WorldWideScience

Sample records for environmental remediation sites

  1. Site characterization techniques used in environmental remediation activities

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    2000-01-01

    As a result of decades of nuclear energy research, weapons production, as well as ongoing operations, a significant amount of radioactive contamination has occurred throughout the United States Department of Energy (DOE) complex. DOE facility are in the process of assessing and potentially remediating various sites according to the regulations imposed by a Federal Facility Agreement and Consent order (FFA/CO) between DOE, the state in which the facility is located, and the U.S. Environmental Protection Agency (EPA). In support of these active site remediation efforts, the DOE has devoted considerable resources towards the development of innovative site characterization techniques that support environmental restoration activities. These resources and efforts have focused on various aspects of this complex problem. Research and technology development conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the ability and state-of-the-art equipment required to obtain real-time, densely spaced, in situ characterization data (i.e. detection, speciation, and location) of various radionuclides and contaminants. The Remedial Action Monitoring System (RAMS), developed by the INEEL, consists of enhanced sensor technology, measurement modeling and interpretation techniques, and a suite of deployment platforms which can be interchanged to directly support remedial cleanup and site verification operations. In situ characterization techniques have advanced to the point where they are being actively deployed in support of remedial operations. The INEEL has deployed its system at various DOE and international sites. The deployment of in situ characterization systems during environmental restoration operations has shown that this approach results in several significant benefits versus conventional sampling techniques. A flexible characterization system permits rapid modification to satisfy physical site conditions, available site resources

  2. Environmental assessment for 881 Hillside (High Priority Sites) interim remedial action

    International Nuclear Information System (INIS)

    1990-01-01

    This Environmental Assessment evaluates the impact of an interim remedial action proposed for the High Priority Sites (881 Hillside Area) at the Rocky Flats Plant (RFP). This interim action is to be conducted to minimize the release of hazardous substances from the 881 Hillside Area that pose a potential long-term threat to public health and the environment. This document integrates current site characterization data and environmental analyses required by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or ''Superfund'' process, into an environmental assessment pursuant to the National Environmental Policy Act (NEPA). Characterization of the 881 Hillside Area is continuing. Consequently, a final remedial action has not yet been proposed. Environmental impacts associated with the proposed interim remedial action and reasonable alternatives designed to remove organic and inorganic contaminants, including radionuclides, from alluvial groundwater in the 881 Hillside Area are addressed. 24 refs., 5 figs., 23 tabs

  3. Environmental compliance assessment findings for Weldon Spring Site Remedial Action Program

    International Nuclear Information System (INIS)

    Sigmon, C.F.; Levine, M.B.

    1990-01-01

    This report presents the results of an environmental assessment conducted at Weldon Spring Site Remedial Action Project (WSSRAP) in St. Charles County, Missouri, in accordance with the Formerly Utilized Sites Remedial Action Program (FUSRAP) Environmental Compliance Assessment Checklists. The purpose of this assessment was to evaluate the compliance of the site with applicable federal and Missouri environment regulations. Assessments activities included the following: review of site records, reports ,and files; inspection of the WSSRAP storage building, other selected buildings, and the adjacent grounds; and interviews with project personnel. This assessment was conducted on August 28-30, 1989. The assessment covered five management areas as set forth in the Checklist: Hazardous Waste Management, Polychlorinated Biphenyls (PCBs) Management; Air Emissions; Wastewater Discharges and Petroleum Management. No samples were collected. 1 ref., 2 figs., 1 tab

  4. Formerly Utilized Sites Remedial Action Program environmental compliance assessment checklists

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.B.; Sigmon, C.F.

    1989-09-29

    The purpose of the Environmental Compliance Assessment Program is to assess the compliance of Formerly Utilized Site Remedial Action Program (FUSRAP) sites with applicable environmental regulations and Department of Energy (DOE) Orders. The mission is to identify, assess, and decontaminate sites utilized during the 1940s, 1950s, and 1960s to process and store uranium and thorium ores in support of the Manhattan Engineer District and the Atomic Energy Commission. To conduct the FUSRAP environmental compliance assessment, checklists were developed that outline audit procedures to determine the compliance status of the site. The checklists are divided in four groups to correspond to these regulatory areas: Hazardous Waste Management, PCB Management, Air Emissions, and Water Discharges.

  5. Formerly Utilized Sites Remedial Action Program environmental compliance assessment checklists

    International Nuclear Information System (INIS)

    Levine, M.B.; Sigmon, C.F.

    1989-01-01

    The purpose of the Environmental Compliance Assessment Program is to assess the compliance of Formerly Utilized Site Remedial Action Program (FUSRAP) sites with applicable environmental regulations and Department of Energy (DOE) Orders. The mission is to identify, assess, and decontaminate sites utilized during the 1940s, 1950s, and 1960s to process and store uranium and thorium ores in support of the Manhattan Engineer District and the Atomic Energy Commission. To conduct the FUSRAP environmental compliance assessment, checklists were developed that outline audit procedures to determine the compliance status of the site. The checklists are divided in four groups to correspond to these regulatory areas: Hazardous Waste Management, PCB Management, Air Emissions, and Water Discharges

  6. Environmental compliance at U.S. Department of Energy FUSRAP (Formerly Utilized Sites Remedial Action Program) sites

    International Nuclear Information System (INIS)

    Liedle, S.D.; Clemens, B.W.

    1988-01-01

    With the promulgation of the Superfund Amendments and Reauthorization Act (SARA), federal facilities were required to comply with the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) in the same manner as any non-government entity. This presented challenges for the Department of Energy (DOE) and other federal agencies involved in remedial action work because there are many requirements under SARA that overlap other laws requiring DOE compliance, e.g., the National Environmental Policy Act (NEPA). This paper outlines the options developed to comply with CERCLA and NEPA as part of active, multi-site remedial action program. The program, the Formerly Utilized Sites Remedial Action Program (FUSRAP), was developed to identify, clean up, or control sites containing residual radioactive or chemical contamination as a result of the nation's early development of nuclear power. During the Manhattan Project, uranium was extracted from ores and resulted in mill concentrates, purified metals, and waste products that were transported for use or disposal at other locations. Figure 1 shows the steps for producing uranium metal during the Manhattan Project. As a result of these activities materials, equipment, buildings, and land became contaminated, primarily with naturally occurring radionuclides. Currently, FUSRAP includes 29 sites; three are on the Environmental Protection Agency's (EPA's) National Priorities List (NPL) of hazardous waste sites

  7. Comparison of the environmental impacts of two remediation technologies used at hydrocarbon contaminated sites

    International Nuclear Information System (INIS)

    Viikala, R.; Kuusola, J.

    2000-01-01

    Investigation and remediation of contaminated sites has rapidly increased in Finland during the last decade. Public organisations as well as private companies are investigating and remediating their properties, e.g. redevelopment or business transactions. Also numerous active and closed gasoline stations have been investigated and remediated during the last few years. Usually the contaminated sites are remediated to limit values regardless of the risk caused by contamination. The limit values currently used in Finland for hydrocarbon remediation at residential or ground water areas are 300 mg/kg of total hydrocarbons and 100 mg/kg of volatile hydrocarbons (boiling point < appr. 200 deg C). Additionally, compounds such as aromatic hydrocarbons have specific limit values. Remediation of hydrocarbon contaminated sites is most often carried out by excavating the contaminated soil and taking it to a landfill by lorries. As distances from the sites to landfills are generally rather long, from tens of kilometres to few hundred kilometres, it is evident that this type of remediation has environmental impacts. Another popular technology used at sites contaminated by volatile hydrocarbons is soil vapour extraction (SVE). SVE is a technique of inducing air flow through unsaturated soils by vapour extraction wells or pipes to remove organic contaminants with an off-gas treatment system. The purpose of this study was to evaluate some of the environmental impacts caused by remediation of hydrocarbon contaminated soil. Energy consumption and air emissions related remedial activities of the two methods were examined in this study. Remediation of the sites used in this study were carried out by Golder Associates Oy in different parts of Finland in different seasons. Evaluation was made by using life cycle assessment based approach

  8. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1994-05-01

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action

  9. Environmental Audit, Weldon Spring Site Remedial Action Project

    International Nuclear Information System (INIS)

    1991-06-01

    This report documents the results of the Environmental Baseline Audit of DOE's Weldon Spring Site Remedial Action Project (WSSRAP), located in St. Charles, Missouri. The purpose of the Environmental Baseline Audit is to provide the Secretary of Energy with concise information pertaining to the following issues: (1) compliance status with applicable environmental regulations (with the exception of National Environmental Policy Act [NEPA] requirements); (2) adherence to best management and accepted industry practices; (3) DOE vulnerabilities and liabilities associated with compliance status, environmental conditions, and management practices; (4) root causes of compliance findings (CF) and best management practice (BMP) findings; (5) adequacy of environmental management programs and organizations; and (6) noteworthy practices. This information will assist DOE in determining patterns and trends in environmental compliance, BMPs, and root causes, and will provide the information necessary for line management to take appropriate corrective actions. 6 figs., 11 tabs

  10. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  11. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    International Nuclear Information System (INIS)

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  12. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  13. In Situ Thermal NAPL Remediation at the Northeast Site Pinellas Environmental Restoration Project

    International Nuclear Information System (INIS)

    Juhlin, R.; Butherus, M.

    2006-01-01

    The U.S. Department of Energy (DOE) is conducting thermal remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at the Northeast Site that is part of the Pinellas Environmental Restoration Project. The Northeast Site is located on the Young - Rainey Science, Technology, and Research (STAR) Center in Largo, Florida. The STAR Center was formerly a DOE facility. The NAPL remediation was performed at Area A and is currently being performed at Area B at the Northeast Site. The remediation at Area A was completed in 2003 and covered an area of 900 m 2 (10,000 ft 2 ) and a depth of remediation that extended to 10.7 m (35 ft) below ground surface. Cleanup levels achieved were at or below maximum contaminant levels in almost all locations. The remediation project at Area B is ongoing and covers an area of 3,240 m 2 (36,000 ft 2 ), a volume of 41,300 m (54,000 yd 3), and a depth of remediation to 12 m (40 ft) below ground surface. In addition, a portion of the subsurface under an occupied building in Area B is included in the remediation. The cleanup levels achieved from this remediation will be available in the Area B Final Report that will be posted on the DOE Office of Legacy Management web site (www.lm.doe.gov/land/sites/fl/ pinellas/pinellas.htm) in January 2007. Electrical resistive heating and steam were the chosen remediation methods at both areas. Lessons learned from the Area A remediation were incorporated into the Area B remediation and could benefit managers of similar remediation projects. (authors)

  14. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992. Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.

  15. Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York

    International Nuclear Information System (INIS)

    1990-06-01

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs

  16. Environmental audit of the Maywood Site: Formerly Utilized Sites Remedial Action Program, Maywood Interim Storage Site vicinity properties

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    This report presents the results of the Environmental Audit of the Maywood Site managed by the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Audit was carried out from November 7 through 16, 1990. The Audit Team found overall technical competence and knowledge of management and staff to be excellent. This applies to DOE as well as to Bechtel National, Incorporated (BNI). In particular, there was excellent knowledge of federal, state, and local environmental regulations, as well as analysis for applicability of these regulations to FUSRAP. Project management of the Maywood Site is also excellent. BNI and DOE project staff have made frequent contact with members of the community, and all removal actions and remedial investigation activities have been planned, scheduled, and accomplished with competence and attention to total quality principles. To date, all actions taken for the Maywood Site cleanup have been completed ahead of schedule and on or under budget. Weakness noted include self-assessment efforts by DOE, failure to fully implement DOE Order requirements throughout the program, and some discrepancies in formally documenting and reviewing procedures. 7 figs., 10 tabs.

  17. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1993-08-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [ 1 0 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial action would result in the loss of approximately 164 ac (66 ha) of soils, but 132 ac (53 ha) of these soils are contaminated and cannot be used for other purposes. Another 154 ac (62 ha) of soils would be temporarily disturbed. Approximately 57 ac (23 ha) of open range land would be permanently removed from livestock grazing and wildlife use. The removal of the contaminated materials would affect the 1 00-year floodplain of the San Miguel River and would result in the loss of riparian habitat along the river. The southwestern willow flycatcher, a Federal candidate species, may be affected by the remedial action, and the use of water from the San Miguel River ''may affect'' the Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Traffic levels on State Highways 90 and 141 would be increased during the remedial action, as would the noise levels along these transportation routes. Measures for mitigating the adverse environmental impacts of the proposed remedial action are discussed in Section 6.0 of this environmental assessment (EA)

  18. [Urban industrial contaminated sites: a new issue in the field of environmental remediation in China].

    Science.gov (United States)

    Liao, Xiao-Yong; Chong, Zhong-Yi; Yan, Xiu-Lan; Zhao, Dan

    2011-03-01

    Contamination of urban industrial lands is a new environmental problem in China during the process of upgrade of industrial structure and adjustment of urban layout. It restricts the safe re-use of urban land resources, and threatens the health of surrounding inhabitants. In the paper, the market potential of contaminated-site remediation was known through analysis of spatial distribution of urban industrial sites in China. Remediation technologies in the Occident which were suitable for urban industrial contaminated sites were discussed and compared to evaluate their superiority and inferiority. And then, some advices of remediation technologies for urban industrial contaminated sites in China were proposed.

  19. Environmental assessment of remedial action at the Maybell Uranium Mill Tailings Site near Maybell, Colorado

    International Nuclear Information System (INIS)

    1994-04-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS)

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  1. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

  2. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  3. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    International Nuclear Information System (INIS)

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.' different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  4. Site remediation: The naked truth

    International Nuclear Information System (INIS)

    Calloway, J.M.

    1991-01-01

    The objective of any company faced with an environmental site remediation project is to perform the cleanup effectively at the lowest possible cost. Today, there are a variety of techniques being applied in the remediation of sites involving soils and sludges. The most popular include: stabilization, incineration, bioremediation and off-site treatment. Dewatering may also play an integral role in a number of these approaches. Selecting the most cost-effective technique for remediation of soils and sludges can be a formidable undertaking, namely because it is often difficult to quantify certain expenses in advance of the project. In addition to providing general cost guidelines for various aspects of soil and sludge remediation, this paper will show how some significant cost factors can be affected by conditions related to specific remediation projects and the cleanup technology being applied

  5. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1994-02-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use

  6. Remediation management of complex sites using an adaptive site management approach.

    Science.gov (United States)

    Price, John; Spreng, Carl; Hawley, Elisabeth L; Deeb, Rula

    2017-12-15

    Complex sites require a disproportionate amount of resources for environmental remediation and long timeframes to achieve remediation objectives, due to their complex geologic conditions, hydrogeologic conditions, geochemical conditions, contaminant-related conditions, large scale of contamination, and/or non-technical challenges. A recent team of state and federal environmental regulators, federal agency representatives, industry experts, community stakeholders, and academia worked together as an Interstate Technology & Regulatory Council (ITRC) team to compile resources and create new guidance on the remediation management of complex sites. This article summarizes the ITRC team's recommended process for addressing complex sites through an adaptive site management approach. The team provided guidance for site managers and other stakeholders to evaluate site complexities and determine site remediation potential, i.e., whether an adaptive site management approach is warranted. Adaptive site management was described as a comprehensive, flexible approach to iteratively evaluate and adjust the remedial strategy in response to remedy performance. Key aspects of adaptive site management were described, including tools for revising and updating the conceptual site model (CSM), the importance of setting interim objectives to define short-term milestones on the journey to achieving site objectives, establishing a performance model and metrics to evaluate progress towards meeting interim objectives, and comparing actual with predicted progress during scheduled periodic evaluations, and establishing decision criteria for when and how to adapt/modify/revise the remedial strategy in response to remedy performance. Key findings will be published in an ITRC Technical and Regulatory guidance document in 2017 and free training webinars will be conducted. More information is available at www.itrc-web.org. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands assessment (Assessment 2) are included as part of this EA. The following sections and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service.

  8. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado

    International Nuclear Information System (INIS)

    1993-09-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands assessment (Assessment 2) are included as part of this EA. The following sections and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service

  9. Site remediation techniques in India: a review

    International Nuclear Information System (INIS)

    Anomitra Banerjee; Miller Jothi

    2013-01-01

    India is one of the developing countries operating site remediation techniques for the entire nuclear fuel cycle waste for the last three decades. In this paper we intend to provide an overview of remediation methods currently utilized at various hazardous waste sites in India, their advantages and disadvantages. Over the years the site remediation techniques have been well characterized and different processes for treatment, conditioning and disposal are being practiced. Remediation Methods categorized as biological, chemical or physical are summarized for contaminated soils and environmental waters. This paper covers the site remediation techniques implemented for treatment and conditioning of wastelands arising from the operation of nuclear power plant, research reactors and fuel reprocessing units. (authors)

  10. Waste minimization applications at a remediation site

    International Nuclear Information System (INIS)

    Allmon, L.A.

    1995-01-01

    The Fernald Environmental Management Project (FEMP) owned by the Department of Energy was used for the processing of uranium. In 1989 Fernald suspended production of uranium metals and was placed on the National Priorities List (NPL). The site's mission has changed from one of production to environmental restoration. Many groups necessary for producing a product were deemed irrelevant for remediation work, including Waste Minimization. Waste Minimization does not readily appear to be applicable to remediation work. Environmental remediation is designed to correct adverse impacts to the environment from past operations and generates significant amounts of waste requiring management. The premise of pollution prevention is to avoid waste generation, thus remediation is in direct conflict with this premise. Although greater amounts of waste will be generated during environmental remediation, treatment capacities are not always available and disposal is becoming more difficult and costly. This creates the need for pollution prevention and waste minimization. Applying waste minimization principles at a remediation site is an enormous challenge. If the remediation site is also radiologically contaminated it is even a bigger challenge. Innovative techniques and ideas must be utilized to achieve reductions in the amount of waste that must be managed or dispositioned. At Fernald the waste minimization paradigm was shifted from focusing efforts on source reduction to focusing efforts on recycle/reuse by inverting the EPA waste management hierarchy. A fundamental difference at remediation sites is that source reduction has limited applicability to legacy wastes but can be applied successfully on secondary waste generation. The bulk of measurable waste reduction will be achieved by the recycle/reuse of primary wastes and by segregation and decontamination of secondary wastestreams. Each effort must be measured in terms of being economically and ecologically beneficial

  11. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal sits, 6 road miles (mi) [10 kilometers (km)) to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal sits would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use

  12. Remediation of sites with dispersed radioactive contamination

    International Nuclear Information System (INIS)

    2004-01-01

    To respond to the needs of Member States, the IAEA launched an environmental remediation project to deal with the problems of radioactive contamination worldwide. The IAEA environmental remediation project includes an IAEA Coordinated Research Project, as well as the participation of IAEA experts in concrete remediation projects when requested by individual Member States. The IAEA has prepared several documents dedicated to particular technical or conceptual areas, including documents on the characterization of contaminated sites, technical and non-technical factors relevant to the selection of a preferred remediation strategy and technique, overview of applicable techniques for environmental remediation,, options for the cleanup of contaminated groundwater and planning and management issues. In addition, a number of other IAEA publications dealing with related aspects have been compiled under different IAEA projects; these include TECDOCs on the remediation of uranium mill tailings, the decontamination of buildings and roads and the characterization of decommissioned sites. Detailed procedures for the planning and implementation of remedial measures have been developed over the past decade or so. A critical element is the characterization of the contamination and of the various environmental compartments in which it is found, in order to be able to evaluate the applicability of remediation techniques. The chemical or mineralogical form of the contaminant will critically influence the efficiency of the remediation technique chosen. Careful delineation of the contamination will ensure that only those areas or volumes of material that are actually contaminated are treated. This, in turn, reduces the amount of any secondary waste generated. The application of a remediation technique requires holistic studies examining the technical feasibility of the proposed measures, including analyses of their impact. Consequently, input from various scientific and engineering

  13. Hazardous waste treatment and environmental remediation research

    International Nuclear Information System (INIS)

    1989-01-01

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity

  14. Policy and Strategies for Environmental Remediation

    International Nuclear Information System (INIS)

    2015-01-01

    In the environmental remediation of a given site, concerned and interested parties have diverse and often conflicting interests with regard to remediation goals, the time frames involved, reuse of the site, the efforts necessary and cost allocation. An environmental remediation policy is essential for establishing the core values on which remediation is to be based. It incorporates a set of principles to ensure the safe and efficient management of remediation situations. Policy is mainly established by the national government and may become codified in the national legislative system. An environmental remediation strategy sets out the means for satisfying the principles and requirements of the national policy. It is normally established by the relevant remediation implementer or by the government in the case of legacy sites. Thus, the national policy may be elaborated in several different strategies. To ensure the safe, technically optimal and cost effective management of remediation situations, countries are advised to formulate an appropriate policy and strategies. Situations involving remediation include remediation of legacy sites (sites where past activities were not stringently regulated or adequately supervised), remediation after emergencies (nuclear and radiological) and remediation after planned ongoing operation and decommissioning. The environmental policy involves the principles of justification, optimization of protection, protection of future generations and the environment, efficiency in the use of resources, and transparent interaction with stakeholders. A typical policy will also take into account the national legal framework and institutional structure and applicable international conventions while providing for the allocation of responsibilities and resources, in addition to safety and security objectives and public information and participation in the decision making process. The strategy reflects and elaborates the goals and requirements set

  15. Colonie Interim Storage Site: Annual site environmental report, Colonie, New York, Calendar year 1986: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    International Nuclear Information System (INIS)

    1987-06-01

    During 1986, the environmental monitoring program continued at the Colonie Interim Storage Site (CISS), a US Department of Energy (DOE) facility located in Colonie, New York. The CISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has mandated DOE to remedy. As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action is being conducted at the site and at vicinity properties by Bechtel National Inc. (BNI), Project Management Contractor for FUSRAP. The environmental monitoring program is also carried out by BNI. The monitoring program at the CISS measures external gamma radiation levels as well as uranium and radium-226 concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess the potential effect of the site on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, the maximally exposed individual would receive an annual external exposure approximately equivalent to 5% of the DOE radiation protection standard of 100 mrem/y. Results of 1986 monitoring show that the CISS is in compliance with the DOE radiation protection standard. 14 refs., 9 figs., 9 tabs

  16. Environmental remediation. Strategies and techniques for cleaning radioactively contaminated sites

    International Nuclear Information System (INIS)

    Falck, W. Eberhard

    2001-01-01

    Actions for a cleaner and safety environment have risen on social and political agendas in recent years. They include efforts to remediate contaminated sites posing a radiological risk to humans and the surrounding environment. Radiological risks can result from a variety of nuclear and non-nuclear activities. They include: nuclear or radiological accidents; nuclear weapons production and testing; poor radioactive waste management and disposal practices; industrial manufacturing involving radioactive materials; conventional mining and milling of ores and other production processes, e.g. oil and gas production, resulting in enhanced concentrations of naturally occurring radioactive materials (NORMs). The IAEA has developed a comprehensive programme directed at the remediation of radioactively contaminated sites. The programme collates and distributes knowledge about contaminated sites; appropriate methods for their characterization; assessment of their potential environmental and radiological impact; and applicable methods for their clean-up, following internationally recommended safety criteria. The overall resources, and which are technologically less advanced, to focus their efforts and chose appropriate strategies for the abatement or removal of exposure to radiation. An important aspect is the intention to 'close the loop' in the nuclear fuel cycle in the interests of sustainable energy development including nuclear power

  17. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [ 1 0 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial action would result in the loss of approximately 164 ac (66 ha) of soils, but 132 ac (53 ha) of these soils are contaminated and cannot be used for other purposes. Another 154 ac (62 ha) of soils would be temporarily disturbed. Approximately 57 ac (23 ha) of open range land would be permanently removed from livestock grazing and wildlife use. The removal of the contaminated materials would affect the 1 00-year floodplain of the San Miguel River and would result in the loss of riparian habitat along the river. The southwestern willow flycatcher, a Federal candidate species, may be affected by the remedial action, and the use of water from the San Miguel River ``may affect`` the Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Traffic levels on State Highways 90 and 141 would be increased during the remedial action, as would the noise levels along these transportation routes. Measures for mitigating the adverse environmental impacts of the proposed remedial action are discussed in Section 6.0 of this environmental assessment (EA).

  18. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado

    International Nuclear Information System (INIS)

    Bachrach, A.; Hoopes, J.; Morycz, D.; Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P.; Rice, G.

    1984-12-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated [vicinity] properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed

  19. Environmental assessment of remedial action at the Maybell Uranium Mill Tailings Site near Maybell, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

  20. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 1 of the Final Environmental Impact Statement, analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  1. Environmental Restoration Remedial Action Program records management plan

    International Nuclear Information System (INIS)

    Michael, L.E.

    1991-07-01

    The US Department of Energy-Richland Operations Office (DOE-RL) Environmental Restoration Field Office Management Plan [(FOMP) DOE-RL 1989] describes the plans, organization, and control systems to be used for management of the Hanford Site environmental restoration remedial action program. The FOMP, in conjunction with the Environmental Restoration Remedial Action Quality Assurance Requirements document [(QARD) DOE-RL 1991], provides all the environmental restoration remedial action program requirements governing environmental restoration work on the Hanford Site. The FOMP requires a records management plan be written. The Westinghouse Hanford Company (Westinghouse Hanford) Environmental Restoration Remedial Action (ERRA) Program Office has developed this ERRA Records Management Plan to fulfill the requirements of the FOMP. This records management plan will enable the program office to identify, control, and maintain the quality assurance, decisional, or regulatory prescribed records generated and used in support of the ERRA Program. 8 refs., 1 fig

  2. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado: Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment and a floodplain/wetlands assessment are included as part of this EA. This report and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

  3. Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado: Revision 2

    International Nuclear Information System (INIS)

    1994-11-01

    The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment and a floodplain/wetlands assessment are included as part of this EA. This report and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS)

  4. Gunnar uranium mine environmental remediation - Northern Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Muldoon, Joe; Yankovich, Tamara; Schramm, Laurier L. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2013-07-01

    The Gunnar Mine and mill site was the largest of some 38 now-abandoned uranium mines that were developed and operated in Northern Saskatchewan, Canada, during the Cold War years. During their operating lifetimes these mines produced large quantities of ore and tailings. The Gunnar mine (open pit and underground) produced over 5 million tonnes of uranium ore and nearly 4.4 million tonnes of mine tailings during its operations from 1955 through 1963. An estimated 2.2 to 2.7 million m{sup 3} of waste rock that was generated during the processing of the ore abuts the shores of Lake Athabasca, the 22. largest lake in the world. After closure in the 1960's, the Gunnar site was abandoned with little to no decommissioning being done. The Saskatchewan Research Council has been contracted to manage the clean-up of these abandoned northern uranium mine and mill sites. The Gunnar Mine, because of the magnitude of tailings and waste rock, is subject to an environmental site assessment process regulated by both provincial and federal governments. This process requires a detailed study of the environmental impacts that have resulted from the mining activities and an analysis of projected impacts from remediation efforts. The environmental assessment process, specific site studies, and public involvement initiatives are all now well underway. Due to the many uncertainties associated with an abandoned site, an adaptive remediation approach, utilizing a decision tree, presented within the environmental assessment documents will be used as part of the site regulatory licensing. A critical early task was dealing with major public safety hazards on the site. The site originally included many buildings that were remnants of a community of approximately 800 people who once occupied the site. These buildings, many of which contained high levels of asbestos, had to be appropriately abated and demolished. Similarly, the original mine head frame and mill site buildings, many of which

  5. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  6. Remedial actions at the former Union Carbide Corporation uranium mill sites, Rifle, Garfield County, Colorado: Final environmental impact statement

    International Nuclear Information System (INIS)

    1990-03-01

    This appendix provides the information needed to understand the conceptual designs for the remedial action alternatives addressed in this environmental impact statement (EIS). It is intended to provide sufficient details for the reader to evaluate the feasibility and assess the impacts of each remedial action alternative. It is not intended to provide the detailed engineering necessary to implement the alternatives. Details of the preferred remedial action will be presented in the remedial action plan (RAP). The remedial action alternatives addressed in this EIS include no action, stabilization at the New Rifle site, disposal at the Estes Gulch site, and disposal at the Lucas Mesa site. All alternatives include interim actions to remediate existing health and safety hazards to the Rifle community that presently exist at the Old and New Rifle processing sites. 21 figs., 18 tabs

  7. Model environmental assessment for a property-cleanup/interim-storage remedial action at a formerly utilized site

    International Nuclear Information System (INIS)

    Merry-Libby, P.

    1982-07-01

    This document has been prepared as a model for the preparation of an Environmental Assessment (EA) for a property-cleanup/interim-storage type of remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). For major federal actions significantly affecting the quality of the human environment, an Environmental Impact Statement (EIS) must be prepared to aid DOE in making its decision. However, when it is not clear that an action is major and the impacts are significant, an EA may be prepared to determine whether to prepare an EIS or a finding of no significant impact (FONSI). If it is likely that an action may be major and the impacts significant, it is usually more cost-effective and timely to directly prepare an EIS. If it is likely that a FONSI can be reached after some environmental assessment, as DOE believes may be the case for most property-cleanup/interim-storage remedial actions, preparation of site-specific EAs is an effective means of compliance with NEPA

  8. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies

  9. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  10. Environmental assessment of remedial action at the inactive uraniferous lignite processing sites at Belfield and Bowman, North Dakota

    International Nuclear Information System (INIS)

    Beranich, S.; Berger, N.; Bierley, D.; Bond, T.M.; Burt, C.; Caldwell, J.A.; Dery, V.A.; Dutcher, A.; Glover, W.A.; Heydenburg, R.J.; Larson, N.B.; Lindsey, G.; Longley, J.M.; Millard, J.B.; Miller, M.; Peel, R.C.; Persson-Reeves, C.H.; Titus, F.B.; Wagner, L.

    1989-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), to clean up the Belfield and Bowman, North Dakota, uraniferous lignite processing sites to reduce the potential health impacts associated with the residual radioactive materials remaining at these sites. Remedial action at these sites must be performed in accordance with the US Environmental Protection Agency's (EPA) standards promulgated for the remedial action and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of North Dakota. The inactive Belfield uraniferous lignite processing site is one mile southeast of Belfield, North Dakota. The inactive Bowman uraniferous lignite processing site at the former town of Griffin, is seven miles northwest of Bowman, North Dakota and 65 road miles south of Belfield. Lignite ash from the processing operations has contaminated the soils over the entire 10.7-acre designated Belfield site and the entire 12.1-acre designated Bowman site. Dispersion of the ash has contaminated an additional 20.6 acres surrounding the Belfield processing site and an additional 59.2 acres surrounding the Bowman processing site. The proposed remedial action is to relocate the contaminated materials at the Belfield processing site to the Bowman processing/disposal site for codisposal with the Bowman contaminated soils. The environmental impacts assessed in this EA were evaluated for the proposed remedial action and the no action alternative and demonstrate that the proposed action would not significantly affect the quality of the human environment and would be performed in compliance with applicable environmental laws. The no action alternative would not be consistent with the intent of Public Law 95-604 and would not comply with the EPA standards. 48 refs., 10 figs., 7 tabs

  11. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal sits, 6 road miles (mi) [10 kilometers (km)) to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal sits would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  12. Environmental Pathway Models-Ground-Water Modeling in Support of Remedial Decision Making at Sites Contaminated with Radioactive Material

    Science.gov (United States)

    The Joint Interagency Environmental Pathway Modeling Working Group wrote this report to promote appropriate and consistent use of mathematical environmental models in the remediation and restoration of sites contaminated by radioactive substances.

  13. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  14. Integrated approach to planning the remediation of sites undergoing decommissioning

    International Nuclear Information System (INIS)

    2009-01-01

    Responding to the needs of Member States, the IAEA has launched an environmental remediation guidance initiative dealing with the issues of radioactive contamination world wide. Its aim is to collate and disseminate information concerning the key issues affecting environmental remediation of contaminated sites. This IAEA initiative includes the development of documents that report on remediation technologies available, best practices, and information and guidance concerning (a) Strategy development for environmental remediation; (b) Characterization and remediation of contaminated sites and contaminated groundwater; (c) Management of waste and residues from mining and milling of uranium and thorium; (d) Decommissioning of buildings; (e) A database for contaminated sites. The subject of this present report concerns the integration of decommissioning and remediation activities at sites undergoing decommissioning and this fits within the first category of guidance documentation (strategy development). This document addresses key strategic planning issues. It is intended to provide practical advice and complement other reports that focus on decommissioning and remediation at nuclear facilities. The document is designed to encourage site remediation activities that take advantage of synergies with decommissioning in order to reduce the duplication of effort by various parties and minimize adverse impacts on human health, the environment, and costs through the transfer of experience and knowledge. To achieve this objective, the document is designed to help Member States gain perspective by summarizing available information about synergies between decommissioning and remediation, strategic planning and project management and planning tools and techniques to support decision making and remediation. Case studies are also presented as to give concrete examples of the theoretical elements elaborated in the documents. This publication investigates the potential synergies

  15. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume IV

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 4, describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington

  16. Environmental restoration remedial action quality assurance requirements document

    International Nuclear Information System (INIS)

    Cote, R.F.

    1991-01-01

    The environmental Restoration Remedial Action Quality Assurance Requirements Document (DOE/RL 90-28) defines the quality assurance program requirements for the US Department of Energy-Richland Field Office Environmental Restoration Remedial Action Program at the Hanford Site, Richland, Washington. This paper describes the objectives outlined in DOE/RL 90-28. The Environmental Restoration Remedial Action Program implements significant commitments made by the US Department of Energy in the Hanford Federal Facility Agreement and Consent Order entered into with the Washington State Department of Ecology and the US Environmental Protection Agency

  17. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project

  18. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  19. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. [UMTRA Project

    Energy Technology Data Exchange (ETDEWEB)

    Bachrach, A.; Hoopes, J.; Morycz, D. (Jacobs Engineering Group, Inc., Pasadena, CA (USA)); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. (Weston (Roy F.), Inc., Washington, DC (USA)); Rice, G. (Sergent, Hauskins and Beckwith (USA))

    1984-12-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.

  20. Remedial investigation for the chemical plant area of the Weldon Spring Site

    International Nuclear Information System (INIS)

    1992-11-01

    The US Department of Energy (DOE) is responsible for management of the Weldon Spring Site Remedial Action Project (WSSRAP) under its Environmental Restoration and Waste Management Program. Major goals include eliminating potential public and environmental hazards due to site contamination and releasing the property for alternate uses to the maximum extent practicable. The purpose of the remedial investigation described in this report was to determine the extent of contamination associated with the portion of the Weldon Spring site known as the chemical plant and raffinate pit area. The DOE has assumed responsibility for investigating and remediating all on-site soil contamination and off-site soil which is radiologically contaminated as a result of uranium and thorium processing operations. The DOE has also assumed the responsibility for radiologically contaminated groundwater on and off site. The Weldon Spring site remedial investigation also involved the evaluation of the sources, nature and extent, and environmental fate and transport of contaminants to provide a basis for defining the risks that the contaminants may pose to human health and the environment. Data are included in this report to support the screening of remedial technologies and to permit the development and detailed analysis of alternatives for remedial action at the site during the feasibility study process

  1. Description of the Formerly Utilized Sites Remedial Action Program

    International Nuclear Information System (INIS)

    1980-09-01

    The background and the results to date of the Department of Energy program to identify and evaluate the radiological conditions at sites formerly utilized by the Corps of Engineers' Manhattan Engineer District (MED) and the US Atomic Energy Commission (AEC) are summarized. The sites of concern were federally, privately, and institutionally owned and were used primarily for research, processing, and storage of uranium and thorium ores, concentrates, or residues. Some sites were subsequently released for other purposes without radiological restriction. Surveys have been conducted since 1974 to document radiological conditions at such sites. Based on radiological surveys, sites are identified in this document that require, or are projected to require, remedial action to remove potential restrictions on the use of the property due to the presence of residual low-level radioactive contamination. Specific recommendations for each site will result from more detailed environmental and engineering surveys to be conducted at those sites and, if necessary, an environmental impact assessment or environmental impact statement will be prepared. Section 3.0 describes the current standards and guidelines now being used to conduct remedial actions. Current authority of the US Department of Energy (DOE) to proceed with remedial actions and the new authority required are summarized. A plan to implement the Formerly Utilized Sites Remedial Action Program (FUSRAP) in accordance with the new authority is presented, including the objectives, scope, general approach, and a summary schedule. Key issues affecting schedule and cost are discussed

  2. Description of the Formerly Utilized Sites Remedial Action Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The background and the results to date of the Department of Energy program to identify and evaluate the radiological conditions at sites formerly utilized by the Corps of Engineers' Manhattan Engineer District (MED) and the US Atomic Energy Commission (AEC) are summarized. The sites of concern were federally, privately, and institutionally owned and were used primarily for research, processing, and storage of uranium and thorium ores, concentrates, or residues. Some sites were subsequently released for other purposes without radiological restriction. Surveys have been conducted since 1974 to document radiological conditions at such sites. Based on radiological surveys, sites are identified in this document that require, or are projected to require, remedial action to remove potential restrictions on the use of the property due to the presence of residual low-level radioactive contamination. Specific recommendations for each site will result from more detailed environmental and engineering surveys to be conducted at those sites and, if necessary, an environmental impact assessment or environmental impact statement will be prepared. Section 3.0 describes the current standards and guidelines now being used to conduct remedial actions. Current authority of the US Department of Energy (DOE) to proceed with remedial actions and the new authority required are summarized. A plan to implement the Formerly Utilized Sites Remedial Action Program (FUSRAP) in accordance with the new authority is presented, including the objectives, scope, general approach, and a summary schedule. Key issues affecting schedule and cost are discussed.

