Space-time-modulated stochastic processes
Giona, Massimiliano
2017-10-01
Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.
Space-time description of hard processes
International Nuclear Information System (INIS)
Ioffe, B.L.; Khoze, V.A.; Lipatov, L.N.
1984-01-01
The authors show that the interaction in deep inelastic scattering processes occurs mainly in a region near the light cone. It is concluded that in all cases studied, the scaling behaviour of the structure functions corresponds to the same light cone singularities of the coordinate functions as in the case of scattering on a free spin-1/2 fermion (or, perhaps, on a spinless boson). (Auth.)
Interference Cancellation Using Space-Time Processing and Precoding Design
Li, Feng
2013-01-01
Interference Cancellation Using Space-Time Processing and Precoding Design introduces original design methods to achieve interference cancellation, low-complexity decoding and full diversity for a series of multi-user systems. In multi-user environments, co-channel interference will diminish the performance of wireless communications systems. In this book, we investigate how to design robust space-time codes and pre-coders to suppress the co-channel interference when multiple antennas are available. This book offers a valuable reference work for graduate students, academic researchers and engineers who are interested in interference cancellation in wireless communications. Rigorous performance analysis and various simulation illustrations are included for each design method. Dr. Feng Li is a scientific researcher at Cornell University.
Using adaptive antenna array in LTE with MIMO for space-time processing
Directory of Open Access Journals (Sweden)
Abdourahamane Ahmed Ali
2015-04-01
Full Text Available The actual methods of improvement the existent wireless transmission systems are proposed. Mathematical apparatus is considered and proved by models, graph of which are shown, using the adaptive array antenna in LTE with MIMO for space-time processing. The results show that improvements, which are joined with space-time processing, positively reflects on LTE cell size or on throughput
Environmental Controls on Space-Time Biodiversity Patterns in the Amazon
Porporato, A. M.; Bonetti, S.; Feng, X.
2014-12-01
The Amazon/Andes territory is characterized by the highest biodiversity on Earth and understanding how all these ecological niches and different species originated and developed is an open challenge. The niche perspective assumes that species have evolved and occupy deterministically different roles within its environment. This view differs from that of the neutral theories, which assume ecological equivalence between all species but incorporates stochastic demographic processes along with long-term migration and speciation rates. Both approaches have demonstrated tremendous power in predicting aspects species biodiversity. By combining tools from both approaches, we use modified birth and death processes to simulate plant species diversification in the Amazon/Andes and their space-time ecohydrological controls. By defining parameters related to births and deaths as functions of available resources, we incorporate the role of space-time resource variability on niche formation and community composition. We also explicitly include the role of a heterogeneous landscape and topography. The results are discussed in relation to transect datasets from neotropical forests.
Assessment of Measurement Distortions in GNSS Antenna Array Space-Time Processing
Directory of Open Access Journals (Sweden)
Thyagaraja Marathe
2016-01-01
Full Text Available Antenna array processing techniques are studied in GNSS as effective tools to mitigate interference in spatial and spatiotemporal domains. However, without specific considerations, the array processing results in biases and distortions in the cross-ambiguity function (CAF of the ranging codes. In space-time processing (STP the CAF misshaping can happen due to the combined effect of space-time processing and the unintentional signal attenuation by filtering. This paper focuses on characterizing these degradations for different controlled signal scenarios and for live data from an antenna array. The antenna array simulation method introduced in this paper enables one to perform accurate analyses in the field of STP. The effects of relative placement of the interference source with respect to the desired signal direction are shown using overall measurement errors and profile of the signal strength. Analyses of contributions from each source of distortion are conducted individually and collectively. Effects of distortions on GNSS pseudorange errors and position errors are compared for blind, semi-distortionless, and distortionless beamforming methods. The results from characterization can be useful for designing low distortion filters that are especially important for high accuracy GNSS applications in challenging environments.
Directory of Open Access Journals (Sweden)
Kenny eSkagerlund
2014-06-01
Full Text Available Developmental dyscalculia (DD is a learning disorder associated with impairments in a preverbal non-symbolic approximate number system (ANS pertaining to areas in and around the intraparietal sulcus (IPS. The current study sought to enhance our understanding of the developmental trajectory of the ANS and symbolic number processing skills, thereby getting insight into whether a deficit in the ANS precedes or is preceded by impaired symbolic and exact number processing. Recent work has also suggested that humans are endowed with a shared magnitude system (beyond the number domain in the brain. We therefore investigated whether children with DD demonstrated a general magnitude deficit, stemming from the proposed magnitude system, rather than a specific one limited to numerical quantity. Fourth graders with DD were compared to age-matched controls and a group of ability-matched second graders, on a range of magnitude processing tasks pertaining to space, time, and number. Children with DD displayed difficulties across all magnitude dimensions compared to age-matched peers and showed impaired ANS acuity compared to the younger, ability-matched control group, while exhibiting intact symbolic number processing. We conclude that (1 children with DD suffer from a general magnitude-processing deficit, (2 a shared magnitude system likely exists, and (3 a symbolic number-processing deficit in DD tends to be preceded by an ANS deficit.
Skagerlund, Kenny; Träff, Ulf
2014-01-01
Developmental dyscalculia (DD) is a learning disorder associated with impairments in a preverbal non-symbolic approximate number system (ANS) pertaining to areas in and around the intraparietal sulcus (IPS). The current study sought to enhance our understanding of the developmental trajectory of the ANS and symbolic number processing skills, thereby getting insight into whether a deficit in the ANS precedes or is preceded by impaired symbolic and exact number processing. Recent work has also suggested that humans are endowed with a shared magnitude system (beyond the number domain) in the brain. We therefore investigated whether children with DD demonstrated a general magnitude deficit, stemming from the proposed magnitude system, rather than a specific one limited to numerical quantity. Fourth graders with DD were compared to age-matched controls and a group of ability-matched second graders, on a range of magnitude processing tasks pertaining to space, time, and number. Children with DD displayed difficulties across all magnitude dimensions compared to age-matched peers and showed impaired ANS acuity compared to the younger, ability-matched control group, while exhibiting intact symbolic number processing. We conclude that (1) children with DD suffer from a general magnitude-processing deficit, (2) a shared magnitude system likely exists, and (3) a symbolic number-processing deficit in DD tends to be preceded by an ANS deficit.
Frequency Adaptability and Waveform Design for OFDM Radar Space-Time Adaptive Processing
Energy Technology Data Exchange (ETDEWEB)
Sen, Satyabrata [ORNL; Glover, Charles Wayne [ORNL
2012-01-01
We propose an adaptive waveform design technique for an orthogonal frequency division multiplexing (OFDM) radar signal employing a space-time adaptive processing (STAP) technique. We observe that there are inherent variabilities of the target and interference responses in the frequency domain. Therefore, the use of an OFDM signal can not only increase the frequency diversity of our system, but also improve the target detectability by adaptively modifying the OFDM coefficients in order to exploit the frequency-variabilities of the scenario. First, we formulate a realistic OFDM-STAP measurement model considering the sparse nature of the target and interference spectra in the spatio-temporal domain. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. With numerical examples we demonstrate that the resultant OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.
Sparsity-Based Space-Time Adaptive Processing Using OFDM Radar
Energy Technology Data Exchange (ETDEWEB)
Sen, Satyabrata [ORNL
2012-01-01
We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain, and hence we exploit that sparsity to develop an efficient STAP technique. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. To estimate the target and interference covariance matrices, we apply a residual sparse-recovery technique that enables us to incorporate the partially known support of the sparse vector. Our numerical results demonstrate that the sparsity-based STAP algorithm, with considerably lesser number of secondary data, produces an equivalent performance as the other existing STAP techniques.
OFDM Radar Space-Time Adaptive Processing by Exploiting Spatio-Temporal Sparsity
Energy Technology Data Exchange (ETDEWEB)
Sen, Satyabrata [ORNL
2013-01-01
We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data and produces an equivalent performance as the other existing STAP techniques. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we apply a residual sparse-recovery technique based on the LASSO estimator to estimate the target and interference covariance matrices, and subsequently compute the optimal STAP-filter weights. Our numerical results demonstrate a comparative performance analysis of the proposed sparse-STAP algorithm with four other existing STAP methods. Furthermore, we discover that the OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.
A novel heterogeneous training sample selection method on space-time adaptive processing
Wang, Qiang; Zhang, Yongshun; Guo, Yiduo
2018-04-01
The performance of ground target detection about space-time adaptive processing (STAP) decreases when non-homogeneity of clutter power is caused because of training samples contaminated by target-like signals. In order to solve this problem, a novel nonhomogeneous training sample selection method based on sample similarity is proposed, which converts the training sample selection into a convex optimization problem. Firstly, the existing deficiencies on the sample selection using generalized inner product (GIP) are analyzed. Secondly, the similarities of different training samples are obtained by calculating mean-hausdorff distance so as to reject the contaminated training samples. Thirdly, cell under test (CUT) and the residual training samples are projected into the orthogonal subspace of the target in the CUT, and mean-hausdorff distances between the projected CUT and training samples are calculated. Fourthly, the distances are sorted in order of value and the training samples which have the bigger value are selective preference to realize the reduced-dimension. Finally, simulation results with Mountain-Top data verify the effectiveness of the proposed method.
Contribution to the stochastically studies of space-time dependable hydrological processes
International Nuclear Information System (INIS)
Kjaevski, Ivancho
2002-12-01
One of the fundaments of today's planning and water economy is Science of Hydrology. Science of Hydrology through the history had followed the development of the water management systems. Water management systems, during the time from single-approach evolved to complex and multi purpose systems. The dynamic and development of the today's society contributed for increasing the demand of clean water, and in the same time, the resources of clean water in the nature are reduced. In this kind of conditions, water management systems should resolve problems that are more complicated during managing of water sources. Solving the problems in water management, enable development and applying new methods and technologies in planning and management with water resources and water management systems like: systematical analyses, operational research, hierarchy decisions, expert systems, computer technology etc. Planning and management of water sources needs historical measured data for hydro metrological processes. In our country there are data of hydro metrological processes in period of 50-70, but in some Europe countries there are data more than 100 years. Water economy trends follow the hydro metrological trend research. The basic statistic techniques like sampling, probability distribution function, correlation and regression, are used about one intended and simple water management problems. Solving new problems about water management needs using of space-time stochastic technique, modem mathematical and statistical techniques during simulation and optimization of complex water systems. We need tree phases of development of the techniques to get secure hydrological models: i) Estimate the quality of hydro meteorological data, analyzing of their consistency, and homogeneous; ii) Structural analyze of hydro meteorological processes; iii) Mathematical models for modeling hydro meteorological processes. Very often, the third phase is applied for analyzing and modeling of hydro
2003-04-01
SAR system”, Proc. EUSAR’98, 25-27 May 1998, Friedrichshafen , Ger- many [15] Farina, A., Timmoneri, L., ”Space-time processing for AEW radar”, Proc...98, Friedrichshafen , Germany, 25-27 May 1998. [PSF00] V. Pascazio, G. Schirinzi, A. Farina, “ Along track interferometry by one bit coded SAR signals...airborne multi-channel SAR systems AER II.The air- borne experimental multi-channel SAR system”, Proc. EUSAR’98, 25-27 May 1998, Friedrichshafen , Ger
Directory of Open Access Journals (Sweden)
Si-hao Tan
2012-01-01
Full Text Available We present an automatic framework combined space-time signal processing with Time Reversal electromagnetic (EM inversion for subsurface and through-wall multitarget imaging using electromagnetic waves. This framework is composed of a frequency-wavenumber (FK filter to suppress direct wave and medium bounce, a FK migration algorithm to automatically estimate the number of targets and identify target regions, which can be used to reduce the computational complexity of the following imaging algorithm, and a EM inversion algorithm using Time Reversal Multiple Signal Classification (TR-MUSIC to reconstruct hidden objects. The feasibility of the framework is demonstrated with simulated data generated by GPRMAX.
Space time modelling of air quality for environmental-risk maps: A case study in South Portugal
Soares, Amilcar; Pereira, Maria J.
2007-10-01
Since the 1960s, there has been a strong industrial development in the Sines area, on the southern Atlantic coast of Portugal, including the construction of an important industrial harbour and of, mainly, petrochemical and energy-related industries. These industries are, nowadays, responsible for substantial emissions of SO2, NOx, particles, VOCs and part of the ozone polluting the atmosphere. The major industries are spatially concentrated in a restricted area, very close to populated areas and natural resources such as those protected by the European Natura 2000 network. Air quality parameters are measured at the emissions' sources and at a few monitoring stations. Although air quality parameters are measured on an hourly basis, the lack of representativeness in space of these non-homogeneous phenomena makes even their representativeness in time questionable. Hence, in this study, the regional spatial dispersion of contaminants is also evaluated, using diffusive-sampler (Radiello Passive Sampler) campaigns during given periods. Diffusive samplers cover the entire space extensively, but just for a limited period of time. In the first step of this study, a space-time model of pollutants was built, based on a stochastic simulation-direct sequential simulation-with local spatial trend. The spatial dispersion of the contaminants for a given period of time-corresponding to the exposure time of the diffusive samplers-was computed by ordinary kriging. Direct sequential simulation was applied to produce equiprobable spatial maps for each day of that period, using the kriged map as a spatial trend and the daily measurements of pollutants from the monitoring stations as hard data. In the second step, the following environmental risk and costs maps were computed from the set of simulated realizations of pollutants: (i) maps of the contribution of each emission to the pollutant concentration at any spatial location; (ii) costs of badly located monitoring stations.
Directory of Open Access Journals (Sweden)
Martin Lachmair
Full Text Available The aim of the present study was to test the functional relevance of the spatial concepts UP or DOWN for words that use these concepts either literally (space or metaphorically (time, valence. A functional relevance would imply a symmetrical relationship between the spatial concepts and words related to these concepts, showing that processing words activate the related spatial concepts on one hand, but also that an activation of the concepts will ease the retrieval of a related word on the other. For the latter, the rotation angle of participant's body position was manipulated either to an upright or a head-down tilted body position to activate the related spatial concept. Afterwards participants produced in a within-subject design previously memorized words of the concepts space, time and valence according to the pace of a metronome. All words were related either to the spatial concept UP or DOWN. The results including Bayesian analyses show (1 a significant interaction between body position and words using the concepts UP and DOWN literally, (2 a marginal significant interaction between body position and temporal words and (3 no effect between body position and valence words. However, post-hoc analyses suggest no difference between experiments. Thus, the authors concluded that integrating sensorimotor experiences is indeed of functional relevance for all three concepts of space, time and valence. However, the strength of this functional relevance depends on how close words are linked to mental concepts representing vertical space.
National Research Council Canada - National Science Library
Morgan, Charles
2001-01-01
..., and (2) knowledge of the target's line-of-sight visibility, the competing clutter conditions, and interference at the predicted location so that the optimal radar parameters and space-time adaptive...
Colosi, John A
2008-09-01
While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.
Schrödinger, Erwin
1985-01-01
In response to repeated requests this classic book on space-time structure by Professor Erwin Schrödinger is now available in the Cambridge Science Classics series. First published in 1950, and reprinted in 1954 and 1960, this lucid and profound exposition of Einstein's 1915 theory of gravitation still provides valuable reading for students and research workers in the field.
International Nuclear Information System (INIS)
Lucas, J.R.
1984-01-01
Originating from lectures given to first year undergraduates reading physics and philosophy or mathematics and philosophy, formal logic is applied to issues and the elucidation of problems in space, time and causality. No special knowledge of relativity theory or quantum mechanics is needed. The text is interspersed with exercises and each chapter is preceded by a suggested 'preliminary reading' and followed by 'further reading' references. (U.K.)
National Research Council Canada - National Science Library
Morgan, Charles
2001-01-01
... processing algorithm can be applied. The proactive knowledge-based tracker uses information from other sources such as digital terrain maps, radar clutter and interference maps, and target priority assessments to determine the nature...
Meyer, Sebastian; Warnke, Ingeborg; Rössler, Wulf; Held, Leonhard
2016-05-01
Spatio-temporal interaction is inherent to cases of infectious diseases and occurrences of earthquakes, whereas the spread of other events, such as cancer or crime, is less evident. Statistical significance tests of space-time clustering usually assess the correlation between the spatial and temporal (transformed) distances of the events. Although appealing through simplicity, these classical tests do not adjust for the underlying population nor can they account for a distance decay of interaction. We propose to use the framework of an endemic-epidemic point process model to jointly estimate a background event rate explained by seasonal and areal characteristics, as well as a superposed epidemic component representing the hypothesis of interest. We illustrate this new model-based test for space-time interaction by analysing psychiatric inpatient admissions in Zurich, Switzerland (2007-2012). Several socio-economic factors were found to be associated with the admission rate, but there was no evidence of general clustering of the cases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Space-Time Crystal and Space-Time Group.
Xu, Shenglong; Wu, Congjun
2018-03-02
Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D+1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1+1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2+1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D+1)-dimensional space-time crystal.
On discrete models of space-time
International Nuclear Information System (INIS)
Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.
1992-02-01
Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)
Li, Zhihui; Liu, Hanwei; Zhang, Yongshun; Guo, Yiduo
2017-10-01
The performance of space-time adaptive processing (STAP) may degrade significantly when some of the training samples are contaminated by the signal-like components (outliers) in nonhomogeneous clutter environments. To remove the training samples contaminated by outliers in nonhomogeneous clutter environments, a robust nonhomogeneous training samples detection method using the sparse-recovery (SR) with knowledge-aided (KA) is proposed. First, the reduced-dimension (RD) overcomplete spatial-temporal steering dictionary is designed with the prior knowledge of system parameters and the possible target region. Then, the clutter covariance matrix (CCM) of cell under test is efficiently estimated using a modified focal underdetermined system solver (FOCUSS) algorithm, where a RD overcomplete spatial-temporal steering dictionary is applied. Third, the proposed statistics are formed by combining the estimated CCM with the generalized inner products (GIP) method, and the contaminated training samples can be detected and removed. Finally, several simulation results validate the effectiveness of the proposed KA-SR-GIP method.
Comprehensive Environmental Management Process
International Nuclear Information System (INIS)
Hjeresen, D.L.; Roybal, S.L.
1994-01-01
This report contains information about Los Alamos National Laboratory's Comprehensive Environmental Management Plan. The topics covered include: waste minimization, waste generation, environmental concerns, public relations of the laboratory, and how this plan will help to answer to the demands of the laboratory as their mission changes
Jing, Yindi
2014-01-01
Distributed Space-Time Coding (DSTC) is a cooperative relaying scheme that enables high reliability in wireless networks. This brief presents the basic concept of DSTC, its achievable performance, generalizations, code design, and differential use. Recent results on training design and channel estimation for DSTC and the performance of training-based DSTC are also discussed.
Directory of Open Access Journals (Sweden)
Ronald E. Meyers
2015-03-01
Full Text Available We report on an experimental and theoretical investigation of quantum imaging where the images are stored in both space and time. Ghost images of remote objects are produced with either one or two beams of chaotic laser light generated by a rotating ground glass and two sensors measuring the reference field and bucket field at different space-time points. We further observe that the ghost images translate depending on the time delay between the sensor measurements. The ghost imaging experiments are performed both with and without turbulence. A discussion of the physics of the space-time imaging is presented in terms of quantum nonlocal two-photon analysis to support the experimental results. The theoretical model includes certain phase factors of the rotating ground glass. These experiments demonstrated a means to investigate the time and space aspects of ghost imaging and showed that ghost imaging contains more information per measured photon than was previously recognized where multiple ghost images are stored within the same ghost imaging data sets. This suggests new pathways to explore quantum information stored not only in multi-photon coincidence information but also in time delayed multi-photon interference. The research is applicable to making enhanced space-time quantum images and videos of moving objects where the images are stored in both space and time.
A Reparametrization Approach for Dynamic Space-Time Models
Lee, Hyeyoung; Ghosh, Sujit K.
2008-01-01
Researchers in diverse areas such as environmental and health sciences are increasingly working with data collected across space and time. The space-time processes that are generally used in practice are often complicated in the sense that the auto-dependence structure across space and time is non-trivial, often non-separable and non-stationary in space and time. Moreover, the dimension of such data sets across both space and time can be very large leading to computational difficulties due to...
International Nuclear Information System (INIS)
Koeck, W.
1988-04-01
Disadvantages of molten salt electrolysis are its low space-time-yield (kg/m 3 h) combined with its high specific energy consumption (kWh/kg). These factors essentially determine how electrolysis is applied on an industrial scale. The electrolysis of tantalum was selected as an example representative for other electrolytic processes; this series of tests allow statements also on the winning of the other elements from subgroups 4 and 5 of the periodic table, and on electrolytic aluminium extraction. Optimal operating conditions for direct current electrolysis were determined in the laboratory by varying the current density and the electrolysis temperature. In order to improve the space-time-yield from an existing electrolytic cell with a given electrolyte composition beyond the optimal range of direct current electrolysis, the process of periodic current reversal is applied. In this process, the polarity is reversed for a short time at constant periodic intervals. If the forward time period and the backward time period are chosen in a suitable way, both the current efficiency and the space-time-yield can be improved without increasing the energy consumption. 59 refs., 48 figs., 8 tabs. (Author)
International Nuclear Information System (INIS)
Hawking, S.
1993-01-01
What happened at the beginning of the expansion of the universe. Did space time have an edge at the Big Bang. The answer is that, if the boundary conditions of the universe are that it has no boundary, time ceases to be well-defined in the very early universe as the direction ''north'' ceases to be well defined at the North Pole of the Earth. The quantity that we measure as time has a beginning but that does not mean spacetime has an edge, just as the surface of the Earth does not have an edge at the North Pole. 8 figs
An, Xinliang; Wong, Willie Wai Yeung
2018-01-01
Many classical results in relativity theory concerning spherically symmetric space-times have easy generalizations to warped product space-times, with a two-dimensional Lorentzian base and arbitrary dimensional Riemannian fibers. We first give a systematic presentation of the main geometric constructions, with emphasis on the Kodama vector field and the Hawking energy; the construction is signature independent. This leads to proofs of general Birkhoff-type theorems for warped product manifolds; our theorems in particular apply to situations where the warped product manifold is not necessarily Einstein, and thus can be applied to solutions with matter content in general relativity. Next we specialize to the Lorentzian case and study the propagation of null expansions under the assumption of the dominant energy condition. We prove several non-existence results relating to the Yamabe class of the fibers, in the spirit of the black-hole topology theorem of Hawking–Galloway–Schoen. Finally we discuss the effect of the warped product ansatz on matter models. In particular we construct several cosmological solutions to the Einstein–Euler equations whose spatial geometry is generally not isotropic.
Field, F.; Goodbun, J.; Watson, V.
Architects have a role to play in interplanetary space that has barely yet been explored. The architectural community is largely unaware of this new territory, for which there is still no agreed method of practice. There is moreover a general confusion, in scientific and related fields, over what architects might actually do there today. Current extra-planetary designs generally fail to explore the dynamic and relational nature of space-time, and often reduce human habitation to a purely functional problem. This is compounded by a crisis over the representation (drawing) of space-time. The present work returns to first principles of architecture in order to realign them with current socio-economic and technological trends surrounding the space industry. What emerges is simultaneously the basis for an ecological space architecture, and the representational strategies necessary to draw it. We explore this approach through a work of design-based research that describes the construction of Ocean; a huge body of water formed by the collision of two asteroids at the Translunar Lagrange Point (L2), that would serve as a site for colonisation, and as a resource to fuel future missions. Ocean is an experimental model for extra-planetary space design and its representation, within the autonomous discipline of architecture.
Braverman, Amy; Nguyen, Hai; Olsen, Edward; Cressie, Noel
2011-01-01
Space-time Data Fusion (STDF) is a methodology for combing heterogeneous remote sensing data to optimally estimate the true values of a geophysical field of interest, and obtain uncertainties for those estimates. The input data sets may have different observing characteristics including different footprints, spatial resolutions and fields of view, orbit cycles, biases, and noise characteristics. Despite these differences all observed data can be linked to the underlying field, and therefore the each other, by a statistical model. Differences in footprints and other geometric characteristics are accounted for by parameterizing pixel-level remote sensing observations as spatial integrals of true field values lying within pixel boundaries, plus measurement error. Both spatial and temporal correlations in the true field and in the observations are estimated and incorporated through the use of a space-time random effects (STRE) model. Once the models parameters are estimated, we use it to derive expressions for optimal (minimum mean squared error and unbiased) estimates of the true field at any arbitrary location of interest, computed from the observations. Standard errors of these estimates are also produced, allowing confidence intervals to be constructed. The procedure is carried out on a fine spatial grid to approximate a continuous field. We demonstrate STDF by applying it to the problem of estimating CO2 concentration in the lower-atmosphere using data from the Atmospheric Infrared Sounder (AIRS) and the Japanese Greenhouse Gasses Observing Satellite (GOSAT) over one year for the continental US.
Space-time modeling of soil moisture
Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio
2017-11-01
A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.
The manifold model for space-time
International Nuclear Information System (INIS)
Heller, M.
1981-01-01
Physical processes happen on a space-time arena. It turns out that all contemporary macroscopic physical theories presuppose a common mathematical model for this arena, the so-called manifold model of space-time. The first part of study is an heuristic introduction to the concept of a smooth manifold, starting with the intuitively more clear concepts of a curve and a surface in the Euclidean space. In the second part the definitions of the Csub(infinity) manifold and of certain structures, which arise in a natural way from the manifold concept, are given. The role of the enveloping Euclidean space (i.e. of the Euclidean space appearing in the manifold definition) in these definitions is stressed. The Euclidean character of the enveloping space induces to the manifold local Euclidean (topological and differential) properties. A suggestion is made that replacing the enveloping Euclidean space by a discrete non-Euclidean space would be a correct way towards the quantization of space-time. (author)
Environmental management of business processes
Directory of Open Access Journals (Sweden)
Vesna Čančer
2000-01-01
Full Text Available Since the decision-makers in enterprises will accept the goals of environmental management only if they are motivated enough, comprehensible and useful tools should be generated to support environmentally oriented business decision-making. For that reason, a general optimisation model of the multiphase business process is presented in this paper. This model includes the possibilities for an integrated approach to environmental protection so that it can be applied as a scenario by the business process simulation for the evaluation of environmentally oriented business decisions on business performance. Furthermore, development and application possibilities of the presented model are introduced. Some measures of resource efficiency are developed using the presented optimisation model.
Space, time and conservation laws
International Nuclear Information System (INIS)
Aronov, R.A.; Ugarov, V.A.
1978-01-01
The Neter theorem establishing correspondence between conservation laws and symmetry properties (space and time in particular) is considered. The theorem is based on one of the possible ways of finding equations of motion for a physical system. From a certain expression (action functional) equations of motion for a system can be obtained which do not contain new physical assertions in principal in comparison with the Newtonian laws. Neter suggested a way of deriving conservation laws by transforming space and time coordinates. Neter theorem consequences raise a number of problems: 1). Are conservation laws (energy, momentum) consequences of space and time symmetry properties. 2). Is it possible to obtain conservation laws in theory neglecting equations of motion. 3). What is of the primary importance: equations of motion, conservation laws or properties of space and time symmetry. It is shown that direct Neter theorem does not testify to stipulation of conservation laws by properties of space and time symmetry and symmetry properties of other non-space -time properties of material systems in objective reality. It says nothing of whether there is any subordination between symmetry properties and conservation laws
Matter fields in curved space-time
International Nuclear Information System (INIS)
Viet, Nguyen Ai; Wali, Kameshwar C.
2000-01-01
We study the geometry of a two-sheeted space-time within the framework of non-commutative geometry. As a prelude to the Standard Model in curved space-time, we present a model of a left- and a right- chiral field living on the two sheeted-space time and construct the action functionals that describe their interactions
On the differentiability of space-time
International Nuclear Information System (INIS)
Clarke, C.J.S.
1977-01-01
It is shown that the differentiability of a space-time is implied by that of its Riemann tensor, assuming a priori only boundedness of the first derivations of the metric. Consequently all the results on space-time singularities proved in earlier papers by the author hold true in C 2- space-times. (author)
Environmental and process monitoring technologies
International Nuclear Information System (INIS)
Vo-Dinh, Tuan
1993-01-01
The objective of this conference was to provide a multidisciplinary forum dealing with state-of-the-art methods and instrumentation for environmental and process monitoring. In the last few years, important advances have been made in improving existing analytical methods and developing new techniques for trace detection of chemicals. These monitoring technologies are a topic of great interest for environmental and industrial control in a wide spectrum of areas. Sensitive detection, selective characterization, and cost-effective analysis are among the most important challenges facing monitoring technologies. This conference integrating interdisciplinary research and development was aimed to present the most recent advances and applications in the important areas of environmental and process monitoring. Separate abstracts have been prepared for 34 papers for inclusion in the appropriate data bases
Federal environmental assessment panel process
International Nuclear Information System (INIS)
Edwards, R.A.; King, J.M.
1996-01-01
The Government of Canada inaugurated an environmental assessment process in 1973. Since that time, the Department of Natural Resources, or its predecessor, the Department of Energy Mines and Resources, and industrial clients of the Department, have been major participants in the process. In 1995, the authors interviewed representatives of a number of client industries and selected individuals, to ask their opinion of the public hearing part of the environmental assessment process, with the objective of identifying shortcomings and proposing improvements. Respondents criticized the hearings as costly, time-wasting, bureaucratic, and uncertain in cost, time, and outcome. A number of observations on noted areas of shortcoming are presented in this paper, with suggestions for improvement
Federal environmental assessment panel process
Energy Technology Data Exchange (ETDEWEB)
Edwards, R A; King, J M [Natural Resources Canada, Ottawa, ON (Canada)
1997-12-31
The Government of Canada inaugurated an environmental assessment process in 1973. Since that time, the Department of Natural Resources, or its predecessor, the Department of Energy Mines and Resources, and industrial clients of the Department, have been major participants in the process. In 1995, the authors interviewed representatives of a number of client industries and selected individuals, to ask their opinion of the public hearing part of the environmental assessment process, with the objective of identifying shortcomings and proposing improvements. Respondents criticized the hearings as costly, time-wasting, bureaucratic, and uncertain in cost, time, and outcome. A number of observations on noted areas of shortcoming are presented in this paper, with suggestions for improvement.
International Nuclear Information System (INIS)
Raine, D.J.; Heller, M.
1981-01-01
Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics Copernican kinematics Newtonian dynamics the space-time of classical dynamics classical space-time in the presence of gravity the space-time of special relativity the space-time of general relativity solutions and problems in general relativity Mach's principle and the dynamics of space-time theories of inertial mass the integral formation of general relativity and the frontiers of relativity
Possibility of extending space-time coordinates
International Nuclear Information System (INIS)
Wang Yongcheng.
1993-11-01
It has been shown that one coordinate system can describe a whole space-time region except some supersurfaces on which there are coordinate singularities. The conditions of extending a coordinate from real field to complex field are studied. It has been shown that many-valued coordinate transformations may help us to extend space-time regions and many-valued metric functions may make one coordinate region to describe more than one space-time regions. (author). 11 refs
Fermion systems in discrete space-time
International Nuclear Information System (INIS)
Finster, Felix
2007-01-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure
Fermion systems in discrete space-time
Energy Technology Data Exchange (ETDEWEB)
Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)
2007-05-15
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Fermion Systems in Discrete Space-Time
Finster, Felix
2006-01-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Fermion systems in discrete space-time
Finster, Felix
2007-05-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Wu, Ning
2012-01-01
When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machin...
Quantum field theory in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Davies, P C.W. [King' s Coll., London (UK)
1976-09-30
It is stated that recent theoretical developments indicate that the presence of gravity (curved space-time) can give rise to important new quantum effects, such as cosmological particle production and black-hole evaporation. These processes suggest intriguing new relations between quantum theory, thermodynamics and space-time structure and encourage the hope that a better understanding of a full quantum theory of gravity may emerge from this approach.
Quantum electrodynamics in curved space-time
International Nuclear Information System (INIS)
Buchbinder, I.L.; Gitman, D.M.; Fradkin, E.S.
1981-01-01
The lagrangian of quantum electrodynamics in curved space-time is constructed and the interaction picture taking into account the external gravitational field exactly is introduced. The transform from the Heisenberg picture to the interaction picture is carried out in a manifestly covariant way. The properties of free spinor and electromagnetic quantum fields are discussed and conditions under which initial and final creation and annihilation operators are connected by unitarity transformation are indicated. The derivation of Feynman's rules for quantum processes are calculated on the base of generalized normal product of operators. The way of reduction formula derivations is indicated and the suitable Green's functions are introduced. A generating functional for this Green's function is defined and the system of functional equations for them is obtained. The representation of different generating funcationals by means of functional integrals is introduced. Some consequences of S-matrix unitary condition are considered which leads to the generalization of the optic theorem
Space-time and matter in 'prephysics'
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1985-05-01
Many fundamental questions concerning the space-time and matter are asked and answered in ''prephysics'', a new line of physics (or philosophy but not metaphysics). They include the following: 1) ''Why is our space-time of 4 dimensions.'', 2) ''What is the ultimate form of matter.'' and 3) ''How was our universe created.''. (author)
Quantum relativity theory and quantum space-time
International Nuclear Information System (INIS)
Banai, M.
1984-01-01
A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis's quantum relativity. The recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (''elementary particles''). The main new aspect of this quantum mechanics is that it provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that ''quarks'' should be considered as quantum relativistic particles. (author)
Introduction [Radiation processing: Environmental applications
International Nuclear Information System (INIS)
2007-01-01
In recent years, the problems of environmental damage and degradation of natural resources have received increasing attention throughout the world. Population growth, higher standards of living, increased urbanization and enhanced industrial activities all contribute to environmental degradation. For example, fossil fuels - including coal. natural gas, petroleum, shale oil and bitumen - are the main primary sources of heat and electrical energy production, and are responsible for a large number and amount of pollutants emitted to the atmosphere via exhaust gases from industry. power stations, residential heating systems and vehicles. All of these fuels are composed of major constituents such as carbon, hydrogen and oxygen, and other components including sulphur and nitrogen compounds and metals. During the combustion process, different pollutants are emitted, such as fly ash (containing diverse trace elements (heavy metals)), SO x (including SO 2 and SO 3 ). NO x (including NO 2 and NO) and volatile organic compounds (VOCs). Air pollution caused by particulate matter and other pollutants not only directly impacts the atmospheric environment but also contaminates water and soil, leading to their degradation. Wet and dry deposition of inorganic pollutants leads to acidification of the environment. These phenomena have a negative impact on human health and on vegetation
Hyperbolic statics in space-time
Pavlov, Dmitry; Kokarev, Sergey
2014-01-01
Based on the concept of material event as an elementary material source that is concentrated on metric sphere of zero radius --- light-cone of Minkowski space-time, we deduce the analog of Coulomb's law for hyperbolic space-time field universally acting between the events of space-time. Collective field that enables interaction of world lines of a pair of particles at rest contains a standard 3-dimensional Coulomb's part and logarithmic addendum. We've found that the Coulomb's part depends on...
Semiclassical expanding discrete space-times
International Nuclear Information System (INIS)
Cobb, W.K.; Smalley, L.L.
1981-01-01
Given the close ties between general relativity and geometry one might reasonably expect that quantum effects associated with gravitation might also be tied to the geometry of space-time, namely, to some sort of discreteness in space-time itself. In particular it is supposed that space-time consists of a discrete lattice of points rather than the usual continuum. Since astronomical evidence seems to suggest that the universe is expanding, the lattice must also expand. Some of the implications of such a model are that the proton should presently be stable, and the universe should be closed although the mechanism for closure is quantum mechanical. (author)
Twistor Cosmology and Quantum Space-Time
International Nuclear Information System (INIS)
Brody, D.C.; Hughston, L.P.
2005-01-01
The purpose of this paper is to present a model of a 'quantum space-time' in which the global symmetries of space-time are unified in a coherent manner with the internal symmetries associated with the state space of quantum-mechanics. If we take into account the fact that these distinct families of symmetries should in some sense merge and become essentially indistinguishable in the unified regime, our framework may provide an approximate description of or elementary model for the structure of the universe at early times. The quantum elements employed in our characterisation of the geometry of space-time imply that the pseudo-Riemannian structure commonly regarded as an essential feature in relativistic theories must be dispensed with. Nevertheless, the causal structure and the physical kinematics of quantum space-time are shown to persist in a manner that remains highly analogous to the corresponding features of the classical theory. In the case of the simplest conformally flat cosmological models arising in this framework, the twistorial description of quantum space-time is shown to be effective in characterising the various physical and geometrical properties of the theory. As an example, a sixteen-dimensional analogue of the Friedmann-Robertson-Walker cosmologies is constructed, and its chronological development is analysed in some detail. More generally, whenever the dimension of a quantum space-time is an even perfect square, there exists a canonical way of breaking the global quantum space-time symmetry so that a generic point of quantum space-time can be consistently interpreted as a quantum operator taking values in Minkowski space. In this scenario, the breakdown of the fundamental symmetry of the theory is due to a loss of quantum entanglement between space-time and internal quantum degrees of freedom. It is thus possible to show in a certain specific sense that the classical space-time description is an emergent feature arising as a consequence of a
Minkowski space-time is locally extendible
International Nuclear Information System (INIS)
Beem, J.K.
1980-01-01
An example of a real analytic local extension of Minkowski space-time is given in this note. This local extension is not across points of the b-boundary since Minkowski space-time has an empty b-boundary. Furthermore, this local extension is not across points of the causal boundary. The example indicates that the concept of local inextendibility may be less useful than originally envisioned. (orig.)
Space-Time Disarray and Visual Awareness
Directory of Open Access Journals (Sweden)
Jan Koenderink
2012-04-01
Full Text Available Local space-time scrambling of optical data leads to violent jerks and dislocations. On masking these, visual awareness of the scene becomes cohesive, with dislocations discounted as amodally occluding foreground. Such cohesive space-time of awareness is technically illusory because ground truth is jumbled whereas awareness is coherent. Apparently the visual field is a construction rather than a (veridical perception.
Quantum fields in curved space-times
International Nuclear Information System (INIS)
Ashtekar, A.; Magnon, A.
1975-01-01
The problem of obtaining a quantum description of the (real) Klein-Gordon system in a given curved space-time is discussed. An algebraic approach is used. The *-algebra of quantum operators is constructed explicitly and the problem of finding its *-representation is reduced to that of selecting a suitable complex structure on the real vector space of the solutions of the (classical) Klein-Gordon equation. Since, in a static space-time, there already exists, a satisfactory quantum field theory, in this case one already knows what the 'correct' complex structure is. A physical characterization of this 'correct' complex structure is obtained. This characterization is used to extend quantum field theory to non-static space-times. Stationary space-times are considered first. In this case, the issue of extension is completely straightforward and the resulting theory is the natural generalization of the one in static space-times. General, non-stationary space-times are then considered. In this case the issue of extension is quite complicated and only a plausible extension is presented. Although the resulting framework is well-defined mathematically, the physical interpretation associated with it is rather unconventional. Merits and weaknesses of this framework are discussed. (author)
Joint Estimation and Decoding of Space-Time Trellis Codes
Directory of Open Access Journals (Sweden)
Zhang Jianqiu
2002-01-01
Full Text Available We explore the possibility of using an emerging tool in statistical signal processing, sequential importance sampling (SIS, for joint estimation and decoding of space-time trellis codes (STTC. First, we provide background on SIS, and then we discuss its application to space-time trellis code (STTC systems. It is shown through simulations that SIS is suitable for joint estimation and decoding of STTC with time-varying flat-fading channels when phase ambiguity is avoided. We used a design criterion for STTCs and temporally correlated channels that combats phase ambiguity without pilot signaling. We have shown by simulations that the design is valid.
A geometric renormalization group in discrete quantum space-time
International Nuclear Information System (INIS)
Requardt, Manfred
2003-01-01
We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalization group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that this process may generate a fixed limit phase, representing our continuous space-time on a mesoscopic or macroscopic scale, provided that the underlying discrete geometry is critical in a specific sense (geometric long range order). Our point of view is corroborated by a series of analytic and numerical results, which allow us to keep track of the geometric changes, taking place on the various scales of the resolution of space-time. Of particular conceptual importance are the notions of dimension of such random systems on the various scales and the notion of geometric criticality
Statistical geometry and space-time
International Nuclear Information System (INIS)
Grauert, H.
1976-01-01
In this paper I try to construct a mathematical tool by which the full structure of Lorentz geometry to space time can be given, but beyond that the background - to speak pictorially - the subsoil for electromagnetic and matter waves, too. The tool could be useful to describe the connections between various particles, electromagnetism and gravity and to compute observables which were not theoretically related, up to now. Moreover, the tool is simpler than the Riemann tensor: it consists just of a set S of line segments in space time, briefly speaking. (orig.) [de
Axiomatics of uniform space-time models
International Nuclear Information System (INIS)
Levichev, A.V.
1983-01-01
The mathematical statement of space-time axiomatics of the special theory of relativity is given; it postulates that the space-time M is the binding single boundary Hausedorf local-compact four-dimensional topological space with the given order. The theorem is proved: if the invariant order in the four-dimensional group M is given by the semi-group P, which contingency K contains inner points , then M is commutative. The analogous theorem is correct for the group of two and three dimensionalities
Space-time modeling of timber prices
Mo Zhou; Joseph Buongriorno
2006-01-01
A space-time econometric model was developed for pine sawtimber timber prices of 21 geographically contiguous regions in the southern United States. The correlations between prices in neighboring regions helped predict future prices. The impulse response analysis showed that although southern pine sawtimber markets were not globally integrated, local supply and demand...
Strings in arbitrary space-time dimensions
International Nuclear Information System (INIS)
Fabbrichesi, M.E.; Leviant, V.M.
