a potent, NO-donating drug, and the ferric uptake regulator (Fur), an iron(II)--dependent regulator of antioxidant and iron acquisition proteins present in Gram-negative bacteria. The enzymatic profiles of superoxide dismutase and hydroperoxidase during logarithmic phase of growth were studied via non-denaturing polyacrylamide gel electrophoresis and activity staining specific to each enzyme. Though NO is known to induce transcription of the manganese-bearing isozyme of SOD (MnSOD), treatment with SNP paradoxically suppressed MnSOD expression and greatly enhanced the activity of the iron-containing equivalent (FeSOD). Fur, one of six global regulators of MnSOD transcription, is uniquely capable of suppressing MnSOD while enhancing FeSOD expression through distinct mechanisms. We thus hypothesize that Fur is complacent in causing this behaviour and that the iron(II) component of SNP is activating Fur. E. coli was also treated with the SNP structural analogues, potassium ferricyanide (PFi) and potassium ferrocyanide (PFo). Remarkably, the ferrous PFo was capable of mimicking the SNP-related pattern, whereas the ferric PFi was not. As Fur depends upon ferrous iron for activation, we submit this observation of redox-specificity as preliminary supporting evidence for the hypothesized Fur-SNP interaction. Iron is an essential metal that the human innate immune system sequesters to prevent its use by invading pathogens. As NO is known to inhibit iron-bound Fur, and as activated Fur regulates iron uptake through feedback inhibition, we speculate that the administration of this drug may disrupt this strategic management of iron in favour of residing Gram-negative species by providing a source of iron in an otherwise iron-scarce environment capable of encouraging its own uptake

  20. Storage stability and improved quality of fish products by enzyme suppression and gamma-irradiation

    International Nuclear Information System (INIS)

    Ninjoor, V.; Doke, S.N.; Nadkarni, G.B.

    1981-01-01

    The occurrence and distribution of lysosomal hydrolases in the skeletal muscle and skin of a variety of fish species have been demonstrated. As compared with the skeletal muscle, the skin contained two to ten times more activity of hydrolytic enzymes. In the case of Bombay duck (Harpodon nehereus), the drip represented a rich source of lysosomal enzymes. The involvement of these hydrolases in accentuating fish spoilage was examined by measuring the release of cathepsin D and accumulated hydrolytic end-products during progressive autolysis. The data showed that the shelf-life of fresh-water fish Tilapia mossambica could be extended by removing the skin, while that of Bombay duck by eliminating drip. Sodium tripolyphosphate (NaTPP) dip treatment was shown to inhibit the activity of lysosomal hydrolases of Bombay duck. Combination treatment consisting of NaTPP dip and irradiation (100 krad) resulted in a two-week extension in the shelf-life of Bombay duck fillets when stored at 0-4 0 C. (author)

  1. MnSOD and CAT polymorphisms modulate the effect of the Mediterranean diet on breast cancer risk among Greek-Cypriot women.

    Science.gov (United States)

    Kakkoura, Maria G; Demetriou, Christiana A; Loizidou, Maria A; Loucaides, Giorgos; Neophytou, Ioanna; Malas, Simon; Kyriacou, Kyriacos; Hadjisavvas, Andreas

    2016-06-01

    Oxidative stress arises due to a cellular imbalance in oxidants and antioxidants and/or due to an altered activity of antioxidant enzymes, caused by SNPs. Oxidative stress increases susceptibility to breast cancer (BC) risk, and we previously showed that the Mediterranean diet (MD), which is rich in antioxidants, reduces BC risk in Greek-Cypriot women. Here, we investigated the effect of MnSOD (p.Val16Ala, rs4880) and CAT (-262C>T, rs1001179) SNPs on the association between the MD and BC risk in the case-control study of BC MASTOS in Cyprus. Dietary intake data were obtained using a 32-item food frequency questionnaire, from which a dietary pattern was previously derived, using principal component analysis. This pattern included high loadings of vegetables, fruit, legumes and fish, a combination that closely resembles the MD and was used as our dietary variable. High vegetable intake lowered BC risk in women with at least one MnSOD Val allele (ORHigh vs. Low for Val/Val = 0.56, 95 % CI 0.35-0.88, for Val/Ala = 0.57, 95 % CI 0.39-0.82), or one CAT -262C allele (ORHigh vs. Low for -262CC = 0.66, 95 % CI 0.47-0.92, for -262CT = 0.53, 95 % CI 0.35-0.81). High fish intake conferred a decreased BC risk of CAT -262CC women (ORQ4 vs. Q1 0.66, 95 % CI 0.47-0.92) compared with the CAT -262TT women and low fish intake (ORQ2 vs. Q1 2.79, 95 % CI 1.08-7.17). Additionally, high fish intake reduced BC risk in MnSOD Val/Val women (ORQ4 vs. Q1 0.63, 95 % CI 0.40-0.98). p interaction values were, however, not statistically significant. Our results demonstrate that the antioxidative effects of the MD against BC risk may be enhanced by the wild-type alleles of the MnSOD or CAT SNPs among Greek-Cypriot women.

  2. Effect of N+ beam exposure on the activities of Mn-SOD and catalase in deinococcus radiodurans

    International Nuclear Information System (INIS)

    Song Daojun; Chen Ruolei; Wu Lifang; Li Hong; Yao JIanming; Shao Chunlin; Wu Lijun; Yu Zengliang

    2000-01-01

    Though the radiation-resistant bacteria Deinococcus radiodurans (D. radiodurans) have a high resistance to the lethal and mutagenic effects of many DNA-damaging agents, the mechanisms involved in the response of these bacteria to oxidative stress are poorly understood. The superoxide dismutase (SOD) and catalase (CAT) activities produced in bacteria (D. radiodurans AS1.633) and their change caused by 20 keV N'+ beam exposure were examined. Results showed that the activities of the enzymes were increased in the case of N + beam exposure from 8 x 10 14 ions/cm 2 to 6 x 10 15 ions/cm 2 . In addition, the treatment of H 2 O 2 and [CHCl 3 + CH 3 CH 2 OH] and the measurement of absorption spectrum showed that the increase of whole SOD activity resulted from inducible activities of Mn-SOD in (a sub-type) D. radiodurans AS1.633. These results suggested that these bacteria possess inducible defense mechanisms against the deleterious effects of oxidization

  3. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Science.gov (United States)

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Combinatorial efficacy of Trichoderma spp. and Pseudomonas fluorescens to enhance suppression of cell wall degrading enzymes produced by Fusarium wilt of Arachis hypogaea.L

    Directory of Open Access Journals (Sweden)

    P Rajeswari

    2017-12-01

    Full Text Available Fusarium oxysporum, the soil borne pathogen causes vascular wilt, on majority of crop plants. It has been demonstrated that two different species of Trichoderma and Pseudomonas fluorescens suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol agents, and thus of several suppressive mechanisms, may represent a viable control strategy. A necessity for biocontrol by combinations of biocontrol agents can be the compatibility of the co-inoculated micro-organisms. Hence, compatibility between Trichoderma spp. and Pseudomonas fluorescens that have the ability to suppress Fusarium oxysporum in vitro on the activity of pectinolytic enzymes of Fusarium oxysporum. The activity of pectinolytic enzymes, i.e. pectin methyl esterase, endo and exo polymethylgalacturonases and exo and endo pectin trans eliminases produced by Fusarium oxysporum (Control was higher. Maximum inhibition of pectin methylesterase, exo and endo polymethylgalacturonase and exo and endopectin trans eliminase was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf (1+2%, followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf (1.5+2% and Trichoderma viride + Trichoderma harzianum (Tv+Th (1+1.5%. However, pathogenecity suppression of Fusarium oxysporum, a causative of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2% was significantly better as compared to the single bio-agent. This indicates that specific interactions between biocontrol agents influence suppression of pathogenicity factors directly by combinations of these compatible bio-agents.

  5. Immunoreactive Cu-SOD and Mn-SOD in lymphocytes sub-populations from normal and trisomy 21 subjects according to age

    International Nuclear Information System (INIS)

    Baeteman, M.A.; Baret, A.; Courtiere, A.; Rebuffel, P.; Mattei, J.F.

    1983-01-01

    Copper and manganese superoxide dismutases (Cu-SOD and Mn-SOD) were measured by radioimmunoassay in B and T lymphocytes and macrophages, in patients with trisomy 21 and in matched controls. In the controls, Cu-SOD was present in greater amounts than Mn-SOD and there were quantitative differences in the distribution in the three cellular sub-populations. In trisomy 21, levels of Cu-SOD were raised, with no change in levels of Mn-SOD, supporting the theory of a gene dosage effect. There were significant positive and negative correlations between age and Cu-SOD levels in controls, and a correlation approaching significance for Mn-SOD. In trisomy 21, there was no correlation between age and Cu-SOD levels, and the only significant correlation for Mn-SOD was for B lymphocytes

  6. Polymorphism variant of MnSOD A16V and risk of female infertility in northern Iran

    Directory of Open Access Journals (Sweden)

    Mostafa Pournourali

    2016-12-01

    Conclusion: It is suggested that the MnSOD A16V polymorphism may be associated with a risk of female infertility in northern Iran. More studies should be considered with a larger number of patients and controls to confirm our results.

  7. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD

    Directory of Open Access Journals (Sweden)

    Josef eBrandauer

    2015-03-01

    Full Text Available The mitochondrial protein deacetylase sirtuin (SIRT 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS handling. We determined the requirement of AMP-activated protein kinase (AMPK for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p<0.01 and superoxide dismutase 2 (MnSOD; p<0.05 protein abundance in quadriceps muscle of wild-type (WT; n=13-15, but not AMPK α2 kinase dead (KD; n=12-13 mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p=0.051; n=6. To further elucidate a role for AMPK in mediating these effects, we treated WT (n=7-8 and AMPK α2 KD (n=7-9 mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR. Four weeks of daily AICAR injections (500 mg/kg resulted in AMPK-dependent increases in SIRT3 (p<0.05 and MnSOD (p<0.01 in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n=9-10. Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p<0.01 and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p<0.05. Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122 or oligomycin-sensitivity conferring protein (OSCP; K139 was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training.

  8. Intratracheal injection of adenovirus containing the human MNSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis

    International Nuclear Information System (INIS)

    Epperly, Michael W.; Bray, Jenifer A.; Krager, Stephen; Berry, Luann M.; Gooding, William; Engelhardt, John F.; Zwacka, Ralf; Travis, Elizabeth L.; Greenberger, Joel S.

    1999-01-01

    Purpose: A dose and volume limiting factor in radiation treatment of thoracic cancer is the development of fibrosis in normal lung. The goal of the present study was to determine whether expression prior to irradiation of a transgene for human manganese superoxide dismutase (MnSOD) or human copper/zinc superoxide dismutase (Cu/ZnSOD) protects against irradiation-induced lung damage in mice. Methods and Materials: Athymic Nude (Nu/J) mice were intratracheally injected with 10 9 plaque-forming units (PFU) of a replication-incompetent mutant adenovirus construct containing the gene for either human MnSOD, human copper/zinc superoxide dismutase (Cu/ZnSOD) or LacZ. Four days later the mice were irradiated to the pulmonary cavity to doses of 850, 900, or 950 cGy. To demonstrate adenoviral infection, nested reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out with primers specific for either human MnSOD or Cu/ZnSOD transgene on freshly explanted lung, trachea, or alveolar type II cells, and immunohistochemistry was used to measure LacZ expression. RNA was extracted on day 0, 1, 4, or 7 after 850 cGy of irradiation from lungs of mice that had previously received adenovirus or had no treatment. Slot blot analysis was performed to quantitate RNA expression for IL-1, tumor necrosis factor (TNF)-α, TGF-β, MnSOD, or Cu/ZnSOD. Lung tissue was explanted and tested for biochemical activity of MnSOD or Cu/ZnSOD after adenovirus injection. Other mice were sacrificed 132 days after irradiation, lungs excised, frozen in OCT, (polyvinyl alcohol, polyethylene glycol mixture) sectioned, H and E stained, and evaluated for percent of the lung demonstrating organizing alveolitis. Results: Mice injected intratracheally with adenovirus containing the gene for human MnSOD had significantly reduced chronic lung irradiation damage following 950 cGy, compared to control mice or mice injected with adenovirus containing the gene for human Cu/ZnSOD or LacZ. Immunohistochemistry

  9. Additive contributions of two manganese-cored superoxide dismutases (MnSODs to antioxidation, UV tolerance and virulence of Beauveria bassiana.

    Directory of Open Access Journals (Sweden)

    Xue-Qin Xie

    Full Text Available The biocontrol potential of entomopathogenic fungi against arthropod pests depends on not only their virulence to target pests but tolerance to outdoor high temperature and solar UV irradiation. Two Beauveria bassiana superoxide dismutases (SODs, BbSod2 and BbSod3, were characterized as cytosolic and mitochondrial manganese-cored isoenzymes (MnSODs dominating the total SOD activity of the fungal entomopathogen under normal growth conditions. To probe their effects on the biocontrol potential of B. bassiana, ΔBbSod2, ΔBbSod3, and three hairpin RNA-interfered (RNAi mutants with the transcripts of both BbSod2 and BbSod3 being suppressed by 91-97% were constructed and assayed for various phenotypic parameters in conjunction with ΔBbSod2/BbSod2, ΔBbSod3/BbSod3 and wild-type (control strains. In normal cultures, the knockout and RNAi mutants showed significant phenotypic alterations, including delayed sporulation, reduced conidial yields, and impaired conidial quality, but little change in colony morphology. Their mycelia or conidia became much more sensitive to menadione or H(2O(2-induced oxidative stress but had little change in sensitivity to the hyperosmolarity of NaCl and the high temperature of 45°C. Accompanied with the decreased antioxidative capability, conidial tolerances to UV-A and UV-B irradiations were reduced by 16.8% and 45.4% for ΔBbSod2, 18.7% and 44.7% for ΔBbSod3, and ∼33.7% and ∼63.8% for the RNAi mutants, respectively. Their median lethal times (LT(50s against Myzus persicae apterae, which were topically inoculated under a standardized spray, were delayed by 18.8%, 14.5% and 37.1%, respectively. Remarkably, the effects of cytosolic BbSod2 and mitochondrial BbSod3 on the phenotypic parameters important for the fungal bioncontrol potential were additive, well in accordance with the decreased SOD activities and the increased superoxide levels in the knockout and RNAi mutants. Our findings highlight for the first time that

  10. MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity.

    Science.gov (United States)

    Chen, Hainan; Li, Xiaoyan; Epstein, Paul N

    2005-05-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are proposed mediators of cytokine-induced beta-cell destruction in type 1 diabetes. We produced transgenic mice with increased beta-cell expression of manganese superoxide dismutase (MnSOD) and catalase. Expression of these antioxidants increased beta-cell ROS scavenging and improved beta-cell survival after treatment with different sources of ROS. MnSOD or catalase conferred protection against streptozotocin (STZ)-induced beta-cell injury. Coexpression of MnSOD and catalase provided synergistic protection against peroxynitrite and STZ. To determine the potential effect of these antioxidants on cytokine-induced toxicity, we exposed isolated islets to a cytokine mixture, including interleukin-1beta and interferon-gamma. Cytokine toxicity was measured as reduced metabolic activity after 6 days and reduced insulin secretion after 1 day. Cytokines increased ROS production, and both antioxidants were effective in reducing cytokine-induced ROS. However, MnSOD and/or catalase provided no protection against cytokine-induced injury. To understand this, the nuclear factor-kappaB (NF-kappaB) signaling cascade was investigated. Antioxidants reduced NF-kappaB activation by ROS, but none of the antioxidants altered activation by cytokines, as measured by inhibitor of kappaB phosphorylation, NF-kappaB translocation, inducible NO synthase activation, and NO production. Our data agree with previous reports that antioxidants benefit beta-cell survival against ROS damage, but they are not consistent with reports that antioxidants reduce cytokine toxicity. ROS appear to have no role in cytokine toxicity in primary beta-cells.

  11. Nicotine-mediated suppression of the retinoic acid metabolizing enzyme CYP26A1 limits the oncogenic potential of breast cancer.

    Science.gov (United States)

    Osanai, Makoto; Lee, Gang-Hong

    2011-06-01

    Tobacco smoke influences cancer development in tissues that are not directly exposed, and epidemiological studies have indicated that smoking women might experience decreased risk of breast cancer as a result of antiestrogenic effects. However, it remains to be clarified whether nicotine, one of the major addictive and best-investigated constituents of tobacco smoke, has any effect on breast cancer. Our recent work demonstrated that the retinoic acid metabolizing enzyme CYP26A1 enhances oncogenic and cell survival properties of breast carcinoma cells, implying a role as an oncogene. Here, we present evidence that nicotine significantly suppresses constitutive expression of CYP26A1, and that cells treated with nicotine exhibit enhanced sensitivity to apoptosis. In addition, nicotine may inhibit anchorage independent growth, cellular invasiveness and motility. These data show that nicotine can limit CYP26A1-mediated oncogenic characteristics, and suggest mechanisms by which nicotine might inhibit breast cancer development. © 2011 Japanese Cancer Association.

  12. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato.

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).

  13. Suppression of 9-cis-Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato1[W][OA

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp). PMID:22108525

  14. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice[S

    Science.gov (United States)

    Fu, Zidong Donna; Cui, Julia Yue; Klaassen, Curtis D.

    2014-01-01

    Statins are effective cholesterol-lowering drugs to treat CVDs. Bile acids (BAs), the end products of cholesterol metabolism in the liver, are important nutrient and energy regulators. The present study aims to investigate how statins affect BA homeostasis in the enterohepatic circulation. Male C57BL/6 mice were treated with atorvastatin (100 mg/kg/day po) for 1 week, followed by BA profiling by ultra-performance LC-MS/MS. Atorvastatin decreased BA pool size, mainly due to less BA in the intestine. Surprisingly, atorvastatin did not alter total BAs in the serum or liver. Atorvastatin increased the ratio of 12α-OH/non12α-OH BAs. Atorvastatin increased the mRNAs of the BA-synthetic enzymes cholesterol 7α-hydroxylase (Cyp7a1) (over 10-fold) and cytochrome P450 27a1, the BA uptake transporters Na+/taurocholate cotransporting polypeptide and organic anion transporting polypeptide 1b2, and the efflux transporter multidrug resistance-associated protein 2 in the liver. Noticeably, atorvastatin suppressed the expression of BA nuclear receptor farnesoid X receptor (FXR) target genes, namely small heterodimer partner (liver) and fibroblast growth factor 15 (ileum). Furthermore, atorvastatin increased the mRNAs of the organic cation uptake transporter 1 and cholesterol efflux transporters Abcg5 and Abcg8 in the liver. The increased expression of BA-synthetic enzymes and BA transporters appear to be a compensatory response to maintain BA homeostasis after atorvastatin treatment. The Cyp7a1 induction by atorvastatin appears to be due to suppressed FXR signaling in both the liver and intestine. PMID:25278499

  15. Antisense Suppression of 2-Cysteine Peroxiredoxin in Arabidopsis Specifically Enhances the Activities and Expression of Enzymes Associated with Ascorbate Metabolism But Not Glutathione Metabolism1

    Science.gov (United States)

    Baier, Margarete; Noctor, Graham; Foyer, Christine H.; Dietz, Karl-Josef

    2000-01-01

    The aim of this study was to characterize the effect of decreased 2-cysteine peroxiredoxin (2-CP) on the leaf anti-oxidative system in Arabidopsis. At three stages of leaf development, two lines of transgenic Arabidopsis mutants with decreased contents of chloroplast 2-CP were compared with wild type and a control line transformed with an empty vector. Glutathione contents and redox state were similar in all plants, and no changes in transcript levels for enzymes involved in glutathione metabolism were observed. Transcript levels for chloroplastic glutathione peroxidase were much lower than those for 2-CP, and both cytosolic and chloroplastic glutathione peroxidase were not increased in the mutants. In contrast, the foliar ascorbate pool was more oxidized in the mutants, although the difference decreased with plant age. The activities of thylakoid and stromal ascorbate peroxidase and particularly monodehydroascorbate reductase were increased as were transcripts for these enzymes. No change in dehydroascorbate reductase activity was observed, and effects on transcript abundance for glutathione reductase, catalase, and superoxide dismutase were slight or absent. The results demonstrate that 2-CP forms an integral part of the anti-oxidant network of chloroplasts and is functionally interconnected with other defense systems. Suppression of 2-CP leads to increased expression of other anti-oxidative genes possibly mediated by increased oxidation state of the leaf ascorbate pool. PMID:11027730

  16. A rapid non invasive L-DOPA-¹³C breath test for optimally suppressing extracerebral AADC enzyme activity - toward individualizing carbidopa therapy in Parkinson’s disease.

    Science.gov (United States)

    Modak, Anil; Durso, Raymon; Josephs, Ephraim; Rosen, David

    2012-01-01

    Peripheral carbidopa (CD) levels directly impact on central dopamine (DA) production in Parkinson disease (PD) through extracerebral inhibition of dopa decarboxylase (AADC) resulting in an increase in levodopa (LD) bioavailability. Recent data suggests that higher CD doses than those presently used in PD treatment may result in improved clinical response. Optimizing CD doses in individual patients may, therefore, result in ideal individualized treatment. A single center, randomized, double-blind study was carried out recruiting 5 Parkinson’s disease (PD) patients already on LD/CD and 1 treatment näve PD patient using stable isotope labeled LD-1-¹³C as a substrate for a noninvasive breath test to evaluate individual AADC enzyme activity. Each patient was studied five times, receiving 200 mg LD-¹³C at each visit along with one of five randomized CD doses (0, 25, 50, 100 and 200 mg). The metabolite ¹³CO₂ in breath was measured for evaluating AADC enzyme activity and plasma metabolite levels for LD-¹³C and homovanillic acid (HVA) were measured for 4 hours. HVA in plasma and ¹³CO₂ in breath are metabolic products of LD. We found a significant positive correlation of ¹³CO₂ DOB AUC0-240 with serum HVA AUC0-240 following the oral dose of LD-1-¹³C for all 5 doses of CD (r² = 0.9378). With increasing inhibition of AADC enzyme activity with CD, we observed an increase in the plasma concentration of LD.We found an inverse correlation of the 13CO2 DOB AUC with serum LD-¹³C AUC. Our studies indicate the optimal dose of CD for maximal suppression of AADC enzyme activity can be determined for each individual from ¹³CO₂ generation in breath. The LD-breath test can be a useful noninvasive diagnostic tool for evaluation of AADC enzyme activity using the biomarker ¹³CO₂ in breath, a first step in personalizing CD doses for PD patients.

  17. Modified Huo-Luo-Xiao-Ling Dan Suppresses Adjuvant Arthritis by Inhibiting Chemokines and Matrix-Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Siddaraju M. Nanjundaiah

    2012-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease affecting the joints that can lead to deformities and disability. The prolonged use of conventionally used drugs is associated with severe adverse reactions. Therefore, safer and less expensive therapeutic products are continually being sought. Huo-Luo-Xiao-Ling dan (HLXL, a traditional Chinese herbal mixture, and its modified versions possess anti-arthritic activity. In this paper, we examined the influence of modified HLXL on two of the key mediators of arthritic inflammation and tissue damage, namely, chemokines and matrix-metalloproteinases (MMPs in the rat adjuvant-induced arthritis (AA model of RA. We treated arthritic Lewis rats with HLXL (2.3 g/kg by daily gavage beginning at the onset of AA. The control rats received the vehicle. At the peak phase of AA, rats were sacrificed and their draining lymph node cells (LNC and spleen adherent cells (SAC were tested. The HLXL-treated rats showed a significant reduction in the levels of chemokines (RANTES, MCP-1, MIP-1α, and GRO/KC, MMPs (MMP 2 and 9, as well as cytokines (IL-6 and IL-17 that induce them, compared to the control vehicle-treated rats. Thus, HLXL controls arthritis in part by suppressing the mediators of immune pathology, and it might offer a promising alternative/adjunct treatment for RA.

  18. A spinach O-acetylserine(thiollyase homologue, SoCSaseLP, suppresses cysteine biosynthesis catalysed by other enzyme isoforms

    Directory of Open Access Journals (Sweden)

    Miki Noda

    2016-06-01

    Full Text Available An enzyme, O-acetylserine(thiollyase (OASTL, also known as O-acetylserine sulfhydrylase or cysteine synthase (CSase, catalyses the incorporation of sulfide into O-acetylserine and produces cysteine. We previously identified a cDNA encoding an OASTL-like protein from Spinacia oleracea, (SoCSaseLP, but a recombinant SoCSaseLP produced in Escherichia coli did not show OASTL activity. The exon-intron structure of the SoCSaseLP gene shared conserved structures with other spinach OASTL genes. The SoCSaseLP and a Beta vulgaris homologue protein, KMT13462, comprise a unique clade in the phylogenetic tree of the OASTL family. Interestingly, when the SoCSaseLP gene was expressed in tobacco plants, total OASTL activity in tobacco leaves was reduced. This reduction in total OASTL activity was most likely caused by interference by SoCSaseLP with cytosolic OASTL. To investigate the possible interaction of SoCSaseLP with a spinach cytosolic OASTL isoform SoCSaseA, a pull-down assay was carried out. The recombinant glutathione S-transferase (GST-SoCSaseLP fusion protein was expressed in E. coli together with the histidine-tagged SoCSaseA protein, and the protein extract was subjected to glutathione affinity chromatography. The histidine-tagged SoCSaseA was co-purified with the GST-SoCSaseLP fusion protein, indicating the binding of SoCSaseLP to SoCSaseA. Consistent with this interaction, the OASTL activity of the co-purified SoCSaseA was reduced compared with the activity of SoCSaseA that was purified on its own. These results strongly suggest that SoCSaseLP negatively regulates the activity of other cytosolic OASTL family members by direct interaction.

  19. Identification of Manganese Superoxide Dismutase from Sphingobacterium sp. T2 as a Novel Bacterial Enzyme for Lignin Oxidation.

    Science.gov (United States)

    Rashid, Goran M M; Taylor, Charles R; Liu, Yangqingxue; Zhang, Xiaoyang; Rea, Dean; Fülöp, Vilmos; Bugg, Timothy D H

    2015-10-16

    The valorization of aromatic heteropolymer lignin is an important unsolved problem in the development of a biomass-based biorefinery, for which novel high-activity biocatalysts are needed. Sequencing of the genomic DNA of lignin-degrading bacterial strain Sphingobacterium sp. T2 revealed no matches to known lignin-degrading genes. Proteomic matches for two manganese superoxide dismutase proteins were found in partially purified extracellular fractions. Recombinant MnSOD1 and MnSOD2 were both found to show high activity for oxidation of Organosolv and Kraft lignin, and lignin model compounds, generating multiple oxidation products. Structure determination revealed that the products result from aryl-Cα and Cα-Cβ bond oxidative cleavage and O-demethylation. The crystal structure of MnSOD1 was determined to 1.35 Å resolution, revealing a typical MnSOD homodimer harboring a five-coordinate trigonal bipyramidal Mn(II) center ligated by three His, one Asp, and a water/hydroxide in each active site. We propose that the lignin oxidation reactivity of these enzymes is due to the production of a hydroxyl radical, a highly reactive oxidant. This is the first demonstration that MnSOD is a microbial lignin-oxidizing enzyme.

  20. p97 Composition Changes Caused by Allosteric Inhibition Are Suppressed by an On-Target Mechanism that Increases the Enzyme's ATPase Activity.

    Science.gov (United States)

    Her, Nam-Gu; Toth, Julia I; Ma, Chen-Ting; Wei, Yang; Motamedchaboki, Khatereh; Sergienko, Eduard; Petroski, Matthew D

    2016-04-21

    The AAA ATPase p97/VCP regulates protein homeostasis using a diverse repertoire of cofactors to fulfill its biological functions. Here we use the allosteric p97 inhibitor NMS-873 to analyze its effects on enzyme composition and the ability of cells to adapt to its cytotoxicity. We found that p97 inhibition changes steady state cofactor-p97 composition, leading to the enrichment of a subset of its cofactors and polyubiquitin bound to p97. We isolated cells specifically insensitive to NMS-873 and identified a new mutation (A530T) in p97. A530T is sufficient to overcome the cytotoxicity of NMS-873 and alleviates p97 composition changes caused by the molecule but not other p97 inhibitors. This mutation does not affect NMS-873 binding but increases p97 catalytic efficiency through altered ATP and ADP binding. Collectively, these findings identify cofactor-p97 interactions sensitive to p97 inhibition and reveal a new on-target mechanism to suppress the cytotoxicity of NMS-873. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The inhibitory effect of an extract of Sanguisorba officinalis L. on ultraviolet B-induced pigmentation via the suppression of endothelin-converting enzyme-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Hachiya, Akira; Kobayashi, Akemi; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori [Kao Biological Science Lab., Ichikai, Tochigi (Japan)

    2001-06-01

    Endothelin-1 (ET-1) has been reported to be expressed in human epidermis at both the gene and protein levels. ET-1 plays a pivotal role in ultraviolet B (UVB)-induced pigmentation due to its accentuated secretion after UVB irradiation and its function as a mitogen and as a melanogen for human melanocytes. We have recently found that endothelin-converting enzyme (ECE)-1{alpha} plays a constitutive role in the secretion of ET-1 by human keratinocytes and that an extract of Sanguisorba officinalis L. inhibits ECE activity in human endothelial cells, which predominantly express ECE-1{alpha}. In this report, to clarify the potential use of this botanical extract as a whitening agent, we examined whether this extract inhibits UVB-induced pigmentation in vivo. When this extract was applied to human keratinocytes after UVB irradiation, secretion of ET-1 by those cells was reduced, and this was accompanied by a concomitant increase in the secretion of inactive precursor Big endothelin-1. When hairless mice were exposed to UVB light and were treated with the extract, it suppressed the induction of ET-1 in the UVB-irradiated epidermis. In the course of UVB-induced pigmentation of brownish guinea pig skin, this extract significantly diminished pigmentation in UVB-exposed areas. These findings indicate that ECE-1{alpha} in keratinocytes plays a pivotal role in the induction of pigmentation following UVB irradiation and that an extract of S. officinalis, which inhibits ET-1 production in human keratinocytes, is a good ingredient for a whitening agent. (author)

  2. The inhibitory effect of an extract of Sanguisorba officinalis L. on ultraviolet B-induced pigmentation via the suppression of endothelin-converting enzyme-1α

    International Nuclear Information System (INIS)

    Hachiya, Akira; Kobayashi, Akemi; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori

    2001-01-01

    Endothelin-1 (ET-1) has been reported to be expressed in human epidermis at both the gene and protein levels. ET-1 plays a pivotal role in ultraviolet B (UVB)-induced pigmentation due to its accentuated secretion after UVB irradiation and its function as a mitogen and as a melanogen for human melanocytes. We have recently found that endothelin-converting enzyme (ECE)-1α plays a constitutive role in the secretion of ET-1 by human keratinocytes and that an extract of Sanguisorba officinalis L. inhibits ECE activity in human endothelial cells, which predominantly express ECE-1α. In this report, to clarify the potential use of this botanical extract as a whitening agent, we examined whether this extract inhibits UVB-induced pigmentation in vivo. When this extract was applied to human keratinocytes after UVB irradiation, secretion of ET-1 by those cells was reduced, and this was accompanied by a concomitant increase in the secretion of inactive precursor Big endothelin-1. When hairless mice were exposed to UVB light and were treated with the extract, it suppressed the induction of ET-1 in the UVB-irradiated epidermis. In the course of UVB-induced pigmentation of brownish guinea pig skin, this extract significantly diminished pigmentation in UVB-exposed areas. These findings indicate that ECE-1α in keratinocytes plays a pivotal role in the induction of pigmentation following UVB irradiation and that an extract of S. officinalis, which inhibits ET-1 production in human keratinocytes, is a good ingredient for a whitening agent. (author)

  3. Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study.

    Science.gov (United States)

    Lefaix, J L; Delanian, S; Leplat, J J; Tricaud, Y; Martin, M; Nimrod, A; Baillet, F; Daburon, F

    1996-05-01

    To establish how far liposomal copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD), respectively, reduce radiation-induced fibrosis (RIF), using a well-characterized pig model of RIF permitting the design of a controlled laboratory experiment. In this model of acute localized gamma irradiation simulating accidental overexposure in humans, three groups of five large white pigs were irradiated using a collimated 192Ir source to deliver a single dose of 160 Gy onto the skin surface (100%) of the outer side of the thigh. A well-defined block of subcutaneous fibrosis involving skin and skeletal muscle developed 6 months after irradiation. One experimental group of five pigs was then injected i.m. with 10 mg/10 kg b.wt. of Cu/Zn-SOD, twice a week for 3 weeks, and another experimental group of five was injected with 10 mg/10 kg b.wt. of Mn-SOD, three times a week for 3 weeks. Five irradiated control pigs were injected with physiological serum. Animals were assessed for changes in the density of the palpated fibrotic block and in the dimensions of the projected cutaneous surface. Block depth was determined by ultrasound. Physical and sonographic findings were confirmed by autopsy 12-14 weeks after completing SOD injections. The density, length, width, and depth of the fibrotic block, and the areas and volume of its projected cutaneous surface were compared before treatment, 1, 3, and 6 weeks thereafter, and at autopsy, 12-14 weeks after treatment ended. The experimental animals exhibited no change in behavior and no abnormal clinical or anatomic signs. Whether they were given Cu/Zn- or Mn-SOD, significant and roughly equivalent softening and shrinking of the fibrotic block were noted in all treated animals between the first week after treatment ended and autopsy, when mean regression was 45% for length and width, 30% for depth, and 70% for area and volume. Histologic examination showed completely normal muscle and subcutaneous tissue

  4. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD

    DEFF Research Database (Denmark)

    Brandauer, Josef; Andersen, Marianne A; Kellezi, Holti

    2015-01-01

    , the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling......The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS) handling. We determined the requirement of AMP-activated protein kinase (AMPK) for exercise training-induced increases...... in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p

  5. Effect of N+ beam exposure on superoxide dismutase and catalase activities and induction of Mn-SOD in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Song Daojun; Chen Ruolei; Shao Chunlin; Wu Lijun; Yu Zengliang

    2000-01-01

    Though bacteria of the radiation-resistant Deinococcus radiodurans have a high resistance to the lethal and mutagenic effects of many DNA-damaging agents, the mechanisms involved in the response of these bacteria to oxidative stress are poorly understood. The superoxide dismutase (SOD) and catalase (CAT) activities produced by these bacteria were measured, and the change of SOD and CAT activities by 20 keV N + beam exposure was examined. Their activities were increased by N + beam exposure from 8 x 10 14 ions/cm 2 to 6 x 10 15 ions/cm 2 . The treatment of H 2 O 2 and [CHCl 3 + CH 3 CH 2 OH] and the measurement of absorption spectrum showed that the increase in SOD activity was resulted from inducible activities of Mn-SOD in D. radiodurans AS1.633 by N + beam exposure. These results suggested that this bacteria possess inducible defense mechanisms against the deleterious effects of oxidisation

  6. Rapid upregulation of heart antioxidant enzymes during arousal from estivation in the Giant African snail (Achatina fulica).