  3. Lessons Learned from Environmental Remediation Programmes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-15

    Several remediation projects have been developed to date, and experience with these projects has been accumulated. Lessons learned span from non-technical to technical aspects, and need to be shared with those who are beginning or are facing the challenge to implement environmental remediation works. This publication reviews some of these lessons. The key role of policy and strategies at the national level in framing the conditions in which remediation projects are to be developed and decisions made is emphasized. Following policy matters, this publication pays attention to the importance of social aspects and the requirement for fairness in decisions to be made, something that can only be achieved with the involvement of a broad range of interested parties in the decision making process. The publication also reviews the funding of remediation projects, planning, contracting, cost estimates and procurement, and issues related to long term stewardship. Lessons learned regarding technical aspects of remediation projects are reviewed. Techniques such as the application of cover systems and soil remediation (electrokinetics, phytoremediation, soil flushing, and solidification and stabilization techniques) are analysed with respect to performance and cost. After discussing soil remediation, the publication covers issues associated with water treatment, where techniques such as ‘pump and treat’ and the application of permeable barriers are reviewed. Subsequently, there is a section dedicated to reviewing briefly the lessons learned in the remediation of uranium mining and processing sites. Many of these sites throughout the world have become orphaned, and are waiting for remediation. The publication notes that little progress has been made in the management of some of these sites, particularly in the understanding of associated environmental and health risks, and the ability to apply prediction to future environmental and health standards. The publication concludes

  4. Lessons Learned from Environmental Remediation Programmes

    International Nuclear Information System (INIS)

    2014-01-01

    Several remediation projects have been developed to date, and experience with these projects has been accumulated. Lessons learned span from non-technical to technical aspects, and need to be shared with those who are beginning or are facing the challenge to implement environmental remediation works. This publication reviews some of these lessons. The key role of policy and strategies at the national level in framing the conditions in which remediation projects are to be developed and decisions made is emphasized. Following policy matters, this publication pays attention to the importance of social aspects and the requirement for fairness in decisions to be made, something that can only be achieved with the involvement of a broad range of interested parties in the decision making process. The publication also reviews the funding of remediation projects, planning, contracting, cost estimates and procurement, and issues related to long term stewardship. Lessons learned regarding technical aspects of remediation projects are reviewed. Techniques such as the application of cover systems and soil remediation (electrokinetics, phytoremediation, soil flushing, and solidification and stabilization techniques) are analysed with respect to performance and cost. After discussing soil remediation, the publication covers issues associated with water treatment, where techniques such as ‘pump and treat’ and the application of permeable barriers are reviewed. Subsequently, there is a section dedicated to reviewing briefly the lessons learned in the remediation of uranium mining and processing sites. Many of these sites throughout the world have become orphaned, and are waiting for remediation. The publication notes that little progress has been made in the management of some of these sites, particularly in the understanding of associated environmental and health risks, and the ability to apply prediction to future environmental and health standards. The publication concludes

  5. Hanford site tank waste remediation system programmatic environmental review report

    International Nuclear Information System (INIS)

    Haass, C.C.

    1998-01-01

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE's plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations

  6. Environmental assessment of remedial action at the Tuba City uranium mill tailings site, Tuba City, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-11-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The site covers 105 acres and contains 25 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR Part 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at a more remote location. The no action alternative is also assessed in this document.

  7. Environmental assessment of remedial action at the Tuba City uranium mill tailings site, Tuba City, Arizona

    International Nuclear Information System (INIS)

    1986-11-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The site covers 105 acres and contains 25 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR Part 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at a more remote location. The no action alternative is also assessed in this document

  8. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

  9. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    International Nuclear Information System (INIS)

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required

  10. Environmental analysis and data report prepared for the environmental assessment of remedial action at the Lowman uranium mill tailings site near Lowman, Idaho

    International Nuclear Information System (INIS)

    1991-01-01

    This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lowman, Idaho. The Lowman EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the effects of their actions on the environment. It examines the short-term and the long-term effects of the US Department of Energy's (DOE) proposed remedial action for the Lowman site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement will be prepared. If the impacts are not judged to be significant, the DOE may issue a Finding of No Significant Impact and implement the proposed action. The information and data presented in this environmental analyses and data report are for background purposes only and are not required as part of the NEPA decision-making process

  11. Technologies for remediation of radioactively contaminated sites

    International Nuclear Information System (INIS)

    1999-06-01

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes

  12. Technologies for remediation of radioactively contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes Refs, figs, tabs

  13. Environmental Chemistry Principles in Site Remediation (CEECHE 2018 Krakow Poland)

    Science.gov (United States)

    In CEECHE meeting, we will present scientific, engineering information and case studies on sustainable and innovative remediation technologies used in contaminated sites in Europe and the United States. One of the most important tasks to be performed to remediate contaminated si...

  14. Unit environmental transport assessment of contaminants from Hanford's past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    International Nuclear Information System (INIS)

    Whelan, G.; Buck, J.W.; Castleton, K.J.

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation

  15. Colonie Interim Storage Site environmental report for calendar year 1992, 1130 Central Avenue, Colonie, New York. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report describes the environmental surveillance program at the Colonie Interim Storage Site (CISS) and provides the results for 1992. The site is located in eastern New York State, approximately 6.4 km (4.0 mi) northwest of downtown Albany. From 1958 to 1984, National Lead (NL) Industries used the facility to manufacture various components from depleted and enriched uranium natural thorium. Environmental monitoring of CISS began in 1984 when Congress added, the site to the US Department of Energy`s (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental surveillance program at CISS includes sampling networks for external gamma radiation exposure and for thorium-232 and total uranium concentrations in surface water, sediment, and groundwater. Several chemical parameters are also measured in groundwater, including total metals, volatile organics, and water quality parameters. This surveillance program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results are compared with applicable Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements.

  16. Environmental Assessment of remedial action at the Ambrosia Lake uranium mill tailings site, Ambrosia Lake, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document.

  17. Environmental Assessment of remedial action at the Ambrosia Lake uranium mill tailings site, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1987-06-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document

  18. Line Program Environmental Management Audit: Formerly Utilized Sites Remedial Action Program

    International Nuclear Information System (INIS)

    1992-05-01

    This report documents the results of the Line Program Environmental Management Audit completed for the Formerly Utilized Sites Remedial Action Program (FUSRAP). During this Audit, activities and records were reviewed and personnel interviewed at Oak Ridge, Tennessee. Additionally, since FUSRAP falls under the responsibility of the Office of the Assistant Secretary for Environmental Restoration and Waste Management, selected individuals from this office were interviewed in Washington, DC and Germantown, Maryland. The onsite portion of the FUSRAP Audit was conducted from March 16 through 27, 1992, by the US Department of Energy's Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety and Health (EH-1). The scope of the FUSRAP Line Program Environmental Management Audit was comprehensive and included all areas of environmental management with the exception of the National Environmental Policy Act (NEPA). Since the subject of compliance with and implementation of the requirements of NEPA is the responsibility of the DOE Headquarters Office of NEPA Oversight, management issues pertaining to NEPA were not investigated as part of this Audit

  19. New IAEA guidelines on environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, Sergey [International Atomic Energy Agency, A2444, Seibersdorf (Austria); Howard, Brenda [Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP, Lancaster (United Kingdom); Kashparov, Valery [Ukrainian Institute of Agricultural Radiology, 08162, 7, Mashinobudivnykiv str., Chabany, Kyivo-Svyatoshin region, Kyiv (Ukraine); Sanzharova, Natalie [Russian Institute of Agricultural Radiology and Agroecology, Russian Federation, 249032, Obninsk (Russian Federation); Vidal, Miquel [Analytical Chemistry Department-Universitat de Barcelona, Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    In response to the needs of its Member States, the International Atomic Energy Agency (IAEA) has published many documents covering different aspects of remediation of contaminated environments. These documents range from safety fundamentals and safety requirements to technical documents describing remedial technologies. Almost all the documents on environmental remediation are related to uranium mining areas and decommissioning of nuclear facilities. IAEA radiation safety standards on remediation of contaminated environments are largely based on these two types of remediation. The exception is a document related to accidents, namely the IAEA TRS No. 363 'Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides'. Since the publication of TRS 363, there has been a considerable increase in relevant information. In response, the IAEA initiated the development of a new document, which incorporated new knowledge obtained during last 20 years, lessons learned and subsequent changes in the regulatory framework. The new document covers all aspects related to the environmental remediation from site characterisation to a description of individual remedial actions and decision making frameworks, covering urban, agricultural, forest and freshwater environments. Decisions taken to commence remediation need to be based on an accurate assessment of the amount and extent of contamination in relevant environmental compartments and how they vary with time. Major aspects of site characterisation intended for remediation are described together with recommendations on effective sampling programmes and data compilation for decision making. Approaches for evaluation of remedial actions are given in the document alongside the factors and processes which affect their implementation for different environments. Lessons learned following severe radiation accidents indicate that remediation should be considered with respect to many different

  20. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers.

  1. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5

    International Nuclear Information System (INIS)

    1994-10-01

    Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers

  2. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    Chatzis, Irena

    2016-01-01

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety.

  3. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    Chatzis, Irena

    2016-01-01

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety

  4. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  5. 200 Areas soil remediation strategy -- Environmental Restoration Program

    International Nuclear Information System (INIS)

    1996-09-01

    The remediation and waste management activities in the 200 Areas of the Hanford Site (located in Richland, Washington) currently range from remediating groundwater, remediating source units (contaminated soils), decontaminating and decommissioning of buildings and structures, maintaining facilities, managing transuranic, low-level and mixed waste, and operating tank farms that store high-level waste. This strategy focuses on the assessment and remediation of soil that resulted from the discharge of liquids and solids from processing facilities to the ground (e.g., ponds, ditches, cribs, burial grounds) in the 200 Areas and addresses only those waste sites assigned to the Environmental Restoration Program

  6. Fifth international conference on radioactive waste management and environmental remediation -- ICEM '95: Proceedings. Volume 2: Management of low-level waste and remediation of contaminated sites and facilities

    International Nuclear Information System (INIS)

    Slate, S.; Baker, R.; Benda, G.

    1995-01-01

    The objective of this conference is the broad international exchange of information on technologies, operations, management approaches, economics, and public policies in the critical areas of radioactive waste management and environmental remediation. The ICEM '95 technical program includes four parallel program tracks: Low/intermediate-level waste management; High-level waste, spent fuel, nuclear material management; Environmental remediation and facility D and D; and Major institutional issues in environmental management. Volume 2 contains approximately 200 papers divided into the following topical sections: Characterization of low and intermediate level waste; Treatment of low and intermediate level waste; LLW disposal and near-surface contaminant migration; Characterization and remediation of contaminated sites; and Decontamination and decommissioning technologies and experience. Papers have been processed separately for inclusion on the data base

  7. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    International Nuclear Information System (INIS)

    1997-09-01

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D ampersand D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D ampersand D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  9. Maywood Interim Storage Site: Annual site environmental report, Maywood, New Jersey, Calendar year 1986: Formerly Utilized Sites Remedial Action Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. The MISS is presently used for the storage of low-level radioactively contaminated soils. The MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action and environmental monitoring programs are being conducted at this site and at vicinity properties by Bechtel National, Inc., Project Management Contractor for FUSRAP. The monitoring program at the MISS measures thoron and radon gas concentrations in air; external gamma radiation levels; and thorium, uranium, and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/y) and to assess the potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, the maximally exposed individual would receive an annual external exposure approximately equivalent to 1% of the DOE radiation protection standard of 100 mrem/y. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles (due to greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the MISS that would result from radioactive materials present at the site would be indistinguishable from the dose the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the MISS is in compliance with the DOE radiation protection standard. 16 refs., 8 figs., 15 tabs.

  10. Annual status report on the inactive uranium mill tailings sites remedial action program

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Assessments of inactive uranium mill tailings sites in the United States led to the designation of 25 processing sites for remedial action under the provisions of Section 102(a) Public Law 95-604. The Department of Energy assessed the potential health effects to the public from the residual radioactive materials on or near the 25 sites; and, with the advice of the Environmental Protection Agency, the Secretary established priorities for performing remedial action. In designating the 25 sites and establishing the priorities for performing remedial action, the Department of Energy consulted with the Environmental Protection Agency, Nuclear Regulatory Commission, Department of the Interior, governors of the affected States, Navajo Nation, and appropriate property owners. Public participation in this process was encouraged. During Fiscal Year 1980, Department of Energy will be conducting surveys to verify the radiological characterization at the designated processing sites; developing cooperative agreements with the affected States; and initiating the appropriate National Environmental Policy Act documentation prior to conducting specific remedial actions.

  11. Environmental Restoration Remedial Actions Program Field Office Work Plan

    International Nuclear Information System (INIS)

    1989-02-01

    The Environmental Restoration Remedial Actions (ERRA) Program was established by DP to comply with regulations for characterization and cleanup of inactive waste sites. The program specifically includes inactive site identification and characterization, technology development and demonstration, remedial design and cleanup action, and postclosure activities of inactive radioactive, chemically hazardous, and mixed waste sites. It does not include facility decontamination and decommissioning activities; these are included in a parallel program, Environmental Restoration Decontamination and Decommissioning (ERD and D), also managed by DP. The ERRA program was formally established in fiscal year (FY) 1988 at the Hanford Site to characterize and remediate inactive waste sites at Hanford. The objectives, planned implementation activities, and management planning for the ERRA Program are contained in several planning documents. These documents include planning for the national program and for the Hanford Program. This summary describes the major documents and the role and purpose of this Field Office Work Plan (FOWP) within the overall hierarchy of planning documents. 4 refs., 7 figs., 8 tabs

  12. Environmental assessment of remedial action at the Mexican Hat uranium mill tailings site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1987-10-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. Remedial action must be performed in accordance with standards and with the concurrence of the US Nuclear Regulatory Commission and the Navajo Nation. The proposed action is to stabilize the tailings within the present tailings site by consolidating the tailings and associated contaminated soils into a recontoured pile. A radon barrier of compacted earth would be constructed over the pile, and various erosion control measures would be taken to assure the long-term stability of the pile. The no action alternative is also assessed in this document. 240 refs., 12 figs., 20 tabs

  13. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report

    International Nuclear Information System (INIS)

    1991-12-01

    The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado

  14. Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, William [Navarro Research and Engineering

    2016-05-23

    The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uranium processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.

  15. Maywood Interim Storage Site environmental report for calendar year 1992, 100 West Hunter Avenue, Maywood, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report describes the environmental surveillance program at the Maywood Interim Storage Site (MISS) and provides the results for 1992. Environmental monitoring of MISS began in 1984, when the site was assigned to DOE by Congress through the Energy and Water Development Appropriations Act and was placed under DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP was established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. MISS is part of a National Priorities List (NPL) site. The environmental surveillance program at MISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium in surface water, sediment, and groundwater. Additionally, chemical analysis includes metals and organic compounds in surface water and groundwater and metals in sediments. This program assists in fulfilling the DOE objective of measuring and monitoring effluents from DOE activities and calculating hypothetical doses to members of the general public. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. Environmental standards are established to protect public health and the environment. The radiological data for all media sampled support the conclusion that doses to the public are not distinguishable from natural background radiation.

  16. Environmental analysis and data report prepared for the environmental assessment of remedial action at the inactive uranium mill tailings site near Falls City, Texas

    International Nuclear Information System (INIS)

    1991-12-01

    This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Falls City, Texas. The Falls City EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the impacts of their actions on the environment. It examines the short- and long-term effects of the US Department of Energy's (DOE) remedial action for the Falls City site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement (EIS) will be prepared. If the impacts are not determined to be significant, the DOE may issue a Finding of No Significant Impact (FONSI) and implement the proposed action. The information and data presented in this report are for background purposes only and are not required as part of the NEPA decision-making process

  17. Environmental assessment of remedial action at the Lowman Uranium Mill Tailings Site near Lowman, Idaho

    International Nuclear Information System (INIS)

    1991-01-01

    This document assesses the environmental impacts of stabilization on site of the contaminated materials at the Lowman uranium mill tailings site. The Lowman site is 0.5 road mile northeast of the unincorporated village of Lowman, Idaho, and 73 road miles from Boise, Idaho. The Lowman site consists of piles of radioactive sands, an ore storage area, abandoned mill buildings, and windblown/waterborne contaminated areas. A total of 29.5 acres of land are contaminated and most of this land occurs within the 35-acre designated site boundary. The proposed action is to stabilize the tailings and other contaminated materials on the site. A radon barrier would be constructed over the consolidated residual radioactive materials and various erosion control measures would be implemented to ensure the long-term stability of the disposal cell. Radioactive constituents and other hazardous constituents were not detected in the groundwater beneath the Lowman site. The groundwater beneath the disposal cell would not become contaminated during or after remedial action so the maximum concentration limits or background concentrations for the contaminants listed in the draft EPA groundwater protection standards would be met at the point of compliance. No significant impacts were identified as a result of the proposed remedial action at the Lowman site

  18. Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex

    International Nuclear Information System (INIS)

    1995-08-01

    With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE's Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories

  19. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    International Nuclear Information System (INIS)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word

  1. Fernald Environmental Management Project 1995 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The Fernald site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This 1995 Site Environmental Report provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA.

  2. Fernald Environmental Management Project 1995 site environmental report

    International Nuclear Information System (INIS)

    1996-06-01

    The Fernald site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This 1995 Site Environmental Report provides the general public as well as scientists and engineers with the results from the site's ongoing Environmental Monitoring Program. Also included in this report is information concerning the site's progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA

  3. Assessing Environmental Sustainability of Remediation Technologies in a Life Cycle Perspective is Not So Easy

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Lemming, Gitte; Hauschild, Michael Zwicky

    2013-01-01

    Integrating sustainability into remediation projects has attracted attention from remediation practitioners, and life cycle assessment (LCA) is becoming a popular tool to address the environmental dimension. The total number of studies has reached 31 since the first framework for LCA of site reme...... about the environmental sustainability of remediation technologies.......Integrating sustainability into remediation projects has attracted attention from remediation practitioners, and life cycle assessment (LCA) is becoming a popular tool to address the environmental dimension. The total number of studies has reached 31 since the first framework for LCA of site...

  4. Risk-based economic decision analysis of remediation options at a PCE-contaminated site

    DEFF Research Database (Denmark)

    Lemming, Gitte; Friis-Hansen, P.; Bjerg, Poul Løgstrup

    2010-01-01

    by the remediation activities. More attention is increasingly being given to these secondary environmental impacts when evaluating remediation options. This paper presents a methodology for an integrated economic decision analysis which combines assessments of remediation costs, health risk costs and potential...... at a downstream groundwater well. Potential environmental impacts on the local, regional and global scales due to the site remediation activities are evaluated using life cycle assessments (LCA). The potential impacts on health and environment are converted to monetary units using a simplified cost model. A case......Remediation methods for contaminated sites cover a wide range of technical solutions with different remedial efficiencies and costs. Additionally, they may vary in their secondary impacts on the environment i.e. the potential impacts generated due to emissions and resource use caused...

  5. Environmental assessment of remedial action at the Shiprock uranium mill tailings site, Shiprock, New Mexico: Volume 1, Text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-05-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the shiprock uranium mill tailings site located on the Navajo Indian Reservation, one mile south of Shiprock, New Mexico. The site contains 72 acres of tailings and four of the original mill buildings. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated soils into a recontoured pile. A seven-foot-thick radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Three other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a more remote location. The no action alternative is also assessed. 99 refs., 40 figs., 58 tabs.

  6. Environmental assessment of remedial action at the Shiprock uranium mill tailings site, Shiprock, New Mexico: Volume 1, Text

    International Nuclear Information System (INIS)

    1984-05-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the shiprock uranium mill tailings site located on the Navajo Indian Reservation, one mile south of Shiprock, New Mexico. The site contains 72 acres of tailings and four of the original mill buildings. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated soils into a recontoured pile. A seven-foot-thick radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Three other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a more remote location. The no action alternative is also assessed. 99 refs., 40 figs., 58 tabs

  7. Radon impact at a remediated uranium mine site in Japan

    International Nuclear Information System (INIS)

    Ishimori, Yuu

    2011-01-01

    This paper mainly illustrates the radon impact of the closed uranium mine site remediated in 2007. The site remediated is the waste rock site located on the steep slope of a hill about 1.5 km upstream from a residential area along a main ravine. Major remedial action was to cover these waste rock yards with weathering granite soil. The radon flux density after remediation was intended to be 0.1 Bqm -2 s -1 in consideration with the natural background level around Ningyo-toge because there is no value of radon flux density regulated in Japan. Our action decreased the radon concentration in the site to natural background level, approximately from 10 to 40 Bqm -3 , although relatively high concentration in excess of 100 Bqm -3 was observed before remediation. On the other hand, our action did not decrease the radon concentrations around the site in general. This fact proved that the limited source such as waste rocks affected the radon concentrations at neighboring area only. The similar tendencies were also observed in other environmental data such as radon progeny concentrations. In conclusion, these findings proved that our remedial action was successful against radon. This fact will lead to more reasonable action plans for other closed mine sites. (author)

  8. Environmental restoration and remediation technical data management plan

    International Nuclear Information System (INIS)

    Key, K.T.; Fox, R.D.

    1994-02-01

    The tasks performed in the Remedial Investigation/Feasibility Study (RI/FS) work plan for each Hanford Site operable unit must meet the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et. al 1992). An extensive amount of data will be generated in the evaluation and remediation of hazardous waste sites at the Site. The data must be of sufficient quality, as they will be used to evaluate the need, select the method(s), and support the full remediation of the waste sites as stipulated in the Tri-Party Agreement. In particular, a data management plan (DMP) is to be included in an RI/FS work plan for managing the technical data obtained during the characterization of an operable unit, as well as other data related to the study of the operable unit. Resource Conservation and Recovery Act of 1976 (RCRA) sites are involved in the operable unit. Thus, the data management activities for the operable unit should be applied consistently to RCRA sites in the operable unit as well. This DMP provides common direction for managing-the environmental technical data of all defined operable units at the Hanford Site during the RI/FS activities. Details specific to an operable unit will be included in the actual work plan of that operable unit

  9. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  10. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  11. Environmental Restoration Remedial Action quality assurance requirements document

    International Nuclear Information System (INIS)

    1991-01-01

    This document defines the quality assurance requirements for the US Department of Energy-Richland Operations Office Environmental Restoration Remedial Action program at the Hanford Site. The Environmental Restoration Remedial Action program implements significant commitments made by the US Department of Energy in the Hanford Federal Facility Agreement and Consent Order entered into with the Washington State Department of Ecology and the US Environmental Protection Agency. This document combines quality assurance requirements from various source documents into one set of requirements for use by the US Department of Energy-Richland Operations Office and other Environmental Restoration Remedial Action program participants. This document will serve as the basis for developing Quality Assurance Program Plans and implementing procedures by the participants. The requirements of this document will be applied to activities affecting quality, using a graded approach based on the importance of the item, service, or activity to the program objectives. The Quality Assurance Program that will be established using this document as the basis, together with other program and technical documents, form an integrated management control system for conducting the Environmental Restoration Remedial Action program activities in a manner that provides safety and protects the environment and public health

  12. Comparison of approaches for assessing sustainable remediation of contaminated sites

    DEFF Research Database (Denmark)

    Søndergaard, Gitte Lemming; Binning, Philip John; Bjerg, Poul Løgstrup

    2017-01-01

    It has been estimated that there are approximately 2.5 million potentially contaminated sites in Europe. Of these, approximately 340,000 sites are thought to be contaminated to a degree that may require remediation (Joint Research Center, 2014). Until recently, remediation was considered...... to be inherently green or sustainable since it removes a contaminant problem. However, it is now broadly recognized that while remediation is intended to address a local environmental threat, it may cause other local, regional and global impacts on the environment, society and economy. Over the last decade......, the broader assessment of these criteria is occurring in a movement toward ‘sustainable remediation’. This paper aims to review the available methods for assessing the sustainability of remediation alternatives. Sustainable remediation seeks to reduce direct contaminant point source impacts on the environment...

  13. Waste management and environmental compliance aspects of a major remedial action program

    International Nuclear Information System (INIS)

    Devgun, J.S.; Beskid, N.J.

    1991-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) is one of four major programs undertaken by the US Department of Energy (DOE) to remediate various sites where radiological contamination remained from programs conducted during the nation's early years of research and development in atomic energy. The remedial actions at the 33 sites that are currently in FUSRAP could generate an estimated total volume of about 1.6 million cubic meters of radioactive waste. Waste disposal is currently estimated to represent about one-third of the total estimated $2.1 billion cost for the entire program over its total duration. Waste management aspects within the program are diverse. The sites range in size from small areas used only for storage operations to large-scale decommissioned industrial facilities where uranium processing and other operations were carried out in the past. Currently, four sites are on the National Priorities List for remediation. Remedial actions at FUSRAP sites have to satisfy the requirements of both the National Environmental Policy Act and the Comprehensive Environmental Response, Compensation and Liability Act, as amended. In addition, a number of federal, state, and local laws as well as Executive Orders and DOE Orders may be applicable or relevant to each site. Several key issues currently face the program, including the mixed waste issue, both from the environmental compliance (with Resource Conservation and Recovery Act) and the disposal technology perspectives. 7 refs., 1 tab

  14. Challenges for Deep Vadose Zone Remediation at the Hanford Site

    International Nuclear Information System (INIS)

    Morse, John G.; Charboneau, Briant L.; Lober, Robert W.; Triplett, Mark B.

    2008-01-01

    The 'deep vadose zone' is defined as the region below the practical depth of surface remedy influence (e.g., excavation or barrier). At the Hanford Site, this region of the Central Plateau poses unique challenges for characterization and remediation. The contaminants in this region also pose a potentially significant continuing or future threat to groundwater. Currently, deep vadose zone characterization efforts and remedy selection are spread over multiple waste site Operable Units and tank farm Waste Management Areas. A particular challenge for this effort is the situation in which past leaks from single-shell tanks have become commingled with discharges from nearby liquid disposal sites. The Hanford Site is working with all affected parties, including the Washington State Department of Ecology, the Environmental Protection Agency, DOE-RL, DOE-ORP, and multiple contractor organizations to develop a unified approach to conducting work and reaching remediation decisions. This effort addresses the complex and challenging technical and regulatory issues within this environment. A true inter-Agency effort is evaluating the best strategy or combination of strategies for focusing technical investigations, including treatability studies, and for attaining remedy decisions on the Hanford Site

  15. Integrated program management for major nuclear decommissioning and environmental remediation projects - 59068

    International Nuclear Information System (INIS)

    Lehew, John

    2012-01-01

    Document available in abstract form only. Full text of publication follows: CH2M HILL Plateau Remediation Company (CH2M HILL) is the U.S. Department of Energy's (DOE) contractor responsible for the safe, environmental cleanup of the Hanford Sites Central Plateau, sections of the Columbia River Corridor and the Hanford Reach National Monument. The 586-square-mile Hanford Site is located along the Columbia River in southeastern Washington, U.S.A. A plutonium production complex, housing the largest volume of radioactive and contaminated waste in the nation, with nine nuclear reactors and associated processing facilities, Hanford played a pivotal role in the nation's defense for more than 40 years, beginning in the 1940's with the Manhattan Project. Today, under the direction of the DOE, Hanford is engaged in one of the world's largest environmental cleanup project. The Plateau Remediation Contract is a 10-year project paving the way for closure of the Hanford Site. The site through its location, climate, geology and proximity to the Columbia River in combination with the results of past nuclear operations presents a highly complex environmental remediation challenge. The complexity is not only due to the technical issues associated with decommissioning nuclear facilities, remediating soil contamination sites, dispositioning legacy waste and fuel materials and integrating these with the deep vadose zone and groundwater remediation

  16. Innovative mathematical modeling in environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Gour T. [Taiwan Typhoon and Flood Research Institute (Taiwan); National Central Univ. (Taiwan); Univ. of Central Florida (United States); Gwo, Jin Ping [Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Siegel, Malcolm D. [Sandia National Laboratories, Albuquerque, NM (United States); Li, Ming-Hsu [National Central Univ. (Taiwan); ; Fang, Yilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhang, Fan [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Luo, Wensui [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Yabusaki, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2013-05-01

    There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models

  17. Innovative mathematical modeling in environmental remediation

    International Nuclear Information System (INIS)

    Yeh, Gour T.; Gwo, Jin Ping; Siegel, Malcolm D.; Li, Ming-Hsu; Fang, Yilin; Zhang, Fan; Luo, Wensui; Yabusaki, Steven B.

    2013-01-01

    There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co). The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models

  18. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lowman, Idaho: Remedial action selection report for the Lowman UMTRA project site, Idaho

    International Nuclear Information System (INIS)

    Matthews, M.L.; Nagel, J.

    1991-09-01

    The inactive uranium mill tailings site near Lowman, Idaho, was designated as one of 24 abandoned uranium tailings sites to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan and certify that the remedial action complies with the standards promulgated by the US Environmental Protection Agency (EPA). The remedial action plan (RAP), which includes this remedial action selection report (RAS), has been developed to serve a two-fold purpose. First, it describes the activities that are proposed by the DOE to accomplish long-term stabilization and control of residual radioactive materials at the inactive uranium processing site near Lowman, Idaho. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Idaho, and the NRC, becomes Appendix B of the Cooperative Agreement (No. DE-FC04-85AL20535) between the DOE and the State of Idaho

  19. Risk evaluation of remedial alternatives for the Hanford Site

    International Nuclear Information System (INIS)

    1994-09-01

    This document provides guidance on the process of risk evaluation of remedial alternatives (RERA) at the Hanford Site. Remediation activities at the Hanford Site are being conducted pursuant to the Comprehensive Environmental Restoration, Compensation, and Liability Act and the Resource Conservation and Recovery Act. This document identifies points in the remedial alternative selection process where risk assessment input is either required or desirable. For each of these points of application, the document identifies issues to consider and address, and suggests possible approaches, techniques, and appropriate levels of detail. The level of detail of a RERA is driven by the need to use risk as a criterion for selecting a remedial alternative. Such a document is needed to ensure that RERA is conducted in a consistent manner, and to prevent restating or creating guidance within each RERA

  20. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    International Nuclear Information System (INIS)

    Hunt, A.; Jones, G.; Nelson, K.

    1998-03-01

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete

  1. Laboratory/industry partnerships for environmental remediation

    International Nuclear Information System (INIS)

    Beskid, N.J.; Zussman, S.K.

    1994-01-01

    There are two measures of ''successful'' technology transfer in DOE's environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized

  2. Environmental remediation and waste management in the United States

    International Nuclear Information System (INIS)

    Muntzing, L.M.; Person, J.C.

    1994-01-01

    Environmental remediation of radioactively and chemically contaminated sites represents one of the most complex challenges of our age. It is currently a problem at nuclear weapons sites in the Unites States, but as the civilian nuclear industry everywhere deals with decommissioning and decontamination, the lessons learned from these early activities will be influential. The task is challenging for several reasons. First, standards governing remedial action are complex and constantly evolving. Second, unless contaminated material is to be stabilized in place, it must be removed and sent to another facility for storage and ultimate disposal. Third, the task is technically demanding. Those who undertake the challenge must be technically sophisticated, creative, and innovative. Fourth, the challenge is a risky one. Those who seek to remediate past contamination may find themselves exposed to expanding and unfair allegations of liability for that very contamination. Finally, there is often a basic crisis of public confidence regarding remediation efforts. This paper briefly outlines some of the liabilities surrounding environmental contracting and ways to minimize risks

  3. UMTRA [Uranium Mill Tailings Remedial Action] Project site management manual

    International Nuclear Information System (INIS)

    1990-10-01

    The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the ''Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs

  4. MGP site remediation: Working toward presumptive remedies

    International Nuclear Information System (INIS)

    Larsen, B.R.

    1996-01-01

    Manufactured Gas Plants (MGPs) were prevalent in the United States during the 19th and first half of the 20th centuries. MGPs produced large quantities of waste by-products, which varied depending on the process used to manufacture the gas, but most commonly were tars and polynuclear aromatic hydrocarbons. There are an estimated 3,000 to 5,000 abandoned MGP sites across the United States. Because these sites are not concentrated in one geographic location and at least three different manufacturing processes were used, the waste characteristics are very heterogeneous. The question of site remediation becomes how to implement a cost-effective remediation with the variety of cleanup technologies available for these sites. Because of the significant expenditure required for characterization and cleanup of MGP sites, owners and regulatory agencies are beginning to look at standardizing cleanup technologies for these sites. This paper discusses applicable cleanup technologies and the attitude of state regulatory agencies towards the use of presumptive remedies, which can reduce the amount of characterization and detailed analysis necessary for any particular site. Additionally, this paper outlines the process of screening and evaluating candidate technologies, and the progress being made to match the technology to the site

  5. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1993-06-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC)

  6. Environmental Remediation Data Management Tools

    International Nuclear Information System (INIS)

    Wierowski, J. V.; Henry, L. G.; Dooley, D. A.

    2002-01-01

    of survey data related to building or site decontamination, waste shipments and eventual unrestricted release of entire facilities. This presentation will show the utility of these products in a variety of decontamination, decommissioning and environmental remediation settings including a university research reactor decommissioning project

  7. Characterization of radioactively contaminated sites for remediation purposes

    International Nuclear Information System (INIS)

    1998-05-01

    Characterization of the contaminated site is essential before embarking on a programme for its remediation and ultimate restoration. Reliable and suitable data must be obtained regarding the distribution and physical, chemical and nuclear properties of all radioactive contaminants. Characterization data is necessary for assessing the associated radiation risks and is used in support of the required engineering design and project planning for the environmental restoration. In addition, continuing characterization can provide information regarding efficiency of the cleanup methods and influence possible redirection of work efforts. Similarly, at the end of the remediation phase, characterization and ongoing monitoring can be used to demonstrate completion and success of the cleanup process. The suggested methodology represents a contribution attempting to solve the issue of preremediation characterization in a general manner. However, a number of difficulties might make this methodology unsuitable for general application across the diverse social, environmental and political systems in the IAEA Member States. This TECDOC covers the methodologies used to characterize radioactively contaminated sites for the purpose of remediating the potential sources of radiation exposure and assessing the hazards to human health and the environment

  8. Operable Unit 3: Proposed Plan/Environmental Assessment for interim remedial action

    International Nuclear Information System (INIS)

    1993-12-01

    This document presents a Proposed Plan and an Environmental Assessment for an interim remedial action to be undertaken by the US Department of Energy (DOE) within Operable Unit 3 (OU3) at the Fernald Environmental Management Project (FEMP). This proposed plan provides site background information, describes the remedial alternatives being considered, presents a comparative evaluation of the alternatives and a rationnale for the identification of DOE's preferred alternative, evaluates the potential environmental and public health effects associated with the alternatives, and outlines the public's role in helping DOE and the EPA to make the final decision on a remedy

  9. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    International Nuclear Information System (INIS)

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764

  10. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  11. Critical review of decision support tools for sustainability assessment of site remediation options.

    Science.gov (United States)

    Huysegoms, Lies; Cappuyns, Valérie

    2017-07-01

    . These elements come together in a framework, drafted for this study, containing six criteria covering the environmental, economic, social, time, uncertainty aspects and user friendliness of a sustainable site remediation. The main remarks uncovered by this review are the imbalance of used indicators still expressing a strong preference for the environmental aspect at the expense of the economic and social aspects of sustainability, the lack of consistency in the terminology used within the field and the failure in adapting released tools to recent legislation or scientific advancements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado

    International Nuclear Information System (INIS)

    1994-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC section 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site

  13. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    International Nuclear Information System (INIS)

    Deeb, Rula A.; Hawley, Elisabeth L.

    2013-01-01

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate

  14. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    Energy Technology Data Exchange (ETDEWEB)

    Deeb, Rula A.; Hawley, Elisabeth L. [ARCADIS, U.S., 2000 Powell St., 7th Floor, Emeryville, California 94608 (United States)

    2013-07-01

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed

  15. Topical Day on Site Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, H [ed.

    1996-09-18

    Ongoing activities at the Belgian Nuclear Research Centre relating to site remediation and restoration are summarized. Special attention has been paid to the different phases of remediation including characterization, impact assessment, evaluation of remediation actions, and execution of remediation actions.

  16. Environmental assessment of remedial action at the Lakeview Uranium Mill Tailings Site, Lakeview, Oregon: Volume 2, Appendices

    International Nuclear Information System (INIS)

    1985-04-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Lakeview uranium mill tailings site located one mile north of Lakeview, Oregon. The site covers 256 acres and contains 30 acres of tailings, 69 acres of evaporation ponds, and 25 acres of windblown materials. Remedial actions must be performed in accordance with standards and with the concurrence of the Nuclear Regulatory Commission. Three alternatives have been addressed in this document. The first alternative (the proposed action) is relocation of all contaminated materials to the Collins Ranch site. The contaminated materials would be consolidated into an embankment constructed partially below grade and covered with radon protection and erosion protection covers. A second alternative would relocate the tailings to the Flynn Ranch site and dispose of the contaminated materials in a slightly below grade embankment. A radon protection and erosion protection cover system would also be installed. The no-action alternative is also assessed. Stabilization in place is not considered due to potential seismic and geothermal hazards associated with the current tailings site, and the inability to meet EPA standards. Volume 2 contains 11 appendices

  17. Environmental assessment of Wismut uranium sites

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The German government is facing one of the most significant environmental challenges ever: The environmental reconstruction and remediation of contaminated mining sites of the former East German/Soviet uranium operation known as Wismut. Political pressures at the federal and community levels mandate that the government do something soon, even if it demonstrates its long-term commitment to solving the problems by remediating only a small portion of the overall situation. The government continues to address the technical and economic issues of existing environmental problems, including the disposition of Wismut sites, as well as new concerns such as the feasibility of using underground mines in eastern Germany as potential burial grounds for nuclear waste material

  18. Site environmental report for calendar year 1996

    International Nuclear Information System (INIS)

    1997-06-01

    This Annual Site Environmental Report presents information pertaining to environmental activities conducted during calendar year 1996 at the U.S. Department of Energy (DOE) Grand Junction Office (GJO) facility in Grand Junction, Colorado. WASTREN-Grand Junction, the Facility Operations and Support contractor for the GJO, prepared this report in accordance with the requirements of DOE Order 5400.1, General Environmental Protection Program, and supplemental guidance from DOE Headquarters. This report applies specifically to the GJO facility; the Monticello Mill Tailings Site Environmental Summary for Calendar Year 1996 was prepared as a separate document. Primary GJO activities involve laboratory analysis of environmental samples from GJO and other DOE sites and site remediation of contamination caused by previous uranium mill operations. Activities at the GJO are conducted in compliance with applicable Federal, State, and local regulations and requirements and as directed by applicable DOE orders. Environmental monitoring is performed on air emissions, sewer effluent, surface water and groundwater, and wetlands restoration. Wastes are generated from the Analytical Laboratory, site remediation, and facility operation

  19. Program management strategies for following EPA guidance for remedial design/remedial action at DOE sites

    International Nuclear Information System (INIS)

    Hopper, J.P.; Chew, J.R.; Kowalski, T.E.