1988-01-01
A modified approach to the theory of a quantum string is proposed. A discussion of the gauge fixing of conformal symmetry by means of Kac-Moody algebrae is presented. Virasoro-like operators are introduced to cancel the conformal anomaly in any number of space-time dimensions. The possibility of massless states in the spectrum is pointed out. 18 refs
Relativistic positioning in Schwarzschild space-time
International Nuclear Information System (INIS)
Puchades, Neus; Sáez, Diego
2015-01-01
In the Schwarzschild space-time created by an idealized static spherically symmetric Earth, two approaches -based on relativistic positioning- may be used to estimate the user position from the proper times broadcast by four satellites. In the first approach, satellites move in the Schwarzschild space-time and the photons emitted by the satellites follow null geodesics of the Minkowski space-time asymptotic to the Schwarzschild geometry. This assumption leads to positioning errors since the photon world lines are not geodesics of any Minkowski geometry. In the second approach -the most coherent one- satellites and photons move in the Schwarzschild space-time. This approach is a first order one in the dimensionless parameter GM/R (with the speed of light c=1). The two approaches give different inertial coordinates for a given user. The differences are estimated and appropriately represented for users located inside a great region surrounding Earth. The resulting values (errors) are small enough to justify the use of the first approach, which is the simplest and the most manageable one. The satellite evolution mimics that of the GALILEO global navigation satellite system. (paper)
Charge conjugation and internal space time symmetries
International Nuclear Information System (INIS)
Pavsic, M.; Recami, E.
1982-01-01
The relativistic framework in which fundamental particles are regarded as extended objects is adopted. Then it is shown than the geometrical operation which reflects the internal space time particle is equivalent to the operation C which inverts the sign of all its additive charges
Space-time and Local Gauge Symmetries
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:
Local and nonlocal space-time singularities
International Nuclear Information System (INIS)
Konstantinov, M.Yu.
1985-01-01
The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established
Quantum space-time and gravitational consequences
International Nuclear Information System (INIS)
Namsrai, K.
1986-01-01
Relativistic particle dynamics and basic physical quantities for the general theory of gravity are reconstructed from a quantum space-time point of view. An additional force caused by quantum space-time appears in the equation of particle motion, giving rise to a reformulation of the equivalence principle up to values of O(L 2 ), where L is the fundamental length. It turns out that quantum space-time leads to quantization of gravity, i.e. the metric tensor g/sub uv/ (/ZETA/) becomes operator-valued and is not commutative at different points x/sup micro/ and y/sup micro/ in usual space-time on a large scale, and its commutator depending on the ''vielbein'' field (gaugelike graviton field) is proportional to L 2 multiplied by a translationinvariant wave function propagated between points x/sup micro/ and y/sup micro/. In the given scheme, there appears to be an antigravitational effect in the motion of a particle in the gravitational force. This effect depends on the value of particle mass; when a particle is heavy its free-fall time is long compared to that for a light-weight particle. The problem of the change of time scale and the anisotropy of inertia are discussed. From experimental data from testing of the latter effect it follows that L ≤ 10 -22 cm
Special relativity and space-time geometry.
Molski, M.
An attempt has been made to formulate the special theory of relativity in a space-time that is explicitly absolute and strictly determines the kinematical characteristics of a particle in uniform translational motion. The approach developed is consistent with Einstein's relativity and permits explanation of the inertia phenomenon.
Design of environmentally benign processes
DEFF Research Database (Denmark)
Hostrup, Martin; Harper, Peter Mathias; Gani, Rafiqul
1999-01-01
because of environmental constraints are particularly suited for solution with the hybrid method. Application of the hybrid method is highlighted through two illustrative examples. The first example involves the determination of an optimal flowsheet for the removal of a chemical species from an azeotropic...
Trajectory data analyses for pedestrian space-time activity study.
Qi, Feng; Du, Fei
2013-02-25
It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission(1-3). An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data(4). Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling. The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an
Mach's principle and space-time structure
International Nuclear Information System (INIS)
Raine, D.J.
1981-01-01
Mach's principle, that inertial forces should be generated by the motion of a body relative to the bulk of matter in the universe, is shown to be related to the structure imposed on space-time by dynamical theories. General relativity theory and Mach's principle are both shown to be well supported by observations. Since Mach's principle is not contained in general relativity this leads to a discussion of attempts to derive Machian theories. The most promising of these appears to be a selection rule for solutions of the general relativistic field equations, in which the space-time metric structure is generated by the matter content of the universe only in a well-defined way. (author)
Topology of classical vacuum space-time
International Nuclear Information System (INIS)
Cho, Y.M.
2007-04-01
We present a topological classification of classical vacuum space-time. Assuming the 3-dimensional space allows a global chart, we show that the static vacuum space-time of Einstein's theory can be classified by the knot topology π 3 (S 3 ) = π 3 (S 2 ). Viewing Einstein's theory as a gauge theory of Lorentz group and identifying the gravitational connection as the gauge potential of Lorentz group, we construct all possible vacuum gravitational connections which give a vanishing curvature tensor. With this we show that the vacuum connection has the knot topology, the same topology which describes the multiple vacua of SU(2) gauge theory. We discuss the physical implications of our result in quantum gravity. (author)
Vector mass in curved space-times
International Nuclear Information System (INIS)
Maia, M.D.
The use of the Poincare-symmetry appears to be incompatible with the presence of the gravitational field. The consequent problem of the definition of the mass operator is analysed and an alternative definition based on constant curvature tangent spaces is proposed. In the case where the space-time has no killing vector fields, four independent mass operators can be defined at each point. (Author) [pt
International Nuclear Information System (INIS)
Namsrai, K.
1988-01-01
The review presents systematically the results of studies which develop an idea of quantum properties of space-time in the microworld or near exotic objects (black holes, magnetic monopoles and others). On the basis of this idea motion equations of nonrelativistic and relativistic particles are studied. It is shown that introducing concept of quantum space-time at small distances (or near superdense matter) leads to an additional force giving rise to appearance of spiral-like behaviour of a particle along its classical trajectory. Given method is generalized to nonrelativistic quantum mechanics and to motion of a particle in gravitational force. In the latter case, there appears to be an antigravitational effect in the motion of a particle leading to different value of free-fall time (at least for gravitational force of exotic objects) for particles with different masses. Gravitational consequences of quantum space-time and tensor structures of physical quantities are investigated in detail. From experimental data on testing relativity and anisotropy of inertia estimation L ≤ 10 -22 cm on the value of the fundamental length is obtained. (author)
Vacuum polarization on black hole space times
International Nuclear Information System (INIS)
Jensen, B.P.
1985-01-01
The effects of vacuum polarization in black hole space times are examined. Particular attention is given to the vacuum physics inside the event horizon. The analytic properties of the solutions to the radial wave equation in Schwarzs child space time as functions of argument, frequency, and angular momentum are given. These functions are employed to define the Feynmann Green function (G/sub F/(x,x') for a scalar field subject to the Hartle-Hawking boundary conditions. An examination of the Schwarzschild mode functions near r = 0 is provided. This work is necessary background for a future calculation of 2 > and the quantum stress-energy tensor for small r. Some opinions are given on how this calculation might be performed. A solution of the one-loop Einstein equations for Schwarzs child Anti-deSitter (SAdS) space time is presented, using Page's approximation to the quantum stress tensor. The resulting perturbed metric is shown to be unphysical, as it leads to a system of fields with infinite total energy. This problem is believed to be due to a failure of Page's method in SAdS. Suggestions are given on how one might correct the method
The space-time model according to dimensional continuous space-time theory
International Nuclear Information System (INIS)
Martini, Luiz Cesar
2014-01-01
This article results from the Dimensional Continuous Space-Time Theory for which the introductory theoretician was presented in [1]. A theoretical model of the Continuous Space-Time is presented. The wave equation of time into absolutely stationary empty space referential will be described in detail. The complex time, that is the time fixed on the infinite phase time speed referential, is deduced from the New View of Relativity Theory that is being submitted simultaneously with this article in this congress. Finally considering the inseparable Space-Time is presented the duality equation wave-particle.
Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)
International Nuclear Information System (INIS)
1995-09-01
The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R ampersand D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)
Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-09-01
The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).
The Verriest Lecture: Color lessons from space, time, and motion
Shevell, Steven K.
2012-01-01
The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398
On fractal space-time and fractional calculus
Directory of Open Access Journals (Sweden)
Hu Yue
2016-01-01
Full Text Available This paper gives an explanation of fractional calculus in fractal space-time. On observable scales, continuum models can be used, however, when the scale tends to a smaller threshold, a fractional model has to be adopted to describe phenomena in micro/nano structure. A time-fractional Fornberg-Whitham equation is used as an example to elucidate the physical meaning of the fractional order, and its solution process is given by the fractional complex transform.
Detecting space-time cancer clusters using residential histories
Jacquez, Geoffrey M.; Meliker, Jaymie R.
2007-04-01
Methods for analyzing geographic clusters of disease typically ignore the space-time variability inherent in epidemiologic datasets, do not adequately account for known risk factors (e.g., smoking and education) or covariates (e.g., age, gender, and race), and do not permit investigation of the latency window between exposure and disease. Our research group recently developed Q-statistics for evaluating space-time clustering in cancer case-control studies with residential histories. This technique relies on time-dependent nearest neighbor relationships to examine clustering at any moment in the life-course of the residential histories of cases relative to that of controls. In addition, in place of the widely used null hypothesis of spatial randomness, each individual's probability of being a case is instead based on his/her risk factors and covariates. Case-control clusters will be presented using residential histories of 220 bladder cancer cases and 440 controls in Michigan. In preliminary analyses of this dataset, smoking, age, gender, race and education were sufficient to explain the majority of the clustering of residential histories of the cases. Clusters of unexplained risk, however, were identified surrounding the business address histories of 10 industries that emit known or suspected bladder cancer carcinogens. The clustering of 5 of these industries began in the 1970's and persisted through the 1990's. This systematic approach for evaluating space-time clustering has the potential to generate novel hypotheses about environmental risk factors. These methods may be extended to detect differences in space-time patterns of any two groups of people, making them valuable for security intelligence and surveillance operations.
Aspects of space-time dualities
Giveon, Amit
1996-01-01
Duality groups of Abelian gauge theories on four manifolds and their reduction to two dimensions are considered. The duality groups include elements that relate different space-times in addition to relating different gauge-coupling matrices. We interpret (some of) such dualities as the geometrical symmetries of compactified theories in higher dimensions. In particular, we consider compactifications of a (self-dual) 2-form in 6-D, and compactifications of a self-dual 4-form in 10-D. Relations with a self-dual superstring in 6-D and with the type IIB superstring are discussed.
Quantum mechanics, stochasticity and space-time
International Nuclear Information System (INIS)
Ramanathan, R.
1986-04-01
An extended and more rigorous version of a recent proposal for an objective stochastic formulation of quantum mechanics along with its extension to the relativistic case without spin is presented. The relativistic Klein-Gordon equation is shown to be a particular form of the relativistic Kolmogorov-Fokker-Planck equation which is derived from a covariant formulation of the Chapman-Kolmogorov condition. Complexification of probability amplitudes is again achieved only through a conformal rotation of Minkowski space-time M 4 . (author)
The theory of space, time and gravitation
Fock, V
2015-01-01
The Theory of Space, Time, and Gravitation, 2nd Revised Edition focuses on Relativity Theory and Einstein's Theory of Gravitation and correction of the misinterpretation of the Einsteinian Gravitation Theory. The book first offers information on the theory of relativity and the theory of relativity in tensor form. Discussions focus on comparison of distances and lengths in moving reference frames; comparison of time differences in moving reference frames; position of a body in space at a given instant in a fixed reference frame; and proof of the linearity of the transformation linking two iner
International Nuclear Information System (INIS)
Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R.D.
1987-01-01
We propose that space-time at the smallest scales is in reality a causal set: a locally finite set of elements endowed with a partial order corresponding to the macroscopic relation that defines past and future. We explore how a Lorentzian manifold can approximate a causal set, noting in particular that the thereby defined effective dimensionality of a given causal set can vary with length scale. Finally, we speculate briefly on the quantum dynamics of causal sets, indicating why an appropriate choice of action can reproduce general relativity in the classical limit
Space-Time Discrete KPZ Equation
Cannizzaro, G.; Matetski, K.
2018-03-01
We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.
International Nuclear Information System (INIS)
Villasenor, R.F.; Bonilla, J.L.L.; Zuniga, G.O.; Matos, T.
1989-01-01
The authors study space-times embedded in E 5 (that means, pseudo-euclidean five-dimensional spaces) in the intrinsic rigidity case, i.e., when the second fundamental form b if can be determined by the internal geometry of the four-dimensional Riemannian space R 4 . They write down the Gauss and Codazzi equations determining the local isometric embedding of R 4 in E 5 and give some consequences of it. They prove that when there exists intrinsic rigidity, then b if is a linear combination of the metric and Ricci tensor; it is given some applications for the de Sitter and Einstein models
Materials, processes, and environmental engineering network
White, Margo M.
1993-01-01
The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.
Environmental Aspects, Objectives and Targets Identification Process
International Nuclear Information System (INIS)
Green, R.
2002-01-01
The purpose of this report is to document the environmental aspects and associated environmental impacts of the Bechtel SAIC Company (BSC) scope of work, evaluate the significance of those environmental aspects based on established criteria, and establish environmental objectives and targets for specific environmental aspects. This report is intended to be used by environmental staff in the evaluation of BSC work packages during the annual risk-based planning process. This report shall be fully reviewed and revised annually during the annual work planning process to reflect changes in BSC operations, facilities, and scope of work. Planned BSC work will be evaluated to determine if the work is covered by a previously defined activity, product or service (see Table 2); if work activities require redefinition or addition of a new activity; and if the significant evaluation for each environment aspect is still valid based on scope of planned work. New workscope initiated during the fiscal year through the Baseline Change Proposal process (i.e., not as part of the annual work plan) also will be reviewed for new environmental aspects and determination of whether the new workscope would change the significance rating of any environmental aspect. If a new environmental aspect is identified in a new work activity, product, or service but the aspect is not determined to be significant (see Section 4), then this report can be changed through an interim change notice (ICN). This report can be changed five times through an ICN before a full revision is required. However, if new workscope causes an environmental aspect to be graded as significant using the evaluation process in Section 4, this report shall be revised though a full review and revision
Composable Data Processing in Environmental Science - A Process View
Wombacher, Andreas
Data processing in environmental science is essential for doing science. The heterogeneity of data sources, data processing operations and infrastructures results in a lot of manual data and process integration work done by each scientist individually. This is very inefficient and time consuming.
Finiteness principle and the concept of space-time
International Nuclear Information System (INIS)
Tati, T.
1984-01-01
It is shown that the non-space-time description can be given by a system of axioms under the postulate of a certain number of pre-supposed physical concepts in which space-time is not included. It is found that space-time is a compound concept of presupposed concepts of non-space-time description connected by an additional condition called 'space-time condition'. (L.C.) [pt
On static and radiative space-times
International Nuclear Information System (INIS)
Friedrich, H.
1988-01-01
The conformal constraint equations on space-like hypersurfaces are discussed near points which represent either time-like or spatial infinity for an asymptotically flat solution of Einstein's vacuum field equations. In the case of time-like infinity a certain 'radiativity condition' is derived which must be satisfied by the data at that point. The case of space-like infinity is analysed in detail for static space-times with non-vanishing mass. It is shown that the conformal structure implied here on a slice of constant Killing time, which extends analytically through infinity, satisfies at spatial infinity the radiativity condition. Thus to any static solution exists a certain 'radiative solution' which has a smooth structure at past null infinity and is regular at past time-like infinity. A characterization of these solutions by their 'free data' is given and non-symmetry properties are discussed. (orig.)
Dirac equation in Kerr space-time
Energy Technology Data Exchange (ETDEWEB)
Iyer, B R; Kumar, Arvind [Bombay Univ. (India). Dept. of Physics
1976-06-01
The weak-field low-velocity approximation of Dirac equation in Kerr space-time is investigated. The interaction terms admit of an interpretation in terms of a 'dipole-dipole' interaction in addition to coupling of spin with the angular momentum of the rotating source. The gravitational gyro-factor for spin is identified. The charged case (Kerr-Newman) is studied using minimal prescription for electromagnetic coupling in the locally intertial frame and to the leading order the standard electromagnetic gyro-factor is retrieved. A first order perturbation calculation of the shift of the Schwarzchild energy level yields the main interesting result of this work: the anomalous Zeeman splitting of the energy level of a Dirac particle in Kerr metric.
Stochastic space-time and quantum theory
International Nuclear Information System (INIS)
Frederick, C.
1976-01-01
Much of quantum mechanics may be derived if one adopts a very strong form of Mach's principle such that in the absence of mass, space-time becomes not flat, but stochastic. This is manifested in the metric tensor which is considered to be a collection of stochastic variables. The stochastic-metric assumption is sufficient to generate the spread of the wave packet in empty space. If one further notes that all observations of dynamical variables in the laboratory frame are contravariant components of tensors, and if one assumes that a Lagrangian can be constructed, then one can obtain an explanation of conjugate variables and also a derivation of the uncertainty principle. Finally the superposition of stochastic metrics and the identification of root -g in the four-dimensional invariant volume element root -g dV as the indicator of relative probability yields the phenomenon of interference as will be described for the two-slit experiment
Environmental impact assessment: Process and implementation
International Nuclear Information System (INIS)
Chen, S.Y.; Tsai, S.Y.
1989-01-01
In this paper, the procedures and issues regarding the preparation of an environmental impact assessment in accordance with the National Environmental Policy Act (NEPA) as promulgated by the US Congress in 1969 are discussed. NEPA procedures and requirements are covered in general, while particular attention is given to the preparation of the environmental impact assessment. Also included is a discussion of the social impact assessment. The aim of the social impact assessment is to address the social issues involved in enhancing public understanding of the hazardous risks, thereby mitigating any conflicts that may arise in the NEPA process. 3 refs., 1 fig., 1 tab
A stochastic space-time model for intermittent precipitation occurrences
Sun, Ying; Stein, Michael L.
2016-01-01
Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.
A stochastic space-time model for intermittent precipitation occurrences
Sun, Ying
2016-01-28
Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.
Applications of Space-Time Duality
Plansinis, Brent W.
The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms
Path integration on space times with symmetry
International Nuclear Information System (INIS)
Low, S.G.
1985-01-01
Path integration on space times with symmetry is investigated using a definition of path integration of Gaussian integrators. Gaussian integrators, systematically developed using the theory of projective distributions, may be defined in terms of a Jacobi operator Green function. This definition of the path integral yields a semiclassical expansion of the propagator which is valid on caustics. The semiclassical approximation to the free particle propagator on symmetric and reductive homogeneous spaces is computed in terms of the complete solution of the Jacobi equation. The results are used to test the validity of using the Schwinger-DeWitt transform to compute an approximation to the coincidence limit of a field theory Green function from a WKB propagator. The method is found not to be valid except for certain special cases. These cases include manifolds constructed from the direct product of flat space and group manifolds, on which the free particle WKB approximation is exact and two sphere. The multiple geodesic contribution to 2 > on Schwarzschild in the neighborhood of rho = 3M is computed using the transform
Evolution in Many-Sheeted Space-time
Pitkänen, Matti
2010-01-01
The topics of the article has been restricted to those, which seem to represent the most well-established ideas about evolution in many-sheeted space-time. a) Basic facts about and TGD based model for pre-biotic evolution are discussed. b) A model for the ATP-ADP process based on DNA as topological quantum computer vision, the identification of universal metabolic energy quanta in terms of zero point kinetic energies, and the notion of remote metabolism is discussed. c) A model f...
Charged fluid distribution in higher dimensional spheroidal space-time
Indian Academy of Sciences (India)
A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.
Constant scalar curvature hypersurfaces in extended Schwarzschild space-time
International Nuclear Information System (INIS)
Pareja, M. J.; Frauendiener, J.
2006-01-01
We present a class of spherically symmetric hypersurfaces in the Kruskal extension of the Schwarzschild space-time. The hypersurfaces have constant negative scalar curvature, so they are hyperboloidal in the regions of space-time which are asymptotically flat
A vision for environmentally conscious plutonium processing
International Nuclear Information System (INIS)
Avens, L.R.; Eller, P.G.; Christensen, D.C.; Miller, W.L.
1998-01-01
Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power, and remediation. An unavoidable aspect of plutonium processing is that radioactively contaminated gas, liquid, and solid waste streams are generated. These streams need to be handled in a manner that not only is in full compliance with today's laws but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. It is now abundantly evident that in the long run, these practices have proven to be neither environmentally nor economically sound. Recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. The authors describe such a vision for plutonium processing that could be implemented fully within 5 yr at a facility such as the Los Alamos National Laboratory Plutonium Facility (TA55). As a significant bonus, even on this short timescale, the initial technology investment is handsomely returned in avoided waste management costs
Environmental risk communication as an educational process
Schottenfeld, Faith
The purpose of this study was to explore the dynamics of the environmental risk communication process. The goal was to look at the totality of the process by examining the different components: entry to communication (what brings people into the process), maintenance of communication (behaviors of participants, pathways to successful risk communication, barriers to successful risk communication, characteristics of the dialogue) and outcomes of risk communication (what has been learned, what moves the process to social action, what else can come of the process). Interviews and critical incidents were used to explore the experiences of risk communicators in four different practice settings: academia, industry/trade groups, community-based organizations and government. Twenty-four people completed critical incident stories and sixteen participated in in-depth interviews. Data were coded and analyzed for themes. Findings illustrated that successful risk communication results from a deliberative, or purposeful process. This process includes a systematic approach to identifying and inviting people to participate, while considering specific motivating factors that affect participation. Risk communication is maintained by creating and nurturing structured forums for dialogue by acknowledging the varying perspectives of the people who participate and the contextual settings of environmental risks. The result of effective dialogue may range from increased knowledge, to transformative learning to social action and policy change. The researcher recommended that a multi-disciplinary team including risk communicators, adult educators and scientists can work most effectively to plan, implement and evaluate a risk communication process.
Brain system for mental orientation in space, time, and person.
Peer, Michael; Salomon, Roy; Goldberg, Ilan; Blanke, Olaf; Arzy, Shahar
2015-09-01
Orientation is a fundamental mental function that processes the relations between the behaving self to space (places), time (events), and person (people). Behavioral and neuroimaging studies have hinted at interrelations between processing of these three domains. To unravel the neurocognitive basis of orientation, we used high-resolution 7T functional MRI as 16 subjects compared their subjective distance to different places, events, or people. Analysis at the individual-subject level revealed cortical activation related to orientation in space, time, and person in a precisely localized set of structures in the precuneus, inferior parietal, and medial frontal cortex. Comparison of orientation domains revealed a consistent order of cortical activity inside the precuneus and inferior parietal lobes, with space orientation activating posterior regions, followed anteriorly by person and then time. Core regions at the precuneus and inferior parietal lobe were activated for multiple orientation domains, suggesting also common processing for orientation across domains. The medial prefrontal cortex showed a posterior activation for time and anterior for person. Finally, the default-mode network, identified in a separate resting-state scan, was active for all orientation domains and overlapped mostly with person-orientation regions. These findings suggest that mental orientation in space, time, and person is managed by a specific brain system with a highly ordered internal organization, closely related to the default-mode network.
Pseudo-Newtonian Equations for Evolution of Particles and Fluids in Stationary Space-times
Energy Technology Data Exchange (ETDEWEB)
Witzany, Vojtěch; Lämmerzahl, Claus, E-mail: vojtech.witzany@zarm.uni-bremen.de, E-mail: claus.laemmerzahl@zarm.uni-bremen.de [ZARM, Universität Bremen, Am Fallturm, D-28359 Bremen (Germany)
2017-06-01
Pseudo-Newtonian potentials are a tool often used in theoretical astrophysics to capture some key features of a black hole space-time in a Newtonian framework. As a result, one can use Newtonian numerical codes, and Newtonian formalism, in general, in an effective description of important astrophysical processes such as accretion onto black holes. In this paper, we develop a general pseudo-Newtonian formalism, which pertains to the motion of particles, light, and fluids in stationary space-times. In return, we are able to assess the applicability of the pseudo-Newtonian scheme. The simplest and most elegant formulas are obtained in space-times without gravitomagnetic effects, such as the Schwarzschild rather than the Kerr space-time; the quantitative errors are smallest for motion with low binding energy. Included is a ready-to-use set of fluid equations in Schwarzschild space-time in Cartesian and radial coordinates.
Environmentally benign chemical synthesis and processing
International Nuclear Information System (INIS)
Hancock, K.G.
1992-01-01
A new era of university-industry-government partnership is required to address the intertwined problems of industrial economic competitiveness and environmental quality. Chemicals that go up the stacks and down the drains are simultaneously a serious detriment to the environment, a waste of natural resources, and a threat to industrial profitability. Recently, the NSF Divisions of Chemistry and chemical and Thermal Systems have joined with the Council for Chemical research in a new grant program to reduce pollution at the source by underwriting research aimed at environmentally benign chemical synthesis and processing. Part of a broader NSF initiative on environmental science research, this new program serves as a model for university-industry-government joint action and technology transfer. Other features of this program and related activities will be described in this paper
Environmental information document defense waste processing facility
International Nuclear Information System (INIS)
1981-07-01
This report documents the impact analysis of a proposed Defense Waste Processing Facility (DWPF) for immobilizing high-level waste currently being stored on an interim basis at the Savannah River Plant (SRP). The DWPF will process the waste into a form suitable for shipment to and disposal in a federal repository. The DWPF will convert the high-level waste into: a leach-resistant form containing above 99.9% of all the radioactivity, and a residue of slightly contaminated salt. The document describes the SRP site and environs, including population, land and water uses; surface and subsurface soils and waters; meteorology; and ecology. A conceptual integrated facility for concurrently producing glass waste and saltcrete is described, and the environmental effects of constructing and operating the facility are presented. Alternative sites and waste disposal options are addressed. Also environmental consultations and permits are discussed
The topology of geodesically complete space-times
International Nuclear Information System (INIS)
Lee, C.W.
1983-01-01
Two theorems are given on the topology of geodesically complete space-times which satisfy the energy condition. Firstly, the condition that a compact embedded 3-manifold in space-time be dentless is defined in terms of causal structure. Then it is shown that a dentless 3-manifold must separate space-time, and that it must enclose a compact portion of space-time. Further, it is shown that if the dentless 3-manifold is homeomorphic to S 3 then the part of space-time that it encloses must be simply connected. (author)
Atmospheric plasma processes for environmental applications
Shapoval, Volodymyr
2012-01-01
Plasma chemistry is a rapidly growing field which covers applications ranging from technological processing of materials, including biological tissues, to environmental remediation and energy production. The so called atmospheric plasma, produced by electric corona or dielectric barrier discharges in a gas at atmospheric pressure, is particularly attractive for the low costs and ease of operation and maintenance involved. The high concentrations of energetic and chemically active species (e.g...
Environmental Science: Processes & Impacts in 2018.
2018-02-21
2017 was another successful year for Environmental Science: Processes & Impacts (ESPI); it saw the expansion of our Editorial team and publication of two excellent Themed Issues, all while maintaining our commitment to provide our authors with exceptional customer service and fast times to publication. Through this Editorial, we wish to reflect upon some of the highlights from 2017 and also take this opportunity to reveal further new additions to the ESPI team and our plans for 2018.
Space, time, and chemical risk assessment
Exposure to manufactured chemicals is a fact of contemporary life for both humans and wildlife. In many cases, these exposures occur at safe environmental concentrations. However, spectacular exceptions have occurred (e.g., DDT and eggshell thinning, monocrotophos and Swainson&r...
Space, Time, and the Human Being.
Gould, Peter
1996-01-01
Provides an interesting overview of the philosophical changes initiated in geography over the last 50 years. Argues that dissatisfaction with environmental determinism and its variant of regional geography inspired a quantitative and theoretical revolution in the subject. Recent developments have questioned even the foundations of that revolution.…
A vision for environmentally conscious plutonium processing
International Nuclear Information System (INIS)
Avens, L.R.; Eller, P.G.; Christensen, D.C.; Miller, W.L.
1998-01-01
Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power and remediation. An unavoidable aspect of plutonium processing is that radioactive contaminated gas, liquid, and solid streams are generated. These streams need to be handled in a manner that is not only in full compliance with today's laws,but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. The theme of this paper is that recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to our children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. This paper will describe such a vision for plutonium processing that could be implemented fully within five years at a facility such as the Los Alamos Plutonium Facility (TA55). As a significant bonus, even on this short time scale, the initial technology investment is handsomely returned in avoided waste management costs
Environmental assessment process needs and future directions
International Nuclear Information System (INIS)
Gustafson, P.F.
1985-01-01
The environmental assessment process as legislatively mandated by the National Environmental Policy Act of 1969 (NEPA) constitutes a double-edged sword as regards the successful management and disposal of radioactive waste. On the one hand, NEPA requires identification and disclosure of the environmental and societal consequences of a given major federal action, consideration of alternatives and/or mitigative measures leading to the same end result, a balancing of costs and benefits, and provides for and encourages public participation in the decision-making process regarding the proposed action(s). On the other hand, public participation supported by judicial decisions, based more upon procedural than substantive issues, may delay, alter, or indeed prohibit a proposed course of action. If the cognizant federal agencies (DOE and NRC in the radioactive waste area) comply with both the spirit and the letter of NEPA a framework for the successful management of radioactive wastes on all types can be developed. If however, these agencies are less than earnest in their NEPA compliance actions or if public opposition is backed by overzealous court action, any radioactive waste management/disposal action (however technically sound) can be hoisted upon a petard from which it may not be freed until well into the next century
Environmental assessment process needs and future directions
Energy Technology Data Exchange (ETDEWEB)
Gustafson, P.F.
1985-01-01
The environmental assessment process as legislatively mandated by the National Environmental Policy Act of 1969 (NEPA) constitutes a double-edged sword as regards the successful management and disposal of radioactive waste. On the one hand, NEPA requires identification and disclosure of the environmental and societal consequences of a given major federal action, consideration of alternatives and/or mitigative measures leading to the same end result, a balancing of costs and benefits, and provides for and encourages public participation in the decision-making process regarding the proposed action(s). On the other hand, public participation supported by judicial decisions, based more upon procedural than substantive issues, may delay, alter, or indeed prohibit a proposed course of action. If the cognizant federal agencies (DOE and NRC in the radioactive waste area) comply with both the spirit and the letter of NEPA a framework for the successful management of radioactive wastes on all types can be developed. If however, these agencies are less than earnest in their NEPA compliance actions or if public opposition is backed by overzealous court action, any radioactive waste management/disposal action (however technically sound) can be hoisted upon a petard from which it may not be freed until well into the next century.
Environmental control costs for oil shale processes
Energy Technology Data Exchange (ETDEWEB)
None
1979-10-01
The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.
Empty space-times with separable Hamilton-Jacobi equation
International Nuclear Information System (INIS)
Collinson, C.D.; Fugere, J.
1977-01-01
All empty space-times admitting a one-parameter group of motions and in which the Hamilton-Jacobi equation is (partially) separable are obtained. Several different cases of such empty space-times exist and the Riemann tensor is found to be either type D or N. The results presented here complete the search for empty space-times with separable Hamilton-Jacobi equation. (author)
A short history of fractal-Cantorian space-time
International Nuclear Information System (INIS)
Marek-Crnjac, L.
2009-01-01
The article attempts to give a short historical overview of the discovery of fractal-Cantorian space-time starting from the 17th century up to the present. In the last 25 years a great number of scientists worked on fractal space-time notably Garnet Ord in Canada, Laurent Nottale in France and Mohamed El Naschie in England who gave an exact mathematical procedure for the derivation of the dimensionality and curvature of fractal space-time fuzzy manifold.
Some Peculiarities of Newton-Hooke Space-Times
Tian, Yu
2011-01-01
Newton-Hooke space-times are the non-relativistic limit of (anti-)de Sitter space-times. We investigate some peculiar facts about the Newton-Hooke space-times, among which the "extraordinary Newton-Hooke quantum mechanics" and the "anomalous Newton-Hooke space-times" are discussed in detail. Analysis on the Lagrangian/action formalism is performed in the discussion of the Newton-Hooke quantum mechanics, where the path integral point of view plays an important role, and the physically measurab...
Black Hole Space-time In Dark Matter Halo
Xu, Zhaoyi; Hou, Xian; Gong, Xiaobo; Wang, Jiancheng
2018-01-01
For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metric coefficient, we obtain the space-time metric for pure dark matter. By considering the dark matter halo in spherical symmetric space-time as part of the energy-momentum tensors in the Einstein field equation, we then obtain the spherical symmetr...
Bacteriophage ecology in environmental biotechnology processes.
Shapiro, Orr H; Kushmaro, Ariel
2011-06-01
Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Recursive evaluation of space-time lattice Green's functions
International Nuclear Information System (INIS)
De Hon, Bastiaan P; Arnold, John M
2012-01-01
Up to a multiplicative constant, the lattice Green's function (LGF) as defined in condensed matter physics and lattice statistical mechanics is equivalent to the Z-domain counterpart of the finite-difference time-domain Green's function (GF) on a lattice. Expansion of a well-known integral representation for the LGF on a ν-dimensional hyper-cubic lattice in powers of Z −1 and application of the Chu–Vandermonde identity results in ν − 1 nested finite-sum representations for discrete space-time GFs. Due to severe numerical cancellations, these nested finite sums are of little practical use. For ν = 2, the finite sum may be evaluated in closed form in terms of a generalized hypergeometric function. For special lattice points, that representation simplifies considerably, while on the other hand the finite-difference stencil may be used to derive single-lattice-point second-order recurrence schemes for generating 2D discrete space-time GF time sequences on the fly. For arbitrary symbolic lattice points, Zeilberger's algorithm produces a third-order recurrence operator with polynomial coefficients of the sixth degree. The corresponding recurrence scheme constitutes the most efficient numerical method for the majority of lattice points, in spite of the fact that for explicit numeric lattice points the associated third-order recurrence operator is not the minimum recurrence operator. As regards the asymptotic bounds for the possible solutions to the recurrence scheme, Perron's theorem precludes factorial or exponential growth. Along horizontal lattices directions, rapid initial growth does occur, but poses no problems in augmented dynamic-range fixed precision arithmetic. By analysing long-distance wave propagation along a horizontal lattice direction, we have concluded that the chirp-up oscillations of the discrete space-time GF are the root cause of grid dispersion anisotropy. With each factor of ten increase in the lattice distance, one would have to roughly
Conserved quantities for stationary Einstein-Maxwell space-times
International Nuclear Information System (INIS)
Esposito, F.P.; Witten, L.
1978-01-01
It is shown that every stationary Einstein-Maxwell space-time has eight divergence-free vector fields and these are isolated in general form. The vector fields and associated conserved quantities are calculated for several families of space-times. (Auth.)
Quantum space-times in the year 2002
Indian Academy of Sciences (India)
These ideas of space-time are suggested from developments in fuzzy physics, string theory, and deformation quantization. The review focuses on the ideas coming from fuzzy physics. We ﬁnd models of quantum space-time like fuzzy 4 on which states cannot be localized, but which ﬂuctuate into other manifolds like CP3.
Feynman propagator and space-time transformation technique
International Nuclear Information System (INIS)
Nassar, A.B.
1987-01-01
We evaluate the exact propagator for the time-dependent two-dimensional charged harmonic oscillator in a time-varying magnetic field, by taking direct recourse to the corresponding Schroedinger equation. Through the usage of an appropriate space-time transformation, we show that such a propagator can be obtained from the free propagator in the new space-time coordinate system. (orig.)
Space-time algebra for the generalization of gravitational field
Indian Academy of Sciences (India)
The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...
Space Environmental Effects on Materials and Processes
Sabbann, Leslie M.
2009-01-01
The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.
Causal boundary for stably causal space-times
International Nuclear Information System (INIS)
Racz, I.
1987-12-01
The usual boundary constructions for space-times often yield an unsatisfactory boundary set. This problem is reviewed and a new solution is proposed. An explicit identification rule is given on the set of the ideal points of the space-time. This construction leads to a satisfactory boundary point set structure for stably causal space-times. The topological properties of the resulting causal boundary construction are examined. For the stably causal space-times each causal curve has a unique endpoint on the boundary set according to the extended Alexandrov topology. The extension of the space-time through the boundary is discussed. To describe the singularities the defined boundary sets have to be separated into two disjoint sets. (D.Gy.) 8 refs
Quantum Space-Time Deformed Symmetries Versus Broken Symmetries
Amelino-Camelia, G
2002-01-01
Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...
Stochastic quantization of geometrodynamic curved space-time
International Nuclear Information System (INIS)
Prugovecki, E.
1981-01-01
It is proposed that quantum rather than classical test particles be used in recent operational definitions of space-time. In the resulting quantum space-time the role of test particle trajectories is taken over by propagators. The introduced co-ordinate values are stochastic rather than deterministic, the afore-mentioned propagators providing probability amplitudes describing fluctuations of measured co-ordinates around their mean values. It is shown that, if a geometrodynamic point of view based on 3 + 1 foliations of space-time is adopted, self-consistent families of propagators for quantum test particles in free fall can be constructed. The resulting formalism for quantum space-time is outlined and the quantization of spatially flat Robertson-Walker space-times is provided as an illustration. (author)
Environmental study of nylon flocking process.
Burkhart, J; Piacitelli, C; Schwegler-Berry, D; Jones, W
1999-05-14
Environmental measurements for a variety of gas, particulate, and microbiological agents have been made in order to characterize exposures associated with the nylon flocking process. Of all agents measured, particulate is the predominant exposure. Levels of total particulate ranged from O.1 to 240 mg/m3 (x = 11.4 mg/m3). Average respirable particulate was 2.2 mg/m3, ranging from 0.5 to 39.9 mg/m3. Highest levels of particulates were found in the flocking room, and direct reading dust measurements indicate that the highest peak exposures are associated with "blowdown" (a cleaning procedure used between flocking runs). The nature of the airborne particles was investigated using polarized light and scanning electron microscopy. Air samples were found to contain flock particles (fibers nominally 10-15 microm in diameter by about 1000 microm in length) and a variety of respirable particles types, several of which were linked directly to the process. Of special interest were elongated respirable particles, which by microscopic analysis, complemented with melting-point determination, were found to be shreds of nylon.
Space-Time Processing for Tactical Mobile Ad Hoc Networks
2009-08-01
the results for the standard 8 bits per pixel ( bpp ) 512512 Lena image [3] with a transmission rate of 0.375 bpp . To compare the image quality, we...use peak-signal-to-noise ratio (PSNR), defined as DE 2255 log10PSNR (dB) (2) where 255 is due to the 8 bpp image
Relativity Based on Physical Processes Rather Than Space-Time
Giese, Albrecht
2013-09-01
Physicists' understanding of relativity and the way it is handled is at present dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity, which explains the origin of mass without the use of the Higgs mechanism, based on the finiteness of the speed of light, and which provides the classical results for particle properties that are currently only accessible through quantum mechanics.
Space-Time Processing for Tactical Mobile Ad Hoc Networks
2010-05-01
results quantifying the impact of fading on average symbol and error probability (SEP/ BEP ) are available for various modulation schemes. However, in slow...fading situations, there is no mapping between the average SEP/ BEP and the average PEP. Consequently knowing average SEP/ BEP does not help in...understanding the average PEP. Analysis of average PEP is a more complicated problem compared to the analysis of average SEP/ BEP . Analytical
Collision-free gases in spatially homogeneous space-times
International Nuclear Information System (INIS)
Maartens, R.; Maharaj, S.D.
1985-01-01
The kinematical and dynamical properties of one-component collision-free gases in spatially homogeneous, locally rotationally symmetric (LRS) space-times are analyzed. Following Ray and Zimmerman [Nuovo Cimento B 42, 183 (1977)], it is assumed that the distribution function f of the gas inherits the symmetry of space-time, in order to construct solutions of Liouville's equation. The redundancy of their further assumption that f be based on Killing vector constants of the motion is shown. The Ray and Zimmerman results for Kantowski--Sachs space-time are extended to all spatially homogeneous LRS space-times. It is shown that in all these space-times the kinematic average four-velocity u/sup i/ can be tilted relative to the homogeneous hypersurfaces. This differs from the perfect fluid case, in which only one space-time admits tilted u/sup i/, as shown by King and Ellis [Commun. Math. Phys. 31, 209 (1973)]. As a consequence, it is shown that all space-times admit nonzero acceleration and heat flow, while a subclass admits nonzero vorticity. The stress π/sub i/j is proportional to the shear sigma/sub i/j by virtue of the invariance of the distribution function. The evolution of tilt and the existence of perfect fluid solutions is also discussed
Metric space construction for the boundary of space-time
International Nuclear Information System (INIS)
Meyer, D.A.
1986-01-01
A distance function between points in space-time is defined and used to consider the manifold as a topological metric space. The properties of the distance function are investigated: conditions under which the metric and manifold topologies agree, the relationship with the causal structure of the space-time and with the maximum lifetime function of Wald and Yip, and in terms of the space of causal curves. The space-time is then completed as a topological metric space; the resultant boundary is compared with the causal boundary and is also calculated for some pertinent examples
Space-Time Geometry of Quark and Strange Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).
A composite model of the space-time and 'colors'
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1987-03-01
A pregeometric and pregauge model of the space-time and ''colors'' in which the space-time metric and ''color'' gauge fields are both composite is presented. By the non-triviality of the model, the number of space-time dimensions is restricted to be not larger than the number of ''colors''. The long conjectured space-color correspondence is realized in the model action of the Nambu-Goto type which is invariant under both general-coordinate and local-gauge transformations. (author)
Approaching space-time through velocity in doubly special relativity
International Nuclear Information System (INIS)
Aloisio, R.; Galante, A.; Grillo, A.F.; Luzio, E.; Mendez, F.
2004-01-01
We discuss the definition of velocity as dE/d vertical bar p vertical bar, where E, p are the energy and momentum of a particle, in doubly special relativity (DSR). If this definition matches dx/dt appropriate for the space-time sector, then space-time can in principle be built consistently with the existence of an invariant length scale. We show that, within different possible velocity definitions, a space-time compatible with momentum-space DSR principles cannot be derived
Ghost neutrinos as test fields in curved space-time
International Nuclear Information System (INIS)
Audretsch, J.