    Science.gov (United States)

    Salway, Kurtis D; Tattersall, Glenn J; Stuart, Jeffrey A

    2010-11-01

    Estivation is an adaptive response to environments characterized by elevated temperatures and desiccative stress, as may occur during summer dry seasons. Similar to diapause and hibernation, it is characterized by low levels of activity, a drastically suppressed metabolic rate and enhanced stress resistance. We tested the hypothesis that Achatina fulica, a pulmonate land snail, enhances stress resistance during estivation and/or arousal by upregulating intracellular antioxidant defenses in the heart, kidney, hepatopancreas and foot tissues. No statistically significant changes in mitochondrial or cytosolic superoxide dismutase levels or activities, or glutathione peroxidase, glutathione reductase or catalase activities were associated with estivation in any tissue, however. In contrast, during arousal from estivation, activities of several antioxidant enzymes increased in heart, hepatopancreas and foot. In heart, a rapid increase in MnSOD protein levels was observed that peaked at 2h post arousal, but no such change was observed in CuZnSOD protein levels. Glutathione peroxidase activity was upregulated at 1h post arousal and remained elevated until 8h post arousal in heart tissue. Glutathione peroxidase was also upregulated at 24h post arousal in foot tissue. Glutathione reductase activity was upregulated at 4h post arousal in heart and foot tissues whereas catalase activity showed no changes. Markers of lipid peroxidation and protein damage revealed no significant increases during estivation or arousal. Therefore, antioxidant enzymes may play a role in oxidative stress defense specifically during arousal from estivation in A. fulica. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    Science.gov (United States)

    Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi

    2016-01-01

    We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  8. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases

    OpenAIRE

    Anthony Samsel; Stephanie Seneff

    2013-01-01

    Glyphosate, the active ingredient in Roundup[superscript ®], is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP) enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Th...

  9. Manganese-superoxide dismutase (MnSOD), a role player in seahorse (Hippocampus abdominalis) antioxidant defense system and adaptive immune system.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Seongdo; Kim, Myoung-Jin; Hwang, Jee Youn; Kwon, Mun Gyeong; Hwang, Seong Don; Lee, Jehee

    2017-09-01

    Manganese superoxide dismutase (MnSOD) is a metaloenzyme that catalyzes dismutation of the hazardous superoxide radicals into less hazardous H 2 O 2 and H 2 O. Here, we identified a homolog of MnSOD from big belly seahorse (Hippocampus abdominalis; HaMnSOD) and characterized its structural and functional features. HaMnSOD transcript possessed an open reading frame (ORF) of 672 bp which codes for a peptide of 223 amino acids. Pairwise alignment showed that HaMnSOD shared highest identity with rock bream MnSOD. Results of the phylogenetic analysis of HaMnSOD revealed a close proximity with rock bream MnSOD which was consistent with the result of homology alignment. The intense expression of HaMnSOD was observed in the ovary, followed by the heart and the brain. Further, immune related responses of HaMnSOD towards pathogenic stimulation were observed through bacterial and viral challenges. Highest HaMnSOD expression in response to stimulants Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide (LPS), and polyinosinic-polycytidylic acid (Poly I:C) was observed in the late stage in the blood tissue. Xanthine/xanthine oxidase assay (XOD assay) indicated the ROS-scavenging ability of purified recombinant HaMnSOD (rHaMnSOD). The optimum conditions for the SOD activity of rHaMnSOD were pH 9 and the 25 °C. Collectively, the results obtained through the expressional analysis profiles and the functional assays provide insights into potential immune related and antioxidant roles of HaMnSOD in the big belly seahorse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Opposite effects of catalase and MnSOD ectopic expression on stress induced defects and mortality in the desmin deficient cardiomyopathy model.

    Science.gov (United States)

    Rapti, Kleopatra; Diokmetzidou, Antigoni; Kloukina, Ismini; Milner, Derek J; Varela, Aimilia; Davos, Constantinos H; Capetanaki, Yassemi

    2017-09-01

    Oxidative stress has been linked strongly to cell death and cardiac remodeling processes, all hallmarks of heart failure. Mice deficient for desmin (des-/-), the major muscle specific intermediate filament protein, develop dilated cardiomyopathy and heart failure characterized by mitochondrial defects and cardiomyocyte death. The cellular and biochemical alterations in the hearts of these mice strongly suggest that oxidative stress is one of the mechanisms contributing to the pathogenesis of the phenotype. Recently, we showed that indeed the desmin deficient cardiomyocytes are under increased oxidative stress. In order to verify these findings in vivo, we generated transgenic animals overexpressing SOD2 (MnSOD) and/or catalase in the heart and crossed them with des-/- mice, thus allowing us to evaluate the contribution of oxidative injury in inherited cardiomyopathies, as well as the therapeutic potential of antioxidant strategies. Moderate MnSOD and/or catalase overexpression in des-/- hearts leads to a marked decrease in intracellular reactive oxygen species (ROS), ameliorates mitochondrial and other ultrastructural defects, minimizes myocardial degeneration and leads to a significant improvement of cardiac function. Importantly, catalase overexpression increased the 50% survival rate of des-/- mice in an obligatory exercise to 100%. In contrast, MnSOD overexpression enhanced the lethality of des-/- mice, underscoring the importance of a fine balanced cellular redox status. Overall, the present study supports the contribution of oxidative stress in the development of des-/- cardiomyopathy and points to a well-considered antioxidant treatment as therapeutic for cardiomyopathies. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases

    Directory of Open Access Journals (Sweden)

    Anthony Samsel

    2013-04-01

    Full Text Available Glyphosate, the active ingredient in Roundup®, is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Thus, glyphosate enhances the damaging effects of other food borne chemical residues and environmental toxins. Negative impact on the body is insidious and manifests slowly over time as inflammation damages cellular systems throughout the body. Here, we show how interference with CYP enzymes acts synergistically with disruption of the biosynthesis of aromatic amino acids by gut bacteria, as well as impairment in serum sulfate transport. Consequences are most of the diseases and conditions associated with a Western diet, which include gastrointestinal disorders, obesity, diabetes, heart disease, depression, autism, infertility, cancer and Alzheimer’s disease. We explain the documented effects of glyphosate and its ability to induce disease, and we show that glyphosate is the “textbook example” of exogenous semiotic entropy: the disruption of homeostasis by environmental toxins.

  12. Testosterone suppresses the expression of regulatory enzymes of fatty acid synthesis and protects against hepatic steatosis in cholesterol-fed androgen deficient mice.

    Science.gov (United States)

    Kelly, Daniel M; Nettleship, Joanne E; Akhtar, Samia; Muraleedharan, Vakkat; Sellers, Donna J; Brooke, Jonathan C; McLaren, David S; Channer, Kevin S; Jones, T Hugh

    2014-07-30

    Non-alcoholic fatty liver disease and its precursor hepatic steatosis is common in obesity and type-2 diabetes and is associated with cardiovascular disease (CVD). Men with type-2 diabetes and/or CVD have a high prevalence of testosterone deficiency. Testosterone replacement improves key cardiovascular risk factors. The effects of testosterone on hepatic steatosis are not fully understood. Testicular feminised (Tfm) mice, which have a non-functional androgen receptor (AR) and very low serum testosterone levels, were used to investigate testosterone effects on high-cholesterol diet-induced hepatic steatosis. Hepatic lipid deposition was increased in Tfm mice and orchidectomised wild-type littermates versus intact wild-type littermate controls with normal androgen physiology. Lipid deposition was reduced in Tfm mice receiving testosterone treatment compared to placebo. Oestrogen receptor blockade significantly, but only partially, reduced the beneficial effects of testosterone treatment on hepatic lipid accumulation. Expression of key regulatory enzymes of fatty acid synthesis, acetyl-CoA carboxylase alpha (ACACA) and fatty acid synthase (FASN) were elevated in placebo-treated Tfm mice versus placebo-treated littermates and Tfm mice receiving testosterone treatment. Tfm mice on normal diet had increased lipid accumulation compared to littermates but significantly less than cholesterol-fed Tfm mice and demonstrated increased gene expression of hormone sensitive lipase, stearyl-CoA desaturase-1 and peroxisome proliferator-activated receptor-gamma but FASN and ACACA were not altered. An action of testosterone on hepatic lipid deposition which is independent of the classic AR is implicated. Testosterone may act in part via an effect on the key regulatory lipogenic enzymes to protect against hepatic steatosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mining the enzymes involved in the detoxification of reactive oxygen species (ROS) in sugarcane.

    Science.gov (United States)

    Kurama, Eiko E; Fenille, Roseli C; Rosa, Vicente E; Rosa, Daniel D; Ulian, Eugenio C

    2002-07-01

    Summary Adopting the sequencing of expressed sequence tags (ESTs) of a sugarcane database derived from libraries induced and not induced by pathogens, we identified EST clusters homologous to genes corresponding to enzymes involved in the detoxification of reactive oxygen species. The predicted amino acids of these enzymes are superoxide dismutases (SODs), glutathione-S-transferase (GST), glutathione peroxidase (GPX), and catalases. Three MnSOD mitochondrial precursors and 10 CuZnSOD were identified in sugarcane: the MnSOD mitochondrial precursor is 96% similar to the maize MnSOD mitochondrial precursor and, of the 10 CuZnSOD identified, seven were 98% identical to maize cytosolic CuZnSOD4 and one was 67% identical to putative peroxisomal CuZnSOD from Arabidopsis. Three homologues to class Phi GST were 87-88% identical to GST III from maize. Five GPX homologues were identified: three were homologous to cytosolic GPX from barley, one was 88% identical to phospholipid hydroperoxide glutathione peroxidase (PHGPX) from rice, and the last was 71% identical to GPX from A. thaliana. Three enzymes similar to maize catalase were identified in sugarcane: two were similar to catalase isozyme 3 and catalase chain 3 from maize, which are mitochondrial, and one was similar to catalase isozyme 1 from maize, whose location is peroxisomal subcellular. All enzymes were induced in all sugarcane libraries (flower, seed, root, callus, leaves) and also in the pathogen-induced libraries, except for CuZnSOD whose cDNA was detected in none of the libraries induced by pathogens (Acetobacter diazotroficans and Herbaspirillum rubrisubalbicans). The expression of the enzymes SOD, GST, GPX, and catalases involved in the detoxification was examined using reverse transcriptase-polymerase chain reaction in cDNA from leaves of sugarcane under biotic stress conditions, inoculated with Puccinia melanocephala, the causal agent of sugarcane rust disease.

  14. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  15. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  16. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    Directory of Open Access Journals (Sweden)

    Kiminori Sada

    Full Text Available We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs, cellular hypoxia increased after incubation with high glucose (HG. A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1, a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  17. Phenotypic and genotypic characterization of antioxidant enzyme system in human population exposed to radiation from mobile towers.

    Science.gov (United States)

    Gulati, Sachin; Yadav, Anita; Kumar, Neeraj; Priya, Kanu; Aggarwal, Neeraj K; Gupta, Ranjan

    2018-03-01

    In the present era, cellular phones have changed the life style of human beings completely and have become an essential part of their lives. The number of cell phones and cell towers are increasing in spite of their disadvantages. These cell towers transmit radiation continuously without any interruption, so people living within 100s of meters from the tower receive 10,000 to 10,000,000 times stronger signal than required for mobile communication. In the present study, we have examined superoxide dismutase (SOD) enzyme activity, catalase (CAT) enzyme activity, lipid peroxidation assay, and effect of functional polymorphism of SOD and CAT antioxidant genes against mobile tower-induced oxidative stress in human population. From our results, we have found a significantly lower mean value of manganese superoxide dismutase (MnSOD) enzyme activity, catalase (CAT) enzyme activity, and a high value of lipid peroxidation assay in exposed as compared to control subjects. Polymorphisms in antioxidant MnSOD and CAT genes significantly contributed to its phenotype. In the current study, a significant association of genetic polymorphism of antioxidant genes with genetic damage has been observed in human population exposed to radiations emitted from mobile towers.

  18. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  19. Catabolite repression of enzyme synthesis does not prevent sporulation.

    OpenAIRE

    Lopez, J M; Uratani-Wong, B; Freese, E

    1980-01-01

    In the presence of excess glucose, a decrease of guanine nucleotides in Bacillus subtilis initiated sporulation but did not prevent catabolite repression of three enzymes. Therefore, the ultimate mechanism(s) repressing enzyme synthesis differs from that suppressing sporulation.

  20. Interocular suppression

    Science.gov (United States)

    Tuna, Ana Rita; Almeida Neves Carrega, Filipa; Nunes, Amélia Fernandes

    2017-08-01

    The objective of this work is to quantify the suppressive imbalance, based on the manipulation of ocular luminance, between a group of subjects with normal binocular vision and a group of subjects with amblyopia. The result reveals that there are statistically significant differences in interocular dominance between two groups, evidencing a greater suppressive imbalance in amblyopic subjects. The technique used, proved to be a simple, easy to apply and economic method, for quantified ocular dominance. It is presented as a technique with the potential to accompany subjects with a marked dominance in one of the eyes that makes fusion difficult.

  1. Transcriptional analysis of disk abalone (Haliotis discus discus) antioxidant enzymes against marine bacteria and virus challenge.

    Science.gov (United States)

    De Zoysa, Mahanama; Whang, Ilson; Nikapitiya, Chamilani; Oh, Chulhong; Choi, Cheol Young; Lee, Jehee

    2011-07-01

    Diverse antioxidant enzymes are essential for marine organisms to overcome oxidative stress as well as for the fine-tuning of immune reactions through activating different signal transduction pathways. This study describes the transcriptional analysis of antioxidant enzymes of disk abalone by challenging with bacteria (Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes) and viral hemorrhagic septicemia virus (VHSV). Upon bacteria and VHSV challenge, Manganese superoxide dismutase (MnSOD), Copper, Zinc superoxide dismutase (CuZnSOD), catalase, thioredoxin peroxidase (TPx), Selenium-dependent glutathione peroxidase (SeGPx), and thioredoxin-2 (TRx-2) expression levels were altered in gills, and hemocytes at different magnitudes. In gills, only MnSOD, catalase, and SeGPx genes were completely upregulated by post-challenge of bacterial and VHSV. Among them, SeGPx demonstrated strong upregulation by 16-fold (bacteria) and 2-fold (VHSV) in gills, and 5-fold (bacteria) and 3.0-fold (VHSV) in hemocytes. None of the genes examined were downregulated (in gills and hemocytes) by bacteria challenge even though CuZnSOD and TPx showed downregulation (completely) in hemocytes by VHSV. In general, abalone hemocytes had lower potential to induce antioxidant enzyme transcripts upon bacteria and VHSV challenge than gills. Based upon these results, we suggest that abalones induce oxidative stress in tissues during the bacteria and VHSV challenge, and the identified response of antioxidant enzymes could be supported for maintaining a low-level of reactive oxygen species (ROS) that may serve as a signal for activating immune reactions against pathogenic conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Dietary carotenoid-rich oil supplementation improves exercise-induced anisocytosis in runners: influences of haptoglobin, MnSOD (Val9Ala), CAT (21A/T) and GPX1 (Pro198Leu) gene polymorphisms in dilutional pseudoanemia (sports anemia).

    Science.gov (United States)

    Miranda-Vilela, Ana L; Akimoto, Arthur K; Alves, Penha C Z; Pereira, Luiz C S; Klautau-Guimarães, Maria N; Grisolia, Cesar K

    2010-04-01

    Physical training induces beneficial adaptation, whereas exhaustive exercises increase reactive oxygen-species generation, thereby causing oxidative damage in plasma and erythrocytes, fractions susceptible to lipid peroxidation. Pequi (Caryocar brasiliense Camb.) is a Brazilian Cerrado fruit containing a carotenoid-rich oil. The aim was to investigate the effects of pequi-oil on exercise-induced oxidative damage in plasma and erythrocytes, after running in the same environment and undergoing weekly training under the same conditions as to type, intensity and length. Evaluations were accomplished after outdoor running on flat land before and after ingestion of 400 mg pequi-oil capsules for 14 days. Blood samples were taken after running and submitted to TBARS assay and erythrogram analysis. Haptoglobin, MnSOD (Val9Ala), CAT (21A/T) and GPX1 (Pro198Leu) gene polymorphisms were priorly investigated, so as to estimate genetic influence The reduction in erythrocytes, hemoglobin and hematocrit after pequi-oil treatment was notably associated with higher plasma expansion. Except for MCHC (mean corpuscular hemoglobin concentration) and RDW (red cell distribution width), the results were influenced by the polymorphisms studied. The best response to pequi-oil was presented by MnSOD Val/Val, CAT AA or AT genotypes and the GPX1 Pro allele. The significantly lower RDW and higher MHCH values were related to pequi-oil protective effects. Pequi oil, besides possessing other nutritional properties, showed protective blood effects.

  3. Dietary carotenoid-rich oil supplementation improves exercise-induced anisocytosis in runners: influences of haptoglobin, MnSOD (Val9Ala, CAT (21A/T and GPX1 (Pro198Leu gene polymorphisms in dilutional pseudoanemia ("sports anemia"

    Directory of Open Access Journals (Sweden)

    Ana L. Miranda-Vilela

    2010-01-01

    Full Text Available Physical training induces beneficial adaptation, whereas exhaustive exercises increase reactive oxygen-species generation, thereby causing oxidative damage in plasma and erythrocytes, fractions susceptible to lipid peroxidation. Pequi (Caryocar brasiliense Camb. is a Brazilian Cerrado fruit containing a carotenoid-rich oil. The aim was to investigate the effects of pequi-oil on exercise-induced oxidative damage in plasma and erythrocytes, after running in the same environment and undergoing weekly training under the same conditions as to type, intensity and length. Evaluations were accomplished after outdoor running on flat land before and after ingestion of 400 mg pequi-oil capsules for 14 days. Blood samples were taken after running and submitted to TBARS assay and erythrogram analysis. Haptoglobin, MnSOD (Val9Ala, CAT (21A/T and GPX1 (Pro198Leu gene polymorphisms were priorly investigated, so as to estimate genetic influence The reduction in erythrocytes, hemoglobin and hematocrit after pequi-oil treatment was notably associated with higher plasma expansion. Except for MCHC (mean corpuscular hemoglobin concentration and RDW (red cell distribution width, the results were influenced by the polymorphisms studied. The best response to pequi-oil was presented by MnSOD Val/Val, CAT AA or AT genotypes and the GPX1 Pro allele. The significantly lower RDW and higher MHCH values were related to pequi-oil protective effects. Pequi oil, besides possessing other nutritional properties, showed protective blood effects.

  4. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    International Nuclear Information System (INIS)

    Kunwar, A.; Mishra, B.; Barik, A.; Priyadarsini, K.I.; Narang, H.; Krishna, M.

    2008-01-01

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of γ-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K m and V max values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H 2 O 2 and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  5. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Kunwar, A; Mishra, B; Barik, A; Priyadarsini, K I [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India); Narang, H; Krishna, M [Radiation Biology and Health Sciences Div., Bhabha Atomic Research Centre, Mumbai (India)

    2008-01-15

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of {gamma}-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K{sub m} and V{sub max} values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H{sub 2}O{sub 2} and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  6. Responses of antioxidant enzymes and heat shock proteins in drosophila to treatment with a pesticide mixture

    Directory of Open Access Journals (Sweden)

    Doganlar Oguzhan

    2015-01-01

    Full Text Available The effects of a mixture of seven pesticides were examined on the expression of antioxidant enzymes, Mn superoxide dismutase (Mn-SOD, catalase (CAT, glutathione synthetase (GS, and heat shock proteins (HSP 26, 60, 70 and 83 in adult fruit flies (Drosophila melanogaster Oregon R. The flies were reared under controlled conditions on artificial diets and treated with a mixture of seven pesticides (molinate, thiobencarb, linuron, phorate, primiphos-methyl, fenvalerate and lambda-cyhalothrin commonly found in water, at concentrations of 0.1, 0.5 and 1 parts per billion (ppb for 1 and 5 days. Quantitative real-time PCR (qRT-PCR analysis of Mn-SOD, CAT and GS expression revealed that the analyzed markers responded significantly to pesticide-induced oxidative stress, in particular on the 5th day of treatment. On the 1st day of treatment, the relative expression of HSP26 and HSP60 genes increased only after exposure to the highest concentrations of pesticides, whereas HSP70 and HSP83 expression increased after exposure to 0.5 and 1 ppb. After five days of treatment, the expression of all HSP genes was increased after exposure to all pesticide concentrations. A positive correlation was determined between the relative expression levels of some HSPs (except HSP60, and antioxidant genes. The observed changes in antioxidant enzyme and HSP mRNA levels in D. melanogaster suggest that the permissible limits of pesticide concentrations for clean drinking water outlined in the regulations of several countries are potentially cytotoxic. The presented findings lend support for reevaluation of these limits.

  7. Enzymic oxidation of carbon monoxide. II

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, T

    1959-01-01

    An enzyme which catalyzes the oxidation of carbon monoxide into carbon dioxide was obtained in a cell free state from Desulfovibrio desulfuricans. The enzyme activity was assayed manometrically by measuring the rate of gas uptake under the atmosphere of carbon monoxide in the presence of benzyl-viologen as an oxidant. The optimum pH range was 7 to 8. The activity was slightly suppressed by illumination. The enzyme was more stable than hydrogenase or formate dehydrogenase against the heat treatment, suggesting that it is a different entity from these enzymes. In the absence of an added oxidant, the enzyme preparation produced hydrogen gas under the atmosphere of carbon monoxide. The phenomenon can be explained assuming the reductive decomposition of water. 17 references, 4 figures, 2 tables.

  8. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  9. Modulation of antioxidant enzymes as radioprotector mechanism of oligo elements and lachesis muta in normal tissues

    International Nuclear Information System (INIS)

    Crescenti, E.; Croci, M.; Mohamad, N.; Medina, V.; Sambuco, L.; Gutierrez, A.; Nunez, M.; Martin, G.; Cricco, G.; Bergoc, R.; Rivera, E.

    2006-01-01

    The therapeutic use of the ionizing radiations (IR) it has acquired great relevance in the last decades although their effects are not selective and they are also manifested on the normal tissues. In previous works we demonstrate the radioprotector effect that the combination of oligo elements Zinc, Selenium and Manganese associated to the snake poison Lachesis muta (O-LM) it exercises on the small intestine and the bone marrow of irradiated mouse. The objective of this work was to study the molecular mechanisms, and particularly the paper of the anti-oxidant superoxide dismutases enzymes (MnSOD and Cu/ZnSOD), Catalase (CAT), and Glutathione Peroxidase (GPx), in the radioprotector action that exercises the combination O-LM. Four groups of mice were used: A) control; B) treated with O-LM; C) irradiated; D) irradiated and treated with O-LM. The two treated groups were injected daily via s.c. with 0,1 ml of O-LM from 30 days before the irradiation and until to 4 days later. The two irradiated groups received 10 Gy in whole body the day 30. The day 35 all the animals were sacrificed. The histological intestinal cuts of the mucous one were evaluated by tint with hematoxyline-eosin; the presence of apoptotic cells it was determined by the Tunel method (Apoptag kit); the expression of PCNA (nuclear antigen of proliferating cells), MnSOD, CuZnSOD, CAT and GPx, by immunohistochemistry. The results demonstrated that in the lot D it was preserved totally the histology of the intestinal mucous. In the control A it was observed PCNA expression in the crypts, of MnSOD in the hairiness and CuZnSOD, CAT and Gpx in both. The change produced by O-LM (group B) it was the increase of PCNA, of CAT and the appearance of MnSOD in the crypts. On the other hand, the irradiation (C) it produced a marked descent in the GPx, the complete disappearance of PCNA and an increase of the apoptotic cells. The group D showed that O-LM it reverted totally the effect of the RI on the expression of PCNA

  10. Dexamethasone suppression test

    Science.gov (United States)

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medicine. Afterward, your blood is drawn ...

  11. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  12. Deconstructing continuous flash suppression

    OpenAIRE

    Yang, Eunice; Blake, Randolph

    2012-01-01

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in co...

  13. Role of mitochondria in radiation sensitivity

    International Nuclear Information System (INIS)

    Indo, Hiroko; Tomita, Kazuo; Majima, Hideyuki; Matsui, Hirofumi; Ozawa, Toshihiko

    2007-01-01

    This paper describes mainly the role of mitochondrial (Mt) manganese superoxide dismutase (MnSOD) for deciding the radiation sensitivity of cells. The fact that Mt concerns with apoptosis has been shown by the finding that change in Mt membrane potential relates with the cell death. Mt has the electron transport system to yield the cellular energy molecule (ATP) and from which electrons are leaked out in 2-3%, a considerably large proportion in a cell. The electrons react with oxygen nearby to yield SO (O 2 ·- ), which in turn induces apoptosis through oxidation stress (OS). On the other hand, MnSOD is transported in Mt from cytoplasm and excludes the reactive oxygen species (ROS) like SO. Studies by MnSOD gene-deletion, knockout, cDNA-transfection, and transgenesis have indicated MnSOD is essential for keeping life and resistance to OS. Authors have shown that overexpression of Mt MnSOD protects against radiation-induced cell death, suggesting that Mt participates in radiation sensitivity where SO is involved. Interestingly, MnSOD activity is low in cancer cells, its overexpression results in tumor suppression and MnSOD is a target in leukemia therapy. When MTS (Mt targeting sequence, necessary for the enzyme to enter Mt)-deleted MnSOD is transfected, cells lack resistance to radiation, indicating the enzyme must be present in Mt. Mt DNA damage leading to electron transport system impairment is found to increase ROS, and to be reversed by the transfection of MnSOD gene. Studies of Mt DNA damage in cancer cells where aerobic glycolysis is actively operated, are currently in progress lively, and are thought to promote the development of diagnosis and treatment of cancer. (R.T.)

  14. Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits.

    Science.gov (United States)

    Lopez-Huertas, Eduardo; del Río, Luis A

    2014-10-15

    The presence of peroxisomes in olive (Olea europaea L.) fruits and different antioxidant enzymes occurring in this plant tissue is reported for the first time. Ultrastructural analysis showed that olive cells were characterized by the presence of large vacuoles and lipid drops. Plastids, mitochondria and peroxisomes were placed near the cell wall, showing some type of association with it. Olive fruit peroxisomes were purified by sucrose density-gradient centrifugation, and catalase, glutathione reductase and ascorbate peroxidase were found in peroxisomes. In olive fruit tissue the presence of a battery of antioxidant enzymes was demonstrated, including catalase, four superoxide dismutase isozymes (mainly an Fe-SOD plus 2 Cu,Zn-SOD and a Mn-SOD), all the enzymes of the ascorbate-glutathione cycle, reduced and oxidized glutathione, ascorbate, and four NADPH-recycling dehydrogenases. The knowledge of the full composition of antioxidants (enzymatic and non-enzymatic) in olive fruits is crucial to be able to understand the processes regulating the antioxidant composition of olive oil. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Deconstructing continuous flash suppression.

    Science.gov (United States)

    Yang, Eunice; Blake, Randolph

    2012-03-08

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.

  16. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  17. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy.

    Science.gov (United States)

    Richter, Hans G; Hansell, Jeremy A; Raut, Shruti; Giussani, Dino A

    2009-05-01

    Melatonin participates in circadian, seasonal and reproductive physiology. Melatonin also acts as a potent endogenous antioxidant by scavenging free radicals and upregulating antioxidant pathways. The placenta expresses melatonin receptors and melatonin protects against oxidative damage induced in rat placenta by ischemia-reperfusion. One of the most common complications in pregnancy is a reduction in fetal nutrient delivery, which is known to promote oxidative stress. However, whether melatonin protects placental function and fetal development in undernourished pregnancy is unknown. Here, we investigated the effects of maternal treatment with melatonin on placental efficiency, fetal growth, birth weight and protein expression of placental oxidative stress markers in undernourished pregnancy. On day 15 of pregnancy, rats were divided into control and undernourished pregnancy (35% reduction in food intake), with and without melatonin treatment (5 microg/mL drinking water). On day 20 of gestation, fetal biometry was carried out, the placenta was weighed and subsequently analyzed by Western blot for xanthine oxidase, heat shock protein (HSP) 27 and 70, catalase, manganese superoxide dismutase (Mn-SOD) and glutathione peroxidase 1 (GPx-1). A separate cohort was allowed to deliver to assess effects on birth weight. Maternal undernutrition led to a fall in placental efficiency, disproportionate intrauterine growth retardation and a reduction in birth weight. Maternal treatment with melatonin in undernourished pregnancy improved placental efficiency and restored birth weight, and it increased the expression of placental Mn-SOD and catalase. The data show that in pregnancy complicated by undernutrition, melatonin may improve placental efficiency and birth weight by upregulating placental antioxidant enzymes.

  18. Sodium fire suppression

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  19. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  20. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  1. Mitochondrial DNA (mtDNA haplogroups and serum levels of anti-oxidant enzymes in patients with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Fernandez-Moreno Mercedes

    2011-11-01

    Full Text Available Abstract Background Oxidative stress play a main role in the initiation and progression of the OA disease and leads to the degeneration of mitochondria. To prevent this, the chondrocytes possess a well-coordinated enzymatic antioxidant system. Besides, the mitochondrial DNA (mtDNA haplogroups are associated with the OA disease. Thus, the main goal of this work is to assess the incidence of the mtDNA haplogroups on serum levels of two of the main antioxidant enzymes, Manganese Superoxide Dismutase (Mn-SOD or SOD2 and catalase, and to test the suitability of these two proteins for potential OA-related biomarkers. Methods We analyzed the serum levels of SOD2 and catalase in 73 OA patients and 77 healthy controls carrying the haplogroups J, U and H, by ELISA assay. Knee and hip radiographs were classified according to Kellgren and Lawrence (K/L scoring from Grade 0 to Grade IV. Appropriate statistical analyses were performed to test the effects of clinical variables, including gender, body mass index (BMI, age, smoking status, diagnosis, haplogroups and radiologic K/L grade on serum levels of these enzymes. Results Serum levels of SOD2 appeared statistically increased in OA patients when compared with healthy controls (p Conclusions The increased levels of SOD2 in OA patients indicate an increased oxidative stress OA-related, therefore this antioxidant enzyme could be a suitable candidate biomarker for diagnosis of OA. Mitochondrial haplogroups significantly correlates with serum levels of catalase

  2. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  3. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  4. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  5. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  6. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  7. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  8. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  9. Thyroxin hormone suppression treatment

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    One of the important modalities of treatment of thyroid cancer (TC) after surgery is the administration of thyroxin as an adjuvant treatment. The analysis supports the theory that thyroid suppression plays an important role in patient management. 300 μg of thyroxin, as this is an adequate dose for suppression is given. Ideally the dose should be tailored by testing s-TSH levels. However, since a large number of the patients come from out station cities and villages this is impractical. We therefore depend on clinical criteria of hyperthyroid symptoms and adjust the dose. Very few patients need such adjustment

  10. Pressure suppressing device

    International Nuclear Information System (INIS)

    Naito, Makoto.

    1980-01-01

    Purpose: To prevent the pressure in the reactor container from excessively increasing even when vapor leaks from the dry well to a space of the suppression chamber, without passing though the suppression pool at the time of loss of coolant accident. Constitution: When vapor of a high temperature and a high pressure at the time of loss of coolant accident flows from the dry well to the suppression chamber without passing through suppression pool water, vapor dose not condense with pool water, and therefore the pressure within the chamber abnormally increases. For this reason, this abnormal pressure is detected by a pressure detector thereby to start the operations of a blower and a pump. By starting the blower, the pressure in the dry well becomes lower than the pressure in the chamber, and vapor entirely passes through the pool water and entirely condenses with the pool water. By starting the pump, the pool water is sprayed over the space of the chamber, and vapor in the space is condensed. (Yoshino, Y.)

  11. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  12. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  13. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    Enzymes are biocatalytic protein molecules that enhance the rates of ... to physical forces (hydrogen bonds, hydrophobic 1, electrostatic and Van der ... conformation. In 1995 ... surface against 14.7% in Klenow poll (some of the hydrophobic.

  14. Improving enzymatic activities and thermostability of a tri-functional enzyme with SOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Isarankura Na Ayudhya, Chartchalerm; Prachayasittikul, Virapong; Yainoy, Sakda

    2017-04-10

    Synergistic action of major antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) is known to be more effective than the action of any single enzyme. Recently, we have engineered a tri-functional enzyme, 6His-MnSOD-TAT/CAT-MnSOD (M-TAT/CM), with SOD, CAT and cell-permeable activities. The protein actively internalized into the cells and showed superior protection against oxidative stress-induced cell death over native enzymes fused with TAT. To improve its molecular size, enzymatic activity and stability, in this study, MnSOD portions of the engineered protein were replaced by CuZnSOD, which is the smallest and the most heat resistant SOD isoform. The newly engineered protein, CAT-CuZnSOD/6His-CuZnSOD-TAT (CS/S-TAT), had a 42% reduction in molecular size and an increase in SOD and CAT activities by 22% and 99%, respectively. After incubation at 70°C for 10min, the CS/S-TAT retained residual SOD activity up to 54% while SOD activity of the M-TAT/CM was completely abolished. Moreover, the protein exhibited a 5-fold improvement in half-life at 70°C. Thus, this work provides insights into the design and synthesis of a smaller but much more stable multifunctional antioxidant enzyme with ability to enter mammalian cells for further application as protective/therapeutic agent against oxidative stress-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  16. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  17. J/Ψ suppression

    International Nuclear Information System (INIS)

    Giubellino, P.; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Boldea, V.; Bordalo, P.; Bussiere, A.; Capony, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constantinescu, S.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Espagnon, B.; Fargeix, J.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkaninan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kurepin, A.B.; Le Bornec, Y.; Lourenco, C.; Mac Cormick, M.; Macciotta, P.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Sartori, S.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Soave, C.; Sonderegger, P.; Tarrago, X.; Temnikov, P.; Topilskaya, N.S.; Usai, G.; Vale, C.; Vercellin, E.; Willis, N.