    1991-01-01

    At the US Department of Energy (DOE) facilities, environmental restoration is being conducted in accordance with Federal Facilities Compliance Agreements (or Interagency Agreements). These agreements establish a cooperative working relationship and often define roles, responsibilities and authorities for conduct and oversight of the Remedial Action Programs. The US Environmental Protection Agency (EPA) has guidelines on how to initiate and perform remedial actions for sites they are remediating under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) as amended by the Superfund Amendments and Re-Authorization Act (SARA). This paper addresses some of the difference and commonalities between the DOE project management procedures and EPA guidance documents. This report covers only the RD/RA phase of environmental restoration. On the surface, there are many apparent differences between the DOE and EPA project management processes. Upon closer review, however, many of the differences are the result of applying different terminology to the same phase of a project. By looking for the similarities in the two processes rather than hunting for differences, many communication problems are avoided. Understanding both processes also aids in figuring out when, how and to what extent EPA should participate in the RD/RA phase for DOE lead cleanup activities. The DOE Remedial Design and Remedial Action process is discussed in a stepwise manner and compared to the EPA process. Each element of the process is defined. Activities common to both the EPA and DOE are correlated. The annual DOE budget cycle for remediation projects and the four-year cycle for appropriation of remediation funds are discussed, and the constraints of this process examined. DOE orders as well as other requirements for RD/RA activities are summarized and correlated to EPA regulations where this is possible

  20. Assessment of international remedial technologies for application to Superfund sites

    International Nuclear Information System (INIS)

    Sanning, D.E.

    1990-01-01

    This paper presents some of the logical arguments for conducting research on remedial technologies for contaminated land and groundwater at an international level. It gives information on many of the international organizations that are involved in environmental programs, but it especially gives emphasis to the NATO-CCMS pilot study on Demonstration of Remedial Action Technologies for Contaminated Land and Groundwater. The purpose of the study is to field demonstrate and evaluate new/innovative technologies for remedial action at uncontrolled hazardous waste sites. This study is a logical international extension of the US EPA SITE program. It offers the opportunity to obtain a multiple data base on various remedial action unit processes without any single country having to commit a disproportionate amount of its internal resources to any specific activity. Each participating country provides the necessary resources for those demonstrations which they are contributing to the study. Sites are selected by a majority vote of all participating countries (no country is permitted to vote for its own sites). The study is a 5 year program with participants from Canada, Denmark, Federal Republic of Germany, France, Greece, Italy, Japan, the Netherlands, Norway, Spain, and the US. The need for cost-effective remedial action technologies for hazardous waste sites is a problem of all industrialized countries. The need to build a knowledge base of emerging remedial technologies was the impetus behind the USEPA's lead role and commitment to this pilot study

  1. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  2. Pyramid mountain diesel fuel storage site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Brolmsa, M.; Sandau, C. [Jacques Whitford Environment Ltd., Burnaby, BC (Canada)

    2005-07-01

    Remediation activities during the decommissioning of a microwave tower facility where a tram line was used to transfer diesel fuel from the base of a mountain to its summit were described. As the site was leased from Parks Canada, federal guidelines were used to assess levels of contamination. Underground storage tanks (USTs) used for diesel storage had been replaced with aboveground storage tanks (AST) in 1994. Remediation was also complicated by the remote location and altitude of the site, as well as by extreme weather conditions. Hand auguring and test pitting were used at both the summit and base to allow characterization and preliminary delineation of impacted soils. A heavy lift helicopter was used to place demolition and excavation equipment on the summit. An excavator was used to remove hydrocarbon impacted soils. Following the remedial excavation for the summit diesel AST, residual soil impacts in excess of the applicable remediation guidelines were present at the bottom of the tank nest and under a floor slab. An environmental liner was installed, and a quantitative screening level risk assessment demonstrated the low level of risk for the area, as well as for waste oil impacted soils on the slope below the summit. Contaminants of potential concern were barium, zinc, naphthalene, and petroleum hydrocarbon fractions F1-F4. It was concluded that there are now no unacceptable ecological or human risks from residual impacts at the site. 1 tab., 19 figs.

  3. The role of Columbia Basin College in training technicians for environmental remediation at the DOE Hanford Site

    International Nuclear Information System (INIS)

    Ferrigno, K.F.

    1991-01-01

    Community colleges have the ability to play a vital role in the environmental remediation training process for DOE hazardous waste sites. Columbia Basin College in Pasco, Washington is presently involved in such training through numerous workshops offered primarily for employees at the Hanford DOE site, and a two-year associate of applied science degree in Hazardous Materials Management Technology. The workshops are oriented towards specific applied technical training (40 Hour OSHA/80 Hour WISHA, Hazardous/Radioactive Waste Video conference, and others) whereas the degree program provides a broad background in the skills needed for environmental technicians (16 hazmat courses plus support sciences and humanities). The degree program, combined with hazmat work experience, should provide the necessary background for project supervision as well as for skilled field technicians

  4. Almost remediation of saltwater spills at E and P sites

    International Nuclear Information System (INIS)

    Carty, D.J.

    1995-01-01

    At exploration and production (E and P) sites crude spills restricted to topsoil are often self-remediating, but salt spills rarely are. Most soils naturally biodegrade crude. Without appropriate human intervention, brine spills can result in decades of barren land and seriously degrade surface water and aquifers. Servicing the E and P industry are remediation practitioners with a limited array of often expensive remediation concepts and materials which they hope will work, and sometimes do. Unfortunately, many remediation practitioners are unfamiliar with, or disregard, the natural physical, chemical, and biotic complexity of the soil and aquatic media. All too often this results in exacerbating injury to an already damaged ecosystem. Likewise, important cultural factors such as public relations, environmental regulations, property rights, and water rights are also overlooked until after implementation of an ill-advised or illegal remediation design has been initiated. A major issue is determining what constitutes ''successful'' remediation of a brine spill. Environmental managers have long sought one or two universally applicable fast and cheap amendment/treatment protocols for all their diverse multi-state salt affected spill scenarios. This presentation describes aspects of common spill-affected ecosystems which must be considered to achieve ''successful'' remediation

  5. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado. Draft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC).

  6. Integrating GIS and GPS in environmental remediation oversight

    International Nuclear Information System (INIS)

    Kaletsky, K.; Earle, J.R.; Schneider, T.A.

    1996-01-01

    This paper presents findings on Ohio EPA Office of Federal Facilities Oversight's (OFFO) use of GIS and GPS for environmental remediation oversight at the U.S. Department of Energy's (DOE) Fernald Site. The Fernald site is a former uranium metal production facility within DOE's nuclear weapons complex. Significant uranium contamination of soil and groundwater is being remediated under state and federal regulations. OFFO uses GIS/GPS to enhance environmental monitoring and remediation oversight. These technologies are utilized within OFFO's environmental monitoring program for sample location and parameter selection, data interpretation and presentation. GPS is used to integrate sample data into OFFO's GIS and for permanently linking precise and accurate geographic data to samples and waste units. It is important to identify contamination geographically as all visual references (e.g., buildings, infrastructure) will be removed during remediation. Availability of the GIS allows OFFO to perform independent analysis and review of DOE contractor generated data, models, maps, and designs. This ability helps alleviate concerns associated with open-quotes black boxclose quotes models and data interpretation. OFFO's independent analysis has increased regulatory confidence and the efficiency of design reviews. GIS/GPS technology allows OFFO to record and present complex data in a visual format aiding in stakeholder education and awareness. Presented are OFFO's achievements within the aforementioned activities and some reasons learned in implementing the GIS/GPS program. OFFO's two years of GIS/GPS development have resulted in numerous lessons learned and ideas for increasing effectiveness through the use of GIS/GPS

  7. Environmental remediation of an Alstom grid industrial site (France) - 59270

    International Nuclear Information System (INIS)

    Romero, Stephanie

    2012-01-01

    ALSTOM Grid is the project owner of the remediation of a former industrial site, located in Saint-Ouen, north of Paris. The industrial activity (power transformer production) started in 1921 and stopped in 2006. The type of pollution is linked with the former activity. It's an organic pollution: hydrocarbon, PCB and chlorinated volatile organic compounds. The clean-up concerns soil and groundwater. The main specificity of the project is that the remediation is operated inside the existing industrial buildings which must be kept in place and restituted to the owner after the works. The treatment of soil requires excavating soil up to 9 m deep (1 m under the level of the groundwater) inside the buildings. As a consequence, some impressive devices were set up to ensure the stability of the buildings during the clean-up, like support structures of the foundations and strengthening of the building fronts. In the same time, it has to be pointed out that great diversity of clean-up actions is performed on the site: the soil is excavated to be treated on site (bioremediation or chemical treatment) or off site. The treatment of groundwater consists of pumping the oil staying on the surface and oxidizing the dissolved pollution. This project is probably the first experience of this scale in France with multi-contaminated soil and groundwater decontamination in keeping and reinforcing the existing buildings. (authors)

  8. Methods for the analysis and remediation of contaminated sites

    International Nuclear Information System (INIS)

    Mariani, M.; Bemporad, E.; Berardi, S.; Marino, A.; Paglietti, F.

    2008-01-01

    In Italy, in recent years, the number of contaminated sites has multiplied disproportionately. In essence, contamination is caused by accidental spills or intentional discharge of pollutants into the soils or waters from industrial activities, or non-controlled deposits of urban and/or industrial waste, mostly part toxic and harmful. Contaminated sites clearly pose risks to human health and the environment; hence the need to remediate these sites. The remediation of soil and water and the restoration of degraded areas are complex operations requiring specific technical and scientific know-how, including knowledge of the methodologies and tools required to tackle problems arising during the different phases of the remediation process. These include, in particular: - health and environmental risk assessment procedures for the quantification of risks to human health (general population and workers) and the environment from a contaminated site; - remote sensing and the Geographical Information Systems (GIS), which are a fundamentally important IT support for each phase of planning and management of remediation interventions; - criteria for the management of sites contaminated by asbestos, a highly carcinogenic and therefore hazardous substance that was widely used in the past due to its particular mechanical and thermal characteristics; - analysis of the issues relating to waste management in contaminated sites; - relationship between safety procedures for workers and the general population. Identification of the best available techniques for an efficient, integrated management of contaminated sites, which will also take into account the health protection of workers and of the general population living near such sites

  9. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan. Volume 4 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Energy's (DOE) is preparing this ''Hanford Site Comprehensive Land Use Plan'' (Comprehensive Plan), Appendix M to address future land uses for the Hanford Site. The DOE has integrated this land-use planning initiative with the development of the HRA-EIS to facilitate and expedite land-use and remediation decision making, reduce time and cost of remediation, and optimize the usefulness of the planning process. The HRA-EIS is being developed to evaluate the potential environmental impacts associated with remediation, create a remedial baseline for the Environmental Restoration Program, and provide a framework for future uses at the Hanford Site. This Comprehensive Plan identifies current assets and resources related to land-use planning, and provides the analysis and recommendations for future land sues and accompanying restrictions at the Hanford Site over a 50-year period. This Comprehensive Plan relies on the analysis of environmental impacts in the HRA-EIS. The National Environmental Policy Act of 1969 (NEPA) Record of Decision (ROD) issued for the HRA-EIS will be the decision process for finalization and adoption of this Comprehensive Plan. The HRA-EIS and this Comprehensive Plan will provide a basis for remediation decisions to be identified and contained in site- and area-specific Comprehensive Environmental Response, Compensation and Liability Act of 1980 ROD

  10. Harnessing federal environmental expertise and focusing it on streamlining characterization and remediation at DOE's Hanford Site

    International Nuclear Information System (INIS)

    Erickson, J.K.; Kane, D.A.; McGarry, T.A.

    1993-03-01

    At the US Department of Energy, Richland Field Office (DOE-RL) Hanford Site, environmental restoration is conducted under a Tri-Party Federal Facility Agreement between DOE-RL, the Environmental Protection Agency (EPA) and the Washington State Department of Ecology (Ecology). One result of a dispute resolution was the requirement to conduct an independent review of the policies, procedures, processes, and work practices associated with remedial investigation/feasibility study (RI/FS) activity at Hanford with a goal of reducing it to 30 months. Sixteen experienced and respected federal Environmental Restoration Program/Project Managers were brought to Hanford for a two-week intensive review of the program. This paper outlines the reasons for this tactic, the mechanics of funding the process, and the benefits of this unique approach

  11. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Volume 2 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    This appendix discusses the scope of actions addressed in the Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan. To address the purpose and need for agency action identified in Chapter 2.0 of the HRA-EIS, the scope includes an evaluation of the potential environmental impacts associated with the remedial actions to be conducted by the US Department of Energy (DOE) under the provisions of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1989). These remedial actions would bring the Hanford Site into compliance with the applicable requirements of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Resource Conservation and Recovery Act of 1976 (RCRA). The DOE program responsible for conducting remedial actions at the Hanford Site is referred to as the Richland Environmental Restoration (ER) Project. The Richland ER Project encompasses the following projects: radiation area remedial actions and underground storage tanks (UST); RCRA closures; single-shell tank (SST) closures; past-practice waste site operable unit (source and groundwater) remedial actions; surplus facility decommissioning; and waste storage and disposal facilities

  12. From uranium mine to fishing lake: Environmental remediation in France’s Limousin region

    International Nuclear Information System (INIS)

    Dixit, Aabha

    2016-01-01

    Artificial lakes, fishing spots and solar farms dot the landscape in France’s Limousin region, where uranium operations have gradually come to an end. This transformation would not have been possible without stakeholder involvement, transparent processes and well-coordinated activities, said Yves Marignac, the coordinator of the French Pluralistic Expert Group (GEP), involved with remediation activities in the region. The local population had an important consultative role during the environmental remediation programme, and they now use the former mining sites for recreation. “A consultative approach to remediation management is key to having the people’s support when we had to deal with the closing of the uranium mining sites in Limousin,” Marignac said. Uniquely, the non-governmental organizations (NGOs) were the driving force behind broadening the scope of environmental remediation, he added. An important factor for any successful remediation project is public engagement in the decision-making process. The local communities have the most interest in successful environmental remediation, and they need to get satisfactory answers to questions on why, when and how will it impact them. “Their involvement is vital and necessary to ensure technically sound and socially acceptable decisions,” Marignac said

  13. From uranium mine to fishing lake: Environmental remediation in France’s Limousin region

    International Nuclear Information System (INIS)

    Dixit, Aabha

    2016-01-01

    Artificial lakes, fishing spots and solar farms dot the landscape in France’s Limousin region, where uranium operations have gradually come to an end. This transformation would not have been possible without stakeholder involvement, transparent processes and well-coordinated activities, said Yves Marignac, the coordinator of the French Pluralistic Expert Group (GEP), involved with remediation activities in the region. The local population had an important consultative role during the environmental remediation programme, and they now use the former mining sites for recreation. “A consultative approach to remediation management is key to having the people’s support when we had to deal with the closing of the uranium mining sites in Limousin,” Marignac said. Uniquely, the non-governmental organizations (NGOs) were the driving force behind broadening the scope of environmental remediation, he added. An important factor for any successful remediation project is public engagement in the decision-making process. The local communities have the most interest in successful environmental remediation, and they need to get satisfactory answers to questions on why, when and how will it impact them. “Their involvement is vital and necessary to ensure technically sound and socially acceptable decisions,” Marignac said.

  14. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    This report provides a summary of the conceptual design and other information necessary to understand the proposed remedial action at the expanded Canonsburg, Pennsylvania site. This design constitutes the current approach to stabilizing the radioactively contaminated materials in place in a manner that would fully protect the public health and environment. This summary is intended to provide sufficient detail for the reader to understand the proposed remedial action and the anticipated environmental impacts. The site conceptual design has been developed using available data. In some cases, elements of the design have not been developed fully and will be made final during the detailed design process.

  15. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume II. Appendices

    International Nuclear Information System (INIS)

    1983-07-01

    This report provides a summary of the conceptual design and other information necessary to understand the proposed remedial action at the expanded Canonsburg, Pennsylvania site. This design constitutes the current approach to stabilizing the radioactively contaminated materials in place in a manner that would fully protect the public health and environment. This summary is intended to provide sufficient detail for the reader to understand the proposed remedial action and the anticipated environmental impacts. The site conceptual design has been developed using available data. In some cases, elements of the design have not been developed fully and will be made final during the detailed design process

  16. What's the point? The contribution of a sustainability view in contaminated site remediation.

    Science.gov (United States)

    Anderson, Robert; Norrman, Jenny; Back, Pär-Erik; Söderqvist, Tore; Rosén, Lars

    2018-07-15

    Decision support tools (DST) are often used in remediation projects to aid in the complex decision on how best to remediate a contaminated site. In recent years, the sustainable remediation concept has brought increased attention to the often-overlooked contradictory effects of site remediation, with a number of sustainability assessment tools now available. The aim of the present study is twofold: (1) to demonstrate how and when different assessment views affect the decision support outcome on remediation alternatives in a DST, and (2) to demonstrate the contribution of a full sustainability assessment. The SCORE tool was used in the analysis; it is based on a holistic multi-criteria decision analysis (MCDA) approach, assessing sustainability in three dimensions: environmental, social, and economic. Four assessment scenarios, compared to a full sustainability assessment, were considered to reflect different possible assessment views; considering public and private problem owner perspectives, as well as green and traditional assessment scopes. Four real case study sites in Sweden were analyzed. The results show that the decision support outcome from a full sustainability assessment most often differs to that of other assessment views, and results in remediation alternatives which balance trade-offs in most of the scenarios. In relation to the public perspective and traditional scope, which is seen to lead to the most extensive and expensive remediation alternatives, the trade-off is related to less contaminant removal in favour of reduced negative secondary effects such as emissions and waste disposal. Compared to the private perspective, associated with the lowest cost alternatives, the trade-off is higher costs, but more positive environmental and social effects. Generally, both the green and traditional assessment scopes miss out on relevant social and local environmental secondary effects which may ultimately be very important for the actual decision in a

  17. Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China.

    Science.gov (United States)

    Song, Yinan; Hou, Deyi; Zhang, Junli; O'Connor, David; Li, Guanghe; Gu, Qingbao; Li, Shupeng; Liu, Peng

    2018-01-01

    Green and sustainable remediation (GSR) has become a global trend in the contaminated land remediation field. Growing numbers of countries have adopted GSR procedures published in regulatory and/or technical guidance. China is fast becoming one of the largest remediation markets in the world, and is beginning to engage with GSR. Among other efforts, a taskforce is currently developing the first Chinese technical standard on GSR. This paper presents the context positioning and development of a sustainable remediation assessment indicator set for China. This sustainability indicator set was formed based on existing sustainable remediation guidelines and literature. LCA was used to evaluate environmental impacts, and the results combined with social and economic appraisal via MCA. The indicator set was applied to a remediation 'mega-site' in China. The results showed that compared to excavation and landfill, an alternative treatment strategy of soil washing, thermal desorption and S/S brought about relatively less waste generation, better worker safety, and preferable local impacts, leading to higher scores in the environmental and social-economic domains. However, the social-economic scores were limited by a lack of public engagement. The results of the case study have shown that the indicator set is valid, with lessons learnt and suggestions for improvement discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Remediation of uranium contaminated sites: clean-up activities in Serbia

    International Nuclear Information System (INIS)

    Raicevic, S.; Raicevic, J. . E-mail address of corresponding author: raich@beotel.yu; Raicevic, S.)

    2005-01-01

    One of the serious environmental problems in Serbia represent sites contaminated with depleted uranium (DU) during past war activities. According to UNEP reports and our findings there are two types of contamination: (i) localized points of high, concentrated contamination where DU penetrators enter the soil, and (ii) low level of widespread DU contamination, which indicates that during the conflict DU dust was dispersed into the environment. Remediation of these sites is an urgent need because they represent a permanent threat to the population living in this area. Here we give a brief description of approaches commonly used in remediation of DU contaminated sites, and an overview of current clean-up activities performed in Serbia. (author)

  19. Environmental remediation activities at WISMUT GmbH, Germany

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Takahashi, Kuniaki; Miyasaka, Yasuhiko; Yamana, Hajimu

    2007-01-01

    The WISMUT GmbH has carried out environmental remediation activities since 1991 in former GDR (German Democratic Republic) to rehabilitate the environment and landscape which have been adversely affected by decades of unrestrained mining and processing of uranium ores. It is worthy of being mentioned especially that WISMUT GmbH's sites including waste rock dump, mill tailings pond, open pit mine and water treatment facilities with an area of 3,700ha have been rehabilitated practically and extensively, and these activities are planned to terminate in 2015 except for the water treatment. For safety assessment after remediation, the value of 1mSv/y (in excess of the background level) is applied to as an individual effective dose, from the recommendation of ICRP (International Commission on Radiological Protection). This report shows a summary of environmental remediation activities carried out by the WISMUT GmbH and related regulatory laws. (author)

  20. Evaluation of remedial alternatives for the Solar Ponds Plume, Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Hranac, K.C.

    1998-01-01

    This paper describes the process used to select a remedial alternative for handling contaminated groundwater emanating from the Solar Evaporation Ponds (Solar Ponds) at the Rocky Flats Environmental Technology Site (RFETS) and prevent it from reaching the nearest surface water body, North Walnut Creek. Preliminary results of field investigations conducted to provide additional information for the alternatives analysis are also presented. The contaminated groundwater is referred to as the Solar Ponds Plume (SPP). The primary contaminants in the SPP are nitrate and uranium; however, some metals exceed the site action levels at several locations and volatile organic compounds, originating from other sources, also have been detected. Currently the SPP, local surface water runoff, and infiltrated precipitation are collected by a trench system located downgradient of the Solar Ponds and pumped to three storage tanks. The water (two to three million gallons annually) is then pumped to an on-site treatment plant for evaporation at an approximate cost of $7.57 per liter

  1. Options Evaluation for Remediation of the Gunnar Site Using a Decision- Tree Approach

    Energy Technology Data Exchange (ETDEWEB)

    Yankovich, Tamara L. [International Atomic Energy Agency, P.O. Box 100, 1400 Vienna (Austria); Hachkowski, Andrea [CH2M Hill Canada Limited, 1305 Kenaston Blvd, Winnipeg, Manitoba, R3P 2P2 (Canada); Klyashtorin, Alexey [Saskatchewan Research Council, 15 Innovation Blvd no.125, Saskatoon, Saskatchewan, S7N 2X8 (Canada)

    2014-07-01

    Current best practice in the nuclear industry involves proactive planning of activities from cradle-to-grave over the entire nuclear life cycle in accordance with national requirements and international guidance. This includes the development of detailed decommissioning plans (DDP) at an early stage to facilitate proactive, responsible decision-making as activities are being planned. It should be noted, however, that the current approach may not be applicable to historic nuclear legacy sites, such as abandoned uranium mines and mills, which had operated in the past under less stringent regulatory regimes. In such cases, records documenting past activities are often not available and monitoring data may not have been collected, thereby limiting knowledge of impacts related to past activities. This can lead to challenges in gaining regulatory and funding approvals related to the remediation of such sites, especially given the costs that can be associated with remediation and the uncertainties in characterizing the existing situation. The Gunnar Site, in northern Saskatchewan, is an example of an abandoned uranium mine/mill site, which was operated between the late 1950's to early 1960's under a different regulatory regime than today. Due to the lack of monitoring data and records for the site, and the corresponding uncertainties, a number of precedent-setting approaches have been developed and applied, as part of the environmental impact assessment (EIA) process. Specifically, unlike traditional environmental assessments for planned and operating facilities, it was not possible to identify a preferred and alternative remedial option. Instead, a step-wise decision-tree approach has been developed to identify all potentially feasible remedial options and to map out key decision points, during the licensing phase of the project (following approval of the environmental assessment), when final remedial options will be selected. The presentation will provide

  2. Site characterisation and monitoring for environmental remediation

    International Nuclear Information System (INIS)

    Adsley, Ian; Davies, Michael; Murley, Robert; Pearman, Ian; Harman, Nicholas; Proctor, Lorna; Armitage, Jack; Beddow, Helen

    2007-01-01

    Available in abstract form only. Full text of publication follows: Radioactive contamination of nuclear and mineral processing sites can be very varied. Early work in the extraction of uranium and thorium led to the disposal of large amounts of waste containing a variety of daughter radioisotopes. Later, the development of nuclear weapon programs led to large scale processing of uranium and thorium ores, physical separation of isotopes, and the initiation of nuclear fission with the resulting production of fission product radionuclides and activated metals. Weapons testing and reprocessing of reactor fuel again led to the release of fission and activation products, together with radioelements from the chemistry of fuel extraction. Finally the recovery of oil and gas reserves have once again led to renewed interest in NORM (naturally occurring radioactive materials) in the form of Pb-210/Po-210 scales in gas pipelines and Ra-226/Ra-228 in oil pipelines. Methods of monitoring for the contamination generated from all of these processes are considered together with recommended monitoring options for contamination products using gamma, beta and alpha measuring techniques. Specific examples of several site characterisation and monitoring projects are given - covering site investigation through to in-situ and on-site monitoring during the actual remediation. Many of the projects described are of a large scale, typically involving many thousands of tons of waste material. The rapid identification and sentencing into the relevant waste categories is essential in support of on-site civil engineering processes. Consideration of tailoring the monitoring process to achieve such high throughput rates is given. (authors)

  3. Life cycle assessment (LCA) as a decision-suppport tool for the evaluation of environmental impacts of site remediation on the global, regional and local scale

    DEFF Research Database (Denmark)

    Lemming, Gitte; Bulle, C.; Margni, Manuele

    2010-01-01

    Life cycle assessment (LCA) was used to compare the environment al impacts of three alternatives for remediating a TCE-contaminated site: (i) enhanced reductive dechlorination (ERD); (ii) in situ thermal desorption (ISTD) and (iii) excavation with off-site soil treatment. In addition......, the remediation alternatives were compared to a no action scenario, where only monitoring and natural attenuation takes place. A numerical reactive fracture model was used to predict the timeframes for the ERD and the no action scenarios. Moreover, the model was used to estimate the mass discharge of TCE...... of the LCA showed that of the three remediation methods compared, the ERD had the lowest total environmental impacts, even though it had significant primary impacts due to its long timeframe. The environmental impacts of ERD were comparable or only slightly higher than those of the no action scenario. ISTD...

  4. French uranium mining sites remediation

    International Nuclear Information System (INIS)

    Roche, M.

    2002-01-01

    Following a presentation of the COGEMA's general policy for the remediation of uranium mining sites and the regulatory requirements, the current phases of site remediation operations are described. Specific operations for underground mines, open pits, milling facilities and confining the milled residues to meet long term public health concerns are detailed and discussed in relation to the communication strategies to show and explain the actions of COGEMA. A brief review of the current remediation situation at the various French facilities is finally presented. (author)

  5. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  6. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description

  7. CERCLA-linked environmental impact and benefit analysis: Evaluating remedial alternatives for the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    McNally, Amanda D; Fitzpatrick, Anne G; Mirchandani, Sera; Salmon, Matthew; Edwards, Deborah A

    2018-01-01

    This analysis focused on evaluating the environmental consequences of remediation, providing indicators for the environmental quality pillar of 3 "pillars" of the Portland Harbor Sustainability Project (PHSP) framework (the other 2 pillars are economic viability and social equity). The project an environmental impact and benefit analysis (EIBA) and an EIBA-based cost-benefit analysis. Metrics developed in the EIBA were used to quantify and compare remedial alternatives' environmental benefits and impacts in the human and ecological domains, as a result of remedial actions (relative to no action). The cost-benefit results were used to evaluate whether remediation costs were proportionate or disproportionate to the environmental benefits. Alternatives B and D had the highest overall benefit scores, and Alternative F was disproportionately costly relative to its achieved benefits when compared to the other remedial alternatives. Indeed, the costlier alternatives with larger remedial footprints had lower overall EIBA benefit scores-because of substantially more air emissions, noise, and light impacts, and more disturbance to business, recreational access, and habitat during construction-compared to the less costly and smaller alternatives. Put another way, the adverse effects during construction tended to outweigh the long-term benefits, and the net environmental impacts of the larger remedial alternatives far outweighed their small incremental improvements in risk reduction. Results of this Comprehensive Environmental Response Compensation and Liability Act (CERCLA)-linked environmental analysis were integrated with indicators of economic and social impacts of remediation in a stakeholder values-based sustainability framework. These tools (EIBA, EIBA-based cost-benefit analysis, economic impact assessment, and the stakeholder values-based integration) provide transparent and quantitative evaluations of the benefits and impacts associated with remedial alternatives

  8. Remedial actions at the former Union Carbide Corporation uranium mill sites, Rifle, Garfield County, Colorado

    International Nuclear Information System (INIS)

    1990-03-01

    This appendix provides the information needed to understand the conceptual designs for the remedial action alternatives addressed in this environmental impact statement (EIS). It is intended to provide sufficient details for the reader to evaluate the feasibility and assess the impacts of each remedial action alternative. It is not intended to provide the detailed engineering necessary to implement the alternatives. Details of the preferred remedial action will be presented in the remedial action plan (RAP). The remedial action alternatives addressed in this EIS include no action, stabilization at the New Rifle site, disposal at the Estes Gulch site, and disposal at the Lucas Mesa site. All alternatives include interim actions to remediate existing health and safety hazards to the Rifle community that presently exist at the Old and New Rifle processing sites. It should be noted that the borrow sites included in this EIS were selected as the sources of the necessary borrow materials for impacts analyses purposes only. The borrow sites to be used for the remedial action will be selected during the final design. 21 figs., 18 tabs

  9. Safety analysis and hazard classification for the 100-B/C Site Remediation Project, Phase 1. Revision 1

    International Nuclear Information System (INIS)

    Adam, W.J.; Lehrschall, R.R.; Oestreich, D.K.

    1996-07-01

    The purpose of this report is to document the preliminary hazard classification (PHC) for the initial group of sites to be remediated by the 100-B/C Site Remediation Project. The project is targeted at excavation of contaminated solid from seven waste sites, and the transportation and disposal of these wastes at the Environmental Restoration Disposal Facility. The PHC for these remediation activities is rated as radiological

  10. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    International Nuclear Information System (INIS)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE's predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE's preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area

  11. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE`s predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE`s preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area.

  12. Environmental remediation and waste management in the United States

    International Nuclear Information System (INIS)

    Muntzing, L.M.; Person, J.C.

    1994-01-01

    Environmental remediation of radioactively and chemically contaminated sites represents one of the most complex challenges of our age. It is currently a problem at nuclear weapons sites in the United States, but as the civilian nuclear industry everywhere deals with decommissioning and decontamination, the lessons learned from these early activities will be influential. The task is challenging for several reasons. First, standards governing remedial action are complex and constantly evolving. Second, unless contaminated material is to be stabilized in place, it must be removed and sent to another facility for storage and ultimate disposal. Third the task is technically demanding. Those who undertake the challenge must be technically sophisticated, creative, and innovative. Fourth, the challenge is a risky one. Those who seek to remediate past contamination may find themselves exposed to expanding and unfair allegations of liability for that very contamination. Finally, there is often a basic crisis of public confidence regarding remediation efforts

  13. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado

    International Nuclear Information System (INIS)

    1993-08-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this document and the rest of the RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the State of Colorado

  14. Compliance monitoring for remediated sites

    International Nuclear Information System (INIS)

    1999-10-01

    Throughout the world, many countries have experienced problems associated with pollution of the environment. Poorly managed practices in nuclear fuel cycle, medicine, industry, weapons production and testing, research and development activities, as well as accidents, and poor disposal practices have produced a large array of radioactively contaminated facilities and sites. Structures, biota, soils, rocks, and both surface and groundwaters have become contaminated with radionuclides and other associated contaminants, a condition that raises serious concern due to potential health effects to the exposed human populations and the environment. In response to the needs of its Member States in dealing with the problems of radioactive contamination in the environment, the IAEA has established an Environmental Restoration Project. The principal aspects of current IAEA efforts in this area include (1) gathering information and data, performing analyses, and publishing technical summaries, and other documents on key technical aspects of environmental restoration; (2) conducting a Co-ordinated Research Project on Environmental Restoration; and (3) providing direct technical assistance to Member States through technical co-operation programmes. The transfer of technologies to Member States in need of applicable methodologies and techniques for the remediation of contaminated sites is a principal objective of this project

  15. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  16. Final Work Plan for a Remedial Action Plan in Support of the Risk-Based Approach to Remediation at KC-135 Crash Site

    National Research Council Canada - National Science Library

    1994-01-01

    ... receptor exposure to fuel-hydrocarbon- contaminated environmental media at the KC-135 Crash Site. The second goal is to implement any necessary and appropriate remedial technologies at the KC-135 Crash Site...

  17. Weldon Spring Site Remedial Action Project Federal Facilities Agreement: Quarterly environmental data summary for third quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-06

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the third quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the third quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Significant data, defined as data values that have exceeded defined above normal Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits, and other guidelines. The procedures also establish actions to be taken in the event that above normal data occur.

  18. Vicinity Property Assessments at Formerly Utilized Sites Remedial Action Program Project Sites in the New York District - 13420

    Energy Technology Data Exchange (ETDEWEB)

    Ewy, Ann; Hays, David [U.S. Army Corps of Engineers (United States)

    2013-07-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) has addressed sites across the nation for almost 4 decades. Multiple stake holder pressures, multiple regulations, and process changes occur over such long time periods. These result in many challenges to the FUSRAP project teams. Initial FUSRAP work was not performed under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Records of Decision (ROD). The ROD identifies the remedy decision and ultimately the criteria to be used to release a site. Early FUSRAP projects used DOE Orders or the Uranium Mill Tailings Radiation Control Act (UMTRCA) standards. Under current RODs, regulations may differ, resulting in different cleanup criteria than that used in prior Vicinity Property (VP) remediation. The USACE, in preparation for closeout of Sites, conducts reviews to evaluate whether prior actions were sufficient to meet the cleanup criteria specified in the current ROD. On the basis of these reviews, USACE has conducted additional sampling, determined that prior actions were sufficient, or conducted additional remediation consistent with the selected remedy in the ROD. As the public pressures, regulations, and processes that the FUSRAP encounters continue to change, the program itself continues to evolve. Assessment of VPs at FUSRAP sites is a necessary step in the life cycle of our site management. (authors)

  19. Vicinity Property Assessments at Formerly Utilized Sites Remedial Action Program Project Sites in the New York District - 13420

    International Nuclear Information System (INIS)

    Ewy, Ann; Hays, David

    2013-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) has addressed sites across the nation for almost 4 decades. Multiple stake holder pressures, multiple regulations, and process changes occur over such long time periods. These result in many challenges to the FUSRAP project teams. Initial FUSRAP work was not performed under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Records of Decision (ROD). The ROD identifies the remedy decision and ultimately the criteria to be used to release a site. Early FUSRAP projects used DOE Orders or the Uranium Mill Tailings Radiation Control Act (UMTRCA) standards. Under current RODs, regulations may differ, resulting in different cleanup criteria than that used in prior Vicinity Property (VP) remediation. The USACE, in preparation for closeout of Sites, conducts reviews to evaluate whether prior actions were sufficient to meet the cleanup criteria specified in the current ROD. On the basis of these reviews, USACE has conducted additional sampling, determined that prior actions were sufficient, or conducted additional remediation consistent with the selected remedy in the ROD. As the public pressures, regulations, and processes that the FUSRAP encounters continue to change, the program itself continues to evolve. Assessment of VPs at FUSRAP sites is a necessary step in the life cycle of our site management. (authors)

  20. Summary report of Hanford Site well remediation and decommissioning activities for fiscal year 1994

    International Nuclear Information System (INIS)

    Reynolds, K.D.

    1994-01-01

    Remediation and decommissioning of Hanford Site wells has become an integral part of Hanford Site Environmental Restoration (ER) and Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring programs. A well remediation and decommissioning program was funded and implemented in fiscal year (FY) 1993 under the RCRA and Operational Monitoring (ROM) Program. Funding for this work increased in FY 1994. In FY 1994 well decommissioning activities conducted for the ROM program were centered around the 200 West Area; activities for the ER program were centered in the Fitzner/Eberhart Arid Land Ecology (ALE) (Reserve) unit and the Wahluke Slope (North Slope) area. A total of 116 wells and test borings were decommissioned between the two programs during FY 1994. Additionally, five wells were identified as in need of remediation and were successfully brought into compliance with regulatory requirements. As Hanford Site restoration and remediation efforts increase in scope, the well decommissioning program will remain dynamic. The program will aggressively seek to fulfill the needs of the various environmental cleanup and groundwater/vadose monitoring programs. Wells that do not meet regulatory requirements for preservation will continually be identified and remediated or decommissioned accordingly

  1. LCA of contaminated site remediation - integration of site-specific impact assessment of local toxic impacts

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Chambon, Julie Claire Claudia

    2011-01-01

    impacts have typically been assessed using site-generic characterization models representing a continental scale and excluding the groundwater compartment. Soil contaminants have therefore generally been assigned as emissions to surface soil or surface water compartments. However, such site-generic...... assessments poorly reflect the fate of frequent soil contaminants such as chloroethenes as they exclude the groundwater compartment and assume that the main part escapes to the atmosphere. Another important limitation of the generic impact assessment models is that they do not include the formation......The environmental impacts from remediation can be divided into primary and secondary impacts. Primary impacts cover the local impacts associated with the on-site contamination, whereas the secondary impacts are impacts on the local, regional and global scale generated by the remediation activities...