1976-01-01
Without restricting to empty space-times, it is shown that ghost neutrinos (their energy-momentum tensor vanishes) can only be found in algebraically special space-times with a neutrino flux vector parallel to one of the principal null vectors of the conformal tensor. The optical properties are studied. There are no ghost neutrinos in the Kerr-Newman and in spherically symmetric space-times. The example of a non-vacuum gravitational pp-wave accompanied by a ghost neutrino pp-wave is discussed. (Auth.)
Quaternion wave equations in curved space-time
Edmonds, J. D., Jr.
1974-01-01
The quaternion formulation of relativistic quantum theory is extended to include curvilinear coordinates and curved space-time in order to provide a framework for a unified quantum/gravity theory. Six basic quaternion fields are identified in curved space-time, the four-vector basis quaternions are identified, and the necessary covariant derivatives are obtained. Invariant field equations are derived, and a general invertable coordinate transformation is developed. The results yield a way of writing quaternion wave equations in curvilinear coordinates and curved space-time as well as a natural framework for solving the problem of second quantization for gravity.
Discrete random walk models for space-time fractional diffusion
International Nuclear Information System (INIS)
Gorenflo, Rudolf; Mainardi, Francesco; Moretti, Daniele; Pagnini, Gianni; Paradisi, Paolo
2002-01-01
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order α is part of (0,2] and skewness θ (moduleθ≤{α,2-α}), and the first-order time derivative with a Caputo derivative of order β is part of (0,1]. Such evolution equation implies for the flux a fractional Fick's law which accounts for spatial and temporal non-locality. The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation
Directory of Open Access Journals (Sweden)
Petré Frederik
2004-01-01
Full Text Available In the downlink of DS-CDMA, frequency-selectivity destroys the orthogonality of the user signals and introduces multiuser interference (MUI. Space-time chip equalization is an efficient tool to restore the orthogonality of the user signals and suppress the MUI. Furthermore, multiple-input multiple-output (MIMO communication techniques can result in a significant increase in capacity. This paper focuses on space-time block coding (STBC techniques, and aims at combining STBC techniques with the original single-antenna DS-CDMA downlink scheme. This results into the so-called space-time block coded DS-CDMA downlink schemes, many of which have been presented in the past. We focus on a new scheme that enables both the maximum multiantenna diversity and the maximum multipath diversity. Although this maximum diversity can only be collected by maximum likelihood (ML detection, we pursue suboptimal detection by means of space-time chip equalization, which lowers the computational complexity significantly. To design the space-time chip equalizers, we also propose efficient pilot-based methods. Simulation results show improved performance over the space-time RAKE receiver for the space-time block coded DS-CDMA downlink schemes that have been proposed for the UMTS and IS-2000 W-CDMA standards.
Differential Space-Time Modulation for Wideband Wireless Networks
National Research Council Canada - National Science Library
Li, Hongbin
2006-01-01
.... The objective was to provide full spatio-spectral diversity and coding gain at affordable decoding complexity without the burden of estimating the underlying space-time frequency-selective channel...
Problems of space-time behaviour of nuclear reactors
International Nuclear Information System (INIS)
Obradovic, D.
1966-01-01
This paper covers a review of literature and mathematical methods applied for space-time behaviour of nuclear reactors. The review of literature is limited to unresolved problems and trends of actual research in the field of reactor physics [sr
Quantum Dynamics of Test Particle in Curved Space-Time
International Nuclear Information System (INIS)
Piechocki, W.
2002-01-01
To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)
Point-like Particles in Fuzzy Space-time
Francis, Charles
1999-01-01
This paper is withdrawn as I am no longer using the term "fuzzy space- time" to describe the uncertainty in co-ordinate systems implicit in quantum logic. Nor am I using the interpretation that quantum logic can be regarded as a special case of fuzzy logic. This is because there are sufficient differences between quantum logic and fuzzy logic that the explanation is confusing. I give an interpretation of quantum logic in "A Theory of Quantum Space-time"
Renormalization of the δ expansion in curved space-time
International Nuclear Information System (INIS)
Cho, H.T.
1991-01-01
Renormalization of a recently proposed δ expansion for a self-interacting scalar field theory in curved space-time is examined. The explicit calculation is carried out up to order δ 2 , which indicates that the expansion is renormalizable, but reduces to essentially the λφ 4 theory when the cutoff is removed. A similar conclusion has been reached in a previous paper where the case of flat space-time is considered
On the minimum uncertainty of space-time geodesics
International Nuclear Information System (INIS)
Diosi, L.; Lukacs, B.
1989-10-01
Although various attempts for systematic quantization of the space-time geometry ('gravitation') have appeared, none of them is considered fully consistent or final. Inspired by a construction of Wigner, the quantum relativistic limitations of measuring the metric tensor of a certain space-time were calculated. The result is suggested to be estimate for fluctuations of g ab whose rigorous determination will be a subject of a future relativistic quantum gravity. (author) 11 refs
An evaluation of space time cube representation of spatiotemporal patterns.
Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine
2009-01-01
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.
Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems
Directory of Open Access Journals (Sweden)
Hakan A. Çırpan
2002-05-01
Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.
Aging in a Relativistic Biological Space-Time
Directory of Open Access Journals (Sweden)
Davide Maestrini
2018-05-01
Full Text Available Here we present a theoretical and mathematical perspective on the process of aging. We extend the concepts of physical space and time to an abstract, mathematically-defined space, which we associate with a concept of “biological space-time” in which biological dynamics may be represented. We hypothesize that biological dynamics, represented as trajectories in biological space-time, may be used to model and study different rates of biological aging. As a consequence of this hypothesis, we show how dilation or contraction of time analogous to relativistic corrections of physical time resulting from accelerated or decelerated biological dynamics may be used to study precipitous or protracted aging. We show specific examples of how these principles may be used to model different rates of aging, with an emphasis on cancer in aging. We discuss how this theory may be tested or falsified, as well as novel concepts and implications of this theory that may improve our interpretation of biological aging.
International Nuclear Information System (INIS)
Tupper, B.O.J.
1983-01-01
The work of a previous article is extended to show that space-times which are the exact solutions of the field equations for a perfect fluid also may be exact solutions of the field equations for a viscous magnetohydrodynamic fluid. Conditions are found for this equivalence to exist and viscous magnetohydrodynamic solutions are found for a number of known perfect fluid space-times. (author)
5th Conference on Aerospace Materials, Processes, and Environmental Technology
Cook, M. B. (Editor); Stanley, D. Cross (Editor)
2003-01-01
Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.
Spontaneous symmetry breaking in curved space-time
International Nuclear Information System (INIS)
Toms, D.J.
1982-01-01
An approach dealing with some of the complications which arise when studying spontaneous symmetry breaking beyond the tree-graph level in situations where the effective potential may not be used is discussed. These situations include quantum field theory on general curved backgrounds or in flat space-times with non-trivial topologies. Examples discussed are a twisted scalar field in S 1 xR 3 and instabilities in an expanding universe. From these it is seen that the topology and curvature of a space-time may affect the stability of the vacuum state. There can be critical length scales or times beyond which symmetries may be broken or restored in certain cases. These features are not present in Minkowski space-time and so would not show up in the usual types of early universe calculations. (U.K.)
Beyond peaceful coexistence the emergence of space, time and quantum
2016-01-01
Beyond Peaceful Coexistence: The Emergence of Space, Time and Quantum brings together leading academics in mathematics and physics to address going beyond the 'peaceful coexistence' of space-time descriptions (local and continuous ones) and quantum events (discrete and non-commutative ones). Formidable challenges waiting beyond the Standard Model require a new semantic consistency within the theories in order to build new ways of understanding, working and relating to them. The original A. Shimony meaning of the peaceful coexistence (the collapse postulate and non-locality) appear to be just the tip of the iceberg in relation to more serious fundamental issues across physics as a whole.Chapters in this book present perspectives on emergent, discrete, geometrodynamic and topological approaches, as well as a new interpretative spectrum of quantum theories after Copenhagen, discrete time theories, time-less approaches and 'super-fluid' pictures of space-time.As well as stimulating further research among establis...
FLRW cosmology in Weyl-integrable space-time
Energy Technology Data Exchange (ETDEWEB)
Gannouji, Radouane [Department of Physics, Faculty of Science, Tokyo University of Science, 1–3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nandan, Hemwati [Department of Physics, Gurukula Kangri Vishwavidayalaya, Haridwar 249404 (India); Dadhich, Naresh, E-mail: gannouji@rs.kagu.tus.ac.jp, E-mail: hntheory@yahoo.co.in, E-mail: nkd@iucaa.ernet.in [IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007 (India)
2011-11-01
We investigate the Weyl space-time extension of general relativity (GR) for studying the FLRW cosmology through focusing and defocusing of the geodesic congruences. We have derived the equations of evolution for expansion, shear and rotation in the Weyl space-time. In particular, we consider the Starobinsky modification, f(R) = R+βR{sup 2}−2Λ, of gravity in the Einstein-Palatini formalism, which turns out to reduce to the Weyl integrable space-time (WIST) with the Weyl vector being a gradient. The modified Raychaudhuri equation takes the form of the Hill-type equation which is then analysed to study the formation of the caustics. In this model, it is possible to have a Big Bang singularity free cyclic Universe but unfortunately the periodicity turns out to be extremely short.
Routines and Communities of Practice in Public Environmental Procurement Processes
Larsen, Katarina; Svane, Örjan
2005-01-01
Environmental procurement has received increasing attention as a policy tool promoting change towards sustainable consumption and production. The successful implementation of public environmental procurement policy requires the establishment of new routines for user-producer-supplier relationships that enable the integration of environmental aspects. The aim of the study is to analyse the roles of different communities of practice and learning patterns in environmental procurement processes. ...
How do environmental policies fit within larger strategic planning processes
Crowe, Lynn
2015-01-01
This chapter explores how environmental policies fit within larger strategic processes relevant to sport management and development. It identifies key policy areas such as environmental impact assessment, sustainable land use planning, environmental protection and visitor impact management. Good practice and guidelines which will enable sport managers to integrate their work with these environmental policies are explored. Detailed guidance on design and longer term management and maintenance ...
Analytic Hierarchy Process for Personalising Environmental Information
Kabassi, Katerina
2014-01-01
This paper presents how a Geographical Information System (GIS) can be incorporated in an intelligent learning software system for environmental matters. The system is called ALGIS and incorporates the GIS in order to present effectively information about the physical and anthropogenic environment of Greece in a more interactive way. The system…
Environmental challenges for the Egg Processing Industry
DEFF Research Database (Denmark)
Mortensen, Bent Ole Gram; Hald, Mie
industries having a large consumption of natural resources (water and energy) and produces significantly amounts of residue (waste water, carbon dioxide and biodegradable waste). As such it is only natural that the food industry is governed by environmental regulation. In this book the Egg...
National Environmental Policy Act guidance: A model process
International Nuclear Information System (INIS)
Angle, B.M.; Lockhart, V.A.T.; Sema, B.; Tuott, L.C.; Irving, J.S.
1995-04-01
The ''Model National Environmental Policy Act (NEPA) Process'' includes: References to regulations, guidance documents, and plans; training programs; procedures; and computer databases. Legislative Acts and reference documents from Congress, US Department of Energy, and Lockheed Idaho Technologies Company provide the bases for conducting NEPA at the Idaho National Engineering Laboratory (INEL). Lockheed Idaho Technologies Company (LITCO) NEPA / Permitting Department, the Contractor Environmental Organization (CEO) is responsible for developing and maintaining LITCO NEPA and permitting policies, guidance, and procedures. The CEO develops procedures to conduct environmental evaluations based on NEPA, Council on Environmental Quality (CEQ) regulations, and DOE guidance. This procedure includes preparation or support of environmental checklists, categorical exclusion determinations, environmental assessment determinations, environmental assessments, and environmental impact statements. In addition, the CEO uses this information to train personnel conducting environmental evaluations at the INEL. Streamlining these procedures fosters efficient use of resources, quality documents, and better decisions on proposed actions
MEST- avoid next extinction by a space-time effect
Cao, Dayong
2013-03-01
Sun's companion-dark hole seasonal took its dark comets belt and much dark matter to impact near our earth. And some of them probability hit on our earth. So this model kept and triggered periodic mass extinctions on our earth every 25 to 27 million years. After every impaction, many dark comets with very special tilted orbits were arrested and lurked in solar system. When the dark hole-Tyche goes near the solar system again, they will impact near planets. The Tyche, dark comet and Oort Cloud have their space-time center. Because the space-time are frequency and amplitude square of wave. Because the wave (space-time) can make a field, and gas has more wave and fluctuate. So they like dense gas ball and a dark dense field. They can absorb the space-time and wave. So they are ``dark'' like the dark matter which can break genetic codes of our lives by a dark space-time effect. So the upcoming next impaction will cause current ``biodiversity loss.'' The dark matter can change dead plants and animals to coal, oil and natural gas which are used as energy, but break our living environment. According to our experiments, which consciousness can use thought waves remotely to change their systemic model between Electron Clouds and electron holes of P-N Junction and can change output voltages of solar cells by a life information technology and a space-time effect, we hope to find a new method to the orbit of the Tyche to avoid next extinction. (see Dayong Cao, BAPS.2011.APR.K1.17 and BAPS.2012.MAR.P33.14) Support by AEEA
Space-Time Diffeomorphisms in Noncommutative Gauge Theories
Directory of Open Access Journals (Sweden)
L. Román Juarez
2008-07-01
Full Text Available In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007, 10367–10382] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985, 288–315, 316–333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987, 319–328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.
Space-time description of particle creation in gravitational and electromagnetic fields
International Nuclear Information System (INIS)
Mamaev, S.G.; Trunov, N.N.
1983-01-01
The dynamics of the creation of pairs of particles from the vacuum in strong time-dependent external fields is studied. The space-time correlation function of the pair is determined. An analysis of the behavior of this function allows one, in particular, to study the pair-creation process, to distinguish between real and virtual particles, etc
Process evaluation of a worksite social and physical environmental intervention
Coffeng, J.K.; Hendriksen, I.J.M.; Mechelen, W. van; Boot, C.R.L.
2013-01-01
OBJECTIVE:: To evaluate the process of implementation of a social and physical environmental intervention and to explore differences regarding this process between both interventions. METHODS:: Context, recruitment, dose delivered, fidelity, reach, dose received, satisfaction, and implementation
Topology and isometries of the de Sitter space-time
International Nuclear Information System (INIS)
Mitskevich, N.V.; Senin, Yu.E.
1982-01-01
Spaces with a constant four-dimensional curvature, which are locally isometric to the de Sitter space-time but differing from it in topology are considered. The de Sitter spaces are considered in coordinates fitted at best for introduction of topology for three cross sections: S 3 , S 1 x S 2 , S 1 x S 2 x S 3 . It is shown that the de Sitter space-time covered by the family of layers, each of them is topologically identical, may be covered by another family of topologically identical layers. But layers in these families will have different topology
Holographic analysis of dispersive pupils in space--time optics
International Nuclear Information System (INIS)
Calatroni, J.; Vienot, J.C.
1981-01-01
Extension of space--time optics to objects whose transparency is a function of the temporal frequency v = c/lambda is examined. Considering the effects of such stationary pupils on white light waves, they are called temporal pupils. It is shown that simultaneous encoding both in the space and time frequency domains is required to record pupil parameters. The space-time impulse response and transfer functions are calculated for a dispersive nonabsorbent material. An experimental method providing holographic recording of the dispersion curve of any transparent material is presented
The scalar wave equation in a Schwarzschild space-time
International Nuclear Information System (INIS)
Schmidt, B.G.; Stewart, J.M.
1979-01-01
This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild space-time in a neighbourhood of spatial infinity which includes parts of future and pass null infinity. The behaviour of such fields is essentially different from that which occurs in a flat space-time. In particular fields which have a Bondi-type expansion in powers of 'r(-1)' near past null infinity do not have such an expansion near future null infinity. Further solutions which have physically reasonable Cauchy data probably fail to have Bondi-type expansions near null infinity. (author)
On signature change in p-adic space-times
International Nuclear Information System (INIS)
Dragovic, B.G.
1991-01-01
Change of signature by linear coordinate transformations in p-adic space-times is considered. In this paper it is shown that there exists arbitrary change of trivial signature in Q p n for all n ≥ 1 if p ≡ 1 (mod 4). In other cases it is possible to change only even number of the signs of the signature. The authors suggest new concept of signature with respect to distinct quadratic extensions, of Q p . If space-time dimension is restricted to four there is no signature change
On quantization of free fields in stationary space-times
International Nuclear Information System (INIS)
Moreno, C.
1977-01-01
In Section 1 the structure of the infinite-dimensional Hamiltonian system described by the Klein-Gordon equation (free real scalar field) in stationary space-times with closed space sections, is analysed, an existence and uniqueness theorem is given for the Lichnerowicz distribution kernel G 1 together with its proper Fourier expansion, and the Hilbert spaces of frequency-part solutions defined by means of G 1 are constructed. In Section 2 an analysis, a theorem and a construction similar to the above are formulated for the free real field spin 1, mass m>0, in one kind of static space-times. (Auth.)
On maximal surfaces in asymptotically flat space-times
International Nuclear Information System (INIS)
Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.
1990-01-01
Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)
Holographic analysis of dispersive pupils in space--time optics
Energy Technology Data Exchange (ETDEWEB)
Calatroni, J.; Vienot, J.C.
1981-06-01
Extension of space--time optics to objects whose transparency is a function of the temporal frequency v = c/lambda is examined. Considering the effects of such stationary pupils on white light waves, they are called temporal pupils. It is shown that simultaneous encoding both in the space and time frequency domains is required to record pupil parameters. The space-time impulse response and transfer functions are calculated for a dispersive nonabsorbent material. An experimental method providing holographic recording of the dispersion curve of any transparent material is presented.
Gauge fields in algebraically special space-times
International Nuclear Information System (INIS)
Torres del Castillo, G.F.
1985-01-01
It is shown that in an algebraically special space-time which admits a congruence of null strings, a source-free gauge field aligned with the congruence is determined by a matrix potential which has to satisfy a second-order differential equation with quadratic nonlinearities. The Einstein--Yang--Mills equations are then reduced to a scalar and two matrix equations. In the case of self-dual gauge fields in a self-dual space-time, the existence of an infinite set of conservation laws, of an associated linear system, and of infinitesimal Baecklund transformations is demonstrated. All the results apply for an arbitrary gauge group
Two theorems on flat space-time gravitational theories
International Nuclear Information System (INIS)
Castagnino, M.; Chimento, L.
1980-01-01
The first theorem states that all flat space-time gravitational theories must have a Lagrangian with a first term that is an homogeneous (degree-1) function of the 4-velocity usup(i), plus a functional of nsub(ij)usup(i)usup(j). The second theorem states that all gravitational theories that satisfy the strong equivalence principle have a Lagrangian with a first term gsub(ij)(x)usup(i)usup(j) plus an irrelevant term. In both cases the theories must issue from a unique variational principle. Therefore, under this condition it is impossible to find a flat space-time theory that satisfies the strong equivalence principle. (author)
Null geodesic deviation II. Conformally flat space--times
International Nuclear Information System (INIS)
Peters, P.C.
1975-01-01
The equation of geodesic deviation is solved in conformally flat space--time in a covariant manner. The solution is given as an integral equation for general geodesics. The solution is then used to evaluate second derivatives of the world function and derivatives of the parallel propagator, which need to be known in order to find the Green's function for wave equations in curved space--time. A method of null geodesic limits of two-point functions is discussed, and used to find the scalar Green's function as an iterative series
Flat synchronizations in spherically symmetric space-times
International Nuclear Information System (INIS)
Herrero, Alicia; Morales-Lladosa, Juan Antonio
2010-01-01
It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.
A new theory of space-time and gravitation
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.
1982-01-01
Field theory of gravitation is constructed. It uses a symmetrical second rank tensor field in pseudoeuclidean space-time for describing the gravitational field. The theory is based on the condition of the presence of conservation laws for gravitational field and matter taken together and on the geometrization principle. The field theory of gravitation has the same post-newtonian parame-- ters as the general relativity theory (GRT) which implies that both theories are indistinguishable from the viewpoint of any post- newtonian experiment. The description of the effects in strong gravitational fields as well as properties of gravitational waves in the field theory of gravitation and GRT differ significantly from each other. The distinctions between two theories include also the itational red shifti curving of light trajectories and timabsence in the field theory of gravitation of the effects of grav.. delay/ in processes of propagation of gravitational waves in external fields. These distinctions made it possible to suggest a number of experiments with gravitational waves in which the predictions of the field theory of gravitation can be compared with those of the GRT. Model of the Universe in the field theory of gravitation makes it possible to describe the cosmological red shift of the frequency. Character of the evolution in this mode is determined by the delay parameter q 0 : at q 0 0 >4-3/2xα the ''expansion'' at some moment will ''change'' to contraction'' and the Universe will return to the singular state, where α=8πepsilon 0 /3M 2 (H is the Hubble constant) [ru
Two methods of space--time energy densification
International Nuclear Information System (INIS)
Sahlin, R.L.
1976-01-01
With a view to the goal of net energy production from a DT microexplosion, we study two ideas (methods) through which (separately or in combination) energy may be ''concentrated'' into a small volume and short period of time--the so-called space-time energy densification or compression. We first discuss the advantages and disadvantages of lasers and relativistic electron-beam (E-beam) machines as the sources of such energy and identify the amplification of laser pulses as a key factor in energy compression. The pulse length of present relativistic E-beam machines is the most serious limitation of this pulsed-power source. The first energy-compression idea we discuss is the reasonably efficient production of short-duration, high-current relativistic electron pulses by the self interruption and restrike of a current in a plasma pinch due to the rapid onset of strong turbulence. A 1-MJ plasma focus based on this method is nearing completion at this Laboratory. The second energy-compression idea is based on laser-pulse production through the parametric amplification of a self-similar or solitary wave pulse, for which analogs can be found in other wave processes. Specifically, the second energy-compression idea is a proposal for parametric amplification of a solitary, transverse magnetic pulse in a coaxial cavity with a Bennett dielectric rod as an inner coax. Amplifiers of this type can be driven by the pulsed power from a relativistic E-beam machine. If the end of the inner dielectric coax is made of LiDT or another fusionable material, the amplified pulse can directly drive a fusion reaction--there would be no need to switch the pulse out of the system toward a remote target
Two methods of space-time energy densification
International Nuclear Information System (INIS)
Sahlin, H.L.
1975-01-01
With a view to the goal of net energy production from a DT microexplosion, two ideas (methods) are studied through which (separately or in combination) energy may be ''concentrated'' into a small volume and short period of time--the so-called space-time energy densification or compression. The advantages and disadvantages of lasers and relativistic electron-beam (E-beam) machines as the sources of such energy are studied and the amplification of laser pulses as a key factor in energy compression is discussed. The pulse length of present relativistic E-beam machines is the most serious limitation of this pulsed-power source. The first energy-compression idea discussed is the reasonably efficient production of short-duration, high-current relativistic electron pulses by the self interruption and restrike of a current in a plasma pinch due to the rapid onset of strong turbulence. A 1-MJ plasma focus based on this method is nearing completion at this Laboratory. The second energy-compression idea is based on laser-pulse production through the parametric amplification of a self-similar or solitary wave pulse, for which analogs can be found in other wave processes. Specifically, the second energy-compression idea is a proposal for parametric amplification of a solitary, transverse magnetic pulse in a coaxial cavity with a Bennett dielectric rod as an inner coax. Amplifiers of this type can be driven by the pulsed power from a relativistic E-beam machine. If the end of the inner dielectric coax is made of LiDT or another fusionable material, the amplified pulse can directly drive a fusion reaction--there would be no need to switch the pulse out of the system toward a remote target. (auth)
Spinor Field Nonlinearity and Space-Time Geometry
Saha, Bijan
2018-03-01
Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time
International Nuclear Information System (INIS)
Gottlieb, I.; Agop, M.; Jarcau, M.
2004-01-01
One builds the vacuum metrics of the stationary electromagnetic field through the complex potential model. There are thus emphasized both a variational principle, independent on the Ricci tensor, and some internal symmetries of the vacuum solutions. One shows that similar results may be obtained using the Barbiliant's group. By analytical continuation of a Barbilian transformation the link between the fixed points of the modular groups of the vacuum and the golden mean PHI=(1/(1+PHI))=(√5-1)/2 of ε (∞) space-time is established. Finally, a Cantorian fractal axiomatic model of the space-time is presented. The model is explained using a set of coupled equations which may describe the self organizing processes at the solid-liquid, plasma-plasma, and superconductor-superconductor interfaces
Exploratory space-time analyses of Rift Valley Fever in South Africa in 2008-2011.
Directory of Open Access Journals (Sweden)
Raphaëlle Métras
Full Text Available Rift Valley fever (RVF is a zoonotic arbovirosis for which the primary hosts are domestic livestock (cattle, sheep and goats. RVF was first described in South Africa in 1950-1951. Mechanisms for short and long distance transmission have been hypothesised, but there is little supporting evidence. Here we describe RVF occurrence and spatial distribution in South Africa in 2008-11, and investigate the presence of a contagious process in order to generate hypotheses on the different mechanisms of transmission.A total of 658 cases were extracted from World Animal Health Information Database. Descriptive statistics, epidemic curves and maps were produced. The space-time K-function was used to test for evidence of space-time interaction. Five RVF outbreak waves (one in 2008, two in 2009, one in 2010 and one in 2011 of varying duration, location and size were reported. About 70% of cases (n = 471 occurred in 2010, when the epidemic was almost country-wide. No strong evidence of space-time interaction was found for 2008 or the second wave in 2009. In the first wave of 2009, a significant space-time interaction was detected for up to one month and over 40 km. In 2010 and 2011 a significant intense, short and localised space-time interaction (up to 3 days and 15 km was detected, followed by one of lower intensity (up to 2 weeks and 35 to 90 km.The description of the spatiotemporal patterns of RVF in South Africa between 2008 and 2011 supports the hypothesis that during an epidemic, disease spread may be supported by factors other than active vector dispersal. Limitations of under-reporting and space-time K-function properties are discussed. Further spatial analyses and data are required to explain factors and mechanisms driving RVF spread.
On the performance of diagonal lattice space-time codes
Abediseid, Walid; Alouini, Mohamed-Slim
2013-01-01
There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding
Strings reinterpreted as topological elements of space time
International Nuclear Information System (INIS)
Ne'eman, Y.
1986-01-01
In 1974, Scherk and Schwarz suggested a reinterpretation of string dynamics as a theory of quantum gravity with unification. We suggest completing the transition through the reinterpretation of the strings themselves as Feynman-paths, spanning the topology of space time in the Hawking-King-McCarthy model. This explains the emergency of gravity
Projected space-time and varying speed of light
International Nuclear Information System (INIS)
Iovane, G.; Bellucci, S.; Benedetto, E.
2008-01-01
In this paper starting from El Naschie's Cantorian space-time and our model of projected Universe, we consider its properties in connection with varying speed of light. A possible way-out of the related problem is provided by the Fantappie group approach
Unsupervised action classification using space-time link analysis
DEFF Research Database (Denmark)
Liu, Haowei; Feris, Rogerio; Krüger, Volker
2010-01-01
In this paper we address the problem of unsupervised discovery of action classes in video data. Different from all existing methods thus far proposed for this task, we present a space-time link analysis approach which matches the performance of traditional unsupervised action categorization metho...
Space-time structure and the origin of physical law
International Nuclear Information System (INIS)
Green, M.A.
1980-01-01
In the first part of this theses the author adopts a traditional world view, with space-time a topologically simple geometrical manifold, matter being represented by smooth classical fields, and space a Riemannian submanifold of space-time. It is shown how to characterize the space-time geometry in terms of fields defined on three-dimensional space. Accepting a finite number of the fields induced on space as independent initial data, a procedure is given for constructing dynamical and constraint equations which will propagate these fields forward in time. When the initial data are restricted to include only the hypersurface metric and the extrinsic curvature, the resulting equations combine to form the Einstein gravitational field equations with the cosmological term. The synthesis of gravitational and quantum physics is approached by proposing that the objective world underlying the perceived world is a four-dimensional topological manifold w, with no physically significant field structure and an unconstrianed and complex global topology. Conventional space-time is then a topologically simple replacement manifold for w. A preliminary outline of the correspondence is presented, based on a similarity between a natural graphical representation of 2 and the Feynman graphs of quantum field theory
Space-time design of the public city
Thomaier, Susanne; Könecke, Benjamin; Zedda, Roberto; Stabilini, Stefano
2013-01-01
Time has become an increasingly important topic in urban studies and urban planning. The spatial-temporal interplay is not only of relevance for the theory of urban development and urban politics, but also for urban planning and governance. The space-time approach focuses on the human being with its various habits and routines in the city. Understanding and taking those habits into account in urban planning and public policies offers a new way to improve the quality of life in our cities. Adapting the supply and accessibility of public spaces and services to the inhabitants’ space-time needs calls for an integrated approach to the physical design of urban space and to the organization of cities. In the last two decades the body of practical and theoretical work on urban space-time topics has grown substantially. The book offers a state of the art overview of the theoretical reasoning, the development of new analytical tools, and practical experience of the space-time design of public cities in major Europea...
Poisson's equation in de Sitter space-time
Energy Technology Data Exchange (ETDEWEB)
Pessa, E [Rome Univ. (Italy). Ist. di Matematica
1980-11-01
Based on a suitable generalization of Poisson's equation for de Sitter space-time the form of gravitation's law in 'projective relativity' is examined; it is found that, in the interior case, a small difference with the customary Newtonian law arises. This difference, of a repulsive character, can be very important in cosmological problems.
Space-time transformations in radial path integrals
International Nuclear Information System (INIS)
Steiner, F.
1984-09-01
Nonlinear space-time transformations in the radial path integral are discussed. A transformation formula is derived, which relates the original path integral to the Green's function of a new quantum system with an effective potential containing an observable quantum correction proportional(h/2π) 2 . As an example the formula is applied to spherical Brownian motion. (orig.)
Scalar metric fluctuations in space-time matter inflation
International Nuclear Information System (INIS)
Anabitarte, Mariano; Bellini, Mauricio
2006-01-01
Using the Ponce de Leon background metric, which describes a 5D universe in an apparent vacuum: G-bar AB =0, we study the effective 4D evolution of both, the inflaton and gauge-invariant scalar metric fluctuations, in the recently introduced model of space-time matter inflation
The order axiom and the biological space time
International Nuclear Information System (INIS)
Vu Huu Nhu
2014-01-01
This work focuses on the field of Biological Space - Time. In fact the conception of Biological Space - Time is connected with order character of sets. Because the illustration of order axioms is very important for searching order systems. In this work, the new form of order axioms has been illustrated in the form of (a,b) ≠ (b.a). It is a common form of Descartes product. Based on this we suggest the following formation of order lemma (a.b) ≠(b.a)↔ a Φ b. In this case Φ is an order relation. From the new form of order axiom, we determine the order system as follows: If S = (a,b) the set of two elements and the order axiom (a.b) ≠ (b.a) is satisfied. So that, in this case, S is called an order system. The life system are the most important order systems. We could illustrate the biological system as: S = (A, T, G, C). In this set, A, T, G, C are the elements of the genetic code and the order axiom is satisfied. As we know, for example, in genetic code: (AUG) ≠ (UGA) ≠ (UAG). The order biological system induces an order relation and it is the origin of the conception of Biological Space Time. The students of Physics and Biology could use this book as basic course for studies of Biological Space Time. (author)
Zen and the Art of Space-Time Manufacturing
Directory of Open Access Journals (Sweden)
Bertolami Orfeu
2013-09-01
Full Text Available We present a general discussion about the so-called emergent properties and discuss whether space-time and gravity can be regarded as emergent features of underlying more fundamental structures. Finally, we discuss some ideas about the multiverse, and speculate on how our universe might arise from the multiverse.
The wave equation on a curved space-time
International Nuclear Information System (INIS)
Friedlander, F.G.
1975-01-01
It is stated that chapters on differential geometry, distribution theory, and characteristics and the propagation of discontinuities are preparatory. The main matter is in three chapters, entitled: fundamental solutions, representation theorems, and wave equations on n-dimensional space-times. These deal with general construction of fundamental solutions and their application to the Cauchy problem. (U.K.)
Notes on a class of homogeneous space-times
International Nuclear Information System (INIS)
Calvao, M.O.; Reboucas, M.J.; Teixeira, A.F.F.; Silva Junior, W.M.
1987-01-01
The breakdown of causality in homogeneous Goedel-type space-time manifolds is examined. An extension of Reboucas-Tiomno (RT) study is made. The existence of noncausal curves is also investigated under two different conditions on the energy-momentum tensor. An integral representation of the infinitesimal generators of isometries is obtained extending previous works on the RT geometry. (Author) [pt
International Nuclear Information System (INIS)
Dey, Dipanjan
2015-01-01
Dark-matter is a hypothetical matter which can't be seen but around 27% of our universe is made of it. Its distribution, evolution from early stage of our universe to present stage, its particle constituents all these are great unsolved mysteries of modern Cosmology and Astrophysics. In this talk I will introduce a special kind of space-time which is known as Bertrand Space-time (BST). I will show this space-time interestingly shows some dark-matter properties like- flat velocity curve, density profile of Dark-matter, total mass of Dark matter-halo, gravitational lensing etc, for that reason we consider BST is seeded by Dark-matter or it is a space-time of Dark-matter. At last I will show using modified gravity formalism the behaviour of the equation of state parameter of Dark-matter and the behaviour of the Newton's gravitational constant in the vicinity of the singularity. (author)
Space-times carrying a quasirecurrent pairing of vector fields
International Nuclear Information System (INIS)
Rosca, R.; Ianus, S.
1977-01-01
A quasirecurrent pairing of vector fields(X 1 ,X 2 ,) defined previously by Rosca (C.R. Acad. Sci. 282 (1976)) is investigated on a space-time in two cases: (1) X 1 is spacelike and X 2 is timelike; (2) X 1 is null and X 2 is spacelike. The physical interpretation of these vector fields is given. (author)
Membranes for Environmentally Friendly Energy Processes
He, Xuezhong; Hägg, May-Britt
2012-01-01
Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426
Membranes for Environmentally Friendly Energy Processes
Directory of Open Access Journals (Sweden)
Xuezhong He
2012-10-01
Full Text Available Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature and the impurities in a gas stream (such as SO2, NOx, H2S, etc.. Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation.
Managing environmental knowledge through learning processes in Spanish hospitality companies.
Cegarra-Navarro, Juan Gabriel; Martinez Martinez, Aurora
2010-11-01
The major focus of this research is to investigate whether environmental knowledge has any impact on organizational outcomes through an empirical investigation of 127 Spanish hospitality companies, using structural equation models. Our results show that environmental knowledge is an important determiner for developing organizational outcomes. However, this relationship is completed with just two related constructs: Firstly, the company's acquisition process plays a key role in managing the tension between the knowledge necessary to develop the appropriated environmental initiatives and current knowledge. Secondly, the company's distribution process also sheds light on tangible means for managers to enhance their company's outcomes through environmental knowledge.
Environmental Determinants of Lexical Processing Effort
McDonald, Scott
2000-01-01
Institute for Adaptive and Neural Computation A central concern of psycholinguistic research is explaining the relative ease or difficulty involved in processing words. In this thesis, we explore the connection between lexical processing effort and measurable properties of the linguistic environment. Distributional information (information about a word’s contexts of use) is easily extracted from large language corpora in the form of co-occurrence statistics. We claim that su...
Leus, G.; Petré, F.; Moonen, M.
2004-01-01
In the downlink of DS-CDMA, frequency-selectivity destroys the orthogonality of the user signals and introduces multiuser interference (MUI). Space-time chip equalization is an efficient tool to restore the orthogonality of the user signals and suppress the MUI. Furthermore, multiple-input
Research Progress of Space-Time Adaptive Detection for Airborne Radar
Directory of Open Access Journals (Sweden)
Wang Yong-liang
2014-04-01
Full Text Available Compared with Space-Time Adaptive Processing (STAP, Space-Time Adaptive Detection (STAD employs the data in the cell under test and those in the training to form reasonable detection statistics and consequently decides whether the target exists or not. The STAD has concise processing procedure and flexible design. Furthermore, the detection statistics usually possess the Constant False Alarm Rate (CFAR property, and hence it needs no additional CFAR processing. More importantly, the STAD usually exhibits improved detection performance than that of the conventional processing, which first suppresses the clutter then adopts other detection strategy. In this paper, we first summarize the key strongpoint of the STAD, then make a classification for the STAD, and finally give some future research tracks.
Land use and land cover change based on historical space-time model
Sun, Qiong; Zhang, Chi; Liu, Min; Zhang, Yongjing
2016-09-01
Land use and cover change is a leading edge topic in the current research field of global environmental changes and case study of typical areas is an important approach understanding global environmental changes. Taking the Qiantang River (Zhejiang, China) as an example, this study explores automatic classification of land use using remote sensing technology and analyzes historical space-time change by remote sensing monitoring. This study combines spectral angle mapping (SAM) with multi-source information and creates a convenient and efficient high-precision land use computer automatic classification method which meets the application requirements and is suitable for complex landform of the studied area. This work analyzes the histological space-time characteristics of land use and cover change in the Qiantang River basin in 2001, 2007 and 2014, in order to (i) verify the feasibility of studying land use change with remote sensing technology, (ii) accurately understand the change of land use and cover as well as historical space-time evolution trend, (iii) provide a realistic basis for the sustainable development of the Qiantang River basin and (iv) provide a strong information support and new research method for optimizing the Qiantang River land use structure and achieving optimal allocation of land resources and scientific management.
The application of image processing software: Photoshop in environmental design
Dong, Baohua; Zhang, Chunmi; Zhuo, Chen
2011-02-01
In the process of environmental design and creation, the design sketch holds a very important position in that it not only illuminates the design's idea and concept but also shows the design's visual effects to the client. In the field of environmental design, computer aided design has made significant improvement. Many types of specialized design software for environmental performance of the drawings and post artistic processing have been implemented. Additionally, with the use of this software, working efficiency has greatly increased and drawings have become more specific and more specialized. By analyzing the application of photoshop image processing software in environmental design and comparing and contrasting traditional hand drawing and drawing with modern technology, this essay will further explore the way for computer technology to play a bigger role in environmental design.
Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems
Buffle, J.; Leeuwen, van H.P.
2008-01-01
This book aims to provide the scientific community with a novel and valuable approach based on fractal geometry concepts on the important properties and processes of diverse environmental systems. The interpretation of complex environmental systems using modern fractal approaches is compared and
Coproduct and star product in field theories on Lie-algebra noncommutative space-times
International Nuclear Information System (INIS)
Amelino-Camelia, Giovanni; Arzano, Michele
2002-01-01
We propose a new approach to field theory on κ-Minkowski noncommutative space-time, a popular example of Lie-algebra space-time. Our proposal is essentially based on the introduction of a star product, a technique which is proving to be very fruitful in analogous studies of canonical noncommutative space-times, such as the ones recently found to play a role in the description of certain string-theory backgrounds. We find to be incorrect the expectation, previously reported in the literature, that the lack of symmetry of the κ-Poincare coproduct should lead to interaction vertices that are not symmetric under exchanges of the momenta of identical particles entering the relevant processes. We show that in κ-Minkowski the coproduct and the star product must indeed treat momenta in a nonsymmetric way, but the overall structure of interaction vertices is symmetric under exchange of identical particles. We also show that in κ-Minkowski field theories it is convenient to introduce the concepts of 'planar' and 'nonplanar' Feynman loop diagrams, again in close analogy with the corresponding concepts previously introduced in the study of field theories in canonical noncommutative space-times
Application of hierarchical clustering method to classify of space-time rainfall patterns
Yu, Hwa-Lung; Chang, Tu-Je
2010-05-01
Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.
Hamiltonian Dynamics of Doubly-Foliable Space-Times
Directory of Open Access Journals (Sweden)
Cecília Gergely
2018-01-01
Full Text Available The 2 + 1 + 1 decomposition of space-time is useful in monitoring the temporal evolution of gravitational perturbations/waves in space-times with a spatial direction singled-out by symmetries. Such an approach based on a perpendicular double foliation has been employed in the framework of dark matter and dark energy-motivated scalar-tensor gravitational theories for the discussion of the odd sector perturbations of spherically-symmetric gravity. For the even sector, however, the perpendicularity has to be suppressed in order to allow for suitable gauge freedom, recovering the 10th metric variable. The 2 + 1 + 1 decomposition of the Einstein–Hilbert action leads to the identification of the canonical pairs, the Hamiltonian and momentum constraints. Hamiltonian dynamics is then derived via Poisson brackets.
Space-time modeling of electricity spot prices
DEFF Research Database (Denmark)
Abate, Girum Dagnachew; Haldrup, Niels
In this paper we derive a space-time model for electricity spot prices. A general spatial Durbin model that incorporates the temporal as well as spatial lags of spot prices is presented. Joint modeling of space-time effects is necessarily important when prices and loads are determined in a network...... in the spot price dynamics. Estimation of the spatial Durbin model show that the spatial lag variable is as important as the temporal lag variable in describing the spot price dynamics. We use the partial derivatives impact approach to decompose the price impacts into direct and indirect effects and we show...... that price effects transmit to neighboring markets and decline with distance. In order to examine the evolution of the spatial correlation over time, a time varying parameters spot price spatial Durbin model is estimated using recursive estimation. It is found that the spatial correlation within the Nord...
Convexity and the Euclidean Metric of Space-Time
Directory of Open Access Journals (Sweden)
Nikolaos Kalogeropoulos
2017-02-01
Full Text Available We address the reasons why the “Wick-rotated”, positive-definite, space-time metric obeys the Pythagorean theorem. An answer is proposed based on the convexity and smoothness properties of the functional spaces purporting to provide the kinematic framework of approaches to quantum gravity. We employ moduli of convexity and smoothness which are eventually extremized by Hilbert spaces. We point out the potential physical significance that functional analytical dualities play in this framework. Following the spirit of the variational principles employed in classical and quantum Physics, such Hilbert spaces dominate in a generalized functional integral approach. The metric of space-time is induced by the inner product of such Hilbert spaces.