    1999-01-01

    The cross section for J/Ψ production in Pb-Pb interactions at 158 GeV per nucleon is measured at the CERN SPS by the NA50 experiment. The final results from the 1995 run are presented here together with preliminary ones from the high-statistics 1996 run. An anomalous J/Ψ suppression is observed in Pb-Pb collisions as compared to extrapolations of the previous results obtained by the NA38 experiment with proton and lighter ion beams. The results of the two runs are in good agreement. The results from the 1996 run allow the study of the onset of the anomalous suppression within the same set of data, showing evidence of a sharp change of behaviour around a value of neutral transverse energy, as measured by our electromagnetic calorimeter, of about 50 GeV

  18. Induction of peroxide and superoxide protective enzymes and physiological cross-protection against peroxide killing by a superoxide generator in Vibrio harveyi.

    Science.gov (United States)

    Vattanaviboon, Paiboon; Panmanee, Warunya; Mongkolsuk, Skorn

    2003-04-11

    Vibrio harveyi is a causative agent of destructive luminous vibriosis in farmed black tiger prawn (Penaeus monodon). V. harveyi peroxide and superoxide stress responses toward elevated levels of a superoxide generated by menadione were investigated. Exposure of V. harveyi to sub-lethal concentrations of menadione induced high expression of genes in both the OxyR regulon (e.g., a monofunctional catalase or KatA and an alkyl hydroperoxide reductase subunit C or AhpC), and the SoxRS regulon (e.g., a superoxide dismutase (SOD) and a glucose-6-phosphate dehydrogenase). V. harveyi expressed two detectable, differentially regulated SOD isozymes, [Mn]-SOD and [Fe]-SOD. [Fe]-SOD was expressed constitutively throughout the growth phase while [Mn]-SOD was expressed at the stationary phase and could be induced by a superoxide generator. Physiologically, pre-treatment of V. harveyi with menadione induced cross-protection against subsequent exposure to killing concentrations of H(2)O(2). This induced cross-protection required newly synthesized proteins. However, the treatment did not induce significant protection against exposures to killing concentrations of menadione itself or cross-protect against an organic hydroperoxide (tert-butyl hydroperoxide). Unexpectedly, growing V. harveyi in high-salinity media induced protection against menadione killing. This protection was independent of SOD induction. Stationary-phase cells were more resistant to menadione killing than exponential-phase cells. The induction of oxidative stress protective enzymes and stress-altered physiological responses could play a role in the survival of this bacterium in the host marine crustaceans.

  19. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  20. The pressure suppression system

    International Nuclear Information System (INIS)

    Aust, E.

    1985-01-01

    Nuclear plants with boiling water reactors have a safety containment with a pressure suppression system (PSS). Proceeding on significant self-developments, today the three PSS-lines of General Electric Co. (GE), Kraftwerk Union AG (KWU) and ASEA-ATOM are predominant, which are currently represented by the MARK III type, the KWU type 72 and the BWR 75 containment. In addition, there are special developments for the nuclear ship propulsion and for the pressurized water reactors in the Soviet Union. Key design values of the PSS allow a first valuation of its loads during a hypothetical loss-of-coolant accident. (orig.) [de

  1. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  2. Oxidative stress and redox state-regulating enzymes have prognostic relevance in diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Peroja Pekka

    2012-03-01

    Full Text Available Abstract Background Oxidative stress and redox-regulating enzymes may have roles both in lymphomagenesis and resistance to lymphoma therapy. Previous studies from the pre-rituximab era suggest that antioxidant enzyme expression is related to prognosis in diffuse large B-cell lymphoma (DLBCL, although these results cannot be extrapolated to patient populations undergoing modern treatment modalities. In this study we assessed expression of the oxidative stress markers 8-hydroxydeoxyguanosine (8-OHdG and nitrotyrosine and the antioxidant enzymes thioredoxin (Trx, manganese superoxide dismutase (MnSOD and glutamate-cysteine ligase (GCL via immunohistochemistry in 106 patients with DLBCL. All patients were treated with CHOP-like therapy combined with rituximab. Immunostaining results were correlated with progression-free survival, disease-specific survival and traditional prognostic factors of DLBCL. Results Strong 8-OHdG immunostaining intensity was associated with extranodal involvement (p = 0.00002, a high International Prognostic Index (p = 0.002 and strong Trx (p = 0.011 and GCL (p = 0.0003 expression. Strong Trx staining intensity was associated with poor progression-free survival (p = 0.046 and poor disease-specific survival (p = 0.015. Strong GCL immunostaining intensity predicted poor progression-free survival (p = 0.049. Patients with either strong Trx or strong nitrotyrosine expression showed significantly poorer progression-free survival (p = 0.003 and disease-specific survival (p = 0.031 compared with the other patients. Conclusions The redox state-regulating enzymes GCL and Trx are promising markers in the evaluation of DLBCL prognosis in the era of modern immunochemotherapy.

  3. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  4. Radiation effluent suppression system

    International Nuclear Information System (INIS)

    Watanabe, Atsushi.

    1992-01-01

    In a radiation release suppression system upon accident, an electromotive valve, a pneumatic operation valve or a manual operation valve is disposed to gas ventilation pipelines which are extended from both of a dry well and a wet well of a reactor container to a stuck. In addition, a combination filter of a metal fiber filter made of stainless steel etc. and an activated carbon fiber filter is disposed in the midway of pipelines in a reactor building. With such a constitution, the inside of the container can be depressurized (prevention of ruptures) and the amount of radioactive substances released to circumstances is remarkably suppressed by the effect of radioactive substance capturing effect of the metal fiber filter made of stainless steel etc. disposed in the vent pipe in the container and a radioactive substance capturing effect by the combination filter of the metal fiber filter made of stainless steel, etc. and the activated carbon fiber filter disposed in the gas ventilation pipelines even upon occurrence of an accident exceeding design basis. Systems can be simplified and minimized, and cost down can also be attained. (N.H.)

  5. Planck-suppressed operators

    International Nuclear Information System (INIS)

    Assassi, Valentin; Baumann, Daniel; Green, Daniel; McAllister, Liam

    2014-01-01

    We show that the recent Planck limits on primordial non-Gaussianity impose strong constraints on light hidden sector fields coupled to the inflaton via operators suppressed by a high mass scale Λ. We study a simple effective field theory in which a hidden sector field is coupled to a shift-symmetric inflaton via arbitrary operators up to dimension five. Self-interactions in the hidden sector lead to non-Gaussianity in the curvature perturbations. To be consistent with the Planck limit on local non-Gaussianity, the coupling to any hidden sector with light fields and natural cubic couplings must be suppressed by a very high scale Λ > 10 5 H. Even if the hidden sector has Gaussian correlations, nonlinearities in the mixing with the inflaton still lead to non-Gaussian curvature perturbations. In this case, the non-Gaussianity is of the equilateral or orthogonal type, and the Planck data requires Λ > 10 2 H

  6. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  7. Enzyme with rhamnogalacturonase activity.

    NARCIS (Netherlands)

    Kofod, L.V.; Andersen, L.N.; Dalboge, H.; Kauppinen, M.S.; Christgau, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A.G.J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet

  8. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

  10. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  11. Embedded enzymes catalyse capture

    Science.gov (United States)

    Kentish, Sandra

    2018-05-01

    Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.

  12. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  13. ISFET based enzyme sensors

    NARCIS (Netherlands)

    van der Schoot, Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the

  14. The Enzyme Function Initiative†

    Science.gov (United States)

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID

  15. The Enzyme Function Initiative.

    Science.gov (United States)

    Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V

    2011-11-22

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts.

  16. Suppression of developmental anomalies by maternal macrophages in mice

    International Nuclear Information System (INIS)

    Nomura, T.; Hata, S.; Kusafuka, T.

    1990-01-01

    We tested whether nonspecific tumoricidal immune cells can suppress congenital malformations by killing precursor cells destined to cause such defects. Pretreatment of pregnant ICR mice with synthetic (Pyran copolymer) and biological (Bacillus Calmette-Guerin) agents significantly suppressed radiation- and chemical-induced congenital malformations (cleft palate, digit anomalies, tail anomalies, etc.). Such suppressive effects were associated with the activation of maternal macrophages by these agents, but were lost either after the disruption of activated macrophages by supersonic waves or by inhibition of their lysosomal enzyme activity with trypan blue. These results indicate that a live activated macrophage with active lysosomal enzymes can be an effector cell to suppress maldevelopment. A similar reduction by activated macrophages was observed in strain CL/Fr, which has a high spontaneous frequency of cleft lips and palates. Furthermore, Pyran-activated maternal macrophages could pass through the placenta, and enhanced urethane-induced cell killing (but not somatic mutation) in the embryo. It is likely that a maternal immunosurveillance system eliminating preteratogenic cells allows for the replacement with normal totipotent blast cells during the pregnancy to protect abnormal development

  17. Screening for suppression in young children: the Polaroid Suppression test

    NARCIS (Netherlands)

    Pott, J.W.R.; Oosterveen, DK; Van Hof-van Duin, J

    1998-01-01

    Background: Assessment of monocular visual impairment during screening of young children is often hampered by lack of cooperation. Because strabismus, amblyopia, or anisometropia may lead to monocular suppression during binocular viewing conditions, a test was developed to screen far suppression in

  18. Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade.

    Science.gov (United States)

    Zhang, Qi; Chen, Shuo; Wang, Hua; Yu, Hongtao

    2018-03-14

    Hydrogen peroxide (H 2 O 2 ) is a key reactant in the Fenton process. As a byproduct of enzymatic reaction, H 2 O 2 can be obtained via catalytical oxidation of glucose using glucose oxidase in the presence of O 2 . Another oxidation product (gluconic acid) can suitably adjust the microenvironmental pH contributing to the Fe 3+ /Fe 2+ cycle in the Fenton reaction. Enzymes are extremely efficient at catalyzing a variety of reactions with high catalytic activity, substrate specificity, and yields in living organisms. Inspired by the multiple functions of natural multienzyme systems, an exquisite nanozyme-modified α-FeOOH/porous carbon (PC) biomimetic catalyst constructed by in situ growth of glucose oxidase-mimicking Au nanoparticles and crystallization of adsorbed ferric ions within carboxyl into hierarchically PC is developed as an efficient enzyme-Fenton catalyst. The products (H 2 O 2 , ∼4.07 mmol·L -1 ) of the first enzymatic reaction are immediately used as substrates for the second Fenton-like reaction to generate the valuable • OH (∼96.84 μmol·L -1 ), thus mimicking an enzyme cascade pathway. α-FeOOH nanocrystals, attached by C-O-Fe bondings, are encapsulated into the mesoporous PC frameworks, facilitating the electron transfer between α-FeOOH and the PC support and greatly suppressing iron leaching. This study paves a new avenue for designing biomimetic enzyme-based Fenton catalysts mimicking a natural system for • OH production.

  19. A metal-based inhibitor of NEDD8-activating enzyme.

    Directory of Open Access Journals (Sweden)

    Hai-Jing Zhong

    Full Text Available A cyclometallated rhodium(III complex [Rh(ppy(2(dppz](+ (1 (where ppy=2-phenylpyridine and dppz=dipyrido[3,2-a:2',3'-c]phenazine dipyridophenazine has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE. The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme.

  20. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  1. Cellulase enzyme and biomass utilization

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... human population grows and economic development. However, the current .... conditions and the production cost of the related enzyme system. Therefore ... Given the importance of this enzyme to these so many industries,.

  2. Pressure suppression device

    International Nuclear Information System (INIS)

    Yoshida, Toyokazu.

    1976-01-01

    Purpose: To provide a pressure suppression device for a gas cooled reactor wherein the coolant is discharged in a reactor building by a loss-of-coolant accident or the like, the increase in the pressure and temperature is controlled and thermal energy of the discharged coolant of high temperature and high pressure can be absorbed. Constitution: A low heat source unit is provided at the upper part in an inner space of a reactor building provided around the reactor, and at the upper part of the low heat source unit a stirring fan for mixing gas within the building, and a low heat source circulating the low heat source through a pipe is connected to the low heat source unit. The low heat source unit is provided with the pipe arranged in a spiral shape at the upper part of the space of the unit, and a large number of fins are provided at the outer surface of the pipe for increasing the transmission area and improve the heat exchange. When the coolant of high temperature and high pressure has been lost in the building, the thermal energy of the coolant is absorbed by the low heat source unit. (Aizawa, K.)

  3. Ultra-performance liquid chromatography-tandem mass spectrometry-based multiplex enzyme assay for six enzymes associated with hereditary hemolytic anemia.

    Science.gov (United States)

    Park, Chul Min; Lee, Kyunghoon; Jun, Sun-Hee; Song, Sang Hoon; Song, Junghan

    2017-08-15

    Deficiencies in erythrocyte metabolic enzymes are associated with hereditary hemolytic anemia. Here, we report the development of a novel multiplex enzyme assay for six major enzymes, namely glucose-6-phosphate dehydrogenase, pyruvate kinase, pyrimidine 5'-nucleotidase, hexokinase, triosephosphate isomerase, and adenosine deaminase, deficiencies in which are implicated in erythrocyte enzymopathies. To overcome the drawbacks of traditional spectrophotometric enzyme assays, the present assay was based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The products of the six enzymes were directly measured by using ion pairing UPLC-MS/MS, and the precision, linearity, ion suppression, optimal sample amounts, and incubation times were evaluated. Eighty-three normal individuals and 13 patients with suspected enzymopathy were analyzed. The UPLC running time was within 5min. No ion suppression was observed at the retention time for the products or internal standards. We selected an optimal dilution factor and incubation time for each enzyme system. The intra- and inter-assay imprecision values (CVs) were 2.5-12.1% and 2.9-14.3%, respectively. The linearity of each system was good, with R 2 values >0.97. Patient samples showed consistently lower enzyme activities than those from normal individuals. The present ion paring UPLC-MS/MS assay enables facile and reproducible multiplex evaluation of the activity of enzymes implicated in enzymopathy-associated hemolytic anemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modulation of antioxidant enzymes as radioprotector mechanism of oligo elements and lachesis muta in normal tissues; Modulacion de enzimas antioxidantes como mecanismo radioprotector de oligoelementos y lachesis muta en tejidos normales

    Energy Technology Data Exchange (ETDEWEB)

    Crescenti, E.; Croci, M. [Instituto de Inmunooncologia, Cordoba 3200, Buenos Aires (Argentina); Mohamad, N.; Medina, V.; Sambuco, L.; Gutierrez, A.; Nunez, M.; Martin, G.; Cricco, G.; Bergoc, R.; Rivera, E. [Laboratorio de Radioisotopos, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires. Junin 956. Buenos Aires, (Argentina)]. e-mail: crescentilab@fibertel.com.ar

    2006-07-01

    The therapeutic use of the ionizing radiations (IR) it has acquired great relevance in the last decades although their effects are not selective and they are also manifested on the normal tissues. In previous works we demonstrate the radioprotector effect that the combination of oligo elements Zinc, Selenium and Manganese associated to the snake poison Lachesis muta (O-LM) it exercises on the small intestine and the bone marrow of irradiated mouse. The objective of this work was to study the molecular mechanisms, and particularly the paper of the anti-oxidant superoxide dismutases enzymes (MnSOD and Cu/ZnSOD), Catalase (CAT), and Glutathione Peroxidase (GPx), in the radioprotector action that exercises the combination O-LM. Four groups of mice were used: A) control; B) treated with O-LM; C) irradiated; D) irradiated and treated with O-LM. The two treated groups were injected daily via s.c. with 0,1 ml of O-LM from 30 days before the irradiation and until to 4 days later. The two irradiated groups received 10 Gy in whole body the day 30. The day 35 all the animals were sacrificed. The histological intestinal cuts of the mucous one were evaluated by tint with hematoxyline-eosin; the presence of apoptotic cells it was determined by the Tunel method (Apoptag kit); the expression of PCNA (nuclear antigen of proliferating cells), MnSOD, CuZnSOD, CAT and GPx, by immunohistochemistry. The results demonstrated that in the lot D it was preserved totally the histology of the intestinal mucous. In the control A it was observed PCNA expression in the crypts, of MnSOD in the hairiness and CuZnSOD, CAT and Gpx in both. The change produced by O-LM (group B) it was the increase of PCNA, of CAT and the appearance of MnSOD in the crypts. On the other hand, the irradiation (C) it produced a marked descent in the GPx, the complete disappearance of PCNA and an increase of the apoptotic cells. The group D showed that O-LM it reverted totally the effect of the RI on the expression of PCNA

  5. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... for several batches of hydrolysis, and thereby reduces the overall cost associated with the hydrolysis. Research on this subject has been ongoing for many years and several promising technologies and methods have been developed and demonstrated. But only in a very few cases have these technologies been...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...

  6. Characterising Complex Enzyme Reaction Data.

    Directory of Open Access Journals (Sweden)

    Handan Melike Dönertaş

    Full Text Available The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG. Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  7. Histidine Augments the Suppression of Hepatic Glucose Production by Central Insulin Action

    OpenAIRE

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime

    2013-01-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA le...

  8. Heme-containing enzymes and inhibitors for tryptophan metabolism.

    Science.gov (United States)

    Yan, Daojing; Lin, Ying-Wu; Tan, Xiangshi

    2017-09-20

    Iron-containing enzymes such as heme enzymes play crucial roles in biological systems. Three distinct heme-containing dioxygenase enzymes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the initial and rate-limiting step of l-tryptophan catabolism through the kynurenine pathway in mammals. Overexpression of these enzymes causes depletion of tryptophan and the accumulation of metabolic products, which contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. In the past few decades, IDO1 has garnered the most attention as a therapeutic target with great potential in cancer immunotherapy. Many potential inhibitors of IDO1 have been designed, synthesized and evaluated, among which indoximod (d-1-MT), INCB024360, GDC-0919 (formerly NLG-919), and an IDO1 peptide-based vaccine have advanced to the clinical trial stage. However, recently, the roles of TDO and IDO2 have been elucidated in immune suppression. In this review, the current drug discovery landscape for targeting TDO, IDO1 and IDO2 is highlighted, with particular attention to the recent use of drugs in clinical trials. Moreover, the crystal structures of these enzymes, in complex with inhibitors, and the mechanisms of Trp catabolism in the first step, are summarized to provide information for facilitating the discovery of new enzyme inhibitors.

  9. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  10. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  11. Thyroid suppression test with dextrothyroxine

    International Nuclear Information System (INIS)

    Rosenthal, D.; Fridman, J.; Ribeiro, H.B.

    1978-01-01

    The classic thyroid suppression test with triiodothyronine (l-T 3 ) has been shown to be efficient as an auxiliary method in the diagnosis of thyroid diseases, but should not be performed on elderly patients or on those with heart disease or a tendency to tachycardia. Since these subjects seem able to support a short period of dextro-thyronine (d-T 4 ) feeding, we compared the effect of d-T 4 and l-T 3 on the 24 hours thyroid uptake in euthyroid and hyperthyroid subjects. After basal radio-iodine uptake determination, 99 patients without hyperthyroidism and 27 with Graves' disease were randomly divided in 2 groups; one received 100μg of l-T 3 per day and the other 4 mg of d-T 4 per day, both groups being treated for a period of 10 days. At the end of this suppression period the 24 hours radio-iodine uptake was measured again and the percentual suppression index (S.I.) calculated. Since the comparison of the two groups showed no difference between the suppressive effect of l-T 3 and d-T 4 in euthyroid subjects, while dextro-thyronine, as levo-triiodothyronine, did not suppress the 24 hours uptake of hyperthyroid patients, l-T 3 or d-T 4 can be used interchangeably to test thyroid suppressibility. In the euthyroid subjects the normal range for the post-suppression uptake was 0-17.1% and for the suppression index 54,7.100% [pt

  12. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  13. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  14. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  15. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  16. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  17. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery

    Science.gov (United States)

    McClung, Joseph M.; DeRuisseau, Keith C.; Whidden, Melissa A.; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S.; Powers, Scott K.

    2010-01-01

    Low levels of reactive oxygen species (ROS) production are necessary to optimize muscle force production in unfatigued muscle. In contrast, sustained high levels of ROS production have been linked to impaired muscle force production and contraction-induced skeletal muscle fatigue. Using genetically engineered mice, we tested the hypothesis that the independent transgenic overexpression of catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD; SOD1) or manganese superoxide dismutase (MnSOD; SOD2) antioxidant enzymes would negatively affect force production in unfatigued diaphragm muscle but would delay the development of muscle fatigue and enhance force recovery after fatiguing contractions. Diaphragm muscle from wild-type littermates (WT) and from CAT, SOD1 and SOD2 overexpressing mice were subjected to an in vitro contractile protocol to investigate the force–frequency characteristics, the fatigue properties and the time course of recovery from fatigue. The CAT, SOD1 and SOD2 overexpressors produced less specific force (in N cm−2) at stimulation frequencies of 20–300 Hz and produced lower maximal tetanic force than WT littermates. The relative development of muscle fatigue and recovery from fatigue were not influenced by transgenic overexpression of any antioxidant enzyme. Morphologically, the mean cross-sectional area (in μm2) of diaphragm myofibres expressing myosin heavy chain type IIA was decreased in both CAT and SOD2 transgenic animals, and the percentage of non-contractile tissue increased in diaphragms from all transgenic mice. In conclusion, our results do not support the hypothesis that overexpression of independent antioxidant enzymes protects diaphragm muscle from contraction-induced fatigue or improves recovery from fatigue. Moreover, our data are consistent with the concept that a basal level of ROS is important to optimize muscle force production, since transgenic overexpression of major cellular antioxidants is associated with

  18. Enzyme Mimics: Advances and Applications.

    Science.gov (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  20. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  1. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  2. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  3. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  4. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  5. Enzymes in Human Milk.

    Science.gov (United States)

    Dallas, David C; German, J Bruce

    2017-01-01

    Milk proteins are a complex and diverse source of biological activities. Beyond their function, intact milk proteins also act as carriers of encrypted functional sequences that, when released as peptides, exert biological functions, including antimicrobial and immunomodulatory activity, which could contribute to the infant's competitive success. Research has now revealed that the release of these functional peptides begins within the mammary gland itself. A complex array of proteases produced in mother's milk has been shown to be active in the milk, releasing these peptides. Moreover, our recent research demonstrates that these milk proteases continue to digest milk proteins within the infant's stomach, possibly even to a larger extent than the infant's own proteases. As the neonate has relatively low digestive capacity, the activity of milk proteases in the infant may provide important assistance to digesting milk proteins. The coordinated release of these encrypted sequences is accomplished by selective proteolytic action provided by an array of native milk proteases and infant-produced enzymes. The task for scientists is now to discover the selective advantages of this protein-protease-based peptide release system. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  6. Digestive enzymes of some earthworms.

    Science.gov (United States)

    Mishra, P C; Dash, M C

    1980-10-15

    4 species of tropical earthworms differed with regard to enzyme activity. The maximum activity of protease and of cellulase occurred in the posterior region of the gut of the earthworms. On the average Octochaetona surensis shows maximum activity and Drawida calebi shows minimum activity for all the enzymes studied.

  7. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  8. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1

    Directory of Open Access Journals (Sweden)

    Nur Aziz

    2018-05-01

    Full Text Available Interferon regulatory factor (IRF-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN. Thymoquinone (TQ is a compound derived from black cumin (Nigella sativa L. and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB and activator protein-1 (AP-1. However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1, an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities.

  9. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  10. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  11. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  12. Aging and repeated thought suppression success.

    Directory of Open Access Journals (Sweden)

    Ann E Lambert

    Full Text Available Intrusive thoughts and attempts to suppress them are common, but while suppression may be effective in the short-term, it can increase thought recurrence in the long-term. Because intentional suppression involves controlled processing, and many aspects of controlled processing decline with age, age differences in thought suppression outcomes may emerge, especially over repeated thought suppression attempts as cognitive resources are expended. Using multilevel modeling, we examined age differences in reactions to thought suppression attempts across four thought suppression sequences in 40 older and 42 younger adults. As expected, age differences were more prevalent during suppression than during free monitoring periods, with younger adults indicating longer, more frequent thought recurrences and greater suppression difficulty. Further, younger adults' thought suppression outcomes changed over time, while trajectories for older adults' were relatively stable. Results are discussed in terms of older adults' reduced thought recurrence, which was potentially afforded by age-related changes in reactive control and distractibility.

  13. Accentuation-suppression and scaling

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik; Bundesen, Claus

    2012-01-01

    The limitations of the visual short-term memory (VSTM) system have become an increasingly popular field of study. One line of inquiry has focused on the way attention selects objects for encoding into VSTM. Using the framework of the Theory of Visual Attention (TVA; Bundesen, 1990 Psychological...... a scaling mechanism modulating the decision bias of the observer and also through an accentuation-suppression mechanism that modulates the degree of subjective relevance of objects, contracting attention around fewer, highly relevant objects while suppressing less relevant objects. These mechanisms may...

  14. Mitochondria-derived superoxide and voltage-gated sodium channels in baroreceptor neurons from chronic heart-failure rats.

    Science.gov (United States)

    Tu, Huiyin; Liu, Jinxu; Zhu, Zhen; Zhang, Libin; Pipinos, Iraklis I; Li, Yu-Long

    2012-01-01

    Our previous study has shown that chronic heart failure (CHF) reduces expression and activation of voltage-gated sodium (Na(v)) channels in baroreceptor neurons, which are involved in the blunted baroreceptor neuron excitability and contribute to the impairment of baroreflex in the CHF state. The present study examined the role of mitochondria-derived superoxide in the reduced Na(v) channel function in coronary artery ligation-induced CHF rats. CHF decreased the protein expression and activity of mitochondrial complex enzymes and manganese SOD (MnSOD) and elevated the mitochondria-derived superoxide level in the nodose neurons compared with those in sham nodose neurons. Adenoviral MnSOD (Ad.MnSOD) gene transfection (50 multiplicity of infection) into the nodose neurons normalized the MnSOD expression and reduced the elevation of mitochondrial superoxide in the nodose neurons from CHF rats. Ad.MnSOD also partially reversed the reduced protein expression and current density of the Na(v) channels and the suppressed cell excitability (the number of action potential and the current threshold for inducing action potential) in aortic baroreceptor neurons from CHF rats. Data from the present study indicate that mitochondrial dysfunction, including decreased protein expression and activity of mitochondrial complex enzymes and MnSOD and elevated mitochondria-derived superoxide, contributes to the reduced Na(v) channel activation and cell excitability in the aortic baroreceptor neurons in CHF rats.

  15. Histidine augments the suppression of hepatic glucose production by central insulin action.

    Science.gov (United States)

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-Ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2013-07-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA levels and augmented HGP suppression by insulin. This suppression of hepatic gluconeogenesis by histidine was abolished by hepatic STAT3 deficiency or hepatic Kupffer cell depletion. Inhibition of HGP by histidine was also blocked by ICV administration of a histamine H1 receptor antagonist. Therefore, histidine activates hepatic STAT3 and suppresses HGP via central histamine action. Hepatic STAT3 phosphorylation after histidine ICV administration was attenuated in histamine H1 receptor knockout (Hrh1KO) mice but not in neuron-specific insulin receptor knockout (NIRKO) mice. Conversely, hepatic STAT3 phosphorylation after insulin ICV administration was attenuated in NIRKO but not in Hrh1KO mice. These findings suggest that central histidine action is independent of central insulin action, while both have additive effects on HGP suppression. Our results indicate that central histidine/histamine-mediated suppression of HGP is a potential target for the treatment of type 2 diabetes.

  16. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko; Dohi, Makoto

    2014-01-01

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4 + T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4 + T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects

  17. [Autologous regulatory T cells can suppress the proliferation of lymphoma cell line in vitro].

    Science.gov (United States)

    Ying, Zhi-Tao; Guo, Jun; Ren, Jun; Kong, Yan; Yuan, Zhi-Hong; Liu, Xi-Juan; Zhang, Chen; Zheng, Wen; Song, Yu-Qin; Zhang, Yun-Tao; Zhu, Jun

    2009-06-01

    This study was aimed to investigate the suppressive effect of regulatory T (Treg) cells on the T cell lymphoma EL4 cell line and to explore its mechanism. C57BL/6 Mouse Treg cells were isolated by MACS (magnetic cell sorting). The purity and the expression of Foxp3 were detected by flow cytometry. The suppressive effect of sorted Treg cells on EL4 cells was detected by MTT assay. The secretion of TGF-beta1 and IL-10 was examined by enzyme-linked immunosorbent assay (ELISA). The results showed that CD4(+)CD25(+) T cells could be successfully isolated by MACS with the purity reaching 91.6% and the expression level of Foxp3 was 78.9%. The ratio of viable cells was more than 95%. Regulatory T cells could suppress the proliferation of EL4 cells effectively in the presence of antigen presenting cells (APCs). And the suppressive effect was most significant at 1:1 ratio. In addition, the suppression still existed without APCs. TGF-beta1 and IL-10 could not be detected by ELISA. It is concluded that the Treg cells can suppress T lymphoma cell in vitro. The suppressive effect of Treg cells works in dose-dependent manner, but not in cytokine-dependent manner. The mechanism of this suppression may take effect through cell-cell contact.

  18. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  19. [Automated analyzer of enzyme immunoassay].

    Science.gov (United States)

    Osawa, S

    1995-09-01

    Automated analyzers for enzyme immunoassay can be classified by several points of view: the kind of labeled antibodies or enzymes, detection methods, the number of tests per unit time, analytical time and speed per run. In practice, it is important for us consider the several points such as detection limits, the number of tests per unit time, analytical range, and precision. Most of the automated analyzers on the market can randomly access and measure samples. I will describe the recent advance of automated analyzers reviewing their labeling antibodies and enzymes, the detection methods, the number of test per unit time and analytical time and speed per test.

  20. Role Of Shark Cartilage In Reducing Changes In Gene Expression Of Some Enzymes Induced By N-Nitroso-N-Methyl Urea In Prostate Of Irradiated Rats

    International Nuclear Information System (INIS)

    ELMAGHRABY, T.; YACOUB, S.; IBRAHIM, N.K.

    2009-01-01

    There is overwhelming evidence to indicate that free radicals cause oxidative damage to lipids, proteins and nucleic acids and are involved in the pathogenesis of several diseases. Therefore, antioxidants, which can neutralize free radicals, may be of central importance in the prevention of these diseases. Recent studies demonstrated the role of shark cartilage in protecting cells against reactive oxygen species induced DNA damage and mutagenesis. Reactive oxygen species and other free radicals are known to be the mediators of phenotypic and genotypic changes that lead from mutation to neoplasia. There are some primary antioxidants such as glutathione peroxidase (GSHPx), glutathione-S-transferase (GST-π) and super oxide dismutase (SOD), which protects against cellular and molecular damage caused by the reactive oxygen metabolites (ROMs).In this study, the effect of shark cartilage against the N-nitroso-N-methyl urea + testosterone and/or gamma radiation-induced mutagens and carcinogens in rat prostate were investigated.The data showed significant decrease in gene expression of manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GSHPx1) , enzyme activities of total superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) and non-significant increase in glutathione-S-transferase (GST-π) in N-nitroso-N-methyl urea + testosterone, N-nitroso-N-methyl urea + testosterone + gamma radiation groups as compared to control group.The results revealed that shark cartilage administration afford a significant protective effect against N-nitroso-N-methyl urea + testosterone and/or gamma radiation- induced oxidative injury.

  1. Distinguishing among potential mechanisms of singleton suppression.

    Science.gov (United States)

    Gaspelin, Nicholas; Luck, Steven J

    2018-04-01

    Previous research has revealed that people can suppress salient stimuli that might otherwise capture visual attention. The present study tests between 3 possible mechanisms of visual suppression. According to first-order feature suppression models , items are suppressed on the basis of simple feature values. According to second-order feature suppression models , items are suppressed on the basis of local discontinuities within a given feature dimension. According to global-salience suppression models , items are suppressed on the basis of their dimension-independent salience levels. The current study distinguished among these models by varying the predictability of the singleton color value. If items are suppressed by virtue of salience alone, then it should not matter whether the singleton color is predictable. However, evidence from probe processing and eye movements indicated that suppression is possible only when the color values are predictable. Moreover, the ability to suppress salient items developed gradually as participants gained experience with the feature that defined the salient distractor. These results are consistent with first-order feature suppression models, and are inconsistent with the other models of suppression. In other words, people primarily suppress salient distractors on the basis of their simple features and not on the basis of salience per se. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Consequences of stereotype suppression and internal suppression motivation : A self-regulation approach

    NARCIS (Netherlands)

    Gordijn, Ernestine H; Hindriks, Inge; Koomen, W; Dijksterhuis, Ap; van Knipppenberg, A.

    The present research studied the effects of suppression of stereotypes on subsequent stereotyping. Moreover, the moderating influence of motivation to suppress stereotypes was examined. The first three experiments showed that suppression of stereotypes leads to the experience of engaging in

  3. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective....... In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid...

  4. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  5. GRE Enzymes for Vector Analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  6. Watching Individual Enzymes at Work

    Science.gov (United States)

    Blank, Kerstin; Rocha, Susana; De Cremer, Gert; Roeffaers, Maarten B. J.; Uji-i, Hiroshi; Hofkens, Johan

    Single-molecule fluorescence experiments are a powerful tool to analyze reaction mechanisms of enzymes. Because of their unique potential to detect heterogeneities in space and time, they have provided unprecedented insights into the nature and mechanisms of conformational changes related to the catalytic reaction. The most important finding from experiments with single enzymes is the generally observed phenomenon that the catalytic rate constants fluctuate over time (dynamic disorder). These fluctuations originate from conformational changes occurring on time scales, which are similar to or slower than that of the catalytic reaction. Here, we summarize experiments with enzymes that show dynamic disorder and introduce new experimental strategies showing how single-molecule fluorescence experiments can be applied to address other open questions in medical and industrial enzymology, such as enzyme inactivation processes, reactant transfer in cascade reactions, and the mechanisms of interfacial catalysis.