  2. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  3. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations

  4. 2015 Site Environmental Report Fernald Preserve

    International Nuclear Information System (INIS)

    Hertel, Bill; Hooten, Gwen

    2016-01-01

    The Fernald Preserve 2015 Site Environmental Report provides stakeholders with the results from the Fernald, Ohio, Site's environmental monitoring programs for 2015; a summary of the U.S. Department of Energy's (DOE's) activities conducted onsite; and a summary of the Fernald Preserve's compliance with the various environmental regulations, compliance agreements, and DOE policies that govern site activities. This report has been prepared in accordance with the ''Integrated Environmental Monitoring Plan,'' which is Attachment D of the Comprehensive Legacy Management and Institutional Controls Plan (LMICP) (DOE 2016). Remediation of the Fernald Preserve has been successfully completed with the exception of the groundwater. During 2015, activities at the Fernald Preserve included: environmental monitoring activities related to direct radiation, groundwater, and surface water; ecological restoration monitoring and maintenance as well as inspections, care, and monitoring of the site and the OSDF to ensure that provisions of the LMICP are fully implemented; OSDF leak detection monitoring and collection, monitoring, and treatment of leachate from the OSDF; extraction, monitoring, and treatment of contaminated groundwater from the Great Miami Aquifer (Operable Unit 5); ongoing operation of the Fernald Preserve Visitors Center, associated outreach, and educational activities; and monitoring as specified in the site's National Pollutant Discharge Elimination System (NPDES) permit. Environmental monitoring programs were developed to ensure that the remedy remains protective of the environment. The requirements of these programs are described in detail in the LMICP and reported in this Site Environmental Report.

  5. Remedial actions at the former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado. Volume 1. Text. Draft environmental impact statement

    International Nuclear Information System (INIS)

    1986-03-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: no action; stabilization at the Grand Junction site; disposal at the Cheney Reservoir site with truck transport; disposal at the Cheney Reservoir site with train and truck transport; disposal at the Two Road site with truck transport; disposal at the Two Road site with train and truck transport. All of the alternatives except include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE's preferred alternative. 29 figs., 25 tabs

  6. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 7

    International Nuclear Information System (INIS)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.; Fowler, J.W.

    1986-09-01

    The 644 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the seventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. References are arranged alphabetically by leading author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations

  7. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas

    International Nuclear Information System (INIS)

    Chernoff, A.R.; Lacker, D.K.

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas

  8. 1994 Site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Fernald site is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the site in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1994 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here. All information presented in this summary is discussed more fully in the main body of this report.

  9. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568

  10. Performance-Based Acquisition: A tool to reduce costs and improve performance at US Army environmental remediation sites

    International Nuclear Information System (INIS)

    Kosko, Nancy; Gilman, Janet; White, Debbie

    2007-01-01

    The US Army, like most US federal and state environmental organizations, is faced with limited resources to conduct environmental work, an increasing workload, and challenges in achieving closeout of its environmental cleanup programs. In 2001, in an effort to incorporate proven private sector tools into federal cleanup programs, the Department of Defense (DoD) Business Initiative Council (BIC), initiated the use of Performance-Based Acquisition (PBA) for environmental cleanup. Since fiscal year 2000, the US Army Environmental Command (USAEC) has successfully awarded more than 55 performance-based contracts for environmental remediation. These contracts range in size from $500,000 to $52.4 million, and include closing properties (Base Realignment and Closure (BRAC)) and some of the US Army's most complex active installations. The contracts address a range of activities including investigation through monitoring and site completion, as well as various technical challenges including dense non-aqueous phase liquids (DNAPL) in ground water, karst systems, munitions and explosives of concern, and biological agents. The contracts are most often firm-fixed price, and 50 percent of the contracts required contractors to purchase environmental insurance in the form of remediation stop loss insurance (also known as cleanup cost cap insurance). The USAEC has conducted continuous process improvement since inception of the initiative. This paper presents results of two studies that were conducted in 2005-2006 to determine what lessons learned can be applied to future activities and to measure performance of contractors currently executing work under the performance based contracts. (authors)

  11. Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993

    International Nuclear Information System (INIS)

    1993-08-01

    The Uranium Mill Tailing Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations

  12. Approved CAMU equals faster, better, cheaper remediation at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Dupuis-Nouille, E.M.; Goidell, L.C.; Strimbu, M.J.; Nickel, K.A.

    1996-01-01

    A 1,050 acre Corrective Action Management Unit (CAMU) was approved for the Fernald Protection Agency Environmental Management Project (FEMP) by the US Environmental Protection Agency (USEPA) to manage environmental media remediation waste in the Operable Unit 5 Record of Decision, 1995. Debris is also proposed for management as remediation waste under the CAMU Rule in the Operable Unit 3 Remedial Investigation/Feasibility Study (RI/FS) Report, as of December 1995. Application of the CAMU Rule at the FEMP will allow consolidation of low-level mixed waste and hazardous waste that presents minimal threat from these two operable units in an on-property engineered disposal facility without triggering land disposal restrictions (LDRs). The waste acceptance criteria for the on property disposal facility are based on a combination of site-specific risk-based concentration standards, as opposed to non-site-specific requirements imposed by regulatory classifications

  13. Methodology to remediate a mixed waste site

    International Nuclear Information System (INIS)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ''lessons learned'' from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors

  14. Methodology to remediate a mixed waste site

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  15. Environmental assessment of remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota

    International Nuclear Information System (INIS)

    1993-09-01

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 authorized the US Department of Energy (DOE) to perform remedial actions at Belfield and Bowman inactive lignite ashing sites in southwestern North Dakota to reduce the potential public health impacts from the residual radioactivity remaining at the sites. The US Environmental Protection Agency (EPA) promulgated standards (40 CFR 192) that contain measures to control the residual radioactive materials and other contaminated materials, and proposed standards to protect the groundwater from further degradation. Remedial action at the Belfield and Bowman sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of North Dakota. The Belfield and Bowman designated sites were used by Union Carbide and Kerr-McGee, respectively, to process uraniferous lignite in the 1960s. Uranium-rich ash from rotary kiln processing of the lignite was loaded into rail cars and transported to uranium mills in Rifle, Colorado, and Ambrosia Lake, New Mexico, respectively. As a result of the ashing process, there is a total of 158,400 cubic yards (yd 3 ) [121,100 cubic meters (m 3 )] of radioactive ash-contaminated soils at the two sites. Windblown ash-contaminated soil covers an additional 21 acres (8.5 ha) around the site, which includes grazing land, wetlands, and a wooded habitat

  16. 2015 Site Environmental Report Fernald Preserve

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Bill [Navarro Research and Engineering, Oak Ridge, TN (United States); Hooten, Gwen [US Department of Energy, Washington, DC (United States)

    2016-05-01

    The Fernald Preserve 2015 Site Environmental Report provides stakeholders with the results from the Fernald, Ohio, Site’s environmental monitoring programs for 2015; a summary of the U.S. Department of Energy’s (DOE’s) activities conducted onsite; and a summary of the Fernald Preserve’s compliance with the various environmental regulations, compliance agreements, and DOE policies that govern site activities. This report has been prepared in accordance with the “Integrated Environmental Monitoring Plan,” which is Attachment D of the Comprehensive Legacy Management and Institutional Controls Plan (LMICP) (DOE 2016). Remediation of the Fernald Preserve has been successfully completed with the exception of the groundwater. During 2015, activities at the Fernald Preserve included: environmental monitoring activities related to direct radiation, groundwater, and surface water; ecological restoration monitoring and maintenance as well as inspections, care, and monitoring of the site and the OSDF to ensure that provisions of the LMICP are fully implemented; OSDF leak detection monitoring and collection, monitoring, and treatment of leachate from the OSDF; extraction, monitoring, and treatment of contaminated groundwater from the Great Miami Aquifer (Operable Unit 5); ongoing operation of the Fernald Preserve Visitors Center, associated outreach, and educational activities; and monitoring as specified in the site’s National Pollutant Discharge Elimination System (NPDES) permit. Environmental monitoring programs were developed to ensure that the remedy remains protective of the environment. The requirements of these programs are described in detail in the LMICP and reported in this Site Environmental Report.

  17. Niagara Falls Storage Site environmental report for calendar year 1992, 1397 Pletcher Road, Lewiston, New York. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report describes the environmental surveillance program at the Niagara Falls Storage Site (NFSS) and provides the results for 1992. From 1944 to the present, the primary use of NFSS has been storage of radioactive residues produced as a by-product of uranium production. All onsite areas of residual radioactivity above guidelines have been remediated. Materials generated during remediation are stored onsite in the 4-ha (10-acre) waste containment structure (WCS). The WCS is a clay-lined, clay-capped, and grass-covered storage pile. The environmental surveillance program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Several chemical parameters, including seven metals, are also routinely measured in groundwater. This surveillance program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. Results of environmental monitoring during 1992 indicate that levels of the parameters measured were in compliance with all but one requirement: Concentrations of iron and manganese in groundwater were above NYSDEC groundwater quality standards. However, these elements occur naturally in the soils and groundwater associated with this region. In 1992 there were no environmental occurrences or reportable quantity releases.

  18. Wayne Interim Storage Site environmental report for calendar year 1992, 868 Black Oak Ridge Road, Wayne, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report describes the environmental surveillance program at the Wayne Interim Storage Site (WISS) and provides the results for 1992. The fenced, site, 32 km (20 mi) northwest of Newark, New Jersey, was used between 1948 and 1971 for commercial processing of monazite sand to separate natural radioisotopes - predominantly thorium. Environmental surveillance of WISS began in 1984 in accordance with Department of Energy (DOE) Order 5400.1 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). The environmental surveillance program at WISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; radium-226, radium-228, thorium-230, thorium-232, total uranium, and several chemicals in surface water and sediment; and total uranium, radium-226, radium-228, thorium-230, thorium-232, and organic and inorganic chemicals in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. This monitoring program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results for environmental surveillance in 1992 show that the concentrations of all radioactive and most chemical contaminants were below applicable standards.

  19. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms

  20. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  1. Work plan for the remedial investigation/feasibility study-environmental assessment for the quarry residuals operable unit at the Weldon Spring Site

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The US Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis. The Weldon Spring site consists of two noncontiguous areas -- the chemical plant area, which includes four raffinate pits, and the quarry. Cleanup activities at the Weldon Spring site are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, incorporating the values of the National Environmental Policy Act (NEPA). The contents of the documents prepared for the project are not intended to represent a statement regarding the legal applicability of NEPA to remedial actions conducted under CERCLA. In accordance with the integrated CERCLA/NEPA approach, a remedial investigation/feasibility study-environmental assessment (RI/FS-EA) is being conducted to evaluate conditions and potential responses for the quarry residuals operable unit (QROU). This operable unit consists of the following areas and/or media: the residual material remaining at the Weldon Spring quarry after removal of the pond water and bulk waste; underlying groundwater; and other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough. This work plan identifies the activities within the RI/FS-EA process that are being proposed to address contamination remaining at the quarry area.

  2. Work plan for the remedial investigation/feasibility study-environmental assessment for the quarry residuals operable unit at the Weldon Spring Site

    International Nuclear Information System (INIS)

    1994-01-01

    The US Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis. The Weldon Spring site consists of two noncontiguous areas -- the chemical plant area, which includes four raffinate pits, and the quarry. Cleanup activities at the Weldon Spring site are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, incorporating the values of the National Environmental Policy Act (NEPA). The contents of the documents prepared for the project are not intended to represent a statement regarding the legal applicability of NEPA to remedial actions conducted under CERCLA. In accordance with the integrated CERCLA/NEPA approach, a remedial investigation/feasibility study-environmental assessment (RI/FS-EA) is being conducted to evaluate conditions and potential responses for the quarry residuals operable unit (QROU). This operable unit consists of the following areas and/or media: the residual material remaining at the Weldon Spring quarry after removal of the pond water and bulk waste; underlying groundwater; and other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough. This work plan identifies the activities within the RI/FS-EA process that are being proposed to address contamination remaining at the quarry area

  3. 1994 Site environmental report

    International Nuclear Information System (INIS)

    1995-07-01

    The Fernald site is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the site in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1994 SER provides the general public as well as scientists and engineers with the results from the site's ongoing Environmental Monitoring Program. Also included in this report is information concerning the site's progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here. All information presented in this summary is discussed more fully in the main body of this report

  4. Environmental remediation 1991: ''Cleaning up the environment for the 21st Century''

    International Nuclear Information System (INIS)

    Wood, D.E.

    1991-01-01

    This report presents discussions given at a conference on environmental remediation, September 8--11, Pasco, Washington. Topics include: public confidence; education; in-situ remediation; Hanford tank operations; risk assessments; field experiences; standards; site characterization and monitoring; technology discussions; regulatory issues; compliance; and the UMTRA project. Individual projects are processed separately for the data bases

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  6. Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1

    International Nuclear Information System (INIS)

    1997-01-01

    This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC)

  7. An Overview of Public Domain Tools for Measuring the Sustainability of Environmental Remediation - 12060

    Energy Technology Data Exchange (ETDEWEB)

    Claypool, John E.; Rogers, Scott [AECOM, Denver, Colorado, 80202 (United States)

    2012-07-01

    The application of sustainability principles to the investigation and remediation of contaminated sites is an area of rapid development within the environmental profession, with new business practices, tools, and performance standards for identifying, evaluating, and managing the 'collateral' impacts of cleanup projects to the environment, economy and society coming from many organizations. Guidelines, frameworks, and standards of practice for 'green and sustainable remediation' (GSR) have been released and are under development by the Sustainable Remediation Forum (SURF), the American Society for Testing Materials (ASTM), the Interstate Technology Roundtable Commission (ITRC) and other organizations in the U.S. and internationally. In response to Executive Orders from the President, Federal government agencies have developed policies, procedures and guidelines for evaluating and reporting the sustainability of their environmental restoration projects. Private sector companies in the petroleum, utility, manufacturing, defense, and other sectors are developing their own corporate GSR programs to improve day-to-day management of contaminated sites and to support external reporting as part of their corporate social responsibility (CSR) efforts. The explosion of mandates, policy, procedures and guidance raises the question of how to determine whether a remediation technology or cleanup approach is green and/or sustainable. The environmental profession has responded to this question by designing, developing and deploying a wide array of tools, calculators, and databases that enable regulatory agencies, site managers and environmental professionals to calculate the collateral impacts of their remediation projects in the environmental, social, and economic domains. Many of these tools are proprietary ones developed by environmental engineering/consulting firms for use in their consulting engagements and/or tailored specifically to meet the needs of

  8. Salmon Site Remedial Investigation Report

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  9. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume VI

    International Nuclear Information System (INIS)

    1996-08-01

    The U.S. Department Of Energy and the Washington State Department of Ecology added Appendix L (Volume 6), Response to Public Comments, to the Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington, to fully address and respond to public comments on the Draft EIS. In addition, DOE considered public comments, along with other factors such as programmatic need, short- and long-term impacts, technical feasibility, and cost, in arriving at DOE's preferred alternative. During the public comment period for the Draft EIS, more than 350 individuals, agencies, Tribal Nations, and organizations provided comments. This volume represents a broad spectrum of private citizens; businesses; local, State, and Federal officials; Tribal Nations; and public interest groups

  10. The programme for remediation of contaminated mine sites: Its regulation and follow-up in Portugal

    International Nuclear Information System (INIS)

    Santiago Baptista, A.

    2005-01-01

    The policy of the Portuguese Government of assuming responsibility for remediating contaminated abandoned mine sites originated in an initiative taken between 1995 and 2001 by the General Directorate for the Environment and the Geological and Mining Institute. It has the aim of assessing and solving the prevailing environmental problems in some of the most contaminated abandoned mine sites in Portugal. On 6 July 2001, through Decree Law No. 198-A/2001, the Government defined the institutional and financial provisions to be adopted for implementing the environmental remediation programme. EXMIN-Industry and Mining Environmental Services S.A., a state owned company, was awarded an exclusive renewable contract on September 5 of the same year for a period of 10 years to implement this programme. Financing of the contract was guaranteed through EU funds under the FEDER programme, up to a maximum of Euro 52 million, to be spent before the end of the year 2006. In the beginning of 2002 a steering committee was nominated and took up its responsibilities, having been delegated a wide range of powers. At the same time the Ministers for Economic and Environmental Affairs delegated wide ranging powers to a technical evaluation subcommittee. The strategic definition of the targets of the old mine site remediation programme, which remains under the direct responsibility of the relevant ministers, highlights the importance of public health and safety and the social and economic development of the regions concerned. The information already gathered indicates that in total around 170 old mine sites require remediation. The time limit of 2006 for the availability of EU funds needs to be taken into consideration for the development of the remediation strategy. The specific situation of the old radioactive ore mines is described, as well as the status of the programme. (author)

  11. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    1997-05-01

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  12. Environmental Audit, Rifle, Gunnison and Grand Junction UMTRA Project Sites

    International Nuclear Information System (INIS)

    1991-08-01

    This report documents the results of the comprehensive baseline Environmental Audit completed for the Uranium Mill Tailings Remedial Action (UMTRA) sites at Grand Junction, Rifle, and Gunnison, Colorado. Included in the Audit were the actual abandoned mill sites, associated transportation and disposal cell facilities, and representative examples of the more than 4,000 known vicinity properties. Sites investigated include: Climax Mill Site, Truck/Train Haul Route, Cotter Transfer Station, Cheney Disposal Cell, Rifle Mill Sites (Old and New Rifle), Gunnison Mill Site, Vicinity Properties, and Estes Gulch and Proposed Landfill Site No. 1 Disposal Cells. The UMTRA Audit was a comprehensive baseline audit which considered all environmental programs and the activities associated with ongoing and planned remediation at the UMTRA sites listed above. Compliance with the National Environmental Policy Act (NEPA) was not considered during this investigation. The Audit Team looked at the following technical disciplines: air, surface water/drinking water, groundwater, soil/sediment/biota, waste management, toxic and chemical materials, quality assurance, radiation, inactive waste sites, and environmental management. 6 figs., 12 tabs

  13. Environmental Audit, Rifle, Gunnison and Grand Junction UMTRA Project Sites

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-08-01

    This report documents the results of the comprehensive baseline Environmental Audit completed for the Uranium Mill Tailings Remedial Action (UMTRA) sites at Grand Junction, Rifle, and Gunnison, Colorado. Included in the Audit were the actual abandoned mill sites, associated transportation and disposal cell facilities, and representative examples of the more than 4,000 known vicinity properties. Sites investigated include: Climax Mill Site, Truck/Train Haul Route, Cotter Transfer Station, Cheney Disposal Cell, Rifle Mill Sites (Old and New Rifle), Gunnison Mill Site, Vicinity Properties, and Estes Gulch and Proposed Landfill Site No. 1 Disposal Cells. The UMTRA Audit was a comprehensive baseline audit which considered all environmental programs and the activities associated with ongoing and planned remediation at the UMTRA sites listed above. Compliance with the National Environmental Policy Act (NEPA) was not considered during this investigation. The Audit Team looked at the following technical disciplines: air, surface water/drinking water, groundwater, soil/sediment/biota, waste management, toxic and chemical materials, quality assurance, radiation, inactive waste sites, and environmental management. 6 figs., 12 tabs.

  14. Process for determining the remediation category of hazardous substance sites

    International Nuclear Information System (INIS)

    Sieben, A.K.

    1994-01-01

    An evaluation process has been developed that aids in selecting the appropriate remediation category of hazardous substance sites. Three general remediation categories have been established: No further Action: Potential Early Action: and Defer for RI/FS or Transition/Decontamination and Decommissioning. This evaluation method is a preliminary screening process only and will not identify the most appropriate remediation alternative for each site. The remedy selection process can proceed only after a remediation category is determined for each site. All sites are evaluated at a preliminary screening level to determine the general remediation category. After the first screen, a secondary evaluation is performed on both the PEA sites and the DEFER sites. For PEAs, this secondary evaluation will incorporate additional specific factors, such as a screening level risk assessment. For the DEFER sites feasibility factors will be used to distinguish between the sites which should undergo a normal RI/FS and the sites which will be recommended to be remediated in association with D ampersand D of buildings. Ultimately, all of the sites will be placed into one of four remediation categories

  15. Environmental Impact and Remediation of Uranium Tailings and Waste Rock Dumps at Mailuu-Suu in Kyrgyzstan

    International Nuclear Information System (INIS)

    Kunze, C.; Walter, U.; Wagner, F.; Schmidt, P.; Barnekow, U.; Gruber, A.

    2011-01-01

    This paper describes the environmental situation in the former uranium mining and milling region of Mailuu-Suu (Kyrgyzstan), the approach to environmental remediation of the waste facilities (tailings ponds and waste dumps) and the results achieved so far. It starts with an outline of the history of the environmental remediation project which has received international attention and is seen as a pilot project for further remediation activities of former uranium mining and milling sites in the region. Apart from technical aspects, the paper draws conclusions with respect to the administrative environment, institutional capacity building and the local availability of resources needed to successfully implement a complex remediation project. (author)

  16. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed

  17. Site remediation guided by risk assessment

    International Nuclear Information System (INIS)

    McBean, E.A.; Gowing, A.; Pieczonka, G.

    2002-01-01

    'Full text:' Risk assessment (RA) provides an effective tool for identifying hazards with respect to human health and ecological receptors, hazards that arise from contaminants in the environment. Risk assessment relies upon: hazard identification/problem formulation; toxicity assessment; exposure assessment; and risk characterization. Hence, risk assessment provides an effective guide for site remediation through the identification of the associated risks arising from pre- and potential post-remediation activities. As a demonstration of this decision-making process, a site-specific risk assessment (SSRA) was performed on a chemical producing facility. Historical waste practices during the production of DDT compounds resulted in impacted site soils and sediment and soils of the creek passing through the facility. The purpose of the SSRA was to derive site-specific cleanup values for the impacted on-site soils, creek sediments, and embankment soils, incorporating human and ecological receptors associated with the environmental media. The human exposure pathways considered were dermal contact, incidental ingestion, and inhalation of the various soils. The potential human receptors were industrial workers, construction workers, trespassers, and off-site residents. Ingestion of fish from the creek by residents was also evaluated in the human health risk assessment (HHRA). Food web analyses were used to evaluate the impact of exposure to chemical compounds in aquatic sediments and related soils by ecological receptors such as the great blue heron, raccoon, and mink. The SSRA involved modelling the daily chemical intake by receptors and the transfer of chemicals to identified secondary media (e.g., ambient air or animal tissues) that are also potential exposure media. These models, while using the site-specific chemical data in the source media, possess uncertainties associated with default parameters that are only approximations and not site-specific (e.g., soil

  18. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado

    International Nuclear Information System (INIS)

    1992-10-01

    To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards the US Department of Energy (DOE) proposes to meet background concentrations or the EPA maximum concentration limits (MCLS) for hazardous constituents in groundwater in the uppermost aquifer at the point of compliance (POC) at the Gunnison Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site near Gunnison, Colorado. The proposed remedial action will ensure protection of human health and the environment. A summary of the principal features of the water resources protection strategy for the Gunnison disposal site is included in this report

  19. International developments in uranium mining and mill site remediation

    International Nuclear Information System (INIS)

    Quarch, H.; Kuhlmann, J.; Daroussin, J.L.; Poyser, R.W.

    1993-01-01

    At the end of production, mine sites, mill sites, tailings ponds, heap leaching residues in uranium mining districts world-wide have to be remediated in a responsible and sustainable manner in order to minimize long term environmental impacts. Current practice, regulatory environments and rehabilitation objectives in some of the most important uranium producing countries are briefly characterized as well as applicable radioprotection and geotechnical criteria. Important local and regional variables are outlined which determine optimal site specific solutions. Examples from Europe and North America are shown. Monitoring and control requirements as well as areas of current and necessary research and development are identified

  20. Middlesex Sampling Plant environmental report for calendar year 1992, 239 Mountain Avenue, Middlesex, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report describes the environmental surveillance program at the Middlesex Sampling Plant (MSP) and provides the results for 1992. The site, in the Borough of Middlesex, New Jersey, is a fenced area and includes four buildings and two storage piles that contain 50,800 m{sup 3} of radioactive and mixed hazardous waste. More than 70 percent of the MSP site is paved with asphalt. The MSP facility was established in 1943 by the Manhattan Engineer District (MED) to sample, store, and/or ship uranium, thorium, and beryllium ores. In 1955 the Atomic Energy Commission (AEC), successor to MED, terminated the operation and later used the site for storage and limited sampling of thorium residues. In 1967 AEC activities ceased, onsite structures were decontaminated, and the site was certified for unrestricted use under criteria applicable at that time. In 1980 the US Department of Energy (DOE) initiated a multiphase remedial action project to clean up several vicinity properties onto which contamination from the plant had migrated. Material from these properties was consolidated into the storage piles onsite. Environmental surveillance of MSP began in 1980 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program. The environmental surveillance program at MSP includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-230, thorium-232, and total uranium in surface water, sediment, and groundwater. Additionally, chemical analyses are performed to detect metals and organic compounds in surface water and groundwater and metals in sediments. This program assists in fulfilling th DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses.

  1. Environmental remediation 1991: ``Cleaning up the environment for the 21st Century``. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D.E. [ed.] [Westinghouse Hanford Co., Richland, WA (United States)

    1991-12-31

    This report presents discussions given at a conference on environmental remediation, September 8--11, Pasco, Washington. Topics include: public confidence; education; in-situ remediation; Hanford tank operations; risk assessments; field experiences; standards; site characterization and monitoring; technology discussions; regulatory issues; compliance; and the UMTRA project. Individual projects are processed separately for the data bases.

  2. Responses to comments on the Remedial Investigation/Feasibility Study-Environmental Impact Statement for Remedial Action at the chemical plant area of the Weldon Spring Site, November 1992

    International Nuclear Information System (INIS)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE's predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The Weldon Spring site is on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA). The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The RI/FS-EIS for remedial action at the chemical plant area of the Weldon Spring site was issued to the public on November 20, 1992. This public comment response document presents a summary of the major issues identified in both oral and written comments on the RI/FS-EIS and DOE's responses to those issues. This document also provides individual responses to the written comments

  3. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites

    International Nuclear Information System (INIS)

    1989-03-01

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites

  4. Status report: Fernald site remediation

    International Nuclear Information System (INIS)

    Craig, J.R. Jr.; Saric, J.A.; Schneider, T.; Yates, M.K.

    1995-01-01

    The Fernald site is rapidly transitioning from a Remedial Investigation/ Feasibility Study (RI/FS) site to one where design and construction of the remedies dominates. Fernald is one of the first sites in the Department of Energy (DOE) complex to accomplish this task and real physical progress is being made in moving the five operable units through the CERCLA process. Two of the required Records of Decision (ROD) are in hand and all five operable units will have received their RODs (IROD for OU3) by the end of 1995. Pre-design investigations, design work or construction are now in progress on the operable units. The lessons learned from the work done to date include implementing innovations in the RI and FS process as well as effective use of Removal Actions to begin the actual site remediation. Also, forging close working relationships with the Federal and State Regulators, citizens action groups and the Fernald Citizens Task Force has helped move the program forward. The Fernald successes have been achieved by close coordination and cooperation among all groups working on the projects and by application of innovative technologies within the decision making process

  5. Environmental radioactivity and mitigation of radiological impact at legacy uranium sites in Portugal

    International Nuclear Information System (INIS)

    Carvalho, F.

    2014-01-01

    Uranium legacy sites in the country contain large amounts of milling tailings, mining waste, old infrastructures and acid mine drainage with high radioactivity concentrations. Radioactivity surveillance of these sites has been maintained for many years and institutional control kept beyond cessation of Portuguese uranium mining in 2001. A research programme (2003-2006) requested by the government to assess environmental contamination and public health risks in these regions advised implementing environmental remediation measures. A national programme was approved for remediation of abandoned mine sites, including radioactive and non-radioactive mines, that started in 2005 and since has completed significant remediation works in several old uranium mines. One amongst these sites, the Urgeiriça mine and milling site, was re-engineered, tailings were covered, the mine was closed, the area of mine and milling facilities cleaned, and an automated contaminated water treatment plant installed. Environmental radioactivity surveys carried out in this region showed reduced ambient radiation doses, lower radon concentrations in surface air, return to background radioactivity in surface air aerosols, and decrease of radionuclide concentrations in the river receiving water discharges from the mine site, resulting in a reduced radiation exposure to members of the public. Other legacy uranium mines without milling tailings, were mainly remediated for landscape engineering and the adopted solutions included, for example, preservation of non-contaminated ponds for public leisure. Although not completed yet in many sites, the remediation works implemented contributed already to a significant abatement of radiation exposure allowing for safer implementation of activities, such as agriculture and cattle grazing, in the surroundings of legacy sites. Environmental remediation and abatement of radiation exposure contributed to revitalize socio-economic activities of the region and

  6. A multidisciplinary approach to site remediation and management in a bedrock environment

    Energy Technology Data Exchange (ETDEWEB)

    Millard, G. [Shell Canada Ltd., Calgary, AB (Canada); Micklethwaite, R.; Digel, S.; Lyons, E. [O' Connor Associates Environmental Inc., Calgary, AB (Canada)

    2006-07-01

    A multidisciplinary approach to site remediation and management in a bedrock environment was presented. This presentation provided a description of the site which was a former service station from 1985 to 2003 in Calgary. Illustrations of the subject site and stratigraphic section were presented along with initial environmental conditions. The project objectives included: managing the site so that a tenant could re-develop and occupy the site; minimizing management costs until long-term, remediation could be achieved; and, developing and implementing a plan to assess, mitigate, and manage the risk in a manner accepted by Alberta Environment and the City of Calgary. The presentation also addressed issues regarding a risk-assessment, high vacuum extraction system, and refining HVE operations. The regulatory, business and ancillary outcomes of the risk assessment were also outlined. Last, the presentation identified how the results were achieved. tabs., figs.

  7. Remedial design of the Fultz Landfill Site, Byesville, Ohio

    International Nuclear Information System (INIS)

    Rajaram, V.; Riesing, R.; Bloom, T.

    1994-01-01

    The Fultz Landfill Superfund (Fultz) site is a 30-acre hazardous waste landfill located near Byesville, Ohio. The site is approximately 75 miles east of Columbus and 3 miles southwest of Cambridge, the largest city in Guernsey County, Ohio. The landfill is situated on the north slope of a ridge that overlies abandoned coal mines in the Upper Freeport Coal seam. The north half of the landfill lies in an unreclaimed strip mine in the Upper Freeport Coal seam, where saturated portions of surface mine spoils and natural soils form the ''shallow aquifer''. The south half of the landfill lies 40 to 50 feet (ft.) above an abandoned, flooded deep mine in the same coal seam. The flooded deep mine forms an aquifer referred to as the ''coal mine aquifer''. This paper presents the results of design studies completed by PRC Environmental Management, Inc. (PRC), during 1993, and the remedial design (RD) of the components specified by the US Environmental Protection Agency (EPA) Record of Decision (ROD) for the Fultz site (EPA 1991). The remedy specified in the ROD includes a multilayer landfill cap that is compliant with Resource Conservation and Recovery Act (RCRA) Subtitle C guidelines, a leachate collection and groundwater extraction and treatment system, and stabilizing mine voids underlying the southern portion of the site. Vinyl chloride is the only contaminant exceeding a maximum contaminant limit (MCL) in the coal mine aquifer

  8. Rocky Flats Plant Site Environmental Report for 1992

    International Nuclear Information System (INIS)

    Cirrincione, D.A.; Erdmann, N.L.

    1992-01-01

    The Rocky Rats Plant Site Environmental Report provides summary information on the plant's environmental monitoring programs and the results recorded during 1992. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population

  9. Rocky Flats Plant Site Environmental Report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cirrincione, D.A.; Erdmann, N.L. [eds.

    1992-12-31

    The Rocky Rats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1992. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population.

  10. Risk-based remediation of polluted sites: A critical perspective.

    Science.gov (United States)

    Kuppusamy, Saranya; Venkateswarlu, Kadiyala; Megharaj, Mallavarapu; Mayilswami, Srinithi; Lee, Yong Bok

    2017-11-01

    Sites contaminated with chemical pollutants represent a growing challenge, and remediation of such lands is of international concern. Risk-based land management (RBLM) is an emerging approach that integrates risk assessment practices with more traditional site-specific investigations and remediation activities. Developing countries are yet to adopt RBLM strategies for remediation. RBLM is considered to be practical, scientifically defensible and cost-efficient. However, it is inherently limited by: firstly, the accuracy of risk assessment models used; secondly, ramifications of the fact that they are more likely to leave contamination in place; and thirdly, uncertainties involved and having to consider the total concentrations of all contaminants in soils that overestimate the potential risks from exposure to the contaminants. Consideration of contaminant bioavailability as the underlying basis for risk assessment and setting remediation goals of those contaminated lands that pose a risk to environmental and human health may lead to the development of a more sophisticated risk-based approach. However, employing the bioavailability concept in RBLM has not been extensively studied and/or legalized. This review highlights the extent of global land contamination, and the concept of risk-based assessment and management of contaminated sites including its advantages and disadvantages. Furthermore, the concept of bioavailability-based RBLM strategy has been proposed, and the challenges of RBLM and the priority areas for future research are summarized. Thus, the present review may help achieve a better understanding and successful implementation of a sustainable bioavailability-based RBLM strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Case studies of community relations on DOE's Formerly Utilized Sites Remedial Action Program as models for Superfund sites

    International Nuclear Information System (INIS)

    Plant, S.W.; Adler, D.G.

    1995-01-01

    Ever since the US Department of Energy (DOE) created its Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974, there has been a community relations program. The community relations effort has grown as FUSRAP has grown. With 20 of 46 sites now cleaned up, considerable experience in working with FUSRAP stakeholders has been gained. Why not share that experience with others who labor on the Superfund sites? Many similarities exist between the Superfund sites and FUSRAP. FUSRAP is a large, multiple-site environmental restoration program. The challenges range from small sites requiring remedial actions measurable in weeks to major sites requiring the full remedial investigation/feasibility study process. The numerous Superfund sites throughout the United States offer the same diversity, both geographically and technically. But before DOE offers FUSRAP's community relations experience as a model, it needs to make clear that this will be a realistic model. As experiences are shared, DOE will certainly speak of the efforts that achieved its goals. But many of the problems that DOE encountered along the way will also be related. FUSRAP relies on a variety of one- and two-way communication techniques for involving stakeholders in the DOE decision-making process. Some of the techniques and experiences from the case studies are presented

  12. Strategy paper. Remedial design/remedial action 100 Area. Revision 2

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1995-10-01

    This strategy paper identifies and defines the approach for remedial design and remedial action (RD/RA) for source waste sites in the 100 Area of the Hanford Site, located in southeastern Washington State. This paper provides the basis for the US Department of Energy (DOE) to assess and approve the Environmental Restoration Contractor's (ERC) approach to RD/RA. Additionally, DOE is requesting review/agreement from the US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) on the strategy presented in this document in order to expedite remedial activities

  13. Comment and response document for the final remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-05-01

    This document for the final remedial action plan and site design has been prepared for US Department of Energy Environmental Restoration Division as part of the Uranium Mill Tailings Remedial Action plan. Comments and responses are included for the site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

  14. Summary of the landfill remediation problems and technology needs of the Oak Ridge Reservation Environmental Restoration Programs

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics: brief description of the Oak Ridge Reservation Environmental Restoration Program; descriptions of representative waste burials at each site; ongoing, planned, or potential remediation; known or anticipated remediation problems; potential applications for robotics in the remediation of Oak Ridge Reservation landfills

  15. Proposed plan for remedial action at the chemical plant area of the Weldon Spring site

    International Nuclear Information System (INIS)

    1992-11-01

    This proposed plan addresses the management of contaminated material at the chemical plant area of the Weldon Spring site and nearby properties in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry, both of which are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced at the chemical plant in the 1940s, and uranium and thorium materials were processed in the 1950s and 1960s. Various liquid, sludge, and solid wastes were disposed of at the Chemical plant area and in the quarry during that time. The Weldon Spring site is listed on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The proposed plan is organized as follows: Chapter 2 presents the history and setting of the Weldon Spring site and briefly describes the contaminated material at the chemical plant area. Chapter 3 defines the scope of the remedial action and its role in the Weldon Spring Site Remedial Action Project. Chapter 4 summarizes the risks associated with possible exposures to site contaminants in the absence of remedial action and identifies proposed cleanup levels for soil. Chapter 5 briefly describes the final alternatives considered for the remedial action. Chapter 6 summarizes the evaluation of final alternatives for managing the contaminated material, identifies the currently preferred alternative, and discusses a possible contingency remedy to provide treatment flexibility. Chapter 7 presents the community's role in this action. Chapter 8 is a list of the references cited in this proposed plan

  16. UNITED STATES AND GERMAN BILATERAL AGREEMENT ON REMEDIATION OF HAZARDOUS WASTE SITES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) and Germany's Bundesministerium fur Forschung und Technologie (BMFT) are involved in a collaborative effort called the U.S. and German Bilateral Agreement on Remediation of Hazardous Waste Sites. he purpose of this interim status rep...