Spinors, superalgebras and the signature of space-time
Ferrara, S.
2001-01-01
Superconformal algebras embedding space-time in any dimension and signature are considered. Different real forms of the $R$-symmetries arise both for usual space-time signature (one time) and for Euclidean or exotic signatures (more than one times). Application of these superalgebras are found in the context of supergravities with 32 supersymmetries, in any dimension $D \\leq 11$. These theories are related to $D = 11, M, M^*$ and $M^\\prime$ theories or $D = 10$, IIB, IIB$^*$ theories when compactified on Lorentzian tori. All dimensionally reduced theories fall in three distinct phases specified by the number of (128 bosonic) positive and negative norm states: $(n^+,n^-) = (128,0), (64,64), (72,56)$.
Pre-Big Bang, space-time structure, asymptotic Universe
Directory of Open Access Journals (Sweden)
Gonzalez-Mestres Luis
2014-04-01
Full Text Available Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space-time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collaboration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95, while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space-time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2 spinor and the Lundmark-Lemaître-Hubble (LLH expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamental geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time. Taking into account the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic limit for the product H t in the long-term evolution of our Universe up to possible small corrections. In the presence of a spinorial space-time geometry, no ad hoc combination of dark matter and dark energy would in any case be needed to get an acceptable value of H and an evolution of the Universe compatible with observation. The use of a spinorial space-time naturally leads to unconventional properties for the space curvature term in Friedmann-like equations. It therefore suggests a major modification of
Optical Properties of Quantum Vacuum. Space-Time Engineering
International Nuclear Information System (INIS)
Gevorkyan, A. S.; Gevorkyan, A. A.
2011-01-01
The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) type stochastic differential equations. For a model of fluctuations, type of 'white noise', using ML equations a partial differential equation of second order is obtained which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the 'ground state' energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of quantum vacuum fluctuations may be constructed on a 6D space-time continuum, where 4D is Minkowski space-time and 2D is a compactified subspace. In detail is studied of vacuum's refraction indexes under the influence of external electromagnetic fields.
A comparison between space-time video descriptors
Costantini, Luca; Capodiferro, Licia; Neri, Alessandro
2013-02-01
The description of space-time patches is a fundamental task in many applications such as video retrieval or classification. Each space-time patch can be described by using a set of orthogonal functions that represent a subspace, for example a sphere or a cylinder, within the patch. In this work, our aim is to investigate the differences between the spherical descriptors and the cylindrical descriptors. In order to compute the descriptors, the 3D spherical and cylindrical Zernike polynomials are employed. This is important because both the functions are based on the same family of polynomials, and only the symmetry is different. Our experimental results show that the cylindrical descriptor outperforms the spherical descriptor. However, the performances of the two descriptors are similar.
Quantum gravity effects in Myers-Perry space-times
International Nuclear Information System (INIS)
Litim, Daniel F.; Nikolakopoulos, Konstantinos
2014-01-01
We study quantum gravity effects for Myers-Perry black holes assuming that the leading contributions arise from the renormalization group evolution of Newton’s coupling. Provided that gravity weakens following the asymptotic safety conjecture, we find that quantum effects lift a degeneracy of higher-dimensional black holes, and dominate over kinematical ones induced by rotation, particularly for small black hole mass, large angular momentum, and higher space-time dimensionality. Quantum-corrected space-times display inner and outer horizons, and show the existence of a black hole of smallest mass in any dimension. Ultra-spinning solutions no longer persist. Thermodynamic properties including temperature, specific heat, the Komar integrals, and aspects of black hole mechanics are studied as well. Observing a softening of the ring singularity, we also discuss the validity of classical energy conditions
Individuation in Quantum Mechanics and Space-Time
Jaeger, Gregg
2010-10-01
Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.
Nuclear disassembly time scales using space time correlations
Energy Technology Data Exchange (ETDEWEB)
Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Bilwes, B.; Cosmo, F. [Strasbourg-1 Univ., 67 (France); Galin, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); and others
1996-09-01
The lifetime, {tau}, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by `proximity` effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author). 2 refs.
Scalable space-time adaptive simulation tools for computational electrocardiology
Krause, Dorian; Krause, Rolf
2013-01-01
This work is concerned with the development of computational tools for the solution of reaction-diffusion equations from the field of computational electrocardiology. We designed lightweight spatially and space-time adaptive schemes for large-scale parallel simulations. We propose two different adaptive schemes based on locally structured meshes, managed either via a conforming coarse tessellation or a forest of shallow trees. A crucial ingredient of our approach is a non-conforming morta...
String dynamics in curved space-time revisited
International Nuclear Information System (INIS)
Marrakchi, A.L.; Singh, L.P.
1989-09-01
The equations of motion of the general background of curved space-time, Einstein's equations, are derived simply by demanding the renormalized energy-momentum tensor of a bosonic string propagating in this background to be traceless. The energy-momentum tensor of such a string is then separable into a holomorphic and an antiholomorphic parts as a consequence of the conformal invariance of the theory regained at the quantum level. (author). 8 refs
Semianalytic Solution of Space-Time Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
A. Elsaid
2016-01-01
Full Text Available We study the space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution of this problem is obtained via the optimal homotopy analysis method (OHAM. Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameters on the solution behavior.
The Dirac equation in the Lobachevsky space-time
International Nuclear Information System (INIS)
Paramonov, D.V.; Paramonova, N.N.; Shavokhina, N.S.
2000-01-01
The product of the Lobachevsky space and the time axis is termed the Lobachevsky space-time. The Lobachevsky space is considered as a hyperboloid's sheet in the four-dimensional pseudo-Euclidean space. The Dirac-Fock-Ivanenko equation is reduced to the Dirac equation in two special forms by passing from Lame basis in the Lobachevsky space to the Cartesian basis in the enveloping pseudo-Euclidean space
Space-time reactor kinetics for heterogeneous reactor structure
Energy Technology Data Exchange (ETDEWEB)
Raisic, N [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)
1969-11-15
An attempt is made to formulate time dependent diffusion equation based on Feinberg-Galanin theory in the from analogue to the classical reactor kinetic equation. Parameters of these equations could be calculated using the existing codes for static reactor calculation based on the heterogeneous reactor theory. The obtained kinetic equation could be analogues in form to the nodal kinetic equation. Space-time distribution of neutron flux in the reactor can be obtained by solving these equations using standard methods.
Nuclear disassembly time scales using space time correlations
International Nuclear Information System (INIS)
Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R.; Galin, J.; and others.
1996-01-01
The lifetime, τ, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by 'proximity' effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author)
Mass Formulae for Broken Supersymmetry in Curved Space-Time
Ferrara, Sergio
2016-01-01
We derive the mass formulae for ${\\cal N}=1$, $D=4$ matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to de Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing.
The energy-momentum operator in curved space-time
International Nuclear Information System (INIS)
Brown, M.R.; Ottewill, A.C.
1983-01-01
It is argued that the only meaningful geometrical measure of the energy-momentum of states of matter described by a free quantum field theory in a general curved space-time is that provided by a normal ordered energy-momentum operator. The finite expectation values of this operator are contrasted with the conventional renormalized expectation values and it is further argued that the use of renormalization theory is inappropriate in this context. (author)
Potentiality of an orbiting interferometer for space-time experiments
International Nuclear Information System (INIS)
Grassi Strini, A.M.; Strini, G.; Tagliaferri, G.
1979-01-01
It is suggested that by putting a Michelson interferometer aboard a spacecraft orbiting around the earth, very substantial progress could be made in space-time experiments. It is estimated that in measurements of e.g. some anisotropy of the light velocity, a spacecraft-borne interferometer of quite small size (0.1 m arm-length) would reach a sensitivity greater by a factor of approximately 10 8 than the best achievements to date of ground-based devices. (author)
On renormalisation of lambda phi4 field theory in curved space-time
International Nuclear Information System (INIS)
Bunch, T.S.; Panangaden, P.
1980-01-01
An explicit renormalisation of all second-order physical processes occurring in lambdaphi 4 field theory in conformally flat space-time, including vacuum-to-vacuum processes, is performed. Although divergences dependent on the definition of the vacuum state appear in some Feynman diagrams, physical amplitudes obtained by summing all diagrams which contribute to a single physical process are independent of these divergences. Consequently, the theory remains renormalisable in curved space-time, at least to second order in lambda. Renormalisations of the mass m, the coupling constant lambda and the constant xi which couples the field to the Ricci scalar are required to make two- and four-particle creation amplitudes finite. (author)
Landscape, Process and Power: Re-evaluating Traditional Environmental Knowledge
Directory of Open Access Journals (Sweden)
Colleen Marie O'Brien
2010-09-01
Full Text Available Review of Landscape, Process and Power: Re-evaluating Traditional Environmental Knowledge. Serena Heckler, ed. 2009. Berghahn Books, New York. Pp. 304, 21 illustrations, bibliography, index. $95.00 (hardback. ISBN 978-1-84545-549-1
Quantum field theory in curved space-time
International Nuclear Information System (INIS)
Najmi, A.-H.
1982-09-01
The problem of constructing states for quantum field theories in nonstationary background space-times is set out. A formalism in which the problem of constructing states can be attacked more easily than at present is presented. The ansatz of energy-minimization as a means of constructing states is formulated in this formalism and its general solution for the free scalar field is found. It has been known, in specific cases, that such states suffer from the problem of unitary inequivalence (the pathology). An example in Minowski space-time is presented in which global operators, such as the particle-number operator, do not exist but all physical observables, such as the renormalized energy density are finite. This model has two Fock-sectors as its space of physical states. A simple extension of this model, i.e. enlarging the Fock-space of states is found not to remedy the pathology: in a Robertson-Walker space-time the quantum field acquires an infinite amount of renormalized energy density to the future of the hypersurface on which the energy density is minimized. Finally, the solution of the ansatz of energy minimization for the free, massive Hermitian fermion field is presented. (author)
Nonlocality and Multipartite Entanglement in Asymptotically Flat Space-Times
International Nuclear Information System (INIS)
Moradi, Shahpoor; Amiri, Firouz
2016-01-01
We study the Bell's inequality and multipartite entanglement generation for initially maximally entangled states of free Dirac field in a non inertial frame and asymptotically flat Robertson–Walker space-time. For two qubit case, we show that the Bell's inequality always is violated as measured by the accelerated observers which are in the causally connected regions. On the other hand, for those observers in the causally disconnected regions inequality is not violated for any values of acceleration. The generated three qubit state from two qubit state due to acceleration of one parties has a zero 3-tangle. For a three qubit state, the inequality violated for measurements done by both causally connected and disconnected observers. Initially GHZ state with non zero 3-tangle, in accelerated frame, transformed to a four qubit state with vanishing 4-tangle value. On the other hand, for a W-state with zero 3-tangle, in non inertial frame, transformed to a four qubit state with a non-zero 4-tangle acceleration dependent. In an expanding space-time with asymptotically flat regions, for an initially maximally entangled state, the maximum value of violation of Bell's inequality in the far past decreased in the far future due to cosmological particle creation. For some initially maximally entangled states, the generated four qubit state due to expansion of space-time, has non vanishing 4-tangle. (paper)
Relativistic helicity and link in Minkowski space-time
International Nuclear Information System (INIS)
Yoshida, Z.; Kawazura, Y.; Yokoyama, T.
2014-01-01
A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves
Geodesics in Goedel-type space-times
International Nuclear Information System (INIS)
Calvao, M.O.; Soares, I.D.; Tiomno, J.
1988-01-01
The geodesic curves of the homogeneous Goedel-type space-times, which constitute a two-parameter ({ l and Ω}) class of solutions presented to several theories of gravitation (general relativity, Einstein-Cartan and higher derivative) are investigated. The qualitative properties of those curves by means of the introduction of an effective potential and then accomplish the analytical integration of the equations of motion are examined. It is shown that some of the qualitative features of the free motion in Godel's universe (l 2 =2Ω 2 ) are preserved in all space-times, namely the projections of the geodesics onto the 2-surface (r,ψ) are simple closed curves, and the geodesics for which the ratio of azymuthal angular momentum to total energy, υ is equal to zero always cross the origin r = o. However, two new cases appear: (i) radially unbounded geodesics with υ assuming any (real) value, which may occur only for the causal space-times (l 2 ≥ 4 Ω 2 ), and (ii) geodesics with υ bounded both below and above, which always occur for the circular family (l 2 [pt
Experimental Constraints of the Exotic Shearing of Space-Time
Energy Technology Data Exchange (ETDEWEB)
Richardson, Jonathan William [Univ. of Chicago, IL (United States)
2016-08-01
The Holometer program is a search for rst experimental evidence that space-time has quantum structure. The detector consists of a pair of co-located 40-m power-recycled interferometers whose outputs are read out synchronously at 50 MHz, achieving sensitivity to spatiallycorrelated uctuations in dierential position on time scales shorter than the light-crossing time of the instruments. Unlike gravitational wave interferometers, which time-resolve transient geometrical disturbances in the spatial background, the Holometer is searching for a universal, stationary quantization noise of the background itself. This dissertation presents the nal results of the Holometer Phase I search, an experiment congured for sensitivity to exotic coherent shearing uctuations of space-time. Measurements of high-frequency cross-spectra of the interferometer signals obtain sensitivity to spatially-correlated eects far exceeding any previous measurement, in a broad frequency band extending to 7.6 MHz, twice the inverse light-crossing time of the apparatus. This measurement is the statistical aggregation of 2.1 petabytes of 2-byte dierential position measurements obtained over a month-long exposure time. At 3 signicance, it places an upper limit on the coherence scale of spatial shear two orders of magnitude below the Planck length. The result demonstrates the viability of this novel spatially-correlated interferometric detection technique to reach unprecedented sensitivity to coherent deviations of space-time from classicality, opening the door for direct experimental tests of theories of relational quantum gravity.
On the performance of diagonal lattice space-time codes
Abediseid, Walid
2013-11-01
There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria [1]-[9]. In this paper, we analyze in details the performance limits of diagonal lattice space-time codes under lattice decoding. We present both lower and upper bounds on the average decoding error probability. We first derive a new closed-form expression for the lower bound using the so-called sphere lower bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is then derived using the union-bound which demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. Combining both the lower and the upper bounds on the average error probability yields a simple upper bound on the the minimum product distance that any (complex) lattice code can achieve. At high-SNR regime, we discuss the outage performance of such codes and provide the achievable diversity-multiplexing tradeoff under lattice decoding. © 2013 IEEE.
Simultaneous environmental and economic process synthesis of Isobutane Alkylation
García, Norberto; Fernandez-Torres, Maria J.; Caballero, José A.
2014-01-01
This multidisciplinary study concerns the optimal design of processes with a view to both maximizing profit and minimizing environmental impacts. This can be achieved by a combination of traditional chemical process design methods, measurements of environmental impacts and advanced mathematical optimization techniques. More to the point, this paper presents a hybrid simulation-multiobjective optimization approach that at once optimizes the production cost and minimizes the associated environm...
ICPP [Idaho Chemical Processing Plant] environmental monitoring report, CY-1988
International Nuclear Information System (INIS)
Krivanek, K.R.
1989-08-01
Summarized in this report are the data collected through Environmental Monitoring programs conducted at the Idaho Chemical Processing Plant (ICPP) by the Environmental Engineering (EE) Section of the Nuclear and Industrial Safety (N and IS) Department. The ICPP is responsible for complying with all applicable Federal, State, Local and DOE Rules, Regulations and Orders. Radiological effluent and emissions are regulated by the DOE. The Environmental Protection Agency (EPA) regulates all nonradiological waste resulting from the ICPP operations including all airborne, liquid, and solid waste. The EE subsection completed a Quality Assurance (QA) Plan for Environmental Monitoring activities during the third quarter of 1986. QA activities have resulted in the ICPP's implementation of the Environmental Protection Agency rules and guidelines pertaining to the collection, analyses, and reporting of environmentally related samples. Where no approved methods for analyses existed for radionuclides, currently used methods were submitted for the EPA approval. 33 figs., 14 tabs
The Development of Environmental Conservation Youth Camping Using Environmental Education Process
Directory of Open Access Journals (Sweden)
Okrit Tee-ngarm
2016-12-01
Full Text Available The purposes of this research were: to make youths camp activities using environmental education process, to study and to compare the knowledge and attitude before and after the camp activities for conserving environment by using the process of environmental education. The sample were 30 youths in Mueng district, Sisaket province. The tools used in the research including activity manual, knowledge test, attitudes test and participation measurement. The data were analyzed by percentage, mean, standard deviation, and Paired t-test at significant level .05. The result showed that After camp activities for conserving environment by using the process of environmental education, the participats had mean score of knowledge and attitude toward environmental conservation at was higher than before the activities at statistical significantly level .05. And they had participation in youths camp activities for environmental conservation at the most level.
Environmental Criteria in the Spanish Public Works Procurement Process
Directory of Open Access Journals (Sweden)
José Luis Fuentes-Bargues
2017-02-01
Full Text Available Green Public Procurement (GPP is defined as a process of contracting products, services, and works with the least possible damage to the environment during their life cycle. In order to improve the knowledge about GPP, a study of the use of environmental tendering criteria in the Spanish public construction sector has been performed. The results of this study show that the use of environmental criteria in Spanish public sector construction procurement is low in comparison to a certain group of countries, known as “Green 7”, in the European Union. Environmental criteria is the fourth criterion in importance, but its weight in the global of the process is much lower than other criteria such as price, memory of the construction process and the delivery time. National administrations use environmental criteria more frequently because they have more resources and staff training about environmental issues. Environmental criteria are more used in the tendering of civil projects and works whose budget exceeds ten million euro due to the environmental impact of these kind and/or size of projects.
Quantum field theory in flat Robertson-Walker space-time functional Schrodinger picture
International Nuclear Information System (INIS)
Pi, S.Y.
1990-01-01
Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schrodinger picture provides a useful description. This paper discusses free and self-interacting bosonic quantum field theories: Schrodinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schrodinger picture. The technique introduced can be used to study various dynamical questions in early universe processes
Scattering theory of space-time non-commutative abelian gauge field theory
International Nuclear Information System (INIS)
Rim, Chaiho; Yee, Jaehyung
2005-01-01
The unitary S-matrix for space-time non-commutative quantum electrodynamics is constructed using the *-time ordering which is needed in the presence of derivative interactions. Based on this S-matrix, we formulate the perturbation theory and present the Feynman rule. We then apply this perturbation analysis to the Compton scattering process to the lowest order and check the gauge invariance of the scattering amplitude at this order.
Quantum field theory in flat Robertson-Walker space-time functional Schroedinger picture
International Nuclear Information System (INIS)
Pi, S.Y.
1989-01-01
Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schroedinger picture provides a useful description. We discuss free and self-interacting bosonic quantum field theories: Schroedinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schroedinger picture. The techniques introduced can be used to study various dynamical questions in early universe processes. (author)
Re-examination of globally flat space-time.
Directory of Open Access Journals (Sweden)
Michael R Feldman
Full Text Available In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.
QCD-instantons and conformal space-time inversion symmetry
International Nuclear Information System (INIS)
Klammer, D.
2008-04-01
In this paper, we explore the appealing possibility that the strong suppression of large-size QCD instantons - as evident from lattice data - is due to a surviving conformal space-time inversion symmetry. This symmetry is both suggested from the striking invariance of highquality lattice data for the instanton size distribution under inversion of the instanton size ρ→(left angle ρ right angle 2 )/(ρ) and from the known validity of space-time inversion symmetry in the classical instanton sector. We project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via conformal stereographic mapping, before investigating conformal inversion. This projection to a compact, curved geometry is both to avoid the occurence of divergences and to introduce the average instanton size left angle ρ right angle from the lattice data as a new length scale. The average instanton size is identified with the radius b of this 5d-sphere and acts as the conformal inversion radius. For b= left angle ρ right angle, our corresponding results are almost perfectly symmetric under space-time inversion and in good qualitative agreement with the lattice data. For (ρ)/(b)→0 we recover the familiar results of instanton perturbation theory in flat 4d-space. Moreover, we illustrate that a (weakly broken) conformal inversion symmetry would have significant consequences for QCD beyond instantons. As a further successful test for inversion symmetry, we present striking implications for another instanton dominated lattice observable, the chirality-flip ratio in the QCD vacuum. (orig.)
Fuertes Casals, Alba; Casals Casanova, Miquel; Gangolells Solanellas, Marta; Forcada Matheu, Núria; Macarulla Martí, Marcel; Roca Ramon, Xavier
2013-01-01
Despite the increasing efforts made by the construction sector to reduce the environmental impact of their processes, construction sites are still a major source of pollution and adverse impacts on the environment. This paper aims to improve the understanding of construction-related environmental impacts by identifying on-site causal factors and associated immediate circumstances during construc- tion processes for residential building projects. Based on the literature and focus g...
Process benchmarking for improvement of environmental restoration activities
International Nuclear Information System (INIS)
Celorie, J.A.; Selman, J.R.; Larson, N.B.
1995-01-01
A process benchmarking study was initiated by the Office of Environmental Management (EM) of the US Department of Energy (DOE) to analyze and improve the department's environmental assessment and environmental restoration (ER) processes. The purpose of this study was to identify specific differences in the processes and implementation procedures used at comparable remediation sites to determine best practices which had the greatest potential to minimize the cost and time required to conduct remedial investigation/ feasibility study (RI/FS) activities. Technical criteria were identified and used to select four DOE, two Department of Defense (DOD), and two Environmental Protection Agency (EPA) restoration sites that exhibited comparable characteristics and regulatory environments. By comparing the process elements and activities executed at the different sites for similar endpoints, best practices were identified for streamlining process elements and minimizing non-value-added activities. Critical measures that influenced process performance were identified and characterized for the sites. This benchmarking study focused on two processes and the internal/external review of documents and the development of the initial evaluation and data collection plan (IEDCP)--since these had a great potential for savings, a high impact on other processes, and a high probability for implementation
ADM Mass for Asymptotically de Sitter Space-Time
International Nuclear Information System (INIS)
Huang Shiming; Yue Ruihong; Jia Dongyan
2010-01-01
In this paper, an ADM mass formula for asymptotically de Sitter(dS) space-time is derived from the energy-momentum tensor. We take the vacuum dS space as the background and investigate the ADM mass of the (d + 3)-dimensional sphere-symmetric space with a positive cosmological constant, and find that the ADM mass of asymptotically dS space is based on the ADM mass of Schwarzschild field and the cosmological background brings some small mass contribution as well. (general)
P-adic space-time and string theory
International Nuclear Information System (INIS)
Volovich, I.V.
1987-01-01
Arguments for the possibility of a p-adic structure of space-time are advanced. The p-adic analog of the Veneziano amplitude is proposed, and this permits a start to be made on the construction of the theory of p-adic strings. The same questions are considered over Galois fields, for which the analog of the Veneziano amplitude is a Jacobi sum that can be expressed in terms of p-adic cohomologies of Fermat curves. An explicit expression for the vertex operator of the corresponding string theory is given
Blackbody radiation from light cone in flat space time
International Nuclear Information System (INIS)
Gerlach, U.H.
1983-01-01
Blackbody radiation in flat space-time is not necessarily associated with the flat event horizon of a single accelerated observer. The author considers a spherical bubble which expands in a uniformly accelerating fashion. Its history traces out a time-like hyperboloid. Suppose the bubble membrane has a spatially isotropic and homogeneous (surface) stress energy tensor i.e. the membrane is made out of the stiffest possible material permitted by causality considerations. It follows that this bubble membrane is in equilibrium even though it is expanding. Such an expanding bubble membrane may serve as a detector of electromagnetic radiation if the membrane can interact with the electromagnetic field. (Auth.)
Massless fields in curved space-time: The conformal formalism
International Nuclear Information System (INIS)
Castagnino, M.A.; Sztrajman, J.B.
1986-01-01
A conformally invariant theory for massless quantum fields in curved space-time is formulated. We analyze the cases of spin-0, - 1/2 , and -1. The theory is developed in the important case of an ''expanding universe,'' generalizing the particle model of ''conformal transplantation'' known for spin-0 to spins- 1/2 and -1. For the spin-1 case two methods introducing new conformally invariant gauge conditions are stated, and a problem of inconsistency that was stated for spin-1 is overcome
Annotated trajectories and the Space-Time-Cube
DEFF Research Database (Denmark)
Kveladze, Irma; Kraak, Menno-Jan
2012-01-01
too, because these have not been adopted to the purpose. A suitable solution to display and study movements is the Space-Time-Cube (STC), the graphic representation of Hägerstrand’s Time Geography. This paper answers the question of how suitable the STC is to display the above describe combination...... of trajectories and annotations to avoid the visual clutter. Although the STC will be described here as a stand-alone solution it is part of a wider geovisual analytics environment and is used next to maps and other graphics to be able to answer user questions. As a case study data set the travel log data...
Mass formulae for broken supersymmetry in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Ferrara, Sergio [Theoretical Physics Department, CERN, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, U.C.L.A, Los Angeles, CA (United States); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)
2016-11-15
We derive the mass formulae for N = 1, D = 4 matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to De Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Space, Time, Matter, and Form Essays on Aristotle's Physics
Bostock, David
2006-01-01
Space, Time, Matter, and Form collects ten of David Bostock's essays on themes from Aristotle's Physics, four of them published here for the first time. The first five papers look at issues raised in the first two books of the Physics, centred on notions of matter and form, and the idea of substance as what persists through change. They also range over other of Aristotle's scientific works, such as his biology and psychology and the account of change in his De Generatione et Corruptione. The volume's remaining essays examine themes in later books of the Physics, including infinity, place, time
A heterotic N=2 string with space-time supersymmetry
International Nuclear Information System (INIS)
Bellucci, S.; Galajinsky, A.; Lechtenfeld, O.
2001-02-01
It is reconsidered the issue of embedding space-time fermions into the four dimensional N=2 world-sheet supersymmetric string. A new heterotic theory is constructed, taking the right-movers from the N =4 topological extension of the conventional N=2 string but a c=0 conformal field theory supporting target-space supersymmetry for the left-moving sector. The global bosonic symmetry of the full formalism proves to be U(1,1), just as in the usual N=2 string. Quantization reveals a spectrum of only two physical states, one boson and one fermion, which fall in a multiplet of (1,0) supersymmetry
The algebraic approach to space-time geometry
International Nuclear Information System (INIS)
Heller, M.; Multarzynski, P.; Sasin, W.
1989-01-01
A differential manifold can be defined in terms of smooth real functions carried by it. By rejecting the postulate, in such a definition, demanding the local diffeomorphism of a manifold to the Euclidean space, one obtains the so-called differential space concept. Every subset of R n turns out to be a differential space. Extensive parts of differential geometry on differential spaces, developed by Sikorski, are reviewed and adapted to relativistic purposes. Differential space as a new model of space-time is proposed. The Lorentz structure and Einstein's field equations on differential spaces are discussed. 20 refs. (author)
Quantum stress tensor in Schwarzschild space-time
International Nuclear Information System (INIS)
Howard, K.W.; Candelas, P.
1984-01-01
The vacuum expectation value of the stress-energy tensor for the Hartle-Hawking state in Schwartzschild space-time has been calculated for the conformal scalar field. separates naturally into the sum of two terms. The first coincides with an approximate expression suggested by Page. The second term is a ''remainder'' that may be evaluated numerically. The total expression is in good qualitative agreement with Page's approximation. These results are at variance with earlier results given by Fawcett whose error is explained
Space-Time, Phenomenology, and the Picture Theory of Language
Grelland, Hans Herlof
To estimate Minkowski's introduction of space-time in relativity, the case is made for the view that abstract language and mathematics carries meaning not only by its connections with observation but as pictures of facts. This view is contrasted to the more traditional intuitionism of Hume, Mach, and Husserl. Einstein's attempt at a conceptual reconstruction of space and time as well as Husserl's analysis of the loss of meaning in science through increasing abstraction is analysed. Wittgenstein's picture theory of language is used to explain how meaning is conveyed by abstract expressions, with the Minkowski space as a case.
Extended Cellular Automata Models of Particles and Space-Time
Beedle, Michael
2005-04-01
Models of particles and space-time are explored through simulations and theoretical models that use Extended Cellular Automata models. The expanded Cellular Automata Models consist go beyond simple scalar binary cell-fields, into discrete multi-level group representations like S0(2), SU(2), SU(3), SPIN(3,1). The propagation and evolution of these expanded cellular automatas are then compared to quantum field theories based on the "harmonic paradigm" i.e. built by an infinite number of harmonic oscillators, and with gravitational models.
Canonical quantization of general relativity in discrete space-times.
Gambini, Rodolfo; Pullin, Jorge
2003-01-17
It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.
On quantum field theory in curved space-time
International Nuclear Information System (INIS)
Hajicek, P.
1976-01-01
It is well known that the existence of quanta or particles of a given field is directly revealed by only a subset of all possible experiments with the field. It is considered a class of such experiments performable at any regular point of any space-time, which includes all terrestrial particle experiments as well as asymptotic observations of an evaporating black hole. A definition based on this class keeps the quanta observable and renders the notion of particle relative and local. Any complicated mathematics is avoided with the intention to emphasize the physical ideas
Mathematical aspects of the discrete space-time hypothesis
International Nuclear Information System (INIS)
Sardanashvili, G.A.
1979-01-01
A hypothesis of a microcosm space discreteness is considered from the theoretical-mathematical point of view. The type of topological spaces, which formalizes representations on the discrete space-time, is determined. It is explained, how these spaces arise in physical models. The physical task, in which the discrete space could arise as a version of its solution, is considered. It is shown that the discrete structure of space can arise with a certain interaction type in the system, for example, with its considerable self-shielding, which can take place, in particular, in the particles or in the cosmological and astrophysical singularities
Naked singularities in higher dimensional Vaidya space-times
International Nuclear Information System (INIS)
Ghosh, S. G.; Dadhich, Naresh
2001-01-01
We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension
Quantum field theory in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Hajicek, P [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik
1976-06-11
It is well known that the existence of quanta or particles of a given field is directly revealed by only a subset of all possible experiments with the field. A class of such experiments performable at any regular point of any space-time is considered, which includes all terrestrial particle experiments as well as asymptotic observations of an evaporating black hole. A definition based on this class keeps the quanta observable and renders the notion of particle relative and local. Any complicated mathematics is avoided with the intention to emphasize the physical ideas.
Founding Gravitation in 4D Euclidean Space-Time Geometry
International Nuclear Information System (INIS)
Winkler, Franz-Guenter
2010-01-01
The Euclidean interpretation of special relativity which has been suggested by the author is a formulation of special relativity in ordinary 4D Euclidean space-time geometry. The natural and geometrically intuitive generalization of this view involves variations of the speed of light (depending on location and direction) and a Euclidean principle of general covariance. In this article, a gravitation model by Jan Broekaert, which implements a view of relativity theory in the spirit of Lorentz and Poincare, is reconstructed and shown to fulfill the principles of the Euclidean approach after an appropriate reinterpretation.
Improved Methods for Production Manufacturing Processes in Environmentally Benign Manufacturing
Directory of Open Access Journals (Sweden)
Yan-Yan Wang
2011-09-01
Full Text Available How to design a production process with low carbon emissions and low environmental impact as well as high manufacturing performance is a key factor in the success of low-carbon production. It is important to address concerns about climate change for the large carbon emission source manufacturing industries because of their high energy consumption and environmental impact during the manufacturing stage of the production life cycle. In this paper, methodology for determining a production process is developed. This methodology integrates process determination from three different levels: new production processing, selected production processing and batch production processing. This approach is taken within a manufacturing enterprise based on prior research. The methodology is aimed at providing decision support for implementing Environmentally Benign Manufacturing (EBM and low-carbon production to improve the environmental performance of the manufacturing industry. At the first level, a decision-making model for new production processes based on the Genetic Simulated Annealing Algorithm (GSAA is presented. The decision-making model considers not only the traditional factors, such as time, quality and cost, but also energy and resource consumption and environmental impact, which are different from the traditional methods. At the second level, a methodology is developed based on an IPO (Input-Process-Output model that integrates assessments of resource consumption and environmental impact in terms of a materials balance principle for batch production processes. At the third level, based on the above two levels, a method for determining production processes that focus on low-carbon production is developed based on case-based reasoning, expert systems and feature technology for designing the process flow of a new component. Through the above three levels, a method for determining the production process to identify, quantify, assess, and optimize the
Role of Slovak Environmental Agency in EIA process
International Nuclear Information System (INIS)
Kristofova, I.; Suchova, K.; Hrncarova, M.
2003-01-01
The Slovak Environmental Agency (SEA) is a scientific organisation of the Ministry of the Environment of the Slovak Republic, operating on the whole territory of Slovakia. Its activities are focused on the improvement and protection of the environment on the principles of sustainable development. SEA performs the environmental impact assessment on the basis of the Ministry of the Environment of the Slovak Republic request. SEA superintends EIA Documentary Center in Banska Bystrica. Environmental Impact Assessment (SEA) creates and operates the EIA information system SEA provides consulting in EIA process and gives seminar meetings and training in EIA field. SEA elaborates the preliminary environmental study and the environmental impact statement on the basis of investor request. (authors)
Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model
International Nuclear Information System (INIS)
Sahoo, Satiprasad; Dhar, Anirban; Kar, Amlanjyoti
2016-01-01
Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, wind speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology. - Highlights: • Environmental vulnerability zone identification based on Grey Analytic Hierarchy Process (AHP) • The effectiveness evaluation by means of a grey clustering method with support from AHP • Use of grey approach eliminates the excessive dependency on the experience of experts.
Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model
Energy Technology Data Exchange (ETDEWEB)
Sahoo, Satiprasad [School of Water Resources, Indian Institute of Technology Kharagpur (India); Dhar, Anirban, E-mail: anirban.dhar@gmail.com [Department of Civil Engineering, Indian Institute of Technology Kharagpur (India); Kar, Amlanjyoti [Central Ground Water Board, Bhujal Bhawan, Faridabad, Haryana (India)
2016-01-15
Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, wind speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology. - Highlights: • Environmental vulnerability zone identification based on Grey Analytic Hierarchy Process (AHP) • The effectiveness evaluation by means of a grey clustering method with support from AHP • Use of grey approach eliminates the excessive dependency on the experience of experts.
Environmental criteria in the Spanish Public Works Procurement Process
Fuentes Bargues, José Luis; González-Cruz, María-Carmen; González-Gaya, Cristina
2017-01-01
[EN] Green Public Procurement (GPP) is defined as a process of contracting products, services, and works with the least possible damage to the environment during their life cycle. In order to improve the knowledge about GPP, a study of the use of environmental tendering criteria in the Spanish public construction sector has been performed. The results of this study show that the use of environmental criteria in Spanish public sector construction procurement is low in comparison to a certain g...
Environmental Criteria in the Spanish Public Works Procurement Process
José Luis Fuentes-Bargues; Mª Carmen González-Cruz; Cristina González-Gaya
2017-01-01
Green Public Procurement (GPP) is defined as a process of contracting products, services, and works with the least possible damage to the environment during their life cycle. In order to improve the knowledge about GPP, a study of the use of environmental tendering criteria in the Spanish public construction sector has been performed. The results of this study show that the use of environmental criteria in Spanish public sector construction procurement is low in comparison to a certain group ...
New technology in everyday life - social processes and environmental impact
DEFF Research Database (Denmark)
Røpke, Inge
2001-01-01
In the environmental debate it is increasingly acknowledged that our way of life has profound environmental consequences. Therefore, it becomes ever more important to focus on and to understand how everyday life is formed and how it changes over time. Changing technology constitutes an important...... of several of the dynamic forces behind consumption and thus contribute to the growing quantities of consumption, which counteract the environmental improvements. Secondly, because some of the technological changes are integrated with the processes which change everyday life more profoundly and thus...
Early environmental planning: A process for power line corridor selection
International Nuclear Information System (INIS)
Haagenstad, T.; Bare, C.M.
1998-01-01
Los Alamos National Laboratory (LANL) conducted an environmental planning study in the fall of 1997 to help determine the best alternative for upgrading the Laboratory's electrical power system. Alternatives considered included an on-site power generation facility and two corridors for a 10-mile-long 115-kV power line. This planning process was conducted prior to the formal National Environmental Policy Act (NEPA) review. The goals were to help select the best proposed action, to recommend modifications and mitigation measures for each alternative for a more environmentally sound project, and to avoid potential delays once the formal Department of Energy review process began. Significant constraints existed from a planning perspective, including operational issues such as existing outdoor high explosives testing areas, as well as environmental issues including threatened and endangered species habitats, multiple archeological sites, contaminated areas, and aesthetics. The study had to be completed within 45 days to meet project schedule needs. The process resulted in a number of important recommendations. While the construction and operation of the on-site power generation facility could have minimal environmental impacts, the need for a new air quality permit would create severe cost and schedule constraints for the project. From an environmental perspective, construction and operation of a power line within either corridor was concluded to be a viable alternative. However, impacts with either corridor would have to be reduced through specific recommended alignment modifications and mitigation measures
Space-time reference with an optical link
International Nuclear Information System (INIS)
Berceau, P; Hollberg, L; Taylor, M; Kahn, J
2016-01-01
We describe a concept for realizing a high performance space-time reference using a stable atomic clock in a precisely defined orbit and synchronizing the orbiting clock to high-accuracy atomic clocks on the ground. The synchronization would be accomplished using a two-way lasercom link between ground and space. The basic approach is to take advantage of the highest-performance cold-atom atomic clocks at national standards laboratories on the ground and to transfer that performance to an orbiting clock that has good stability and that serves as a ‘frequency-flywheel’ over time-scales of a few hours. The two-way lasercom link would also provide precise range information and thus precise orbit determination. With a well-defined orbit and a synchronized clock, the satellite could serve as a high-accuracy space-time reference, providing precise time worldwide, a valuable reference frame for geodesy, and independent high-accuracy measurements of GNSS clocks. Under reasonable assumptions, a practical system would be able to deliver picosecond timing worldwide and millimeter orbit determination, and could serve as an enabling subsystem for other proposed space-gravity missions, which are briefly reviewed. (paper)
Space, time, and the third dimension (model error)
Moss, Marshall E.
1979-01-01
The space-time tradeoff of hydrologic data collection (the ability to substitute spatial coverage for temporal extension of records or vice versa) is controlled jointly by the statistical properties of the phenomena that are being measured and by the model that is used to meld the information sources. The control exerted on the space-time tradeoff by the model and its accompanying errors has seldom been studied explicitly. The technique, known as Network Analyses for Regional Information (NARI), permits such a study of the regional regression model that is used to relate streamflow parameters to the physical and climatic characteristics of the drainage basin.The NARI technique shows that model improvement is a viable and sometimes necessary means of improving regional data collection systems. Model improvement provides an immediate increase in the accuracy of regional parameter estimation and also increases the information potential of future data collection. Model improvement, which can only be measured in a statistical sense, cannot be quantitatively estimated prior to its achievement; thus an attempt to upgrade a particular model entails a certain degree of risk on the part of the hydrologist.
D-particle Recoil Space Times and "Glueball" Masses
Mavromatos, Nikolaos E; Mavromatos, Nick E.; Winstanley, Elizabeth
2001-01-01
We discuss the properties of matter in a D-dimensional anti-de-Sitter-type space time induced dynamically by the recoil of a very heavy D(irichlet)-particle defect embedded in it. The particular form of the recoil geometry, which from a world-sheet view point follows from logarithmic conformal field theory deformations of the pertinent sigma-models, results in the presence of both infrared and ultraviolet (spatial) cut-offs. These are crucial in ensuring the presence of mass gaps in scalar matter propagating in the D-particle recoil space time. The analogy of this problem with the Liouville-string approach to QCD, suggested earlier by John Ellis and one of the present authors, prompts us to identify the resulting scalar masses with those obtained in the supergravity approach based on the Maldacena's conjecture, but without the imposition of any supersymmetry in our case. Within reasonable numerical uncertainties, we observe that agreement is obtained between the two approaches for a particular value of the ra...
Exactly solvable string models of curved space-time backgrounds
International Nuclear Information System (INIS)
Russo, J.G.
1995-01-01
We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)
Physics in space-time with scale-dependent metrics
Balankin, Alexander S.
2013-10-01
We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.
Relativity for everyone how space-time bends
Fischer, Kurt
2015-01-01
This book, now in a revised and updated second edition, explains the theory of special and general relativity in detail without approaching Einstein's life or the historical background. The text is formulated in such a way that the reader will be able to understand the essence intuitively, and new sections have been added on time machines, the twin paradoxes, and tensors. The first part of the book focuses on the essentials of special relativity. It explains the famous equivalence between mass and energy and tells why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies". General relativity is then addressed, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending under gravity. The climax of the book is the Einstein equation of gravity, which describes the way in which matter bends space-time. The read...
Representations of G+++ and the role of space-time
International Nuclear Information System (INIS)
Kleinschmidt, A.; West, P.