  7. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  8. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  9. Enzymes: principles and biotechnological applications

    Science.gov (United States)

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  10. de novo computational enzyme design.

    Science.gov (United States)

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, Arthy; Siddiqui, Yasmeen; Saud, Halimi Mohd; Ali, Nusaibah Syd; Manickam, Sivakumar

    2018-05-22

    Lignolytic (Lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. In our work, ten naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G.boninense. Additionally, the lignin degrading enzymes were characterised. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin degrading enzymes, when compared between the ten phenolic compounds. The inhibitory potential of the phenolic compounds toward the lignin degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin degrading enzymes were stable in a wide range of pH but were sensitive to higher to temperature. The study demonstrated the inhibitor potential of ten naturally occurring phenolic compounds toward the lignin degrading enzymes of G. boninense with different efficacies. The study has shed a light towards a new management strategy to control BSR in oil palm. It serves as replacement for the existing chemical control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  13. Inhibition and kinetic studies of cellulose- and hemicellulose-degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, A; Siddiqui, Y; Ali, N S; Manickam, S

    2018-06-01

    Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (V max and K m ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds. © 2018 The Society for Applied Microbiology.

  14. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  15. Strangeness Suppression and Color Deconfinement

    Science.gov (United States)

    Satz, Helmut

    2018-02-01

    The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.

  16. Chk1 suppressed cell death

    Directory of Open Access Journals (Sweden)

    Meuth Mark

    2010-09-01

    Full Text Available Abstract The role of Chk1 in the cellular response to DNA replication stress is well established. However recent work indicates a novel role for Chk1 in the suppression of apoptosis following the disruption of DNA replication or DNA damage. This review will consider these findings in the context of known pathways of Chk1 signalling and potential applications of therapies that target Chk1.

  17. In-Flight Suppressant Deployment Temperatures

    National Research Council Canada - National Science Library

    Bein, Donald

    2006-01-01

    .... An assessment is made of the model output versus some aircraft measurement data, fire suppressant boiling point criterion, as well as the history of altitude/temperature at which fire suppressants have been deployed...

  18. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  19. In the suppression of regge cut contributions

    International Nuclear Information System (INIS)

    Chia, S.P.

    1975-07-01

    It is shown that contributions of reggeon-pomeron cuts are suppressed in amplitudes with opposite natural to the reggeon. This suppression grows logarithmically with energy. The suppression in the πP cut is, however, found to be weak. Consequence on conspiracy is discussed

  20. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  1. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  2. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  3. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L

    2012-01-01

    to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS...

  4. PPARα ligands activate antioxidant enzymes and suppress hepatic fibrosis in rats

    International Nuclear Information System (INIS)

    Toyama, Tetsuya; Nakamura, Hideki; Harano, Yuichi; Yamauchi, Norihito; Morita, Atsuhiro; Kirishima, Toshihiko; Minami, Masahito; Itoh, Yoshito; Okanoue, Takeshi

    2004-01-01

    Oxidative stress is a major pathogenetic factor in hepatic fibrosis. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor which is known to affect oxidative stress and PPARα ligands may have rescue effects on hepatic fibrosis. We tested this hypothesis using rat thioacetamide (TAA) models of liver cirrhosis. Rats were given intraperitoneal injection of TAA and treated with a diet containing one of the two PPARα ligands, Wy-14,643 (WY) or fenofibrate. WY treatment dramatically reduced hepatic fibrosis and also prevented the inhibition catalase of mRNA expression caused by TAA. Correspondingly, catalase activity increased in the TAA + WY group but decreased in the control TAA group. The antifibrotic action of fenofibrate in the TAA model was comparable with that of WY. PPARα ligands have an antifibrotic action in the rat TAA model of liver cirrhosis, probably due to an antioxidant effect of enhanced catalase expression and activity in the liver

  5. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  6. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    International Nuclear Information System (INIS)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-01-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  7. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti, E-mail: arti@iitm.ac.in [Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036 (India)

    2016-08-28

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  8. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Science.gov (United States)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-08-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  9. Polypyrrole Actuators for Tremor Suppression

    DEFF Research Database (Denmark)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse

    2003-01-01

    Neurological tremor affecting limbs can be divided into at least 6 different types with frequencies ranging from 2 to about 20 Hz. In order to alleviate the symptoms by suppressing the tremor, sensing and actuation systems able to perform at these frequencies are needed. Electroactive polymers...... exemplify 'soft actuator' technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants...

  10. Suppression effects on musical and verbal memory.

    Science.gov (United States)

    Schendel, Zachary A; Palmer, Caroline

    2007-06-01

    Three experiments contrasted the effects of articulatory suppression on recognition memory for musical and verbal sequences. In Experiment 1, a standard/comparison task was employed, with digit or note sequences presented visually or auditorily while participants remained silent or produced intermittent verbal suppression (saying "the") or musical suppression (singing "la"). Both suppression types decreased performance by equivalent amounts, as compared with no suppression. Recognition accuracy was lower during suppression for visually presented digits than during that for auditorily presented digits (consistent with phonological loop predictions), whereas accuracy was equivalent for visually presented notes and auditory tones. When visual interference filled the retention interval in Experiment 2, performance with visually presented notes but not digits was impaired. Experiment 3 forced participants to translate visually presented music sequences by presenting comparison sequences auditorily. Suppression effects for visually presented music resembled those for digits only when the recognition task required sensory translation of cues.

  11. Epigenetic suppression of neprilysin regulates breast cancer invasion.

    Science.gov (United States)

    Stephen, H M; Khoury, R J; Majmudar, P R; Blaylock, T; Hawkins, K; Salama, M S; Scott, M D; Cosminsky, B; Utreja, N K; Britt, J; Conway, R E

    2016-03-07

    In women, invasive breast cancer is the second most common cancer and the second cause of cancer-related death. Therefore, identifying novel regulators of breast cancer invasion could lead to additional biomarkers and therapeutic targets. Neprilysin, a cell-surface enzyme that cleaves and inactivates a number of substrates including endothelin-1 (ET1), has been implicated in breast cancer, but whether neprilysin promotes or inhibits breast cancer cell progression and metastasis is unclear. Here, we asked whether neprilysin expression predicts and functionally regulates breast cancer cell invasion. RT-PCR and flow cytometry analysis of MDA-MB-231 and MCF-7 breast cancer cell lines revealed decreased neprilysin expression compared with normal epithelial cells. Expression was also suppressed in invasive ductal carcinoma (IDC) compared with normal tissue. In addition, in vtro invasion assays demonstrated that neprilysin overexpression decreased breast cancer cell invasion, whereas neprilysin suppression augmented invasion. Furthermore, inhibiting neprilysin in MCF-7 breast cancer cells increased ET1 levels significantly, whereas overexpressing neprilysin decreased extracellular-signal related kinase (ERK) activation, indicating that neprilysin negatively regulates ET1-induced activation of mitogen-activated protein kinase (MAPK) signaling. To determine whether neprilysin was epigenetically suppressed in breast cancer, we performed bisulfite conversion analysis of breast cancer cells and clinical tumor samples. We found that the neprilysin promoter was hypermethylated in breast cancer; chemical reversal of methylation in MDA-MB-231 cells reactivated neprilysin expression and inhibited cancer cell invasion. Analysis of cancer databases revealed that neprilysin methylation significantly associates with survival in stage I IDC and estrogen receptor-negative breast cancer subtypes. These results demonstrate that neprilysin negatively regulates the ET axis in breast cancer

  12. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  13. Mitochondrial p38β and manganese superoxide dismutase interaction mediated by estrogen in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Han Liu

    Full Text Available While etiology behind the observed acceleration of ischemic heart disease in postmenopausal women is poorly understood, collective scientific data suggest cardioprotective effects of the endogenous female sex hormone, estrogen. We have previously shown that 17β-estradiol (E2 protects cardiomyocytes exposed to hypoxia-reoxygenation (H/R by inhibiting p38α - p53 signaling in apoptosis and activating pro-survival p38β mitogen activated protein kinase (p38β MAPK, leading to suppression of reactive oxygen species (ROS post H/R. However, little is known about the mechanism behind the antioxidant actions of E2-dependent p38β. The aim of this study is to determine whether the cytoprotection by estrogen involves regulation of manganese superoxide dismutase (MnSOD, a major mitochondrial ROS scavenging enzyme, via cardiac p38β.We identified mitochondrial p38β by immunocytochemistry and by immunoblotting in mitochondria isolated from neonatal cardiomyocytes of Sprague-Dawley rats. E2 facilitated the mitochondrial localization of the active form of the kinase, phosphorylated p38β (p-p38β. E2 also reduced the H/R-induced mitochondrial membrane potential decline, augmented the MnSOD activity and suppressed anion superoxide generation, while the dismutase protein expression remained unaltered. Co-immunoprecipitation studies showed physical association between MnSOD and p38β. p38β phosphorylated MnSOD in an E2-dependent manner in in-vitro kinase assays.This work demonstrates for the first time a mitochondrial pool of active p38β and E2-mediated phosphorylation of MnSOD by the kinase. The results shed light on the mechanism behind the cytoprotective actions of E2 in cardiomyocytes under oxidative stress.

  14. Curious Cases of the Enzymes.

    Science.gov (United States)

    Ulusu, Nuriye Nuray

    2015-07-01

    Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts… Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This paper is dedicated to these early moments of this remarkable science that touched our lives in the past and will make life a lot more efficient for humanity in the future. There was almost always a delicate, fundamentally essential relationship between mankind and the enzymes. Challenged by a very alien and hostile Nature full of predators, prehistoric men soon discovered the medicinal properties of the plants, through trial and error. In fact, they accidently discovered the enzyme inhibitors and thus, in crude terms, kindled a sparkling area of research. These plant-derivatives that acted as enzyme inhibitors helped prehistoric men in their pursuit of survival and protection from predators; in hunting and fishing… Later in history, while the underlying purposes of survival and increasing the quality of life stayed intact, the ways and means of enzymology experienced a massive transformation, as the 'trial and error' methodology of the ancients is now replaced with rational scientific theories.

  15. Enzymes with activity toward Xyloglucan

    NARCIS (Netherlands)

    Vincken, J.P.

    2003-01-01

    Xyloglucans are plant cell wall polysaccharides, which belong to the hemicellulose class. Here the structural variations of xyloglucans will be reviewed. Subsequently, the anchoring of xyloglucan in the plant cell wall will be discussed. Enzymes involved in degradation or modification of xyloglucan

  16. Effect of peat extract on the hydrolytic enzymes of Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nawaz, M; Gunasekaran, M

    1988-08-01

    Peat, a partially decomposed plant material rich in minerals and lignocellulose was tested as a substrate for the growth and production of hydrolytic enzymes viz. cellulase, cellobiase and xylanase in Phanerochaete chrysosporium. Three types of peat extracts such as cold, hot water and autoclaved were prepared and tested. Among them, autoclaved extract supported the maximal growth. The intracellular enzyme activities peaked on the fifth day after inoculation irrespective of the media and enzyme tested. Addition of cellobiose and lactose in the medium induced the production of cellulase, xylanase and to a lesser extent cellobiase. Addition of glucose and sucrose to the media resulted in the suppression of all the extracellular enzymes tested. 18 refs., 5 figs.

  17. Pressure suppression pool thermal mixing

    International Nuclear Information System (INIS)

    Cook, D.H.

    1984-01-01

    A model is developed and verified to describe the thermal mixing that occurs in the pressure suppression pool (PSP) of a commercial BWR. The model is designed specifically for a Mark-I containment and is intended for use in severe accident sequence analyses. The model produces space and time dependent temperature results throughout the PSP and is useful for evaluating the bulk PSP thermal mixing, the condensation effectiveness of the PSP, and the long-term containment integrity. The model is designed to accommodate single or multiple discharging T-quenchers, a PSP circumferential circulation induced by the residual heat removal system discharge, and the thermal stratification of the pool that occurs immediately after the relief valves close. The PSP thermal mixing model is verified by comparing the model predicted temperatures to experimental temperatures that were measured in an operating BWR suppression pool. The model is then used to investigate several PSP thermal mixing problems that include the time to saturate at full relief valve flow, the temperature response to a typical stuck open relief valve scenario, and the effect of operator rotation of the relief valve discharge point

  18. The role of suppression in amblyopia.

    Science.gov (United States)

    Li, Jingrong; Thompson, Benjamin; Lam, Carly S Y; Deng, Daming; Chan, Lily Y L; Maehara, Goro; Woo, George C; Yu, Minbin; Hess, Robert F

    2011-06-13

    This study had three main goals: to assess the degree of suppression in patients with strabismic, anisometropic, and mixed amblyopia; to establish the relationship between suppression and the degree of amblyopia; and to compare the degree of suppression across the clinical subgroups within the sample. Using both standard measures of suppression (Bagolini lenses and neutral density [ND] filters, Worth 4-Dot test) and a new approach involving the measurement of dichoptic motion thresholds under conditions of variable interocular contrast, the degree of suppression in 43 amblyopic patients with strabismus, anisometropia, or a combination of both was quantified. There was good agreement between the quantitative measures of suppression made with the new dichoptic motion threshold technique and measurements made with standard clinical techniques (Bagolini lenses and ND filters, Worth 4-Dot test). The degree of suppression was found to correlate directly with the degree of amblyopia within our clinical sample, whereby stronger suppression was associated with a greater difference in interocular acuity and poorer stereoacuity. Suppression was not related to the type or angle of strabismus when this was present or the previous treatment history. These results suggest that suppression may have a primary role in the amblyopia syndrome and therefore have implications for the treatment of amblyopia.

  19. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  20. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Suppression of neutrophil accumulation in mice by cutaneous application of geranium essential oil

    Directory of Open Access Journals (Sweden)

    Oshima Haruyuki

    2005-02-01

    Full Text Available Abstract Background Previous studies suggested that essential oils suppressed the adherence response of human neutrophils in vitro and that intraperitoneal application of geranium oil suppressed the neutrophil accumulation into peritoneal cavity in vivo. Usually, essential oils are applied through skin in aromatherapy in inflammatory symptoms. The purpose of this study is to assess the effects of cutaneous application of essential oils on the accumulation of neutrophils in inflammatory sites in skin of mice. Methods Inflammation with accumulation of inflammatory cells was induced by injection of curdlan, a (1→3-β-D-glucan in skin or peritoneal cavity of mice. Essential oils were applied cutaneously to the mice immediately and 3 hr after intradermal injection of curdlan. The skin with inflammatory lesion was cut off 6 hr after injection of curdlan, and the homogenates were used for myeloperoxidase (MPO: a marker enzyme of neutrophil granule assay. Results The MPO activity of the skin lesion induced by curdlan was suppressed dose-dependently by cutaneous application of geranium oil. Other oils such as lavender, eucalyptus and tea tree oils also suppressed the activity, but their activities seemed weaker than geranium. Juniper oil didn't suppress the activity Conclusion Cutaneous application of essential oils, especially geranium oil, can suppress the inflammatory symptoms with neutrophil accumulation and edema.

  2. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  3. Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth

    International Nuclear Information System (INIS)

    Takahashi, Hidekazu; Suzuki, Takehiro; Shirai, Atsuko; Matsuyama, Akihisa; Dohmae, Naoshi; Yoshida, Minoru

    2011-01-01

    Research highlights: → Fission yeast manganese superoxide dismutase (MnSOD) is acetylated. → The mitochondrial targeting sequence (MTS) is required for the acetylation of MnSOD. → The MTS is not crucial for MnSOD activity, but is important for respiratory growth. → Posttranslational regulation of MnSOD differs between budding and fission yeast. -- Abstract: Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.

  4. Gaseous environment of plants and activity of enzymes of carbohydrate catabolism

    International Nuclear Information System (INIS)

    Ivanov, B.F.; Zemlyanukhin, A.A.; Igamberdiev, A.U.; Salam, A.M.M.

    1989-01-01

    The authors investigated the action of hypoxia and high CO 2 concentration in the atmosphere on activity of phosphofructokinase, aldolase, glucose phosphate isomerase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, alcohol dehydrogenase, and isocitrate lyase in pea seedlings (Pisum sativum L.), corn scutella (Zea mays L.), and hemp cotyledons (Cannabis sativa L.). The first 4-12h of hypoxia witnessed suppression of enzymes of the initial stages of glycolysis (glucose-6-phosphate isomerase, phosphofructokinase)and activation of enzymes of its final stages (alcohol dehydrogenase and lactate dehydrogenase) and enzymes linking glycolysis and the pentose phosphate pathway (aldolase and glucose-6-phosphate dehydrogenase). An excess of CO 2 in the environment accelerated and amplified this effect. At the end of a 24-h period of anaerobic incubation, deviations of enzyme activity from the control were leveled in both gaseous environments. An exception was observed in the case of phosphofructokinase, whose activity increased markedly at this time in plants exposed to CO 2 . Changes in activity of the enzymes were coupled with changes in their kinetic parameters (apparent K m and V max values). The activity of isocitrate lyase was suppressed in both variants of hypoxic gaseous environments, a finding that does not agree with the hypothesis as to participation of the glyoxylate cycle in the metabolic response of plants to oxygen stress. Thus, temporary inhibition of the system of glycolysis and activation of the pentose phosphate pathway constituted the initial response of the plants to O 2 stress, and CO 2 intensified this metabolic response

  5. Safety system for pressure suppression

    International Nuclear Information System (INIS)

    Wood, L.E.; Ludwig, G.J.; Tulsa, O.

    1975-01-01

    The rupture disk with rated breaking points is constrained by two supporting elements and has a convex-concave shape. For pressure suppression, it is reversable inversely to its bulging. Its surface has notches which are the rated breaking points and respond to higher pressures. The centre of the rupture disk contains an area of relatively smaller thickness that will burst at lower pressure and thus makes it applicable for lower pressures. For the response of the rupture disk centre, a thrust ring with a central opening may also be used. Its edge is formed into a convex-concave section supported on the edge of the rupture disk on the exit side. The free centre of the rupture disk is then the area of relative weakness. (RW/AK) [de

  6. MEK5 suppresses osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Shoichi [Department of Orthopaedic Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003 (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Higuchi, Chikahisa, E-mail: c-higuchi@umin.ac.jp [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  7. Study of DNA reconstruction enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, M [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1976-12-01

    Description was made of the characteristics and mechanism of 3 reconstructive enzymes which received from M. luteus or E. coli or T4, and of which natures were clarified as reconstructive enzymes of DNA irradiated with ultraviolet rays. As characteristics, the site of breaking, reaction, molecular weight, electric charge in the neutrality and a specific adhesion to DNA irradiated with ultraviolet rays were mentioned. As to mutant of ultraviolet ray sensitivity, hereditary control mechanism of removal and reconstruction by endo-nuclease activation was described, and suggestion was referred to removal and reconstruction of cells of xedoderma pigmentosum which is a hereditary disease of human. Description was also made as to the mechanism of exonuclease activation which separates dimer selectively from irradiated DNA.

  8. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  9. Charmonium formation and suppression in nuclear matter

    International Nuclear Information System (INIS)

    Xu Jiajun; Wang Jia; Zhuang Chao; Zhuang Pengfei

    2005-01-01

    The coupling Schroedinger equations describing the evolution of cc-bar states in nuclear matter are analytically and systematically solved via perturbation method, and the correlation between charmonium formation and nuclear absorption is investigated. After calculating J/Ψ and Ψ' suppression in nucleon-nucleus collisions and comparing with experiment data, it is found that the formation time effect plays an important rule in charmonium suppression, especially in Ψ' suppression. (authors)

  10. Poppers: more evidence of suppressed immunity.

    Science.gov (United States)

    James, J S

    1999-08-20

    Evidence from studies in mice shows that exposure to isobutyl nitrite suppresses the immune system. This immune suppression allows for bacterial growth in the lungs and livers of infected mice and can inhibit the ability of mediastinal lymph nodes to respond to antigen-specific stimulation. The mechanism for immune suppression may be a reduction in CD4+ and CD8+ T cell populations in the mediastinal lymph nodes following pulmonary infection with Listeria monocytogenes.

  11. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...... to technological progress are the socio-political attitudes that have the highest predictive value regarding attitudes to enzyme production methods....

  12. Research progress of nanoparticles as enzyme mimetics

    Science.gov (United States)

    Hu, XiaoNa; Liu, JianBo; Hou, Shuai; Wen, Tao; Liu, WenQi; Zhang, Ke; He, WeiWei; Ji, YingLu; Ren, HongXuan; Wang, Qi; Wu, XiaoChun

    2011-10-01

    Natural enzymes as biological catalysts possess remarkable advantages, especially their highly efficient and selective catalysis under mild conditions. However, most natural enzymes are proteins, thus exhibiting an inherent low durability to harsh reaction conditions. Artificial enzyme mimetics have been pursued extensively to avoid this drawback. Quite recently, some inorganic nanoparticles (NPs) have been found to exhibit unique enzyme mimetics. In addition, their much higher stability overcomes the inherent disadvantage of natural enzymes. Furthermore, easy mass-production and low cost endow them more benefits. As a new member of artificial enzyme mimetics, they have received intense attention. In this review article, major progress in this field is summarized and future perspectives are highlighted.

  13. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco.

    Science.gov (United States)

    Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N; Marshall, David; Hancock, Robert D; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire

    2011-12-01

    The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference-inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem.

  15. Syringyl Lignin Is Unaltered by Severe Sinapyl Alcohol Dehydrogenase Suppression in Tobacco[W

    Science.gov (United States)

    Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N.; Marshall, David; Hancock, Robert D.; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire

    2011-01-01

    The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference–inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem. PMID:22158465

  16. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  17. Immobilised enzymes in biorenewable production

    OpenAIRE

    Franssen, M.C.R.; Steunenberg, P.; Scott, E.L.; Zuilhof, H.; Sanders, J.P.M.

    2013-01-01

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, ...

  18. Immobilization of enzymes by radiation

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Yoshida, M.; Asano, M.; Himei, M.; Tamura, M.; Hayashi, K.

    1979-01-01

    Immobilization of various enzymes was performed by radiation-induced polymerization of glass-forming monomers at low temperatures. Alpha-amylase and glucoamylase were effectively immobilized in hydrophilic polymer carrier such as poly(2-hydroxyethyl methacrylate) and also in rather hydrophobic carrier such as poly(tetraethylene-glycol diacrylate). Immobilized human hemoglobin underwent the reversible oxygenation concomitantly with change of oxygen concentration outside of the matrices. (author)

  19. Deconstructing Interocular Suppression: Attention and Divisive Normalization.

    Directory of Open Access Journals (Sweden)

    Hsin-Hung Li

    2015-10-01

    Full Text Available In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression, the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature and divisive normalization contribute to interocular suppression.

  20. Deconstructing Interocular Suppression: Attention and Divisive Normalization.

    Science.gov (United States)

    Li, Hsin-Hung; Carrasco, Marisa; Heeger, David J

    2015-10-01

    In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression), the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature) and divisive normalization contribute to interocular suppression.

  1. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  2. Immobilised enzymes in biorenewables production.

    Science.gov (United States)

    Franssen, Maurice C R; Steunenberg, Peter; Scott, Elinor L; Zuilhof, Han; Sanders, Johan P M

    2013-08-07

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, such as the production of High-Fructose Corn Syrup, but these are still rather rare. Fortunately, there is a rapid expansion in the research efforts that try to improve this, driven by a combination of economic and ecological reasons. This review focusses on those efforts, by looking at attempts to use fatty acids, carbohydrates, proteins and lignin (and their building blocks), as substrates in the synthesis of biorenewables using immobilised enzymes. Therefore, many examples (390 references) from the recent literature are discussed, in which we look both at the specific reactions as well as to the methods of immobilisation of the enzymes, as the latter are shown to be a crucial factor with respect to stability and reuse. The applications of the renewables produced in this way range from building blocks for the pharmaceutical and polymer industry, transport fuels, to additives for the food industry. A critical evaluation of the relevant factors that need to be improved for large-scale use of these examples is presented in the outlook of this review.

  3. Self-powered enzyme micropumps

    Science.gov (United States)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  4. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  5. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    Science.gov (United States)

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  6. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Dohi, Makoto, E-mail: mdohi-tky@umin.ac.jp [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Institute of Respiratory Immunology, Shibuya Clinic for Respiratory Diseases and Allergology, Tokyo (Japan)

    2014-01-03

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.

  7. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  8. Biochemical characterization of thermostable cellulase enzyme from ...

    African Journals Online (AJOL)

    user

    2012-05-29

    May 29, 2012 ... tested for their ability to produce cellulase complex enzyme by growing on a defined substrates as well ... In the current industrial processes, cellulolytic enzymes ... energy sources such as glucose, ethanol, hydrogen and.

  9. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  10. Castor Oil Transesterification Catalysed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    In the present work, biodiesel production by reaction of non-edible castor oil with methanol under enzymatic catalysis is investigated. Two liquid enzymes were tested: Eversa Transform and Resinase HT. Reactions were performed at 35 °C and with a molar ratio of methanol to oil of 6:1. The reaction...... time was 8 hours. Stepwise addition of methanol was necessary to avoid enzyme inhibition by methanol. In order to minimize the enzyme costs, the influence of enzyme activity loss during reuse of both enzymes was evaluated under two distinct conditions. In the former, the enzymes were recovered...... and fully reused; in the latter, a mixture of 50 % reused and 50 % fresh enzymes was tested. In the case of total reuse after three cycles, both enzymes achieved only low conversions. The biodiesel content in the oil-phase using Eversa Transform was 94.21 % for the first cycle, 68.39 % in the second, and 33...

  11. Production of amylolytic enzymes by bacillus spp

    Energy Technology Data Exchange (ETDEWEB)

    Dawood, Elham Shareif [Department of Botany, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    1997-12-01

    ranged from 60-70 deg C and 1% strach concentration was optimum for all isolates. Addition of different metal ions and different concentration of sodium chloride separately to to the reaction mixture suppressed the enzyme activity. Hydrolysis pattern of the substrate soluble strach by these amylases indicated that higher ratio of oligosaccharides and maltose are the main products and this indicated that these enzymes can be identified as {alpha} amylases. The {alpha} amylases were partially purified up to 15-19 fold of their initial activities. The Km values of all isolates were in the range of 1.25-2.0 mg/ml. (Author) 185 refs. , 5 tabs. , 57 figs.

  12. Production of amylolytic enzymes by bacillus spp

    International Nuclear Information System (INIS)

    Dawood, Elham Shareif

    1997-12-01

    . Addition of different metal ions and different concentration of sodium chloride separately to to the reaction mixture suppressed the enzyme activity. Hydrolysis pattern of the substrate soluble strach by these amylases indicated that higher ratio of oligosaccharides and maltose are the main products and this indicated that these enzymes can be identified as α amylases. The α amylases were partially purified up to 15-19 fold of their initial activities. The Km values of all isolates were in the range of 1.25-2.0 mg/ml. (Author)

  13. Gene expression of manganese superoxide dismutase in human glioma cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2010-02-01

    Full Text Available Aim This study analyze the MnSOD gene expression as endogenous antioxidant in human glioma cells compared with leucocyte cells as control.Methods MnSOD gene expression of 20 glioma patients was analyzed by measuring the relative expression of mRNA and enzyme activity of MnSOD in brain and leucocyte cells. The relative expression of mRNA MnSOD was determined by using quantitative Real Time RT-PCR and the enzyme activity of MnSOD using biochemical kit assay (xantine oxidase inhibition. Statistic analysis for mRNA and enzyme activity of MnSOD was performed using Kruskal Wallis test.Results mRNA of MnSOD in glioma cells of 70% sample was 0.015–0.627 lower, 10% was 1.002-1.059 and 20% was 1.409-6.915 higher than in leucocyte cells. Also the specific activity of MnSOD enzyme in glioma cells of 80% sample showed 0,064-0,506 lower and 20% sample was 1.249-2.718 higher than in leucocyte cells.Conclusion MnSOD gene expression in human glioma cells are significantly lower than its expression in leucocytes cells. (Med J Indones 2010; 19:21-5Keywords : MnSOD, glioma, gene expression

  14. Zymography methods for visualizing hydrolytic enzymes

    OpenAIRE

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E.; Opdenakker, Ghislain

    2013-01-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful., but often misinterpreted, tool. yielding information on potential. hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tis...

  15. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  16. Hormone and enzyme determination as influenced by corticoids and tocolytics in the final stage of pregnancy

    International Nuclear Information System (INIS)

    Kaminsky, G.; Kayser, I.B.

    1981-01-01

    In order to prevent membrane syndrome, the synthetic corticoids betamethasone, dexamethasone and 16-methylene prednisolone combined with tokolytic substances. The hormones ACTH, cortisol, oestriol, and the enzyme renine have been investigated by RIA in order to find out whether the various corticoids cause different changes in the endocrinous parameters of mother and foetus. A suppression of the four measured parameters was found in the presence of corticoids. (orig./MG) [de

  17. Suppression of autoimmune retinal inflammation by an antiangiogenic drug.

    Directory of Open Access Journals (Sweden)

    Takeru Yoshimura

    Full Text Available Chronic and recurrent uveitis account for approximately 10% of legal blindness in the western world. Autoimmune uveitis is driven by activated CD4(+ T cells that differentiate into effector T helper cells (Th1, Th2, and Th17 which release proinflammatory cytokines that damage the retina. In this study we investigated the effect of the methionine aminopeptidase 2 (MetAP2 inhibitor, Lodamin, on T cell activation and differentiation. MetAp2 is an enzyme which regulates cellular protein synthesis and is highly expressed in T cells. Lodamin was found to suppress T cell receptor (TCR mediated T cell proliferation and reduced the production of Th1 and Th17 cells. Further, Lodamin suppressed overall inflammation in the mouse model of experimental autoimmune uveitis (EAU by a six fold. This effect was attributed in part to a reduction in retinal proinflammatory cytokines, down regulation of MetAP2 expression in purified lymph node CD4(+ T cells, and a general normalization of the systemic immune reaction.

  18. Suppression of Autoimmune Retinal Inflammation by an Antiangiogenic Drug

    Science.gov (United States)

    Bazinet, Lauren; D’Amato, Robert J.

    2013-01-01

    Chronic and recurrent uveitis account for approximately 10% of legal blindness in the western world. Autoimmune uveitis is driven by activated CD4+ T cells that differentiate into effector T helper cells (Th1, Th2, and Th17) which release proinflammatory cytokines that damage the retina. In this study we investigated the effect of the methionine aminopeptidase 2 (MetAP2) inhibitor, Lodamin, on T cell activation and differentiation. MetAp2 is an enzyme which regulates cellular protein synthesis and is highly expressed in T cells. Lodamin was found to suppress T cell receptor (TCR) mediated T cell proliferation and reduced the production of Th1 and Th17 cells. Further, Lodamin suppressed overall inflammation in the mouse model of experimental autoimmune uveitis (EAU) by a six fold. This effect was attributed in part to a reduction in retinal proinflammatory cytokines, down regulation of MetAP2 expression in purified lymph node CD4+ T cells, and a general normalization of the systemic immune reaction. PMID:23785488

  19. Cellulolytic enzyme compositions and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James; Binder, Thomas P.

    2017-07-25

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  20. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  1. Purification and characterization of extracellular amylolytic enzyme ...

    African Journals Online (AJOL)

    In the present study, the amylase enzyme producing potential of four different Aspergillus species was analyzed. The extracted amylase enzyme was purified by diethyl amino ethyl (DEAE) cellulose and Sephadex G-50 column chromatography and the enzyme activity was measured by using synthetic substrate starch.

  2. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  3. PROCESS FOR DUST-FREE ENZYME MANUFACTURE

    NARCIS (Netherlands)

    Andela, C.; Feijen, Jan; Dillissen, Marc

    1994-01-01

    New enzyme granules are provided with improved properties. The granules are based on core particles having a good pore size and pore size distribution to allow an enzyme solution to enter into the particle. Accordingly, the core material comprises the enzyme in liquid form, thus eliminating the

  4. Boiling Suppression in Convective Flow

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2004-01-01

    The development of convective boiling heat transfer correlations and analytical models has almost exclusively been based on measurements of the total heat flux, and therefore on the overall two-phase heat transfer coefficient, when the well-known heat transfer correlations have often assumed additive mechanisms, one for each mode of heat transfer, convection and boiling. While the global performance of such correlations can readily be assessed, the predictive capability of the individual components of the correlation has usually remained elusive. This becomes important when, for example, developing mechanistic models for subcooled void formation based on the partitioning of the wall heat flux into a boiling and a convective component, or when extending a correlation beyond its original range of applications where the preponderance of the heat transfer mechanisms involved can be significantly different. A new examination of existing experimental heat transfer data obtained under fixed hydrodynamic conditions, whereby the local flow conditions are decoupled from the local heat flux, has allowed the unequivocal isolation of the boiling contribution over a broad range of thermodynamic qualities (0 to 0.8) for water at 7 MPa. Boiling suppression, as the quality increases, has consequently been quantified, thus providing valuable new insights on the functionality and contribution of boiling in convective flows. (author)

  5. Garlic Sulfur Compounds Suppress Cancerogenesis and Oxidative Stress: a Review

    Directory of Open Access Journals (Sweden)

    Dvořáková M.

    2015-06-01

    Full Text Available Garlic has long been considered a food with many health benefits. Several studies have confirmed that sulfur compounds are responsible for the positive effects of garlic on organisms. Garlic acts as an antioxidant by increasing antioxidant enzyme activity, reducing reactive oxygen species generation, and protecting proteins and lipids from oxidation. Garlic suppresses carcinogenesis through several mechanisms: (1 it reduces oxidative stress, and therefore, prevents damage to DNA; (2 it induces apoptosis or cell cycle arrest in cancer cells; and (3 it modifies gene expression through histon acetylation. The positive effects of garlic could be mediated by several mechanisms. It influences signalling pathways of gasotransmitters such as hydrogen sulfide. Garlic enhances hydrogen sulfide production both through its direct release and through an increase in activity of enzymes which produce hydrogen sulfide. Hydrogen sulfide acts as a signalling molecule in various tissues and participates in the regulation of many physiological processes. We can presume that garlic, which is able to release hydrogen sulfide, exhibits effects similar to those of this gasotransmitter.

  6. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy.