  17. Application of probabilistic risk assessment: Evaluating remedial alternatives at the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    Ruffle, Betsy; Henderson, James; Murphy-Hagan, Clare; Kirkwood, Gemma; Wolf, Frederick; Edwards, Deborah A

    2018-01-01

    A probabilistic risk assessment (PRA) was performed to evaluate the range of potential baseline and postremedy health risks to fish consumers at the Portland Harbor Superfund Site (the "Site"). The analysis focused on risks of consuming fish resident to the Site containing polychlorinated biphenyls (PCBs), given that this exposure scenario and contaminant are the primary basis for US Environmental Protection Agency's (USEPA's) selected remedy per the January 2017 Record of Decision (ROD). The PRA used probability distributions fit to the same data sets used in the deterministic baseline human health risk assessment (BHHRA) as well as recent sediment and fish tissue data to evaluate the range and likelihood of current baseline cancer risks and noncancer hazards for anglers. Areas of elevated PCBs in sediment were identified on the basis of a geospatial evaluation of the surface sediment data, and the ranges of risks and hazards associated with pre- and postremedy conditions were calculated. The analysis showed that less active remediation (targeted to areas with the highest concentrations) compared to the remedial alternative selected by USEPA in the ROD can achieve USEPA's interim risk management benchmarks (cancer risk of 10 -4 and noncancer hazard index [HI] of 10) immediately postremediation for the vast majority of subsistence anglers that consume smallmouth bass (SMB) fillet tissue. In addition, the same targeted remedy achieves USEPA's long-term benchmarks (10 -5 and HI of 1) for the majority of recreational anglers. Additional sediment remediation would result in negligible additional risk reduction due to the influence of background. The PRA approach applied here provides a simple but adaptive framework for analysis of risks and remedial options focused on variability in exposures. It can be updated and refined with new data to evaluate and reduce uncertainty, improve understanding of the Site and target populations, and foster informed remedial decision

  18. Radioecological surveillance around an old mining and milling site during environmental remediation works

    International Nuclear Information System (INIS)

    Carvalho, Fernando P.; Oliveira, Joao M.; Malta, Margarida

    2008-01-01

    The main site of historic uranium mining and milling in Portugal, near the town of Canas de Senhorim, contains around 2.5 million tones of solid waste containing radioactivity in various mill tailings and spoil heaps. Approval of an environmental remediation plan for this area was followed by the start of engineering works, including the transportation of milling waste to the main milling pile and re shaping and contouring the waste heap to put a cap layer. These works were mostly performed in 2006 and 2007. During part of this period monitoring of radioactivity, including radon, was performed in the surface air, surface waters from the area, including the monitoring of the small river that receives drainage from the mill tailings area, and agriculture products. This paper presents the results of measurements of the main alpha emitting radionuclides of uranium series and compares them with previous data from the region. Implications for the radiological protection of the population are discussed. (author)

  19. Remediation of 20,000 m3 of hydrocarbon-impacted soil at a former well site using the biopile process

    Energy Technology Data Exchange (ETDEWEB)

    Bedard, G. [Biogenie Inc., Calgary, AB (Canada)

    2006-07-01

    The remediation of 20,000 m{sup 3} of hydrocarbon-impacted soil at a former well site using the biopile process was discussed. The site involved was an abandoned site located southwest from Red Deer, Alberta in an agricultural area. The presentation provided background on the site history and discussed an additional site assessment. The objectives of this assessment were to complete the delineation of the hydrocarbon plume; confirm the depth of impact identified in a previous environmental assessment; and, select the most efficient remediation strategy. The presentation also discussed findings of the Environmental Services Association (ESA). Site specific challenges that were addressed included proximity of land owners; lease slopes to a nearby river; large volume of impacted material; depth of impact; limited space available on-site; high concentrations of petroleum hydrocarbons (PHCs); segregation of impacted soil; and winter installation and start-up. The proposed strategy and its advantages as well as the methodology for the remediation strategy were all discussed. 5 tabs., 5 figs.

  20. The benefits from environmental remediation

    International Nuclear Information System (INIS)

    Falck, W.E.

    2002-01-01

    Environmental remediation projects inevitably take place against a backdrop of overall social goals and values. These goals can include, for example, full employment, preservation of the cultural, economic and archaeological resources, traditional patterns of land use, spiritual values, quality of life factors, biological diversity, environmental and socio-economic sustainability, protection of public health. Different countries will have different priorities, linked to the overall set of societal goals and the availability of resources, including funding, man-power and skills. These issues are embedded within both a national and local socio-cultural context, and will shape the way in which the remediation process is structured in any one country. The context will shape both the overall objectives of a remediation activity within the framework of competing societal goals, as well as generate constraints on the decision making process. Hence, the overall benefit of a remediation project is determined by its overall efficiency and effectiveness within the given legal, institutional, and governance framework, under the prevailing socio-economic boundary conditions, and balancing technology performance and risk reduction with fixed or limited budgetary resources, and is not simply the result of the technical remediation operation itself. (author)

  1. Uranium Mill Tailings Remedial Action Project Annual Environmental Monitoring Report calendar year 1992: Volume 1

    International Nuclear Information System (INIS)

    1993-01-01

    This report describes environmental monitoring and compliance at eight UMTRA sites where remedial action was underway during 1992 and at the ten sites that were complete at the end of 1992. Volume I contains information for Ambrosia Lake, NM; Cannonsburg/Burrell, PA; Durango, CO; Falls City, TX; Grand Junction, CO; Green River, UT; and Gunnison, CO. Each site report contains a site description, compliance summary, environmental program information, environmental radiological and non-radiological program information, water resources protection, and quality assurance information

  2. Uranium Mill Tailings Remedial Action Project Annual Environmental Monitoring Report calendar year 1992: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-31

    This report describes environmental monitoring and compliance at eight UMTRA sites where remedial action was underway during 1992 and at the ten sites that were complete at the end of 1992. Volume I contains information for Ambrosia Lake, NM; Cannonsburg/Burrell, PA; Durango, CO; Falls City, TX; Grand Junction, CO; Green River, UT; and Gunnison, CO. Each site report contains a site description, compliance summary, environmental program information, environmental radiological and non-radiological program information, water resources protection, and quality assurance information.

  3. Model testing for the remediation assessment of a radium contaminated site in Olen, Belgium

    International Nuclear Information System (INIS)

    Sweeck, Lieve; Kanyar, Bela; Krajewski, Pawel; Kryshev, Alexander; Lietava, Peter; Nenyei, Arpad; Sazykina, Tatiana; Yu, Charley; Zeevaert, Theo

    2005-01-01

    Environmental assessment models are used as decision-aiding tools in the selection of remediation options for radioactively contaminated sites. In most cases, the effectiveness of the remedial actions in terms of dose savings cannot be demonstrated directly, but can be established with the help of environmental assessment models, through the assessment of future radiological impacts. It should be emphasized that, given the complexity of the processes involved and our current understanding of how they operate, these models are simplified descriptions of the behaviour of radionuclides in the environment and therefore imperfect. One way of testing and improving the reliability of the models is to compare their predictions with real data and/or the predictions of other models. Within the framework of the Remediation Assessment Working Group (RAWG) of the BIOMASS (BIOsphere Modelling and ASSessment) programme coordinated by IAEA, two scenarios were constructed and applied to test the reliability of environmental assessment models when remedial actions are involved. As a test site, an area of approximately 100 ha contaminated by the discharges of an old radium extraction plant in Olen (Belgium) has been considered. In the first scenario, a real situation was evaluated and model predictions were compared with measured data. In the second scenario the model predictions for specific hypothetical but realistic situations were compared. Most of the biosphere models were not developed to assess the performance of remedial actions and had to be modified for this purpose. It was demonstrated clearly that the modeller's experience and familiarity with the mathematical model, the site and with the scenario play a very important role in the outcome of the model calculations. More model testing studies, preferably for real situations, are needed in order to improve the models and modelling methods and to expand the areas in which the models are applicable

  4. 1992 Fernald Site Environmental Report

    International Nuclear Information System (INIS)

    1993-06-01

    The Fernald site is a Department of Energy (DOE) owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the Fernald site in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This report covers the reporting period from January 1, 1992, through December 31, 1992, with the exception of Chapter Three, which provides information from the first quarter of 1993 as well as calendar year 1992 information. This 1992 report provides the general public as well as scientists and engineers with the results from the site's ongoing Environmental Monitoring Program. Use included in this report are summary data of the sampling conducted to determine if the site complies with DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA) requirements. Finally, this report provides general information on the major waste management and environmental restoration activities during 1992

  5. Considering bioavailability in the remediation of heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Leita L.

    2013-04-01

    Full Text Available Many years of research have demonstrated that instead of the total concentration of metals in soil, bioavailability is the key to understand the environmental risk derived by metals, since adverse effects are related only to the biologically available forms of these elements. The knowledge of bioavailability can decrease the uncertainties in evaluating exposure in human and ecological risk assessment. At the same time, the efficiency of remediation treatments could be greatly influenced by availability of the contaminants. Consideration of the bioavailability processes at contaminated sites could be useful in site-specific risk assessment: the fraction of mobile metals, instead of total content should be provided as estimates of metal exposure. Moreover, knowledge of the chemical forms of heavy metals in soils is a critical component in the evaluation of applicability of different remediation technologies such as phytoremdiation or soil washing.

  6. Scheduling the Remediation of Port Hope: Logistical and Regulatory Challenges of a Multiple Site Urban Remediation Project - 13119

    International Nuclear Information System (INIS)

    Ferguson Jones, Andrea; Lee, Angela; Palmeter, Tim

    2013-01-01

    The Port Hope Project is part of the larger CAN$1.28 billion Port Hope Area Initiative (PHAI), a community-based program for the development and implementation of a safe, local, long-term management solution for historic Low-Level Radioactive Waste (LLRW) in the Municipalities of Port Hope and Clarington, Ontario, Canada. Atomic Energy of Canada (AECL) is the Project Proponent, Public Works and Government Services (PWGSC) is managing the procurement of services and the MMM Group Limited - Conestoga Rovers and Associates Joint Venture (MMM-CRA Joint Venture) is providing detailed design and construction oversight and administration services for the Project. The Port Hope Project includes the construction of a long-term waste management facility (LTWMF) in the Municipality of Port Hope and the remediation of 18 (eighteen) large-scale LLRW, numerous small-scale sites still being identified and industrial sites within the Municipality. The total volume to be remediated is over one million cubic metres and will come from sites that include temporary storage sites, ravines, beaches, parks, private commercial and residential properties and vacant industrial sites all within the urban area of Port Hope. Challenges that will need to be overcome during this 10 year project include: - Requirements stipulated by the Environmental Assessment (EA) that affect Project logistics and schedule. - Coordination of site remediation with the construction schedule at the LTWMF. - Physical constraints on transport routes and at sites affecting production rates. - Despite being an urban undertaking, seasonal constrains for birds and fish (i.e., nesting and spawning seasons). - Municipal considerations. - Site-specific constraints. - Site interdependencies exist requiring consideration in the schedule. Several sites require the use of an adjacent site for staging. (authors)

  7. Scheduling the Remediation of Port Hope: Logistical and Regulatory Challenges of a Multiple Site Urban Remediation Project - 13119

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson Jones, Andrea; Lee, Angela [MMM Group Limited, 100 Commerce Valley Drive West, Thornhill, Ontario, L3T 0A1 (Canada); Palmeter, Tim [Public Works and Government Services Canada, 4900 Yonge Street, Toronto, Ontario, M2N 6A6 (Canada)

    2013-07-01

    The Port Hope Project is part of the larger CAN$1.28 billion Port Hope Area Initiative (PHAI), a community-based program for the development and implementation of a safe, local, long-term management solution for historic Low-Level Radioactive Waste (LLRW) in the Municipalities of Port Hope and Clarington, Ontario, Canada. Atomic Energy of Canada (AECL) is the Project Proponent, Public Works and Government Services (PWGSC) is managing the procurement of services and the MMM Group Limited - Conestoga Rovers and Associates Joint Venture (MMM-CRA Joint Venture) is providing detailed design and construction oversight and administration services for the Project. The Port Hope Project includes the construction of a long-term waste management facility (LTWMF) in the Municipality of Port Hope and the remediation of 18 (eighteen) large-scale LLRW, numerous small-scale sites still being identified and industrial sites within the Municipality. The total volume to be remediated is over one million cubic metres and will come from sites that include temporary storage sites, ravines, beaches, parks, private commercial and residential properties and vacant industrial sites all within the urban area of Port Hope. Challenges that will need to be overcome during this 10 year project include: - Requirements stipulated by the Environmental Assessment (EA) that affect Project logistics and schedule. - Coordination of site remediation with the construction schedule at the LTWMF. - Physical constraints on transport routes and at sites affecting production rates. - Despite being an urban undertaking, seasonal constrains for birds and fish (i.e., nesting and spawning seasons). - Municipal considerations. - Site-specific constraints. - Site interdependencies exist requiring consideration in the schedule. Several sites require the use of an adjacent site for staging. (authors)

  8. National conference on environmental remediation science and technology: Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  9. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Christopher [U.S Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S Department of Energy Office of Legacy Management, Westminster, Colorado; Widdop, Michael; Gillespie, Joey [SM Stoller Corporation, Grand Junction, Colorado

    2012-02-26

    The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. DOE must continue to maintain constructive relationships with the U

  10. Remediation of the Maxey Flats Site

    International Nuclear Information System (INIS)

    1990-01-01

    This report describes issues associated with remedial action of Maxey Flats, a low-level radioactive waste disposal site from 1963-1977, located in Fleming County, Kentucky. Present remedial action alternatives being considered are discussed along with emergency plans, ground water monitoring plans, and budgets

  11. Trade-offs between worker risk and public risk during remediation at DOE sites

    International Nuclear Information System (INIS)

    Beam, B.N.; Morris, J.; Blaylock, B.; Travis, C.

    1995-01-01

    Within the next 30 years, the US Department of Energy (DOE) Environmental Restoration Program will be responsible for remediating thousands of waste sites across the DOE complex. A major concern during remediation will be the protection of thousands of workers engaged in the remediation. In addition to well know safety hazards associated with conventional construction operations, remedial workers at DOE will encounter radiation and chemical exposures from radioactive, hazardous, and mixed waste. Although historically represented as minimal due to a paucity of data related to worker exposures during remediation, potential worker health risk is an important factor that must be taken into account in the selection of remedial strategies, and the potential risk reduction offered by a remedial strategy must be weighed against the potential worker risk incurred during its implementation. Analysis has shown a trend that the worker risk incurred outweighs,the benefits of risk reduction to the public

  12. Determining site-specific background level with geostatistics for remediation of heavy metals in neighborhood soils

    Directory of Open Access Journals (Sweden)

    Tammy M. Milillo

    2017-03-01

    Full Text Available The choice of a relevant, uncontaminated site for the determination of site-specific background concentrations for pollutants is critical for planning remediation of a contaminated site. The guidelines used to arrive at concentration levels vary from state to state, complicating this process. The residential neighborhood of Hickory Woods in Buffalo, NY is an area where heavy metal concentrations and spatial distributions were measured to plan remediation. A novel geostatistics based decision making framework that relies on maps generated from indicator kriging (IK and indicator co-kriging (ICK of samples from the contaminated site itself is shown to be a viable alternative to the traditional method of choosing a reference site for remediation planning. GIS based IK and ICK, and map based analysis are performed on lead and arsenic surface and subsurface datasets to determine site-specific background concentration levels were determined to be 50 μg/g for lead and 10 μg/g for arsenic. With these results, a remediation plan was proposed which identified regions of interest and maps were created to effectively communicate the results to the environmental agencies, residents and other interested parties.

  13. Networking as a tool to improve education and training in environmental remediation of uranium mining and processing sites – the role of the ENVIRONET/CONNECT

    International Nuclear Information System (INIS)

    Monken-Fernandes, H.; Santos Junger, A.; Fan, Z.

    2014-01-01

    The operation of uranium mining and processing facilities in the past gave rise, in several cases, to sites that now are in need of extensive environmental remediation. They were originated because these operations were not developed under appropriate regulatory control. Some countries have been successful in achieving good progress and results with the remediation of these sites. In some other countries however, remediation works move at a slow pace or are virtually stagnant. The IAEA has a vision that its Member States (MS) will eventually have in place a proper infrastructure and technologies for managing these and other legacies and resolve all related issues in a timely, safe and cost-effective manner. Experience has shown that with appropriate planning and assistance (including financial support) remedial actions are more likely to be implemented. As such the interaction of inexperienced with experienced countries facilitated by the IAEA may lead to better conditions for real implementation of projects and sharing of lessons learned. Countries may be inspired to reproduce (after necessary adaptation to local conditions and constraints) the experience gained by others.

  14. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental impacts associated with establishing future land-use objectives for the US Department of Energy's Hanford Site. Impact analysis is performed by examining the consequences (primarily from remediation activities) of the actions determined necessary to achieve a desired future land-use objective. It should be noted that site-specific decisions regarding remediation technologies and remediation activities would not be made by this document, but rather by processes specified in the Comprehensive Environmental Response, Compensation and Liability Act of 1980 and the Resource Conservation and Recovery Act of 1976. To facilitate the establishment of future land-use objectives, the Hanford Site was divided into four geographic areas: (1) Columbia River; (2) reactors on the river; (3) central plateau; (4) all other areas. The future land-use alternatives considered in detail for each of the geographic areas are as follows: Columbia River--unrestricted and restricted; reactors on the river--unrestricted and restricted; central plateau--exclusive; all other areas--restricted. A No-Action Alternative also is included to provide a baseline against which the potential impacts of the proposed action can be assessed

  15. Draft programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) is responsible for performing remedial action to bring surface and ground water contaminant levels at 24 inactive uranium processing sites into compliance with the US Environmental Protection Agency (EPA) standards. DOE is accomplishing this through the Uranium Mill Tailings Remedial Action (UMTRA) Surface and Ground Water Projects. Remedial action will be conducted with the concurrence of the US Nuclear Regulatory Commission (NRC) and the full participation of affected states and Indian tribes. Uranium processing activities at most of 24 the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as uranium and nitrate. The purpose of the UMTRA Ground Water Project is to eliminate, or reduce to acceptable levels, the potential health and the environmental consequences of milling activities by meeting the EPA standards in areas where ground water has been contaminated. The first step in the UMTRA Ground Water Project is the preparation of this programmatic environmental impact statement (PEIS). This document analyzes potential impacts of four programmatic alternatives, including the proposed action. The alternatives do not address site-specific ground water compliance strategies. Rather, the PEIS is a planning document that provides a framework for conducting the Ground Water Project; assesses the potential programmatic impacts of conducting the Ground Water Project; provides a method for determining the site-specific ground water compliance strategies; and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently

  16. 300-FF-1 remedial design report/remedial action work plan

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes.

  17. 300-FF-1 remedial design report/remedial action work plan

    International Nuclear Information System (INIS)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes

  18. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords

  19. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  20. Environmental remediation and waste management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  1. Environmental remediation and waste management information systems

    International Nuclear Information System (INIS)

    Harrington, M.W.; Harlan, C.P.

    1993-01-01

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency's (EPA's) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA's CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information

  2. Niagara Falls Storage Site environmental surveillance report for calendar year 1993

    International Nuclear Information System (INIS)

    1994-06-01

    This report summarizes the results of environmental surveillance activities conducted at the Niagara Falls Storage Site (NFSS) during calendar year 1993. It includes an overview of site operations, the basis for radiological and nonradiological monitoring, a summary of the results, and the estimated dose to the offsite population. Environmental surveillance activities were conducted in accordance with the site environmental monitoring plan, which describes the rationale and design criteria for the surveillance program, the frequency of sampling and analysis, specific sampling and analysis procedures, and quality assurance requirements. NFSS is in compliance with National Emission Standards for Hazardous Air Pollutants (NESHAPs) Subpart H of the Clean Air Act as well as the requirements of the National Pollutant Discharge Elimination System (NPDES) under the Clean Water Act. Located in northwestern New York, the site covers 191 acres. From 1944 to the present, the primary use of NFSS has been storage of radioactive residues that were by-products of uranium production. Most onsite areas of residual radioactivity above regulatory guidelines were remediated during the early 1980s. Additional isolated areas of onsite contamination were remediated in 1989, and the materials were consolidated into the waste containment structure in 1991. Remediation of the site has now been completed

  3. LCA of Soil and Groundwater Remediation

    DEFF Research Database (Denmark)

    Søndergaard, Gitte Lemming; Owsianiak, Mikolaj

    2018-01-01

    Today, there is increasing interest in applying LCA to support decision-makers in contaminated site management. In this chapter, we introduce remediation technologies and associated environmental impacts, present an overview of literature findings on LCA applied to remediation technologies...... and present methodological issues to consider when conducting LCAs within the area. Within the field of contaminated site remediation , a terminology distinguishing three types of environmental impacts: primary, secondary and tertiary, is often applied. Primary impacts are the site-related impacts due...... and efficiency of remediation, which are important for assessment or primary impacts; (ii) robust assessment of primary impacts using site-specific fate and exposure models; (iii) weighting of primary and secondary (or tertiary) impacts to evaluate trade-offs between life cycle impacts from remediation...

  4. Natural Remediation at Savannah River Site

    International Nuclear Information System (INIS)

    Lewis, C. M.; Van Pelt, R.

    2002-01-01

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  5. Friends or foes? Monetized Life Cycle Assessment and Cost-Benefit Analysis of the site remediation of a former gas plant.

    Science.gov (United States)

    Huysegoms, Lies; Rousseau, Sandra; Cappuyns, Valérie

    2018-04-01

    Site contamination is a global concern because of the potential risks for human health and ecosystem quality. Every contaminated site has its own specific characteristics and the increased availability and efficiency of remediation techniques makes the choice of remediation alternative increasingly complicated. In this paper an attributional Life Cycle Assessment (LCA) of the secondary environmental impacts of a site remediation is performed and its results are monetized using two different monetization techniques, namely Stepwise 2006 and Ecovalue 08. Secondly, we perform a social Cost-Benefit Analysis (CBA) on the same case study using the same data sources. The case study used in this paper entails the soil and groundwater remediation of a tar, poly-aromatic hydrocarbons (PAH) and cyanide contamination of a school ground by a former gas plant. The remediation alternative chosen in this case study is excavation with off-site thermal treatment of the contaminated soil. The outcome of the social CBA, stating that the remediation project is socially beneficial in the long term, is critically compared to the outcome of the different LCA monetization methods. This comparison indicates that monetized LCA is a good complement to social CBA when it comes to the assessment of secondary environmental impacts. Combining the two methods provides decision makers with a more extensive and detailed assessment of the soil remediation project. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Remedial investigation for the 200-BP-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1991-01-01

    The Hanford Site, Richland, Washington, contains over 1500 identified waste sites that will be characterized and remediated over the next 30 years. In support of the ''Hanford Federal Facility Agreement and Consent Order,'' the US Department of Energy has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of the site characterization is oriented toward determining the nature and extent of any contamination present in the vicinity of the 200-BP-1 operable unit. The major focus of the Phase I RI is the drilling and sampling of 10 inactive waste disposal units which received low level radioactive liquid waste

  7. Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York. [Niagara Falls Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  8. Maywood Interim Storage Site annual environmental report for calendar year 1991, Maywood, New Jersey. [Maywood Interim Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-09-01

    This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  9. Screening of groundwater remedial alternatives for brownfield sites: a comprehensive method integrated MCDA with numerical simulation.

    Science.gov (United States)

    Li, Wei; Zhang, Min; Wang, Mingyu; Han, Zhantao; Liu, Jiankai; Chen, Zhezhou; Liu, Bo; Yan, Yan; Liu, Zhu

    2018-06-01

    Brownfield sites pollution and remediation is an urgent environmental issue worldwide. The screening and assessment of remedial alternatives is especially complex owing to its multiple criteria that involves technique, economy, and policy. To help the decision-makers selecting the remedial alternatives efficiently, the criteria framework conducted by the U.S. EPA is improved and a comprehensive method that integrates multiple criteria decision analysis (MCDA) with numerical simulation is conducted in this paper. The criteria framework is modified and classified into three categories: qualitative, semi-quantitative, and quantitative criteria, MCDA method, AHP-PROMETHEE (analytical hierarchy process-preference ranking organization method for enrichment evaluation) is used to determine the priority ranking of the remedial alternatives and the solute transport simulation is conducted to assess the remedial efficiency. A case study was present to demonstrate the screening method in a brownfield site in Cangzhou, northern China. The results show that the systematic method provides a reliable way to quantify the priority of the remedial alternatives.

  10. Wayne Interim Storage Site annual environmental report for calendar year 1991, Wayne, New Jersey. [Wayne Interim Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-09-01

    This document describes the envirormental monitoring program at the Wayne Interim Storage Site (WISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of WISS and surrounding area began in 1984 when Congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. WISS is a National Priorities List site. The environmental monitoring program at WISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium concentrations in surface water, sediment, and groundwater. Several nonradiological parameters are also measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides, dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  11. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case

  12. Nanotechnology for Site Remediation: Fact Sheet

    Science.gov (United States)

    This fact sheet presents a snapshot of nanotechnology and its current uses in remediation. It presents information to help site project managers understand the potential applications of this group of technologies at their sites.

  13. Design of an environmental site assessment template for open radioactive site contamination : a radioecological risk approach and case study

    International Nuclear Information System (INIS)

    Nguyen, T.

    2004-01-01

    To reduce redundancy, cost, and time, while at the same time ultimately increasing the effectiveness of the radioactive risk management process, a logical framework incorporating risk assessments (human cancer and environmental risks) into the environmental site assessment process was designed for radioactive open site contamination. Risk-based corrective action is becoming an increasingly more acceptable approach for the remediation of contaminated sites. In the past, cleanup goals were usually established without any regard to the risk involved, by mandating remediation goals based solely on maximum contamination levels. Now, a multi-stage environmental site assessment template has been developed on a radioecological approach. The template gives a framework for making environmentally sound decisions based on relevant regulations and guidelines. The first stage involves the comparison of the background screening activity level to the regulated activity level, the second stage involves the use of site-specific information to determine the risk involved with the contamination, and the third stage provides a remediation decision matrix based on results from the first two stages. This environmental site assessment template is unique because it incorporates the modified Canadian National Classification System for radioactive contaminated sites and two different types of risk assessments (human cancer risks and the newly designed ecological risk) into the decision making process. The template was used to assess a radiologically contaminated site at the Canadian Forces Base at Suffield (Alberta) as a case study, and it reaffirms the Department of National Defence's action as appropriate. This particular site is a Class 3, has an overall insignificant human cancer risk ( -6 ) and a low environmental risk, and conforms to all regulated guidelines. Currently, it is restricted and should be left as is, provided that the subsurface is not disturbed. (author)

  14. Environmental impact of differently remediated hard coal overburden and tailings dumps a few decades after remediation

    International Nuclear Information System (INIS)

    Willscher, S.; Felix, M.; Sohr, A.

    2010-01-01

    Coal mining in the Saxony region of Germany has caused heavy metal and arsenic pollution in adjacent groundwater and surface waters. Coal waste dumping sites are leaching heavy metals and metalloids in the form of fine precipitates into local rivers. This paper studied the different remediation strategies used at 3 different dump sites in the area. The aim of the study was to determine the environmental impact of the dumps and evaluate the long-term effects of remediation measures. The dumps consisted of coarse to fine-grained materials from former processing activities, and contained pyrite in varying concentrations. Samples from different depth as well as groundwater samples were taken from the sites and investigated for their mechanical, geological, geochemical, biogeochemical, and physico-chemical characteristics. Seepage formation rates and contaminant loads at the dump sites were compared. The study showed that the revegetation of dump surfaces can help to prevent against erosion, but cannot prevent acid mine drainage (AMD) generation. The additional seals and covers placed at 2 of the dumps resulted in a high reduction of seepage waters, and almost no acidification of dump materials. 5 refs., 1 fig.

  15. WELDON SPRING SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 2002

    Energy Technology Data Exchange (ETDEWEB)

    WASHINGTON GROUP INTERNATIONAL AND JACOBS ENGINEERING GROUP

    2003-05-01

    This annual report presents a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. This report also presents the status of remedial activities and the results of monitoring activities to assess their impacts on the public and environment.

  16. Weldon Spring Site Environmental Report For Calendar Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-07-01

    This annual report presents a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. This report also presents the status of remedial activities and the results of monitoring activities to assess their impacts on the public and environment.

  17. WELDON SPRING SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 2002

    International Nuclear Information System (INIS)

    WASHINGTON GROUP INTERNATIONAL AND JACOBS ENGINEERING GROUP

    2003-01-01

    This annual report presents a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. This report also presents the status of remedial activities and the results of monitoring activities to assess their impacts on the public and environment

  18. Weldon Spring Site Environmental Report for calendar year 1994

    International Nuclear Information System (INIS)

    1995-05-01

    This report for Calendar Year 1994 has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project (WSSRAP). The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The chemical plant, raffinate pits, and quarry are located on Missouri State Route 94, southwest of US Route 40/61. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site, estimates of effluent releases, and trends in groundwater contaminant levels. Additionally, applicable compliance requirements, quality assurance programs, and special studies conducted in 1994 to support environmental protection programs are discussed. Dose estimates presented in this report are based on hypothetical exposure scenarios of public use of areas near the site. In addition, release estimates have been calculated on the basis of 1994 National Pollutant Discharge Elimination System (NPDES) and air monitoring data. Effluent discharges from the site under routine NPDES and National Emission Standards for Hazardous Air Pollutants (NESHAPS) monitoring were below permitted levels

  19. 1996 Site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The FEMP is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the FEMP in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the FEMP. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1996 SER provides the general public as well as scientists and engineers with the results from the ongoing Environmental Monitoring Program. Also included in this report is information concerning the FEMP progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (EPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish are presented here. All information presented in this summary is discussed more fully in the main body of this report.

  20. Environmental remediation: Addressing public concerns through effective community relations

    International Nuclear Information System (INIS)

    Davis, S.; Heywood, J.; Wood, M.B.; Arellano, M.; Pfister, S.

    1998-01-01

    The public's perception of risk drives their response to any potential environmental remediation project. Even if the actual environmental and health risks may be relatively low, public perception of high risk may doom the project to an uphill struggle characterized by heated public meetings, negative media coverage, reluctant regulators, project delays and increased costs. The ultimate Catch 22 in such a case is that the contamination remains in-place until the public drama is concluded. This paper explores the development and implementation of a Community Relations Plan for the clean up of a Manufactured Gas Plant (MGP) site owned and operated by corporate predecessors of Arizona Public Service Company (APS) near the turn of the century. The unique challenges associated with this project were that the former MGP was located in downtown Phoenix at the site of a future federal courthouse. Although the MGP site had been under investigation for some time, the clean-up schedule was driven by a tight courthouse construction schedule. Compounding these challenges were the logistics associated with conducting a large-scale cleanup in a congested, highly visible downtown location. An effective Community Relations Plan can mean the difference between the success and failure of an environmental remediation project. Elements of an effective plan are: identifying key stakeholders and involving them in the project from the beginning; providing timely information and being open and honest about the potential environmental and health risks; involving your company's community relations and media staff; and educating affected company employees. The Community Relations Plan developed for this project was designed to alleviate public concern about potential risks (perceived or real) associated with the project by keeping key stakeholders informed of all activities well in advance

  1. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC section 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use

  2. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

  3. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-12-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  4. Risk evaluation of remedial alternatives for the Hanford Site

    International Nuclear Information System (INIS)

    Clark, S.W.; Lane, N.K.; Swenson, L.

    1994-01-01

    Risk assessment is one of the many tools used to evaluate and select remedial alternatives and evaluate the risk associated with selected remedial alternatives during and after implementation. The risk evaluation of remedial alternatives (RERA) is performed to ensure selected alternatives are protective of human health and the environment. Final remedy selection is promulgated in a record of decision (ROD) and risks of the selected alternatives are documented. Included in the ROD documentation are the risk-related analyses for long-term effectiveness, short-term effectiveness, and overall protection of human health and the environment including how a remedy will eliminate, reduce or control risks and whether exposure will be reduced to acceptable levels. A major goal of RERA in the process leading to a ROD is to provide decision-makers with specific risk information that may be needed to choose among alternatives. For the Hanford Site, there are many considerations that must be addressed from a risk perspective. These include the large size of the Hanford Site, the presence of both chemical and radionuclide contamination, one likelihood of many analogues sites, public and worker health and safety, and stakeholder concern with ecological impacts from site contamination and remedial actions. A RERA methodology has been promulgated to (1) identify the points in the process leading to a ROD where risk assessment input is either required or desirable and (2) provide guidance on how to evaluate risks associated with remedial alternatives under consideration. The methodology and evaluations parallel EPA guidance requiring consideration of short-term impacts and the overall protectiveness of remedial actions for evaluating potential human health and ecological risks during selection of remedial alternatives, implementation of remedial measures, and following completion of remedial action

  5. Determining the number of samples required for decisions concerning remedial actions at hazardous waste sites

    International Nuclear Information System (INIS)

    Skiles, J.L.; Redfearn, A.; White, R.K.

    1991-01-01

    An important consideration for every risk analyst is how many field samples should be taken so that scientifically defensible decisions concerning the need for remediation of a hazardous waste site can be made. Since any plausible remedial action alternative must, at a minimum, satisfy the condition of protectiveness of human and environmental health, we propose a risk-based approach for determining the number of samples to take during remedial investigations rather than using more traditional approaches such as considering background levels of contamination or federal or state cleanup standards

  6. Assessing the wider environmental value of remediating land contamination

    NARCIS (Netherlands)

    Bardos, R.P.; Kearney, T.E.; Nathanail, C.P.; Weenk, A.; Martin, I.D.

    2000-01-01

    The aim of this paper is to consider qualitative and quantitative approaches for assessing the wider environmental value of remediating land contamination. In terms of the environmental element of sustainable development, a remediation project's overall environmental performance is the sum of the

  7. Salmon Site Remedial Investigation Report, Appendix C

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  8. Salmon Site Remedial Investigation Report, Exhibit 2

    Energy Technology Data Exchange (ETDEWEB)

    USDOE NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  9. Salmon Site Remedial Investigation Report, Appendix D

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  10. Salmon Site Remediation Investigation Report, Appendix A

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  11. Salmon Site Remedial Investigation Report, Main Body

    Energy Technology Data Exchange (ETDEWEB)

    US DOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  12. Salmon Site Remedial Investigation Report, Exhibit 2

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  13. Salmon Site Remedial Investigation Report, Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    US DOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  14. Salmon Site Remedial Investigation Report, Exhibit 5

    Energy Technology Data Exchange (ETDEWEB)

    USDOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  15. Salmon Site Remedial Investigation Report, Exhibit 5

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  16. The observational approach for site remediation at federal facilities

    International Nuclear Information System (INIS)

    Myers, R.S.; Gianti, S.J.

    1989-11-01

    The observational approach, developed by geotechnical engineers to cope with the uncertainty associated with subsurface construction such as tunnels and dams, can be applied to hazardous waste site remediation. During the last year, the observational approach has gained increasing attention as a means of addressing the uncertainties involved in site remediation. In order to evaluate the potential advantages and constraints of applying the observational approach to site restoration at federal facilities, a panel of scientists and engineers from Pacific Northwest Laboratory and CH2M Hill was convened. Their review evaluated potential technical and institutional advantages and constraints that may affect the use of the observational approach for site remediation. This paper summarizes the panel's comments and conclusions about the application of the observational approach to site remediation at federal facilities. Key issues identified by the panel include management of uncertainty, cost and schedule, regulations and guidance, public involvement, and implementation. 5 refs

  17. Rocky Flats Plant Site Environmental Report: 1993 Highlights

    International Nuclear Information System (INIS)

    1993-01-01

    The Rocky Flats Plant Site Environmental Report provides summary information on the plant's environmental monitoring programs and the results recorded during 1993. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population. This section provides an overview of these topics and summarizes more comprehensive discussions found in the main text of this annual report

  18. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  19. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  20. DECISION ANALYSIS OF INCINERATION COSTS IN SUPERFUND SITE REMEDIATION

    Science.gov (United States)

    This study examines the decision-making process of the remedial design (RD) phase of on-site incineration projects conducted at Superfund sites. Decisions made during RD affect the cost and schedule of remedial action (RA). Decision analysis techniques are used to determine the...

  1. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: Incineration and base catalyzed decomposition

    International Nuclear Information System (INIS)

    Hu Xintao; Zhu Jianxin; Ding Qiong

    2011-01-01

    Highlights: → We study the environmental impacts of two kinds of remediation technologies including Infrared High Temperature Incineration(IHTI) and Base Catalyzed Decomposition(BCD). → Combined midpoint/damage approaches were calculated for two technologies. → The results showed that major environmental impacts arose from energy consumption. → BCD has a lower environmental impact than IHTI in the view of single score. - Abstract: Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and

  2. Stakeholder value-linked sustainability assessment: Evaluating remedial alternatives for the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    Apitz, Sabine E; Fitzpatrick, Anne G; McNally, Amanda; Harrison, David; Coughlin, Conor; Edwards, Deborah A

    2018-01-01

    Regulatory decisions on remediation should consider affected communities' needs and values, and how these might be impacted by remedial options; this process requires that diverse stakeholders are able to engage in a transparent consideration of value trade-offs and of the distribution of risks and benefits associated with remedial actions and outcomes. The Stakeholder Values Assessment (SVA) tool was developed to evaluate remedial impacts on environmental quality, economic viability, and social equity in the context of stakeholder values and priorities. Stakeholder values were linked to the pillars of sustainability and also to a range of metrics to evaluate how sediment remediation affects these values. Sediment remedial alternatives proposed by the US Environmental Protection Agency (USEPA) for the Portland Harbor Superfund Site were scored for each metric, based upon data provided in published feasibility study (FS) documents. Metric scores were aggregated to generate scores for each value; these were then aggregated to generate scores for each pillar of sustainability. In parallel, the inferred priorities (in terms of regional remediation, restoration, planning, and development) of diverse stakeholder groups (SGs) were used to evaluate the sensitivity and robustness of the values-based sustainability assessment to diverse SG priorities. This approach, which addresses social indicators of impact and then integrates them with indicators of environmental and economic impacts, goes well beyond the Comprehensive Environmental Response, Compensation and Liability Act's (CERCLA) 9 criteria for evaluating remedial alternatives because it evaluates how remedial alternatives might be ranked in terms of the diverse values and priorities of stakeholders. This approach identified trade-offs and points of potential contention, providing a systematic, semiquantitative, transparent valuation tool that can be used in community engagement. Integr Environ Assess Manag 2018

  3. Paducah Site annual environmental report summary for 1995

    International Nuclear Information System (INIS)

    Belcher, G.

    1997-01-01

    This report contains summaries of the environmental programs at the Paducah Site, as well as the impacts of its operations on the environment and the public for 1995. The results of environmental monitoring are presented. The goal is to keep emissions as low as possible, enhance the strict safety controls that are in place and use state-of-the-art technology to complete environmental remediation projects in the most cost-effective and efficient manner possible

  4. Development of a sitewide groundwater remediation strategy at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Goswami, D.