2004-01-01
We consider the decomposition of the adjoint and fundamental representations of very extended Kac-Moody algebras G+++ with respect to their regular A type subalgebra which, in the corresponding non-linear realisation, is associated with gravity. We find that for many very extended algebras almost all the A type representations that occur in the decomposition of the fundamental representations also occur in the adjoint representation of G+++ . In particular, for E 8 +++ , this applies to all its fundamental representations. However, there are some important examples, such as A N-3 +++ , where this is not true and indeed the adjoint representation contains no generator that can be identified with a space-time translation. We comment on the significance of these results for how space-time can occur in the non-linear realisation based on G+++ . Finally we show that there is a correspondence between the A representations that occur in the fundamental representation associated with the very extended node and the adjoint representation of G+++ which is consistent with the interpretation of the former as charges associated with brane solutions. (author)
Relativistic space-time positioning: principles and strategies
Tartaglia, Angelo
2013-11-01
Starting from the description of space- time as a curved four-dimensional manifold, null Gaussian coordinates systems as appropriate for relativistic positioning will be discussed. Different approaches and strategies will be reviewed, implementing the null coordinates with both continuous and pulsating electromagnetic signals. In particular, methods based on purely local measurements of proper time intervals between pulses will be expounded and the various possible sources of uncertainty will be analyzed. As sources of pulses both artificial and natural emitters will be considered. The latter will concentrate on either radio- or X ray-emitting pulsars, discussing advantages and drawbacks. As for artificial emitters, various solutions will be presented, from satellites orbiting the Earth to broadcasting devices carried both by spacecrafts and celestial bodies of the solar system. In general the accuracy of the positioning is expected to be limited, besides the instabilities and drift of the sources, by the precision of the local clock, but in any case in long journeys systematic cumulated errors will tend to become dominant. The problem can be kept under control properly using a high level of redundancy in the procedure for the calculation of the coordinates of the receiver and by mixing a number of different and complementary strategies. Finally various possibilities for doing fundamental physics experiments by means of space-time topography techniques will shortly be presented and discussed.
Introducing the Dimensional Continuous Space-Time Theory
International Nuclear Information System (INIS)
Martini, Luiz Cesar
2013-01-01
This article is an introduction to a new theory. The name of the theory is justified by the dimensional description of the continuous space-time of the matter, energy and empty space, that gathers all the real things that exists in the universe. The theory presents itself as the consolidation of the classical, quantum and relativity theories. A basic equation that describes the formation of the Universe, relating time, space, matter, energy and movement, is deduced. The four fundamentals physics constants, light speed in empty space, gravitational constant, Boltzmann's constant and Planck's constant and also the fundamentals particles mass, the electrical charges, the energies, the empty space and time are also obtained from this basic equation. This theory provides a new vision of the Big-Bang and how the galaxies, stars, black holes and planets were formed. Based on it, is possible to have a perfect comprehension of the duality between wave-particle, which is an intrinsic characteristic of the matter and energy. It will be possible to comprehend the formation of orbitals and get the equationing of atomics orbits. It presents a singular comprehension of the mass relativity, length and time. It is demonstrated that the continuous space-time is tridimensional, inelastic and temporally instantaneous, eliminating the possibility of spatial fold, slot space, worm hole, time travels and parallel universes. It is shown that many concepts, like dark matter and strong forces, that hypothetically keep the cohesion of the atomics nucleons, are without sense.
On the structure of space-time caustics
International Nuclear Information System (INIS)
Rosquist, K.
1983-01-01
Caustics formed by timelike and null geodesics in a space-time M are investigated. Care is taken to distinguish the conjugate points in the tangent space (T-conjugate points) from conjugate points in the manifold (M-conjugate points). It is shown that most nonspacelike conjugate points are regular, i.e. with all neighbouring conjugate points having the same degree of degeneracy. The regular timelike T-conjugate locus is shown to be a smooth 3-dimensional submanifold of the tangent space. Analogously, the regular null T-conjugate locus is shown to be a smooth 2-dimensional submanifold of the light cone in the tangent space. The smoothness properties of the null caustic are used to show that if an observer sees focusing in all directions, then there will necessarily be a cusp in the caustic. If, in addition, all the null conjugate points have maximal degree of degeneracy (as in the closed Friedmann-Robertson-Walker universes), then the space-time is closed. (orig.)
Wong, Sandy
2018-01-01
This paper draws from Hägerstrand's space-time framework to generate new insights on the everyday mobilities of individuals with visual impairments in the San Francisco Bay Area. While existing research on visual impairment and mobility emphasizes individual physical limitations resulting from vision loss or inaccessible public spaces, this article highlights and bridges both the behavioral and social processes that influence individual mobility. A qualitative analysis of sit-down and mobile interview data reveals that the space-time constraints of people with visual impairments are closely linked to their access to transportation, assistive technologies, and mobile devices. The findings deepen our understandings of the relationship between health and mobility, and present intervention opportunities for improving the quality of life for people with visual impairment. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Cantorian potential theory for describing dynamical systems on El Naschie's space-time
International Nuclear Information System (INIS)
Iovane, G.; Gargiulo, G.; Zappale, E.
2006-01-01
In this paper we analyze classical systems, in which motion is not on a classical continuous path, but rather on a Cantorian one. Starting from El Naschie's space-time we introduce a mathematical approach based on a potential to describe the interaction system-support. We study some relevant force fields on Cantorian space and analyze the differences with respect to the analogous case on a continuum in the context of Lagrangian formulation. Here we confirm the idea proposed by the first author in dynamical systems on El Naschie's o (∞) Cantorian space-time that a Cantorian space could explain some relevant stochastic and quantum processes, if the space acts as an harmonic oscillating support, such as that found in Nature. This means that a quantum process could sometimes be explained as a classical one, but on a nondifferential and discontinuous support. We consider the validity of this point of view, that in principle could be more realistic, because it describes the real nature of matter and space. These do not exist in Euclidean space or curved Riemanian space-time, but in a Cantorian one. The consequence of this point of view could be extended in many fields such as biomathematics, structural engineering, physics, astronomy, biology and so on
Actinide solution processing at the Rocky Flats Environmental Technology Site
International Nuclear Information System (INIS)
1995-04-01
The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1039, for radioactive solution removal and processing at Rocky Flats Environmental Technology Site, Golden, Colorado. The proposal for solution removal and processing is in response to independent safety assessments and an agreement with the State of Colorado to remove mixed residues at Rocky Flats and reduce the risk of future accidents. Monthly public meetings were held during the scoping and preparation of the EA. The scope of the EA included evaluations of alternative methods and locations of solution processing. A comment period from February 20, 1995 through March 21, 1995 was provided to the public and the State of Colorado to offer written comment on the EA. Comments were received from the State of Colorado and the U.S. Environmental Protection Agency. A response to the agency comments is included in the Final EA
Microbial ecology to manage processes in environmental biotechnology.
Rittmann, Bruce E
2006-06-01
Microbial ecology and environmental biotechnology are inherently tied to each other. The concepts and tools of microbial ecology are the basis for managing processes in environmental biotechnology; and these processes provide interesting ecosystems to advance the concepts and tools of microbial ecology. Revolutionary advancements in molecular tools to understand the structure and function of microbial communities are bolstering the power of microbial ecology. A push from advances in modern materials along with a pull from a societal need to become more sustainable is enabling environmental biotechnology to create novel processes. How do these two fields work together? Five principles illuminate the way: (i) aim for big benefits; (ii) develop and apply more powerful tools to understand microbial communities; (iii) follow the electrons; (iv) retain slow-growing biomass; and (v) integrate, integrate, integrate.
Improving the environmental sustainability of a waste processing plant
Energy Technology Data Exchange (ETDEWEB)
Turner, Tom [AREVA RMC, Abingdon, Oxfordshire (United Kingdom); Watson, Stuart [RSRL, Harwell, Oxfordshire (United Kingdom)
2013-07-01
This paper describes how the level of environmental sustainability at the Solid Waste Processing plant at Research Sites Restoration Ltd (RSRL) Harwell was measured and improved. It provides reasons to improve environmental performance in an organisation, states best practice on how improvement should be conducted, and gives first-hand experience on how changes were implemented. In this paper sustainability is defined as 'meeting the needs of the present without compromising the ability of future generations to meet their own needs'. A baseline for environmental sustainability was created, by looking at multiple attributes. From this, a matrix was created to show how the baseline environmental performance compared to best practice, and a gap analysis was performed. Results from this analysis showed areas for potential systematic improvement, and actions were created. Nearly all actions were implemented within one year, and environmental sustainability improved significantly. Most improvements cost no money to implement, and the few that did had to pass criteria in a business case. Results from a company-wide survey showed that the vast majority of employees felt that environmental issues were important, and that they were willing to help improve performance. Environmental awareness training was given to everyone in the department, and individuals were given measurable improvement targets. A focus group was set up and met regularly to agree improvements and monitor results. Environmental performance was publicised regularly to highlight successes and seek further engagement and improvement. Improvement ideas were encouraged and managed in a transparent way which showed clear prioritisation and accountability. The culture of environmental improvement changed visibly and results at the end of the first year showed that electricity consumption had reduced by 12.5%, and gas consumption had reduced by 7.3%. In less than two years over UK Pound 60,000 was saved
Improving the environmental sustainability of a waste processing plant
International Nuclear Information System (INIS)
Turner, Tom; Watson, Stuart
2013-01-01
This paper describes how the level of environmental sustainability at the Solid Waste Processing plant at Research Sites Restoration Ltd (RSRL) Harwell was measured and improved. It provides reasons to improve environmental performance in an organisation, states best practice on how improvement should be conducted, and gives first-hand experience on how changes were implemented. In this paper sustainability is defined as 'meeting the needs of the present without compromising the ability of future generations to meet their own needs'. A baseline for environmental sustainability was created, by looking at multiple attributes. From this, a matrix was created to show how the baseline environmental performance compared to best practice, and a gap analysis was performed. Results from this analysis showed areas for potential systematic improvement, and actions were created. Nearly all actions were implemented within one year, and environmental sustainability improved significantly. Most improvements cost no money to implement, and the few that did had to pass criteria in a business case. Results from a company-wide survey showed that the vast majority of employees felt that environmental issues were important, and that they were willing to help improve performance. Environmental awareness training was given to everyone in the department, and individuals were given measurable improvement targets. A focus group was set up and met regularly to agree improvements and monitor results. Environmental performance was publicised regularly to highlight successes and seek further engagement and improvement. Improvement ideas were encouraged and managed in a transparent way which showed clear prioritisation and accountability. The culture of environmental improvement changed visibly and results at the end of the first year showed that electricity consumption had reduced by 12.5%, and gas consumption had reduced by 7.3%. In less than two years over UK Pound 60,000 was saved
The Space-Time Asymmetry Research (STAR) program
Buchman, Sasha
Stanford University, NASA Ames, and international partners propose the Space-Time Asymme-try Research (STAR) program, a series of three Science and Technology Development Missions, which will probe the fundamental relationships between space, time and gravity. What is the nature of space-time? Is space truly isotropic? Is the speed of light truly isotropic? If not, what is its direction and location dependency? What are the answers beyond Einstein? How will gravity and the standard model ultimately be combined? The first mission, STAR-1, will measure the absolute anisotropy of the velocity of light to one part in 1017 , derive the Kennedy-Thorndike (KT) coefficient to 7x10-10 (150-fold improvement over modern ground measurements), derive the Michelson-Morley (MM) coefficient to 10-11 (confirming the ground measurements), and derive the coefficients of Lorentz violation in the Standard Model Exten-sion (SME), in the range 7x10-17 to 10-13 (an order of magnitude improvement over ground measurements). The follow-on missions will achieve a factor of 100 higher sensitivities. The core instruments are high stability optical cavities and high accuracy gas spectroscopy frequency standards using the "NICE-OHMS technique. STAR-1 is accomplished with a fully redundant instrument flown on a standard bus, spin-stabilized spacecraft with a mission lifetime of two years. Spacecraft and instrument have a total mass of less than 180 kg and consume less than 200 W of power. STAR-1 would launch in 2015 as a secondary payload in a 650 km, sun-synchronous orbit. We describe the STAR-1 mission in detail and the STAR series in general, with a focus on how each mission will build on the development and success of the previous missions, methodically enhancing both the capabilities of the STAR instrument suite and our understanding of this important field. By coupling state-of-the-art scientific instrumentation with proven and cost-effective small satellite technology in an environment
Environmental process improvement feasibility study and demonstration program
Martin, Rodger L.
1994-01-01
This report is the final product of an environmental study conducted by Western Commercial Space Center, Inc. under contract to Tennessee-Calspan Center for Space Transportation and Applied Research. The purpose of this investigation is to accurately document the current environmental and permitting processes associated with commercial space launch activity at Vandenberg AFB, and make recommendations to streamline those processes. The particular areas of interest focus on: identifying applicable Federal, state, and local laws, Department of Defense directives, and Air force regulations; defining the environmental process on Vandenberg AFB and how it relates with other agencies, including Federal and state regulatory agencies; and defining the air quality permit process. Study investigation results are applied to an example Pilot Space Launch Vehicle (PSLV) planning to launch from Vandenberg AFB. The PSLV space hardware is analyzed with respect to environmental and permitting issues associated with vehicle processing, facilities required (existing or new), and launch. The PSLV verified the earlier findings of the study and gave insight into streamlining recommendations.
The Center for Environmental Technology Innovative Technology Screening Process
International Nuclear Information System (INIS)
Bertrand, C.M.
1995-02-01
The Center for Environmental Technology's (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today's environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET's Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria
International Nuclear Information System (INIS)
Araujo, Jefferson Borges; Ribeiro, Katia Maria Bruno
2009-01-01
Today, there is a thread with regard to the global environment. To reduce the environmental impact due to spending supplies to meet the basic needs of the global population. Can be considered as the power of these needs and in this context, the environmental impact occurs by the use of fossil fuels and loss of land for use of water resources. To minimize these impacts, governments are establishing appropriate laws towards the use of renewable energy. However it appears that there is still a great distance between the established law and implementation in practice. In this context nuclear energy is an attractive option, both economic and environmental. The facilities that are somehow associated with nuclear power plants are classified as radioactive or nuclear. These facilities are subject to two licensing procedures: Environmental (by IBAMA) and Nuclear (by CNEN). Nuclear installations such as nuclear power plants Angra 1 and 2, deposits and tailings facilities of the nuclear fuel cycle in Rezende that are more the attention of the population. As part of these processes are reports of analysis of safety and environmental impacts and socio-economic (EIA/RIMA RFAS), which are available to the public and then discussed at public hearings, where there is the opportunity for questions on these reports. These questions are mainly related with the social-environmental and economic due to construction and operation of these facilities. This work is a research, discussing the law, identifying the difficulties in the licensing process and presents a discussion on the importance of environmental education at all school levels, for adult audiences and is a connection between the environmental education and process of environmental licensing and nuclear, showing how the popular consciousness more informed can better discuss issues associated with these licenses, understand the advantages and disadvantages and obtain benefits. (author)
Entanglement, space-time and the Mayer-Vietoris theorem
Patrascu, Andrei T.
2017-06-01
Entanglement appears to be a fundamental building block of quantum gravity leading to new principles underlying the nature of quantum space-time. One such principle is the ER-EPR duality. While supported by our present intuition, a proof is far from obvious. In this article I present a first step towards such a proof, originating in what is known to algebraic topologists as the Mayer-Vietoris theorem. The main result of this work is the re-interpretation of the various morphisms arising when the Mayer-Vietoris theorem is used to assemble a torus-like topology from more basic subspaces on the torus in terms of quantum information theory resulting in a quantum entangler gate (Hadamard and c-NOT).
The standard model on non-commutative space-time
International Nuclear Information System (INIS)
Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M.; Wess, J.
2002-01-01
We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter θ μν . No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in θ μν we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)
The standard model on non-commutative space-time
Energy Technology Data Exchange (ETDEWEB)
Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M. [Sektion Physik, Universitaet Muenchen (Germany); Wess, J. [Sektion Physik, Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)
2002-03-01
We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter {theta}{sup {mu}}{sup {nu}}. No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in {theta}{sup {mu}}{sup {nu}} we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)
Momentum-subtraction renormalization techniques in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1987-10-01
Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should.
Momentum-subtraction renormalization techniques in curved space-time
International Nuclear Information System (INIS)
Foda, O.
1987-01-01
Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should
Relativity for everyone how space-time bends
Fischer, Kurt
2013-01-01
This book explains the theory of special and general relativity in detail, without digressions such as information on Einstein's life or the historical background. However, complicated calculations are replaced with figures and thought experiments, the text being formulated in such a way that the reader will be able to understand the gist intuitively. The first part of the book focuses on the essentials of special relativity. Explanations are provided of the famous equivalence between mass and energy and of why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies", simply because besides the speed of light, the electric charge itself is also absolute, leading to the relativity of other physical quantities. General relativity is then introduced, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending und...
Space, time and the limits of human understanding
Ghirardi, Giancarlo
2017-01-01
In this compendium of essays, some of the world’s leading thinkers discuss their conceptions of space and time, as viewed through the lens of their own discipline. With an epilogue on the limits of human understanding, this volume hosts contributions from six or more diverse fields. It presumes only rudimentary background knowledge on the part of the reader. Time and again, through the prism of intellect, humans have tried to diffract reality into various distinct, yet seamless, atomic, yet holistic, independent, yet interrelated disciplines and have attempted to study it contextually. Philosophers debate the paradoxes, or engage in meditations, dialogues and reflections on the content and nature of space and time. Physicists, too, have been trying to mold space and time to fit their notions concerning micro- and macro-worlds. Mathematicians focus on the abstract aspects of space, time and measurement. While cognitive scientists ponder over the perceptual and experiential facets of our consciousness of spac...
Einstein's dream : the space-time unification of fundamental forces
Energy Technology Data Exchange (ETDEWEB)
Salam, A [International Centre for Theoretical Physics, Trieste (Italy)
1981-06-01
The historical developments in physics which started with Galileo in the 11th century, Newton in the 17 century, culminated in the unification of space-time by Einstein in this century are traced. The theories put forward by Einstein himself and by subsequent workers in the field after him, regarding the unification of all basic forces of nature (i.e.) the electromagnetic and the gravitational ones and the weak and strong nuclear forces are discussed. The experiments being conducted in Kolar and other places to detect a heavier photon which would be a positive proof of the validity of the unification theory, are touched upon. The possible application of this concept even in industry has been pointed out.
Space-time foam as the universal regulator
International Nuclear Information System (INIS)
Crane, L.; Smolin, L.
1985-01-01
A distribution of virtual black holes in the vacuum will induce modifications in the density of states for small perturbations of gravitational and matter fields. If the virtual black holes fill the volume of a typical spacelike surface then perturbation theory becomes more convergent and may even be finite, depending on how fast the number of virtual black holes increases as their size decreases. For distributions of virtual black holes which are scale invariant the effective dimension of space-time is lowered to a noninteger value less than 4, leading to an interpretation in terms of fractal geometry. In this case general relativity is renormalizable in the 1/N expansion without higher derivative terms. As the Hamiltonian is not modified the theory is stable. (author)
Point splitting in a curved space-time background
International Nuclear Information System (INIS)
Liggatt, P.A.J.; Macfarlane, A.J.
1979-01-01
A prescription is given for point splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current that can be differentiated straightforwardly, and that it involves a natural way of averaging (four-dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g., to spin-3/2 Rarita-Schwinger fermions. (author)
Topological properties and global structure of space-time
International Nuclear Information System (INIS)
Bergmann, P.G.; De Sabbata, V.
1986-01-01
This book presents information on the following topics: measurement of gravity and gauge fields using quantum mechanical probes; gravitation at spatial infinity; field theories on supermanifolds; supergravities and Kaluza-Klein theories; boundary conditions at spatial infinity; singularities - global and local aspects; matter at the horizon of the Schwarzschild black hole; introluction to string theories; cosmic censorship and the strengths of singularities; conformal quantisation in singular spacetimes; solar system tests in transition; integration and global aspects of supermanifolds; the space-time of the bimetric general relativity theory; gravitation without Lorentz invariance; a uniform static magnetic field in Kaluza-Klein theory; introduction to topological geons; and a simple model of a non-asymptotically flat Schwarzschild black hole
Quantum vacuum energy in two dimensional space-times
International Nuclear Information System (INIS)
Davies, P.C.W.; Fulling, S.A.
1977-01-01
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)
Exactly solvable string models of curved space-time backgrounds
Russo, J.G.; Russo, J G; Tseytlin, A A
1995-01-01
We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.
Virtual Black Holes and Space-Time Structure
't Hooft, Gerard
2018-01-01
In the standard formalism of quantum gravity, black holes appear to form statistical distributions of quantum states. Now, however, we can present a theory that yields pure quantum states. It shows how particles entering a black hole can generate firewalls, which however can be removed, replacing them by the `footprints' they produce in the out-going particles. This procedure can preserve the quantum information stored inside and around the black hole. We then focus on a subtle but unavoidable modification of the topology of the Schwarzschild metric: antipodal identification of points on the horizon. If it is true that vacuum fluctuations include virtual black holes, then the structure of space-time is radically different from what is usually thought.
Transient space-time surface waves characterization using Gabor analysis
Energy Technology Data Exchange (ETDEWEB)
Martinez, L; Wilkie-Chancellier, N; Caplain, E [Universite de Cergy Pontoise, ENS Cachan, UMR CNRS 8029, Laboratoire Systemes et Applications des Techniques de l' Information et de l' Energie (SATIE), 5 mail Gay-Lussac, F 9500 Cergy-Pontoise (France); Glorieux, C; Sarens, B, E-mail: nicolas.wilkie-chancellier@u-cergy.f [Katholieke Universiteit Leuven, Laboratorium voor Akoestiek en Thermische Fysica (LATF), Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2009-11-01
Laser ultrasonics allow the observation of transient surface waves along their propagation media and their interaction with encountered objects like cracks, holes, borders. In order to characterize and localize these transient aspects in the Space-Time-Wave number-Frequency domains, the 1D, 2D and 3D Gabor transforms are presented. The Gabor transform enables the identification of several properties of the local wavefronts such as their shape, wavelength, frequency, attenuation, group velocity and the full conversion sequence along propagation. The ability of local properties identification by Gabor transform is illustrated by two experimental studies: Lamb waves generated by an annular source on a circular quartz and Lamb wave interaction with a fluid droplet. In both cases, results obtained with Gabor transform enable ones to identify the observed local waves.
Entropic force, holography and thermodynamics for static space-times
International Nuclear Information System (INIS)
Konoplya, R.A.
2010-01-01
Recently Verlinde has suggested a new approach to gravity which interprets gravitational interaction as a kind of entropic force. The new approach uses the holographic principle by stating that the information is kept on the holographic screens which coincide with equipotential surfaces. Motivated by this new interpretation of gravity (but not being limited by it) we study equipotential surfaces, the Unruh-Verlinde temperature, energy and acceleration for various static space-times: generic spherically symmetric solutions, axially symmetric black holes immersed in a magnetic field, traversable spherically symmetric wormholes of an arbitrary shape function, system of two and more extremely charged black holes in equilibrium. In particular, we have shown that the Unruh-Verlinde temperature of the holographic screen reaches absolute zero on the wormhole throat independently of the particular form of the wormhole solution. (orig.)
Space/time non-commutative field theories and causality
International Nuclear Information System (INIS)
Bozkaya, H.; Fischer, P.; Pitschmann, M.; Schweda, M.; Grosse, H.; Putz, V.; Wulkenhaar, R.
2003-01-01
As argued previously, amplitudes of quantum field theories on non-commutative space and time cannot be computed using naive path integral Feynman rules. One of the proposals is to use the Gell-Mann-Low formula with time-ordering applied before performing the integrations. We point out that the previously given prescription should rather be regarded as an interaction-point time-ordering. Causality is explicitly violated inside the region of interaction. It is nevertheless a consistent procedure, which seems to be related to the interaction picture of quantum mechanics. In this framework we compute the one-loop self-energy for a space/time non-commutative φ 4 theory. Although in all intermediate steps only three-momenta play a role, the final result is manifestly Lorentz covariant and agrees with the naive calculation. Deriving the Feynman rules for general graphs, we show, however, that such a picture holds for tadpole lines only. (orig.)
Fermions in odd space-time dimensions: back to basics
International Nuclear Information System (INIS)
Anguiano Jesus de, Ma.; Bashir, A.
2005-01-01
It is a well-known feature of odd space-time dimensions d that there exist two inequivalent fundamental representations A and B of the Dirac gamma matrices. Moreover, the parity transformation swaps the fermion fields living in A and B. As a consequence, a parity-invariant Lagrangian can only be constructed by incorporating both the representation. Based upon these ideas and contrary to long-held belief, we show that in addition to a discrete exchange symmetry for the massless case, we can also define chiral symmetry provided the Lagrangian contains fields corresponding to both the inequivalent representations. We also study the transformation properties of the corresponding chiral currents under parity and charge-conjugation operations. We work explicitly in 2 + 1 dimensions and later show how some of these ideas generalize to an arbitrary number of odd dimensions. (author)
Quantum vacuum energy in two dimensional space-times
Energy Technology Data Exchange (ETDEWEB)
Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics
1977-04-21
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.
The method of covariant symbols in curved space-time
International Nuclear Information System (INIS)
Salcedo, L.L.
2007-01-01
Diagonal matrix elements of pseudodifferential operators are needed in order to compute effective Lagrangians and currents. For this purpose the method of symbols is often used, which however lacks manifest covariance. In this work the method of covariant symbols, introduced by Pletnev and Banin, is extended to curved space-time with arbitrary gauge and coordinate connections. For the Riemannian connection we compute the covariant symbols corresponding to external fields, the covariant derivative and the Laplacian, to fourth order in a covariant derivative expansion. This allows one to obtain the covariant symbol of general operators to the same order. The procedure is illustrated by computing the diagonal matrix element of a nontrivial operator to second order. Applications of the method are discussed. (orig.)
Quantum field theory on discrete space-time. II
International Nuclear Information System (INIS)
Yamamoto, H.
1985-01-01
A quantum field theory of bosons and fermions is formulated on discrete Lorentz space-time of four dimensions. The minimum intervals of space and time are assumed to have different values in this paper. As a result the difficulties encountered in the previous paper (complex energy, incompleteness of solutions, and inequivalence between phase representation and momentum representation) are removed. The problem in formulating a field theory of fermions is solved by introducing a new operator and considering a theorem of translation invariance. Any matrix element given by a Feynman diagram is calculated in this theory to give a finite value regardless of the kinds of particles concerned (massive and/or massless bosons and/or fermions)
Directory of Open Access Journals (Sweden)
Jesús Valero-Gil
2017-07-01
Full Text Available The contaminating effects of economic activity and the scarcity of natural resources has led firms to a situation in which corporate strategy has been compromised by environmental issues. The objective of this paper is to analyse some of the factors determining the pro-environmental change process by considering the drivers encouraging firms to progress in environmental protection and the barriers that curb this progress. Using a structural equation model implemented on a sample of 303 firms, our results confirm a direct and positive effect of stakeholder pressure and of the expectations of obtaining competitive advantages from the pro-environmental change process. The results also confirmed the indirect effect of stakeholder pressure on pro-environmental change through managers’ expectations of obtaining competitive advantages, which play a mediating role in the firm’s response. Although managers interpret the barriers we have studied as obstacles to adopting environmental protection measures, they do not prevent any firm from reaching advanced levels of pro-environmental change.
Quantum universe on extremely small space-time scales
International Nuclear Information System (INIS)
Kuzmichev, V.E.; Kuzmichev, V.V.
2010-01-01
The semiclassical approach to the quantum geometrodynamical model is used for the description of the properties of the Universe on extremely small space-time scales. Under this approach, the matter in the Universe has two components of the quantum nature which behave as antigravitating fluids. The first component does not vanish in the limit h → 0 and can be associated with dark energy. The second component is described by an extremely rigid equation of state and goes to zero after the transition to large spacetime scales. On small space-time scales, this quantum correction turns out to be significant. It determines the geometry of the Universe near the initial cosmological singularity point. This geometry is conformal to a unit four-sphere embedded in a five-dimensional Euclidean flat space. During the consequent expansion of the Universe, when reaching the post-Planck era, the geometry of the Universe changes into that conformal to a unit four-hyperboloid in a five-dimensional Lorentzsignatured flat space. This agrees with the hypothesis about the possible change of geometry after the origin of the expanding Universe from the region near the initial singularity point. The origin of the Universe can be interpreted as a quantum transition of the system from a region in the phase space forbidden for the classical motion, but where a trajectory in imaginary time exists, into a region, where the equations of motion have the solution which describes the evolution of the Universe in real time. Near the boundary between two regions, from the side of real time, the Universe undergoes almost an exponential expansion which passes smoothly into the expansion under the action of radiation dominating over matter which is described by the standard cosmological model.
A space-time rainfall generator for highly convective Mediterranean rainstorms
Directory of Open Access Journals (Sweden)
S. Salsón
2003-01-01
Full Text Available Distributed hydrological models require fine resolution rainfall inputs, enhancing the practical interest of space-time rainfall models, capable of generating through numerical simulation realistic space-time rainfall intensity fields. Among different mathematical approaches, those based on point processes and built upon a convenient analytical description of the raincell as the fundamental unit, have shown to be particularly suitable and well adapted when extreme rainfall events of convective nature are considered. Starting from previous formulations, some analytical refinements have been considered, allowing practical generation of space-time rainfall intensity fields for that type of rainstorm events. Special attention is placed on the analytical description of the spatial and temporal evolution of the rainfall intensities produced by the raincells. After deriving the necessary analytical results, the seven parameters of the model have been estimated by the method of moments, for each of the 30 selected rainfall events in the Jucar River Basin (ValenciaSpain – period 1991 to 2000, using 5-min aggregated rainfall data series from an automatic raingauge network.
A stochastic fractional dynamics model of space-time variability of rain
Kundu, Prasun K.; Travis, James E.
2013-09-01
varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, which allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and time scales. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and on the Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to fit the second moment statistics of radar data at the smaller spatiotemporal scales. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well at these scales without any further adjustment.
Environmental assessment for sustainable development: process, actors and practice
International Nuclear Information System (INIS)
Andre, P.; Delisle, C.E.; Reveret, J.-P.
2003-01-01
Multiple environmental problems afflict our contemporary world and have been the subject of discussions during many international meetings. All declarations resulting from these meetings insist on including environmental problems and on environmental assessment (EA) as an important tool to achieve this. This book aims to reach three objectives. First, it introduces EA to people from different disciplines, and therefore it opens up the perspective of new disciplinary horizons. Second, the authors discuss EA as a socio-political process rather than emphasizing methodologies. Third, this book draws mainly on the experience in Francophone countries which is still poorly disseminated. This book focusses on process and actors. Thus, the subject matter is divided into five major parts: the history and major issues of EA from a sustainable development perspective (Chapters 1 to 3); the actors, i.e. the Project Proponent and consulting firms, the public, the decision maker and international actors (Chapters 4 to 7); methods and tools including public participation (Chapters 8 and 9); processes in practice through step by step processes in practice and case studies (Chapters 10 and 11); and, finally, recent and upcoming developments in EA, including elements of strategic environmental assessment (Chapters 12 and 13). An index facilitates searching for information. The reader is also invited to consult the book's website
Key processes and input parameters for environmental tritium models
International Nuclear Information System (INIS)
Bunnenberg, C.; Taschner, M.; Ogram, G.L.
1994-01-01
The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs
Key processes and input parameters for environmental tritium models
Energy Technology Data Exchange (ETDEWEB)
Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)
1994-12-31
The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.
The stochastic versus the Euclidean approach to quantum fields on a static space-time
International Nuclear Information System (INIS)
De Angelis, G.F.; de Falco, D.
1986-01-01
Equations are presented which modify the definition of the Gaussian field in the Rindler chart in order to make contact with the Wightman state, the Hartle-Hawking state, and the Euclidean field. By taking Ornstein-Uhlenbeck processes the authors have chosen, in the sense of stochastic mechanics, to place precisely the Fulling modes in their harmonic oscillator ground state. In this respect, together with the periodicity of Minkowski space-time, the authors observe that the covariance of the Ornstein-Uhlenbeck process can be obtained by analytical continuation of the Wightman function of the harmonic oscillator at zero temperature
Defense Waste Processing Facility staged operations: environmental information document
International Nuclear Information System (INIS)
1981-11-01
Environmental information is presented relating to a staged version of the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The information is intended to provide the basis for an Environmental Impact Statement. In either the integral or the staged design, the DWPF will convert the high-level waste currently stored in tanks into: a leach-resistant form containing about 99.9% of all the radioactivity, and a residual, slightly contaminated salt, which is disposed of as saltcrete. In the first stage of the staged version, the insoluble sludge portion of the waste and the long lived radionuclides contained therein will be vitrified. The waste glass will be sealed in canisters and stored onsite until shipped to a Federal repository. In the second stage, the supernate portion of the waste will be decontaminated by ion exchange. The recovered radionuclides will be transferred to the Stage 1 facility, and mixed with the sludge feed before vitrification. The residual, slightly contaminated salt solution will be mixed with Portland cement to form a concrete product (saltcrete) which will be buried onsite in an engineered landfill. This document describes the conceptual facilities and processes for producing glass waste and decontaminated salt. The environmental effects of facility construction, normal operations, and accidents are then presented. Descriptions of site and environs, alternative sites and waste disposal options, and environmental consultations and permits are given in the base Environmental Information Document
Quantum mechanics in curved space-time and its consequences for the theory on the flat space-time
International Nuclear Information System (INIS)
Tagirov, E.A.
1997-01-01
Thus, the structure is extracted from the initial general-relativistic setting of the quantum theory of the scalar field φ that can be considered as quantum mechanics in V 1,3 in the Schroedinger picture, which includes relativistic corrections not only in the Hamiltonian of the Schroedinger equation but also in the operators of primary observables. In the terms pertaining to these corrections the operators differ from their counterparts resulting from quantization of a classical spinless particle. In general, they do not commute at all and thus the quantum phase space loses the feature that half its coordinates retain a manifold structure, which Biedenharn called 'a miracle of quantization'. This non-commutativity expands up to the exact (in the sense 'non-asymptotic in c -2 ') quantum mechanics of a free motion in the Minkowski space-time if curvilinear coordinates are taken as observables, which are necessary if non-inertial frames of references are considered
International Nuclear Information System (INIS)
Lovejoy, S.; Lima, M. I. P. de
2015-01-01
Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time
Progress of electron processing system useful for environmental preservation
International Nuclear Information System (INIS)
Hoshi, Yasuhisa
1998-01-01
Electron Processing has been used in the field of industrial application, mainly to process plastics or polymers, which is represented by the cross-linking of Polyethylene to improve heat resistance. On the other hand, there has been many research studies to use Electron Beam for an environmental preservation. Typical examples are Sterilization of Food, Flue Gas Treatment, Sterilization of Waste Water Sludge, Purification of Water, Removal of Volatile Organic Compound (VOC), etc. These research works have been done in the USA, Germany, Austria, Japan, etc. They reported some of the features of electron beam method. In addition, there is an unique report that the combination of Ozone and Electron Beam provides a better efficiency of the purification of the water. Recently, they have started the investigation for the practical use of Electron Beam in the environmental application. Flue gas treatment is a remarkable example of the investigation. They built the demonstration plant last year and they started the operation last fall. Presently, the system is in a demonstrative operation. This paper will report an outline of the R and D works of environmental applications of Electron Beam and also will introduce the latest technologies of Electron Processing Systems which will be available for the environmental preservation. (author)
Environmental review process: The U.S. experience
International Nuclear Information System (INIS)
Russo, T.N.
1993-01-01
The environmental review process used by the United States Federal Energy Regulatory Commission was discussed. The process has enabled the Commission to assess proposed small hydropower projects, but in the view of the author the Commission has done so at considerable cost and time to developers. Principal reasons for the delays and additional costs were examined, and ways were suggested that developers, agencies, regulators and other stakeholders could facilitate the siting of small hydropower projects without sacrificing the quality of the environmental review process. The highly duplicative nature of the environmental review process for hydropower projects was highlighted. The Commissions's power to regulate hydropower was claimed to have become severely eroded and the Energy Policy Act of 1992 did not significantly improve the process. Conflicts between developers, federal and state agencies, and the Commission over jurisdiction and interpretation of statutes continue to cause siting delays, which could render many projects financially infeasible. A more proactive Federal Energy Regulatory Commission was suggested to work with developers, agencies, Indian tribes and non-government organizations to resolve disputes. 1 tab
DISENTANGLING THE ROLE OF ENVIRONMENTAL PROCESSES IN GALAXY CLUSTERS
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Fernandez, Jonathan D.; Vilchez, J. M.; Iglesias-Paramo, J., E-mail: jonatan@iaa.es [Instituto de Astrofisica de Andalucia, Glorieta de la Astronomia s/n, 18008 Granada (Spain)
2012-05-20
In this work, we present the results of a novel approach devoted to disentangling the role of the environmental processes affecting galaxies in clusters. This is based on the analysis of the near-UV (NUV) - r' distributions of a large sample of star-forming galaxies in clusters spanning more than four absolute magnitudes. The galaxies inhabit three distinct environmental regions: virial regions, cluster infall regions, and field environment. We have applied rigorous statistical tests to analyze both the complete NUV - r' distributions and their averages for three different bins of the r'-band galaxy luminosity down to M{sub r{sup '}}{approx}-18, throughout the three environmental regions considered. We have identified the environmental processes that significantly affect the star-forming galaxies in a given luminosity bin by using criteria based on the characteristics of these processes: their typical timescales, the regions where they operate, and the galaxy luminosity range for which their effects are more intense. We have found that the high-luminosity (M{sub r{sup '}}{<=}-20) star-forming galaxies do not show significant signs in their star formation activity of being affected by: (1) the environment in the last {approx}10{sup 8} yr, or (2) a sudden quenching in the last 1.5 Gyr. The intermediate-luminosity (-20< M{sub r{sup '}}{<=}-19) star-forming galaxies appear to be affected by starvation in the virial regions and by the harassment in the virial and infall regions. Low-luminosity (-19
Extrusion: An environmentally friendly process for PEMFC membrane elaboration
Energy Technology Data Exchange (ETDEWEB)
Sanchez, J.-Y.; Iojoiu, C.; Marechal, M. [LEPMI, UMR 5631 CNRS-INPG-UJF, ENSEEG, BP 75, F-38402, Saint Martin d' Heres (France); Chabert, F.; El Kissi, N. [Rheologie, UMR 5520 CNRS-INPG-UJF, ENSHMG, BP 53, F-38041, Grenoble (France); Salomon, J.; Mercier, R. [LMOPS UMR CNRS 5041, BP 24, F-69390 Vernaison (France); Piffard, Y. [CNRS Universite de Nantes, Institut des Materiaux Jean Rouxel, UMR 6502, BP 32229, F-44322, Nantes Cedex 3 (France); Galiano, H. [CEA, Le Ripault Research Center, BP 16, F-37260, Monts (France)
2007-12-31
The paper deals with the use of extrusion to process PEMFC filled and unfilled membranes. Several routes including the sulfonation of filled and unfilled extruded membranes and the extrusion of filled and unfilled ionomers are reported. Thanks to the use of selected water-soluble aid process plasticizers, acid and alkaline forms of sulfonated polyethersulfone were, for the first time, successfully extruded. The extrusion process did not lead to any degradation of the ionomer performances. Decreasing the membrane cost while using environmentally friendly elaboration conditions, it should be helpful to an industrial production. In addition, avoiding filler sedimentation it should allow homogeneous composite membranes to be obtained. (author)
Environmental assessment for radioisotope heat source fuel processing and fabrication
International Nuclear Information System (INIS)
1991-07-01
DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs
Energy Technology Data Exchange (ETDEWEB)
Zhang, Z Y [College of Metrological Technology and Engineering, China Jiliang University, Hangzhou (China); Luo, J X [Zhejiang Radio Factory, Zhejiang (China)
2006-10-15
In order to provide a design method of the capacitive displacement transducer and to improve its measuring performance it is desperately needed to offer a refined mathematic model of the transducer of mulitiphase drive and phase-modulated. On the basis of fully considering its characteristic of digital signals, first it is found that their actual waveforms and space-time characteristics could be tersely represented by matrixes [u{sub ij}], [c{sub j}] and [v{sub i}], and corresponding matrix elements u{sub ij}, c{sub j} and v{sub i} through deeply analyzing space-time and quantum characteristics of their mulitiphase driving signals U{sub i}(t), capacitive coupling signals C{sub j}(x) and output signal V(t). and space-time transform function possessed by U(x,t) itself. Then the basic expression of the relations of the transducer is derived, which is expressed by matrixes, thereby the characteristics of space-time transform and phase modulation are brought to light. The demodulation process and demodulated waveforms and its characteristics in the transducer are also expressed by demodulated matrixes [b{sub ij}]. Finally, the reason for the principle and periodic error produced in the transducer is revealed by sampling matrix [s{sub ij}]. Thus the full process of the produce of driving signals, modulation, demodulation and space-time transform that happen in the transducer, also waveforms and characteristics of various signals in the process are concisely expressed by two-dimensional space-time matrixes. Experimental results indicate that the use of the mathematical model enables its resolving power to reach 1 {mu}m, and the mathematical model proposed is an all-things-considered model to express processes that happen in the transducer.
Conical singularities in AdS space time
International Nuclear Information System (INIS)
Ferreira, Cristine Nunes
2011-01-01
Full text: In recent years, the study of conformal gauge theories from 10-D has been motivated by the AdS d+1 /CFT d correspondence, first conjectured by J. Maldacena. The aim of this work is to consider the d = 4 case by analysing the configuration of the N coincident D3 branes. In this context, the work shows that there is a duality between type IIB string theory in AdS 5 x S 5 and N = 4 SU(N) Super Yang-Mills Theory in the IR. The AdS 5 /CFT 4 correspondence brought also new approaches to the strong coupling problem in QCD. Nowadays, there is a whole line of works that focus on the low dimensional correspondence AdS 4 /CFT 3 , like the application to graphene and topological insulators, and the AdS 3 /CFT 2 correspondence, related with the entanglement entropy. In this work, we consider the vortex configuration solution to the AdS 4 and AdS 3 space-time. The most important motivation is to discuss the boundary theory resulting from these solutions. We have examined a straightforward approach to a holographic computation of the graphene and entanglement entropy in the presence of the conical singularity. After this analysis, we consider the scalar field in the bulk in the presence of this metrics and work out the compactification modes. Taking the holographic point of view, we study and discuss the resulting Green function. (author)
On the stability of scalar-vacuum space-times
Energy Technology Data Exchange (ETDEWEB)
Bronnikov, K.A. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); PFUR, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Fabris, J.C. [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, ES (Brazil); Zhidenko, A. [Universidade Federal do ABC, Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil)
2011-11-15
We study the stability of static, spherically symmetric solutions to the Einstein equations with a scalar field as the source. We describe a general methodology of studying small radial perturbations of scalar-vacuum configurations with arbitrary potentials V({phi}), and in particular space-times with throats (including wormholes), which are possible if the scalar is phantom. At such a throat, the effective potential for perturbations V{sub eff} has a positive pole (a potential wall) that prevents a complete perturbation analysis. We show that, generically, (i) V{sub eff} has precisely the form required for regularization by the known S-deformation method, and (ii) a solution with the regularized potential leads to regular scalar field and metric perturbations of the initial configuration. The well-known conformal mappings make these results also applicable to scalar-tensor and f(R) theories of gravity. As a particular example, we prove the instability of all static solutions with both normal and phantom scalars and V({phi}){identical_to}0 under spherical perturbations. We thus confirm the previous results on the unstable nature of anti-Fisher wormholes and Fisher's singular solution and prove the instability of other branches of these solutions including the anti-Fisher ''cold black holes''. (orig.)