    Science.gov (United States)

    Sada, Nagisa; Lee, Suni; Katsu, Takashi; Otsuki, Takemi; Inoue, Tsuyoshi

    2015-03-20

    Neuronal excitation is regulated by energy metabolism, and drug-resistant epilepsy can be suppressed by special diets. Here, we report that seizures and epileptiform activity are reduced by inhibition of the metabolic pathway via lactate dehydrogenase (LDH), a component of the astrocyte-neuron lactate shuttle. Inhibition of the enzyme LDH hyperpolarized neurons, which was reversed by the downstream metabolite pyruvate. LDH inhibition also suppressed seizures in vivo in a mouse model of epilepsy. We further found that stiripentol, a clinically used antiepileptic drug, is an LDH inhibitor. By modifying its chemical structure, we identified a previously unknown LDH inhibitor, which potently suppressed seizures in vivo. We conclude that LDH inhibitors are a promising new group of antiepileptic drugs. Copyright © 2015, American Association for the Advancement of Science.

  7. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  8. Oxidation-reduction enzymes of myocardium under ionizing radiation effect

    International Nuclear Information System (INIS)

    Uteshev, A.B.

    1988-01-01

    Tissue respiration proceses under radiation effect were investigated which allowed one to reveal slight biochemical disturbances in a cell which make up the base of functional changes of different organs and tissues and to get to know the essence of tissue respiration processes. An attempt to explain significant value of oxidation enzyme system radiosensitivity in the course of cell respiration process altogether is made when studying the state of separate links of oxidation-reduction chain. It is shown that at early periods of radiation injury activity of catalase, dehydrogenases (isocitric, α-ketoglutaric, malic, succinic acids) is suppressed, concentration of a number of cytochromes is reduced and general ferrum content is increased which is connected with conformation changes of ultrastructure of mitochondrial membranes

  9. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    Science.gov (United States)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  10. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  11. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  12. Psychopathology and Thought Suppression: A Quantitative Review

    Science.gov (United States)

    Magee, Joshua C.; Harden, K. Paige; Teachman, Bethany A.

    2012-01-01

    Recent theories of psychopathology have suggested that thought suppression intensifies the persistence of intrusive thoughts, and proposed that difficulty with thought suppression may differ between groups with and without psychopathology. The current meta-analytic review evaluates empirical evidence for difficulty with thought suppression as a function of the presence and specific type of psychopathology. Based on theoretical proposals from the psychopathology literature, diagnosed and analogue samples were expected to show greater recurrence of intrusive thoughts during thought suppression attempts than non-clinical samples. However, results showed no overall differences in the recurrence of thoughts due to thought suppression between groups with and without psychopathology. There was, nevertheless, variation in the recurrence of thoughts across different forms of psychopathology, including relatively less recurrence during thought suppression for samples with symptoms of Obsessive-Compulsive Disorder, compared to non-clinical samples. However, these differences were typically small and provided only mixed support for existing theories. Implications for cognitive theories of intrusive thoughts are discussed, including proposed mechanisms underlying thought suppression. PMID:22388007

  13. Volatile suppressing method for radioactive iodine

    International Nuclear Information System (INIS)

    Ohara, Atsushi; Haruguchi, Keiko.

    1997-01-01

    In the present invention, a metal plate is disposed above the pool water surface of a suppression chamber disposed to a reactor container in order to reduce evaporation of radioactive iodine released from a suppression pool. A metal plate is disposed above the pool water surface of the suppression chamber disposed to the reactor container. In addition, a metal plate is disposed around the space connecting a bent tube extending from a dry well to underwater of suppression pool water and a gas bent tube extending from the suppression chamber to an emergency gas processing system. Spray water is supplied for cooling the suppression chamber d as a means for cooling the metal plate. Then, among iodine released to the suppression chamber, elemental iodine liberated from the pool water is deposited on the surface of the metal plate, and the amount of iodine to be flown into and processed by an emergency gas processing system or a filter bent system can be reduced. (T.M.)

  14. Regional Extent of Peripheral Suppression in Amblyopia.

    Science.gov (United States)

    Babu, Raiju J; Clavagnier, Simon; Bobier, William R; Thompson, Benjamin; Hess, Robert F

    2017-04-01

    Previously, we have mapped amblyopic eye suppression within the central 20° of the visual field and observed a gradient of suppression that is strongest in central vision and weakens with increasing eccentricity. In this study, using a large dichoptic display, we extend our novel suppression mapping approach further into the periphery (from 20°-60°) to assess whether suppression continues to decline with eccentricity or plateaus. Sixteen participants with amblyopia (10 with strabismus, 6 with anisometropia without strabismus; mean age: 37.9 ± 11 years) and six normal observers (mean age: 28.3 ± 5 years) took part. The visual stimulus (60° diameter), viewed from 57 cm, was composed of four concentric annuli (5° radius) with alternate contrast polarities starting from an eccentricity of 10°. Each annulus was divided into eight sectors subtending 45° of visual angle. Participants adjusted the contrast of a single sector presented to the fellow eye to match the perceived contrast of the remaining stimulus elements that were presented to the amblyopic eye. A matching contrast that was lower in the fellow eye than the amblyopic eye indicated suppression. Patients with strabismus exhibited significantly stronger interocular suppression than controls across all eccentricities (P = 0.01). Patients with anisometropia did not differ from controls (P = 0.58). Suppression varied significantly with eccentricity (P = 0.005) but this effect did not differ between patient groups (P = 0.217). In amblyopia, suppression is present beyond the central 10° in patients with strabismus. Suppression becomes weaker at greater eccentricities and this may enable peripheral fusion that could be used by binocular treatment methods.

  15. Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells.

    Science.gov (United States)

    Chen, Jing; Hu, Xun; Cui, Jingjie

    2018-05-01

    Glycolysis is the most important source of energy for the production of anabolic building blocks in cancer cells. Therefore, glycolytic enzymes are regarded as potential targets for cancer treatment. Previously, naphthaquinones, including shikonin, vitamin K 3 and vitamin K 5 , have been proven to decrease the rate of glycolysis in cancer cells, which is partly due to suppressed pyruvate kinase activity. In the present study, enzymatic assays were performed using MCF-7 cell lysate in order to screen the profile of glycolytic enzymes in cancer cells inhibited by shikonin, vitamin K 3 and vitamin K 5 , in addition to pyruvate kinase. Results revealed that hexokinase, phosphofructokinase-1, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase produced in the process of glycolysis were inhibited by shikonin, vitamin K 3 and vitamin K 5 . The results indicated that shikonin, vitamin K 3 and vitamin K 5 are chemical inhibitors of glycolytic enzymes in cancer cells and have potential uses in translational medical applications.

  16. Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance

    Directory of Open Access Journals (Sweden)

    Kristina Blazanovic

    Full Text Available Staphylococcus aureus infections exert a tremendous burden on the health-care system, and the threat of drug-resistant strains continues to grow. The bacteriolytic enzyme lysostaphin is a potent antistaphylococcal agent with proven efficacy against both drug-sensitive and drug-resistant strains; however, the enzyme's own bacterial origins cause undesirable immunogenicity and pose a barrier to clinical translation. Here, we deimmunized lysostaphin using a computationally guided process that optimizes sets of mutations to delete immunogenic T cell epitopes without disrupting protein function. In vitro analyses showed the methods to be both efficient and effective, producing seven different deimmunized designs exhibiting high function and reduced immunogenic potential. Two deimmunized candidates elicited greatly suppressed proliferative responses in splenocytes from humanized mice, while at the same time the variants maintained wild-type efficacy in a staphylococcal pneumonia model. Overall, the deimmunized enzymes represent promising leads in the battle against S. aureus.

  17. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    Science.gov (United States)

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages.

    Science.gov (United States)

    Kim, Mi Jin; Kim, Dae Won; Park, Jung Hwan; Kim, Sang Jin; Lee, Chi Hern; Yong, Ji In; Ryu, Eun Ji; Cho, Su Bin; Yeo, Hyeon Ji; Hyeon, Jiye; Cho, Sung-Woo; Kim, Duk-Soo; Son, Ora; Park, Jinseu; Han, Kyu Hyung; Cho, Yoon Shin; Eum, Won Sik; Choi, Soo Young

    2013-10-01

    Sirtuin 2 (SIRT2), a member of the sirtuin family of proteins, plays an important role in cell survival. However, the biological function of SIRT2 protein is unclear with respect to inflammation and oxidative stress. In this study, we examined the protective effects of SIRT2 on inflammation and oxidative stress-induced cell damage using a cell permeative PEP-1-SIRT2 protein. Purified PEP-1-SIRT2 was transduced into RAW 264.7 cells in a time- and dose-dependent manner and protected against lipopolysaccharide- and hydrogen peroxide (H₂O₂)-induced cell death and cytotoxicity. Also, transduced PEP-1-SIRT2 significantly inhibited the expression of cytokines as well as the activation of NF-κB and mitogen-activated protein kinases (MAPKs). In addition, PEP-1-SIRT2 decreased cellular levels of reactive oxygen species (ROS) and of cleaved caspase-3, whereas it elevated the expression of antioxidant enzymes such as MnSOD, catalase, and glutathione peroxidase. Furthermore, topical application of PEP-1-SIRT2 to 12-O-tetradecanoylphorbol 13-acetate-treated mouse ears markedly inhibited expression levels of COX-2 and proinflammatory cytokines as well as the activation of NF-κB and MAPKs. These results demonstrate that PEP-1-SIRT2 inhibits inflammation and oxidative stress by reducing the levels of expression of cytokines and ROS, suggesting that PEP-1-SIRT2 may be a potential therapeutic agent for various disorders related to ROS, including skin inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  20. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  1. Chondromalacia patellae: fat-suppressed MR imaging.

    Science.gov (United States)

    Rose, P M; Demlow, T A; Szumowski, J; Quinn, S F

    1994-11-01

    To evaluate the accuracy of fat-suppressed magnetic resonance (MR) imaging in diagnosing chondromalacia patellae. Seventy-one patients underwent fat-suppressed MR imaging and arthroscopy of the patellofemoral compartment. Findings were classified as early or advanced chondromalacia or as normal and were correlated with arthroscopic findings. Early and advanced stages of chondromalacia patellae were reliably detected, with positive predictive values of 85% and 92%, respectively. Specificity in early stages was 94% and in late stages was 98%. However, the overall accuracies did not differ substantially from those reported in studies that did not use fat-suppressed imaging. Axial, fat-suppressed MR imaging accurately depicts changes caused by chondromalacia patellae. Early stages can be seen as intrasubstance changes of increased signal intensity. Results of this study suggest a high degree of specificity in excluding both early and advanced changes.

  2. METHOD OF SUPPRESSING GASTROINTESTINAL UREASE ACTIVITY

    Science.gov (United States)

    Visek, W.J.

    1963-04-23

    This patent shows a method of increasing the growth rate of chicks. Certain diacyl substituted ureas such as alloxan, murexide, and barbituric acid are added to their feed, thereby suppressing gastrointestinal urease activity and thus promoting growth. (AEC)

  3. Suppression factors in diffractive photoproduction of dijets

    International Nuclear Information System (INIS)

    Klasen, Michael; Kramer, Gustav

    2010-06-01

    After new publications of H1 data for the diffractive photoproduction of dijets, which overlap with the earlier published H1 data and the recently published data of the ZEUS collaboration, have appeared, we have recalculated the cross sections for this process in next-to-leading order (NLO) of perturbative QCD to see whether they can be interpreted consistently. The results of these calculations are compared to the data of both collaborations. We find that the NLO cross sections disagree with the data, showing that factorization breaking occurs at that order. If direct and resolved contributions are both suppressed by the same amount, the global suppression factor depends on the transverse-energy cut. However, by suppressing only the resolved contribution, also reasonably good agreement with all the data is found with a suppression factor independent of the transverse-energy cut. (orig.)

  4. Attention modulates sensory suppression during back movements.

    Science.gov (United States)

    Van Hulle, Lore; Juravle, Georgiana; Spence, Charles; Crombez, Geert; Van Damme, Stefaan

    2013-06-01

    Tactile perception is often impaired during movement. The present study investigated whether such sensory suppression also occurs during back movements, and whether this would be modulated by attention. In two tactile detection experiments, participants simultaneously engaged in a movement task, in which they executed a back-bending movement, and a perceptual task, consisting of the detection of subtle tactile stimuli administered to their upper or lower back. The focus of participants' attention was manipulated by raising the probability that one of the back locations would be stimulated. The results revealed that tactile detection was suppressed during the execution of the back movements. Furthermore, the results of Experiment 2 revealed that when the stimulus was always presented to the attended location, tactile suppression was substantially reduced, suggesting that sensory suppression can be modulated by top-down attentional processes. The potential of this paradigm for studying tactile information processing in clinical populations is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Suppression of instability in rotatory hydromagnetic convection

    Indian Academy of Sciences (India)

    first time by Lord Rayleigh [9] for the idealized case of two free boundaries. Rayleigh's theory shows that the gravity-dominated thermal instability in liquid layer ... suppressed for oscillatory perturbations by the simultaneous application of a ...

  6. Combustion suppressing device for leaked sodium

    International Nuclear Information System (INIS)

    Ooto, Akihiro.

    1985-01-01

    Purpose: To suppress the atmospheric temperature to secure the building safety and shorten the recovery time after the leakage in a chamber for containing sodium leaked from coolant circuit equipments or pipeways of LMFBR type rector by suppressing the combustion of sodium contained in the chamber. Constitution: To the inner wall of a chamber for containing sodium handling equipments, are vertically disposed a panel having a coolant supply port at the upper portion and a coolant discharge port at the lower portion thereof and defined with a coolant flowing channel and a panel for sucking the coolant discharged from the abovementioned panel and exhausting the same externally. Further, a corrugated combustion suppressing plate having apertures for draining the condensated leaked sodium is disposed near the sodium handling equipments. If ruptures are resulted to the sodium handling equipments or pipeway, leaked sodium is passed through the drain apertures in the suppressing plate and stored at the bottom of the containing chamber. (Horiuchi, T.)

  7. Suppressing Tsetse Flies to Improve Lives

    International Nuclear Information System (INIS)

    Potterton, Louise; Pavlicek, Petr; Parker, Andrew

    2013-01-01

    In 2009, the government-run Southern Tsetse Eradication Project (STEP) in Ethiopia, with the support of the IAEA, started to carry out intensive activities to suppress the fly population using insecticides. The fly population is now down by 90%. The benefits of tsetse suppression can be seen all over the region. Diary produce is now widely available at markets and healthy animals can be seen everywhere in farming and transport

  8. Gamma camera scatter suppression unit WAM

    International Nuclear Information System (INIS)

    Kishi, Haruo; Shibahara, Noriyuki; Hirose, Yoshiharu; Shimonishi, Yoshihiro; Oumura, Masahiro; Ikeda, Hozumi; Hamada, Kunio; Ochi, Hironobu; Itagane, Hiroshi.

    1990-01-01

    In gamma camera imaging, scattered radiation is one of big factors to decrease image contrast. Simply, scatter suppression makes signal to noise ratio larger, but it makes statistics error because of radionuclide injection limit to the human body. EWA is a new method that suppresses scattered radiation and improves image contrast. In this article, WAM which is commercialized EWA method by Siemens Gammasonics Inc. is presented. (author)

  9. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  10. Toward mechanistic classification of enzyme functions.

    Science.gov (United States)

    Almonacid, Daniel E; Babbitt, Patricia C

    2011-06-01

    Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  13. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  14. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  15. Suppression sours sacrifice: emotional and relational costs of suppressing emotions in romantic relationships.

    Science.gov (United States)

    Impett, Emily A; Kogan, Aleksandr; English, Tammy; John, Oliver; Oveis, Christopher; Gordon, Amie M; Keltner, Dacher

    2012-06-01

    What happens when people suppress their emotions when they sacrifice for a romantic partner? This multimethod study investigates how suppressing emotions during sacrifice shapes affective and relationship outcomes. In Part 1, dating couples came into the laboratory to discuss important romantic relationship sacrifices. Suppressing emotions was associated with emotional costs for the partner discussing his or her sacrifice. In Part 2, couples participated in a 14-day daily experience study. Within-person increases in emotional suppression during daily sacrifice were associated with decreases in emotional well-being and relationship quality as reported by both members of romantic dyads. In Part 3, suppression predicted decreases in relationship satisfaction and increases in thoughts about breaking up with a romantic partner 3 months later. In the first two parts of the study, authenticity mediated the costly effects of suppression. Implications for research on close relationships and emotion regulation are discussed.

  16. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  17. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  18. Zymography methods for visualizing hydrolytic enzymes.

    Science.gov (United States)

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E; Opdenakker, Ghislain

    2013-03-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.

  19. Detoxification enzymes activities in deltamethrin and bendiocarb ...

    African Journals Online (AJOL)

    Detoxification enzymes activities in deltamethrin and bendiocarb resistant and susceptible malarial vectors ( Anopheles gambiae ) breeding in Bichi agricultural and residential sites, Kano state, Nigeria.

  20. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected

  1. Thermometric enzyme linked immunosorbent assay: TELISA.

    Science.gov (United States)

    Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K

    1977-08-11

    A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.

  2. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  3. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  4. A compact clinical instrument for quantifying suppression.

    Science.gov (United States)

    Black, Joanne M; Thompson, Benjamin; Maehara, Goro; Hess, Robert F

    2011-02-01

    We describe a compact and convenient clinical apparatus for the measurement of suppression based on a previously reported laboratory-based approach. In addition, we report and validate a novel, rapid psychophysical method for measuring suppression using this apparatus, which makes the technique more applicable to clinical practice. By using a Z800 dual pro head-mounted display driven by a MAC laptop, we provide dichoptic stimulation. Global motion stimuli composed of arrays of moving dots are presented to each eye. One set of dots move in a coherent direction (termed signal) whereas another set of dots move in a random direction (termed noise). To quantify performance, we measure the signal/noise ratio corresponding to a direction-discrimination threshold. Suppression is quantified by assessing the extent to which it matters which eye sees the signal and which eye sees the noise. A space-saving, head-mounted display using current video technology offers an ideal solution for clinical practice. In addition, our optimized psychophysical method provided results that were in agreement with those produced using the original technique. We made measures of suppression on a group of nine adult amblyopic participants using this apparatus with both the original and new psychophysical paradigms. All participants had measurable suppression ranging from mild to severe. The two different psychophysical methods gave a strong correlation for the strength of suppression (rho = -0.83, p = 0.006). Combining the new apparatus and new psychophysical method creates a convenient and rapid technique for parametric measurement of interocular suppression. In addition, this apparatus constitutes the ideal platform for suppressors to combine information between their eyes in a similar way to binocularly normal people. This provides a convenient way for clinicians to implement the newly proposed binocular treatment of amblyopia that is based on antisuppression training.

  5. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  7. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process.

  8. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  9. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  10. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  11. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  12. Utilization of enzyme supplemented Telfairia occidentalis stalk ...

    African Journals Online (AJOL)

    An eight (8) week feeding trial was carried out to assess the use of enzyme natuzyme supplemented Telfairia occidentalis stalk extract as growth inducer in the practical diet for Oreochromis niloticus fingerlings. Five isonitrogenous (35% crude protein) diets at 0 ml of stalk extract and enzyme (TRT 1), 15 ml (TRT 2) and 30 ...

  13. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  14. Application of radiopolymerization for immobilization of enzymes

    International Nuclear Information System (INIS)

    Higa, O.Z.; Mastro, N.L. del; Castagnet, A.C.G.

    1986-01-01

    Hydrophilic glass-forming monomers were used in an application of irradiation technology for the immobilization of cellulase and cellobiase. Experiments to observe the effect of additives such as silicates and polyethylene glycol in the enzyme entrapment are reported on. In all cases, enzymatic activity was maintained for more than fifteen batch enzyme reactions. (Author) [pt

  15. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  16. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  17. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  18. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme...

  19. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto

    2012-01-01

    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3...

  20. Enzyme adsorption at solid-liquid interfaces

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while

  1. [Potentialization of antibiotics by lytic enzymes].

    Science.gov (United States)

    Brisou, J; Babin, P; Babin, R

    1975-01-01

    Few lytic enzymes, specially papaine and lysozyme, acting on the membrane and cell wall structures facilitate effects of bacitracine, streptomycine and other antibiotics. Streptomycino resistant strains became sensibles to this antibiotic after contact with papaine and lysozyme. The results of tests in physiological suspensions concern only the lytic activity of enzymes. The results on nutrient medium concern together lytic, and antibiotic activities.

  2. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off Northern Chil

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank J.; Thamdrup, Bo

    2014-01-01

    at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification were reversibly suppressed, most likely at the enzyme level. Fiftypercent inhibition of N2 and N2O production by denitrification...

  3. CONDITIONS FOR CSR MICROBUNCHING GAIN SUPPRESSION

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Cheng Ying [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); di Mitri, Simone [Elettra–Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy

    2016-05-01

    The coherent synchrotron radiation (CSR) of a high brightness electron beam traversing a series of dipoles, such as transport arcs, may result in phase space degradation. On one hand, the CSR can perturb electron transverse motion in dispersive regions along the beamline, causing emittance growth. On the other hand, the CSR effect on the longitudinal beam dynamics could result in microbunching gain enhancement. For transport arcs, several schemes have been proposed* to suppress the CSR-induced emittance growth. Similarly, several scenarios have been introduced** to suppress CSR-induced microbunching gain, which however mostly aim for linac-based machines. In this paper we try to provide sufficient conditions for suppression of CSR-induced microbunching gain along a transport arc, analogous to*. Several example lattices are presented, with the relevant microbunching analyses carried out by our semi-analytical Vlasov solver***. The simulation results show that lattices satisfying the proposed conditions indeed have microbunching gain suppressed. We expect this analysis can shed light on lattice design approach that could suppress the CSR-induced microbunching gain.

  4. Interocular suppression in children with deprivation amblyopia.

    Science.gov (United States)

    Hamm, Lisa; Chen, Zidong; Li, Jinrong; Black, Joanna; Dai, Shuan; Yuan, Junpeng; Yu, Minbin; Thompson, Benjamin

    2017-04-01

    In patients with anisometropic or strabismic amblyopia, interocular suppression can be minimized by presenting high contrast stimulus elements to the amblyopic eye and lower contrast elements to the fellow eye. This suggests a structurally intact binocular visual system that is functionally suppressed. We investigated whether suppression can also be overcome by contrast balancing in children with deprivation amblyopia due to childhood cataracts. To quantify interocular contrast balance, contrast interference thresholds were measured using an established dichoptic global motion technique for 21 children with deprivation amblyopia, 14 with anisometropic or mixed strabismic/anisometropic amblyopia and 10 visually normal children (mean age mean=9.9years, range 5-16years). We found that interocular suppression could be overcome by contrast balancing in most children with deprivation amblyopia, at least intermittently, and all children with anisometropic or mixed anisometropic/strabismic amblyopia. However, children with deprivation amblyopia due to early unilateral or bilateral cataracts could tolerate only very low contrast levels to the stronger eye indicating strong suppression. Our results suggest that treatment options reliant on contrast balanced dichoptic presentation could be attempted in a subset of children with deprivation amblyopia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  6. Enzymes - important players in green chemistry

    Directory of Open Access Journals (Sweden)

    Agata Tarczykowska

    2017-09-01

    Full Text Available Green chemistry has become a worldwide approach that leads to sustainable growth through application and development of its principles. A lot of work has to be put into designing new processes comprising of materials which do not emit pollutants to the atmosphere. Inventing new safer methods and finding less harmful products can be challenging. Enzymes are a great hope of scientists in the field of green chemistry. Enzymes as catalysts require mild conditions therefore it is a great way of saving resources such as energy or water. Processes with the use of enzymes have become more feasible by being more cost effective and eco friendly. Taking into account the benefits of green chemistry, enzyme biocatalysis has quickly replaced traditional chemical processes in several fields, and this substitution is going to reach even more areas because of new emerging technologies in enzyme engineering.

  7. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  8. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  9. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  10. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  11. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  12. FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri.

    Science.gov (United States)

    Thomas, Carissa M; Saulnier, Delphine M A; Spinler, Jennifer K; Hemarajata, Peera; Gao, Chunxu; Jones, Sara E; Grimm, Ashley; Balderas, Miriam A; Burstein, Matthew D; Morra, Christina; Roeth, Daniel; Kalkum, Markus; Versalovic, James

    2016-10-01

    Bacterial-derived compounds from the intestinal microbiome modulate host mucosal immunity. Identification and mechanistic studies of these compounds provide insights into host-microbial mutualism. Specific Lactobacillus reuteri strains suppress production of the proinflammatory cytokine, tumor necrosis factor (TNF), and are protective in a mouse model of colitis. Human-derived L. reuteri strain ATCC PTA 6475 suppresses intestinal inflammation and produces 5,10-methenyltetrahydrofolic acid polyglutamates. Insertional mutagenesis identified the bifunctional dihydrofolate synthase/folylpolyglutamate synthase type 2 (folC2) gene as essential for 5,10-methenyltetrahydrofolic acid polyglutamate biosynthesis, as well as for suppression of TNF production by activated human monocytes, and for the anti-inflammatory effect of L. reuteri 6475 in a trinitrobenzene sulfonic acid-induced mouse model of acute colitis. In contrast, folC encodes the enzyme responsible for folate polyglutamylation but does not impact TNF suppression by L. reuteri. Comparative transcriptomics between wild-type and mutant L. reuteri strains revealed additional genes involved in immunomodulation, including previously identified hdc genes involved in histidine to histamine conversion. The folC2 mutant yielded diminished hdc gene cluster expression and diminished histamine production, suggesting a link between folate and histadine/histamine metabolism. The identification of genes and gene networks regulating production of bacterial-derived immunoregulatory molecules may lead to improved anti-inflammatory strategies for digestive diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  14. Effects of thought suppression on episodic memory.

    Science.gov (United States)

    Rassin, E; Merckelbach, H; Muris, P

    1997-11-01

    Subjects were shown a short film fragment. Following this, one group of subjects (n = 26) was instructed to suppress their thoughts about the film, while the other group (n = 24) received no instructions. After 5 hrs subjects returned to the laboratory and completed a questionnaire testing their memory about the film. Results showed that suppression subjects reported a higher frequency of thoughts about the film than control subjects. No evidence was obtained for Wegner, Quillian, and Houston's (1996; Journal of Personality and Social Psychology, 71, 680-691) claim that suppression has an undermining effect on memory for chronology. Possible causes for the differences between the results as obtained by Wegner et al., and those found in the present study are discussed. These causes may pertain to the experimental design, but also to differences in emotional impact of the stimulus material that was used in both studies.

  15. Wing rock suppression using forebody vortex control

    Science.gov (United States)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  16. Quantum-mechanical suppression of bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Becker-Szendy, R.; Keller, L.; Niemi, G.; Perl, M.; Rochester, L. [Stanford Univ., CA (United States); Anthony, P. [Stanford Univ., CA (United States)]|[Lawrence Livermore National Lab., CA (United States); Bosted, P. [American Univ., Washington, DC (United States); Cavalli-Sforza, M.; Kelley, L.; Klein, S. [Univ. of California, Santa Cruz, CA (United States)] [and others

    1994-12-01

    The authors have studied quantum-mechanical suppression of bremsstrahlung of low-energy 1-500 MeV photons from high-energy 25 GeV electrons. They have measured the LPM effect, where multiple scattering of the radiating electron destroys coherence required for the emission of low-energy photons, and the dielectric effect, where the emitted photon traveling in the radiator medium interferes with itself. For the experiment, the collaboration developed a novel method of extracting a parasitic low-intensity high-energy electron beam into the fixed target area during normal SLC operation of the accelerator. The results agree quantitatively with Migdal`s calculation of the LPM effect. Surface effects, for which there is no satisfactory theoretical prediction, are visible at low photon energies. For very thin targets, the suppression disappears, as expected. Preliminary results on dielectric suppression of bremsstrahlung are in qualitative agreement with the expectation.

  17. Shielding design of ITER pressure suppression system

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Sato, Satoshi; Nishitani, Takeo; Kawasaki, Hiromitsu

    2006-01-01

    The duct shield from streaming D-T neutrons has been designed for the ITER pressure suppression system. Streaming calculations are performed with the DUCT-III code for the region from the inlet of the pressure relief line to the rupture disk. Next, the neutron permeation through the shield is studied by Monte Carlo calculations with the MCNP code. It is found that 0.15 m thick iron shield is enough to suppress the permeating component from the outside. In addition, it is suggested that the volume of the shield can be reduced by about 30% if the optimized iron shield structure having localized thickness across intense permeation paths is employed to shield the pressure suppression line. (T.I.)

  18. Enzymes of industrial purpose - review of the market of enzyme preparations and prospects for its development

    Directory of Open Access Journals (Sweden)

    A. A. Tolkacheva

    2017-01-01

    Full Text Available Microbial enzyme preparations are increasingly replacing conventional chemical catalysts in a number of industrial processes. Such drugs, in addition to environmental friendliness and high activity, have a number of advantages over enzyme preparations of vegetable and animal origin, namely: the production of microbial enzymes in bioreactors is easily controlled and predictable; excreted microbiological enzymes are more stable than intracellular animals and plant enzymes; the genetic diversity of microorganisms makes it possible to produce enzyme preparations with a wide range of specificity; microbiological enzymes can be synthesized year-round, in contrast to the production of plant enzymes, which is often seasonal. The leaders of the world market of enzymes are proteases and amylases, which account for 25% and 15%, respectively. Over the past five years, the world market for carbohydrases, including mainly amylases, cellulases and xylanases, has been the fastest growing segment of the enzyme market with an aggregate annual growth rate of more than 7.0%. Another major product of the industrial enzyme market, which has a great potential for growth, is lipases. From the point of view of designation, the main part is represented by food and food enzymes. The Russian market continues to be unsaturated - the current supply is not able to meet the needs of the Russian feed and food industry in enzyme preparations. Enzyme preparations of domestic producers are in demand in forage production, while food industrial enterprises prefer imported products. The most significant enterprises in the enzymatic industry in Russia at the moment are Sibbiofarm, AgroSistema, Agroferment. In the light of the Russian policy of increasing food security, the development of the domestic enzyme industry is an extremely topical task.

  19. Suppression of ICE and Apoptosis in Mammary Epithelial Cells by Extracellular Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Boudreau, Nancy; Sympson, C. J.; Werb, Zena; Bissell, Mina J.

    1994-12-01

    Apoptosis (programmed cell death) plays a major role in development and tissue regeneration. Basement membrane extracellular matrix (ECM), but not fibronectin or collagen, was shown to suppress apoptosis of mammary epithelial cells in tissue culture and in vivo. Apoptosis was induced by antibodies to beta 1 integrins or by overexpression of stromelysin-1, which degrades ECM. Expression of interleukin-1 beta converting enzyme (ICE) correlated with the loss of ECM, and inhibitors of ICE activity prevented apoptosis. These results suggest that ECM regulates apoptosis in mammary epithelial cells through an integrin-dependent negative regulation of ICE expression.

  20. Suppression of charmonium production in hadron gas

    International Nuclear Information System (INIS)

    Faustov, R.N.; Vasilevskaya, I.G.

    1991-01-01

    The problem of J/ψ charmonium production suppression under heavy ion collisions is investigated. The processes of charmonium disintegration in hadron gas are considered: π+J/ψ → π+c+c-bar and ρ+J/ψ → D+D. Based on the results obtained one can assume that charmonium disintegration contribution to J/ψ production suppression under collisions with gas hadrons and the contribution conditioned by the production of quark-gluon plasma, appear to be the effects of similar order of magnitude

  1. Jet suppression measurement with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00443411; The ATLAS collaboration

    2016-01-01

    A hot medium with a high density of unscreened color charges is produced in relativistic heavy ion collisions. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. Another manifestation of the energy loss is the modification of the dijet balance and the modification of fragmentation functions. In these proceedings, the latest ATLAS results on single jet suppression, dijet suppression, and modification of the jet internal structure in \\PbPb~collisions are presented.

  2. Star formation suppression in compact group galaxies

    DEFF Research Database (Denmark)

    Alatalo, K.; Appleton, P. N.; Lisenfeld, U.

    2015-01-01

    , bars, rings, tidal tails, and possibly nuclear outflows, though the molecular gas morphologies are more consistent with spirals and earlytype galaxies than mergers and interacting systems. Our CO-imaged HCG galaxies, when plotted on the Kennicutt-Schmidt relation, shows star formation (SF) suppression...... color space. This supports the idea that at least some galaxies in HCGs are transitioning objects, where a disruption of the existing molecular gas in the system suppresses SF by inhibiting the molecular gas from collapsing and forming stars efficiently. These observations, combined with recent work...

  3. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    Science.gov (United States)

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    Science.gov (United States)

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  5. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  6. Expression of lignocellulolytic enzymes in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mellitzer Andrea

    2012-05-01

    Full Text Available Abstract Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris.

  7. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure

    DEFF Research Database (Denmark)

    McMurray, John J V; Packer, Milton; Desai, Akshay S

    2013-01-01

    and natriuresis, inhibit abnormal growth, suppress the RAAS and sympathetic nervous system, and augment parasympathetic activity. The best understood of these mediators are the natriuretic peptides which are metabolized by the enzyme neprilysin. LCZ696 belongs to a new class of drugs, the angiotensin receptor...

  8. Immobilized enzyme studies in a microscale bioreactor.

    Science.gov (United States)

    Jones, Francis; Forrest, Scott; Palmer, Jim; Lu, Zonghuan; Elmore, John; Elmore, Bill B

    2004-01-01

    Novel microreactors with immobilized enzymes were fabricated using both silicon and polymer-based microfabrication techniques. The effectiveness of these reactors was examined along with their behavior over time. Urease enzyme was successfully incorporated into microchannels of a polymeric matrix of polydimethylsiloxane and through layer-bylayer self-assembly techniques onto silicon. The fabricated microchannels had cross-sectional dimensions ranging from tens to hundreds of micrometers in width and height. The experimental results for continuous-flow microreactors are reported for the conversion of urea to ammonia by urease enzyme. Urea conversions of >90% were observed.

  9. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.

    2007-01-01

    A systematic overview is presented of the literature that reports the antifouling (AF) protection of underwater structures via the action of enzymes. The overall aim of this review is to assess the state of the art of enzymatic AF technology, and to highlight the obstacles that have to be overcome...... for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...