    1996-01-01

    Over 440 km 2 (170 mi 2 ) of groundwater beneath the Hanford Site are contaminated by hazardous and radioactive waste, out of which almost half is over state and federal drinking water standards. In addition to the complicated nature of these plumes, remediation is further obscured by limited application of available technologies and hydrogeologic information. This paper briefly describes the processes used by the Washington State Department of Ecology (Ecology), U.S. Environmental Protection Agency, and U.S. Department of Energy (USDOE) in developing a sitewide groundwater remediation strategy for Hanford and its outcome. As an initial approach to sitewide groundwater remediation, the strategy is to remediate the major plumes found in the reactor areas (100 Area) adjacent to the Columbia River and contain the major plumes found in the Central Plateau region (200 Area). This approach was based mainly on the qualitative risk, stakeholder's and tribe's values, and available technical feasibility. The strategy emphasizes the use of existing treatment and extraction technology for the remediation of groundwater in combination with proposed and existing site infrastructure. This work is being performed in parallel with ongoing risk and other feasibility activities. Under this strategy, innovative technologies being developed are in the areas of dense nonaqueous phase liquid identification and recovery, and problems associated with strontium-90, cesium-137, and plutonium in the vadose zone and groundwater. The final remediation strategy alternatives remain a product of risk assessment, technical feasibility, site use scenario, and cost consideration. In order to develop a strategy for the final cleanup, several issues such as aquifer restoration, natural attenuation, potential contamination of groundwater from the tank farms and from the existing contamination source in the vadose zone must be looked in detail in conjuction with public and stakeholder's values

  5. Draft Environmental Impact Statement for the tank waste remediation system. Volume 1

    International Nuclear Information System (INIS)

    1996-04-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, and Ex Situ/In Situ Combination. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. At this time, DOE and Ecology do not have a preferred alternative for the cesium and strontium capsules

  6. Guidelines for Remediation Strategies to Reduce the Radiological Consequences of Environmental Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, S; Howard, B J [eds.

    2012-11-15

    There are many areas around the world contaminated with radioactive substances which may require remediation. The source of contamination with radionuclides varies; the most important sources include nuclear testing, radiation accidents and inadequate waste disposal practices. Contamination at such sites may present a risk to humans and the environment. Therefore, issues related to remediation of such sites are potentially of concern for both the general public and a wide variety of stakeholders. In response to the needs of its Member States, the IAEA has published many books covering different aspects of remediation of contaminated environments. These books range from safety fundamentals and safety requirements to technical publications describing remedial technologies. Almost all of the publications on environmental remediation are related to uranium mining areas and decommissioning of nuclear facilities. IAEA radiation safety standards on remediation of contaminated environments are largely based on these two types of remediation. The exception is a publication that was a joint undertaking by the IAEA and the Food and Agriculture Organization of the United Nations (FAO) related to accidents entitled Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides, Technical Reports Series No. 363 (1994) (TRS 363). This publication has constituted a major source of information over many years for staff of authorities providing environmental remediation planning after accidents. TRS 363 focused mainly on agricultural management options following an accidental release of radionuclides; remedial actions for other environments and other practices were not considered. Since the publication of TRS 363, there has been a considerable increase in relevant information. Given the importance of Chernobyl and other accidents, there have been a considerable number of IAEA activities devoted to the remediation of radiation accidents since 1994. Many

  7. Guidelines for Remediation Strategies to Reduce the Radiological Consequences of Environmental Contamination

    International Nuclear Information System (INIS)

    Fesenko, S.; Howard, B.J.

    2012-01-01

    There are many areas around the world contaminated with radioactive substances which may require remediation. The source of contamination with radionuclides varies; the most important sources include nuclear testing, radiation accidents and inadequate waste disposal practices. Contamination at such sites may present a risk to humans and the environment. Therefore, issues related to remediation of such sites are potentially of concern for both the general public and a wide variety of stakeholders. In response to the needs of its Member States, the IAEA has published many books covering different aspects of remediation of contaminated environments. These books range from safety fundamentals and safety requirements to technical publications describing remedial technologies. Almost all of the publications on environmental remediation are related to uranium mining areas and decommissioning of nuclear facilities. IAEA radiation safety standards on remediation of contaminated environments are largely based on these two types of remediation. The exception is a publication that was a joint undertaking by the IAEA and the Food and Agriculture Organization of the United Nations (FAO) related to accidents entitled Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides, Technical Reports Series No. 363 (1994) (TRS 363). This publication has constituted a major source of information over many years for staff of authorities providing environmental remediation planning after accidents. TRS 363 focused mainly on agricultural management options following an accidental release of radionuclides; remedial actions for other environments and other practices were not considered. Since the publication of TRS 363, there has been a considerable increase in relevant information. Given the importance of Chernobyl and other accidents, there have been a considerable number of IAEA activities devoted to the remediation of radiation accidents since 1994. Many

  8. Screening and comparison of remedial alternatives for the South Field and flyash piles at the Fernald site

    International Nuclear Information System (INIS)

    Bumb, A.C.; Jones, G.N.

    1996-05-01

    The South Field, the Inactive Flyash Pile, and the Active Flyash Pile are in close proximity to each other and are part of Operable Unit 2 (OU2) at the Fernald Environmental Management Project (FEMP). The baseline risk assessment indicated that the exposure pathways which pose the most significant risk are external radiation from radionuclides in surface soils and use of uranium contaminated groundwater. This paper presents screening and comparison of various remedial alternatives considered to mitigate risks from the groundwater pathway. Eight remedial alternatives were developed which consisted of consolidation and capping, excavation and off-site disposal with or without treatment, excavation and on-site disposal with or without treatment and combinations of these. Risk-based source (soil) preliminary remediation levels (PRLs) and waste acceptance criteria (WACs) were developed for consolidation and capping, excavation, and on-site disposal cell. The PRLs and WACs were developed using an integrated modeling tool consisting of an infiltration model, a surface water model, a vadose zone model, and a three-dimensional contaminant migration model in saturated media. The PRLs and WACs were then used to determine need for soil treatment, determine excavation volumes, and screen remedial alternatives. The selected remedial alternative consisted of excavation and on-site disposal with off-site disposal of the fraction exceeding the WAC

  9. Rocky Flats Plant Site Environmental Report: 1993 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The Rocky Flats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1993. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population. This section provides an overview of these topics and summarizes more comprehensive discussions found in the main text of this annual report.

  10. Soil sorting, new approach to site remediation management

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Woods, J.A.; Dillon, M.J.

    1996-01-01

    Soil sorting is the technology which conveys soil beneath contaminant detectors and, based on contaminant signal, automatically toggles a gate at the conveyor end to send soil with contamination above a guideline to a separate location from soil which meets the guideline. The technology was perfected for remediation of sites having soils with radioactive contamination, but it is applicable to other contaminants when instrumental methods exist for rapid contaminant detection at levels of concern. This paper examines the three methods for quantifying contamination in soil in support of site remediation management. Examples are discussed where the primary contaminant is plutonium, a radioactive substance and source of nuclear energy which can be hazardous to health when in the environment without controls. Field survey instruments are very sensitive to plutonium and can detect it in soil at levels below a part per billion, and there are a variety of soils which have been contaminated by plutonium and thoroughly investigated. The lessons learned with plutonium are applicable to other types of contaminants and site remediations. The paper concludes that soil sorting can be the most cost effective approach to site remediation, and it leads to the best overall cleanup

  11. Environmental liability and contaminated site management : a strategic approach for Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The issue of how much liability can be imposed on a party for remediating a contaminated site is discussed. Many jurisdictions have either passed legislation or implemented policies on environmental liability consistent with the 1993 framework outlined by the Canadian Council of Ministers of the Environment (CCME). In 1997, the Minister of Saskatchewan Environment and Resource Management (SERM) received a report from the Minister`s Contaminated Site Liability Advisory Group (CSLAG) which made a series of recommendations on the application of CCME principles in a Saskatchewan context. This document clarifies SERM`s approach to the management of contaminated sites in Saskatchewan and proposes a process model in accordance with the principles outlined by CCME and CSLAG to provide a workable system for determining which remedial measures are appropriate for specific contaminated sites. The report also identifies the parties responsible for implementing remedial measures and encourages them to negotiate the sharing of responsibility for the remediation among themselves. The treatment of orphan shares/sites is also discussed. 1 fig.

  12. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado

    International Nuclear Information System (INIS)

    1993-08-01

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (40 CFR 192). The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 designated responsibility to the US Department of Energy (DOE) for assessing the inactive uranium milling sites. The DOE has determined that each assessment shall include information on site characterization, a description of the proposed action, and a summary of the water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards. To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards, the US Department of Energy (DOE) proposes that supplemental standards be applied at the Dry Flats disposal site because of Class III (limited use) groundwater in the uppermost aquifer (the basal sandstone of the Cretaceous Burro Canyon Formation) based on low yield. The proposed remedial action will ensure protection of human health and the environment

  13. In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

    1994-06-01

    The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions

  14. Remediation activities at the Fernald Environmental Management Project (FEMP)

    International Nuclear Information System (INIS)

    Walsh, T.J.; Danner, R.

    1996-01-01

    The Fernald Environmental Management Project (FEMP) is a United States Department of Energy (DOE) facility located in southwestern Ohio. The facility began manufacturing uranium products in the early 1950's and continued processing uranium ore concentrates until 1989. The facility used a variety of chemical and metallurgical processes to produce uranium metals for use at other DOE sites across the country. Since the facility manufactured uranium metals for over thirty years, various amounts of radiological contamination exists at the site. Because of the chemical and metallurgical processes employed at the site, some hazardous wastes as defined by the Resource Conservation and Recovery Act (RCRA) were also generated at the site. In 1989. the FEMP was placed on the National Priorities List (NPL) requiring cleanup of the facility's radioactive and chemical contamination under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This paper discusses the proposed remediation activities at the five Operable Units (OUs) designated at the FEMP. In addition, the paper also examines the ongoing CERCLA response actions and RCRA closure activities at the facility

  15. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE`s Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  16. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE's Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  17. Weldon spring site environmental report for calendar year 1996. Revision 0

    International Nuclear Information System (INIS)

    1997-01-01

    This Site Environmental Report for Calendar Year 1996 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels and regulations, and to summarize trends and/or changes in contaminant concentrations identified through environmental monitoring

  18. Weldon spring site environmental report for calendar year 1996. Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-23

    This Site Environmental Report for Calendar Year 1996 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels and regulations, and to summarize trends and/or changes in contaminant concentrations identified through environmental monitoring.

  19. Development of subsurface characterization method for decommissioning site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In situ measurement of peak to valley method based on the ratio of counting rate between the full energy peak and Compton region was applied to identify the depth distribution of 137Cs. The In situ measurement and sampling results were applied to evaluate a residual radioactivity before and after remediation in decommissioning KRR site. Spatial analysis based on the Geostatistics method provides a reliable estimating the volume of contaminated soil with a graphical analysis, which was applied to the site characterization in the decommissioning KRR site. The in situ measurement and spatial analysis results for characterization of subsurface contamination are presented. The objective of a remedial action is to reduce risks to human health to acceptable levels by removing the source of contamination. Site characterization of the subsurface contamination is an important factor for planning and implementation of site remediation. Radiological survey and evaluation technology are required to ensure the reliability of the results, and the process must be easily applied during field measurements. In situ gamma-ray spectrometry is a powerful method for site characterization that can be used to identify the depth distribution and quantify radionuclides directly at the measurement site. The in situ measurement and Geostatistics method was applied to the site characterization for remediation and final status survey in decommissioning KRR site.

  20. An overview of remedial action technical information support activities funded by the US Department of Energy's Office of Environmental Restoration

    International Nuclear Information System (INIS)

    Owen, P.T.

    1990-01-01

    In 1979 the US Department of Energy (DOE) established the Remedial Action Program Information Center (RAPIC) at the Oak Ridge National Laboratory (ORNL) to provide technical information support to the DOE's Remedial Action Programs, which comprise: Formerly Utilized Sites Remedial Action Program (FUSRAP), Surplus Facilities Management Program (SFMP), and Uranium Mill Tailings Remedial Action Program (UMTRAP). Specific information activities that RAPIC performs to support the DOE's programs include: maintaining a computerized bibliographic database containing approximately 7000 annotated references relevant to remediation work at radioactively contaminated sites; publishing an annual bibliography, Nuclear Facility Decommissioning and Site Remedial Actions, A Selected Bibliography, ORNL/EIS-154; maintaining a document repository and providing copies of requested publications; and performing manual and computerized searches of the technical literature. The most important RAPIC function is serving as a focal point for remedial action information. With these extensive resources at its command, RAPIC is in a unique position to provide a comprehensive information base to the remedial action and environmental restoration community

  1. Estimating remediation costs for the Montclair radium superfund sites

    International Nuclear Information System (INIS)

    Turner, M.J.

    1995-01-01

    The Montclair/West Orange and Glen Ridge Superfund Sites, located in Essex County, NJ, are contaminated to varying degrees with radioactive materials. The waste originated from radium processing facilities prevalent in the area during the early 1900s. The design for remediation of these sites is managed by Bechtel National, Inc. on behalf of the United States Army Corps of Engineers, Kansas City District, which administers the project through an interagency agreement with the US Environmental Protection Agency (EPA). Design efforts for the project began in 1990. A portion of the scope, which is the topic of this article, was preparing the remediation costs estimates. These estimates were to be prepared from the detailed design packages; the Corps of Engineers required that the estimates were prepared using the Micro Computer-Aided Cost Estimating System (MCACES). This article discusses the design methods used, provides an overview of MCACES, and discusses the structure and preparation of the cost estimate and its uses. However, the main focus of the article is the methods used to generate the required project-specific cost estimate format for this project. 6 figs

  2. Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants.

    Science.gov (United States)

    Choi, Yongju; Thompson, Jay M; Lin, Diana; Cho, Yeo-Myoung; Ismail, Niveen S; Hsieh, Ching-Hong; Luthy, Richard G

    2016-03-05

    This study evaluates secondary environmental impacts of various remedial alternatives for sediment contaminated with hydrophobic organic contaminants using life cycle assessment (LCA). Three alternatives including two conventional methods, dredge-and-fill and capping, and an innovative sediment treatment technique, in-situ activated carbon (AC) amendment, are compared for secondary environmental impacts by a case study for a site at Hunters Point Shipyard, San Francisco, CA. The LCA results show that capping generates substantially smaller impacts than dredge-and-fill and in-situ amendment using coal-based virgin AC. The secondary impacts from in-situ AC amendment can be reduced effectively by using recycled or wood-based virgin AC as production of these materials causes much smaller impacts than coal-based virgin AC. The secondary environmental impacts are highly sensitive to the dredged amount and the distance to a disposal site for dredging, the capping thickness and the distance to the cap materials for capping, and the AC dose for in-situ AC amendment. Based on the analysis, this study identifies strategies to minimize secondary impacts caused by different remediation activities: optimize the dredged amount, the capping thickness, or the AC dose by extensive site assessments, obtain source materials from local sites, and use recycled or bio-based AC. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Overcoming Barriers in the Implementation of Environmental Remediation Projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    One of the IAEA's statutory objectives is to ''seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.'' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish ''standards of safety for protection of health and minimization of danger to life and property''. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The IAEA attaches great importance to the dissemination of information that can assist Member States with the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, including the legacy of past practices and accidents. The IAEA has initiated a comprehensive programme of work covering all aspects of environmental remediation: technical and non-technical factors, including costs, that influence environmental remediation strategies and pertinent decision making; site

  4. Overcoming Barriers in the Implementation of Environmental Remediation Projects

    International Nuclear Information System (INIS)

    2013-01-01

    One of the IAEA's statutory objectives is to ''seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.'' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish ''standards of safety for protection of health and minimization of danger to life and property''. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The IAEA attaches great importance to the dissemination of information that can assist Member States with the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, including the legacy of past practices and accidents. The IAEA has initiated a comprehensive programme of work covering all aspects of environmental remediation: technical and non-technical factors, including costs, that influence environmental remediation strategies and pertinent decision making; site

  5. Human health and other risk drivers to prioritize site remediation

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, T.; Connor, J. [Groundwater Services Inc, Houston, TX (United States)

    2003-07-01

    Remedial actions at soil and groundwater cleanup sites have traditionally been addressed on an individual, case-by-case basis, as needed to address regulatory requirements. However, effective management of large portfolios of remediation sites (such as hundreds or thousands of underground storage tank sites owned by a single company) requires coordination and prioritisation of individual site response actions to optimise the degree of risk reduction achieved with available resources. To meet these management objectives, two new risk-based management tools have been developed and implemented by the authors: i) a simple risk-based classification system, that can be employed to prioritise response actions, identify key risk drivers, and measure risk reduction progress over time for the full site portfolio; and ii) a lifecycle cost management system that can be employed to forecast remediation spending and optimise risk reduction benefits. For use in prioritising response actions at remediation sites, 'risk' is defined as the negative consequence of no action. (orig.)

  6. Technologies to remediate hazardous waste sites

    International Nuclear Information System (INIS)

    Falco, J.W.

    1990-03-01

    Technologies to remediate hazardous wastes must be matched with the properties of the hazardous materials to be treated, the environment in which the wastes are imbedded, and the desired extent of remediation. Many promising technologies are being developed, including biological treatment, immobilization techniques, and in situ methods. Many of these new technologies are being applied to remediate sites. The management and disposal of hazardous wastes is changing because of federal and state legislation as well as public concern. Future waste management systems will emphasize the substitution of alternatives for the use of hazardous materials and process waste recycling. Onsite treatment will also become more frequently adopted. 5 refs., 7 figs

  7. Remediation of the Gunnar uranium mine site, northern Saskatchewan

    International Nuclear Information System (INIS)

    Calvert, H.T.; Brown, J.L.

    2011-01-01

    The Gunnar uranium mine, located in northern Saskatchewan, operated from 1955 to 1963. When the mine was closed, the site was not remediated to the standards that are in place for today's uranium mines. Waste rock and mill tailings were left un-covered and water quality issues were not addressed. As a result, the current state of the site impacts the local environment. The company that operated the Gunnar Mine no longer exists. In 2006, the Government of Saskatchewan and the Government of Canada entered into an agreement to share the costs for remediating the site. An environment assessment of the project to remediate the site is currently underway. This paper provides an update of the issues and the progress being made. (author)

  8. Technology needs and trends for hazardous waste site remediation

    International Nuclear Information System (INIS)

    Kovalick, W.W. Jr.

    1995-01-01

    Over the next few decades, federal, state, and local governments and private industry will commit billions of dollars annually to clean up sites contaminated with hazardous waste and petroleum products. While these needs represent an obligation for society, they also represent an important business opportunity for vendors of remediation services. This presentation assesses the remediation market by characterizing sites that comprise the demand for cleanup services, observing remedy selection trends in the Superfund program, and discussing gaps in the supply of technologies

  9. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    International Nuclear Information System (INIS)

    1994-09-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC section 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado

  10. Proposed plan for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant area and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation

  11. Project chariot remediation - the use of DOE's observational approach for environmental restoration with elements of the new DOE safer approach

    International Nuclear Information System (INIS)

    Hopkins, A.; Stewart, C.; Cabble, K.

    1994-01-01

    The primary purpose of Project Chariot was to investigate the technical problems and assess the effect of the proposed harbor excavation using nuclear explosives in Alaska. However, no nuclear devices were brought to the Project Chariot site. Between 1959 and 1961 various environmental tests were conducted. During the course of these environmental studies, the U.S. Geological Survey (USGS) granted the use of up to 5 curies of radioactive material at the Chariot site in Cape Thompson, Alaska; however only 26 millicuries were ever actually used. The tests were conducted in 12 test plots which were later gathered together and were mixed with in situ-soils generating approximately 1,600 cubic feet of soil. This area was then covered with four feet of clean soil, creating a mound. In 1962, the site was abandoned. A researcher at the University of Alaska at Fairbanks obtained in formation regarding the tests conducted and the materials left at the Project Chariot site. In response to concerns raised through the publication of this information, it was decided by the Department of Energy (DOE) that total remediation of the mound be completed within the year. During the summer of 1993, IT Corporation carried out the assessment and remediation of the Project Chariot site using a streamlined approach to waste site decision making called the Observational Approach (OA), and added elements of the new DOE Streamlined Approach for Environmental Restoration (SAFER). This remediation and remediation approach is described

  12. Programmatic Environmental Report for remedial actions at UMTRA [Uranium Mill Tailings Remedial Action] Project vicinity properties

    International Nuclear Information System (INIS)

    1985-03-01

    This Environmental Report (ER) examines the environmental consequences of implementing a remedial action that would remove radioactive uranium mill tailings and associated contaminated materials from 394 vicinity properties near 14 inactive uranium processing sites included in the Uranium Mill Tailings Remedial Action (UMTRA) Project pursuant to Public Law 95--604, the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Vicinity properties are those properties in the vicinity of the UMTRA Project inactive mill sites, either public or private, that are believed to be contaminated by residual radioactive material originating from one of the 14 inactive uranium processing sites, and which have been designated under Section 102(a)(1) of UMTRCA. The principal hazard associated with the contaminated properties results from the production of radon, a radioactive decay product of the radium contained in the tailings. Radon, a radioactive gas, can diffuse through the contaminated material and be released into the atmosphere where it and its radioactive decay products may be inhaled by humans. A second radiation exposure pathway results from the emission of gamma radiation from uranium decay products contained in the tailings. Gamma radiation emitted from contaminated material delivers an external exposure to the whole body. If the concentration of radon and its decay products is high enough and the exposure time long enough, or if the exposure to direct gamma radiation is long enough, cancers (i.e., excess health effects) may develop in persons living and working at the vicinity properties. 3 refs., 7 tabs

  13. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    International Nuclear Information System (INIS)

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas

  14. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  15. 76 FR 59392 - Environmental Management Site-Specific Advisory Board, Northern New Mexico

    Science.gov (United States)

    2011-09-26

    ... Welcome and Introductions, Committee Business Items: [cir] Approve October 12, 2011, Meeting Agenda, [cir... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Northern New Mexico... meeting of the Environmental Monitoring, Surveillance and Remediation Committee and Waste Management...

  16. Strategy paper. Remedial design/remedial action 100 Area. Revision 1

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1995-07-01

    The purpose of this planning document is to identify and define the approach for remedial design and remedial action (RD/RA) in the 100 Area of the Hanford Site, located in southeastern Washington State. Additionally, this document will support the Hanford Site Environmental Restoration Contract (ERC) team, the US Department of Energy (DOE), and regulatory agencies in identifying and agreeing upon the complete process for expedited cleanup of the 100 Area

  17. Hanford Site Environmental Surveillance Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2009-08-11

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2008" (PNNL-18427), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  18. Hanford Site Environmental Surveillance Data Report for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2008-10-13

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2007" (PNNL-17603), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  19. Passive remediation strategies for petroleum contaminated sites

    International Nuclear Information System (INIS)

    Everett, L.G.; Cullen, S.J.; Eccles, L.A.

    1991-01-01

    The US EPA is becoming increasingly aware of costs and the limited success of existing remediation strategies. Research teams within the US EPA believe that if passive remediation can be successfully demonstrated, it is a candidate for best available technology. Passive remediation, however, must be demonstrated through the use of monitoring techniques, which demonstrate: contaminants are not moving in the dissolved, adsorbed or free product phase; and contamination is biodegrading in-place. This paper presents a concise monitoring and analysis strategy for passive remediation. Specifically, the paper presents the accuracy, precision and operating range of neutron moderation techniques as a low cost, real-time screening tool to measure the migration of the dissolved phase in soil moisture, the stabilized adsorbed phase and free product movement. In addition, the paper identifies the capillary pressure range through which the dissolved phase will move and identifies techniques for satisfying the risk analysis that movement is not taking place. The rationale for passive remediation taking place is confirmed through a discussion of gas ratios associated with bacterial assimilation of hydrocarbons. Gas ratios which are relatively constant above ground are highly inverted in the subsurface at contamination sites. The use of frequent screening of a vertical geologic profile using least cost techniques and the infrequent analysis of soil gas ratios provides the required data upon which the public will accept passive remediation as best available technology at a particular site. The paper points out that neutron moderation is a high candidate vadose zone monitoring device and identifies alternative techniques using resistivity and dielectric constants, which are in the developmental stage. The economic implications for passive remediation are enormous relative to the excavation and remediation strategies which are currently in use

  20. Colonie Interim Storage Site annual site environmental report for calendar year 1989, Colonie, New York

    International Nuclear Information System (INIS)

    1990-05-01

    IN 1984, Congress assigned the cleanup of the National Lead (NL) Industries site in Colonie, New York, to the Department of Energy (DOE) as part of a decontamination research and development project under the 1984 Energy and Water Appropriations Act. DOE then included the site in the Formerly Utilized Sites Remedial Action Program (FUSRAP), an existing DOE program to decontaminate or otherwise control sites where residual radioactive materials remain for the early years of the nation's atomic energy program. DOE instituted an environmental monitoring program at the site in 1984. Results are presented annually in reports such as this. Under FUSRAP, the first environmental monitoring report for this site presented data for calendar year 1984. This report presents the findings of the environmental monitoring program conducted during calendar year 1989. 16 refs., 17 figs., 14 tabs

  1. Colonie Interim Storage Site annual site environmental report for calendar year 1989, Colonie, New York

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    IN 1984, Congress assigned the cleanup of the National Lead (NL) Industries site in Colonie, New York, to the Department of Energy (DOE) as part of a decontamination research and development project under the 1984 Energy and Water Appropriations Act. DOE then included the site in the Formerly Utilized Sites Remedial Action Program (FUSRAP), an existing DOE program to decontaminate or otherwise control sites where residual radioactive materials remain for the early years of the nation's atomic energy program. DOE instituted an environmental monitoring program at the site in 1984. Results are presented annually in reports such as this. Under FUSRAP, the first environmental monitoring report for this site presented data for calendar year 1984. This report presents the findings of the environmental monitoring program conducted during calendar year 1989. 16 refs., 17 figs., 14 tabs.

  2. Remediating MGP brownfields

    International Nuclear Information System (INIS)

    Larsen, B.R.

    1997-01-01

    Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example

  3. Cleaning up a toxic legacy: Environmental remediation of former uranium production sites in Central Asia

    International Nuclear Information System (INIS)

    Green, Andrew

    2016-01-01

    Nearly 60 abandoned uranium production sites dot the landscape and represent a hazard to the environment and inhabitants throughout rural Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Each site poses a challenge for local and national governments that lack technical expertise and resources for remediation. The sites were used to produce uranium until the 1990s. They were built before proper regulatory infrastructure was in place to ensure eventual decommissioning, so leftover residues with long-lived radioactive and highly toxic chemical contaminants still pose substantial risks to the health of the public and the environment.

  4. Cleaning up a toxic legacy: Environmental remediation of former uranium production sites in Central Asia

    International Nuclear Information System (INIS)

    Green, Andrew

    2016-01-01

    Nearly 60 abandoned uranium production sites dot the landscape and represent a hazard to the environment and inhabitants throughout rural Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Each site poses a challenge for local and national governments that lack technical expertise and resources for remediation. The sites were used to produce uranium until the 1990s. They were built before proper regulatory infrastructure was in place to ensure eventual decommissioning, so leftover residues with long-lived radioactive and highly toxic chemical contaminants still pose substantial risks to the health of the public and the environment

  5. Remediation of Soil at Nuclear Sites

    International Nuclear Information System (INIS)

    Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

    2000-01-01

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

  6. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  7. Proposed plan for interim remedial measures at the 100-HR-1 Operable Unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-01-01

    This proposed plan identifies the preferred alternative for interim remedial measures for remedial action of radioactive liquid waste disposal sites at the 100-HR-1 Operable Unit, located at the Hanford Site. It also summarizes other remedial alternatives evaluated for interim remedial measures in this operable unit. The intent of interim remedial measures is to speed up actions to address contaminated areas that historically received radioactive liquid waste discharges that pose a potential threat to human health and the environment. This proposed plan is being issued by the Washington State Department of Ecology (Ecology), the lead regulatory agency; the US Environmental Protection Agency (EPA), the support regulatory agency; and the US Department of Energy (DOE), the responsible agency. Ecology, EPA, and DOE are issuing this proposed plan as part of their public participation responsibilities under Section 117(a) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), commonly known as the ''Superfund Program.'' The proposed plan is intended to be a fact sheet for public review that (1) briefly describes the remedial alternatives analyzed; (2) proposes a preferred alternative; (3) summarizes the information relied upon to recommend the preferred alternative; and (4) provides a basis for an interim action record of decision (ROD). The preferred alternative presented in this proposed plan is removal, treatment (as appropriate), and disposal of contaminated soil and associated structures. Treatment will be conducted if there is cost benefit

  8. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Volume 1 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental impacts associated with establishing future land-use objectives for the US Department of Energy's Hanford Site. Impact analysis is performed by examining the consequences (primarily from remediation activities) of the actions determined necessary to achieve a desired future land-use objective. It should be noted that site-specific decisions regarding remediation technologies and remediation activities would not be made by this document, but rather by processes specified in the Comprehensive Environmental Response, Compensation and Liability Act of 1980 and the Resource Conservation and Recovery Act of 1976. To facilitate the establishment of future land-use objectives, the Hanford Site was divided into four geographic areas: (1) Columbia River; (2) reactors on the river; (3) central plateau; (4) all other areas. The future land-use alternatives considered in detail for each of the geographic areas are as follows: Columbia River--unrestricted and restricted; reactors on the river--unrestricted and restricted; central plateau--exclusive; all other areas--restricted. A No-Action Alternative also is included to provide a baseline against which the potential impacts of the proposed action can be assessed

  9. Air-Based Remediation Workshop - Section 8 Air-Based Remediation Technology Selection Logic

    Science.gov (United States)

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  10. Annual Site Environmental Report: 2006

    International Nuclear Information System (INIS)

    Nuckolls, H

    2008-01-01

    chemical use. Program-specific details are discussed below. SLAC operates its air quality management program in compliance with its established permit conditions. The Bay Area Air Quality Management District (BAAQMD) did not conduct a facility inspection of SLAC during 2006, though it did visit the site on four different occasions. The BAAQMD did compliment SLAC for the overall configuration of SLAC's gasoline dispensing facility and of SLAC's asbestos/demolition notification program during two of the visits. DOE awarded SLAC the 2006 Best in Class for Pollution Prevention and Environmental Stewardship Accomplishment in recognition of SLAC's CMS program which manages the procurement and use of chemicals. As an example of the efficiency of the CMS, SLAC reviewed its use of gases and associated tanks and phased out numerous gas tanks that were no longer needed or were not acceptable for long-term storage, in turn, reducing SLAC's on-site chemical inventory. As part of SLAC's waste minimization and management efforts, more than one thousand tons of municipal solid waste was recycled by SLAC during 2006. SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions. During 2006, SLAC obtained a new facility-wide wastewater discharge permit which replaced four separate permits that were previously issued to SLAC. In 2006, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. The Environmental Restoration Program continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low

  11. U.S. Department of Energy Grand Junction Projects Office site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    1996-05-01

    This report presents information pertaining to environmental activities conducted during calendar year 1995 at the US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Environmental activities conducted at the GJPO facility during 1995 were associated with mixed-waste treatment, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. As part of the GJPO Mixed-Waste Treatment Program, on-site treatability studies were conducted in 1995 that made use of pilot-scale evaporative-oxidation and thermal-desorption units and bench-scale stabilization. DOE-GJPO used some of its own mixed-waste as well as samples received from other DOE sites for these treatability studies. These studies are expected to conclude in 1996. Removal of radiologically contaminated materials from GJPO facility buildings was conducted under the provisions of the Grand Junction Projects Office Remedial Action Project. Remediation activities included the removal of 394 metric tons of contaminated material from Buildings 18 and 28 and revegetation activities on the GJPO site; remediation was conducted in compliance with applicable permits

  12. Superfund Green Remediation

    Science.gov (United States)

    Green remediation is the practice of considering all environmental effects of site cleanup and incorporating options – like the use of renewable energy resources – to maximize the environmental benefits of cleanups.

  13. Geostatistics and cost-effective environmental remediation

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1996-01-01

    Numerous sites within the U.S. Department of Energy (DOE) complex have been contaminated with various radioactive and hazardous materials by defense-related activities during the post-World War II era. The perception is that characterization and remediation of these contaminated sites will be too costly using currently available technology. Consequently, the DOE Office of Technology Development has funded development of a number of alternative processes for characterizing and remediating these sites. The former Feed-Materials Processing Center near Fernald, Ohio (USA), was selected for demonstrating several innovative technologies. Contamination at the Fernald site consists principally of particulate uranium and derivative compounds in surficial soil. A field-characterization demonstration program was conducted during the summer of 1994 specifically to demonstrate the relative economic performance of seven proposed advanced-characterization tools for measuring uranium activity of in-situ soils. These innovative measurement technologies are principally radiation detectors of varied designs. Four industry-standard measurement technologies, including conventional, regulatory-agency-accepted soil sampling followed by laboratory geochemical analysis, were also demonstrated during the program for comparative purposes. A risk-based economic-decision model has been used to evaluate the performance of these alternative characterization tools. The decision model computes the dollar value of an objective function for each of the different characterization approaches. The methodology not only can assist site operators to choose among engineering alternatives for site characterization and/or remediation, but also can provide an objective and quantitative basis for decisions with respect to the completeness of site characterization

  14. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  15. Status of international environmental remediation activities: A report from the Prague conference

    International Nuclear Information System (INIS)

    Slate, S.C.; Thornhill, C.K.; Allen, R.E.

    1993-10-01

    The Prague Conference on nuclear waste management and environmental remediation provided extensive interchange of ideas and insight into new technologies and management approaches throughout the world. A variety of environmental remediation technologies have potential application to Department of Energy facilities; others illustrate pitfalls to be avoided. This paper presents the highlights from the first environmental remediation (ER) technical program in the American Society of Mechanical Engineers' series of international nuclear waste management conferences. This program covers ER technologies, decontamination and decommissioning (D ampersand D) technologies and experience, ER site characterization and modeling, management of and results from actual clean up actions, and data on several major international environmental problems. Focusing on direct benefits to the Department of Energy's (DOE) ER Program, this paper summarizes pertinent technical information, identifies useful technical papers, lists key technical contacts, and identifies specific actions to obtain additional information. US attendance at meetings like this is normally quite limited compared to attendance at North American meetings. The purpose of this paper then is to increase general awareness of this meeting in US technical circles and to broadly disseminate key information to US ER programs and contractors. To do this, the paper is organized to present background information on the conference itself, document the beneficial technical information, and outline ongoing information exchange activities

  16. Managing environmental liabilities at manufactured gas sites

    International Nuclear Information System (INIS)

    Koch, G.S.; Ammann, P.R.; Kolbe, A.L.

    1994-01-01

    Many gas and electric utilities have inherited environmental liabilities from some of the more than 1,500 former manufactured gas plants (MGPs) which supplied a major source of energy in the US from the early 1800s to the mid 1900s. Common materials found at these sites include coal and oil tars, tar/water emulsions, sludges, spent oxides (including cyanide compounds), lampblack, ash, and clinker. There are several issues related to the cleanup of these former MGP sites that benefit from strategic management. First, utilities faced with near-term decisions can carefully analyze and document the value and impact of alternative strategies under various uncontrollable ''future states of the world'', expanding the analysis to review the more global, long-term impacts of near-term decisions, while at the same time creating the necessary documentation in case prudence becomes an issue in the future. Second, throughout the site assessment and remedial process, utilities can employ decision analytic tools to map out possible remediation, cost recovery, and litigation strategies as well as their potential costs, thus providing early information to focus management attention and expenditures on areas with the highest benefit. Third, in many states, utilities are and will be involved in rate hearings concerning the recovery of environmental costs, requiring attention to questions concerning who should pay--the ratepayer or the shareholder. This paper describes analytical tools and economic arguments that have been sued by several utilities to address management of these environmental liabilities

  17. Radiological surveillance of Remedial Action activities at the processing site, Falls City, Texas. Final report

    International Nuclear Information System (INIS)

    1993-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological surveillance of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site in Falls City, Texas. This surveillance was conducted March 22--26, 1993. No findings were identified during the surveillance. Three site-specific observations and three programmatic observations are presented in this report. The overall conclusion from the surveillance is that the radiological aspects of the Falls City, Texas, remedial action program are performed adequately. However, some of the observations identify that there is potential for improving certain aspects of the occupational radiological air sampling, ensuring analytical data quality, and in communicating with the DOE and TAC on the ore sampling methods. The TAC has also received and is currently reviewing the RAC's responses regarding the observations identified during the radiological surveillance performed October 29--30, 1992

  18. Status policy and criteria for the remediation of sites with radioactive residues in China

    International Nuclear Information System (INIS)

    Yamin, Z.

    1999-01-01

    This paper introduces the status policy and criteria for remediation of sites with radioactive residues in China. We deal with the sites in difference patterns according to their circumstances. For the sites related with the decommissioning of the nuclear fuel cycle facilities, the programs for environmental restoration must be reviewed and approved by the State Environmental Protection Administration (SEPA). And the radioactive waste resulting from these facilities should be collected and eventually disposed of at the regional disposal repositories built by the country. For the sites related with use of radionuclides in medicine, research and industry, as well as the small scale extraction and processing of materials containing natural radionuclides, the provincial environmental authority is responsible for approving the restoration projects. These radioactive wastes should finally be sent to the special radioactive waste repositories built by the provincial environmental authorities. So far 21 waste repositories have been built in some provinces. More then 10 sites with radioactive residues have been restored. The standards for general public dose limit and soil residual radionuclides content have been established. (author)

  19. Characterization and remediation of a former manufactured gas plant (MGP) disposal site

    International Nuclear Information System (INIS)

    Murarka, I.P.; Neuhauser, E.F.; Sherman, M.W.; Taylor, B.B.; Mauro, D.M.; Ripp, J.A.; Taylor, T.D.