Nucleon structure functions in noncommutative space-time
Energy Technology Data Exchange (ETDEWEB)
Rafiei, A.; Rezaei, Z.; Mirjalili, A. [Yazd University, Physics Department, Yazd (Iran, Islamic Republic of)
2017-05-15
In the context of noncommutative space-time we investigate the nucleon structure functions which play an important role in identifying the internal structure of nucleons. We use the corrected vertices and employ new vertices that appear in two approaches of noncommutativity and calculate the proton structure functions in terms of the noncommutative tensor θ{sub μν}. To check our results we plot the nucleon structure function (NSF), F{sub 2}(x), and compare it with experimental data and the results from the GRV, GJR and CT10 parametrization models. We show that with the new vertex that arises the noncommutativity correction will lead to a better consistency between theoretical results and experimental data for the NSF. This consistency will be better for small values of the Bjorken variable x. To indicate and confirm the validity of our calculations we also act conversely. We obtain a lower bound for the numerical values of Λ{sub NC} scale which correspond to recent reports. (orig.)
Conformal quantum mechanics and holography in noncommutative space-time
Gupta, Kumar S.; Harikumar, E.; Zuhair, N. S.
2017-09-01
We analyze the effects of noncommutativity in conformal quantum mechanics (CQM) using the κ-deformed space-time as a prototype. Up to the first order in the deformation parameter, the symmetry structure of the CQM algebra is preserved but the coupling in a canonical model of the CQM gets deformed. We show that the boundary conditions that ensure a unitary time evolution in the noncommutative CQM can break the scale invariance, leading to a quantum mechanical scaling anomaly. We calculate the scaling dimensions of the two and three point functions in the noncommutative CQM which are shown to be deformed. The AdS2 / CFT1 duality for the CQM suggests that the corresponding correlation functions in the holographic duals are modified. In addition, the Breitenlohner-Freedman bound also picks up a noncommutative correction. The strongly attractive regime of a canonical model of the CQM exhibit quantum instability. We show that the noncommutativity softens this singular behaviour and its implications for the corresponding holographic duals are discussed.
Voluble: a space-time diagram of the solar system
Aguilera, Julieta C.; SubbaRao, Mark U.
2008-02-01
Voluble is a dynamic space-time diagram of the solar system. Voluble is designed to help users understand the relationship between space and time in the motion of the planets around the sun. Voluble is set in virtual reality to relate these movements to our experience of immediate space. Beyond just the visual, understanding dynamic systems is naturally associated to the articulation of our bodies as we perform a number of complex calculations, albeit unconsciously, to deal with simple tasks. Such capabilities encompass spatial perception and memory. Voluble investigates the balance between the visually abstract and the spatially figurative in immersive development to help illuminate phenomena that are beyond the reach of human scale and time. While most diagrams, even computer-based interactive ones, are flat, three-dimensional real-time virtual reality representations are closer to our experience of space. The representation can be seen as if it was "really there," engaging a larger number of cues pertaining to our everyday spatial experience.
The space-time outside a source of gravitational radiation: the axially symmetric null fluid
Energy Technology Data Exchange (ETDEWEB)
Herrera, L. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Universidad de Salamanca, Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain); Di Prisco, A. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Ospino, J. [Universidad de Salamanca, Departamento de Matematica Aplicada and Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain)
2016-11-15
We carry out a study of the exterior of an axially and reflection symmetric source of gravitational radiation. The exterior of such a source is filled with a null fluid produced by the dissipative processes inherent to the emission of gravitational radiation, thereby representing a generalization of the Vaidya metric for axially and reflection symmetric space-times. The role of the vorticity, and its relationship with the presence of gravitational radiation is put in evidence. The spherically symmetric case (Vaidya) is, asymptotically, recovered within the context of the 1 + 3 formalism. (orig.)
Energy and environmental analysis of a rapeseed biorefinery conversion process
DEFF Research Database (Denmark)
Boldrin, Alessio; Balzan, Alberto; Astrup, Thomas Fruergaard
2013-01-01
)-based environmental assessment of a Danish biorefinery system was carried out to thoroughly analyze and optimize the concept and address future research. The LCA study was based on case-specific mass and energy balances and inventory data, and was conducted using consequential LCA approach to take into account market...... mechanisms determining the fate of products, lost opportunities and marginal productions. The results show that introduction of enzymatic transesterification and improved oil extraction procedure result in environmental benefits compared to a traditional process. Utilization of rapeseed straw seems to have...... positive effects on the greenhouse gases (GHG) footprint of the biorefinery system, with improvements in the range of 9 % to 29 %, depending on the considered alternative. The mass and energy balances showed the potential for improvement of straw treatment processes (hydrothermal pre-treatment and dark...
A global conformal extension theorem for perfect fluid Bianchi space-times
International Nuclear Information System (INIS)
Luebbe, Christian; Tod, Paul
2008-01-01
A global extension theorem is established for isotropic singularities in polytropic perfect fluid Bianchi space-times. When an extension is possible, the limiting behaviour of the physical space-time near the singularity is analysed
Compliance with Environmental Regulations through Complex Geo-Event Processing
Federico Herrera; Laura González; Daniel Calegari; Bruno Rienzi
2017-01-01
In a context of e-government, there are usually regulatory compliance requirements that support systems must monitor, control and enforce. These requirements may come from environmental laws and regulations that aim to protect the natural environment and mitigate the effects of pollution on human health and ecosystems. Monitoring compliance with these requirements involves processing a large volume of data from different sources, which is a major challenge. This volume is also increased with ...
Environmental impact assessments and geological repositories: A model process
International Nuclear Information System (INIS)
Webster, S.
2000-01-01
In a recent study carried out for the European Commission, the scope and application of environmental impact assessment (EIA) legislation and current EIA practice in European Union Member States and applicant countries of Central and Eastern Europe was investigated, specifically in relation to the geological disposal of radioactive waste. This paper reports the study's investigations into a model approach to EIA in the context of geological repositories, including the role of the assessment in the overall decision processes and public involvement. (author)
Supplemental environmental impact statement - defense waste processing facility
International Nuclear Information System (INIS)
1994-11-01
This document supplements the Final Environmental Impact Statement (EIS) DOE Issued in 1982 (DOE/EIS-0082) to construct and operate the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), a major DOE installation in southwestern South Carolina. That EIS supported the decision to construct and operate the DWPF to immobilize high-level waste generated as a result of nuclear materials processing at SRS. The DWPF would use a vitrification process to incorporate the radioactive waste into borosilicate glass and seal it in stainless steel canisters for eventual disposal at a permanent geologic repository. The DWPF is now mostly constructed and nearly ready for full operation. However, DOE has made design changes to the DWPF since the 1982 EIS to improve efficiency and safety of the facility. Each of these modifications was subjected to appropriate NEPA review. The purpose of this Supplemental EIS is to assist DOE in deciding whether and how to proceed with operation of the DWPF as modified since 1982 while ensuring appropriate consideration of potential environmental effects. In this document, DOE assesses the potential environmental impacts of completing and operating the DWPF in light of these design changes, examines the impact of alternatives, and identifies potential actions to be taken to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socioeconomics, and health and safety of onsite workers and the public are included in the assessment
Energy Technology Data Exchange (ETDEWEB)
Tastu, J.; Pinson, P.; Madsen, Henrik
2013-09-01
The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. A modelling approach taking advantage of sparsity of precision matrices is introduced for the description of the underlying space-time dependence structure. The proposed parametrization of the dependence structure accounts for such important process characteristics as non-constant conditional precisions and direction-dependent cross-correlations. Accounting for the space-time effects is shown to be crucial for generating high quality scenarios. (Author)
Tracking and visualization of space-time activities for a micro-scale flu transmission study.
Qi, Feng; Du, Fei
2013-02-07
Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. This study
Surviving in a metastable de Sitter space-time
International Nuclear Information System (INIS)
Kashyap, Sitender Pratap; Mondal, Swapnamay; Sen, Ashoke; Verma, Mritunjay
2015-01-01
In a metastable de Sitter space any object has a finite life expectancy beyond which it undergoes vacuum decay. However, by spreading into different parts of the universe which will fall out of causal contact of each other in future, a civilization can increase its collective life expectancy, defined as the average time after which the last settlement disappears due to vacuum decay. We study in detail the collective life expectancy of two comoving objects in de Sitter space as a function of the initial separation, the horizon radius and the vacuum decay rate. We find that even with a modest initial separation, the collective life expectancy can reach a value close to the maximum possible value of 1.5 times that of the individual object if the decay rate is less than 1% of the expansion rate. Our analysis can be generalized to any number of objects, general trajectories not necessarily at rest in the comoving coordinates and general FRW space-time. As part of our analysis we find that in the current state of the universe dominated by matter and cosmological constant, the vacuum decay rate is increasing as a function of time due to accelerated expansion of the volume of the past light cone. Present decay rate is about 3.7 times larger than the average decay rate in the past and the final decay rate in the cosmological constant dominated epoch will be about 56 times larger than the average decay rate in the past. This considerably weakens the lower bound on the half-life of our universe based on its current age.
Surviving in a metastable de Sitter space-time
Energy Technology Data Exchange (ETDEWEB)
Kashyap, Sitender Pratap; Mondal, Swapnamay [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Verma, Mritunjay [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); International Centre for Theoretical Sciences,Malleshwaram, Bengaluru 560 012 (India)
2015-09-21
In a metastable de Sitter space any object has a finite life expectancy beyond which it undergoes vacuum decay. However, by spreading into different parts of the universe which will fall out of causal contact of each other in future, a civilization can increase its collective life expectancy, defined as the average time after which the last settlement disappears due to vacuum decay. We study in detail the collective life expectancy of two comoving objects in de Sitter space as a function of the initial separation, the horizon radius and the vacuum decay rate. We find that even with a modest initial separation, the collective life expectancy can reach a value close to the maximum possible value of 1.5 times that of the individual object if the decay rate is less than 1% of the expansion rate. Our analysis can be generalized to any number of objects, general trajectories not necessarily at rest in the comoving coordinates and general FRW space-time. As part of our analysis we find that in the current state of the universe dominated by matter and cosmological constant, the vacuum decay rate is increasing as a function of time due to accelerated expansion of the volume of the past light cone. Present decay rate is about 3.7 times larger than the average decay rate in the past and the final decay rate in the cosmological constant dominated epoch will be about 56 times larger than the average decay rate in the past. This considerably weakens the lower bound on the half-life of our universe based on its current age.
Radiochemical verification and validation in the environmental data collection process
International Nuclear Information System (INIS)
Rosano-Reece, D.; Bottrell, D.; Bath, R.J.
1994-01-01
A credible and cost effective environmental data collection process should produce analytical data which meets regulatory and program specific requirements. Analytical data, which support the sampling and analysis activities at hazardous waste sites, undergo verification and independent validation before the data are submitted to regulators. Understanding the difference between verification and validation and their respective roles in the sampling and analysis process is critical to the effectiveness of a program. Verification is deciding whether the measurement data obtained are what was requested. The verification process determines whether all the requirements were met. Validation is more complicated than verification. It attempts to assess the impacts on data use, especially when requirements are not met. Validation becomes part of the decision-making process. Radiochemical data consists of a sample result with an associated error. Therefore, radiochemical validation is different and more quantitative than is currently possible for the validation of hazardous chemical data. Radiochemical data include both results and uncertainty that can be statistically compared to identify significance of differences in a more technically defensible manner. Radiochemical validation makes decisions about analyte identification, detection, and uncertainty for a batch of data. The process focuses on the variability of the data in the context of the decision to be made. The objectives of this paper are to present radiochemical verification and validation for environmental data and to distinguish the differences between the two operations
Electromagnetic-field equations in the six-dimensional space-time R6
International Nuclear Information System (INIS)
Teli, M.T.; Palaskar, D.
1984-01-01
Maxwell's equations (without monopoles) for electromagnetic fields are obtained in six-dimensional space-time. The equations possess structural symmetry in space and time, field and source densities. Space-time-symmetric conservation laws and field solutions are obtained. The results are successfully correlated with their four-dimensional space-time counterparts
International Nuclear Information System (INIS)
Connelly, R.G.
1994-01-01
The Environmental Assessment and Review Process Guidelines Order (EARP) was the Canadian federal law governing environmental assessment of projects. EARP had been subject to misinterpretation, had been significantly modified in different directions as a result of numerous court cases, and no longer accurately reflected government policy. Parliament therefore passed the Canadian Environmental Assessment Act (CEAA), which received Royal Assent in 1992, but had still not been proclaimed at the time of the conference, pending a review of draft regulations. CEAA will speed up stalled projects, particularly in the Saskatchewan uranium mining industry, by removing uncertainty and by permitting more focussed, flexible, and consistent public reviews; it defines what kind of government projects require approval; it provides for integration of environmental concerns into federal decision making, e.g. by the AECB; it will allow less expensive and more timely environmental assessments
Simulation of the space-time evolution of color-flux tubes (guidelines to the TERMITE program)
International Nuclear Information System (INIS)
Dyrek, A.
1990-08-01
We give the description of the computer program which simulates boost-invariant evolution of color-flux tubes in high-energy processes. The program provides a graphic demonstration of space-time trajectories of created particles and can also be used as Monte-Carlo generator of events. (author)
Wongchantra, Prayoon; Boujai, Pairoj; Sata, Winyoo; Nuangchalerm, Prasart
2008-01-01
Environmental problems were made by human beings because they lack environmental ethics. The sustainable solving of environmental problems must rely on a teaching process using an environmental ethics infusion method. The purposes of this research were to study knowledge of environment and environmental ethics through an environmental education…
Semantic orchestration of image processing services for environmental analysis
Ranisavljević, Élisabeth; Devin, Florent; Laffly, Dominique; Le Nir, Yannick
2013-09-01
In order to analyze environmental dynamics, a major process is the classification of the different phenomena of the site (e.g. ice and snow for a glacier). When using in situ pictures, this classification requires data pre-processing. Not all the pictures need the same sequence of processes depending on the disturbances. Until now, these sequences have been done manually, which restricts the processing of large amount of data. In this paper, we present how to realize a semantic orchestration to automate the sequencing for the analysis. It combines two advantages: solving the problem of the amount of processing, and diversifying the possibilities in the data processing. We define a BPEL description to express the sequences. This BPEL uses some web services to run the data processing. Each web service is semantically annotated using an ontology of image processing. The dynamic modification of the BPEL is done using SPARQL queries on these annotated web services. The results obtained by a prototype implementing this method validate the construction of the different workflows that can be applied to a large number of pictures.
An environmentally benign plutonium processing future at Los Alamos
International Nuclear Information System (INIS)
Pillay, K.K.S.
1993-01-01
In recent years, the U.S. Department of Energy (DOE) has elevated environmental restoration and waste management to major mission areas, and it has established the reduction of wastes from DOE facilities as a major objective. The DOE facilities must now comply with all environmental regulations, including special regulations required of federal facilities. In recognition of this shift in philosophy, the plutonium processing facility at Los Alamos National Laboratory (LANL) has adopted the goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste. Becoming a facility with zero radionuclide and mixed-waste discharge is an extremely challenging goal and one that requires the technical contributions of a multidisciplinary team of experts. While all the technologies necessary to achieve this goal are not yet available, an extensive knowledge base does exist that can be applied to solving the remaining problems. Working toward this goal is a worthwhile endeavor, not only for LANL, but for the nuclear complex of the future
Products and Processes Innovation from the Perspective of Environmental Management
Directory of Open Access Journals (Sweden)
Vanessa Theis
2017-05-01
Full Text Available Considering the present scenario of globalization of the economy, the dynamics of the market determines the speed of change in business models, environmental aspects can contribute to the design of technological innovations. Given this perception, the general objective of this research was to investigate how industrial organizations in the metal-mechanic sector, located in the Vale do Rio dos Sinos region, reconcile the product innovation activities and processes, with the structuring principles of environmental management. This economic segment is characterized as one that has the highest rates of innovation and greater investment in research and development. Data were collected through a survey research with managers of 159 companies of the analysis unit. Evidence collected provided the realization that innovations tend to be adjustments made to the legal provisions that require the mitigation of environmental impacts in the production process, especially in reducing pollution and using less toxic assets, which does not generate sufficient stimulus to the development of new products.
Compliance with Environmental Regulations through Complex Geo-Event Processing
Directory of Open Access Journals (Sweden)
Federico Herrera
2017-11-01
Full Text Available In a context of e-government, there are usually regulatory compliance requirements that support systems must monitor, control and enforce. These requirements may come from environmental laws and regulations that aim to protect the natural environment and mitigate the effects of pollution on human health and ecosystems. Monitoring compliance with these requirements involves processing a large volume of data from different sources, which is a major challenge. This volume is also increased with data coming from autonomous sensors (e.g. reporting carbon emission in protected areas and from citizens providing information (e.g. illegal dumping in a voluntary way. Complex Event Processing (CEP technologies allow processing large amount of event data and detecting patterns from them. However, they do not provide native support for the geographic dimension of events which is essential for monitoring requirements which apply to specific geographic areas. This paper proposes a geospatial extension for CEP that allows monitoring environmental requirements considering the geographic location of the processed data. We extend an existing platform-independent, model-driven approach for CEP adding the geographic location to events and specifying patterns using geographic operators. The use and technical feasibility of the proposal is shown through the development of a case study and the implementation of a prototype.
Preparation of porcelain tile granulates by more environmentally sustainable processes
Energy Technology Data Exchange (ETDEWEB)
Gil, C.; Silvestre, D.; Piquer, J.; Garcia-Ten, J.; Quereda, E.; Vicente, M. J.
2012-07-01
This study examines the feasibility of manufacturing glazed porcelain tiles with a more environmentally friendly manufacturing process, by reducing water and thermal energy consumption. The process studied in this paper is dry milling in a pendulum mill, with subsequent granulation (in order to obtain a press powder with similar flow ability to that of spray dried powders). The different morphology of the new granulate with respect to the standard spray-dried granulate modifies the microstructure of the green compacts and thus, their behaviour and fired tile properties. In order to obtain porcelain tiles with the required properties (water absorption, mechanical strength,) changes have been made in the raw materials mixture and in the processing variables. Finally, porcelain tiles measuring 50x50 cm have been manufactured at industrial scale with the new granulate using a conventional firing cycle, obtaining quality levels identical to those provided by the spray-dried granulate. These results open the possibility of preparing porcelain tile body compositions through a manufacturing process alternative to the standard one, more environmentally friendly and with lower costs. (Author)
Modern integrated environmental monitoring and processing systems for nuclear facilities
International Nuclear Information System (INIS)
Oprea, I.
2000-01-01
The continuous activity to survey and monitor releases and the current radiation levels in the vicinity of a nuclear object is essential for person and environment protection. Considering the vast amount of information and data needed to keep an updated overview of a situation both during the daily surveillance work and during accident situations, the need for an efficient monitoring and processing system is evident. The rapid development, both in computer technology and in telecommunications, the evolution of fast and accurate computer codes enabling the on-line calculations improve the quality of decision-making in complex situations and assure a high efficiency. The monitoring and processing systems are used both for environmental protection and for controlling nuclear power plant emergency and post-accident situations. Such a system can offer information to the radiation management systems in order to assess the consequences of nuclear accidents and to establish a basis for right decisions in civil defense. The integrated environmental monitoring systems have as main task to record, collect, process and transmit the radiation levels and weather data, incorporating a number of stationary or mobile radiation monitoring equipment, weather parameter measuring station, an information processing center and the communication network, all running under a real-time operating system.They provide the automatic data collection on-line and off-line, remote diagnostic, advanced presentation techniques, including a graphically oriented executive support, which has the ability to respond to an emergency by geographical representation of the hazard zones on the map. The systems are based on local intelligent measuring and transmission units, simultaneous processing and data presentation using a real-time operating system for personal computers and geographical information system (GIS). All information can be managed directly from the map by multilevel data retrieving and
On black holes, space-time foam and the nature of time in string theory
International Nuclear Information System (INIS)
Mavromatos, N.E.; Grenoble-1 Univ., 74 - Annecy
1993-04-01
It is shown that the light particles in string theory obey an effective quantum mechanics modified by the inclusion of a quantum-gravitational friction term, induced by unavoidable couplings to unobserved massive string states in the space-time foam. This term is related to the W-symmetries that couple light particles to massive solitonic string states in black hole backgrounds, and has a formal similarity to simple models of environmental quantum friction. All properties follow from a definition of target-time as a Renormalization Group scale parameter and the associated (generic) properties of the renormalization group flow. Some experimental consequences, concerning CPT violation detectable in systems that are generally considered as sensitive probes of quantum mechanics (e.g. neutral kaons), are briefly discussed. (author). 52 refs., 1 fig
Evaluation process of global environmental impact: assessment guidelines
International Nuclear Information System (INIS)
Memon, A.R.; Mahar, R.B.
2001-01-01
In developed and developing countries, the EIA (Environmental Impact Assessment) is becoming mandatory for the approval of Industrial projects and projects of Environmental hazards. The approving authority of each country has its own guidelines to get projects approved and make project proponents responsible to submit Environmental Impact Statement for the its detailed assessment. In this paper authors have studied an existing EIA Global guidelines and its evaluation process of altogether 40 countries from four continents, Asia, Pacific/Middle East, Europe, Australia and America/Canada. This evaluation process is recorded in the tabulation form and it has been formulated stage wise in which stage one highlights the inception of EIA guidelines of each country and stage two and three gives implementation process. The inception stage of guidelines gives an idea that when EIA was started and an implementation stages provide all information that when EIA become a part of legislation that provide an opportunity to the reader to understand the decision making process for project approvals. The main objective of writing EIA guidelines is to monitor the sustain ability of various types of the projects under different sectoral guidelines, therefore Projects related with different Sectors have been chosen and a detailed record in tabulation form gives an idea to understand the interaction of these guidelines. To make this paper more comprehensive, authors have gone thorough the sectoral guidelines of altogether 64 countries and studied 21 sector oriented project fields. These are of Agriculture/Irrigation, Biodiversity, Coastal/Marine, Community Participation, Extractive industries, Fisheries, Forestry, Hazard Risk, Health, Human settlement, Industry, Multi sectorial, Ports and Harbors, Power, refugees/resettlement, Social, Strategies/Planning, Tourism/Recreational, transportation, Waste Pollution and Wetlands/Water resources. (author)
Space-time clusters of breast cancer using residential histories
DEFF Research Database (Denmark)
Nordsborg, Rikke Baastrup; Meliker, Jaymie R; Ersbøll, Annette Kjær
2014-01-01
BACKGROUND: A large proportion of breast cancer cases are thought related to environmental factors. Identification of specific geographical areas with high risk (clusters) may give clues to potential environmental risk factors. The aim of this study was to investigate whether clusters of breast...... cancer existed in space and time in Denmark, using 33 years of residential histories. METHODS: We conducted a population-based case-control study of 3138 female cases from the Danish Cancer Registry, diagnosed with breast cancer in 2003 and two independent control groups of 3138 women each, randomly...
Environmental assessment of different solar driven advanced oxidation processes
Energy Technology Data Exchange (ETDEWEB)
Munoz, Ivan; Rieradevall, Joan [Institut de Ciencia i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Torrades, Francesc [Departament d' Enginyeria Quimica, ETSEI de Terrassa, Universitat Politecnica de Catalunya, 08222 Terrassa (Barcelona) (Spain); Peral, Jose; Domenech, Xavier [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)
2005-10-01
In this work a comparative environmental assessment of different advanced oxidation processes (AOP's) is performed. Two energy scenarios have been considered according to the energy source used: solar energy and electricity (UVA lamp). A life cycle assessment (LCA) is carried out in order to quantify the environmental impacts of the AOP's. The treatments considered are heterogenous photocatalysis, photo-Fenton reactions, the coupling of heterogeneous photocatalysis and photo-Fenton, and heterogeneous photocatalysis in combination with hydrogen peroxide. These AOP's are applied to the treatment of kraft mill bleaching wastewaters. The system under study includes the production of the catalysts, reagents as well as the production of electricity; eight environmental impact categories are assessed for each AOP: global warming, ozone depletion, aquatic eutrophication, acidification, human toxicity, freshwater aquatic toxicity, photochemical ozone formation, and abiotic resource depletion. the results of the LCA show that the environmental impact of AOP's is caused mainly by the amount of electricity consumed, whereas the impact of producing the reagents and catalysts is comparatively low. For this reason, the solar energy scenario reduces the impact more than 90% for almost all AOP's and impact categories. None of the solar driven AOP's can be identified as the best in all impact categories, but heterogenous photocatalysis and photo-Fenton reactions obtain better results than the remaining treatments, since these treatments do not consume simultaneously both TiO{sub 2} and H{sub 2}O{sub 2}, the chemicals with highest environmental burdens in the system. (author)
Development of plasma cutting process at observation of environmental requirements
International Nuclear Information System (INIS)
Czech, J.; Matusiak, J.; Pasek-Siurek, H.
1997-01-01
Plasma cutting is one of the basic methods for thermal cutting of metals. It is characterized by high productivity and quality of the cut surface. However, the plasma cutting process is one of the most harmful processes for environment and human health. It results from many agents being a potential environmental risk The large amount of dust and gases emitted during the process as well as an intensive radiation of electric arc and excessive noise are considered as the most harmful hazards. The existing ventilation and filtration systems are not able to solve all problems resulting from the process. Plasma cutting under water is worthy of notice, especially during an advancement of plasma cutting process, because of human safety and environment protection. Such a solution allows to reduce considerably the emission of dust and gases, as well as to decrease the noise level and ultraviolet radiation. An additional advantage of underwater plasma cutting is a reduction in the width of material heating zone and a decrease in strains of elements being cut. However, the productivity of this process is a little lower what results in an increase in cutting cost. In the paper, it has been presented the results of the investigations made at the Institute of Welding in Gliwice on the area of plasma cutting equipment with energy-saving inverter power supplies used in automated processes of underwater plasma cutting as well as the results of testing of welding environment contamination and safety hazards. (author)
Environmental and radiological aspects of thorium processing in India
International Nuclear Information System (INIS)
Rudran, Kamala; Paul, A.C.; Pillai, P.M.B.; Saha, S.C.; Vidyasagar, D.; Sawant, Pramilla D.
1997-01-01
India has an active programme for using thorium as third stage self- sustaining nuclear fuel. A significant amount of thorium is also used in the gas mantle industry. The presently estimated monazite deposits amounting to five million tonnes are distributed in the beach sands of south western and eastern coasts and some areas in Andhra Pradesh. The sands are processed for recovery of rare earth minerals and thorium. The mineral processing and thorium separation involves hazards to workers from exposure to radiation, radioactive and silica bearing dusts as well as from conventional chemicals used in the processing. Releases of wastes from the plants may necessitate environmental surveillance. The present paper reviews the hazards envisaged, steps taken to mitigate such hazards and achievements in this regard in the thorium industry in India. (author)
Quantum theory of spinor field in four-dimensional Riemannian space-time
International Nuclear Information System (INIS)
Shavokhina, N.S.
1996-01-01
The review deals with the spinor field in the four-dimensional Riemannian space-time. The field beys the Dirac-Fock-Ivanenko equation. Principles of quantization of the spinor field in the Riemannian space-time are formulated which in a particular case of the plane space-time are equivalent to the canonical rules of quantization. The formulated principles are exemplified by the De Sitter space-time. The study of quantum field theory in the De Sitter space-time is interesting because it itself leads to a method of an invariant well for plane space-time. However, the study of the quantum spinor field theory in an arbitrary Riemannian space-time allows one to take into account the influence of the external gravitational field on the quantized spinor field. 60 refs
Environmental management system case study: textile wet processes
Energy Technology Data Exchange (ETDEWEB)
Nasreldin, A A [Engineering Researches and Industrial Technologies Council, Sudan Academy of Sciences, Khartoum (Sudan)
2008-10-15
Textile industry is one of the oldest industries, it started very early in the ancient ages, its grows and improves gradually at the first and then rapidly to satisfy other different need of the mankind, even for luxury purposes, this development caused damage to environment, then its need the treatment. Textile wet processes used significant quantities of water and various kind of chemicals marketed under the name textile auxiliaries, to enhance the appearance of the fabric, serviceability, and durability. The chemical contamination of textile wet processes can be a health risk for the mill workers, consumers and for the environment as well. A number of schemes have been proposed in different countries to control the textile wet processes to create better environment and protect the ecosystem from further degradation, the developing countries need to apply their designed policies from the beginning. A theoretical study for probability of application of environmental management system in textile industry, to prevent or eliminate textile industry pollution that considered as one of the largest polluters in Sudanese environment, especially after the government (industrial ministry) support and facilitate to textile industry development. Applying environmental management system can appreciably reduce the textile industry pollution as founded from the study.(Author)
Environmental management system case study: textile wet processes
International Nuclear Information System (INIS)
Nasreldin, A.A.
2008-10-01
Textile industry is one of the oldest industries, it started very early in the ancient ages, its grows and improves gradually at the first and then rapidly to satisfy other different need of the mankind, even for luxury purposes, this development caused damage to environment, then its need the treatment. Textile wet processes used significant quantities of water and various kind of chemicals marketed under the name textile auxiliaries, to enhance the appearance of the fabric, serviceability, and durability. The chemical contamination of textile wet processes can be a health risk for the mill workers, consumers and for the environment as well. A number of schemes have been proposed in different countries to control the textile wet processes to create better environment and protect the ecosystem from further degradation, the developing countries need to apply their designed policies from the beginning. A theoretical study for probability of application of environmental management system in textile industry, to prevent or eliminate textile industry pollution that considered as one of the largest polluters in Sudanese environment, especially after the government (industrial ministry) support and facilitate to textile industry development. Applying environmental management system can appreciably reduce the textile industry pollution as founded from the study.(Author)
Temperature and entropy of Schwarzschild-de Sitter space-time
International Nuclear Information System (INIS)
Shankaranarayanan, S.
2003-01-01
In the light of recent interest in quantum gravity in de Sitter space, we investigate semiclassical aspects of four-dimensional Schwarzschild-de Sitter space-time using the method of complex paths. The standard semiclassical techniques (such as Bogoliubov coefficients and Euclidean field theory) have been useful to study quantum effects in space-times with single horizons; however, none of these approaches seem to work for Schwarzschild-de Sitter space-time or, in general, for space-times with multiple horizons. We extend the method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced in these space-times. We show that the temperature of radiation in these space-times is proportional to the effective surface gravity--the inverse harmonic sum of surface gravity of each horizon. For the Schwarzschild-de Sitter space-time, we apply the method of complex paths to three different coordinate systems--spherically symmetric, Painleve, and Lemaitre. We show that the equilibrium temperature in Schwarzschild-de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these space-times to be inversely proportional to the square of the effective surface gravity. We show that this definition of entropy for Schwarzschild-de Sitter space-time satisfies the D-bound conjecture
Environmental radionuclides tracers and timers of terrestrial processes
Froehlich, Klaus
2009-01-01
The book presents a state-of-the-art summary of knowledge on the use of radionuclides to study processes and systems in the continental part of the Earth's environment. It is conceived as a companion to the two volumes of this series, which deal with isotopes as tracers in the marine environment (Livingston, Marine Radioactivity) and with the radioecology of natural and man-made terrestrial systems (Shaw, Radioactivity in Terrestrial Ecosystems). Although the book focuses on natural and anthropogenic radionuclides (radioactive isotopes), it also refers to stable environmental isotopes, which i
Aquatic environmental risk assessment of manganese processing industries.
Marks, Becky; Peters, Adam; McGough, Doreen
2017-01-01
An environmental risk assessment (ERA) has been conducted for sites producing and processing manganese and its inorganic compounds, focussing on potential risks to freshwater. A site specific questionnaire was used to collect information. Sites fall into three broad categories: mining sites, refining sites, and sites producing chemicals and pigments. Waste disposal is principally carried out by the treatment of liquid wastes to separate solids for disposal off-site with a consented wastewater discharge, or disposal on-site using evaporation or settlement ponds in order to maintain the waste materials in a suitable manner following site closure. The main source of emissions from refining and alloying sites is from the treatment of emissions to air using wet scrubber air filters. There is also the potential for fugitive environmental emissions of manganese from stockpiles of raw material held on-site. Data provided from the questionnaires were both site-specific and also commercially sensitive. Therefore, this paper has undertaken the manganese exposure assessment, using a probabilistic approach to reflect the distribution of emissions of manganese and also to maintain the confidentiality of site specific data. An inverse correlation was observed between the total annual tonnage of manganese processed at the site and the emission factor, such that sites processing larger quantities resulted in lower emissions of manganese per tonne processed. The hazard assessment determined a Predicted No Effect Concentration (PNEC) for freshwater using a species sensitivity distribution approach, resulting in a freshwater PNEC of 0.075mgL -1 for soluble manganese. Based on the exposure data and the freshwater PNEC derived for this study, the distributions of risk characterisation ratios using the probabilistic approach indicates that two thirds of manganese processing sites would not be expected to pose a potential risk to the local aquatic environment due to wastewater emissions
Environmental Education Policy Processes in the Southern African ...
African Journals Online (AJOL)
implementation of environmental education policy. Further questions .... for Environmental Management (in Ketlhoilwe, 2003) calls for an informed and environmentally ..... As priority issues such as HIV/AIDS, poverty, water resources and solid.
Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes
Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank
2017-05-01
In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.
Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.
Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank
2017-05-01
In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO 2 equivalent while it is 13.6 kg CO 2 per kg of ammonia for coal-based electrolysis method.
Reduced-Complexity Wireless Transceiver Architectures and Techniques for Space-Time Communications
DEFF Research Database (Denmark)
Tsakalaki, Elpiniki
2012-01-01
The dissertation sheds light on the performance gains of multi-antenna systems when the antenna aspects and the associated signal processing and coding aspects are integrated together in a multidisciplinary approach, addressing a variety of challenging tasks pertaining to the joint design of smart...... wireless transceivers and communication techniques. These tasks are at the intersection of different scientific disciplines including signal processing, communications, antennas and propagation. Specifically, the thesis deals with reduced-complexity space-time wireless transceiver architectures...... and associated communication techniques for multi-input multi-output (MIMO) and cognitive radio (CR) systems as well as wireless sensor networks (WSNs). The low-complexity architectures are obtained by equipping the wireless transceiver with passive control ports which require the minimum amount of RF hardware...
Wendling, Laura A; Binet, Monique T; Yuan, Zheng; Gissi, Francesca; Koppel, Darren J; Adams, Merrin S
2013-07-01
Thorough examination of the physicochemical characteristics of a Ti-processing residue was undertaken, including mineralogical, geochemical, and radiochemical characterization, and an investigation of the environmental toxicity of soft-water leachate generated from the residue. Concentrations of most metals measured in the leachate were low; thus, the residue is unlikely to leach high levels of potentially toxic elements on exposure to low-ionic strength natural waters. Relative to stringent ecosystem health-based guidelines, only chromium concentrations in the leachate exceeded guideline concentrations for 95% species protection; however, sulfate was present at concentrations known to cause toxicity. It is likely that the high concentration of calcium and extreme water hardness of the leachate reduced the bioavailability of some elements. Geochemical modeling of the leachate indicated that calcium and sulfate concentrations were largely controlled by gypsum mineral dissolution. The leachate was not toxic to the microalga Chlorella sp., the cladoceran Ceriodaphnia dubia, or the estuarine bacterium Vibrio fischeri. The Ti-processing residue exhibited an absorbed dose rate of 186 nGy/h, equivalent to an annual dose of 1.63 mGy and an annual effective dose of 0.326 mGy. In summary, the results indicate that the Ti-processing residue examined is suitable for productive use as an environmental amendment following 10 to 100 times dilution to ameliorate potential toxic effects due to chromium or sulfate. Copyright © 2013 SETAC.
A general theory known as the WAste Reduction (WASR) algorithm has been developed to describe the flow and the generation of potential environmental impact through a chemical process. This theory integrates environmental impact assessment into chemical process design Potential en...
Black holes in loop quantum gravity: the complete space-time.
Gambini, Rodolfo; Pullin, Jorge
2008-10-17
We consider the quantization of the complete extension of the Schwarzschild space-time using spherically symmetric loop quantum gravity. We find an exact solution corresponding to the semiclassical theory. The singularity is eliminated but the space-time still contains a horizon. Although the solution is known partially numerically and therefore a proper global analysis is not possible, a global structure akin to a singularity-free Reissner-Nordström space-time including a Cauchy horizon is suggested.
A flat space-time relativistic explanation for the perihelion advance of Mercury
Behera, Harihar; Naik, P. C.
2003-01-01
Starting with the flat space-time relativistic versions of Maxwell-Heaviside's toy model vector theory of gravity and introducing the gravitational analogues for the electromagnetic Lienard-Wiechert potentials together with the notion of a gravitational Thomas Precession; the observed anomalous perihelion advance of Mercury's orbit is here explained as a relativistic effect in flat (Minkowski) space-time, unlike Einstein's curved space-time relativistic explanation. In this new explanation fo...
Fermion Systems in Discrete Space-Time Exemplifying the Spontaneous Generation of a Causal Structure
Diethert, A.; Finster, F.; Schiefeneder, D.
As toy models for space-time at the Planck scale, we consider examples of fermion systems in discrete space-time which are composed of one or two particles defined on two up to nine space-time points. We study the self-organization of the particles as described by a variational principle both analytically and numerically. We find an effect of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure.
Data Processing and Programming Applied to an Environmental Radioactivity Laboratory
International Nuclear Information System (INIS)
Trinidad, J. A.; Gasco, C.; Palacios, M. A.
2009-01-01
This report is the original research work presented for the attainment of the author master degree and its main objective has been the resolution -by means of friendly programming- of some of the observed problems in the environmental radioactivity laboratory belonging to the Department of Radiological Surveillance and Environmental Radioactivity from CIEMAT. The software has been developed in Visual Basic for applications in Excel files and it solves by macro orders three of the detected problems: a) calculation of characteristic limits for the measurements of the beta total and beta rest activity concentrations according to standards MARLAP, ISO and UNE and the comparison of the three results b) Pb-210 and Po-210 decontamination factor determination in the ultra-low level Am-241 analysis in air samples by alpha spectrometry and c) comparison of two analytical techniques for measuring Pb-210 in air ( direct-by gamma spectrometry- and indirect -by radiochemical separation and alpha spectrometry). The organization processes of the different excel files implied in the subroutines, calculations and required formulae are explained graphically for its comprehension. The advantage of using this kind of programmes is based on their versatility and the ease for obtaining data that lately are required by tables that can be modified as time goes by and the laboratory gets more data with the special applications for describing a method (Pb-210 decontamination factors for americium analysis in air) or comparing temporal series of Pb-210 data analysed by different methods (Pb-210 in air). (Author)
Environmental controls on micro fracture processes in shelf ice
Sammonds, Peter
2013-04-01
The recent retreat and collapse of the ice shelves on the Antarctic Peninsula has been associated with regional atmospheric warming, oceanic warming, increased summer melt and shelf flexure. Although the cause of collapse is a matter of active discussion, the process is that of fracture of a creep-brittle material, close to its melting point. The environmental controls on how fracturing initiates, at a micro-scale, strongly determine the macroscopic disintegration of ice shelves. In particular the shelf temperature profile controls the plasticity of the ice shelf; the densification of shelf ice due to melting and re-freezing affects the crack tip stress intensity; the accretion of marine ice at the bottom of the shelf imposes a thermal/mechanical discontinuity; saline environments control crack tip stress corrosion; cyclic loading promotes sub-critical crack propagation. These strong environmental controls on shelf ice fracture means that assessing shelf stability is a non-deterministic problem. How these factors may be parameterized in ice shelf models, through the use of fracture mechanisms maps, is discussed. The findings are discussed in relation to the stability of Larsen C.
Quaternionic formulation of tachyons, superluminal transformations and a complex space-time
Energy Technology Data Exchange (ETDEWEB)
Imaeda, K [Dublin Inst. for Advanced Studies (Ireland)
1979-04-11
A theory of tachyons and superluminal transformations is developed on the basis of the quaternionic formulation. A complex space-time adn a complex transformation group which contains both Lorentz transformations and superluminal transformations are introduced. The complex space-time '' the biquaternion space'' which is closed under the superluminal transformations is introduced. The principle of special relativity, such as the conservation of the quadratic form of the metric of the space-time, and the principle of duality are extended to the complex space-time and to bradyons, luxons and tachyons under the complex transformations. SeVeral characteristic features of the superluminal transformations and of tachyons are derived.
Space-Time Analysis to Identify Areas at Risk of Mortality from Cardiovascular Disease
Directory of Open Access Journals (Sweden)
Poliany C. O. Rodrigues
2015-01-01
Full Text Available This study aimed at identifying areas that were at risk of mortality due to cardiovascular disease in residents aged 45 years or older of the cities of Cuiabá and Várzea Grande between 2009 and 2011. We conducted an ecological study of mortality rates related to cardiovascular disease. Mortality rates were calculated for each census tract by the Local Empirical Bayes estimator. High- and low-risk clusters were identified by retrospective space-time scans for each year using the Poisson probability model. We defined the year and month as the temporal analysis unit and the census tracts as the spatial analysis units adjusted by age and sex. The Mann-Whitney U test was used to compare the socioeconomic and environmental variables by risk classification. High-risk clusters showed higher income ratios than low-risk clusters, as did temperature range and atmospheric particulate matter. Low-risk clusters showed higher humidity than high-risk clusters. The Eastern region of Várzea Grande and the central region of Cuiabá were identified as areas at risk of mortality due to cardiovascular disease in individuals aged 45 years or older. High mortality risk was associated with socioeconomic and environmental factors. More high-risk clusters were observed at the end of the dry season.