  10. Enzymic hydrolysis of cellulosic wastes to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Spano, L A; Medeiros, J; Mandels, M

    1976-01-01

    An enzymic process for the conversion of cellulose to glucose is based on the use of a specific enzyme derived from mutant strains of the fungus trichoderma viride which is capable of reacting with the crystalline fraction of the cellulose molecule. The production and mode of action of the cellulase complex produced during the growth of trichoderma viride is discussed as well as the application of such enzymes for the conversion of cellulosic wastes to crude glucose syrup for use in production of chemical feedstocks, single-cell proteins, fuels, solvents, etc.

  11. Dibromine radical anion reactions with heme enzymes

    International Nuclear Information System (INIS)

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  12. Dimeric assembly of enterocyte brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1994-01-01

    The noncovalent, dimeric assembly of small intestinal brush border enzymes was studied by sedimentation analysis in density gradients of extracts of pulse-labeled pig jejunal mucosal explants. Like aminopeptidase N (EC 3.4.11.2), sucrase-isomaltase (EC 3.2.1.48-10), aminopeptidase A (EC 3...... appearance of the liposome-reconstituted enzyme [Norén et al. (1986) J. Biol. Chem. 261, 12306-12309], showing only the inner, membrane-anchored domains of the monomers to be in close contact with one another while the outer domains are far apart. In contrast to the other brush border enzymes studied...

  13. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  14. Suppression Situations in Multiple Linear Regression

    Science.gov (United States)

    Shieh, Gwowen

    2006-01-01

    This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…

  15. Cortisol suppresses radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.

    1985-01-01

    It is reported that 10 -7 M cortisol has a significant suppressive effect on radiation-induced transformation in vitro in C3H10T 1/2 cells. Previously reported data showed a significant enhancing effect for similar experiments performed with cortisone. Thus, these two structurally similar glucocorticoid hormones have opposite effects on transformation induced by ionizing radiation. (author)

  16. Cooling device for reactor suppression pool

    International Nuclear Information System (INIS)

    Togasaki, Susumu; Kato, Kiyoshi.

    1994-01-01

    In a cooling device of a reactor suppression pool, when a temperature of pool water is abnormally increased and a heat absorbing portion is heated by, for example, occurrence of an accident, coolants are sent to the outside of the reactor container to actuates a thermally operating portion by the heat energy of coolants and drive heat exchanging fluids of a secondary cooling system. If the heat exchanging fluids are sent to a cooling portion, the coolants are cooled and returned to the heat absorbing portion of the suppression pool water. If the heat absorbing portion is heat pipes, the coolants are evaporated by heat absorbed from the suppression pool water, steams are sent to the thermally operating portion, then coolants are liquefied and caused to return to the heat absorbing portion. If the thermal operation portion is a gas turbine, the gas turbine is operated by the coolants, and it is converted to a rotational force to drive heat exchanging fluids by pumps. By constituting the cooling portion with a condensator, the coolants are condensed and liquefied and returned to the heat absorbing portion of the suppression pool water. (N.H.)

  17. Efflux inhibitor suppresses Streptococcus mutans virulence properties.

    Science.gov (United States)

    Zeng, Huihui; Liu, Jia; Ling, Junqi

    2017-04-01

    It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Suppressive competition: how sounds may cheat sight.

    Science.gov (United States)

    Kayser, Christoph; Remedios, Ryan

    2012-02-23

    In this issue of Neuron, Iurilli et al. (2012) demonstrate that auditory cortex activation directly engages local GABAergic circuits in V1 to induce sound-driven hyperpolarizations in layer 2/3 and layer 6 pyramidal neurons. Thereby, sounds can directly suppress V1 activity and visual driven behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Measuring colour rivalry suppression in amblyopia.

    Science.gov (United States)

    Hofeldt, T S; Hofeldt, A J

    1999-11-01

    To determine if the colour rivalry suppression is an index of the visual impairment in amblyopia and if the stereopsis and fusion evaluator (SAFE) instrument is a reliable indicator of the difference in visual input from the two eyes. To test the accuracy of the SAFE instrument for measuring the visual input from the two eyes, colour rivalry suppression was measured in six normal subjects. A test neutral density filter (NDF) was placed before one eye to induce a temporary relative afferent defect and the subject selected the NDF before the fellow eye to neutralise the test NDF. In a non-paediatric private practice, 24 consecutive patients diagnosed with unilateral amblyopia were tested with the SAFE. Of the 24 amblyopes, 14 qualified for the study because they were able to fuse images and had no comorbid disease. The relation between depth of colour rivalry suppression, stereoacuity, and interocular difference in logMAR acuity was analysed. In normal subjects, the SAFE instrument reversed temporary defects of 0.3 to 1. 8 log units to within 0.6 log units. In amblyopes, the NDF to reverse colour rivalry suppression was positively related to interocular difference in logMAR acuity (beta=1.21, psuppression as measured with the SAFE was found to agree closely with the degree of visual acuity impairment in non-paediatric patients with amblyopia.

  20. Pressure suppression facility for reactor container

    International Nuclear Information System (INIS)

    Fujii, Tadashi; Fukui, Toru; Kataoka, Yoshiyuki; Tominaga, Kenji.

    1993-01-01

    In a nuclear reactor comprising heat transfer surfaces from a pressure suppression pool at the inside to the outer circumferential pool at the outside, a means for supplying water from a water supply source at the outside of the container to the pools is disposed. Then, a heat transfer means is disposed between the pressure suppression chamber and the water cooling pool. The water supply means comprises a pressurization means for applying pressure to water of the water supply source and a water supply channel. Water is supplied into the pressure suppression pool and the outer circumferential pool to elevate the water level and extend the region of heat contact with the water cooling heat transfer means. In addition, since dynamic pressure is applied to the feedwater, for example, by pressurizing the water surface of the water supply source, water can be supplied without using dynamic equipments such as pumps. Then, since water-cooling heat transfer surface can be extended after occurrence of accident, enlargement of a reactor container and worsening of earthquake proofness can be avoided as much as possible, to improve function for suppressing the pressure in the container. Further, since water-cooling heat transfer region can be extended, the arrangement of the water source and the place to which water is supplied is made optional without considering the relative height therebetween, to improve earthquake proofness. (N.H.)

  1. Quarkonium suppression: Gluonic dissociation vs. colour screening

    Indian Academy of Sciences (India)

    mechanism comes into play for the initial conditions taken from the self screened parton cascade model in these studies. Keywords. Quark gluon plasma; J ψ; suppression; dissociation; colour screening. PACS No. 12.38.M. 1. Introduction. The last two decades have seen hectic activity towards identifying unique signatures ...

  2. Aralia elata (Miquel) Seemann Suppresses Inflammatory ...

    African Journals Online (AJOL)

    ISSN: 1596-5996 (print); 1596-9827 (electronic) ... The LPS-induced increase in the production of nitric oxide was concentration- dependently suppressed ... Aralia elata ethanol extract (AEE) exhibits protective ... temperature for 72 h and filtered. The filtered .... scavenging activity in a dose-dependent manner showing a ...

  3. Dietary modulation of thymic enzymes.

    Science.gov (United States)

    Susana, Feliu María; Paula, Perris; Slobodianik, Nora

    2014-01-01

    Malnutrition is a complex syndrome caused by an inadequate intake of energy, protein, minerals and vitamins which affects the immune system. Nutritional imbalances, present in children with energy-protein malnutrition and infections, make defining the specific effects of each of them on the thymus difficult. For this reason, it is necessary to design an experimental model in animals that could define a single variable. As the thymus atrophy described in humans is similar to that observed in murines, a rat experimental model makes the extrapolation to man possible. Some authors suggest that the activity of Adenosine Deaminase (ADA) and Purine Nucleoside Phosphorylase (PNP)--involved in purine metabolism--have an influence on T lymphocyte development and the immune system, due to intracellular accumulation of toxic levels of deoxynucleotides. Studies in our group, performed in an experimental model on Wistar growing rats, have demonstrated that protein deficiency or imbalance in the profile of essential amino acids in the diet, produce loss of thymus weight, reduction in the number of thymocytes, a diminished proportion of T cells presenting the W3/13 antigenic determinant and DNA content with concomitant increase in cell size, and the proportion of immature T cells and activity of ADA and PNP, without modifying the activity of 5´Nucleotidase in the thymus. It is important to point out that there were neither differences in energy intake between experimental groups and their controls, nor clinical symptoms of deficiency of other nutrients. The increase in these thymic enzyme activities was an alternative mechanism to avoid the accumulation of high levels of deoxynucleotides, which would be toxic for T lymphocytes. On the other hand, the administration of a recovery diet, with a high amount of high quality protein, was able to reverse the mentioned effects. The quick reply of Adenosine Deaminase to nutritional disorders and the following nutritional recovery, points

  4. Theoretical status of J/ψ suppression

    International Nuclear Information System (INIS)

    Gavin, S.

    1993-03-01

    High energy heavy ion collisions are expected to produce hadron densities far beyond the density in nuclei, ρ 0 = 0.16 fm -3 . Remarkably, no single measurement from the AGS and SPS light ion programs with projectiles A ≤ 32 stands out as unambiguous evidence of these extreme densities. To separate the high density signals from the background effects that result, e.g. from scattering with primary nucleons, careful systematic studies of hadron-nucleus, hA, and nucleus-nucleus, AB, data are needed. In this talk the author surveys the ongoing systematic study of the most notorious case in point -- J/ψ suppression. In principle, measurements of J/ψ suppression provide a probe of the densities obtained in AB collisions that is also sensitive to quark gluon plasma production. The latest results from SPS experiment NA38 reported by A. Romana in these proceedings show that the ratio of cross sections in the dimuon channel B μμ σ ψ /σ cont is reduced by a factor 0.50 ± 0.05 in central S+U compared to minimum bias pU collisions at 200 AGeV. This is precisely the sort of suppression that one expects if high densities are obtained. On the other hand, a target-mass dependence suggestive of this suppression is found in hA collisions where high densities are not expected. At 200 GeV, NA38 finds that B μμ σ ψ /σ cont falls to 0.84 ± 0.08 in pU compared to pCu. The hA suppression in this kinematic regime is likely due to a combination of nuclear effects: nucleon absorption and shadowing

  5. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  6. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

    Science.gov (United States)

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-03-01

    Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.

  7. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    ChithrashreeGS

    2012-08-23

    Aug 23, 2012 ... peroxidase are two important antioxidant scavenging enzymes involved in ... Catalase was assayed using the method of Beers and Sizer. (1951) with .... yeast dextrose calcium carbonate agar (YDC) medium. Catalase and ...

  8. Involvement of methyltransferases enzymes during the energy

    African Journals Online (AJOL)

    Mgina

    INVOLVEMENT OF METHYLTRANSFERASES ENZYMES DURING THE. ENERGY METABOLISM OF ..... cell extract still exhibited relatively high methanogenesis with methanol (Fig ... product CH3-CoM into methane (see Fig. 1). The HS-CoM ...

  9. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.

    2003-01-01

    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  10. Optimizing culture medium for debittering constitutive enzyme ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-08-02

    Aug 2, 2010 ... enzyme naringinase production by Aspergillus oryzae. JMU316. Dong-xiao .... even though industrial applications of naringinase are becoming more and ... guidance for industry. MATERIALS AND ..... For economic reasons,.

  11. distribution, abundance and properties of restriction enzymes

    African Journals Online (AJOL)

    DNA of granule-bound starch synthase (GBSS) I and II with a view to ... properties for manipulation of the genes for production of modified starch. .... procurement, storage and handling of the ..... been made on restriction enzymes of potato,.

  12. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  13. Enzymes in Poultry and Swine Nutrition

    International Development Research Centre (IDRC) Digital Library (Canada)

    Poultry production in China and the potential for using enzyme preparations .... The feed manufacturers produce about 310 × 106t of high-quality feed, saving about 30%, ...... Chickens and experimental designs used in the three experiments.

  14. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  15. Polyphenol Oxidase Enzyme and Inactivation Methods

    Directory of Open Access Journals (Sweden)

    Leman Yılmaz

    2018-03-01

    Full Text Available Polyphenol oxidase enzyme is found in vegetables and fruits, as well as in some animal organs and microorganisms. Polyphenol oxidase enzyme responsible for enzymatic browning is a group of copper proteins that catalyses the oxidation of phenolic compounds to quinones, which produce brown pigments, commonly found in fruits and vegetables. During the industrial preparation of fruits and vegetables, results of catalytic effect of polyphenol oxidase causes enzymatic browning. Enzymatic browning impairs the appearance of products containing phenolic compounds along with undesirable colour, odor and taste formation and significant loss of nutritional value of the products. This affects the acceptability of the products by the consumers and causes economic losses. In this review, some characteristics of polyphenol oxidase enzyme in different fruits and vegetables have been reviewed and information about chemical antibrowning agents, thermal applications, irradiation applications and alternative methods such as high pressure processing, pulse electric field, supercritical carbon dioxide and ultrasound applications to inactivate this enzyme has been presented.

  16. Radioimmunoassay of polypeptide hormones and enzymes

    International Nuclear Information System (INIS)

    Felber, J.P.

    1974-01-01

    General principles of radioimmunoassay are reviewed. Detailed procedures are reviewed for the following hormones: insulin, pituitary hormones, gonadotropins, parathyroid hormone, ACTH, glucagon, gastrin, and peptide hormones. Radioimmunoassay of enzymes is also discussed. (U.S.)

  17. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  18. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    The enzyme was active in pH range 5 to11 and temperature of 30 to 80°C. The optimum pH and the temperature for protease activity were recorded to be pH 8 and 50°C, respectively. The enzyme was stable up to 40°C and pH 9. The protease activity was inhibited by Zn2+, Ni2+ and Sn2+ and increased by Ca2+, Mg2+ ...

  19. Enzyme-driven mechanisms in biocorrosion

    OpenAIRE

    Basséguy, Régine

    2007-01-01

    Objectives (abstract of presentation): Recent works carried out in our team concerning enzymes and biocorrosion are presented at the meeting. For aerobic conditions, the direct catalysis of the reduction of oxygen on steel by enzymes or porphyrin was proved and a local electrochemical analysis technique (SVET) was developed to visualize the localization of the catalysis. On anaerobic conditions, the influence of phosphate species and other weak acids on the water reduction on steel was shown....

  20. A stochastic model of enzyme kinetics

    Science.gov (United States)

    Stefanini, Marianne; Newman, Timothy; McKane, Alan

    2003-10-01

    Enzyme kinetics is generally modeled by deterministic rate equations, and in the simplest case leads to the well-known Michaelis-Menten equation. It is plausible that stochastic effects will play an important role at low enzyme concentrations. We have addressed this by constructing a simple stochastic model which can be exactly solved in the steady-state. Throughout a wide range of parameter values Michaelis-Menten dynamics is replaced by a new and simple theoretical result.

  1. Enzyme Technology for Shipboard Waste Management

    Science.gov (United States)

    1976-12-01

    sucrose to the sweeter invert sugar by the enzyme invertase is a well established process, as is the conversion of starch to glucose by the enzyme...aspects of our health and daily lives. Recent advances in fundamental and applied enzymology indicate that we have already started in that direction. At a...Chemtech, p. 677 (Nov 1973) 11 - Bungay, H. P., "Applied Enzymology ," Worthington, Biochemical Corp., Notes for an AIChE Lecture, Washington, D. C. (Dec

  2. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  3. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay Rojas

    2016-01-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly a ims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes ef ficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/in activation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultr asonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  4. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay

    2016-06-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly aims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes efficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/inactivation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultrasonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  5. Directed evolution of enzymes using microfluidic chips

    Science.gov (United States)

    Pilát, Zdeněk.; Ježek, Jan; Šmatlo, Filip; Kaůka, Jan; Zemánek, Pavel

    2016-12-01

    Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate large variety of reactions, while ensuring appropriate catalytic activity and high selectivity. These properties make enzymes attractive biocatalysts for a wide range of industrial and biomedical applications. Over the last two decades, directed evolution of enzymes has transformed the field of protein engineering. We have devised microfluidic systems for directed evolution of haloalkane dehalogenases in emulsion droplets. In such a device, individual bacterial cells producing mutated variants of the same enzyme are encapsulated in microdroplets and supplied with a substrate. The conversion of a substrate by the enzyme produced by a single bacterium changes the pH in the droplet which is signalized by pH dependent fluorescence probe. The droplets with the highest enzymatic activity can be separated directly on the chip by dielectrophoresis and the resultant cell lineage can be used for enzyme production or for further rounds of directed evolution. This platform is applicable for fast screening of large libraries in directed evolution experiments requiring mutagenesis at multiple sites of a protein structure.

  6. Lysosomal enzyme activation in irradiated mammary tumors

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1976-01-01

    Lysosomal enzyme activity of C3H mouse mammary tumors was measured quantitatively by a histochemical method. Following whole-body doses of 3600 rad or less no changes were observed in the lysosomal enzyme activity for 12 hr after the irradiation, but very large increases in acid phosphatase and β-naphthylamidase activity were, however, observed 24 hr after irradiation. Significant increases in enzyme activity were detected 72 hr after a dose of 300 rad and the increases of enzyme activity were dose dependent over the range 300 to 900 rad. Testosterone (80 mg/kg) injected into mice 2 hr before irradiation (850 rad) caused a significant increase of lysosomal enzyme activity over and above that of the same dose of irradiation alone. If the tumor-bearing mice were given 95 percent oxygen/5 percent carbon dioxide to breathe for 8 min before irradiation the effect of 850 rad on lysosomal acid phosphatase was increased to 160 percent/that of the irradiation given alone. Activitation of lysosomal enzymes in mammary tumors is an important primary or secondary consequence of radiation

  7. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  8. Computational Biochemistry-Enzyme Mechanisms Explored.

    Science.gov (United States)

    Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias

    2017-01-01

    Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.

  9. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  10. Kallikrein–Kinin System Suppresses Type I Interferon Responses: A Novel Pathway of Interferon Regulation

    Directory of Open Access Journals (Sweden)

    Alecia Seliga

    2018-02-01

    Full Text Available The Kallikrein–Kinin System (KKS, comprised of kallikreins (klks, bradykinins (BKs angiotensin-converting enzyme (ACE, and many other molecules, regulates a number of physiological processes, including inflammation, coagulation, angiogenesis, and control of blood pressure. In this report, we show that KKS regulates Type I IFN responses, thought to be important in lupus pathogenesis. We used CpG (TLR9 ligand, R848 (TLR7 ligand, or recombinant IFN-α to induce interferon-stimulated genes (ISGs and proteins, and observed that this response was markedly diminished by BKs, klk1 (tissue kallikrein, or captopril (an ACE inhibitor. BKs significantly decreased the ISGs induced by TLRs in vitro and in vivo (in normal and lupus-prone mice, and in human PBMCs, especially the induction of Irf7 gene (p < 0.05, the master regulator of Type I IFNs. ISGs induced by IFN-α were also suppressed by the KKS. MHC Class I upregulation, a classic response to Type I IFNs, was reduced by BKs in murine dendritic cells (DCs. BKs decreased phosphorylation of STAT2 molecules that mediate IFN signaling. Among the secreted pro-inflammatory cytokines/chemokines analyzed (IL-6, IL12p70, and CXCL10, the strongest suppressive effect was on CXCL10, a highly Type I IFN-dependent cytokine, upon CpG stimulation, both in normal and lupus-prone DCs. klks that break down into BKs, also suppressed CpG-induced ISGs in murine DCs. Captopril, a drug that inhibits ACE and increases BK, suppressed ISGs, both in mouse DCs and human PBMCs. The effects of BK were reversed with indomethacin (compound that inhibits production of PGE2, suggesting that BK suppression of IFN responses may be mediated via prostaglandins. These results highlight a novel regulatory mechanism in which members of the KKS control the Type I IFN response and suggest a role for modulators of IFNs in the pathogenesis of lupus and interferonopathies.

  11. Intestinal tumor suppression in ApcMin/+ mice by prostaglandin D2 receptor PTGDR

    International Nuclear Information System (INIS)

    Tippin, Brigette L; Kwong, Alan M; Inadomi, Michael J; Lee, Oliver J; Park, Jae Man; Materi, Alicia M; Buslon, Virgilio S; Lin, Amy M; Kudo, Lili C; Karsten, Stanislav L; French, Samuel W; Narumiya, Shuh; Urade, Yoshihiro; Salido, Eduardo; Lin, Henry J

    2014-01-01

    Our earlier work showed that knockout of hematopoietic prostaglandin D synthase (HPGDS, an enzyme that produces prostaglandin D 2 ) caused more adenomas in Apc Min/+ mice. Conversely, highly expressed transgenic HPGDS allowed fewer tumors. Prostaglandin D 2 (PGD 2 ) binds to the prostaglandin D 2 receptor known as PTGDR (or DP1). PGD 2 metabolites bind to peroxisome proliferator-activated receptor γ (PPARG). We hypothesized that Ptgdr or Pparg knockouts may raise numbers of tumors, if these receptors take part in tumor suppression by PGD 2 . To assess, we produced Apc Min/+ mice with and without Ptgdr knockouts (147 mice). In separate experiments, we produced Apc Min/+ mice expressing transgenic lipocalin-type prostaglandin D synthase (PTGDS), with and without heterozygous Pparg knockouts (104 mice). Homozygous Ptgdr knockouts raised total numbers of tumors by 30–40% at 6 and 14 weeks. Colon tumors were not affected. Heterozygous Pparg knockouts alone did not affect tumor numbers in Apc Min/+ mice. As mentioned above, our Pparg knockout assessment also included mice with highly expressed PTGDS transgenes. Apc Min/+ mice with transgenic PTGDS had fewer large adenomas (63% of control) and lower levels of v-myc avian myelocytomatosis viral oncogene homolog (MYC) mRNA in the colon. Heterozygous Pparg knockouts appeared to blunt the tumor-suppressing effect of transgenic PTGDS. However, tumor suppression by PGD 2 was more clearly mediated by receptor PTGDR in our experiments. The suppression mechanism did not appear to involve changes in microvessel density or slower proliferation of tumor cells. The data support a role for PGD 2 signals acting through PTGDR in suppression of intestinal tumors

  12. Suppressed visual looming stimuli are not integrated with auditory looming signals: Evidence from continuous flash suppression.

    Science.gov (United States)

    Moors, Pieter; Huygelier, Hanne; Wagemans, Johan; de-Wit, Lee; van Ee, Raymond

    2015-01-01

    Previous studies using binocular rivalry have shown that signals in a modality other than the visual can bias dominance durations depending on their congruency with the rivaling stimuli. More recently, studies using continuous flash suppression (CFS) have reported that multisensory integration influences how long visual stimuli remain suppressed. In this study, using CFS, we examined whether the contrast thresholds for detecting visual looming stimuli are influenced by a congruent auditory stimulus. In Experiment 1, we show that a looming visual stimulus can result in lower detection thresholds compared to a static concentric grating, but that auditory tone pips congruent with the looming stimulus did not lower suppression thresholds any further. In Experiments 2, 3, and 4, we again observed no advantage for congruent multisensory stimuli. These results add to our understanding of the conditions under which multisensory integration is possible, and suggest that certain forms of multisensory integration are not evident when the visual stimulus is suppressed from awareness using CFS.

  13. Enzyme-MOF (metal-organic framework) composites.

    Science.gov (United States)

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  14. Kinetics of enzyme action: essential principles for drug hunters

    National Research Council Canada - National Science Library

    Stein, Ross L

    2011-01-01

    ... field. Beginning with the most basic principles pertaining to simple, one-substrate enzyme reactions and their inhibitors, and progressing to a thorough treatment of two-substrate enzymes, Kinetics of Enzyme Action...

  15. Benchmark enclosure fire suppression experiments - phase 1 test report.

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Victor G.; Nichols, Robert Thomas; Blanchat, Thomas K.

    2007-06-01

    A series of fire benchmark water suppression tests were performed that may provide guidance for dispersal systems for the protection of high value assets. The test results provide boundary and temporal data necessary for water spray suppression model development and validation. A review of fire suppression in presented for both gaseous suppression and water mist fire suppression. The experimental setup and procedure for gathering water suppression performance data are shown. Characteristics of the nozzles used in the testing are presented. Results of the experiments are discussed.

  16. [The advances of suppression in research of amblyopia].

    Science.gov (United States)

    Liu, S; Liu, H

    2016-04-11

    Suppression that is the result of interocular competition is an important machanism of amblyopia. The imbalance of suppression may lead the consequence to amblyopia. In the early study, researchers had raised the theory of II. Quadratic Summation which had revealed the relationship of interocular interaction and suppression. In some basic researches, other studies had showed the most possible anatomic location of suppression. Recently, researchers found a new method to quantify the interocular suppression named the noise model. Further studies found a novel disinhibition therapy to treat amblyopia. We summarized the research advances in suppression and disinhibition treatment in amblyopia. (Chin J Ophthalmol, 2016, 52: 305-308).

  17. Proton density-weighted MR imaging of the knee: fat suppression versus without fat suppression

    International Nuclear Information System (INIS)

    Lee, So-Yeon; Kim, Sun Ki; Jee, Won-Hee; Kim, Jung-Man

    2011-01-01

    To prospectively evaluate the diagnostic accuracy of proton density-weighted imaging with and without fat suppression for detecting meniscal tears. The study involved 48 patients who underwent arthroscopy less than 3 months after proton density-weighted imaging with and without fat suppression. Sagittal images were independently reviewed by two radiologists for the presence of meniscal tears. Medial and lateral menisci were separately analyzed in terms of anterior horn, body, and posterior horn. Interobserver agreement was assessed using κ coefficients. The McNemar test was used to determine any differences between the two methods in terms of sensitivity and specificity. Arthroscopy findings were used as the diagnostic reference standard. Arthroscopy revealed 71 tears involving 85 meniscal segments: 34 medial meniscal segments and 51 lateral meniscal segments. The sensitivity, specificity, and accuracy of each radiologist were 95% (81/85), 92% (186/203), and 93% (267/288), and 93% (79/85), 93% (189/203), and 93% (268/288) when using fat-suppressed proton density-weighted imaging, and 91% (77/85), 93% (189/203), and 92% (266/288), and 91% (77/85), 93% (188/203), and 92% (265/288) when using proton density-weighted imaging without fat suppression, respectively. Interobserver agreement for meniscal tears was very high with proton-weighted imaging with (κ = 0.87) or without (κ = 0.86) fat suppression. There were no significant differences for detection of medial meniscal tears when using proton density-weighted imaging with or without fat suppression for both readers (p > 0.05). Fat-suppressed proton density-weighted imaging can replace proton density-weighted imaging without fat suppression for the detection of meniscal tears. (orig.)

  18. Proton density-weighted MR imaging of the knee: fat suppression versus without fat suppression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So-Yeon; Kim, Sun Ki [Catholic University of Korea, Department of Radiology, Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Jee, Won-Hee [Catholic University of Korea, Department of Radiology, Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Catholic University of Korea, Diagnostic Radiology, Seoul St. Mary' s Hospital, School of Medicine, Seoul (Korea, Republic of); Kim, Jung-Man [Catholic University of Korea, Department of Orthopedic Surgery, Seoul St. Mary' s Hospital, Seoul (Korea, Republic of)

    2011-02-15

    To prospectively evaluate the diagnostic accuracy of proton density-weighted imaging with and without fat suppression for detecting meniscal tears. The study involved 48 patients who underwent arthroscopy less than 3 months after proton density-weighted imaging with and without fat suppression. Sagittal images were independently reviewed by two radiologists for the presence of meniscal tears. Medial and lateral menisci were separately analyzed in terms of anterior horn, body, and posterior horn. Interobserver agreement was assessed using {kappa} coefficients. The McNemar test was used to determine any differences between the two methods in terms of sensitivity and specificity. Arthroscopy findings were used as the diagnostic reference standard. Arthroscopy revealed 71 tears involving 85 meniscal segments: 34 medial meniscal segments and 51 lateral meniscal segments. The sensitivity, specificity, and accuracy of each radiologist were 95% (81/85), 92% (186/203), and 93% (267/288), and 93% (79/85), 93% (189/203), and 93% (268/288) when using fat-suppressed proton density-weighted imaging, and 91% (77/85), 93% (189/203), and 92% (266/288), and 91% (77/85), 93% (188/203), and 92% (265/288) when using proton density-weighted imaging without fat suppression, respectively. Interobserver agreement for meniscal tears was very high with proton-weighted imaging with ({kappa} = 0.87) or without ({kappa} = 0.86) fat suppression. There were no significant differences for detection of medial meniscal tears when using proton density-weighted imaging with or without fat suppression for both readers (p > 0.05). Fat-suppressed proton density-weighted imaging can replace proton density-weighted imaging without fat suppression for the detection of meniscal tears. (orig.)

  19. Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach.

    Directory of Open Access Journals (Sweden)

    Joshua T Schiffer

    Full Text Available Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA, the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs, TAL effector nucleases (TALENs, and CRISPR-associated system 9 (Cas9 proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which

  20. Continuous enzyme reactions with immobilized enzyme tubes prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1986-01-01

    Immobilized glucose oxidase tubes were prepared by radiation cast-polymerization of 2-hydroxyethyl methacrylate and tetraethyleneglycol diacrylate monomer at low temperatures. The immobilized enzyme tubes which were spirally set in a water bath were used as reactor, in which the enzyme activity varied with tube size and flow rate of the substrate. The conversion yield of the substrate in continuous enzyme reaction was about 80%. (author)

  1. Effects of hydrogen fluoride and wounding on respiratory enzymes in soybean leaves

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C J; Miller, G W; Welkie, G W

    1966-01-01

    Soybeans (Glycine max, merr, Var. Hawkeye) were cultured in Hoagland's solution and fumigated with hydrogen fluoride (ca. 100 ppb). After 24, 96 and 144 hr of fumigation, the enzyme activities of cytochrome oxidase, peroxidase, catalase, polyphenol oxidase, ascorbic acid oxidase and glucose-6-phosphate dehydrogenase were assayed in leaves from fumigated and control plants. The total oxygen uptake after each time of treatment was measured. The effect of mechanically wounding the tissue on the above enzymes was determined by rubbing with carborundum. Glucose-6-phosphate dehydrogenase activity from fumigated leaves showed an average increase of 5 to 22 times that of the control. Cytochrome oxidase, peroxidase and catalase activities were markedly stimulated by fluoride fumigation. Polyphenol oxidase activity was suppressed throughout the fumigation period. Ascorbic acid oxidase was stimulated at the initial state, then showed a steady decrease in activity. In vitro tests revealed that ascorbic acid oxidase and peroxidase were very sensitive to fluoride ions. Polyphenol oxidase was only slightly inhibited by 10/sup -2/M KF solution. Cytochrome oxidase and catalase were not affected by KF up to 10/sup -2/M. Total respiration throughout the treatment period showed an accelerated rate. All enzymes studied were stimulated by wounding. The effect of HF on respiration and specific enzymes is discussed in terms of direct effects and injury. 48 references, 8 tables.

  2. Overcoming fixation with repeated memory suppression.

    Science.gov (United States)

    Angello, Genna; Storm, Benjamin C; Smith, Steven M

    2015-01-01

    Fixation (blocks to memories or ideas) can be alleviated not only by encouraging productive work towards a solution, but, as the present experiments show, by reducing counterproductive work. Two experiments examined relief from fixation in a word-fragment completion task. Blockers, orthographically similar negative primes (e.g., ANALOGY), blocked solutions to word fragments (e.g., A_L_ _GY) in both experiments. After priming, but before the fragment completion test, participants repeatedly suppressed half of the blockers using the Think/No-Think paradigm, which results in memory inhibition. Inhibiting blockers did not alleviate fixation in Experiment 1 when conscious recollection of negative primes was not encouraged on the fragment completion test. In Experiment 2, however, when participants were encouraged to remember negative primes at fragment completion, relief from fixation was observed. Repeated suppression may nullify fixation effects, and promote creative thinking, particularly when fixation is caused by conscious recollection of counterproductive information.

  3. Magnetic fusion development for global warming suppression

    International Nuclear Information System (INIS)

    Li Jiangang; Zhang Jie; Duan Xuru

    2010-01-01

    Energy shortage and environmental pollution are two critical issues for human beings in the 21st century. There is an urgent need for new sustainable energy to meet the fast growing demand for clean energy. Fusion is one of the few options which may be able to satisfy the requirement for large scale sustainable energy generation and global warming suppression and therefore must be developed as quickly as possible. Fusion research has been carried out for the past 50 years. It is too long to wait for another 50 years to generate electricity by fusion. A much more aggressive approach should be taken with international collaboration towards the early use of fusion energy to meet the urgent needs for energy and global warming suppression.

  4. Suppression of Rabi oscillations for moving atoms

    International Nuclear Information System (INIS)

    Navarro, B.; Egusquiza, I. L.; Muga, J. G.; Hegerfeldt, G. C.

    2003-01-01

    The well-known laser-induced Rabi oscillations of a two-level atom are shown to be suppressed under certain conditions when the atom is entering a laser-illuminated region. For temporal Rabi oscillations the effect has two regimes: a first classical-like one, taking place at intermediate atomic velocities, and a second purely quantum case at low velocities. The classical regime is associated with the formation of incoherent internal states of the atom in the laser region, whereas in the quantum, low velocity regime the laser projects the atom onto a pure internal state that can be controlled by detuning. Spatial Rabi oscillations are only suppressed in this low velocity, quantum regime

  5. Sleep deprivation suppresses aggression in Drosophila

    Science.gov (United States)

    Kayser, Matthew S; Mainwaring, Benjamin; Yue, Zhifeng; Sehgal, Amita

    2015-01-01

    Sleep disturbances negatively impact numerous functions and have been linked to aggression and violence. However, a clear effect of sleep deprivation on aggressive behaviors remains unclear. We find that acute sleep deprivation profoundly suppresses aggressive behaviors in the fruit fly, while other social behaviors are unaffected. This suppression is recovered following post-deprivation sleep rebound, and occurs regardless of the approach to achieve sleep loss. Genetic and pharmacologic approaches suggest octopamine signaling transmits changes in aggression upon sleep deprivation, and reduced aggression places sleep-deprived flies at a competitive disadvantage for obtaining a reproductive partner. These findings demonstrate an interaction between two phylogenetically conserved behaviors, and suggest that previous sleep experiences strongly modulate aggression with consequences for reproductive fitness. DOI: http://dx.doi.org/10.7554/eLife.07643.001 PMID:26216041

  6. Suppression of Poxvirus Replication by Resveratrol.

    Science.gov (United States)

    Cao, Shuai; Realegeno, Susan; Pant, Anil; Satheshkumar, Panayampalli S; Yang, Zhilong

    2017-01-01

    Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV), the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  7. Suppression of Poxvirus Replication by Resveratrol

    Directory of Open Access Journals (Sweden)

    Shuai Cao

    2017-11-01

    Full Text Available Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV, the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  8. Managing for soil health can suppress pests

    Directory of Open Access Journals (Sweden)

    Amanda Hodson

    2016-08-01

    Full Text Available A “healthy” soil can be thought of as one that functions well, both agronomically and ecologically, and one in which soil biodiversity and crop management work in synergy to suppress pests and diseases. UC researchers have pioneered many ways of managing soil biology for pest management, including strategies such as soil solarization, steam treatment and anaerobic soil disinfestation, as well as improvements on traditional methods, such as reducing tillage, amending soil with organic materials, and cover cropping. As managing for soil health becomes more of an explicit focus due to restrictions on the use of soil fumigants, integrated soil health tests will be needed that are validated for use in California. Other research needs include breeding crops for disease resistance and pest suppressive microbial communities as well as knowledge of how beneficial organisms influence plant health.