    1993-01-01

    From the early 1800s through the late 1940s, the production of gas using coal, coke or oil resulted in generation of large volumes of residues including coal tar, lamp black and wood chips containing cyanides at manufactured gas plant (MGP) sites. Often, these tarry residues were disposed of by burial at or near these plants. In recent years, old MGP sites have come under increased scrutiny from environmental regulators. To address the issues of groundwater contamination and need for clean-up, it is necessary to accurately determine where the tarry materials are now located and how different chemicals released from tars have migrated away from their sources. EPRI research at a coal-tar disposal site in New York has focused on examining and evaluating conventional and innovative methods for sampling and analysis to delineate the nature and extent of subsurface contamination, and to assess the efficacy of remedial actions. This paper presents some of the results of this research and offers recommendations on conducting size investigations as well as selecting appropriate remediation measures

  20. Remedial action work plan for the Colonie site. Revision 1

    International Nuclear Information System (INIS)

    1985-08-01

    The Colonie site is a DOE Formerly Utilized Sites Remedial Action Program (FUSRAP) site located in the Town of Colonie, New York, and consisting of an interim storage site and several vicinity properties. The Colonie Interim Storage Site (CISS) is the former National Lead (NL) Industries plant located at 1130 Central Avenue. There are 11 vicinity properties that received remedial action in 1984: 7 located south of the site on Yardboro and Palmer Avenues just across the Colonie-Albany town limits in Albany, and 4 located northwest of the site along Central Avenue in Colonie. Of these properties, nine are residences and two are commercial properties. This document describes the engineering design, construction, and associated plans for remedial action on the vicinity properties and the interim storage site. These plans include both radiological and chemical work. Radiological work includes: excavating the above-guideline radioactive wastes on the vicinity properties; designing required facilities for the interim storage site; preparing the interim storage site to receive these contaminated materials; transporting the contaminated materials to the interim waste storage stockpile; and preparing necessary schedules for accomplishing the remedial actions. Chemical work involves: developing the Resource Conservation and Recovery Act (RCRA) closure plans; neutralizing chemical hazards associated with plating solutions; inventorying on-site chemicals; and disposal of chemicals and/or residues. 17 refs., 5 figs., 1 tab

  1. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1994-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  2. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R. [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1993-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  3. Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York

    International Nuclear Information System (INIS)

    1992-09-01

    This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment

  4. Workbook for prioritizing petroleum industry exploration and production sites for remediation

    International Nuclear Information System (INIS)

    White, G.J.

    1998-01-01

    The purpose of this Workbook is to provide a screening-level method for prioritizing petroleum exploration and production sites for remediation that is based on readily available information, but which does not require a full characterization of the sites being evaluated. The process draws heavily from the Canadian National Classification System for Contaminated Sites, and fits into the framework for ecological risk assessment provided in guidance from the US Environmental Protection Agency. Using this approach, scoring guidelines are provided for a number of Evaluation Factors relating to: (1) the contaminants present at the site; (2) the potential exposure pathways for these contaminants; and (3) the potential receptors of those contaminants. The process therefore incorporates a risk-based corrective action (RBCA) framework to estimate the relative threat posed by a site to human health and to ecological systems. Physical (non-toxic) disturbance factors have also been incorporated into the process. It should also be noted that the process described in this Workbook has not yet been field tested at petroleum E and P sites. The first logical step in the field testing of this process is to apply the method at a small number of sites to assess the availability of the information that is needed to score each evaluation factor. Following this evaluation, the Workbook process should be applied at a series of sites to determine the effectiveness of the process at ranking sites according to their relative need for remediation. Upon completion of these tests, the Workbook should be revised to reflect the findings of the field tests

  5. Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

  6. Wayne Interim Storage Site annual environmental report for calendar year 1991, Wayne, New Jersey

    International Nuclear Information System (INIS)

    1992-09-01

    This document describes the envirormental monitoring program at the Wayne Interim Storage Site (WISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of WISS and surrounding area began in 1984 when Congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. WISS is a National Priorities List site. The environmental monitoring program at WISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium concentrations in surface water, sediment, and groundwater. Several nonradiological parameters are also measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides, dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment

  7. Hazelwood Interim Storage Site annual environmental report for calendar year 1991, Hazelwood, Missouri

    International Nuclear Information System (INIS)

    1992-09-01

    This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment

  8. Hot air vapor extraction system for remediation of petroleum contaminated sites

    International Nuclear Information System (INIS)

    Pal, D.; Karr, L.; Fann, S.; Mathews, A.P.; Price, P.A.; Linginemi, S.

    1996-01-01

    This paper describes the results of a demonstration of a technology entitled ''Hot Air Vapor Extraction (HAVE)'' at the Hydrocarbon National Test Site (HNTS), Port Hueneme, California. The demonstration of the HAVE technology at HNTS was conducted over a 3-month period between August 21, 1995 and November 22, 1995 and the lessons learned from the demonstration are discussed in details to guide the Department of Defense decision makers in analyzing the applicability of this technology to their contaminated sites. This technology demonstration was conducted under the Department of Defense Strategic Environmental Research and Development Program (SERDP) as part of the National Environmental Technology Demonstration Program (NETDP). The primary objectives of the demonstration were to (1) validate the efficacy of the HAVE technology to treat a wide range of hydrocarbons contaminated soils, (2) gather data to estimate treatment costs, and (3) develop engineering guidance needed to apply this remediation technology DoD-wide. Test runs were made on 5 different treatment cells containing various fuel hydrocarbons, ranging from gasoline to heavier petroleum fractions such as lubricating oil. Computer modeling was conducted to analyze the test results and also to optimize the HAVE system design. An economic analysis conducted for various remediation project sizes ranging from 750 to 9,000 cubic yards, the per cubic yard treatment costs are found to vary from $64.05 down to $36.54 respectively

  9. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan. Volume 3 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    This volume of the Environmental Impact Statement contains ten appendices. These appendices contain the following: the ecological risk assessment methodology and calculations; the strategy for remediation of contaminated ground water; a description of the reference barrier and potential quarry sites that could be used to supply materials for barriers; the methodology for estimating socio-economic impacts; the methodology for evaluation of air quality impacts; an assessment of costs and physical impacts; the calculation of estimated industrial health and safety occupational losses; a floodplains and wetlands impact assessment; information about Hanford waste sites, and US EPA guidance on using land-use decisions in remediation

  10. Site remediation technologies and environmental management practices in the utility industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Sessions covered: chemical oxidation; DNAPL and source management; regulatory perspectives and state programs; manufactured gas plant site management; sediments, cyanides, and other issues at MGP sites; biotechnology applications; agricultural waste issues; risk communication and bioremediation; air emissions and air toxics management; project management and redevelopment; environmentally acceptable endpoint and risk-based site management; site assessment, background concentration and closure; risk communication and beneficial use by recycling; PCB and RCRA issues; and phytoremediation and bioremediation of wastes.

  11. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    International Nuclear Information System (INIS)

    1997-02-01

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met

  12. Tier 2 guidelines and remediation of Tebuthiuron on a native prairie site

    Energy Technology Data Exchange (ETDEWEB)

    Bessie, K.; Harckham, N.; Dance, T. [EBA Engineering Consultants Ltd., Calgary, AB (Canada); Burk, A. [EnCana Corp., Calgary, AB (Canada); Stephenson, G. [Stantec Consulting, Guelph, ON (Canada); Corbet, B. [Access Analytical Laboratories Inc., Calgary, AB (Canada)

    2009-10-01

    Tebuthiuron is a sterilant used to control vegetation at upstream and midstream petroleum sites. This article discussed the remediation processes used to reclaim a native prairie site contaminated with tebuthiuron. The site was located within a dry mixed grass natural area. A literature review was conducted to establish soil eco-contact guidelines specific to tebuthiuron. A site-specific ecotoxicity assessment was then conducted using a liquid chromatograph to detect tebuthiuron limits in the contaminated soils. A soil sampling technique was used to delineate the affected areas at the site. Site soils were spiked with various concentrations of tebuthiuron ranging from 0.00003 mg/kg to 3000 mg/kg. Test species included a Folsomia candida, an earthworm, and 4 plant species. The study showed that the invertebrate species were less sensitive to tebuthiuron than the plant species. A groundwater assessment showed that tebuthiuron levels exceeded Tier 1 groundwater remediation guidelines. A multilayer hydro-geological model showed that remediation guidelines were orders of magnitude greater than Tier 1 groundwater remediation. A thermal desorption technique was used to remediate the site. 7 refs., 8 figs.

  13. Post-Remediation Radiological Dose Assessment, Linde Site, Tonawanda, New York

    Energy Technology Data Exchange (ETDEWEB)

    Kamboj, Sunita [Argonne National Lab. (ANL), Argonne, IL (United States); Durham, Lisa A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-06-01

    A post-remediation radiological dose assessment was conducted for the Formerly Utilized Sites Remedial Action Program (FUSRAP) Linde Site by using the measured residual concentrations of the radionuclides of concern following the completion of the soils remedial action. The site’s FUSRAP-related contaminants of concern (COCs) are radionuclides associated with uranium processing activities conducted by the Manhattan Engineer District (MED) in support of the Nation’s early atomic energy and weapons program and include radium-226 (Ra-226), thorium-230 (Th-230), and total uranium (Utotal). Remedial actions to address Linde Site soils and structures were conducted in accordance with the Record of Decision for the Linde Site, Tonawanda, New York (ROD) (USACE 2000a). In the ROD, the U.S. Army Corps of Engineers (USACE) determined that the cleanup standards found in Title 40, Part 192 of the Code of Federal Regulations (40 CFR Part 192), the standards for cleanup of uranium mill sites designated under the Uranium Mill Tailings Radiation Control Act (UMTRCA), and the Nuclear Regulatory Commission (NRC) standards for decommissioning of licensed uranium and thorium mills, found in 10 CFR Part 40, Appendix A, Criterion 6(6), are Applicable or Relevant and Appropriate Requirements (ARARs) for cleanup of MED-related contamination at the Linde Site. The major elements of this remedy will involve excavation of the soils with COCs above soil cleanup levels and placement of clean materials to meet the other criteria of 40 CFR Part 192.

  14. Bioremediation in oil-contaminated sites: Bacteria and surfactant accelerated remediation

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.M.

    1996-01-01

    In Mexico, there are several environmental issues which are being addressed under the current governmental legislation. One of the important issues is restoring sites belonging to Petroleos Mexicanos (PEMEX). PEMEX is a large government owned oil company that regulates and manages the oil reserves. These sites are primarily contaminated with weathered hydrocarbons which are a consequence of extracting millions of barrels of oil. Within the southern regions of Mexico there are sites which were contaminated by activities and spills that have occurred during the past 30 years. PEMEX has taken the leadership in correcting environmental problems and is very concerned about cleaning up the contaminated sites as quickly as possible. The most significant contaminated sites are located to the north of Veracruz and south of Tabasco. These site areas are close to refineries or locations of oil exploration. The primary category of contaminants are hydrocarbons, among them asphaltenes, aromatic and other contaminants. The concentration of the contaminants varies depending on the location of the sites, but it can reach as high as 500,000 ppm. PEMEX has been searching for appropriate, and cost-effective technologies to clean up these sites. Biologically based remediation activities are of primary interest to PEMEX. However, other treatment technologies such as chemical-physical methods, encapsulation and incineration are also being considered. The present report summarizes preliminary experiments that measured the feasibility of bioremediation for a contaminated site in southern Mexico

  15. Bioremediation in oil-contaminated sites: bacteria and surfactant accelerated remediation

    Science.gov (United States)

    Strong-Gunderson, Janet M.; Guzman, Francisco

    1996-11-01

    In Mexico, there are several environmental issues which are being addressed under the current governmental legislation. One important issue is restoring sites belonging to Petroleos Mexicanos (PEMEX). PEMEX is a large government owned oil company that regulates and manages the oil reserves. These sites are primarily contaminated with weathered hydrocarbons which are a consequence of extracting millions of barrels of oil. Within the southern regions of Mexico there are sites which were contaminated by activities and spills that have occurred during the past 30 years. PEMEX has taken the leadership in correcting environmental problems and is very concerned about cleaning up the contaminated sites as quickly as possible. The most significant contaminated sites are located to the north of Veracruz and south of Tabasco. These sites areas are close to refineries or locations of oil exploration. The primary category of contaminants are hydrocarbons, among them asphaltens, aromatic and other contaminants. The concentration of the contaminants varies depending on the location of the sites, but it can reach as high as 500,000 ppm. PEMEX has been searching for appropriate, and cost- effective technologies to clean up these sites. Biologically based remediation activities are of primary interest to PEMEX. However, other treatment technologies such as chemical-physical methods, encapsulation and incineration are also being considered. The present report summarizes preliminary experiments that measured the feasibility of bioremediation for a contaminated site in southern Mexico.

  16. Middlesex Sampling Plant [MSP] annual site environmental report, calendar year 1988

    International Nuclear Information System (INIS)

    1989-04-01

    The environmental monitoring program, which began in 1980, was continued in 1988 at the former Middlesex Sampling Plant (MSP) site, located in the Borough of Middlesex, New Jersey. The MSP site is part of the Formerly Utilized Site Remedial Action Program (FUSRAP), a Department of Energy (DOE) program to decontaminate or otherwise control sites where residual radioactive materials remain either from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has mandated DOE to remedy. The environmental monitoring program is carried out by Bechtel National, Inc. (BNI), project management contractor for FUSRAP. The monitoring program at the MSP measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Results of the 1988 monitoring show that the MSP is in compliance with applicable DOE radiation protection standards and with applicable requirements specified by New Jersey Department of Environmental Protection groundwater permits. 17 refs., 15 figs., 21 tabs

  17. Inclusion of social indicators in decision support tools for the selection of sustainable site remediation options.

    Science.gov (United States)

    Cappuyns, Valérie

    2016-12-15

    Sustainable remediation requires a balanced decision-making process in which environmental, economic and social aspects of different remediation options are all considered together and the optimum remediation solution is selected. More attention has been paid to the evaluation of environmental and economic aspects, in particular to reduce the human and environmental risks and the remediation costs, to the exclusion of social aspects of remediation. This paper investigates how social aspects are currently considered in sustainability assessments of remediation projects. A selection of decision support tools (DSTs), used for the sustainability assessment of a remediation project, is analyzed to define how social aspects are considered in those tools. The social indicator categories of the Sustainable Remediation Forum - United Kingdom (SuRF-UK), are used as a basis for this evaluation. The consideration of social aspects in the investigated decision support tools is limited, but a clear increase is noticed in more recently developed tools. Among the five social indicator categories defined by SuRF-UK to facilitate a holistic consideration of social aspects of a remediation project only "Human health and safety" is systematically taken into account. "Neighbourhood and locality" is also often addressed, mostly emphasizing the potential disturbance caused by the remediation activities. However, the evaluation of 'Ethics and Equality', Communities and community involvement', and 'Uncertainty and evidence' is often neglected. Nevertheless, concrete examples can be found in some of the investigated tools. Specific legislation, standard procedures, and guidelines that have to be followed in a region or country are mainly been set up in the context of protecting human and ecosystem health, safety and prevention of nuisance. However, they sometimes already include some of the aspects addressed by the social indicators. In this perspective the use of DST to evaluate the

  18. Remediating while preserving wetland habitat at an LLR waste site in Canada

    International Nuclear Information System (INIS)

    Kleb, H.R.; Zelmer, R.L.

    2007-01-01

    The Low-Level Radioactive Waste Management Office was established in 1982 to carry out the federal government's responsibilities for low-level radioactive (LLR) waste management in Canada. The Office operates programs to characterize, delineate, decontaminate and consolidate historic LLR waste for interim and long-term storage. In this capacity, the Office is currently considering the remediation of 9,000 cubic metres of contaminated sediment in a coastal marsh in the context of a major remediation project involving multiple urban sites. The marsh is situated between the Lake Ontario shoreline and the urban fringe of the Town of Port Hope. The marsh is designated a Cattail Mineral Shallow Marsh under the Ecological Land Classification system for Southern Ontario and was recently named the A.K. Sculthorpe Marsh in memory of a local community member. The marsh remediation will therefore require trade off between the disruption of a sensitive wetland and the removal of contaminated sediment. This paper discusses the issues and trade-off relating to the waste characterization, environmental assessment and regulatory findings and thus the remediation objectives for the marsh. Considerations include the spatial distribution of contaminated sediment, the bioavailability of contaminants, the current condition of the wetland and the predicted effects of remediation. Also considered is the significance of the wetland from provincial and municipal regulatory perspectives and the resulting directives for marsh remediation. (authors)

  19. PROBABILISTIC RISK ANALYSIS OF REMEDIATION EFFORTS IN NAPL SITES

    Science.gov (United States)

    Fernandez-Garcia, D.; de Vries, L.; Pool, M.; Sapriza, G.; Sanchez-Vila, X.; Bolster, D.; Tartakovsky, D. M.

    2009-12-01

    The release of non-aqueous phase liquids (NAPLs) such as petroleum hydrocarbons and chlorinated solvents in the subsurface is a severe source of groundwater and vapor contamination. Because these liquids are essentially immiscible due to low solubility, these contaminants get slowly dissolved in groundwater and/or volatilized in the vadoze zone threatening the environment and public health over a long period. Many remediation technologies and strategies have been developed in the last decades for restoring the water quality properties of these contaminated sites. The failure of an on-site treatment technology application is often due to the unnoticed presence of dissolved NAPL entrapped in low permeability areas (heterogeneity) and/or the remaining of substantial amounts of pure phase after remediation efforts. Full understanding of the impact of remediation efforts is complicated due to the role of many interlink physical and biochemical processes taking place through several potential pathways of exposure to multiple receptors in a highly unknown heterogeneous environment. Due to these difficulties, the design of remediation strategies and definition of remediation endpoints have been traditionally determined without quantifying the risk associated with the failure of such efforts. We conduct a probabilistic risk assessment of the likelihood of success of an on-site NAPL treatment technology that easily integrates all aspects of the problem (causes, pathways, and receptors). Thus, the methodology allows combining the probability of failure of a remediation effort due to multiple causes, each one associated to several pathways and receptors.

  20. TREATABILITY TEST PLAN FOR DEEP VADOSE ZONE REMEDIATION AT THE HANFORD'S SITE CENTRAL PLATEAU

    International Nuclear Information System (INIS)

    PETERSEN SW; MORSE JG; TRUEX MJ; LAST GV

    2007-01-01

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath a portion of the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants--uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented

  1. The CAMU Rule: A tool for implementing a protective, cost-effective remedy at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Dupuis-Nouille, E.M.; Goidell, L.C.; Strimbu, M.J.

    1995-01-01

    The Fernald Environmental Management Project (FEMP) is a former uranium processing facility currently under remediation pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act as amended (CERCLA). Contamination at the FEMP consists of low-level radioactivity, hazardous substances, hazardous wastes and/or mixed wastes. Regulations promulgated under the Resource Conservation and Recovery Act as amended (RCRA) are evaluated as applicable or relevant and appropriate requirements (ARARs) for remediation of the FEMP. Historically, joint CERCLA-RCRA guidance dictated that hazardous waste could not be treated, or moved out of the designated area of contiguous contamination (AOC), without triggering land disposal restrictions (LDRs) or minimum technology requirements (MTRs). To avoid invoking these stringent requirements, in situ capping was chosen as the lower cost remedy at many sites, although on-site disposal and/or treatment of hazardous wastes would have been more protective. The Corrective Action Management Units (CAMUs) and Temporary Units (TUs) Final Rule [58 FR 8658, Vol. 58, No. 29, hereinafter the open-quotes CAMU Ruleclose quotes], promulgated on February 16, 1993, provides facilities regulated under RCRA corrective action authority with greater flexibility to move, treat, and dispose of wastes on site without triggering LDRs or MTRs, thereby encouraging application of innovative technologies and more protective remedies. The waste acceptance criteria for the on-site disposal facility is based on site-specific considerations including the mobility of the contaminants through the underlying site geology and the protectiveness of the engineered liners. Application of the open-quotes CAMU Ruleclose quotes allows for disposition in the on-site facility based on these technical considerations rather than on regulatory classifications

  2. Wayne Interim Storage Site: Annual environmental report for calendar year 1990, Wayne, New Jersey

    International Nuclear Information System (INIS)

    1991-09-01

    Environmental monitoring of the US Department of Energy's (DOE) Wayne Interim Storage Site (WISS) (a National Priorities List site) and surrounding area began in 1984. WISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at WISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation exposure; and radium-226, thorium-232, and total uranium concentrations in surface water, sediment, and groundwater. Sediment samples were also analyzed for thorium-230, and several nonradiological parameters were measured in groundwater. 16 refs., 12 figs., 23 tabs

  3. Remedial action plan for the inactive uranium processing site at Naturita, Colorado. Remedial action selection report: Attachment 2, geology report; Attachment 3, ground water hydrology report; Attachment 4, supplemental information

    International Nuclear Information System (INIS)

    1998-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the U.S. Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC section 7901 et seq. Part of the UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, becomes Appendix B of the cooperative agreement between the DOE and the state of Colorado

  4. Remedial action plan for the inactive uranium processing site at Naturita, Colorado. Remedial action selection report: Attachment 2, geology report; Attachment 3, ground water hydrology report; Attachment 4, supplemental information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the U.S. Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, becomes Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  5. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition.

    Science.gov (United States)

    Hu, Xintao; Zhu, Jianxin; Ding, Qiong

    2011-07-15

    Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and BCD were about 432.35 and 38.5 kg CO(2)-eq per ton PCB-containing soils, respectively. LCA results showed that the single score of BCD environmental impact was 1468.97 Pt while IHTI's score is 2785.15 Pt, which indicates BCD potentially has a lower environmental impact than IHTI technology in the PCB contaminated soil remediation process. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Remediation of old environmental liabilities in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Svoboda, Karel; Podlaha, Josef

    2011-01-01

    The Nuclear Research Institute Rez plc (NRI) after 55 years of activities in the nuclear field produced some environmental liabilities that shall be remedied. There are three areas of remediation: (1) decommissioning of old obsolete facilities (e.g. decay tanks, RAW treatment technology, special sewage system), (2) processing of RAW from operation and dismantling of nuclear facilities, and (3) elimination of spent fuel from research nuclear reactors operated by the NRI. The goal is to remedy the environmental liabilities and eliminate the potential negative impact on the environment. Remediation of the environmental liabilities started in 2003 and will be finished in 2014. The character of the environmental liabilities is very specific and requires special remediation procedures. Special technologies are being developed with assistance of external subcontractors. The NRI has gained many experiences in the field of RAW management and decommissioning of nuclear facilities and will use its facilities, experienced staff and all relevant data needed for the successful realization of the remediation. The most significant items of environmental liabilities are described in the paper together with information about the history, the current state, the progress, and the future activities in the field of remediation of environmental liabilities in the NRI. (author)

  7. Feasibility study for remedial action at the chemical plant area of the Weldon Spring Site

    International Nuclear Information System (INIS)

    1992-11-01

    The Weldon Spring site is radioactively and chemically contaminated at levels that exceed certain standards and guidelines for protecting human health and the environment. The ongoing site characterization and environmental monitoring programs provide information on the nature and extent of contamination, including information for off-site areas to which contaminants have migrated or could migrate in the future. Although humans and biota are not adversely impacted by site contaminants at this time, the purpose of DOE's remedial action program is to preclude the potential for such impacts in the future by implementing long-term environmental restoration and waste management decisions. The DOE is addressing long-term management of the Weldon Spring site through an integrated environmental decision-making process. Supporting information for the feasibility study is provided in Appendixes A through J. This information addresses scoping (Appendix A), engineering technologies (Appendix B), potential health and environmental impacts (Appendixes C, D, E, F, H and I), regulatory requirements (Appendix G), and letters of consultation received from the various agencies contacted (Appendix J). Additional engineering information is presented in supporting technical reports

  8. Green Remediation Best Management Practices: Mining Sites

    Science.gov (United States)

    This fact sheet describes best management practices (BMPs) that can be used to reduce the environmental footprint of cleanup activities associated with common project components, cleanup phases, and implementation of remediation technologies.

  9. Horizontal directional drilling: a green and sustainable technology for site remediation.

    Science.gov (United States)

    Lubrecht, Michael D

    2012-03-06

    Sustainability has become an important factor in the selection of remedies to clean up contaminated sites. Horizontal directional drilling (HDD) is a relatively new drilling technology that has been successfully adapted to site remediation. In addition to the benefits that HDD provides for the logistics of site cleanup, it also delivers sustainability advantages, compared to alternative construction methods.

  10. Hazelwood Interim Storage Site environmental surveillance report for calendar year 1993

    International Nuclear Information System (INIS)

    1994-06-01

    This report summarizes the results of environmental surveillance activities conducted at the Hazelwood Interim Storage Site (HISS) during calendar year 1993. It includes an overview of site operations, the basis for monitoring for radioactive and non-radioactive parameters, summaries of environmental program at HISS, a summary of the results, and the calculated hypothetical radiation dose to the offsite population. Environmental surveillance activities were conducted in accordance with the site environmental monitoring plan, which describes the rationale and design criteria for the surveillance program, the frequency of sampling and analysis, specific sampling and analysis procedures, and quality assurance requirements. The US Department of Energy (DOE) began environmental monitoring of HISS in 1984, when the site was assigned to DOE by Congress through the energy and Water Development Appropriations Act and subsequent to DOE's Formerly Utilized Sites Remediation Action Program (FUSRAP). Contamination at HISS originated from uranium processing work conducted at Mallinckrodt Chemical Works at the St. Louis Downtown Site (SLDS) from 1942 through 1957

  11. Salmon Site Remedial Investigation Report, Appendix B (Part 2)

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  12. Salmon Site Remedial Investigation Report, Appendix B (Part 1)

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  13. Environmental assessment of no remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Belfield and Bowman sites were not included on the original congressional list of processing sites to be designated by the Secretary of Energy. Instead, the sites were nominated for designation by the Dakota Resource Council in a letter to the DOE (September 7, 1979). In a letter to the DOE (September 12, 1979), the state of North Dakota said that it did not believe the sites would qualify as processing sites under the Uranium Mill Tailings Radiation Control Act (UMTRCA) because the activities at the sites involved only the ashing of uraniferous lignite coal and the ash was shipped out of state for actual processing. Nevertheless, on October 11, 1979, the state of North Dakota agreed to the designation of the sites because they met the spirit of the law (reduce public exposure to radiation resulting from past uranium operations). Therefore, these sites were designated by the Secretary of Energy for remedial action. Because of the relatively low health impacts determined for these sites, they were ranked as low priority and scheduled to be included in the final group of sites to be remediated.

  14. Environmental assessment of no remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota

    International Nuclear Information System (INIS)

    1997-06-01

    The Belfield and Bowman sites were not included on the original congressional list of processing sites to be designated by the Secretary of Energy. Instead, the sites were nominated for designation by the Dakota Resource Council in a letter to the DOE (September 7, 1979). In a letter to the DOE (September 12, 1979), the state of North Dakota said that it did not believe the sites would qualify as processing sites under the Uranium Mill Tailings Radiation Control Act (UMTRCA) because the activities at the sites involved only the ashing of uraniferous lignite coal and the ash was shipped out of state for actual processing. Nevertheless, on October 11, 1979, the state of North Dakota agreed to the designation of the sites because they met the spirit of the law (reduce public exposure to radiation resulting from past uranium operations). Therefore, these sites were designated by the Secretary of Energy for remedial action. Because of the relatively low health impacts determined for these sites, they were ranked as low priority and scheduled to be included in the final group of sites to be remediated

  15. Risk-based analyses in support of California hazardous site remediation

    International Nuclear Information System (INIS)

    Ringland, J.T.

    1995-08-01

    The California Environmental Enterprise (CEE) is a joint program of the Department of Energy (DOE), Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Sandia National Laboratories. Its goal is to make DOE laboratory expertise accessible to hazardous site cleanups in the state This support might involve working directly with parties responsible for individual cleanups or it might involve working with the California Environmental Protection Agency to develop tools that would be applicable across a broad range of sites. As part of its initial year's activities, the CEE supported a review to examine where laboratory risk and risk-based systems analysis capabilities might be most effectively applied. To this end, this study draws the following observations. The labs have a clear role in analyses supporting the demonstration and transfer of laboratory characterization or remediation technologies. The labs may have opportunities in developing broadly applicable analysis tools and computer codes for problems such as site characterization or efficient management of resources. Analysis at individual sites, separate from supporting lab technologies or prototyping general tools, may be appropriate only in limited circumstances. In any of these roles, the labs' capabilities extend beyond health risk assessment to the broader areas of risk management and risk-based systems analysis

  16. Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

    1993-06-01

    Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.

  17. Sitewide soil and debris management program for a DOE site under remediation

    International Nuclear Information System (INIS)

    Harvey, B.F.

    1993-01-01

    In 1986, the United States Department of Energy (DOE) and the United States Environmental Protection Agency (US EPA) entered into a Federal Facility Compliance Agreement (FFCA). The agreement included provisions to investigate and define the nature and extent of contamination and to determine the necessity for remediation at the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. The agreement is also pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Uranium enrichment production activities at the facility ceased in 1989. The FEMP mission is now environmental clean-up and remediation under the management of the Fernald Environmental Restoration Management Corporation. This report describes objectives and activities of remediation efforts at FEMP

  18. A complete remediation process for a uranium-contaminated site and application to other sites

    International Nuclear Information System (INIS)

    Mason, C.F.V.; Lu, N.; Kitten, H.D.; Williams, M.; Turney, W.R.J.R.

    1998-01-01

    During the summer of 1996 the authors were able to test, at the pilot scale, the concept of leaching uranium (U) from contaminated soils. The results of this pilot scale operation showed that the system they previously had developed at the laboratory scale is applicable at the pilot scale. The paper discusses these results, together with laboratory scale results using soil from the Fernald Environmental Management Project (FEMP), Ohio. These FEMP results show how, with suitable adaptations, the process is widely applicable to other sites. The purpose of this paper is to describe results that demonstrate remediation of uranium-contaminated soils may be accomplished through a leach scheme using sodium bicarbonate

  19. A complete remediation process for a uranium-contaminated site and application to other sites

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F.V.; Lu, N.; Kitten, H.D.; Williams, M.; Turney, W.R.J.R.

    1998-12-31

    During the summer of 1996 the authors were able to test, at the pilot scale, the concept of leaching uranium (U) from contaminated soils. The results of this pilot scale operation showed that the system they previously had developed at the laboratory scale is applicable at the pilot scale. The paper discusses these results, together with laboratory scale results using soil from the Fernald Environmental Management Project (FEMP), Ohio. These FEMP results show how, with suitable adaptations, the process is widely applicable to other sites. The purpose of this paper is to describe results that demonstrate remediation of uranium-contaminated soils may be accomplished through a leach scheme using sodium bicarbonate.

  20. Annual Site Environmental Report: 2006

    Energy Technology Data Exchange (ETDEWEB)

    Nuckolls, H.; /SLAC

    2008-02-22

    2006 to better manage chemical use. Program-specific details are discussed below. SLAC operates its air quality management program in compliance with its established permit conditions. The Bay Area Air Quality Management District (BAAQMD) did not conduct a facility inspection of SLAC during 2006, though it did visit the site on four different occasions. The BAAQMD did compliment SLAC for the overall configuration of SLAC's gasoline dispensing facility and of SLAC's asbestos/demolition notification program during two of the visits. DOE awarded SLAC the 2006 Best in Class for Pollution Prevention and Environmental Stewardship Accomplishment in recognition of SLAC's CMS program which manages the procurement and use of chemicals. As an example of the efficiency of the CMS, SLAC reviewed its use of gases and associated tanks and phased out numerous gas tanks that were no longer needed or were not acceptable for long-term storage, in turn, reducing SLAC's on-site chemical inventory. As part of SLAC's waste minimization and management efforts, more than one thousand tons of municipal solid waste was recycled by SLAC during 2006. SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions. During 2006, SLAC obtained a new facility-wide wastewater discharge permit which replaced four separate permits that were previously issued to SLAC. In 2006, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. The Environmental Restoration Program continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several

  1. New Brunswick Site annual environmental report for calendar year 1991, New Brunswick, New Jersey

    International Nuclear Information System (INIS)

    1992-09-01

    This document describes the environmental monitoring program at the New Brunswick Site (NBS) and surrounding area, implementation of the program, and monitoring results for 1991. The site, near New Brunswick,, New Jersey, is a 5.6-acre vacant, fenced, and grass-covered area. Environmental monitoring of NBS began in 1981 when the site was part of the US Department of Energy's (DOE) Surplus Facilities Management Program. In 1990 responsibility for NBS was transferred to the Formerly Utilized Sites Remedial Action Program (FUSP.4P). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the,early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at NBS includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-228, thorium-230, thorium-232, americium-241, cesium-137, plutonium-239, and total uranium in surface water, sediment, and groundwater. Several nonradiological parameters are also measured in groundwater, surface water, and sediments. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides, dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment

  2. A synopsis of environmental horizontal wells at the Savannah River Site

    International Nuclear Information System (INIS)

    Denham, M.E.; Lombard, K.H.

    1995-01-01

    Seven horizontal wells for environmental remediation were installed at the Savannah River Site as part of an Integrated Demonstration Project sponsored by the Department of Energy's Office of Technology Development. The wells were used to demonstrate innovative remediation systems for the clean up of chlorinated organic solvent contamination in groundwater and the vadose zone. The wells were installed in four demonstrations of different horizontal drilling technologies. A short-radius petroleum industry technology, a modified petroleum industry technology (using a down-hole motor), a utility industry technology, and a river crossing technology were demonstrated. The goals of the demonstrations were to show the utility of horizontal wells in environmental remediation and further development of the technology required to install these wells. From the first demonstration in 1988 to the latest in 1991, there was significant evolution in horizontal drilling technology. The main technical challenges in the first demonstration were directional control during drilling and borehole instability. Through advancement of the technology these problems were overcome and did not affect the last demonstration. Those considering the use of horizontal wells for environmental remediation will benefit from the knowledge gained from these demonstrations

  3. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2013-07-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  4. Annual Site Environmental Report: 2008 (ASER)

    International Nuclear Information System (INIS)

    Sabba, D.

    2009-01-01

    according to federal regulations and replenished the system with clean water. In 2008, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region in May 2005 for the investigation and remediation of impacted soil and groundwater at SLAC. The board order lists specific tasks and deadlines for completion of groundwater and soil characterization and other remediation activities. All 2008 submittals to the RWQCB were completed and submitted on time.

  5. Annual Site Environmental Report: 2008 (ASER)

    Energy Technology Data Exchange (ETDEWEB)

    Sabba, D.

    2009-11-09

    water to the sanitary sewer according to federal regulations and replenished the system with clean water. In 2008, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region in May 2005 for the investigation and remediation of impacted soil and groundwater at SLAC. The board order lists specific tasks and deadlines for completion of groundwater and soil characterization and other remediation activities. All 2008 submittals to the RWQCB were completed and submitted on time.

  6. Nuclear Facilities Decommissioning and site remedial actions: a selected bibliography. Vol. 2

    International Nuclear Information System (INIS)

    Owen, P.T.; Fielden, J.M.; Knox, N.P.; Trotter, ES.

    1981-10-01

    This bibliography of 643 references represents the second in a series on nuclear facility decommissioning and site remedial actions to be produced by the Radiation Effects Information Center (REIC) within the Information Center Complex, Information Division, Oak Ridge National Laboratory. The bibliography contains scientific, technical, economic, and regulatory information pertaining to the US Department of Energy's Remedial Action Program. Major chapters are: Surplus Facilities Management Program; Nuclear Facilities Decommissioning; Formerly Utilized Sites Remedial Action Program; and Uranium Mill Tailings Management. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by title. Indexes are provided for: (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. The bibliography was compiled from a specialized data base established and maintained by REIC to provide information support for the US Department of Energy's Remedial Action Program, under the cosponsorship of its four major components: Surplus Facilities Management Program; Formerly Utilized Sites Remedial Action Program; Uranium Mill Tailings Remedial Action Program; and the Grand Junction Remedial Action Program

  7. Groundwater remediation at the Hanford site

    International Nuclear Information System (INIS)

    Fries, W.

    1993-01-01

    Ion exchange resin and adsorption technology has been used successfully to treat diversified types of toxic waste water for many years. Even though the Hanford Site presents many unique problems, the author believes these technologies can remediate the groundwater at this site. However, treatment of the sludge in tanks generally is beyond the pale of these technologies except for the possibility of experimental studies being performed at the University of Idaho (Troescher)

  8. 200 Areas Remedial Investigation/Feasibility Study Implementation Plan - Environmental Restoration Program

    International Nuclear Information System (INIS)

    Knepp, A. J.

    1999-01-01

    The 200 Areas Remedial Investigation/Feasibility Study Implementation Plan - Environmental Restoration Program (Implementation Plan) addresses approximately 700 soil waste sites (and associated structures such as pipelines) resulting from the discharge of liquids and solids from processing facilities to the ground (e.g., ponds, ditches, cribs,burial grounds) in the 200 Areas and assigned to the Environmental Restoration Program. The Implementation Plan outlines the framework for implementing assessment activities in the 200 Areas to ensure consistency in documentation, level of characterization, and decision making. The Implementation Plan also consolidates background information and other typical work plan materials, to serve as a single referenceable source for this type of information

  9. Environmental site characterization and remediation at Lawrence Livermore National Laboratory Site 300

    International Nuclear Information System (INIS)

    Lamarre, A.L.; Ferry, R.A.

    1992-04-01

    Lawrence Livermore National Laboratory (LLNL) is a research and development laboratory owned by the US Department of Energy (DOE) and operated by the University of California. The Laboratory operates its Site 300 test facility in support of DOE's national defense programs. In support of activities, at the 300 Site numerous industrial fluids are used and various process or rinse waters and solid wastes are produced. Some of these materials are hazardous by current standards. HE rinse waters were previously discharged to inlined lagoons; they now are discharged to a permitted Class II surface impoundment Solid wastes have been deposited in nine landfills. Waste HE compounds are destroyed by open burning at a burn pit facility. As a result of these practices, environmental contaminants have been released to the soil and ground water

  10. Integration of biotechnology in remediation and pollution prevention activities

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.M.