On the data processing related to environmental radioactivity
International Nuclear Information System (INIS)
Nakamura, Isamu
1984-01-01
The monitoring and measurement of environmental radioactivity have been undertaken by many organizations in Japan. The Japan Chemical Analysis Center has been entrusted by the government to gather and edit these measured results. The computer processing of these data started in 1978, and it is expected that by the end of fiscal year 1984, all fallout data since 1957 and all radioactivity monitoring data since 1969 can be registered. The computer programs for processing the data such as the output of tables and figures have also been developed, and the edition of reports has been made. The replacement of the computer and the development of a new processing system capable of handing Kanji (Japanese-Chinese characters) are now scheduled. This document outlines the data system such as the quality, quantity and origin of the measured data and the frequency of report publication. Some results of the analysis of fallout nuclides, space gamma dose rate and the total β-activity in rain are presented. The effects of the nuclear explosion tests in China are very obvious in these figures. A chronological table of the explosion tests in China is also presented. The different effects of time lag at the different places of measurement are also seen. The effects of the presence of nuclear power plants were also investigated at some sites of the plants, but no discernible effect was observed. (Aoki, K.)
A Framework for Building Efficient Environmental Permitting Processes
Directory of Open Access Journals (Sweden)
Nicola Ulibarri
2017-01-01
Full Text Available Despite its importance as a tool for protecting air and water quality, and for mitigating impacts to protected species and ecosystems, the environmental permitting process is widely recognized to be inefficient and marked by delays. This article draws on a literature review and interviews with permitting practitioners to identify factors that contribute to delayed permit decisions. The sociopolitical context, projects that are complex or use novel technology, a fragmented and bureaucratic regulatory regime, serial permit applications and reviews, and applicant and permitting agency knowledge and resources each contribute to permitting inefficiency when they foster uncertainty, increase transaction costs, and allow divergent interests to multiply, yet remain unresolved. We then use the interviews to consider the potential of a collaborative dialogue between permitting agencies and applicants to mitigate these challenges, and argue that collaboration is well positioned to lessen permitting inefficiency.
Modelling of Electrokinetic Processes in Civil and Environmental Engineering Applications
DEFF Research Database (Denmark)
Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.
2011-01-01
conditions are assumed between the aqueous species and the solid matrix for a set of feasible chemical equilibrium reactions defined for each specific application. A module for re-establishing the chemical equilibrium has been developed and included in the system for this purpose. Changes in the porosity......A mathematical model for the electrokinetic phenomena is described. Numerical simulations of different applications of electrokinetic techniques to the fields of civil and environmental engineering are included, showing the versatility and consistency of the model. The electrokinetics phenomena......-Nernst-Planck system of equations, accounting for ionic migration, chemical diffusion and advection is used for modeling the transport process. The advection term contributor is studied by including in the system the water transport through the porous media, mainly due to electroosmosis. The pore solution filling...
Promoting environmental sustainability via an expert elicitation process
International Nuclear Information System (INIS)
Swor, Tom; Canter, Larry
2011-01-01
Environmental sustainability (ES) planning was applied to the 981-mile, commercially navigable Ohio River. Navigation improvement needs were identified within the broad study along with actions to restore aquatic and riparian ecological resources to a higher state of sustainability. The actions were identified via an Expert Elicitation Process (EEP) involving aquatic and riparian/terrestrial experts knowledgeable of Ohio River resources. The received information was synthesized into goals for the selected resources (Valued Ecosystem Components - or VECs), actions or measures to attain the goals, and monitoring to evaluate conditions. Finally, 26 types of ES actions were identified and classified into three ES alternatives. These alternatives were then evaluated relative to key decision criteria, and such evaluations, based on pertinent decision criteria, were also conducted for four navigation improvement alternatives. Finally, the best combination of ES and navigation alternatives was identified. The key lessons derived from this use of EEP were that: (1) EEP can support the preliminary identification of ES measures; however, more detailed study of specific designs and cost evaluations will be necessary; (2) the method promotes collaboration between key scientists and policymakers from governmental agencies and private sectors, and such collaboration will ultimately provide the foundation for implementation of sustainability actions; and (3) an effective EEP does not occur by accident, it requires careful planning, implementation, and documentation. - Research Highlights: → Use of an Expert Elicitation Process (EEP) is demonstrated in this study. → EEP was used to identify Environmental Sustainability (ES) needs for the Ohio River. → EEP helped develop consensus among resource experts on ES needs. → EEP promotes collaboration to identify and contribute to common resource goals. → EEP may be used in assessing cumulative effects and formulating restoration
Multiple-Symbol Decision-Feedback Space-Time Differential Decoding in Fading Channels
Directory of Open Access Journals (Sweden)
Wang Xiaodong
2002-01-01
Full Text Available Space-time differential coding (STDC is an effective technique for exploiting transmitter diversity while it does not require the channel state information at the receiver. However, like conventional differential modulation schemes, it exhibits an error floor in fading channels. In this paper, we develop an STDC decoding technique based on multiple-symbol detection and decision-feedback, which makes use of the second-order statistic of the fading processes and has a very low computational complexity. This decoding method can significantly lower the error floor of the conventional STDC decoding algorithm, especially in fast fading channels. The application of the proposed multiple-symbol decision-feedback STDC decoding technique in orthogonal frequency-division multiplexing (OFDM system is also discussed.
Coherent states for FLRW space-times in loop quantum gravity
International Nuclear Information System (INIS)
Magliaro, Elena; Perini, Claudio; Marciano, Antonino
2011-01-01
We construct a class of coherent spin-network states that capture properties of curved space-times of the Friedmann-Lamaitre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=const) section with a dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of the graph, and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in spin foams.
Irreducible mass for the Tomimatsu-Sato space-time
Energy Technology Data Exchange (ETDEWEB)
Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; Salmistraro, F; Catenacci, R
1979-01-01
A global definition of irreducible mass for the odd delta T-S metrics is investigated. It is found that its expression in terms of the source parameters is the same for all the members of the family and reduces to the formula that holds in the Kerr case (delta = 1). As a consequence, it is shown that processes with msub(ir) = const no longer imply zero variations of the horizon's area for delta > 1.
Influence of the input database in detecting fire space-time clusters
Pereira, Mário; Costa, Ricardo; Tonini, Marj; Vega Orozco, Carmen; Parente, Joana
2015-04-01
Fire incidence variability is influenced by local environmental variables such as topography, land use, vegetation and weather conditions. These induce a cluster pattern of the fire events distribution. The space-time permutation scan statistics (STPSS) method developed by Kulldorff et al. (2005) and implemented in the SaTScanTM software (http://www.satscan.org/) proves to be able to detect space-time clusters in many different fields, even when using incomplete and/or inaccurate input data. Nevertheless, the dependence of the STPSS method on the different characteristics of different datasets describing the same environmental phenomenon has not been studied yet. In this sense, the objective of this study is to assess the robustness of the STPSS for detecting real clusters using different input datasets and to justify the obtained results. This study takes advantage of the existence of two very different official fire datasets currently available for Portugal, both provided by the Institute for the Conservation of Nature and Forests. The first one is the aggregated Portuguese Rural Fire Database PRFD (Pereira et al., 2011), which is based on ground measurements and provides detailed information about the ignition and extinction date/time and the area burnt by each fire in forest, scrubs and agricultural areas. However, in the PRFD, the fire location of each fire is indicated by the name of smallest administrative unit (the parish) where the ignition occurred. Consequently, since the application of the STPSS requires the geographic coordinates of the events, the centroid of the parishes was considered. The second fire dataset is the national mapping burnt areas (NMBA), which is based on satellite measurements and delivered in shape file format. The NMBA provides a detailed spatial information (shape and size of each fire) but the temporal information is restricted to the year of occurrence. Besides these differences, the two datasets cover different periods, they
Dreano, Denis
2015-04-27
A statistical model is proposed to filter satellite-derived chlorophyll concentration from the Red Sea, and to predict future chlorophyll concentrations. The seasonal trend is first estimated after filling missing chlorophyll data using an Empirical Orthogonal Function (EOF)-based algorithm (Data Interpolation EOF). The anomalies are then modeled as a stationary Gaussian process. A method proposed by Gneiting (2002) is used to construct positive-definite space-time covariance models for this process. After choosing an appropriate statistical model and identifying its parameters, Kriging is applied in the space-time domain to make a one step ahead prediction of the anomalies. The latter serves as the prediction model of a reduced-order Kalman filter, which is applied to assimilate and predict future chlorophyll concentrations. The proposed method decreases the root mean square (RMS) prediction error by about 11% compared with the seasonal average.
Dreano, Denis; Mallick, Bani; Hoteit, Ibrahim
2015-01-01
A statistical model is proposed to filter satellite-derived chlorophyll concentration from the Red Sea, and to predict future chlorophyll concentrations. The seasonal trend is first estimated after filling missing chlorophyll data using an Empirical Orthogonal Function (EOF)-based algorithm (Data Interpolation EOF). The anomalies are then modeled as a stationary Gaussian process. A method proposed by Gneiting (2002) is used to construct positive-definite space-time covariance models for this process. After choosing an appropriate statistical model and identifying its parameters, Kriging is applied in the space-time domain to make a one step ahead prediction of the anomalies. The latter serves as the prediction model of a reduced-order Kalman filter, which is applied to assimilate and predict future chlorophyll concentrations. The proposed method decreases the root mean square (RMS) prediction error by about 11% compared with the seasonal average.
Review of site recommendation process in Draft Environmental Assessments
International Nuclear Information System (INIS)
Joy, H.; Longo, T.; Burton, E.S.
1985-01-01
In December 1984, the US Department of Energy (DOE) published Draft Environmental Assessments (EAs) on nine potentially acceptable nuclear waste repository sites. Five sites in the states of Mississippi, Nevada, Texas, Utah, and Washington were proposed in the Draft EAs for nomination under the Nuclear Waste Policy Act as suitable for further detailed study (site characterization). The Nevada, Texas, and Washington sites were further proposed for recommendation to the President as preferred for site characterization. This paper reviews the process that DOE used in selecting the three sites proposed for site characterization. The process is consistent with DOE's implementation guidelines for selecting repository sites, and proceeds in three steps. First, the sites are ranked in order of preference for each of twenty technical guidelines based on information in the Draft EAs. The second step combines the individual guideline rankings into postclosure and preclosure guideline group rankings, and, finally, into an overall ranking. In the third step, the sensitivity of the choice of the three preferred sites is examined for a range of guideline weightings
Modeling environmental noise exceedances using non-homogeneous Poisson processes.
Guarnaccia, Claudio; Quartieri, Joseph; Barrios, Juan M; Rodrigues, Eliane R
2014-10-01
In this work a non-homogeneous Poisson model is considered to study noise exposure. The Poisson process, counting the number of times that a sound level surpasses a threshold, is used to estimate the probability that a population is exposed to high levels of noise a certain number of times in a given time interval. The rate function of the Poisson process is assumed to be of a Weibull type. The presented model is applied to community noise data from Messina, Sicily (Italy). Four sets of data are used to estimate the parameters involved in the model. After the estimation and tuning are made, a way of estimating the probability that an environmental noise threshold is exceeded a certain number of times in a given time interval is presented. This estimation can be very useful in the study of noise exposure of a population and also to predict, given the current behavior of the data, the probability of occurrence of high levels of noise in the near future. One of the most important features of the model is that it implicitly takes into account different noise sources, which need to be treated separately when using usual models.
Application of data mining in three-dimensional space time reactor model
International Nuclear Information System (INIS)
Jiang Botao; Zhao Fuyu
2011-01-01
A high-fidelity three-dimensional space time nodal method has been developed to simulate the dynamics of the reactor core for real time simulation. This three-dimensional reactor core mathematical model can be composed of six sub-models, neutron kinetics model, cay heat model, fuel conduction model, thermal hydraulics model, lower plenum model, and core flow distribution model. During simulation of each sub-model some operation data will be produced and lots of valuable, important information reflecting the reactor core operation status could be hidden in, so how to discovery these information becomes the primary mission people concern. Under this background, data mining (DM) is just created and developed to solve this problem, no matter what engineering aspects or business fields. Generally speaking, data mining is a process of finding some useful and interested information from huge data pool. Support Vector Machine (SVM) is a new technique of data mining appeared in recent years, and SVR is a transformed method of SVM which is applied in regression cases. This paper presents only two significant sub-models of three-dimensional reactor core mathematical model, the nodal space time neutron kinetics model and the thermal hydraulics model, based on which the neutron flux and enthalpy distributions of the core are obtained by solving the three-dimensional nodal space time kinetics equations and energy equations for both single and two-phase flows respectively. Moreover, it describes that the three-dimensional reactor core model can also be used to calculate and determine the reactivity effects of the moderator temperature, boron concentration, fuel temperature, coolant void, xenon worth, samarium worth, control element positions (CEAs) and core burnup status. Besides these, the main mathematic theory of SVR is introduced briefly next, on the basis of which SVR is applied to dealing with the data generated by two sample calculation, rod ejection transient and axial
Coding space-time stimulus dynamics in auditory brain maps
Directory of Open Access Journals (Sweden)
Yunyan eWang
2014-04-01
Full Text Available Sensory maps are often distorted representations of the environment, where ethologically-important ranges are magnified. The implication of a biased representation extends beyond increased acuity for having more neurons dedicated to a certain range. Because neurons are functionally interconnected, non-uniform representations influence the processing of high-order features that rely on comparison across areas of the map. Among these features are time-dependent changes of the auditory scene generated by moving objects. How sensory representation affects high order processing can be approached in the map of auditory space of the owl’s midbrain, where locations in the front are over-represented. In this map, neurons are selective not only to location but also to location over time. The tuning to space over time leads to direction selectivity, which is also topographically organized. Across the population, neurons tuned to peripheral space are more selective to sounds moving into the front. The distribution of direction selectivity can be explained by spatial and temporal integration on the non-uniform map of space. Thus, the representation of space can induce biased computation of a second-order stimulus feature. This phenomenon is likely observed in other sensory maps and may be relevant for behavior.
International Nuclear Information System (INIS)
Beckwith, Andrew
2011-01-01
We make explicit an idea by Padmanabhan in DICE 2010, as to finding 'atoms of space-time' permitting a thermodynamic treatment of emergent structure similar to Gibbs treatment of statistical physics. That is, an ensemble of gravitons is used to give an 'atom' of space-time congruent with relic GW. The idea is to reduce the number of independent variables to get a simple emergent space-time structure of entropy. An electric field, based upon the cosmological Schwinger principle, is linked to relic heat flux, with entropy production tied in with candidates as to inflaton potentials. The effective electric field links with the Schwinger 1951s result of an E field leading to pairs of e + e - charges nucleated in space-time volume V · t. Note that in most inflationary models, the assumption is for a magnetic field, not an electric field. An electric field permits a kink-anti-kink construction of an emergent structure, which includes Glinka's recent pioneering approach to a Multiverse. Also an E field allows for an emergent relic particle frequency range between one and 100 GHz. The novel contribution is a relic E field, instead of a B field, in relic space-time 'atom' formation and vacuum nucleation of the same.
Environmental impact assessment system and process: A study on ...
African Journals Online (AJOL)
An efficient system of decision making for sustainable socioeconomic development, with an effective environmental management of the sources of environmental impact and effects of such impacts, need to be put in place in order to implement the government policy of environmental protection and safety at the regional ...
Electron collision data for polyatomic molecules in plasma processing and environmental processes
International Nuclear Information System (INIS)
Tanaka, H.; Kitajima, M.; Cho, H.
2002-01-01
The experimental studies for electron-polyatomic molecule collision are reviewed in connection with the plasma processing and environmental issues. Recent developments in electron scattering experiments on the differential cross section measurements for various processes such as elastic scattering, vibrational, and electronic excitations are summarized from high to low energy regions (1-100 eV). The need for cross-section data for a broad variety of molecular species is also discussed because there is an urgent need to develop an international program to provide the scientific and technological communities with authoritative cross sections for electron-molecule interactions
Radiation processing for environmental-friendly industrial applications
International Nuclear Information System (INIS)
Majali, A.B.; Sabharwal, S.
1997-01-01
The Isotope Division of BARC is equipped with a 2-MeV electron beam (EB) accelerator and a 70,000 Ci Cobalt-60 source: these are mainly utilized to develop technologies of interest to our industries and needs. These include development of polyethylene 'O' rings having dimensional stability above the melting point, radiation degradation of PTFE and enhancement of colour in diamonds. The viscose rayon industry is an important industry in India. This industry faces stiff regulations from environmental pollution control agencies primarily due to the emission of toxic sulphur containing gases, and is in search of ways to reduce the pollution levels associated with the process. The irradiation of cellulose with ionizing radiation results in cellulose activation and reduction in the degree of polymerization (DP). There is a keen interest in utilizing radiation technology in viscose rayon production. We have utilized the 2-MeV electron beam accelerator for reducing the degree of polymerization (DP) of paper pulp. Laboratory scale tests have been carried out to standardize the conditions for processing of pulp having desired degree of polymerization. Our studies show that the use of irradiated pulp can significantly reduce the consumption of CS 2 and be beneficial in reducing pollution associated with the process. An electron-beam irradiation based process has been developed to convert the PTFE waste into a low molecular weight (1x10 4 -1x10 5 ) PTFE powder that can be easily processed into a fine micropowder having industrial demand. Even carbon or metal filled PTFE has been recycled using this process. The conventional method of crosslinking linear polymers by thermo-clinical method leads to the formation of homogeneously crosslinked materials which are extremely slow for industrial applications. Electron beam irradiation has been used to create inhomogeneous crosslinking of a temperature-sensitive polymer- poly(vinyl methyl ether)(PVME) so as to produce a fast response
QCD and the space-time evolution of high energy e+e-, p anti p, and heavy ion collisions
International Nuclear Information System (INIS)
Bjorken, J.D.
1982-06-01
We begin with a discussion of e + e - annihilation into hadrons, a process blessed with well-known elements of simplicity. We consider the opposite extreme of highly relativistic nucleus-nucleus collisions. Here a space-time description has its own elements of simplicity, elements which might conceivably be applicable in hadron-hadron collisions. We also address the more immediate issues of how these ideas relate to present-day observations, especially high-energy hadron-hadron collisions. 40 references
What have we learned from quantum field theory in curved space-time
International Nuclear Information System (INIS)
Fulling, S.A.
1984-01-01
The paper reviews the quantum field theory in curved space-time. Field quantization in gravitational backgrounds; particle creation by black holes; Hawking radiation; quantum field theory in curved space-time; covariant renormalization of the stress-energy-momentum tensor; quantum field theory and quantum gravity; are all discussed. (U.K.)
Exact solutions of space-time fractional EW and modified EW equations
International Nuclear Information System (INIS)
Korkmaz, Alper
2017-01-01
The bright soliton solutions and singular solutions are constructed for the space-time fractional EW and the space-time fractional modified EW (MEW) equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform (FCT) and properties of modified Riemann–Liouville derivative. Then, various ansatz method are implemented to construct the solutions for both equations.
Quantum energy-momentum tensor in space-time with time-like killing vector
International Nuclear Information System (INIS)
Frolov, V.P.; Zel'nikov, A.I.
1987-01-01
An approximate expression for the vacuum and thermal average μν > ren of the stress-energy tensor of conformal massless fields in static Ricci-flat space-times is constructed. The application of this approximation to the space-time of a Schwarzschild black hole and its relation to the Page-Brown-Ottewill approximation are briefly discussed. (orig.)
Explicit Minkowski invariance and differential calculus in the quantum space-time
International Nuclear Information System (INIS)
Xu Zhan.
1991-11-01
In terms of the R-circumflex matrix of the quantum group SL q (2), the explicit Minkowski coordinate commutation relations in the four-dimensional quantum space-time are given, and the invariance of the Minkowski metric is shown. The differential calculus in this quantum space-time is discussed and the corresponding commutation relations are proposed. (author). 17 refs
On the electromagnetic field and the Teukolsky relations in arbitrary space-times
International Nuclear Information System (INIS)
Coll, B.; Ferrando, J.J.
1985-01-01
The relations on the electromagnetic field obtained by Teukolsky for type D, vacuum space-times are studied. The role played by the maxwellian geometry of the basic tetrad is shown. It is proved that Teukolsky relations are, generically, incomplete. Once completed, their generalization to arbitrary space-times is given [fr
Density perturbations due to the inhomogeneous discrete spatial structure of space-time
International Nuclear Information System (INIS)
Wolf, C.
1998-01-01
For the case that space-time permits an inhomogeneous discrete spatial structure due to varying gravitational fields or a foam-like structure of space-time, it is demonstrated that thermodynamic reasoning implies that matter-density perturbations will arise in the early universe
Energy in the Kantowski–Sachs space-time using teleparallel ...
Indian Academy of Sciences (India)
Energy in the Kantowski–Sachs space-time using teleparallel geometry ... Kantowski–Sachs metric; teleparallelism; gravitational energy. Abstract. The purpose of this paper is to examine the energy content of the inflationary Universe described by Kantowski–Sachs space-time in quasilocal approach of teleparallel gravity ...
On scattering of scalar waves in static space-times, particularly Schwarzschild
International Nuclear Information System (INIS)
Beig, R.
1982-01-01
This paper aims at laying foundations of a rigorous scattering theory for scalar waves in a static space-time. The treatment includes geometries which can be thought of as representing the exterior of a black hole. Schwarzschild space-time, as a particular example, is studied in more detail. (Auth.)
Is the shell-focusing singularity of Szekeres space-time visible?
International Nuclear Information System (INIS)
Nolan, Brien C; Debnath, Ujjal
2007-01-01
The visibility of the shell-focusing singularity in Szekeres space-time--which represents quasispherical dust collapse--has been studied on numerous occasions in the context of the cosmic censorship conjecture. The various results derived have assumed that there exist radial null geodesics in the space-time. We show that such geodesics do not exist in general, and so previous results on the visibility of the singularity are not generally valid. More precisely, we show that the existence of a radial geodesic in Szekeres space-time implies that the space-time is axially symmetric, with the geodesic along the polar direction (i.e. along the axis of symmetry). If there is a second nonparallel radial geodesic, then the space-time is spherically symmetric, and so is a Lemaitre-Tolman-Bondi space-time. For the case of the polar geodesic in an axially symmetric Szekeres space-time, we give conditions on the free functions (i.e. initial data) of the space-time which lead to visibility of the singularity along this direction. Likewise, we give a sufficient condition for censorship of the singularity. We point out the complications involved in addressing the question of visibility of the singularity both for nonradial null geodesics in the axially symmetric case and in the general (nonaxially symmetric) case, and suggest a possible approach
Theorizing Space-Time Relations in Education: The Concept of Chronotope
Ritella, Giuseppe; Ligorio, Maria Beatrice; Hakkarainen, Kai
2016-01-01
Due to ongoing cultural-historical transformations, the space-time of learning is radically changing, and theoretical conceptualizations are needed to investigate how such evolving space-time frames can function as a ground for learning. In this article, we argue that the concept of chronotope--from Greek chronos and topos, meaning time and…
International Nuclear Information System (INIS)
Bratberg, D.; Hocker, S.
1994-01-01
The Superfund Act made anyone buying contaminated real estate liable for cleanup costs whether they know about the contamination or contributed to the contamination. In 1986, SARA amended the Superfund Act to include a provision known as the ''Innocent Landowner Defense.'' This provision created a defense for purchasers of contaminated property who did not contribute to the contamination and had no reason to believe that the property was contaminated at the time of the real estate transfer. SARA allows the purchasers and lenders to perform an environmental assessment using ''due diligence'' to identify contamination problems existing at a site. Since the passing of SARA, the environmental site assessment (ESA) process has become commonplace during the transfer of commercial real estate. Since the introduction of SARA, many professional associations, governmental agencies, and proposed federal legislation have struggled to produce a standard for conducting Phase 1 ESAs. Only recently has a standard been produced. Until recently, the domestic oil and gas industry has been relatively unconcerned about the Superfund liability issues. This approach was created by Congress's decision in 1980 to temporarily exempt the majority of oil and gas exploration and production wastes from federal hazardous waste rulings. However, new stringent rules governing oil and gas waste management practices are being considered by federal and state regulatory agencies. Based upon this knowledge and the awakening of public awareness, the use of ESAs for oil and gas transactions is increasing
Briseño, Jessica; Herrera, Graciela S.
2010-05-01
of the variables is used as the prior space-time estimate for the Kalman filter, and the space-time cross-covariance matrix of h-ln K-C as the prior estimate-error covariance-matrix. The synthetic example has a modeling area of 700 x 700 square meters; a triangular mesh model with 702 nodes and 1306 elements is used. A pumping well located in the central part of the study area is considered. For the contaminant transport model, a contaminant source area is present in the western part of the study area. The estimation points for hydraulic conductivity, hydraulic head and contaminant concentrations are located on a submesh of the model mesh (same location for h, ln K and c), composed by 48 nodes spread throughout the study area, with an approximately separation of 90 meters between nodes. The results analysis was done through the mean error, root mean square error, initial and final estimation maps of h, ln K and C at each time, and the initial and final variance maps of h, ln K and C. To obtain model convergence, 3000 realizations of ln K were required using SGSim, and only 1000 with LHC. The results show that for both alternatives, the Kalman filter estimates for h, ln K and C using h and C data, have errors which magnitudes decrease as data is added. HERRERA, G. S.(1998), Cost Effective Groundwater Quality Sampling Network Design. Ph. D. thesis, University of Vermont, Burlington, Vermont, 172 pp. HERRERA G., GUARNACCIA J., PINDER G. Y SIMUTA R.(2001),"Diseño de redes de monitoreo de la calidad del agua subterránea eficientes", Proceedings of the 2001 International Symposium on Environmental Hydraulics, Arizona, U.S.A. HERRERA G. S. and PINDER G.F. (2005), Space-time optimization of groundwater quality sampling networks Water Resour. Res., Vol. 41, No. 12, W12407, 10.1029/2004WR003626.
Space-time neutronic analysis of postulated LOCA's in CANDU reactors
International Nuclear Information System (INIS)
Luxat, J.C.; Frescura, G.M.
1978-01-01
Space-time neutronic behaviour of CANDU reactors is of importance in the analysis and design of reactor safety systems. A methodology has been developed for simulating CANDU space-time neutronics with application to the analysis of postulated LOCA'S. The approach involves the efficient use of a set of computer codes which provide a capability to perform simulations ranging from detailed, accurate 3-dimensional space-time to low-cost survey calculations using point kinetics with some ''effective'' spatial content. A new, space-time kinetics code based upon a modal expansion approach is described. This code provides an inexpensive and relatively accurate scoping tool for detailed 3-dimensional space-time simulations. (author)
Pornography classification: The hidden clues in video space-time.
Moreira, Daniel; Avila, Sandra; Perez, Mauricio; Moraes, Daniel; Testoni, Vanessa; Valle, Eduardo; Goldenstein, Siome; Rocha, Anderson
2016-11-01
As web technologies and social networks become part of the general public's life, the problem of automatically detecting pornography is into every parent's mind - nobody feels completely safe when their children go online. In this paper, we focus on video-pornography classification, a hard problem in which traditional methods often employ still-image techniques - labeling frames individually prior to a global decision. Frame-based approaches, however, ignore significant cogent information brought by motion. Here, we introduce a space-temporal interest point detector and descriptor called Temporal Robust Features (TRoF). TRoF was custom-tailored for efficient (low processing time and memory footprint) and effective (high classification accuracy and low false negative rate) motion description, particularly suited to the task at hand. We aggregate local information extracted by TRoF into a mid-level representation using Fisher Vectors, the state-of-the-art model of Bags of Visual Words (BoVW). We evaluate our original strategy, contrasting it both to commercial pornography detection solutions, and to BoVW solutions based upon other space-temporal features from the scientific literature. The performance is assessed using the Pornography-2k dataset, a new challenging pornographic benchmark, comprising 2000 web videos and 140h of video footage. The dataset is also a contribution of this work and is very assorted, including both professional and amateur content, and it depicts several genres of pornography, from cartoon to live action, with diverse behavior and ethnicity. The best approach, based on a dense application of TRoF, yields a classification error reduction of almost 79% when compared to the best commercial classifier. A sparse description relying on TRoF detector is also noteworthy, for yielding a classification error reduction of over 69%, with 19× less memory footprint than the dense solution, and yet can also be implemented to meet real-time requirements
Natural world physical, brain operational, and mind phenomenal space-time
Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.
2010-06-01
Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.
Hsu, Jong-Ping
2013-01-01
Yang-Mills gravity is a new theory, consistent with experiments, that brings gravity back to the arena of gauge field theory and quantum mechanics in flat space-time. It provides solutions to long-standing difficulties in physics, such as the incompatibility between Einstein's principle of general coordinate invariance and modern schemes for a quantum mechanical description of nature, and Noether's 'Theorem II' which showed that the principle of general coordinate invariance in general relativity leads to the failure of the law of conservation of energy. Yang-Mills gravity in flat space-time a
Sediment processes modelling below hydraulic mining: towards environmental impact mitigation
Chalov, Sergey R.
2010-05-01
Placer mining sites are located in the river valleys so the rivers are influenced by mining operations. Frequently the existing mining sites are characterized by low contribution to the environmental technologies. Therefore hydraulic mining alters stream hydrology and sediment processes and increases water turbidity. The most serious environmental sequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, the placer mining in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens the rivers ecosystems. System of man-made impact mitigation could be done through the exact recognition of the human role in hydrological processes and sediment transport especially. Sediment budget of rivers below mining sites is transformed according to the appearance of the man-made non-point and point sediment sources. Non-point source pollution occurs due to soil erosion on the exposed hillsides and erosion in the channel diversions. Slope wash on the hillsides is absent during summer days without rainfalls and is many times increased during rainfalls and snow melting. The nearness of the sources of material and the rivers leads to the small time of suspended load increase after rainfalls. The average time of material intake from exposed hillsides to the rivers is less than 1 hour. The main reason of the incision in the channel diversion is river-channel straightening. The increase of channel slopes and transport capacity leads to the intensive incision of flow. Point source pollution is performed by effluents both from mining site (mainly brief effluents) and from settling ponds (permanent effluents), groundwater seepage from tailing pits or from quarries. High rate of groundwater runoff is the main reason of the technological ponds overfilling. Intensive filtration from channel to ponds because of
Preparation of porcelain tile granulates by more environmentally sustainable processes
Directory of Open Access Journals (Sweden)
García-Ten, J.
2012-04-01
Full Text Available This study examines the feasibility of manufacturing glazed porcelain tiles with a more environmentally friendly manufacturing process, by reducing water and thermal energy consumption. The process studied in this paper is dry milling in a pendulum mill, with subsequent granulation (in order to obtain a press powder with similar flowability to that of spraydried powders.
The different morphology of the new granulate with respect to the standard spray-dried granulate modifies the microstructure of the green compacts and thus, their behaviour and fired tile properties. In order to obtain porcelain tiles with the required properties (water absorption, mechanical strength,… changes have been made in the raw materials mixture and in the processing variables.
Finally, porcelain tiles measuring 50x50 cm have been manufactured at industrial scale with the new granulate using a conventional firing cycle, obtaining quality levels identical to those provided by the spray-dried granulate. These results open the possibility of preparing porcelain tile body compositions through a manufacturing process alternative to the standard one, more environmentally friendly and with lower costs.
En el presente trabajo se ha estudiado la viabilidad de fabricar gres porcelánico esmaltado utilizando un sistema de preparación de la composición del soporte más respetuoso con el medio ambiente, lo que implica una reducción importante de los consumos de agua y de energía térmica. El proceso que se estudia en el presente trabajo es el consistente en la molienda vía seca en molino pendular y en la posterior granulación (para obtener un polvo de prensas con fluidez similar a la de los polvos atomizados.
La distinta morfología de los nuevos gránulos obtenidos respecto al polvo atomizado actual, modifica la microestuctura en crudo de las piezas y, con ello, el comportamiento y propiedades finales de las baldosas obtenidas. Por ello, ha sido necesario
Reduction of environmental pollution from fuel and target manufacturing processes
International Nuclear Information System (INIS)
Hardt, H.A.
1976-10-01
Nuclear fuel and target manufacturing processes in the 300 Area generate potential environmental pollutants. Efforts to eliminate or reduce their harmful effects have been pursued for many years by the Raw Materials and Raw Materials Technology departments with assistance from other groups, primarily the Project and Health Physics departments. This report documents: methods adopted to reduce pollution; cost of these methods; amount of pollution reduction achieved; and other benefits in cost savings or quality improvement for January 1968 through December 1975. Capital funds totaling $915,000 were spent on these programs. Annual cost savings of $65,000 were realized, and incidental but significant improvements in product quality were obtained. In no case was product quality degraded. Reductions in releases of pollutants are summarized for water pollution, air pollution, and land pollution. In addition to these reductions, intangible benefits were realized including reduced corrosion of structures and equipment; improved working conditions for personnel; energy savings, both on and offplant; improved utilization of natural resources; and reduced impact to environment, both on and offplant
Jat, Prahlad; Serre, Marc L
2016-12-01
Widespread contamination of surface water chloride is an emerging environmental concern. Consequently accurate and cost-effective methods are needed to estimate chloride along all river miles of potentially contaminated watersheds. Here we introduce a Bayesian Maximum Entropy (BME) space/time geostatistical estimation framework that uses river distances, and we compare it with Euclidean BME to estimate surface water chloride from 2005 to 2014 in the Gunpowder-Patapsco, Severn, and Patuxent subbasins in Maryland. River BME improves the cross-validation R 2 by 23.67% over Euclidean BME, and river BME maps are significantly different than Euclidean BME maps, indicating that it is important to use river BME maps to assess water quality impairment. The river BME maps of chloride concentration show wide contamination throughout Baltimore and Columbia-Ellicott cities, the disappearance of a clean buffer separating these two large urban areas, and the emergence of multiple localized pockets of contamination in surrounding areas. The number of impaired river miles increased by 0.55% per year in 2005-2009 and by 1.23% per year in 2011-2014, corresponding to a marked acceleration of the rate of impairment. Our results support the need for control measures and increased monitoring of unassessed river miles. Copyright © 2016. Published by Elsevier Ltd.
Prediction of hourly PM2.5 using a space-time support vector regression model
Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang
2018-05-01
Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.
A bivariate space-time downscaler under space and time misalignment.
Berrocal, Veronica J; Gelfand, Alan E; Holland, David M
2010-12-01
Ozone and particulate matter PM(2.5) are co-pollutants that have long been associated with increased public health risks. Information on concentration levels for both pollutants come from two sources: monitoring sites and output from complex numerical models that produce concentration surfaces over large spatial regions. In this paper, we offer a fully-model based approach for fusing these two sources of information for the pair of co-pollutants which is computationally feasible over large spatial regions and long periods of time. Due to the association between concentration levels of the two environmental contaminants, it is expected that information regarding one will help to improve prediction of the other. Misalignment is an obvious issue since the monitoring networks for the two contaminants only partly intersect and because the collection rate for PM(2.5) is typically less frequent than that for ozone.Extending previous work in Berrocal et al. (2009), we introduce a bivariate downscaler that provides a flexible class of bivariate space-time assimilation models. We discuss computational issues for model fitting and analyze a dataset for ozone and PM(2.5) for the ozone season during year 2002. We show a modest improvement in predictive performance, not surprising in a setting where we can anticipate only a small gain.
International Nuclear Information System (INIS)
Qiu Guohua
2010-01-01
Based on the analysis of shifting direction of radionuclide in production process and the environmental investigation and monitoring, the radioactive environmental impact from a production project of titanium dioxide by chlorination process has been analyzed and assessed. The result of radioactive environmental investigation shows that values of assessment factors are in the range of environmental radioactive background. The radioactive environmental sensitive spot has been delineated. The results of radioactive environmental prediction show that the additional doses to workers and residents are 0.59 mSv/a and 9.28 × 10-4 mSv/a respectively which are less than the annual dose limits of administration. The radioactive environmental impact of the production project of the titanium dioxide by chlorination process will meet the needs of national regulations and standards if radiation protection and environmental protection measures are implemented and radioactive environmental monitoring are strengthened. (author)
Directory of Open Access Journals (Sweden)
Camila Pegoraro
2010-05-01
Full Text Available Proposal: As new demands from sustainable development, environmental requirements arise as another challenge to design process management. It is already known that companies which design buildings are usually exposed to many managerial difficulties. Faced to the environmental demands, these companies require new facilities to align environmental requirements to the business goals and to include them properly in design process. This paper is based on a case study in a construction company, which was developed through interviews and document analysis. It is intended to present a procedure for the project environmental requirements elicitation, organization and analysis, which is based on the requirements engineering (ER concepts. As results it was concluded that the ER concepts are useful for the environmental requirements integration into the design process and that strategic planning should give directions for the effective environmental requirements adherence. Moreover, a procedure for environmental requirements modeling is proposed. Key-words: Design process, Requirements management, Environmental requirements, Construction
We live in the quantum 4-dimensional Minkowski space-time
Hwang, W-Y. Pauchy
2015-01-01
We try to define "our world" by stating that "we live in the quantum 4-dimensional Minkowski space-time with the force-fields gauge group $SU_c(3) \\times SU_L(2) \\times U(1) \\times SU_f(3)$ built-in from the outset". We begin by explaining what "space" and "time" are meaning for us - the 4-dimensional Minkowski space-time, then proceeding to the quantum 4-dimensional Minkowski space-time. In our world, there are fields, or, point-like particles. Particle physics is described by the so-called ...
International Nuclear Information System (INIS)
Koronovskij, A.A.; Rempen, I.S.; Khramov, A.E.
2003-01-01
The set of the unstable periodic space-time states, characterizing the chaotic space-time dynamics of the electron beam with the supercritical current in the Pierce diode is discussed. The Lyapunov indicators of the revealed instable space-time states of the chaotic dynamics of the distributed self-excited system are calculated. It is shown that change in the set of the unstable periodic states in dependence on the Pierce parameter is determined by change in the various orbits stability, which is demonstrated by the values of senior Lyapunov unstable state index [ru
Thermodynamics in Curved Space-Time and Its Application to Holography
Directory of Open Access Journals (Sweden)
Yong Xiao
2015-03-01
Full Text Available The thermodynamic behaviors of a system living in a curved space-time are different from those of a system in a flat space-time. We have investigated the thermodynamics for a system consisting of relativistic massless bosons. We show that a strongly curved metric will produce a large enhancement of the degrees of freedom in the formulae of energy and entropy of the system, as a comparison to the case in a flat space-time. We are mainly concerned with its implications to holography, including the derivations of holographic entropy and holographic screen.
Environmental impacts assessment of industrial estate providing with managerial process
Energy Technology Data Exchange (ETDEWEB)
Nouri, J.; Mahvi, A.H.; Younesian, M.; Nabizadeh, R.; Hashemi, I. [Univ. of Tehran (Iran)
2007-07-01
The existence of balance, coordination and required order among natural elements is one of the key factors in the ecosystem. If this balance is disturbed under certain circumstances, it will damage the structure of living existences and more specifically human beings. Since a half century ago, factors such as important economical and industrial activites, advanced technologies together with growing population and lack of concordance among different couhntries to take optimal advantage of the existing natural resources have distrubed the balance in the ecosystem. As a result, man has caused many problems such as high death tolls and arduous diseases due to the different pollutions in water, air, land, sound, temperature, etc and factors such as erosion, desert, expansion, floods, extinction of plant and animal species, ozone layer destruction, global warming, sea level rise and greenhouse gases increase. Environmental Impact Assessment (EIA) is to recognize and assess systematic consequences of projects and programs on elements like physicochemical, biological, cultural, economical and social phenomena in th environment; in other words it is a way or method to determine the direction of predication and assessment of environmental impacts of activities on the environmental health of the ecosystem affecting human lives. In this study, and environmental impact assessment of the establishment of the Shahzand Industrial Estate in Arak at the central part of Iran was investigated. After collection of data and analysis of the findings, the positive and negative impacts resulting from establishment of the indutrial estate were investigated using the Leopold Matrix and Scaling checklist methods providing the managerial solutions in order to minimize the harmful environmental impacts. The existing environmental situation was investigated and then environmental impact alternatives were determined. This was done in regard to the amount and kind of predicted pollution for the
Environmental risk allocation in the asset rationalization process
International Nuclear Information System (INIS)
Kruhlak, R.M.; Miller, S.R.
1999-01-01
Public concern regarding the state of the environment has resulted in improved enforcement of existing laws related to protection of the environment. This has had an impact on oil and gas transactions. One of the factors which affects the nature of oil and gas acquisitions and dispositions is the risk associated with environmental conditions. For example, the purchaser of an oil or gas asset may acquire threats of prosecution under existing legislation, or may acquire significant costs associated with remediation or clean-up. Vendors may also be affected by environmental risks resulting from divestiture. Risks include increased liability, continuing liability, and a growing uncertainty over the potential extent and nature of environmental problems. These problems mean that lawyers must find adequate methods of allocating risk. The best approach is to place more emphasis on rigorous due diligence, disclosure and contractual accommodation of identifiable environmental problems at the time of the acquisition or disposition. 2 figs
Richland Environmental Restoration Project management action process document
International Nuclear Information System (INIS)
1996-04-01
This document is the prescribed means for providing direct input to the US Department of Energy Headquarters regarding the status, accomplishments, strategy, and issues of the Richland Environmental Restoration Project. The project mission, organizational interfaces, and operational history of the Hanford Site are provided. Remediation strategies are analyzed in detail. The document includes a status of Richland Environmental Restoration project activities and accomplishments, and it presents current cost summaries, schedules, and technical baselines
Richland Environmental Restoration Project management action process document
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-04-01
This document is the prescribed means for providing direct input to the US Department of Energy Headquarters regarding the status, accomplishments, strategy, and issues of the Richland Environmental Restoration Project. The project mission, organizational interfaces, and operational history of the Hanford Site are provided. Remediation strategies are analyzed in detail. The document includes a status of Richland Environmental Restoration project activities and accomplishments, and it presents current cost summaries, schedules, and technical baselines.