  9. Prevention and suppression of metal packing fires.

    Science.gov (United States)

    Roberts, Mark; Rogers, William J; Sam Mannan, M; Ostrowski, Scott W

    2003-11-14

    Structured packing has been widely used because of large surface area that makes possible columns with high capacity and efficiency. The large surface area also contributes to fire hazards because of hydrocarbon deposits that can easily combust and promote combustion of the thin metal packing materials. Materials of high surface area that can fuel fires include reactive metals, such as titanium, and materials that are not considered combustible, such as stainless steel. Column design and material selection for packing construction is discussed together with employee training and practices for safe column maintenance and operations. Presented also are methods and agents for suppression of metal fires. Guidance for prevention and suppression of metal fires is related to incidents involving packing fires in columns.

  10. Compton suppression through rise-time analysis

    International Nuclear Information System (INIS)

    Selvi, S.; Celiktas, C.

    2007-01-01

    We studied Compton suppression for 60 Co and 137 Cs radioisotopes using a signal selection criterion based on contrasting the fall time of the signals composing the photo peak with those composing the Compton continuum. The fall time criterion is employed by using the pulse shape analysis observing the change in the fall times of the gamma-ray pulses. This change is determined by measuring the changes in the rise times related to the fall time of the scintillator and the timing signals related to the fall time of the input signals. We showed that Compton continuum suppression is achieved best via the precise timing adjustment of an analog rise-time analyzer connected to a NaI(Tl) scintillation spectrometer

  11. Abnormal Grain Growth Suppression in Aluminum Alloys

    Science.gov (United States)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  12. Pressure suppression device for a reactor container

    International Nuclear Information System (INIS)

    Shimizu, Toshiaki

    1982-01-01

    Purpose: To prevent damages in drain pipes or the likes upon the water level increase due to blowing of incompressible gases. Constitution: An exhaust pipe for guiding escaping steams is connected to a main steam releaf valve. The exhaust pipe is guided into pressure-suppression-chamber water through the inside of a dry-well and by way of a vent pipe, a vent header and a drain pipe or a downcomer. Since the exhaust pipe is not exposed to the water surface inside the pressure suppression chamber, even if steams blow out into the dry-well by the rapture of pipeways or the likes to rapidly increase the water level, the water surface does not hit on the exhaust pipe, whereby the damages for the exhaust pipe and support members can be prevented to improve the reliability. (Seki, T.)

  13. Myc suppression of Nfkb2 accelerates lymphomagenesis

    International Nuclear Information System (INIS)

    Keller, Ulrich; Huber, Jürgen; Nilsson, Jonas A; Fallahi, Mohammad; Hall, Mark A; Peschel, Christian; Cleveland, John L

    2010-01-01

    Deregulated c-Myc expression is a hallmark of several human cancers where it promotes proliferation and an aggressive tumour phenotype. Myc overexpression is associated with reduced activity of Rel/NF-κB, transcription factors that control the immune response, cell survival, and transformation, and that are frequently altered in cancer. The Rel/NF-κB family member NFKB2 is altered by chromosomal translocations or deletions in lymphoid malignancies and deletion of the C-terminal ankyrin domain of NF-κB2 augments lymphocyte proliferation. Precancerous Eμ-Myc-transgenic B cells, Eμ-Myc lymphomas and human Burkitt lymphoma samples were assessed for Nfkb2 expression. The contribution of Nfkb2 to Myc-driven apoptosis, proliferation, and lymphomagenesis was tested genetically in vivo. Here we report that the Myc oncoprotein suppresses Nfkb2 expression in vitro in primary mouse fibroblasts and B cells, and in vivo in the Eμ-Myc transgenic mouse model of human Burkitt lymphoma (BL). NFKB2 suppression by Myc was also confirmed in primary human BL. Promoter-reporter assays indicate that Myc-mediated suppression of Nfkb2 occurs at the level of transcription. The contribution of Nfkb2 to Myc-driven lymphomagenesis was tested in vivo, where Nfkb2 loss was shown to accelerate lymphoma development in Eμ-Myc transgenic mice, by impairing Myc's apoptotic response. Nfkb2 is suppressed by c-Myc and harnesses Myc-driven lymphomagenesis. These data thus link Myc-driven lymphomagenesis to the non-canonical NF-κB pathway

  14. Hangar Fire Suppression Utilizing Novec 1230

    Science.gov (United States)

    2018-01-01

    fuel fires in aircraft hangars. A 30×30×8-ft concrete-and-steel test structure was constructed for this test series. Four discharge assemblies...that agent concentration in the test structure exceeded the required extinguishing concentration for at least 5 min after discharge. Two fire ...involved suppression of a 4.6-gal, approximately 5-ft diameter, Jet-A pool fire . Both fires were successfully extinguished by the Novec 1230 discharge

  15. Thought Suppression in Patients With Bipolar Disorder

    OpenAIRE

    Miklowitz, David J.; Alatiq, Yousra; Geddes, John R.; Goodwin, Guy M.; Williams, J. Mark G.

    2010-01-01

    Suppression of negative thoughts has been observed under experimental conditions among patients with major depressive disorder (MDD) but has never been examined among patients with bipolar disorder (BD). Patients with BD (n = 36), patients with MDD (n = 20), and healthy controls (n = 20) completed a task that required unscrambling 6-word strings into 5-word sentences, leaving out 1 word. The extra word allowed the sentences to be completed in a negative, neutral, or ?hyperpositive? (manic/goa...

  16. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.

    2005-01-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  17. Suppression of radiation excitation in focusing environment

    International Nuclear Information System (INIS)

    Huang, Z.; Ruth, R.D.

    1996-12-01

    Radiation damping and quantum excitation in an electron damping ring and a straight focusing channel are reviewed. They are found to be the two limiting cases in the study of a general bending and focusing combined system. In the intermediate regime where the radiation formation length is comparable to the betatron wavelength, quantum excitation can be exponentially suppressed by focusing field. This new regime may have interesting applications in the generation of ultra-low emittance beams

  18. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    Science.gov (United States)

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  19. Suppressing bullfrog larvae with carbon dioxide

    Science.gov (United States)

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  20. Subjective duration distortions mirror neural repetition suppression.

    Science.gov (United States)

    Pariyadath, Vani; Eagleman, David M

    2012-01-01

    Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression. Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli) followed by a line presented at a different orientation (oddball stimulus). We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials. Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  1. Variation in plant defense suppresses herbivore performance

    Science.gov (United States)

    Pearse, Ian; Paul, Ryan; Ode, Paul J.

    2018-01-01

    Defensive variability of crops and natural systems can alter herbivore communities and reduce herbivory. However, it is still unknown how defense variability translates into herbivore suppression. Nonlinear averaging and constraints in physiological tracking (also more generally called time-dependent effects) are the two mechanisms by which defense variability might impact herbivores. We conducted a set of experiments manipulating the mean and variability of a plant defense, showing that defense variability does suppress herbivore performance and that it does so through physiological tracking effects that cannot be explained by nonlinear averaging. While nonlinear averaging predicted higher or the same herbivore performance on a variable defense than on an invariable defense, we show that variability actually decreased herbivore performance and population growth rate. Defense variability reduces herbivore performance in a way that is more than the average of its parts. This is consistent with constraints in physiological matching of detoxification systems for herbivores experiencing variable toxin levels in their diet and represents a more generalizable way of understanding the impacts of variability on herbivory. Increasing defense variability in croplands at a scale encountered by individual herbivores can suppress herbivory, even if that is not anticipated by nonlinear averaging.

  2. Abscopal suppression of bone marrow erythropoiesis

    International Nuclear Information System (INIS)

    Werts, E.D.; Johnson, M.J.; DeGowin, R.L.

    1978-01-01

    Abscopal responses of hemopoietic tissue, which we noted in preliminary studies of mice receiving partial-body irradiation, led us to clarify these effects. In studies reported here, one hind leg of CF-1 female mice received 1000, 5000, or 10,000 rad of x radiation. We found a persistent shift from medullary to splenic erythropoiesis preventing anemia in mice receiving 5000 or 10,000 rad. Splenectomy prior to 5000-rad irradiation resulted in anemia, which was not ameliorated by exposure to intermittent hypoxia. Despite evidence for increased levels of erythropoietin in the animals, namely, a reticulocytosis and increased erythrocyte radioiron incorporation, both 59 Fe uptake and erythroblast counts in shielded marrow remained below normal. We found 50 to 90% suppression of the growth of marrow stromal colonies (MSC) from bone marrow aspirates of the shielded and irradiated femoral marrow at 1 month and at least 20% depression of MSC at 1 year, with each dose. We conclude that: (i) high doses of x radiation to one leg of mice caused prolonged suppression of medullary erythropoiesis with splenic compensation to prevent anemia; (ii) splenectomy, anemia, and hypoxia prevented the severe abscopal depression of medullary erythropoiesis; and (iii) suppressed medullary erythropoiesis with decreased growth of MSC suggested a change in the hemopoietic microenvironment of the bone marrow

  3. Adaptive Filtering for Aeroservoelastic Response Suppression, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CSA Engineering proposes the design of an adaptive aeroelastic mode suppression for advanced fly-by-wire aircraft, which will partition the modal suppression...

  4. The Suppression of Internal Unrest in South West Africa (Namibia ...

    African Journals Online (AJOL)

    AM Fokkens

    suppression of the Bondelswarts and the actions against Chief Ipumbu. This article .... firepower was an appropriate response to suppress the uprising of local ..... Morris accompanied by Beukes and a commando of 50 men, moved east.

  5. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif

    Directory of Open Access Journals (Sweden)

    Yuqing eFeng

    2014-08-01

    Full Text Available The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-DNA APOBEC3 enzymes deaminate cytosines to forms uracils in single-stranded (- DNA regions. Upon replication of the (-DNA to (+DNA, the HIV-1 reverse transcriptase incorporates adenines opposite the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but by several degradation-independent mechanisms such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective.

  6. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    Science.gov (United States)

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  7. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    Science.gov (United States)

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments. Copyright © 2013 Wiley Periodicals, Inc.

  8. Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices

    OpenAIRE

    Munteanu, Cristian Robert

    2014-01-01

    Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices, German Conference on Bioinformatics (GCB), Potsdam, Germany (September, 2007)

  9. Enzymic conversion of starch to glucose

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-19

    Corn is steeped in a SO/sub 2/ solution for 30 to 40 hours, coarsely ground, separated from the germ, and filtered. A 35% suspension of the germ-free corn, still containing fibers, hull, and gluten, is treated with Ca(OH)/sub 2/ to raise the pH to 6.5 to 7.0. A starch-liquifying enzyme is added and after a 2 hours treatment at 85/sup 0/ the liquefied starch is cooled to 60/sup 0/ and the pH is adjusted to 4.5 to 5.0 with H/sub 2/SO/sub 4/. A saccharifying enzyme is now added. After 40 to 81 hours, a raw glucose solution is obtained and is freed from fibers and gluten by filtration. The commercial starch-liquifying enzymes are designated HT-1000 and Neozyme 3 LC (liquid). The saccharifying enzymes are Diazyme or Diazyme L 30 (liquid). The solid enzymes are used at a level up to 0.1% by weight of the starch. Up to 100% conversion of starch into glucose is achieved.

  10. Thermophilic archaeal enzymes and applications in biocatalysis.

    Science.gov (United States)

    Littlechild, Jennifer A

    2011-01-01

    Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.

  11. Concentration profiles near an activated enzyme.

    Science.gov (United States)

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  12. Exploring Genetic Suppression Interactions on a Global Scale

    OpenAIRE

    van Leeuwen, Jolanda; Pons, Carles; Mellor, Joseph C.; Yamaguchi, Takafumi N.; Friesen, Helena; Koschwanez, John; Ušaj, Mojca Mattiazzi; Pechlaner, Maria; Takar, Mehmet; Ušaj, Matej; VanderSluis, Benjamin; Andrusiak, Kerry; Bansal, Pritpal; Baryshnikova, Anastasia; Boone, Claire

    2016-01-01

    Genetic suppression occurs when the phenotypic defects caused by a mutation in a particular gene are rescued by a mutation in a second gene. To explore the principles of genetic suppression, we examined both literature-curated and unbiased experimental data, involving systematic genetic mapping and whole-genome sequencing, to generate a large-scale suppression network among yeast genes. Most suppression pairs identified novel relationships among functionally related genes, providing new insig...

  13. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase

    Science.gov (United States)

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M.; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M.; Fuchs, Dietmar; Stuppner, Hermann

    2013-01-01

    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5 μM) and trachelogenin (IC50 of 57.4 μM) showed higher activity than matairesinol (IC50 >200 μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anti-cancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown. PMID:23867649

  14. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation

    Science.gov (United States)

    Georgescu, Roxana E; Schauer, Grant D; Yao, Nina Y; Langston, Lance D; Yurieva, Olga; Zhang, Dan; Finkelstein, Jeff; O'Donnell, Mike E

    2015-01-01

    We have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands. Hence, Pol ε is active with CMG on the leading strand, but it is unable to function on the lagging strand, even when Pol δ is not present. Conversely, Pol δ-PCNA is the only enzyme capable of extending Okazaki fragments in the presence of Pols ε and α. We have shown earlier that Pol δ-PCNA is suppressed on the leading strand with CMG (Georgescu et al., 2014). We propose that CMG, the 11-subunit helicase, is responsible for one or both of these suppression mechanisms that spatially control polymerase occupancy at the fork. DOI: http://dx.doi.org/10.7554/eLife.04988.001 PMID:25871847

  15. Compost made of organic wastes suppresses fusariosis

    Science.gov (United States)

    Kuryntseva, Polina; Galitskaya, Polina; Biktasheva, Liliya; Selivanovkaya, Svetlana

    2017-04-01

    Fungal plant diseases cause dramatic yield losses worldwide. Usually, pesticides are used for soil sanitation, and it results in practically pest-free soils, although pesticides cause a biological vacuum, which present many horticultural disadvantages. Suppressive composts, which possess both fertilizing properties for plants and inhibiting properties for plant pathogens, represent an effective and environmentally friendly alternative to conventional pesticides. In this study, composts obtained from agricultural organic wastes were applied to suppress Fusarium oxysporum of tomato plants in model experiments. Composts were made of mixtures of the widespread organic wastes sampled in Tatarstan (Russia): straw (SW), corn wastes (CW), chicken manure (ChM), cattle manure (CM) and swine manure (SM). 11 two- and three-component mixtures were prepared to obtain the optimal carbon-nitrogen, moisture and pH balances, and composted for 210 days. It was found that the thermophilic phase of composting in all the mixtures lasted from 2 to 35 days, and was characterized by significant fluctuations in temperature, i.e. from 27°C to 59°C. In the initial mixtures, the dissolved organic carbon (DOC) content was between 10 and 62 mg kg-1; it fell significantly on day 13, and then continuously decreased up to day 102, and subsequently remained low. For all the mixtures, maximal respiration activity was observed in the beginning of composting (231.9 mg CO2-C g-1 day-1). After 23 days, this parameter decreased significantly, and fluctuations subsided. The phytotoxicity of the initial compost mixtures varied from 18% (SW+SM) to 100% (CW+ChM+SM, CW+ChM); however, the trends in the dynamics were similar. After 120 days of composting, 5 of 11 samples were not phytotoxic. After 120 days of composting, each mixture was divided into two parts; one was inoculated with a biopreparation consisting of four microbial strains (Trichoderma asperellum, Pseudomonas putida, Pseudomonas fluorescens and

  16. One-tone suppression in the frog auditory nerve

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B

    1996-01-01

    Sixty-seven fibers of a sample of 401 in the auditory nerve of grassfrogs (Rana temporaria) showed one-tone suppression, i.e., their spontaneous activity was suppressed by tones. All fibers were afferents from the amphibian papilla with best frequencies between 100 and 400 Hz. Best suppression...

  17. Venture capital: States suffer as suppression expenses climb

    Science.gov (United States)

    Krista Gebert

    2008-01-01

    The high cost of suppressing wildfires is taking a toll on federal and state agencies alike. Large wildland fires are complex, costly events influenced by a vast array of physical, climatic, and social factors. During five of the last eight years, the Forest Services' wildfire suppression expenditures have topped $1 billion, and total federal wildland suppression...

  18. Microbial enrichment to enhance the disease suppressive activity of compost

    NARCIS (Netherlands)

    Postma, J.; Montenari, M.; Boogert, van den P.H.J.F.

    2003-01-01

    Compost amended soil has been found to be suppressive against plant diseases in various cropping systems. The level and reproducibility of disease suppressive properties of compost might be increased by the addition of antagonists. In the present study, the establishment and suppressive activity of

  19. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars

    Science.gov (United States)

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  20. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    Science.gov (United States)

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  1. Microbial genetic engineering and enzyme technology

    Energy Technology Data Exchange (ETDEWEB)

    Hollenberg, C.P.; Sahm, H.

    1987-01-01

    In a series of up-to-date contributions BIOTEC 1 has experts discussing the current topics in microbial gene technology and enzyme technology and speculating on future developments. Bacterial and yeast systems for the production of interferons, growth hormone or viral antigenes are described as well as the impact of gene technology on plants. Exciting is the prospect of degrading toxic compounds in our environment by microorganisms tuned in the laboratory. Enzymes are the most effective catalysts we know. They exhibit a very high substrate- and stereospecificity. These properties make enzymes extremely attractive as industrial catalysts, leading to new production processes that are non-polluting and save both energy and raw materials. (orig.) With 135 figs., 36 tabs.

  2. Ultrasound in Enzyme Activation and Inactivation

    Science.gov (United States)

    Mawson, Raymond; Gamage, Mala; Terefe, Netsanet Shiferaw; Knoerzer, Kai

    As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.

  3. Enzyme Histochemistry for Functional Histology in Invertebrates.

    Science.gov (United States)

    Cima, Francesca

    2017-01-01

    In invertebrates, enzyme histochemistry has recently found a renaissance regarding its applications in morphology and ecology. Many enzyme activities are useful for the morphofunctional characterization of cells, as biomarkers of biological and pathologic processes, and as markers of the response to environmental stressors. Here, the adjustments to classic techniques, including the most common enzymes used for digestion, absorption, transport, and oxidation, as well as techniques for azo-coupling, metal salt substitution and oxidative coupling polymerization, are presented in detail for various terrestrial and aquatic invertebrates. This chapter also provides strategies to solve the problems regarding anesthesia, small body size, the presence of an exo- or endoskeleton and the search for the best fixative in relation to the internal fluid osmolarity. These techniques have the aim of obtaining good results for both the pre- and post-embedding labeling of specimens, tissue blocks, sections, and hemolymph smears using both light and transmission electron microscopy.

  4. Intestinal enzyme distribution after supralethal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Gerber, G B; Buracchi, A; Deroo, J [Florence Univ. (Italy). Istituto di Radiologia; Centre d' Etude de l' Energie Nucleaire, Mol (Belgium). Dept. de Radiobiologie)

    1977-07-01

    The activity of some intestinal enzymes has been studied after 2 kR irradiation. Brush border enzymes, maltase and leucineaminopeptidase (LAP) show an increase 20 hours after irradiation, while after 72 hours their activities are reduced to very low levels. Lysosomal enzymes show a completely different behaviour: acid phosphatase activity increases only 72 hours after irradiation, whereas ..beta.. glucuronidase increases significantly after 20 hours and reaches values two or three times higher than controls after 72 hours. The histologic picture at the first interval after irradiation shows gross alterations in the crypt region, but the villi appear nearly normal. Seventy-two hours after irradiation the whole epithelium is affected and very numerous leukocytes are present in the stroma.

  5. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  6. Radiation and enzyme degradation of cellulose materials

    International Nuclear Information System (INIS)

    Duchacek, V.

    1983-01-01

    The results are summed up of a study of the effect of gamma radiation on pure cellulose and on wheat straw. The irradiation of cellulose yields acid substances - formic acid and polyhydroxy acids, toxic malondialdehyde and the most substantial fraction - the saccharides xylose, arabinose, glucose and certain oligosaccharides. A ten-fold reduction of the level of cellulose polymerization can be caused by relatively small doses - (up to 250 kGy). A qualitative analysis was made of the straw before and after irradiation and it was shown that irradiation had no significant effect on the qualitative composition of the straw. A 48 hour enzyme hydrolysis of the cellulose and straw were made after irradiation and an economic evaluation of the process was made. Radiation pretreatment is technically and economically advantageous; the production of fodder using enzyme hydrolysis of irradiated straw is not economically feasible due to the high cost of the enzyme. (M.D.)

  7. Engineering of pectinolytic enzymes for enhanced thermostability

    DEFF Research Database (Denmark)

    Larsen, Dorte Møller

    Conversion of waste materials into valuable compounds is promising concerning transformation of byproduct streams such as sugar beet and potato pulp. In order to obtain those compounds with reduced energy consumption, carbohydrate active enzymes can be used as catalysts. Sugar beet and potato pulp...... consist of pectin that can be converted into beneficial polymeric and oligomeric carbohydrates requiring enzymes such as pectin lyases, rhamnogalacturonan I (RGI) lyases, polygalacturonases and galactanases. Enzymatic conversion of such pectinaceous biomasses at high temperatures is advantageous...... as it gives rise to lower substrate viscosity, easier mixing, higher substrate solubility and lowers the risk of contamination. The overall objective of this thesis was to discover enzymes for degradation of RGI structures in pectin and further engineer for enhanced thermostability. The hypotheses were...

  8. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano; Kawana, Ayako; Nishiyama, Takahito; Ogura, Kenichiro [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Hiratsuka, Akira, E-mail: hiratuka@toyaku.ac.jp [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan)

    2011-10-07

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for a new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.

  9. Translational control of an intestinal microvillar enzyme

    DEFF Research Database (Denmark)

    Danielsen, E M; Cowell, G M; Sjöström, H

    1986-01-01

    The rates of biosynthesis of adult and foetal pig small-intestinal aminopeptidase N (EC 3.4.11.2) were compared to determine at which level the expression of the microvillar enzyme is developmentally controlled. In organ-cultured explants, the rate of biosynthesis of foetal aminopeptidase N is only...... about 3% of the adult rate. The small amount synthesized occurs in a high-mannose-glycosylated, membrane-bound, form that is processed to the mature, complex-glycosylated, form at a markedly slower rate than that of the adult enzyme. Extracts of total RNA from adult and foetal intestine contained...

  10. Enhanced Oil Recovery with Application of Enzymes

    OpenAIRE

    Khusainova, Alsu; Shapiro, Alexander; Woodley, John

    2016-01-01

    Enzymer er for nylig blevet rapporteret, som effektive stoffer for forbedret olieindvinding(EOR). Både laboratorie undersøgelser og felttest viste en markant stigning af olieproduktion. Op til ekstra 16 % af olien blev produceret i laboratorie eksperimenter og op til ekstra 269 tønder olie per dag blev fremstillet under feltforsøg. Det var foreslået, at følgende mekanismer har medvirket tiløget olieproduktionen på grund af enzymer: forbedringer af bjergartsoverfladens befugtningsevne;dannelse...

  11. Why expressive suppression does not pay? Cognitive costs of negative emotion suppression: The mediating role of subjective tense-arousal

    Directory of Open Access Journals (Sweden)

    Szczygieł Dorota

    2015-09-01

    Full Text Available The aim of this paper was to contribute to a broader understanding of the cognitive consequences of expressive suppression. Specifically, we examined whether the deteriorating effect of expressive suppression on cognitive functioning is caused by tense arousal enhanced by suppression. Two experiments were performed in order to test this prediction. In both studies we tested the effect of expressive suppression on working memory, as measured with a backwards digit-span task (Study 1, N = 43 and anagram problem-solving task (Study 2, N = 60. In addition, in Study 2 we tested whether expressive suppression degrades memory of the events that emerged during the period of expressive suppression. Both studies were conducted in a similar design: Participants watched a film clip which evoked negative emotions (i.e. disgust in Study 1 and a combination of sadness and anxiety in Study 2 under the instruction to suppress those negative emotions or (in the control condition to simply watch the film. The results of these experiments lead to three conclusions. First, the results reveal that expressive suppression degrades memory of the events that emerged during the period of expressive suppression and leads to poorer performance on working memory tasks, as measured with a backwards digit-span task and anagram problem-solving task. Second, the results indicate that expressive suppression leads to a significant increase in subjective tense arousal. Third, the results support our prediction that expressive suppression decreases cognitive performance through its effects on subjective tense arousal. The results of the Study 1 show that tense arousal activated during expressive suppression of disgust fully mediates the negative effect of suppression on working memory as measured with a backwards digit-span task. The results of Study 2 reveal that subjective tense arousal elicited while suppressing sadness and anxiety mediates both the effect of suppression on

  12. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  13. 21 CFR 862.2500 - Enzyme analyzer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme analyzer for clinical use. 862.2500 Section... Instruments § 862.2500 Enzyme analyzer for clinical use. (a) Identification. An enzyme analyzer for clinical use is a device intended to measure enzymes in plasma or serum by nonkinetic or kinetic measurement of...

  14. 21 CFR 864.9400 - Stabilized enzyme solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stabilized enzyme solution. 864.9400 Section 864... and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme... enzyme solutions include papain, bromelin, ficin, and trypsin. (b) Classification. Class II (performance...

  15. Review of the biochemical basis of enzyme immunoassays

    International Nuclear Information System (INIS)

    Klingler, W.

    1982-01-01

    The ever increasing number of radioimmunological determination poses problems allied with the handling of radioactive substances. In recent years various non-radioactive methods have been developed, among which the enzyme immunoassay is already in routine use. Homogeneous and heterogeneous enzyme immunoassays are described. Criteria for enzymes, substrates and enzyme-substrate reactions are listed. (orig.) [de

  16. Seeing & Feeling How Enzymes Work Using Tangible Models

    Science.gov (United States)

    Lau, Kwok-chi

    2013-01-01

    This article presents a tangible model used to help students tackle some misconceptions about enzyme actions, particularly the induced-fit model, enzyme-substrate complementarity, and enzyme inhibition. The model can simulate how substrates induce a change in the shape of the active site and the role of attraction force during enzyme-substrate…

  17. Psychophysical research progress of interocular suppression in amblyopic visual system

    Directory of Open Access Journals (Sweden)

    Jing-Jing Li

    2016-03-01

    Full Text Available Some recent animal experiments and psychophysical studies indicate that patients with amblyopia have a structurally intact binocular visual system that is rendered functionally monocular due to suppression, and interocular suppression is a key mechanism in visual deficits experienced by patients with amblyopia. The aim of this review is to provide an overview of recent psychophysical findings that have investigated the important role of interocular suppression in amblyopia, the measurement and modulation of suppression, and new dichoptic treatment intervention that directly target suppression.

  18. Reprogramming the Phenylpropanoid Metabolism in Seeds of Oilseed Rape by Suppressing the Orthologs of REDUCED EPIDERMAL FLUORESCENCE11[W

    Science.gov (United States)

    Mittasch, Juliane; Böttcher, Christoph; Frolov, Andrej; Strack, Dieter; Milkowski, Carsten

    2013-01-01

    As a result of the phenylpropanoid pathway, many Brassicaceae produce considerable amounts of soluble hydroxycinnamate conjugates, mainly sinapate esters. From oilseed rape (Brassica napus), we cloned two orthologs of the Arabidopsis (Arabidopsis thaliana) gene REDUCED EPIDERMAL FLUORESCENCE1 (REF1) encoding a coniferaldehyde/sinapaldehyde dehydrogenase. The enzyme is involved in the formation of ferulate and sinapate from the corresponding aldehydes, thereby linking lignin and hydroxycinnamate biosynthesis as a potential branch-point enzyme. We used RNA interference to silence REF1 genes in seeds of oilseed rape. Nontargeted metabolite profiling showed that BnREF1-suppressing seeds produced a novel chemotype characterized by reduced levels of sinapate esters, the appearance of conjugated monolignols, dilignols, and trilignols, altered accumulation patterns of kaempferol glycosides, and changes in minor conjugates of caffeate, ferulate, and 5-hydroxyferulate. BnREF1 suppression affected the level of minor sinapate conjugates more severely than that of the major component sinapine. Mapping of the changed metabolites onto the phenylpropanoid metabolic network revealed partial redirection of metabolic sequences as a major impact of BnREF1 suppression. PMID:23424250

  19. Reprogramming the phenylpropanoid metabolism in seeds of oilseed rape by suppressing the orthologs of reduced epidermal fluorescence1.

    Science.gov (United States)

    Mittasch, Juliane; Böttcher, Christoph; Frolov, Andrej; Strack, Dieter; Milkowski, Carsten

    2013-04-01

    As a result of the phenylpropanoid pathway, many Brassicaceae produce considerable amounts of soluble hydroxycinnamate conjugates, mainly sinapate esters. From oilseed rape (Brassica napus), we cloned two orthologs of the Arabidopsis (Arabidopsis thaliana) gene reduced epidermal fluorescence1 (REF1) encoding a coniferaldehyde/sinapaldehyde dehydrogenase. The enzyme is involved in the formation of ferulate and sinapate from the corresponding aldehydes, thereby linking lignin and hydroxycinnamate biosynthesis as a potential branch-point enzyme. We used RNA interference to silence REF1 genes in seeds of oilseed rape. Nontargeted metabolite profiling showed that BnREF1-suppressing seeds produced a novel chemotype characterized by reduced levels of sinapate esters, the appearance of conjugated monolignols, dilignols, and trilignols, altered accumulation patterns of kaempferol glycosides, and changes in minor conjugates of caffeate, ferulate, and 5-hydroxyferulate. BnREF1 suppression affected the level of minor sinapate conjugates more severely than that of the major component sinapine. Mapping of the changed metabolites onto the phenylpropanoid metabolic network revealed partial redirection of metabolic sequences as a major impact of BnREF1 suppression.

  20. Subjective duration distortions mirror neural repetition suppression.

    Directory of Open Access Journals (Sweden)

    Vani Pariyadath

    Full Text Available Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression.Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli followed by a line presented at a different orientation (oddball stimulus. We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials.Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  1. Bone-suppressed radiography using machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Beom; Kim, Dae Cheon; Kim, Ho Kyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The single-shot dual-energy imaging suffers from reduced contrast-to-noise ratio performance due to poor spectral separation. Tomosynthesis requires more complex motion equipment and may require higher patient dose. An alternative tissue-specific imaging technique was introduced. This alternative technique usually possesses a filter to generate bone-only images for given digital radiographs. Therefore, it provides soft-tissue-enhanced images from the subtraction of given radiographs and filtered bone-only images. Only bone-suppressed imaging capability is a limitation of the method. The filter can be obtained from a machine-learning algorithm, e.g. artificial neural network (ANN), with the dual-energy bone-only images (called 'teaching' images). We suspect the robustness of the filter may be dependent upon the number of teaching images and the number of patients from whose radiographs we obtain the teaching images. In this study, we design an ANN to obtain a bone-extracting filter from a radiograph, and investigate the filter properties with respect to various ANN parameters. Preliminary results are summarized in Fig. 3. We extracted 5,000 subregions in a 21x21 pixel format from the lung region in the bone-enhanced dual-energy image and we used them for teaching images during training the ANN. The resultant bone-enhanced image from the ANN nonlinear filter is shown in Fig. 3 (a). From the weighted logarithmic subtraction between Fig. 2 (a) and Fig. 3 (a), we could obtain the bone-suppressed image as shown in Fig. 3 (b). The quality of the bone-suppressed image is comparable to the ground truth Fig. 2 (c).

  2. Glechoma hederacea Suppresses RANKL-mediated Osteoclastogenesis.

    Science.gov (United States)

    Hwang, J K; Erkhembaatar, M; Gu, D R; Lee, S H; Lee, C H; Shin, D M; Lee, Y R; Kim, M S

    2014-07-01

    Glechoma hederacea (GH), commonly known as ground-ivy or gill-over-the-ground, has been extensively used in folk remedies for relieving symptoms of inflammatory disorders. However, the molecular mechanisms underlying the therapeutic action of GH are poorly understood. Here, we demonstrate that GH constituents inhibit osteoclastogenesis by abrogating receptor activator of nuclear κ-B ligand (RANKL)-induced free cytosolic Ca(2+) ([Ca(2+)]i) oscillations. To evaluate the effect of GH on osteoclastogenesis, we assessed the formation of multi-nucleated cells (MNCs), enzymatic activity of tartrate-resistant acidic phosphatase (TRAP), expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), and [Ca(2+)]i alterations in response to treatment with GH ethanol extract (GHE) in primarily cultured bone marrow-derived macrophages (BMMs). Treatment of RANKL-stimulated or non-stimulated BMMs with GHE markedly suppressed MNC formation, TRAP activity, and NFATc1 expression in a dose-dependent manner. Additionally, GHE treatment induced a large transient elevation in [Ca(2+)]i while suppressing RANKL-induced [Ca(2+)]i oscillations, which are essential for NFATc1 activation. GHE-evoked increase in [Ca(2+)]i was dependent on extracellular Ca(2+) and was inhibited by 1,4-dihydropyridine (DHP), inhibitor of voltage-gated Ca(2+) channels (VGCCs), but was independent of store-operated Ca(2+) channels. Notably, after transient [Ca(2+)] elevation, treatment with GHE desensitized the VGCCs, resulting in an abrogation of RANKL-induced [Ca(2+)]i oscillations and MNC formation. These findings demonstrate that treatment of BMMs with GHE suppresses RANKL-mediated osteoclastogenesis by activating and then desensitizing DHP-sensitive VGCCs, suggesting potential applications of GH in the treatment of bone disorders, such as periodontitis, osteoporosis, and rheumatoid arthritis. © International & American Associations for Dental Research.