Fermi field and Dirac oscillator in a Som-Raychaudhuri space-time
de Montigny, Marc; Zare, Soroush; Hassanabadi, Hassan
2018-05-01
We investigate the relativistic dynamics of a Dirac field in the Som-Raychaudhuri space-time, which is described by a Gödel-type metric and a stationary cylindrical symmetric solution of Einstein field equations for a charged dust distribution in rigid rotation. In order to analyze the effect of various physical parameters of this space-time, we solve the Dirac equation in the Som-Raychaudhuri space-time and obtain the energy levels and eigenfunctions of the Dirac operator by using the Nikiforov-Uvarov method. We also examine the behaviour of the Dirac oscillator in the Som-Raychaudhuri space-time, in particular, the effect of its frequency and the vorticity parameter.
Blind cooperative diversity using distributed space-time coding in block fading channels
Tourki, Kamel; Alouini, Mohamed-Slim; Deneire, Luc
2010-01-01
Mobile users with single antennas can still take advantage of spatial diversity through cooperative space-time encoded transmission. In this paper, we consider a scheme in which a relay chooses to cooperate only if its source-relay channel
Adaptive Multi-Layered Space-Time Block Coded Systems in Wireless Environments
Al-Ghadhban, Samir
2014-01-01
© 2014, Springer Science+Business Media New York. Multi-layered space-time block coded systems (MLSTBC) strike a balance between spatial multiplexing and transmit diversity. In this paper, we analyze the block error rate performance of MLSTBC
Stationary axisymmetric four dimensional space-time endowed with Einstein metric
International Nuclear Information System (INIS)
Hasanuddin; Azwar, A.; Gunara, B. E.
2015-01-01
In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time
International Nuclear Information System (INIS)
Hawking, S.W.; King, A.R.; McCarthy, P.J.
1976-01-01
A new topology is proposed for strongly causal space--times. Unlike the standard manifold topology (which merely characterizes continuity properties), the new topology determines the causal, differential, and conformal structures of space--time. The topology is more appealing, physical, and manageable than the topology previously proposed by Zeeman for Minkowski space. It thus seems that many calculations involving the above structures may be made purely topological
The separating topology for the space-times of general relativity
International Nuclear Information System (INIS)
Lindstroem, U.
1977-08-01
The separating topology, first suggested by Zeeman, is defined for the space-times of general relativity. It is defined by a basis. A number of properties are derived. The topology induces the ordinary Euclidean topology on space-like hypersurfaces as well as on timelike curves and the discrete topology on null-cones. The group of auto-homeomorphisms is found to be the group of smooth conformal diffeomorphisms if the space-time is strongly causal. (author)
Simple model of variation of the signature of a space-time metric
International Nuclear Information System (INIS)
Konstantinov, M.Yu.
2004-01-01
The problem on the changes in the space-time signature metrics is discussed. The simple model, wherein the space-time metrics signature is determined by the nonlinear scalar field, is proposed. It is shown that both classical and quantum description of changes in the metrics signature is possible within the frames of the considered model; the most characteristic peculiarities and variations of the classical and quantum descriptions are also briefly noted [ru
Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology
Griffin, D. E. (Editor); Stanley, D. C. (Editor)
2001-01-01
The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.
Entropy of space-time outcome in a movement speed-accuracy task.
Hsieh, Tsung-Yu; Pacheco, Matheus Maia; Newell, Karl M
2015-12-01
The experiment reported was set-up to investigate the space-time entropy of movement outcome as a function of a range of spatial (10, 20 and 30 cm) and temporal (250-2500 ms) criteria in a discrete aiming task. The variability and information entropy of the movement spatial and temporal errors considered separately increased and decreased on the respective dimension as a function of an increment of movement velocity. However, the joint space-time entropy was lowest when the relative contribution of spatial and temporal task criteria was comparable (i.e., mid-range of space-time constraints), and it increased with a greater trade-off between spatial or temporal task demands, revealing a U-shaped function across space-time task criteria. The traditional speed-accuracy functions of spatial error and temporal error considered independently mapped to this joint space-time U-shaped entropy function. The trade-off in movement tasks with joint space-time criteria is between spatial error and timing error, rather than movement speed and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.
A Note on the Problem of Proper Time in Weyl Space-Time
Avalos, R.; Dahia, F.; Romero, C.
2018-02-01
We discuss the question of whether or not a general Weyl structure is a suitable mathematical model of space-time. This is an issue that has been in debate since Weyl formulated his unified field theory for the first time. We do not present the discussion from the point of view of a particular unification theory, but instead from a more general standpoint, in which the viability of such a structure as a model of space-time is investigated. Our starting point is the well known axiomatic approach to space-time given by Elhers, Pirani and Schild (EPS). In this framework, we carry out an exhaustive analysis of what is required for a consistent definition for proper time and show that such a definition leads to the prediction of the so-called "second clock effect". We take the view that if, based on experience, we were to reject space-time models predicting this effect, this could be incorporated as the last axiom in the EPS approach. Finally, we provide a proof that, in this case, we are led to a Weyl integrable space-time as the most general structure that would be suitable to model space-time.
Some aspects of quantum field theory in non-Minkowskian space-times
International Nuclear Information System (INIS)
Toms, D.J.
1980-01-01
Several aspects of quantum field theory in space-times which are different from Minkowski space-time, either because of the presence of a non-zero curvature or as a consequence of the topology of the manifold, are discussed. The Casimir effect is a quantum field theory in a space-time which has a different topology. A short review of some of its popular derivations is presented with comments. Renormalization of interacting scalar field theories in a flat space-time with a non-Minkowskian topology is considered. The presence of a non-trivial topology can lead to additional non-local divergent terms in the Schwinger-Dyson equations for a general scalar field theory; however, the theory may be renormalized with the same choice of counterterms as in Minkowski space-time. Propagators can develop poles corresponding to the generation of a topological mass. Zeta-function regularization is shown to fit naturally into the functional approach to the effective potential. This formalism is used to calculate the effective potential for some scalar field theories in non-Minkowskian space-times. Topological mass generation is discussed, and it is shown how radiative corrections can lead to spontaneous symmetry breaking. One- and two-loop contributions to the vacuum energy density are obtained for both massless and massive fields. In the massive case the role of renormalization in removing non-local divergences is discussed
Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad
2017-11-01
Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.
Visceral leishmaniasis in the state of Sao Paulo, Brazil: spatial and space-time analysis.
Cardim, Marisa Furtado Mozini; Guirado, Marluci Monteiro; Dibo, Margareth Regina; Chiaravalloti, Francisco
2016-08-11
To perform both space and space-time evaluations of visceral leishmaniasis in humans in the state of Sao Paulo, Brazil. The population considered in the study comprised autochthonous cases of visceral leishmaniasis and deaths resulting from it in Sao Paulo, between 1999 and 2013. The analysis considered the western region of the state as its studied area. Thematic maps were created to show visceral leishmaniasis dissemination in humans in the municipality. Spatial analysis tools Kernel and Kernel ratio were used to respectively obtain the distribution of cases and deaths and the distribution of incidence and mortality. Scan statistics were used in order to identify spatial and space-time clusters of cases and deaths. The visceral leishmaniasis cases in humans, during the studied period, were observed to occur in the western portion of Sao Paulo, and their territorial extension mainly followed the eastbound course of the Marechal Rondon highway. The incidences were characterized as two sequences of concentric ellipses of decreasing intensities. The first and more intense one was found to have its epicenter in the municipality of Castilho (where the Marechal Rondon highway crosses the border of the state of Mato Grosso do Sul) and the second one in Bauru. Mortality was found to have a similar behavior to incidence. The spatial and space-time clusters of cases were observed to coincide with the two areas of highest incidence. Both the space-time clusters identified, even without coinciding in time, were started three years after the human cases were detected and had the same duration, that is, six years. The expansion of visceral leishmaniasis in Sao Paulo has been taking place in an eastbound direction, focusing on the role of highways, especially Marechal Rondon, in this process. The space-time analysis detected the disease occurred in cycles, in different spaces and time periods. These meetings, if considered, may contribute to the adoption of actions that aim to
42 CFR 137.294 - What is the typical IHS environmental review process for construction projects?
2010-10-01
... SELF-GOVERNANCE Construction Nepa Process § 137.294 What is the typical IHS environmental review... impact on the environment, and therefore do not require environmental impact statements (EIS). Under current IHS procedures, an environmental review is performed on all construction projects. During the IHS...
Skanavis, Constantina; Sakellari, Maria
2012-01-01
United Nations mandates recognize the need to promote the full participation of women in environmental decision-making processes on the basis of gender equality. But, there remains a profound lack of effective women's participation in some sectors of environmental decision-making. Free-choice environmental learning offers an effective educational…
Richland Environmental Restoration Project management action process document
International Nuclear Information System (INIS)
1996-04-01
A critical mission of the U.S. Department of Energy (DOE) is the planning, implementation, and completion of environmental restoration programs at DOE facilities. An integral part of this mission involves the safe and cost-effective environmental restoration of the Hanford Site. For over 40 years the Hanford Site supported United States national defense programs, largely through the production of nuclear materials. One legacy of historical Hanford Site operations is a significant waste inventory of radioactive and/or regulated chemical materials. Releases of these materials have, in some cases, contaminated the Hanford Site environment. The DOE Richland Operations Office (RL) is responsible for protecting human health and the environment from potential Hanford Site environmental hazards by identifying, assessing, and mitigating risks posed by contaminated sites
Richland Environmental Restoration Project management action process document
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-04-01
A critical mission of the U.S. Department of Energy (DOE) is the planning, implementation, and completion of environmental restoration programs at DOE facilities. An integral part of this mission involves the safe and cost-effective environmental restoration of the Hanford Site. For over 40 years the Hanford Site supported United States national defense programs, largely through the production of nuclear materials. One legacy of historical Hanford Site operations is a significant waste inventory of radioactive and/or regulated chemical materials. Releases of these materials have, in some cases, contaminated the Hanford Site environment. The DOE Richland Operations Office (RL) is responsible for protecting human health and the environment from potential Hanford Site environmental hazards by identifying, assessing, and mitigating risks posed by contaminated sites.
Environmental accounting in Spain: structured review process and theoretical analysis
Directory of Open Access Journals (Sweden)
Fabricia Silva da Rosa
2012-12-01
Full Text Available One way to perceive and understand the level of development of environmental accounting is to study the main features of its publications. Thus, the purpose of this paper is to identify and analyze the profile of Spanish publications in accounting journals. To this end, 15 journals were selected and analyzed 74 articles in the period 2001 to 2010. The results show that the peak years of publication are 2001, 2003 and 2006, and authors with more articles in the sample are Moneva Abadía, Larrinaga González, Fernández Cuesta and Archel Domench. In terms of methodology, the works of review, case studies and content analysis, addressing standardization issues, fundamentals of environmental accounting, environmental sustainability indicators and reporting.
New technology in everyday life - social processes and environmental impact
DEFF Research Database (Denmark)
Røpke, Inge
2001-01-01
aspect both of changes in everyday life and of the environmental impact of everyday-life activities. Technological change is often seen as an important part of the solutions to environmental problems, however, when technological change is seen from the perspective of everyday life, this image becomes...... more complex. In this paper technological changes are explored from the perspective of consumption and everyday life, and it is argued that environmental impacts arise through the interplay of technology, consumption and everyday life. Firstly, because technological renewals form integral parts...... influence the environment in the long run. The paper points to the need for further studies of the long term interplay between new technologies, everyday life and the environment....
Alternatives and implication in process of environmental impact assessment
Directory of Open Access Journals (Sweden)
Tauš Peter
2001-12-01
Full Text Available EIA is an interactive, rule-based expert system for the environmental impact assessment. It is designed for a screening level assessment of development projects at a pre-feasibility stage. Typical problems for the evaluation include: resettlement; watershed degradation; encroachment upon precious ecosystems; encroachment on historical/cultural values; watershed erosion; reservoir siltation; impairment of navigation; changes in groundwater hydrology, waterlogging; seepage and evaporation losses; migration of valuable fish species; inundation of mineral resources/forests; other inundation losses and adverse effects. It is important to prevent environmental pollution when carrying out large-scale development projects, such as artificial change of landscapes and building of certain structures that may cause a tremendous impact on the environment. In accordance with Cities Environmental Impact Assessment Departments it is necessary to provide project organisers with a necessary advice and instructions concerning the environmental impact assessment a survey to predict and evaluate environmental impact to be conducted by project organisers. Prior to offering the advice and instructions, cities need to hear the opinions of residents of the areas concerned, mayors of related municipalities and other opinion leaders, including specialists, to reflect their views in the environmental preservation. The first aspect in any quality assessment is to determine the representativeness of data both in terms of physical siting and data collected. It must be recognised the environment is a dynamic fluid; quality therefore varies over space and time. There will be locations in any community that experience poorer quality than recorded at a monitoring station. Likewise other sites will have a better quality. Most communities have only a single monitoring site. Therefore, the air quality monitors are sited to provide a representative estimate of the community exposure
Gonzalez-Mestres, Luis
2014-04-01
Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space-time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collaboration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95), while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space-time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2) spinor and the Lundmark-Lemaître-Hubble (LLH) expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamental geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time. Taking into account the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic limit for the product H t in the long-term evolution of our Universe up to possible small corrections. In the presence of a spinorial space-time geometry, no ad hoc combination of dark matter and dark energy would in any case be needed to get an acceptable value of H and an evolution of the Universe compatible with observation. The use of a spinorial space-time naturally leads to unconventional properties for the space curvature term in Friedmann-like equations. It therefore suggests a major modification of the standard
Statistical data processing with automatic system for environmental radiation monitoring
International Nuclear Information System (INIS)
Zarkh, V.G.; Ostroglyadov, S.V.
1986-01-01
Practice of statistical data processing for radiation monitoring is exemplified, and some results obtained are presented. Experience in practical application of mathematical statistics methods for radiation monitoring data processing allowed to develop a concrete algorithm of statistical processing realized in M-6000 minicomputer. The suggested algorithm by its content is divided into 3 parts: parametrical data processing and hypotheses test, pair and multiple correlation analysis. Statistical processing programms are in a dialogue operation. The above algorithm was used to process observed data over radioactive waste disposal control region. Results of surface waters monitoring processing are presented
Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel
Directory of Open Access Journals (Sweden)
M. Rezaei
2016-03-01
Full Text Available In this paper, a cooperative algorithm to improve the orthogonal space-timefrequency block codes (OSTFBC in frequency selective channels for 2*1, 2*2, 4*1, 4*2 MIMO-OFDM systems, is presented. The algorithm of three node, a source node, a relay node and a destination node is formed, and is implemented in two stages. During the first stage, the destination and the relay antennas receive the symbols sent by the source antennas. The destination node and the relay node obtain the decision variables employing time-space-frequency decoding process by the received signals. During the second stage, the relay node transmits decision variables to the destination node. Due to the increasing diversity in the proposed algorithm, decision variables in the destination node are increased to improve system performance. The bit error rate of the proposed algorithm at high SNR is estimated by considering the BPSK modulation. The simulation results show that cooperative orthogonal space-time-frequency block coding, improves system performance and reduces the BER in a frequency selective channel.
Deep-inelastic final states in a space-time description of shower development and hadronization
International Nuclear Information System (INIS)
Ellis, J.
1996-06-01
We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic ep collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, finding encouraging results, and discuss the background to large-rapidity-gap events. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA and AA collisions. (orig.)
Optimal and Scalable Caching for 5G Using Reinforcement Learning of Space-Time Popularities
Sadeghi, Alireza; Sheikholeslami, Fatemeh; Giannakis, Georgios B.
2018-02-01
Small basestations (SBs) equipped with caching units have potential to handle the unprecedented demand growth in heterogeneous networks. Through low-rate, backhaul connections with the backbone, SBs can prefetch popular files during off-peak traffic hours, and service them to the edge at peak periods. To intelligently prefetch, each SB must learn what and when to cache, while taking into account SB memory limitations, the massive number of available contents, the unknown popularity profiles, as well as the space-time popularity dynamics of user file requests. In this work, local and global Markov processes model user requests, and a reinforcement learning (RL) framework is put forth for finding the optimal caching policy when the transition probabilities involved are unknown. Joint consideration of global and local popularity demands along with cache-refreshing costs allow for a simple, yet practical asynchronous caching approach. The novel RL-based caching relies on a Q-learning algorithm to implement the optimal policy in an online fashion, thus enabling the cache control unit at the SB to learn, track, and possibly adapt to the underlying dynamics. To endow the algorithm with scalability, a linear function approximation of the proposed Q-learning scheme is introduced, offering faster convergence as well as reduced complexity and memory requirements. Numerical tests corroborate the merits of the proposed approach in various realistic settings.
Space-time evolution of whistler mode wave growth in the magnetosphere
International Nuclear Information System (INIS)
Carlson, C.R.; Helliwell, R.A.; Inan, U.S.
1990-01-01
A new model is developed to simulate the space-time evolution of a propagating coherent whistler mode wave pulse in the magnetosphere. The model is applied to the case of single frequency (2-6 kHz) wave pulses injected into the magnetosphere near L ≅ 4, using the VLF transmitting facility at Siple Station, Antarctica. The mechanism for growth is cyclotron resonance between the circularly polarized waves and the gyrating energetic electrons of the radiation belts. Application of this model reproduces observed exponential wave growth up to a saturated level. Additionally, the model predicts the observed initial linear increase in the output frequency versus time. This is the first time these features have been reproduced using applied wave intensities small enough to be consistent with satellite measurements. The center velocities of the electrons entering the wave pulse are selected in a way which maximizes the growth rate. The results show the importance of the transient aspects in the wave growth process. The growth established as the wave propagates toward the geomagnetic equator results in a spatially advancing wave phase structure due mainly to the geomagnetic inhomogeneity. Through the feedback of this radiation upon other electrons, conditions are established which result in a linearly increasing output frequency with time
Super-Orthogonal Space-Time Turbo Transmit Diversity for CDMA
Directory of Open Access Journals (Sweden)
Pieter G. W. van Rooyen
2005-05-01
Full Text Available Studies have shown that transmit and receive diversity employing a combination of multiple transmit-receive antennas (given ideal channel state information (CSI and independent fading between antenna pairs will potentially yield maximum achievable system capacity. In this paper, the concept of a layered super-orthogonal turbo transmit diversity (SOTTD for downlink direct-sequence code-division multiple-access (CDMA systems is explored. This open-loop transmit diversity technique improves the downlink performance by using a small number of antenna elements at the base station and a single antenna at the handset. In the proposed technique, low-rate super-orthogonal code-spread CDMA is married with code-division transmit diversity (CDTD. At the mobile receiver, space-time (ST RAKE CDTD processing is combined with iterative turbo code-spread decoding to yield large ST gains. The performance of the SOTTD system is compared with single- and multiantenna turbo-coded (TC CDTD systems evaluated over a frequency-selective Rayleigh fading channel. The evaluation is done both by means of analysis and computer simulations. The performance results illustrate the superior performance of SOTTD compared to TC CDTD systems over practically the complete useful capacity range of CDMA. It is shown that the performance degradation characteristic of TC CDTD at low system loads (due to the inherent TC error floor is alleviated by the SOTTD system.
Deep-inelastic final states in a space-time description of shower development and hadronization
International Nuclear Information System (INIS)
Ellis, J.; Geiger, K.; Kowalski, H.
1996-01-01
We extend a quantum kinetic approach to the description of hadronic showers in space, time, and momentum space to deep-inelastic ep collisions, with particular reference to experiments at DESY HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of color-singlet prehadronic clusters and their decays into hadrons. The time evolution of the spacelike initial-state shower and the timelike secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a nonperturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse, and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, finding encouraging results, and discuss the background to large-rapidity-gap events. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA, and AA collisions. copyright 1996 The American Physical Society
Environmental life cycle assessments for water treatment processes ...
African Journals Online (AJOL)
The objective of this study was to generate information on the environmental profile of the life cycle of water, including treatment, distribution and collection and disposal (including recycling), in an urban context. As a case study the eThekwini Municipality (with its main city Durban) in South Africa was used. Another aim of ...
Transformative Processes in Environmental Education: A Case Study
African Journals Online (AJOL)
social–ecological system, and on an environmental-education initiative that aimed to ... Helen Fox, Tally Palmer, Unilever Centre of Water Quality, ... Two methodologies supported insights shared in this paper: a contextual profile and action ..... lead and initiate action, as well as share decision-making, through an open ...
39 CFR 775.9 - Environmental evaluation process.
2010-07-01
... related to it. The assessment may be included in the finding if it is short, in which case the discussion in the assessment need not be repeated in the finding. The FONSI may be a mitigated FONSI in which... environmental effect, or (iii) The action is a type that is not a major federal action with a significant impact...
A Multidisciplinary Process Curriculum in Environmental Education, Grade 2.
Edmonds School District 15, Lynnwood, WA.
This second grade curriculum guide is based on a multidisciplinary approach to environmental education. The guide includes activities, guidelines for field trip planning, and a resource section. The guide deals with the subjects of plants, soil, and litter. Each subject section includes activities based on the physical characteristics, man's use,…
Efforts are currently underway at the USEPA to develop information technology applications to improve the environmental performance of the chemical process industry. These efforts include the use of genetic algorithms to optimize different process options for minimal environmenta...
Depping, Verena; Grunow, Martin; Middelaar, van Corina; Dumpler, Joseph
2017-01-01
Environmental-impact reduction potential is great early in new product development. To exploit this potential, this study evaluates novel combinations of existent processing technologies. Process engineering is combined with an environmental product assessment along the supply chain. In the dairy
Employee participation and cleaner technology: learning processes in environmental teams
DEFF Research Database (Denmark)
Remmen, Arne; Lorentzen, Børge
2000-01-01
The approach to pollution prevention in Danish industries in the late-1980s and in the beginning of the 1990s met criticism, because the cleaner technology projects focused too narrowly on technical solutions implemented by experts. The objective of the project “Employee Participation in the Impl...... to improve the firms' environmental activities (e.g. setting up environmental policies, targets and action plans, implementing new procedures and technologies).......The approach to pollution prevention in Danish industries in the late-1980s and in the beginning of the 1990s met criticism, because the cleaner technology projects focused too narrowly on technical solutions implemented by experts. The objective of the project “Employee Participation...... in the Implementation of Cleaner Technology” was to develop a more active role for employees in the environmental activities of companies. Based on practical experiments in five Danish firms within different industrial sectors, the project concluded that employee participation can have a strong effect on changing...
McQuoid, Julia; Jowsey, Tanisha; Talaulikar, Girish
2017-06-01
Stable routines are key to successful illness self-management for the growing number of people living with chronic illness around the world. Yet, the influence of chronically ill individuals' everyday contexts in supporting routines is poorly understood. This paper takes a space-time geographical approach to explore the everyday space-time contexts and routines of individuals with chronic kidney disease (CKD). We ask: what is the relationship between renal patients' space-time contexts and their ability to establish and maintain stable routines, and, what role does health service access play in this regard? We draw from a qualitative case study of 26 individuals with CKD in Australia. Data comprised self-reported two day participant diaries and semi-structured interviews. Thematic analysis of interview transcripts was guided by an inductive-deductive approach. We examined the embeddedness of routines within the space-time contexts of participants' everyday lives. We found that participants' everyday space-time contexts were highly complex, especially for those receiving dialysis and/or employed, making routines difficult to establish and vulnerable to disruption. Health service access helped shape participants' everyday space-time contexts, meaning that incidences of unpredictability in accessing health services set-off 'ripple effects' within participants' space-time contexts, disrupting routines and making everyday life negotiation more difficult. The ability to absorb ripple effects from unpredictable health services without disrupting routines varied by space-time context. Implications of these findings for the deployment of the concept of routine in health research, the framing of patient success in self-managing illness, and health services design are discussed. In conclusion, efforts to understand and support individuals in establishing and maintaining routines that support health and wellbeing can benefit from approaches that contextualise and de
Differential Space-Time Block Code Modulation for DS-CDMA Systems
Directory of Open Access Journals (Sweden)
Liu Jianhua
2002-01-01
Full Text Available A differential space-time block code (DSTBC modulation scheme is used to improve the performance of DS-CDMA systems in fast time-dispersive fading channels. The resulting scheme is referred to as the differential space-time block code modulation for DS-CDMA (DSTBC-CDMA systems. The new modulation and demodulation schemes are especially studied for the down-link transmission of DS-CDMA systems. We present three demodulation schemes, referred to as the differential space-time block code Rake (D-Rake receiver, differential space-time block code deterministic (D-Det receiver, and differential space-time block code deterministic de-prefix (D-Det-DP receiver, respectively. The D-Det receiver exploits the known information of the spreading sequences and their delayed paths deterministically besides the Rake type combination; consequently, it can outperform the D-Rake receiver, which employs the Rake type combination only. The D-Det-DP receiver avoids the effect of intersymbol interference and hence can offer better performance than the D-Det receiver.
Is space-time symmetry a suitable generalization of parity-time symmetry?
International Nuclear Information System (INIS)
Amore, Paolo; Fernández, Francisco M.; Garcia, Javier
2014-01-01
We discuss space-time symmetric Hamiltonian operators of the form H=H 0 +igH ′ , where H 0 is Hermitian and g real. H 0 is invariant under the unitary operations of a point group G while H ′ is invariant under transformation by elements of a subgroup G ′ of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 0
Mechanics and Newton-Cartan-like gravity on the Newton-Hooke space-time
International Nuclear Information System (INIS)
Tian Yu; Guo Hanying; Huang Chaoguang; Xu Zhan; Zhou Bin
2005-01-01
We focus on the dynamical aspects on Newton-Hooke space-time NH + mainly from the viewpoint of geometric contraction of the de Sitter spacetime with Beltrami metric. (The term spacetime is used to denote a space with non-degenerate metric, while the term space-time is used to denote a space with degenerate metric.) We first discuss the Newton-Hooke classical mechanics, especially the continuous medium mechanics, in this framework. Then, we establish a consistent theory of gravity on the Newton-Hooke space-time as a kind of Newton-Cartan-like theory, parallel to the Newton's gravity in the Galilei space-time. Finally, we give the Newton-Hooke invariant Schroedinger equation from the geometric contraction, where we can relate the conservative probability in some sense to the mass density in the Newton-Hooke continuous medium mechanics. Similar consideration may apply to the Newton-Hooke space-time NH - contracted from anti-de Sitter spacetime
Causal fermion systems: A quantum space-time emerging from an action principle
Energy Technology Data Exchange (ETDEWEB)
Finster, Felix [Mathematics Department, University of Regensburg (Germany)
2013-07-01
Causal fermion systems provide a general framework for the formulation of relativistic quantum theory. A particular feature is that space-time is a secondary object which emerges by minimizing an action. The aim of the talk is to give a simple introduction, with an emphasis on conceptual issues. We begin with Dirac spinors in Minkowski space and explain how to formulate the system as a causal fermion system. As an example in curved space-time, we then consider spinors on a globally hyperbolic space-time. An example on a space-time lattice illustrates that causal fermion systems also allow for the description of discrete space-times. These examples lead us to the general definition of causal fermion systems. The causal action principle is introduced. We outline how for a given minimizer, one has notions of causality, connection and curvature, which generalize the classical notions and give rise to a proposal for a ''quantum geometry''. In the last part of the talk, we outline how quantum field theory can be described in this framework and discuss the relation to other approaches.
Jia, Shouqing; La, Dongsheng; Ma, Xuelian
2018-04-01
The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.
Middleton, Beth Rose
2013-11-01
Protection of culturally important indigenous landscapes has become an increasingly important component of environmental management processes, for both companies and individuals striving to comply with environmental regulations, and for indigenous groups seeking stronger laws to support site protection and cultural/human rights. Given that indigenous stewardship of culturally important sites, species, and practices continues to be threatened or prohibited on lands out of indigenous ownership, this paper examines whether or not indigenous people can meaningfully apply mainstream environmental management laws and processes to achieve protection of traditional sites and associated stewardship activities. While environmental laws can provide a "back door" to protect traditional sites and practices, they are not made for this purpose, and, as such, require specific amendments to become more useful for indigenous practitioners. Acknowledging thoughtful critiques of the cultural incommensurability of environmental law with indigenous environmental stewardship of sacred sites, I interrogate the ability of four specific environmental laws and processes-the Uniform Conservation Easement Act; the National Environmental Policy Act and the California Environmental Quality Act; the Pacific Stewardship Council land divestiture process; and Senate Bill 18 (CA-2004)-to protect culturally important landscapes and practices. I offer suggestions for improving these laws and processes to make them more applicable to indigenous stewardship of traditional landscapes.
Researching on Hawking Effect in a Kerr Space Time via Open Quantum System Approach
International Nuclear Information System (INIS)
Liu, Wen-Biao; Liu, Xian-Ming
2014-01-01
It has been proposed that Hawking radiation from a Schwarzschild or a de Sitter spacetime can be understood as the manifestation of thermalization phenomena in the framework of an open quantum system. Through examining the time evolution of a detector interacting with vacuum massless scalar fields, it is found that the detector would spontaneously excite with a probability the same as the thermal radiation at Hawking temperature. Following the proposals, the Hawking effect in a Kerr space time is investigated in the framework of an open quantum systems. It is shown that Hawking effect of the Kerr space time can also be understood as the the manifestation of thermalization phenomena via open quantum system approach. Furthermore, it is found that near horizon local conformal symmetry plays the key role in the quantum effect of the Kerr space time
Separation of massive field equation of arbitrary spin in Robertson-Walker space-time
International Nuclear Information System (INIS)
Zecca, A.
2006-01-01
The massive spin-(3/2) field equation is explicitly integrated in the Robertson-Walker space-time by the Newman Penrose formalism. The solution is obtained by extending a separation procedure previously used to solve the spin-1 equation. The separated time dependence results in two coupled equations depending on the cosmological background evolution. The separated angular equations are explicitly integrated and the eigenvalues determined. The separated radial equations are integrated in the flat space-time case. The separation method of solution is then generalized, by induction, to prove the main result, that is the separability of the massive field equations of arbitrary spin in the Robertson-Walker space-time
Turbo coding, turbo equalisation and space-time coding for transmission over fading channels
Hanzo, L; Yeap, B
2002-01-01
Against the backdrop of the emerging 3G wireless personal communications standards and broadband access network standard proposals, this volume covers a range of coding and transmission aspects for transmission over fading wireless channels. It presents the most important classic channel coding issues and also the exciting advances of the last decade, such as turbo coding, turbo equalisation and space-time coding. It endeavours to be the first book with explicit emphasis on channel coding for transmission over wireless channels. Divided into 4 parts: Part 1 - explains the necessary background for novices. It aims to be both an easy reading text book and a deep research monograph. Part 2 - provides detailed coverage of turbo conventional and turbo block coding considering the known decoding algorithms and their performance over Gaussian as well as narrowband and wideband fading channels. Part 3 - comprehensively discusses both space-time block and space-time trellis coding for the first time in literature. Par...
Structure of the Einstein tensor for class-1 embedded space time
Energy Technology Data Exchange (ETDEWEB)
Krause, J [Universidad Central de Venezuela, Caracas
1976-04-11
Continuing previous work, some features of the flat embedding theory of class-1 curved space-time are further discussed. In the two-metric formalism provided by the embedding approach the Gauss tensor obtains as the flat-covariant gradient of a fundamental vector potential. The Einstein tensor is then examined in terms of the Gauss tensor. It is proved that the Einstein tensor is divergence free in flat space-time, i.e. a true Lorentz-covariant conservation law for the Einstein tensor is shown to hold. The form of the Einstein tensor in flat space-time also appears as a canonical energy-momentum tensor of the vector potential. The corresponding Lagrangian density, however, does not provide us with a set of field equations for the fundamental vector potential; indeed, the Euler-Lagrange ''equations'' collapse to a useless identity, while the Lagrangian density has the form of a flat divergence.
Classical field theory in the space of reference frames. [Space-time manifold, action principle
Energy Technology Data Exchange (ETDEWEB)
Toller, M [Dipartimento di Matematica e Fisica, Libera Universita, Trento (Italy)
1978-03-11
The formalism of classical field theory is generalized by replacing the space-time manifold M by the ten-dimensional manifold S of all the local reference frames. The geometry of the manifold S is determined by ten vector fields corresponding to ten operationally defined infinitesimal transformations of the reference frames. The action principle is written in terms of a differential 4-form in the space S (the Lagrangian form). Densities and currents are represented by differential 3-forms in S. The field equations and the connection between symmetries and conservation laws (Noether's theorem) are derived from the action principle. Einstein's theory of gravitation and Maxwell's theory of electromagnetism are reformulated in this language. The general formalism can also be used to formulate theories in which charge, energy and momentum cannot be localized in space-time and even theories in which a space-time manifold cannot be defined exactly in any useful way.
The space-time cube revisited it potential to visualize mobile data
DEFF Research Database (Denmark)
Kveladze, Irma; Kraak, Menno-Jan
2010-01-01
and analyse the complex movement patterns (COST - MOVE, 2009; Keim et al., 2008). This results in the development of new visual analytical and exploratory tools, while existing solutions receive new attention (Andrienko et al., 2007). Among the last the Space Time Cube (STC) can be grouped. It has the ability...... to provide information about spatial and temporal relationships. The original idea of STC was introduced by Hägerstrand (1970). It represents an elegant framework to study spatio-temporal characteristics of human activity (Kraak and Koussoulakou, 2005). The vertical dimension of cube represents time (t......), while horizontal axes represent space (x, y). Basic elements represented in the cube are the Space-time Path (STP), Stations, and the Space Time Prism (STP). The STP represents the continuous activities of movements undertaken in space and time displayed as trajectory. It has been studied...
Quantum corrections in thermal states of fermions on anti-de Sitter space-time
Ambruş, Victor E.; Winstanley, Elizabeth
2017-12-01
We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.
Space-Time Foam in 2D and the Sum Over Topologies
International Nuclear Information System (INIS)
Loll, R.; Westra, W.
2003-01-01
It is well-known that the sum over topologies in quantum gravity is ill-defined, due to a super-exponential growth of the number of geometries as a function of the space-time volume, leading to a badly divergent gravitational path integral. Not even in dimension 2, where a non-perturbative quantum gravity theory can be constructed explicitly from a (regularized) path integral, has this problem found a satisfactory solution. In the present work, we extend a previous 2d Lorentzian path integral, regulated in terms of Lorentzian random triangulations, to include space-times with an arbitrary number of handles. We show that after the imposition of physically motivated causality constraints, the combined sum over geometries and topologies is well-defined and possesses a continuum limit which yields a concrete model of space-time foam in two dimensions. (author)
International Nuclear Information System (INIS)
Dubois, Daniel M.
2000-01-01
This paper is a continuation of our preceding paper dealing with computational derivation of the Klein-Gordon quantum relativist equation and the Schroedinger quantum equation with forward and backward space-time shifts. The first part introduces forward and backward derivatives for discrete and continuous systems. Generalized complex discrete and continuous derivatives are deduced. The second part deduces the Klein-Gordon equation from the space-time complex continuous derivatives. These derivatives take into account forward-backward space-time shifts related to an internal phase velocity u. The internal group velocity v is related to the speed of light u.v=c 2 and to the external group and phase velocities u.v=v g .v p . Without time shift, the Schroedinger equation is deduced, with a supplementary term, which could represent a reference potential. The third part deduces the Quantum Relativist Klein-Gordon equation for a particle in an electromagnetic field
Efficient coding schemes with power allocation using space-time-frequency spreading
Institute of Scientific and Technical Information of China (English)
Jiang Haining; Luo Hanwen; Tian Jifeng; Song Wentao; Liu Xingzhao
2006-01-01
An efficient space-time-frequency (STF) coding strategy for multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is presented for high bit rate data transmission over frequency selective fading channels. The proposed scheme is a new approach to space-time-frequency coded OFDM (COFDM) that combines OFDM with space-time coding, linear precoding and adaptive power allocation to provide higher quality of transmission in terms of the bit error rate performance and power efficiency. In addition to exploiting the maximum diversity gain in frequency, time and space, the proposed scheme enjoys high coding advantages and low-complexity decoding. The significant performance improvement of our design is confirmed by corroborating numerical simulations.
Quantum field theory of the universe in the Kantowski-Sachs space-time
International Nuclear Information System (INIS)
Shen, Y.; Tan, Z.
1996-01-01
In this paper, the quantum field theory of the universe in the Kantowski-Sachs space-time is studied. An analogue of proceedings in quantum field theory is applied in curved space-time to the Kantowski-Sachs space-time, obtaining the wave function of the universe satisfied the Wheeler-DeWitt equation. Regarding the wave function as a universe field in the minisuperspace, the authors can not only overcome the difficulty of the probabilistic interpretation in quantum cosmology, but also come to the conclusion that there is multiple production of universes. The average number of the produced universes from nothing is calculated. The distribution of created universe is given. It is the Planckian distribution
From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives
Finster, Felix
This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.
A higher order space-time Galerkin scheme for time domain integral equations
Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam
2014-01-01
Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.
Euclidean scalar Green function in a higher dimensional global monopole space-time
International Nuclear Information System (INIS)
Bezerra de Mello, E.R.
2002-01-01
We construct the explicit Euclidean scalar Green function associated with a massless field in a higher dimensional global monopole space-time, i.e., a (1+d)-space-time with d≥3 which presents a solid angle deficit. Our result is expressed in terms of an infinite sum of products of Legendre functions with Gegenbauer polynomials. Although this Green function cannot be expressed in a closed form, for the specific case where the solid angle deficit is very small, it is possible to develop the sum and obtain the Green function in a more workable expression. Having this expression it is possible to calculate the vacuum expectation value of some relevant operators. As an application of this formalism, we calculate the renormalized vacuum expectation value of the square of the scalar field, 2 (x)> Ren , and the energy-momentum tensor, μν (x)> Ren , for the global monopole space-time with spatial dimensions d=4 and d=5
Mathematical Formalism for an Experimental Test of Space-Time Anisotropy
International Nuclear Information System (INIS)
Voicu-Brinzei, Nicoleta; Siparov, Sergey
2010-01-01
Some specific astrophysical data collected during the last decade suggest the need of a modification of the expression for the Einstein-Hilbert action, and several attempts are known in this respect. The modification suggested in this paper stems from a possible anisotropy of space-time--which leads to a dependence on directional variables of the simplest scalar in the least action principle. In order to provide a testable support to this idea, the optic-metrical parametric resonance is regarded - an experiment on a galactic scale, based on the interaction between the electromagnetic radiation of cosmic masers and periodical gravitational waves emitted by close double systems or pulsars. Since the effect depends on the space-time metric, a possible anisotropy could be revealed through observations. We prove that if space-time is anisotropic, then the orientation of the astrophysical systems suitable for observations would show it.
Adaptive Space-Time, Processing for High Performance, Robust Military Wireless Communications
National Research Council Canada - National Science Library
Haimovich, Alexander
2000-01-01
...: (I) performance of adaptive arrays for wireless communications over fading channels in the presence of cochannel interference particularly the case when the number of interference sources exceeds...
Statistical modelling of space-time processes with application to wind power
DEFF Research Database (Denmark)
Lenzi, Amanda
. This thesis aims at contributing to the wind power literature by building and evaluating new statistical techniques for producing forecasts at multiple locations and lead times using spatio-temporal information. By exploring the features of a rich portfolio of wind farms in western Denmark, we investigate...... propose spatial models for predicting wind power generation at two different time scales: for annual average wind power generation and for a high temporal resolution (typically wind power averages over 15-min time steps). In both cases, we use a spatial hierarchical statistical model in which spatial...
1982-10-01
thermal noise and radioastronomy is probably the application Shirman had in mind for that work. Kuriksha considers a wide class of two-dimensional...this point has been discussed In terms of EM wave propagation, signal detection, and parameter estimation in such fields as radar and radioastronomy
International Nuclear Information System (INIS)
Persides, S.
1980-01-01
A new formulation is established for the study of the asymptotic structure at spatial infinity of asymptotically Minkowskian space--times. First, the concept of an asymptotically simple space--time at spatial infinity is defined. This is a (physical) space--time (M,g) which can be imbedded in an unphysical space--time (M,g) with a boundary S, a C/sup infinity/ metric g and a C/sup infinity/ scalar field Ω such that Ω=0 on S, Ω>0 on M-S, and g/sup munu/ + g/sup mulambda/ g/sup nurho/ Ω/sub vertical-barlambda/ Ω/sub vertical-barrho/=Ω -2 g/sup murho/ +Ω -4 g/sup mulambda/ g/sup nurho/ Ω/sub ;/lambda Ω/sub ;/rho on M. Then an almost asymptotically flat space--time (AAFS) is defined as an asymptotically simple space--time for which S is isometric to the unit timelike hyperboloid and g/sup munu/ Ω/sub vertical-barmu/ Ω/sub vertical-barnu/ =Ω -4 g/sup munu/ Ω/sub ;/μΩ/sub ;/ν=-1 on S. Equivalent definitions are given in terms of the existence of coordinate systems in which g/sub munu/ or g/sub munu/ have simple explicitly given forms. The group of asymptotic symmetries of (M,g) is studied and is found to be isomorphic to the Lorentz group. The asymptotic behavior of an AAFS is studied. It is proven that the conformal metric g/sub munu/=Ω 2 g/sub munu/ gives C/sup lambdamurhonu/=0, Ω -1 C/sup lambdamurhonu/ Ω/sub ;/μ =0, Ω -2 C/sup lambdamurhonu/ Ω/sub ;/μ Ω/sub ;/ν=0 on S