  3. Bone-suppressed radiography using machine learning

    International Nuclear Information System (INIS)

    Park, Jun Beom; Kim, Dae Cheon; Kim, Ho Kyung

    2016-01-01

    The single-shot dual-energy imaging suffers from reduced contrast-to-noise ratio performance due to poor spectral separation. Tomosynthesis requires more complex motion equipment and may require higher patient dose. An alternative tissue-specific imaging technique was introduced. This alternative technique usually possesses a filter to generate bone-only images for given digital radiographs. Therefore, it provides soft-tissue-enhanced images from the subtraction of given radiographs and filtered bone-only images. Only bone-suppressed imaging capability is a limitation of the method. The filter can be obtained from a machine-learning algorithm, e.g. artificial neural network (ANN), with the dual-energy bone-only images (called 'teaching' images). We suspect the robustness of the filter may be dependent upon the number of teaching images and the number of patients from whose radiographs we obtain the teaching images. In this study, we design an ANN to obtain a bone-extracting filter from a radiograph, and investigate the filter properties with respect to various ANN parameters. Preliminary results are summarized in Fig. 3. We extracted 5,000 subregions in a 21x21 pixel format from the lung region in the bone-enhanced dual-energy image and we used them for teaching images during training the ANN. The resultant bone-enhanced image from the ANN nonlinear filter is shown in Fig. 3 (a). From the weighted logarithmic subtraction between Fig. 2 (a) and Fig. 3 (a), we could obtain the bone-suppressed image as shown in Fig. 3 (b). The quality of the bone-suppressed image is comparable to the ground truth Fig. 2 (c).

  4. Fire suppression as a thermal implosion

    Science.gov (United States)

    Novozhilov, Vasily

    2017-01-01

    The present paper discusses the possibility of the thermal implosion scenario. This process would be a reverse of the well known thermal explosion (autoignition) phenomenon. The mechanism for thermal implosion scenario is proposed which involves quick suppression of the turbulent diffusion flame. Classical concept of the thermal explosion is discussed first. Then a possible scenario for the reverse process (thermal implosion) is discussed and illustrated by a relevant mathematical model. Based on the arguments presented in the paper, thermal implosion may be observed as an unstable equilibrium point on the generalized Semenov diagram for turbulent flame, however this hypothesis requires ultimate experimental confirmation.

  5. Applications of zero-suppressed decision diagrams

    CERN Document Server

    Sasao, Tsutomu

    2014-01-01

    A zero-suppressed decision diagram (ZDD) is a data structure to represent objects that typically contain many zeros. Applications include combinatorial problems, such as graphs, circuits, faults, and data mining. This book consists of four chapters on the applications of ZDDs. The first chapter by Alan Mishchenko introduces the ZDD. It compares ZDDs to BDDs, showing why a more compact representation is usually achieved in a ZDD. The focus is on sets of subsets and on sum-of-products (SOP) expressions. Methods to generate all the prime implicants (PIs), and to generate irredundant SOPs are show

  6. Experimental Status Of $J/\\psi$ Suppression

    CERN Document Server

    Kluberg, L; Alessandro, B; Alexa, C; Arnaldi, R; Astruc, J; Atayan, M; Baglin, C; Baldit, A; Bedjidian, M; Bellaiche, F; Beolè, S; Boldea, V; Bordalo, P; Bussière, A; Capelli,L; Capony, V; Casagrande, L; Castor, J; Chambon, T; Chaurand, B; Chevrot, I; Cheynis, B; Chiavassa, E; Cicalò, C; Comets, M P; Constans, N; Constantinescu, S; Cruz, J; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Filippov, S N; Fleuret, F; Force, P; Gallio, M; Gavrilov, Y K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanyan, H; Hakobyan, R; Haroutunian, R; Idzik, M; Jouan, D; Karavitcheva, T L; Kurepin, A B; Le Bornec, Y; Lourenrço, C; Macciotta, P; Mac Cormick, M; Marzari- Chiesa, A; Masera, M; Masoni, A; Mehrabyan, S; Monteno, M; Mourgues, S; Musso, A; Ohlsson-Malek, F; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Puddu, G; Quintans, C; Racca, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Ropotar, I; Saturnini, P; Scomparin, E; Serci, S; Shahoyan, R; Silva, S; Sitta, M; Soave, C; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, E; Villatte, L; Willis, N

    2001-01-01

    The most recent results obtained by experiment NA50 show that the $J /\\psi$ cross-section per nucleon-nucleon collision in semi-peripheral Pb-Pb reactions is "normally" suppressed in the sense that it follows the trend already observed from p-p and up to the most central S-U reactions. A clear change of behaviour is observed for more central Pb-Pb collisions which could be due to the transition of normal nuclear matter to its predicted Quark-Gluon Plasma state

  7. Improved attractants for enhancing tsetse fly suppression

    International Nuclear Information System (INIS)

    2003-09-01

    At the initiation of this co-ordinated research project (CRP), the available visually attractant devices and odours for entomological monitoring and for suppression of tsetse fly populations were not equally effective against all economically important tsetse fly species. For species like G. austeni, G. brevipalpis, G. swynnertoni and some species of the PALPALIS-group of tsetse flies no sufficiently effective combinations of visual or odour attractants were available for efficient suppression and standardized monitoring as part of an operational integrated intervention campaign against the tsetse and trypanosomosis (T and T) problem. The Co-ordinated Research Project on Improved Attractants for Enhancing the Efficiency of Tsetse Fly Suppression Operations and Barrier Systems used in Tsetse Control/Eradication Campaigns involved (a) the identification, synthesis and provision of candidate kairomones, their analogues and of dispensers; (b) laboratory screening of synthesised candidate kairomones through electrophysiological studies and wind tunnel experiments; (c) field tests of candidate kairomones alone or as part of odour blends, in combination with available and or new trap designs; and (d) analysis of hydrocarbons that influence tsetse sexual behaviour. The CRP accomplished several main objectives, namely: - The screening of new structurally related compounds, including specific stereoisomers, of known tsetse attractants resulted in the identification of several new candidate odour attractants with promising potential. - An efficient two-step synthetic method was developed for the pilot plant scale production of 3-n-propyphenol, synergistic tsetse kairomone component. - Electrophysiological experiments complemented with wind tunnel studies provided an efficient basis for the laboratory screening of candidate attractants prior to the initiation of laborious field tests. - New traps were identified and modifications of existing traps were tested for some species

  8. Pressure suppression system for a nuclear reactor

    International Nuclear Information System (INIS)

    Jost, N.

    1977-01-01

    The invention pertains to a pressure suppression system for PWR reactors where the parts enclosing the primary coolant are contained in two pressure-tight separate chambers. According to the invention, these chambers are partly filled with water and are connected with each other below the water surface. This way, gases cannot escape from the containment, not even if a valve and a line are damaged at the same time, as the vapours released condensate in the water of at least one of the other chambers. (HP) [de

  9. Fractional order absolute vibration suppression (AVS) controllers

    Science.gov (United States)

    Halevi, Yoram

    2017-04-01

    Absolute vibration suppression (AVS) is a control method for flexible structures. The first step is an accurate, infinite dimension, transfer function (TF), from actuation to measurement. This leads to the collocated, rate feedback AVS controller that in some cases completely eliminates the vibration. In case of the 1D wave equation, the TF consists of pure time delays and low order rational terms, and the AVS controller is rational. In all other cases, the TF and consequently the controller are fractional order in both the delays and the "rational parts". The paper considers stability, performance and actual implementation in such cases.

  10. The relation of weight suppression and BMI to bulimic symptoms.

    Science.gov (United States)

    Butryn, Meghan L; Juarascio, Adrienne; Lowe, Michael R

    2011-11-01

    High levels of weight suppression have been associated with greater binge eating and weight gain as well as poorer treatment outcome in bulimia nervosa. This study examined the relationship between weight suppression and bulimia nervosa symptoms and explored how weight suppression might interact with body mass index (BMI) in accounting for level of symptomatology at presentation for treatment. Participants were 64 women with threshold or sub-threshold bulimia nervosa. A clinical interview assessed binge eating and purging. Weight suppression and the interaction between BMI and weight suppression predicted frequency of binge eating such that participants with low BMI and high weight suppression engaged in the most binge eating. High levels of weight suppression also predicted more frequent purging. Additional research is warranted to examine mediators of these relationships. Copyright © 2010 Wiley Periodicals, Inc.

  11. Purification, characterization of phytase enzyme from Lactobacillus ...

    African Journals Online (AJOL)

    Purification, characterization of phytase enzyme from Lactobacillus plantarum bacteria and determination of its kinetic properties. ... Many of the cereal grains, legumes and oilseeds store phosphorus in phytate form. Phytases can be produced by plants, animals and microorganisms. However, the ones with microbial origin ...

  12. Enzyme Replacement Therapy for Fabry Disease

    Directory of Open Access Journals (Sweden)

    Maria Dolores Sanchez-Niño PhD

    2016-11-01

    Full Text Available Fabry disease is a rare X-linked disease caused by the deficiency of α-galactosidase that leads to the accumulation of abnormal glycolipid. Untreated patients develop potentially lethal complications by age 30 to 50 years. Enzyme replacement therapy is the current standard of therapy for Fabry disease. Two formulations of recombinant human α-galactosidase A (agalsidase are available in most markets: agalsidase-α and agalsidase-β, allowing a choice of therapy. However, the US Food and Drug Administration rejected the application for commercialization of agalsidase-α. The main difference between the 2 enzymes is the dose. The label dose for agalsidase-α is 0.2 mg/kg/2 weeks, while the dose for agalsidase-β is 1.0 mg/kg/2 weeks. Recent evidence suggests a dose-dependent effect of enzyme replacement therapy and agalsidase-β is 1.0 mg/kg/2 weeks, which has been shown to reduce the occurrence of hard end points (severe renal and cardiac events, stroke, and death. In addition, patients with Fabry disease who have developed tissue injury should receive coadjuvant tissue protective therapy, together with enzyme replacement therapy, to limit nonspecific progression of the tissue injury. It is likely that in the near future, additional oral drugs become available to treat Fabry disease, such as chaperones or substrate reduction therapy.

  13. Enzyme catalysis by entropy without Circe effect.

    Science.gov (United States)

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-03-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  14. Biochemical assessement of liver enzymes in immunocompromised ...

    African Journals Online (AJOL)

    Aim: This study aims at the estimation of serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), Aspartate aminotransferase (AST), and glutmyltransferase GGT (Liver enzymes) in Human immunodeficiency virus(HIV) and/or Acquired immune deficiency syndrome(AIDS) patients in parts of Edo State, Nigeria.

  15. Enzyme specific activity in functionalized nanoporous supports

    International Nuclear Information System (INIS)

    Lei Chenghong; Soares, Thereza A; Shin, Yongsoon; Liu Jun; Ackerman, Eric J

    2008-01-01

    Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (P LD ) in functionalized nanoporous supports so that the enzyme immobilization efficiency (I e , defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase (GOX) and a net positively charged organophosphorus hydrolase (OPH) were entrapped spontaneously in NH 2 - and HOOC-functionalized mesoporous silica (300 A, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing P LD . With decreasing P LD , I e of GOX in FMS increased from 150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing P LD . With increasing P LD , the corresponding I e of OPH in FMS increased from 100% to>200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high P LD , consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high P LD and may promote a more favorable confinement environment that enhances the OPH activity

  16. Exogenous fibrolytic enzymes to unlock nutrients: Histological ...

    African Journals Online (AJOL)

    There is a need for a better understanding of the mode-of-action of exogenous fibrolytic enzymes (EFE) used as additives in ruminant feeds. Four forages, treated with EFE, were evaluated in vitro and histologically, in an attempt to determine the effect of EFE on tissue degradation. Weeping love grass, kikuyu leaf material, ...

  17. Microbial nitrilases: versatile, spiral forming, industrial enzymes

    CSIR Research Space (South Africa)

    Thuku, RN

    2009-03-01

    Full Text Available such case is the NAD+ synthetase from Mycobacterium tuberculosis (Bellinzoni et al., 2005). This enzyme relies on an associated amino-terminal amidase domain in order to utilize glutamine as a source of nitrogen and liberate ammonia which is required...

  18. A Comprehensive Enzyme Kinetic Exercise for Biochemistry

    Science.gov (United States)

    Barton, Janice S.

    2011-01-01

    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…

  19. A Qualitative Approach to Enzyme Inhibition

    Science.gov (United States)

    Waldrop, Grover L.

    2009-01-01

    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  20. Enzyme Kinetics? Elementary, my dear 3 -8 ...

    Indian Academy of Sciences (India)

    research interests are in the areas of protein- ... rate constant for the formation of products, k3 is significantly of some enzymes. ... tissue at different stages of development. .... represent the only values of Km and V max that satisfy all of the sets.

  1. Angiotensin Converting Enzyme Insertion/Deletion Gene ...

    African Journals Online (AJOL)

    Angiotensin Converting Enzyme Insertion/Deletion Gene Polymorphism: An Observational Study among Diabetic Hypertensive Subjects in Malaysia. ... Methods: The pharmacological effect of ACE inhibition on mean arterial pressure (MAP) and glomerular filtration rate (GFR) were observed among a total of 62 subjects for ...

  2. Protein engineering of enzymes for process applications

    DEFF Research Database (Denmark)

    Woodley, John M

    2013-01-01

    opportunities will be targeted on modification to enable process application. This article discusses the challenges involved in enzyme modification focused on process requirements, such as the need to fulfill reaction thermodynamics, specific activity under the required conditions, kinetics at required...... concentrations, and stability. Finally, future research directions are discussed, including the integration of biocatalysis with neighboring chemical steps....

  3. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The aim of this study was to produce a secreted, heterologously expressed Phanerochaete chrysosporium cellobiohydrolase (CBHI.1) protein that required no in vitro chemical refolding and to investigate the cellulolytic activity of the clone expressing the glutathione S-transferase (GST) fused CBHI.1 protein. Plate enzyme ...

  4. Detergents - Zeolites and Enzymes Excel Cleaning Power

    Indian Academy of Sciences (India)

    Presently used detergent formulations generally consist of surfactants, builder and cobuilder, bleaching agents, addi- tives for secondary benefits and enzymes. Zeolites are basically hydrated crystalline aluminium silicates which function as ion exchangers and make the water soft by removing calcium, magnesium and ...

  5. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    Science.gov (United States)

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Furin is a chemokine-modifying enzyme

    DEFF Research Database (Denmark)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A

    2004-01-01

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the tota...

  7. Ligninolytic enzyme complex of Armillaria spp

    Czech Academy of Sciences Publication Activity Database

    Stoychev, I.; Nerud, František

    2000-01-01

    Roč. 45, č. 3 (2000), s. 248-250 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : lignin olytic enzyme * lignin peroxidase Subject RIV: EE - Microbiology, Virology Impact factor: 0.752, year: 2000

  8. Involvement of methyltransferases enzymes during the energy ...

    African Journals Online (AJOL)

    The methyl group transfer from dimethylsulfide (DMS), trimethylamine and methanol to 2-mercaptoethanesulfonic acid (coenzyme M) were investigated from cell extracts of Methanosarcina semesiae sp. nov. to evaluate whether the enzyme systems involved were constitutive or inductive. The extracts from cells grown on ...

  9. Computationally designed libraries for rapid enzyme stabilization

    NARCIS (Netherlands)

    Wijma, Hein J.; Floor, Robert J.; Jekel, Peter A.; Baker, David; Marrink, Siewert J.; Janssen, Dick B.

    The ability to engineer enzymes and other proteins to any desired stability would have wide-ranging applications. Here, we demonstrate that computational design of a library with chemically diverse stabilizing mutations allows the engineering of drastically stabilized and fully functional variants

  10. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    In the present work, we studied the role of antioxidant scavenging enzymes of plant pathogenic bacteria: catalase, ascorbate peroxidase and a virulence factor; extracelluar polysaccharide production in determining the virulence of Xanthomonas oryzae pv. oryzae (Xoo) isolates and its differential reaction to rice cultivars.

  11. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede

    , and reduce the risk of contaminations. Cold- and alkaline-active enzymes can be found in microorganisms adapted to living in natural environments with these conditions, which are extremely rare but found in the unique ikaite columns from SW Greenland (4-6 °C, pH >10). It is estimated that less than 1...

  12. Microbial nitrilases: versatile, spiral forming, industrial enzymes.

    Science.gov (United States)

    Thuku, R N; Brady, D; Benedik, M J; Sewell, B T

    2009-03-01

    The nitrilases are enzymes that convert nitriles to the corresponding acid and ammonia. They are members of a superfamily, which includes amidases and occur in both prokaryotes and eukaryotes. The superfamily is characterized by having a homodimeric building block with a alpha beta beta alpha-alpha beta beta alpha sandwich fold and an active site containing four positionally conserved residues: cys, glu, glu and lys. Their high chemical specificity and frequent enantioselectivity makes them attractive biocatalysts for the production of fine chemicals and pharmaceutical intermediates. Nitrilases are also used in the treatment of toxic industrial effluent and cyanide remediation. The superfamily enzymes have been visualized as dimers, tetramers, hexamers, octamers, tetradecamers, octadecamers and variable length helices, but all nitrilase oligomers have the same basic dimer interface. Moreover, in the case of the octamers, tetradecamers, octadecamers and the helices, common principles of subunit association apply. While the range of industrially interesting reactions catalysed by this enzyme class continues to increase, research efforts are still hampered by the lack of a high resolution microbial nitrilase structure which can provide insights into their specificity, enantioselectivity and the mechanism of catalysis. This review provides an overview of the current progress in elucidation of structure and function in this enzyme class and emphasizes insights that may lead to further biotechnological applications.

  13. Enzymes and Ecosystems -- Where Do They Overlap?

    Science.gov (United States)

    Richard E. Dickson

    1996-01-01

    The whole plant is not the sum of its enzyme systems. This book demonstrates the importance of whole-plant physiology by examining carbon-nitrogen interactions and how these interactions are influenced by demands of the whole plant. In some aspects it is a timely response to the current, strong reductionist trends in plant physiology associated with advances in...

  14. Transition state theory for enzyme kinetics

    Science.gov (United States)

    Truhlar, Donald G.

    2015-01-01

    This article is an essay that discusses the concepts underlying the application of modern transition state theory to reactions in enzymes. Issues covered include the potential of mean force, the quantization of vibrations, the free energy of activation, and transmission coefficients to account for nonequilibrium effect, recrossing, and tunneling. PMID:26008760

  15. Synthetic Applications of Nitrile-Converting Enzymes

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Mylerová, Veronika

    2003-01-01

    Roč. 7, - (2003), s. 1279-1295 ISSN 1385-2728 R&D Projects: GA AV ČR IAA4020213 Institutional research plan: CEZ:AV0Z5020903 Keywords : nitrile * converting * enzymes Subject RIV: EE - Microbiology, Virology Impact factor: 2.521, year: 2003

  16. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  17. Chitinolytic enzymes produces by ovine rumen bacteria

    Czech Academy of Sciences Publication Activity Database

    Kopečný, Jan; Hodrová, Blanka

    2000-01-01

    Roč. 45, č. 5 (2000), s. 465-468 ISSN 0015-5632 R&D Projects: GA ČR GA524/97/1221 Institutional research plan: CEZ:AV0Z5045916 Keywords : chitinolytic enzymes Subject RIV: ED - Physiology Impact factor: 0.752, year: 2000

  18. growth and extracellular enzyme production by microorganisms

    African Journals Online (AJOL)

    Okorie

    2013-06-26

    Jun 26, 2013 ... 1Federal Institute of Industrial Research Oshodi, Lagos, Nigeria. 2Department of ... of Bacillus subtilis (Bs2) were able to produce lipase enzyme. The study ... However, most commercial starter cultures originated from those ... The traditional method of preparing Ugba was employed in the laboratory to ...

  19. Laccase Enzymes in Inocula Pleurotus spp

    Directory of Open Access Journals (Sweden)

    Nora García-Oduardo

    2017-01-01

    Full Text Available The cultivation of edible and medicinal mushrooms Pleurotus has been aimed at promoting alternative management for agricultural products. This basidiomicete has been the subject of numerous studies because of its fruiting body constitutes a food, being a producer of enzymes with industrial interest and for its ability of biotransformation of lignocellulosic substrates. Pleurotus inocula in the established technology for growing edible and medicinal mushrooms in the CEBI Research- Production Plant were performed using sorghum or wheat. However, it is possible to expand the possibilities with other substrates. In this paper, the results of laccase enzymes production in inocula prepared with sorghum, corn and coffee pulp with two strains Pleurotus ostreatus CCEBI 3021 and Pleurotus ostreatus CCEBI 3024 are presented. The period of preparation of seed reaches 15-21 days, the measurements of laccase activity were performed in periods of seven days. Extraction of crude enzyme was performed in aqueous phase, the determination of the laccase enzyme activity, using guaiacol as substrate. The results obtained in this work with studies in previous work using sorghum as inocula are compared. It is found that higher yields are obtained laccase in coffee pulp. This study contributes to the theoretical knowledge and to provide alternatives for securing the production process of the plant.

  20. Lignocellulose degradation, enzyme production and protein ...

    African Journals Online (AJOL)

    Microbial conversion of corn stover by white rot fungi has the potential to increase its ligninolysis and nutritional value, thereby transforming it into protein-enriched animal feed. Response surface methodology was applied to optimize conditions for the production of lignocellulolytic enzymes by Trametes versicolor during ...

  1. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wösten-van Asperen, Roelie M.; Bos, Albert P.; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, René

    2013-01-01

    Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts angiotensin

  2. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wosten-van Asperen, Roelie M.; Bos, Albert; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, Rene

    2013-01-01

    Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts

  3. Impaired methylation as a novel mechanism for proteasome suppression in liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Osna, Natalia A., E-mail: nosna@UNMC.edu [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); White, Ronda L.; Donohue, Terrence M. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); Beard, Michael R. [Department of Molecular Biosciences, University of Adelaide (Australia); Tuma, Dean J.; Kharbanda, Kusum K. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States)

    2010-01-08

    The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.

  4. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  5. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.

    Science.gov (United States)

    Várnai, Anikó; Viikari, Liisa; Marjamaa, Kaisa; Siika-aho, Matti

    2011-01-01

    The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Effect of irradiation on immobilized enzymes compared with that on enzymes in solution

    International Nuclear Information System (INIS)

    Schachinger, L.; Schippel, C.; Altmann, E.; Diepold, B.; Yang, C.; Jaenike, M.; Hochhaeuser, E.

    1985-01-01

    Glucose oxidase and catalase were immobilized by attaching them to nylon fibers that had been treated with triethyloxonium-tetrafluoroborate, diaminohexane and glutaraldialdehyde according to Morris, Campell and Hornby (1975). This method assures that the enzymes are bound to a side chain of the polyamide structure. Enzyme activity (as measured by the O 2 -uptake and by microcalorimetry) was found to be unchanged after 2 years. The apparent Ksub(m)-constants of the immobilized enzymes with glucose were the same as those for enzymes in solution. GOD and catalase immobilized in poly(acrylamide) gel had the same Ksub(m)-value. Despite the high stability during storage, the radiation induced inactivation of enzymes immobilized on gel or chromosorb, an inorganic carrier, was of the same order of magnitude as that of the dissolved enzymes. The enzymes bound to nylon fibers showed a higher radiation sensitivity. This might have been caused by an additional attack on the binding site of the carrier. (orig.)

  7. Nanoarmored Enzymes for Organic Enzymology: Synthesis and Characterization of Poly(2-Alkyloxazoline)-Enzyme Conjugates.

    Science.gov (United States)

    Leurs, Melanie; Tiller, Joerg C

    2017-01-01

    The properties of enzymes can be altered significantly by modification with polymers. Numerous different methods are known to obtain such polymer-enzyme conjugates (PECs). However, there is no universal method to render enzymes into PECs that are fully soluble in organic solvents. Here, we present a method, which achieves such high degree of modification of proteins that the majority of modified enzymes will be soluble in organic solvents. This is achieved by preparing poly(2-alkyloxazoline)s (POx) with an NH 2 end group and coupling this functional polymer via pyromellitic acid dianhydride onto the amino groups of the respective protein. The resulting PECs are capable of serving as surfactants for unmodified proteins, rendering the whole mixture organosoluble. Depending on the nature of the POx and the molecular weight and the nature of the enzyme, the PECs are soluble in chloroform or even toluene. Another advantage of this method is that the poly(2-alkyloxazoline) can be activated with the coupling agent and used for the enzyme conjugation without further purification. The POx-enzyme conjugates generated by this modification strategy show modulated catalytic activity in both, aqueous and organic, systems. © 2017 Elsevier Inc. All rights reserved.

  8. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  9. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.

    Science.gov (United States)

    Omelchenko, Marina V; Galperin, Michael Y; Wolf, Yuri I; Koonin, Eugene V

    2010-04-30

    Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.

  10. Therapeutic Enzymes: Applications and Approaches to Pharmacological Improvement.

    Science.gov (United States)

    Yari, Maryam; Ghoshoon, Mohammad B; Vakili, Bahareh; Ghasemi, Younes

    2017-01-01

    Among therapeutic proteins, enzymes represent small and of course profitable market. They can be used to treat important, rare, and deadly diseases. Enzyme therapy is the only available treatment for certain disorders. Here, pharmaceutical enzymes are reviewed. They are categorized in four main groups, enzymes in replacement therapy, enzymes in cancer treatment, enzymes for fibrinolysis, and finally enzymes that are used topically for various treatments. Furthermore, enzyme gene therapy and future perspective of therapeutic enzymes are mentioned in brief. There are many important approved enzymes in pharmaceutical market. Several approaches such as point mutation, fusion protein designing, glycoengineering, and PEGylation were used to achieve improved enzymes. Although sometimes enzymes were engineered to facilitate production and purification process, appropriate delivery to target sites, extending half-life, and reducing immunogenicity are among the main goals of engineering approaches. Overall, enzymes play a critical role in treatment of common and rare diseases. Evaluation of new enzymes as well as improvement of approved enzymes are of the most important challenges in biotechnology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Reinstatement of Conditioned Suppression in Mice

    Directory of Open Access Journals (Sweden)

    Trinette Dirikx

    2006-03-01

    Full Text Available Return of fear after successful exposure therapy calls for a better understanding of the mechanisms of relapse. Classical conditioning research provides a useful framework for conceptualising the acquisition, extinction and reappearance of fear. The present paper focuses on reinstatement, the return of extinguished conditioned responses due to the experience of one or more unconditioned stimuli (USs after extinction. This phenomenon illustrates that unpredictable USs can lead to a return of fear after successful exposure. The data we present is one of the first demonstrations that conditioned suppression of instrumental behaviour can be used as an index of classical conditioning in laboratory mice. The procedure proves to be a promising instrument for assessing fear in mice, both in the context of research aimed at unravelling the functional characteristics of learning and memory in healthy mice and in the context of research aimed at unravelling the neurobiological substrate of psychiatric disorders, e.g., in studies with transgenic and knockout mice. Using this procedure, we report the first observation of reinstatement of conditioned suppression in this species.

  12. Suppressive and immunoprotective functions of Tregs

    Directory of Open Access Journals (Sweden)

    Pushpa ePandiyan

    2011-11-01

    Full Text Available CD4+CD25+Foxp3+ T lymphocytes, known as regulatory T cells or Tregs, have been proposed to be a lineage of professional immune suppressive cells that exclusively counteract the effects of the immunoprotective "helper" and "cytotoxic" lineages of T lymphocytes. Here we discuss new concepts on the mechanisms and functions of Tregs. There are several key points we emphasize: 1. Tregs exert suppressive effects both directly on effector T cells and indirectly through antigen-presenting cells (APCs; 2. Regulation can occur through a novel mechanism of cytokine consumption to regulate as opposed to the usual mechanism of cytokine/chemokine production; 3. In cases where CD4+ effector T cells are directly inhibited by Tregs, it is chiefly through a mechanism of lymphokine withdrawal apoptosis leading to polyclonal deletion (PCD; and 4. Contrary to the current view, we discuss new evidence that Tregs, similar to other T cells lineages, can promote protective immune responses in certain infectious contexts (Pandiyan et al. 2011; Chen et al 2011. Although these points are at variance to varying degrees with the standard model of Treg behavior, we will recount developing findings that support these new concepts.

  13. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  14. Optimal digital filtering for tremor suppression.

    Science.gov (United States)

    Gonzalez, J G; Heredia, E A; Rahman, T; Barner, K E; Arce, G R

    2000-05-01

    Remote manually operated tasks such as those found in teleoperation, virtual reality, or joystick-based computer access, require the generation of an intermediate electrical signal which is transmitted to the controlled subsystem (robot arm, virtual environment, or a cursor in a computer screen). When human movements are distorted, for instance, by tremor, performance can be improved by digitally filtering the intermediate signal before it reaches the controlled device. This paper introduces a novel tremor filtering framework in which digital equalizers are optimally designed through pursuit tracking task experiments. Due to inherent properties of the man-machine system, the design of tremor suppression equalizers presents two serious problems: 1) performance criteria leading to optimizations that minimize mean-squared error are not efficient for tremor elimination and 2) movement signals show ill-conditioned autocorrelation matrices, which often result in useless or unstable solutions. To address these problems, a new performance indicator in the context of tremor is introduced, and the optimal equalizer according to this new criterion is developed. Ill-conditioning of the autocorrelation matrix is overcome using a novel method which we call pulled-optimization. Experiments performed with artificially induced vibrations and a subject with Parkinson's disease show significant improvement in performance. Additional results, along with MATLAB source code of the algorithms, and a customizable demo for PC joysticks, are available on the Internet at http:¿tremor-suppression.com.

  15. Tagging and suppression of pileup jets

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    The suppression of pileup jets has been a crucial component of many physics analyses using 2012 LHC proton-proton collisions. In ATLAS, tracking information has been used to calculate a variable called the jet-vertex-fraction, which is the fraction of the total mo- mentum of tracks in the jet which is associated to the primary vertex. Imposing a minimum on this variable rejects the majority of pileup jets, but leads to hard-scatter jet efficiencies that depend on the number of reconstructed primary vertices in the event ($N_{Vtx}$). In this note, new track-based variables to suppress pileup jets are developed in such a way that the resulting hard-scatter jet efficiency is stable as a function of $N_{Vtx}$. A multivariate combina- tion of two such variables called the jet-vertex-tagger is constructed. In addition, it is shown that jet-vertex association can be applied to large-R jets, providing a track-based grooming technique that is as powerful as calorimeter-based trimming but based on complementary trackin...

  16. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  17. Contribution of suppression difficulty and lessons learned in forecasting fire suppression operations productivity: A methodological approach

    Science.gov (United States)

    Francisco Rodríguez y Silva; Armando González-Cabán

    2016-01-01

    We propose an economic analysis using utility and productivity, and efficiency theories to provide fire managers a decision support tool to determine the most efficient fire management programs levels. By incorporating managers’ accumulated fire suppression experiences (capitalized experience) in the analysis we help fire managers...

  18. Bitter taste masking of enzyme-treated soy protein in water and bread.

    Science.gov (United States)

    Bertelsen, Anne S; Laursen, Anne; Knudsen, Tine A; Møller, Stine; Kidmose, Ulla

    2018-08-01

    Bioactive protein hydrolysates are often very bitter. To overcome this challenge, xylitol, sucrose, α-cyclodextrin, maltodextrin and combinations of these were tested systematically as bitter-masking agents of an enzyme-treated soy protein in an aqueous model and in a bread model. Sensory descriptive analysis was used to reveal the bitter-masking effect of the taste-masking blends on the enzyme-treated soy protein. In water, xylitol, sucrose and maltodextrin reduced bitterness significantly, whereas α-cyclodextrin did not. No significant difference was observed in bitterness reduction between xylitol and sucrose. Both reduced bitterness significantly more than maltodextrin. No interactions between the taste-masking agents affecting bitterness reduction were found. Clearer bitter-masking effects were seen in the aqueous model compared with the bread model. The bitter-masking effects of α-cyclodextrin and maltodextrin were similar between water and bread. The effect of xylitol and sucrose on bitterness suppression varied between the systems. In water, bitterness was negatively correlated with sweetness. In bread, bitterness was negatively correlated with freshness, and maltodextrin significantly reduced bitterness of the enzyme-treated soy protein and increased freshness. Bitter-masking effects were generally more discernible in the aqueous model compared with the bread model. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  19. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    Science.gov (United States)

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis

    Science.gov (United States)

    Zhang, Cen; Liu, Juan; Zhao, Yuhan; Yue, Xuetian; Zhu, Yu; Wang, Xiaolong; Wu, Hao; Blanco, Felix; Li, Shaohua; Bhanot, Gyan; Haffty, Bruce G; Hu, Wenwei; Feng, Zhaohui

    2016-01-01

    Glutaminase (GLS) isoenzymes GLS1 and GLS2 are key enzymes for glutamine metabolism. Interestingly, GLS1 and GLS2 display contrasting functions in tumorigenesis with elusive mechanism; GLS1 promotes tumorigenesis, whereas GLS2 exhibits a tumor-suppressive function. In this study, we found that GLS2 but not GLS1 binds to small GTPase Rac1 and inhibits its interaction with Rac1 activators guanine-nucleotide exchange factors, which in turn inhibits Rac1 to suppress cancer metastasis. This function of GLS2 is independent of GLS2 glutaminase activity. Furthermore, decreased GLS2 expression is associated with enhanced metastasis in human cancer. As a p53 target, GLS2 mediates p53’s function in metastasis suppression through inhibiting Rac1. In summary, our results reveal that GLS2 is a novel negative regulator of Rac1, and uncover a novel function and mechanism whereby GLS2 suppresses metastasis. Our results also elucidate a novel mechanism that contributes to the contrasting functions of GLS1 and GLS2 in tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.10727.001 PMID:26751560