    1996-01-01

    The North American Free Trade Agreement/North American Agreement on Environmental Cooperation provides a mechanism for an international collaboration between the US, Canada, and Mexico to jointly develop, modify, or refine technologies that remediate or protect the environment. These countries have a vested interest in this type of collaboration because contaminants do not respect the boundaries of a manufacturing site, region, city, state, or country. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) consists of a diverse group of individuals who address a variety of environmental issues. ESD is involved in basic and applied research on the fate, transport, and remediation of contaminants; environmental assessment; environmental engineering; and demonstrations of advanced remediation technologies. The remediation and protection of the environment includes water, air, and soils for organic, inorganic, and radioactive contaminants. In addition to remediating contaminated sites, research also focuses on life-cycle analyses of industrial processes and the production of green technologies. The author focuses this discussion on subsurface remediation and pollution prevention; however, the research activities encompass water, soil and air and many of the technologies are applicable to all environments. The discussion focuses on the integration of biotechnology with remediation activities and subsequently linking these biological processes to other remediation technologies

  11. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  12. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  13. Hazelwood Interim Storage Site environmental report for calendar year 1992, 9200 Latty Avenue, Hazelwood, Missouri

    International Nuclear Information System (INIS)

    1993-05-01

    This report describes the environmental surveillance program at the Hazelwood Interim storage Site (HISS) and surrounding area, provides the results for 1992, and discusses applicable environmental standards and requirements with which the results were compared. HISS is located in eastern Missouri in the City of Hazelwood (St. Louis County) and occupies approximately 2.2 ha (5.5 acres). Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), which was established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. In 1992 there were no environmental occurrences or unplanned contaminant releases as defined in DOE requirements and in the Superfund Amendment and Reauthorization Act (SARA) Title III of CERCLA

  14. Hazelwood Interim Storage Site environmental report for calendar year 1992, 9200 Latty Avenue, Hazelwood, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report describes the environmental surveillance program at the Hazelwood Interim storage Site (HISS) and surrounding area, provides the results for 1992, and discusses applicable environmental standards and requirements with which the results were compared. HISS is located in eastern Missouri in the City of Hazelwood (St. Louis County) and occupies approximately 2.2 ha (5.5 acres). Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), which was established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. In 1992 there were no environmental occurrences or unplanned contaminant releases as defined in DOE requirements and in the Superfund Amendment and Reauthorization Act (SARA) Title III of CERCLA.

  15. Innovative technology for expedited site remediation of extensive surface and subsurface contamination

    International Nuclear Information System (INIS)

    Audibert, J.M.E.; Lew, L.R.

    1994-01-01

    Large scale surface and subsurface contamination resulted from numerous releases of feed stock, process streams, waste streams, and final product at a major chemical plant. Soil and groundwater was contaminated by numerous compounds including lead, tetraethyl lead, ethylene dibromide, ethylene dichloride, and toluene. The state administrative order dictated that the site be investigated fully, that remedial alternative be evaluated, and that the site be remediated within a year period. Because of the acute toxicity and extreme volatility of tetraethyl lead and other organic compounds present at the site and the short time frame ordered by the regulators, innovative approaches were needed to carry out the remediation while protecting plant workers, remediation workers, and the public

  16. Development of site remediation technologies in European countries

    International Nuclear Information System (INIS)

    Nunno, T.J.; Hyman, J.A.; Pheiffer, T.

    1988-01-01

    Site remediation is a pressing issue in European countries due to limited availability of land. Therefore, much progress is being made in the development of effective technologies for remediating contaminated sites. The purpose of this program was to investigate the most successful and innovative technologies for potential application into US markets. This EPA-sponsored project was based on a 9-month research effort which identified 95 innovative technologies in use or being researched in foreign countries. The most promising technologies were studied in-depth through personal interviews with the engineers who research and apply these technologies, and tours of laboratory models and full-scale installations. The most successful full-scale technologies investigated were developed in Holland, West Germany and Belgium. These technologies include vacuum extraction of hydrocarbons from soil, in situ washing of cadmium-polluted soil, rotating biocontractors for treating pesticides in ground water, high-temperature slagging incineration of low-level radioactive wastes, in situ steam stripping, and a number of landfarming and soil washing operations. The paper provides description of 13 site remediation techniques that have shown such promise in laboratory studies or in practice to warrant consideration of their use in the US

  17. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  18. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  19. Application of a World Wide Web technology to environmental remediation

    International Nuclear Information System (INIS)

    Johnson, R.; Durham, L. A.

    2000-01-01

    As part of the Formerly Utilized Site Remedial Action Program (FUSRAP), the United States Army Corps of Engineers (USACE), Buffalo District, is responsible for overseeing the remediation of several sites within its jurisdiction. FUSRAP sites are largely privately held facilities that were contaminated by activities associated with the nuclear weapons program in the 1940s, 50s, and 60s. The presence of soils and structures contaminated with low levels of radionuclides is a common problem at these sites. Typically, contaminated materials must be disposed of off-site at considerable expense (up to several hundred dollars per cubic yard of waste material). FUSRAP is on an aggressive schedule, with most sites scheduled for close-out in the next couple of years. Among the multitude of tasks involved in a typical remediation project is the need to inform and coordinate with active stakeholder communities, including local, state, and federal regulators

  20. Electrokinetic remediation of plutonium-contaminated nuclear site wastes: Results from a pilot-scale on-site trial

    International Nuclear Information System (INIS)

    Agnew, Kieran; Cundy, Andrew B.; Hopkinson, Laurence; Croudace, Ian W.; Warwick, Phillip E.; Purdie, Philip

    2011-01-01

    This paper examines the field-scale application of a novel low-energy electrokinetic technique for the remediation of plutonium-contaminated nuclear site soils, using soil wastes from the Atomic Weapons Establishment (AWE) Aldermaston site, Berkshire, UK as a test medium. Soils and sediments with varying composition, contaminated with Pu through historical site operations, were electrokinetically treated at laboratory-scale with and without various soil pre-conditioning agents. Results from these bench-scale trials were used to inform a larger on-site remediation trial, using an adapted containment pack with battery power supply. 2.4 m 3 (ca. 4 tonnes) of Pu-contaminated soil was treated for 60 days at a power consumption of 33 kW h/m 3 , and then destructively sampled. Radiochemical data indicate mobilisation of Pu in the treated soil, and migration (probably as a negatively charged Pu-citrate complex) towards the anodic compartment of the treatment cell. Soil in the cathodic zone of the treatment unit was remediated to a level below free-release disposal thresholds (1.7 Bq/g, or <0.4 Bq/g above background activities). The data show the potential of this method as a low-cost, on-site tool for remediation of radioactively contaminated soils and wastes which can be operated remotely on working sites, with minimal disruption to site infrastructure or operations.

  1. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  2. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints

  3. Assessment of technologies for the remediation of radioactively contaminated Superfund sites

    International Nuclear Information System (INIS)

    1990-01-01

    The report is a screening evaluation of information needs for the development of generic treatability studies for the remediation of Superfund Radiation Sites on the National Priorities List (NPL). It presents a categorization of the 25 radiation sites currently proposed or listed on the NPL, and provides a rating system for evaluating technologies that may be used to remediate these sites. It also identifies gaps in site assessment and technology data and provides information about and recommendations for technology development

  4. Environmental Research Translation: Enhancing Interactions with Communities at Contaminated Sites

    Science.gov (United States)

    Ramirez-Andreotta, Monica D.; Brusseau, Mark L.; Artiola, Janick F.; Maier, Raina M.; Gandolfi, A. Jay

    2014-01-01

    The characterization and remediation of contaminated sites are complex endeavors fraught with numerous challenges. One particular challenge that is receiving increased attention is the development and encouragement of full participation by communities and community members affected by a given site in all facets of decision-making. Many disciplines have been grappling with the challenges associated with environmental and risk communication, public participation in environmental data generation, and decision-making and increasing community capacity. The concepts and methods developed by these disciplines are reviewed, with a focus on their relevance to the specific dynamics associated with environmental contamination sites. The contributions of these disciplines are then synthesized and integrated to help develop Environmental Research Translation (ERT), a proposed framework for environmental scientists to promote interaction and communication among involved parties at contaminated sites. This holistic approach is rooted in public participation approaches to science, which includes: a transdisciplinary team, effective collaboration, information transfer, public participation in environmental projects, and a cultural model of risk communication. Although there are challenges associated with the implementation of ERT, it is anticipated that application of this proposed translational science method could promote more robust community participation at contaminated sites. PMID:25173762

  5. ANALYSIS OF REMEDIATION PROCESS OF THE GROUDWATER COTAMINATION IN AN ILLEGAL DUMPING SITE

    Science.gov (United States)

    Nishida, Norikazu; Furuichi, Toru; Ishii, Kazuei

    Among on-site remediation technologies applied to illegal dumping sites, a technology to remedy contaminated groundwater without removal of the dumped waste is expected to provide a great opportunity to fulfill a societal need due to its economic advantage compared to removal of all waste. However heterogeneously-distributed waste makes the remedial process difficult. In this study, an in situflushing technology was applied to an illegal dumping site in Kuwana city, Mie, in order to remedy groundwater contaminated with several volatile organic compounds (VOCs) within five years. The key to successfully achieve the target was to conduct a series of advanced remediation processes; introducing a new indicator by which multiple VOCs can be estimated integratelly, monitoring the progress of remediation with a contour map of VOC concentration as well as the weighted averages of the concentration derived from the indicator, pinpointing residual contaminants area, reexamining the plan, and taking additional steps that promote further remediation.

  6. Background report for the uranium-mill-tailings-sites remedial-action program

    International Nuclear Information System (INIS)

    1981-04-01

    The Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, mandates remedial action responsibilities to the Department of Energy for designated inactive uranium processing sites. To comply with the mandates of the Act, a program to survey and evaluate the radiological conditions at inactive uranium processing sites and at vicinity properties containing residual radioactive material derived from the sites is being conducted; the Remedial Action Program Office, Office of the Assistant Secretary for Nuclear Energy is implementing remedial actions at these processing sites. This report provides a brief history of the program, a description of the scope of the program, and a set of site-specific summaries for the 22 locations specified in the Act and three additional locations designated in response to Federal Register notices issued on August 17 and September 5, 1979. It is designed to be a quick source of background information on sites covered by the implementation program for Public Law 95-604

  7. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  8. Review of selected 100-N waste sites related to N-Springs remediation projects

    International Nuclear Information System (INIS)

    DeFord, D.H.; Carpenter, R.W.

    1996-01-01

    This document has been prepared in support of the environmental restoration program at the US Department of Energy's Hanford Site near Richland, Washington, by the Bechtel Hanford, Inc. Facility and Waste Site Research Office. It provides historical information that documents and characterizes selected waste sites that are related to the N-Springs remediation projects. The N-Springs are a series of small, inconspicuous groundwater seepage springs located along the Columbia River shoreline near the 100-N Reactor. The spring site is hydrologically down-gradient from several 100-N Area liquid waste sites that are believed to have been the source(s) of the effluents being discharged by the springs. This report documents and characterizes these waste sites, including the 116-N-1 Crib and Trench, 116-N-3 Crib and Trench, unplanned releases, septic tariks, and a backwash pond

  9. Hanford Site waste management and environmental restoration integration plan

    International Nuclear Information System (INIS)

    Merrick, D.L.

    1990-01-01

    The ''Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs

  10. Using Heavy Metal Content and Lipid Peroxidation Indicators in the Tissues of the Mussel Crenomytilus grayanus for Pollution Assessment After Marine Environmental Remediation.

    Science.gov (United States)

    Belcheva, Nina; Istomina, Alexandra; Dovzhenko, Nadezhda; Lishavskaya, Tatiana; Chelomin, Victor

    2015-10-01

    We examined the effects of environmental remediation on the heavy metal concentration and lipid peroxidation activity in the digestive gland and gills of the marine mussel Crenomytilus grayanus. Changes in heavy metal concentrations and lipid peroxidation biomarkers in the tissues of mussels collected at a contaminated site were compared with those obtained from a reference site. Prior to remediation the concentration of Pb, Cu, Cd, Fe and Zn and the levels of malondialdehyde, conjugated dienes and lipofuscin in mussels collected from the contaminated site were significantly increased compared with those obtained from the reference site. Three years after remediation, these parameters did not significantly exceed the reference site parameters, except Pb, whose concentration, though markedly decreased, yet was much higher than in tissues of mussels from the reference site.

  11. Annual Site Environmental Report, 2007(ASER)

    International Nuclear Information System (INIS)

    Sabba, D

    2008-01-01

    Management Program (EMP) was completed and progress reports were routinely provided to SLAC senior management. During 2007, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during 2007. SLAC replaced two process tanks at the Plating Shop which previously contained chromium solutions with non-chromium containing solutions, reducing the overall use of hazardous chemicals. In addition, 346 polychlorinated biphenyl (PCB)-contaminated capacitors were replaced with non-PCB capacitors, reducing the potential of a release of oil with PCBs during an event such as a fire or an earthquake. SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions. During 2007, SLAC obtained a new facility-wide wastewater discharge permit which replaced four separate permits that were previously issued to SLAC. In 2007, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. Specifically, the Radiation Protection Radiological Waste Management (RPRWM) Group developed a training course to certify Radioactive Waste Generators, conducted a training pilot, and developed a list of potential radioactive waste generators to train. In 2007, the SLAC Environmental Restoration Program continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup

  12. Annual Site Environmental Report, 2007(ASER)

    Energy Technology Data Exchange (ETDEWEB)

    Sabba, D

    2008-10-07

    plan, or Environmental Management Program (EMP) was completed and progress reports were routinely provided to SLAC senior management. During 2007, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during 2007. SLAC replaced two process tanks at the Plating Shop which previously contained chromium solutions with non-chromium containing solutions, reducing the overall use of hazardous chemicals. In addition, 346 polychlorinated biphenyl (PCB)-contaminated capacitors were replaced with non-PCB capacitors, reducing the potential of a release of oil with PCBs during an event such as a fire or an earthquake. SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions. During 2007, SLAC obtained a new facility-wide wastewater discharge permit which replaced four separate permits that were previously issued to SLAC. In 2007, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. Specifically, the Radiation Protection Radiological Waste Management (RPRWM) Group developed a training course to certify Radioactive Waste Generators, conducted a training pilot, and developed a list of potential radioactive waste generators to train. In 2007, the SLAC Environmental Restoration Program continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is

  13. Regional economic impact assessment: Evaluating remedial alternatives for the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    Harrison, David; Coughlin, Conor; Hogan, Dylan; Edwards, Deborah A; Smith, Benjamin C

    2018-01-01

    The present paper describes a methodology for evaluating impacts of Superfund remedial alternatives on the regional economy in the context of a broader sustainability evaluation. Although economic impact methodology is well established, some applications to Superfund remedial evaluation have created confusion because of seemingly contradictory results. This confusion arises from failure to be explicit about 2 opposing impacts of remediation expenditures: 1) positive regional impacts of spending additional money in the region and 2) negative regional impacts of the need to pay for the expenditures (and thus forgo other expenditures in the region). The present paper provides a template for economic impact assessment that takes both positive and negative impacts into account, thus providing comprehensive estimates of net impacts. The paper also provides a strategy for identifying and estimating major uncertainties in the net impacts. The recommended methodology was applied at the Portland Harbor Superfund Site, located along the Lower Willamette River in Portland, Oregon, USA. The US Environmental Protection Agency (USEPA) developed remedial alternatives that it estimated would cost up to several billion dollars, with construction durations possibly lasting decades. The economic study estimated regional economic impacts-measured in terms of gross regional product (GRP), personal income, population, and employment-for 5 of the USEPA alternatives relative to the "no further action" alternative. Integr Environ Assess Manag 2018;14:32-42. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  14. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  15. Evaluation of surface water treatment and discharge options for the Weldon Spring Site Remedial Action Project

    International Nuclear Information System (INIS)

    Goyette, M.L.; MacDonell, M.M.

    1992-01-01

    The US Department of Energy (DOE), under its Environmental Restoration and Waste Management Program, is responsible for conducting response actions at the Weldon Spring site in St. Charles County, Missouri. The site consists of two noncontiguous areas: (1) the chemical plant area, which includes four raffinate pits and two small ponds, and (2) a 3.6-ha (9-acre) quarry located about 6.4 km (4 mi) southwest of the chemical plant area. Both of these areas became chemically and radioactively contaminated as a result of processing and disposal activities that took place from the 1940s through 1960s. The Weldon Spring site, located about 48 km (30 mi) west of St. Louis, is listed on the National Priorities List of the US Environmental Protection Agency. Nitroaromatic explosives were processed by the Army at the chemical plant area during the 1940s, and radioactive materials were processed by DOE's predecessor agency (the Atomic Energy Commission) during the 1950s and 1960s. Overall remediation of the Weldon Spring site is being addressed through the Weldon Spring Site Remedial Action Project, and it consists of several components. One component is the management of radioactively and chemically contaminated surface water impoundments at the chemical plant area -- i.e., the four raffinate pits, Frog Pond, and Ash Pond which was addressed under a separate action and documented in an engineering evaluation/cost analysis report. This report discusses the evaluation of surface water treatment at the Weldon Spring site

  16. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    International Nuclear Information System (INIS)

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-01-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  17. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    Energy Technology Data Exchange (ETDEWEB)

    Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  18. Research in Support of Remediation Activities at the Savannah River Site

    International Nuclear Information System (INIS)

    Seaman, J.C.; B.B. Looney and M.K. Harris

    2007-01-01

    The USDOE Savannah River Site (SRS), an 803-km 2 (310-mile 2 ) facility located south of Aiken, SC on the upper Atlantic Coastal Plain and bounded to the west by the Savannah River, was established in the 1950s for the production and refinement of nuclear materials. To fulfill this mission during the past 50 years SRS has operated five nuclear reactors, two large chemical separation areas, waste disposal facilities (landfills, waste ponds, waste tanks, and waste stabilization), and a large number of research and logistics support facilities. Contaminants of concern (COC) resulting from site operations include chlorinated solvents, radionuclides, metals, and metalloids, often found as complex mixtures that greatly complicate remediation efforts when compared with civilian industries. The objective of this article is to provide a description of the lithology and hydrostratigraphy of the SRS, as well as a brief history of site operations and research activities as a preface to the current special section of Vadose Zone Journal (VZJ) dedicated to SRS, focusing mainly on issues that are unique to the USDOE complex. Contributions to the special section reflect a diverse range of topics, from hydrologic tracer experiments conducted both within the vadose and saturated zones to studies specifically aimed at identifying geochemical processes controlling the migration and partitioning of specific contaminants (e.g., TCE, 137 Cs, U, and Pu) in SRS subsurface environments. Addressing the diverse environmental challenges of the SRS provides a unique opportunity to conduct both fundamental and applied research across a range of experimental scales. Hence, the SRS has been a pioneering force in several areas of environmental research and remediation, often through active interdisciplinary collaboration with researchers from other USDOE facilities, academic and federal institutions, and commercial entities

  19. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement

    International Nuclear Information System (INIS)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ''Pneumatic Excavator'' which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions

  20. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved.

  1. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1983-07-01

    The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved

  2. Integrated remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Dykes, R.S.; Howles, A.C.

    1992-01-01

    Remediation of sites contaminated with petroleum hydrocarbons and other organic chemicals frequently focuses on a single phase of the chemical in question. This paper describes an integrated approach to remediation involving selection of complimentary technologies designed to create a remedial system which achieves cleanup goals in affected media in the shortest possible time consistent with overall environmental protection

  3. Gamma Ray Imaging for Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    B.F. Philips; R.A. Kroeger: J.D. Kurfess: W.N. Johnson; E.A. Wulf; E. I. Novikova

    2004-11-12

    This program is the development of germanium strip detectors for environmental remediation. It is a collaboration between the Naval Research Laboratory and Lawrence Berkeley National Lab. The goal is to develop detectors that are simultaneously capable of excellent spectroscopy and imaging of gamma radiation.

  4. Environmental Control Plan for the 300-FF-1 Operable Unit Remedial Action

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2000-01-01

    This environmental control plan is for the 300-FF-1 Operable Unit Remedial Action Project. The purpose of this plan is to identify environmental requirements for the 300-FF-1 operable unit Remedial Action/Waste Disposal Project

  5. The Role Of Land Use In Environmental Decision Making At Three DOE Mega-Cleanup Sites, Fernald, Rocky Flats, and Mound

    International Nuclear Information System (INIS)

    Jewett, M.A.

    2011-01-01

    This paper explores the role that future land use decisions have played in the establishment of cost-effective cleanup objectives and the setting of environmental media cleanup levels for the three major U.S. Department of Energy (DOE) sites for which cleanup has now been successfully completed: the Rocky Flats, Mound, and Fernald Closure Sites. At each site, there are distinct consensus-building histories throughout the following four phases: (1) the facility shut-down and site investigation phase, which took place at the completion of their Cold War nuclear-material production missions; (2) the decision-making phase, whereby stakeholder and regulatory-agency consensus was achieved for the future land-use-based environmental decisions confronting the sites; (3) the remedy selection phase, whereby appropriate remedial actions were identified to achieve the future land-use-based decisions; and (4) the implementation phase, whereby the selected remedial actions for these high-profile sites were implemented and successfully closed out. At each of the three projects, there were strained relationships and distrust between the local community and the DOE as a result of site contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholder groups - particularly in the role of final land use in the decision-making process, the site management teams at each respective site developed new public-participation strategies to open stakeholder communication channels with site leadership, technical staff, and the regulatory agencies. This action proved invaluable to the success of the projects and reaching consensus on appropriate levels of cleanup. With the implementation of the cleanup remedies now complete, each of the three DOE sites have become models for future environmental-remediation projects and associated decision making.

  6. Annual Site Environmental Report: 2009(ASER)

    International Nuclear Information System (INIS)

    2010-01-01

    28 sealed sources to the manufacturer, transferred additional 3 sources to Los Alamos National Laboratory, and disposed of 636 kilograms of depleted uranium tiles. In 2009, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region on October 19, 2009, for the investigation and remediation of impacted soil and groundwater at SLAC. Risk-based preliminary cleanup goals for impacted soil and groundwater have been established for SLAC, and the remedial efforts are being designed to meet these established goals.

  7. Unique Construction and Social Experiences in Residential Remediation Sites - 13423

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Paul; Scarborough, Rebecca [Sevenson Environmental Services, Inc. 2749 Lockport Road, Niagara Falls, NY 14305 (United States)

    2013-07-01

    Sevenson Environmental Services, Inc., (Sevenson) has performed several radiological remediation projects located in residential urban areas. Over the course of these projects, there has been a wide variety of experiences encountered from construction related issues to unique social situations. Some of the construction related issues included the remediation of interior basements where contaminated material was located under the footers of the structure or was used in the mortar between cinder block or field stone foundations. Other issues included site security, maintaining furnaces or other utilities, underpinning, backfilling and restoration. In addition to the radiological hazards associated with this work there were occupational safety and industrial hygiene issues that had to be addressed to ensure the safety and health of neighboring properties and residents. The unique social situations at these job sites have included arson, theft/stolen property, assault/battery, prostitution, execution of arrest warrants for residents, discovery of drugs and paraphernalia, blood borne pathogens, and unexploded ordnance. Some of these situations have become a sort of comical urban legend throughout the organization. One situation had historical significance, involving the demolition of a house to save a tree older than the Declaration of Independence. All of these projects typically involve the excavation of early 20. century items such as advertisement signs, various old bottles (milk, Listerine, perfume, whisky) and other miscellaneous common trash items. (authors)

  8. Unique Construction and Social Experiences in Residential Remediation Sites - 13423

    International Nuclear Information System (INIS)

    Jung, Paul; Scarborough, Rebecca

    2013-01-01

    Sevenson Environmental Services, Inc., (Sevenson) has performed several radiological remediation projects located in residential urban areas. Over the course of these projects, there has been a wide variety of experiences encountered from construction related issues to unique social situations. Some of the construction related issues included the remediation of interior basements where contaminated material was located under the footers of the structure or was used in the mortar between cinder block or field stone foundations. Other issues included site security, maintaining furnaces or other utilities, underpinning, backfilling and restoration. In addition to the radiological hazards associated with this work there were occupational safety and industrial hygiene issues that had to be addressed to ensure the safety and health of neighboring properties and residents. The unique social situations at these job sites have included arson, theft/stolen property, assault/battery, prostitution, execution of arrest warrants for residents, discovery of drugs and paraphernalia, blood borne pathogens, and unexploded ordnance. Some of these situations have become a sort of comical urban legend throughout the organization. One situation had historical significance, involving the demolition of a house to save a tree older than the Declaration of Independence. All of these projects typically involve the excavation of early 20. century items such as advertisement signs, various old bottles (milk, Listerine, perfume, whisky) and other miscellaneous common trash items. (authors)

  9. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona

    International Nuclear Information System (INIS)

    1989-08-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site near Tuba City, Arizona. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the Navajo Nation, the Hopi Tribe, US Bureau of Indian Affairs (BIA), and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE, the Navajo Nation, and the Hopi Tribe, and concurrence by NRC, becomes Appendix B of the Cooperative Agreement. Following the introduction, contents are as follows: Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 summarizes the plan for ensuring environmental, health, and safety protection for the surrounding community and the on-site workers. Section 6.0 presents a detailed listing of the responsibilities of the project participants. Section 7.0 describes the features of the long-term surveillance and maintenance plan. Section 8.0 presents the quality assurance aspects of the project. Section 9.0 documents the ongoing activities to keep the public informed and participating in the project

  10. Environmental Research Translation: Enhancing Interactions with Communities at Contaminated Sites

    Science.gov (United States)

    Ramirez-Andreotta, M.; Brusseau, M. L. L.; Artiola, J. F.; Maier, R. M.; Gandolfi, A. J.

    2015-12-01

    The characterization and remediation of contaminated sites are complex endeavors fraught with numerous challenges. One particular challenge that is receiving increased attention is the development and encouragement of full participation by communities and community members affected by a given site in all facets of decision-making. Many disciplines have been grappling with the challenges associated with environmental and risk communication, public participation in environmental data generation and decision-making, and increasing community capacity. The concepts and methods developed by these disciplines are reviewed, with a focus on their relevance to the specific dynamics associated with contaminated sites. The contributions of these disciplines are then synthesized and integrated to help develop Environmental Research Translation (ERT), a proposed framework for environmental scientists to promote interaction and communication among involved parties at contaminated sites. This holistic approach is rooted in public participation approaches to science, which includes: a transdisciplinary team, effective collaboration, information transfer, public participation in environmental projects, and a cultural model of risk communication. Although there are challenges associated with the implementation of ERT, it is anticipated that application of this proposed translational science method could promote more robust community participation at contaminated sites.

  11. Oak Ridge Reservation site management plan for the environmental restoration program

    International Nuclear Information System (INIS)

    1995-09-01

    This report describes the overall approach for addressing environmental contamination on the Oak Ridge Reservation (ORR) National Priorities List site located in east Tennessee. The cleanup strategy reflected in this site management plan (SMP) has been developed to accelerate the transition of areas of concern (AOCs) from characterization to remediation by making decisions at the watershed scale based on recommended land uses. Project scoping involves the use of defined remedial action objectives, which are based in part on the land uses selected for the project sites. To provide a consistent land use approach that accommodates the needs of all stakeholders responsible for the remediation and reutilization of the ORR, a reservation-wide strategy has been developed. The Common Ground process is a stakeholder-driven process to determine preferred land use options for the ORR so that clean-up operations will be based on the most likely and acceptable land uses. DOE utilized the information gathered in the Common Ground process to recommend desired land uses for the ORR. The land uses recommended by DOE as a result of the Common Ground process are being used for planning land and facility use/reuse for the next 25 years. Land uses recommended for the ORR in conducting CERCLA remedial activities are conservation, industrial use, and waste management

  12. Cost-efficient remediation of an upstream oilfield battery site

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, L.D. [Imperial Oil Resources Canada, Calgary, AB (Canada); Bedard, G.; Pouliot, M.; Soucy, F.; Faucher, C.; Corbin, R. [Biogenie Inc., Quebec City, PQ (Canada)

    2003-07-01

    The soil at an oilfield battery site, located 18 kilometres (km) northwest of Devon, Alberta has been contaminated with crude oil and salt, following years of operation. Surrounding the site is flat farmland intended for future agricultural production. A remedial program aimed at complying with Tier I criteria of the Alberta Soil and Water Quality Guidelines for Hydrocarbons at Upstream Oil and Gas Facilities (ASWQG) of Alberta Environment, was developed and implemented. Characterization of the site was carried out in 1997 to delineate a salt plume, followed by a second sampling campaign in 1999, which all together revealed three impacted areas. A supplementary characterization was performed in 2001 by Biogenie in an effort to better determine the nature and level of petroleum contamination and more accurately evaluate the volume of contaminated soil. A three-dimensional Visualization software integrating a Kriging geostatistical model was used for this purpose. The results indicated that an estimated 8,800 cubic metres of contaminated soil would need to be excavated and treated. The next phase involved an evaluation of the various remedial options, which was accomplished using a biotreatability study. The remediation program selected involved the excavation of the contaminated soil and segregation of source material, the ex-situ Biopile treatment of the source material to meet Class II landfill criteria, and the ex-situ Biopile treatment of the contaminated soil followed by its use as backfill on site. The biotreatability study proved to be a strategic tool in the remediation effort. 1 tab., 2 figs.

  13. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  14. Colonie Interim Storage Site environmental surveillance report for calendar year 1993

    International Nuclear Information System (INIS)

    1994-06-01

    This report summarizes the results of environmental surveillance activities conducted at the Colonie Interim Storage Site (CISS) during calendar year 1993. It includes an overview of site operations, the basis for radiological and nonradiological monitoring, dose to the offsite population, and summaries of environmental programs at CISS. Environmental surveillance activities were conducted in accordance with the site environmental monitoring plan, which describes the rationale and design criteria for the surveillance program, the frequency of sampling and analysis, specific sampling and analysis procedures, and quality assurance requirements. Appendix A contains a discussion of the nature of radiation, the way it is measured, and common sources of it. The primary environmental guidelines and limits applicable to CISS are given in US Department of Energy (DOE) orders and mandated by six federal acts: the Clean Air Act; the Clean Water Act; the Resource Conservation and Recovery Act (RCRA); the Toxic Substances Control Act; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); and the National Environmental Policy Act (NEPA). DOE began environmental monitoring of CISS in 1984 when DOE was authorized by Congress through the Energy and Water Development Appropriations Act to conduct a decontamination research and development program at the site. The site was subsequently assigned to DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP)

  15. WSSRAP chemical plant geotechnical investigations for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1990-12-01

    This document has been prepared for the United states Department of Energy (DOE) Weldon Spring Site Remedial Action Project (WSSRAP) by the Project Management Contractor (PMC), which consists of MK-Ferguson Company (MKF) and Morrison Knudsen Corporation Environmental Services Group (MKES) with Jacobs Engineering Group (JEG) as MKF's predesignated subcontractor. This report presents the results of site geotechnical investigations conducted by the PMC in the vicinity of the Weldon Spring chemical plant and raffinate pits (WSCP/RP) and in potential on-site and off-site clayey material borrow sources. The WSCP/RP is the proposed disposal cell (DC) site. 39 refs., 24 figs., 12 tabs

  16. Application of risk management techniques for the remediation of an old mining site in Greece.

    Science.gov (United States)

    Panagopoulos, I; Karayannis, A; Adam, K; Aravossis, K

    2009-05-01

    This article summarizes the project and risk management of a remediation/reclamation project in Lavrion, Greece. In Thoricos the disposal of mining and metallurgical wastes in the past resulted in the contamination with heavy metals and acid mine drainage. The objective of this reclamation project was to transform this coastal zone from a contaminated site to an area suitable for recreation purposes. A separate risk assessment study was performed to provide the basis of determining the relevant environmental contamination and to rate the alternative remedial schemes involved. The study used both existing data available from comprehensive studies, as well as newly collected field data. For considering environmental risk, the isolation and minimization of risk option was selected, and a reclamation scheme, based on environmental criteria, was applied which was comprised of in situ neutralization, stabilization and cover of the potentially acid generating wastes and contaminated soils with a low permeability geochemical barrier. Additional measures were specifically applied in the areas where highly sulphidic wastes existed constituting active acid generation sources, which included the encapsulation of wastes in HDPE liners installed on clay layers.

  17. Annual site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    1991-09-01

    This report presents the results of a comprehensive, year-round program to monitor the impact of the Weldon Spring site (WSS) on the surrounding region's groundwater, surface waters, and air quality through multiple pathways as well as monitoring for potential exposure to receptor human populations. Information is also presented on the environmental monitoring quality assurance program, waste management activities, audits, and reviews, and special environmental studies. The data reported have been collected from a growing complex of monitoring stations and a routine sampling program supplemented by the following: An air monitoring network of 22 stations located within and on the perimeters of the two operable remedial units of the site, and at critical receptor locations around the WSS: Six National Pollutant Discharge Elimination System (NPDES) locations and over 25 surface water sampling locations; twenty-two locations for measuring external gamma radiation; over 100 groundwater monitoring wells and piezometers; dozens of soil and ground surface scanning locations for potential direct contact exposure; and an on-site meteorological station. Comprehensive environmental monitoring data for 1990 show that emissions of radiological contamination from the WSS continue to decrease, and contaminant migration pathways and environmental variability are better understood. 26 figs., 34 tabs

  18. An automated radiological survey method for performing site remediation and decommissioning

    International Nuclear Information System (INIS)

    Handy, R.G.; Bolch, W.E.; Harder, G.F.; Tolaymat, T.M.

    1994-01-01

    A portable, computer-based method of performing environmental monitoring and assessment for site remediation and decommissioning has been developed. The integrated system has been developed to provide for survey time reductions and real-time data analysis. The technique utilizes a notebook 486 computer with the necessary hardware and software components that makes it possible to be used in an almost unlimited number of environmental monitoring and assessment scenarios. The results from a pilot, open-quotes hide-and-seekclose quotes gamma survey and an actual alpha decontamination survey were elucidated. It was found that a open-quotes hide-and-seekclose quotes survey could come up with timely and accurate conclusions about the position of the source. The use of the automated system in a Th-232 alpha survey resulted in a reduction in the standard time necessary to do a radiological survey. In addition, the ability to analyze the data on-site allowed for identification and location of areas which needed further decontamination. Finally, a discussion on possible future improvements and field conclusions was made

  19. Clean Slate Environmental Remediation DSA for 10 CFR 830 Compliance

    International Nuclear Information System (INIS)

    James L. Traynor, Stephen L. Nicolosi, Michael L. Space, Louis F. Restrepo

    2006-01-01

    Clean Slate Sites II and III are scheduled for environmental remediation (ER) to remove elevated levels of radionuclides in soil. These sites are contaminated with legacy remains of non-nuclear yield nuclear weapons experiments at the Nevada Test Site, that involved high explosive, fissile, and related materials. The sites may also hold unexploded ordnance (UXO) from military training activities in the area over the intervening years. Regulation 10 CFR 830 (Ref. 1) identifies DOE-STD-1120-98 (Ref. 2) and 29 CFR 1910.120 (Ref. 3) as the safe harbor methodologies for performing these remediation operations. Of these methodologies, DOE-STD-1120-98 has been superseded by DOE-STD-1120-2005 (Ref. 4). The project adopted DOE-STD-1120-2005, which includes an approach for ER projects, in combination with 29 CFR 1910.120, as the basis documents for preparing the documented safety analysis (DSA). To securely implement the safe harbor methodologies, we applied DOE-STD-1027-92 (Ref. 5) and DOE-STD-3009-94 (Ref. 6), as needed, to develop a robust hazard classification and hazards analysis that addresses non-standard hazards such as radionuclides and UXO. The hazard analyses provided the basis for identifying Technical Safety Requirements (TSR) level controls. The DOE-STD-1186-2004 (Ref. 7) methodology showed that some controls warranted elevation to Specific Administrative Control (SAC) status. In addition to the Evaluation Guideline (EG) of DOE-STD-3009-94, we also applied the DOE G 420.1 (Ref. 8) annual, radiological dose, siting criterion to define a controlled area around the operation to protect the maximally exposed offsite individual (MOI)

  20. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1992

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1993-12-14

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling environmental remediation, i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  1. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1993

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1994-10-21

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling environmental remediation, i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonoradiological monitoring at SSFL.

  2. Radiological surveillance of Remedial Action activities at the processing site, Ambrosia Lake, New Mexico, April 12--16, 1993. Final report

    International Nuclear Information System (INIS)

    1993-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological surveillance of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site in Ambrosia Lake, New Mexico. The requirements and attributes examined during the audit were developed from reviewing working-level procedures developed by the RAC. Objective evidence, comments, and observations were verified based on investigating procedures, documentation, records located at the site, personal interviews, and tours of the site. No findings were identified during this audit. Ten site-specific observations, three good practice observations, and five programmatic observations are presented in this report. The overall conclusion from the surveillance is that the radiological aspects of the Ambrosia Lake, New Mexico, remedial action program are performed adequately. The results of the good practice observations indicate that the site health physics (HP) staff is taking the initiative to address and resolve potential issues, and implement suggestions useful to the UMTRA Project. However, potential exists for improving designated storage areas for general items, and the RAC Project Office should consider resolving site-specific and procedural inconsistencies

  3. Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)

    International Nuclear Information System (INIS)

    Tucker, M.D.

    1995-06-01

    The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project

  4. The UMTRA PEIS: A strategy for groundwater remediation

    International Nuclear Information System (INIS)

    Burt, C.; Ulland, L.; Weston, R.F.; Metzler, D.

    1993-01-01

    A programmatic environmental impact statement (PEIS) was initiated in 1992 for the uranium mill tailings remedial action (UMTRA) program. The PEIS kicked off the groundwater restoration phase of UMTRA, a project involving remediation of 24 sites in ten states and tribal lands contaminated with tailings from uranium mining and milling operations. The U.S. Department of Energy (DOE) agreed, in early 1992, that a PEIS was an appropriate strategy to comply with the National Environmental Policy Act (NEPA) for this second, groundwater phase of the project. This decision recognized that although a parallel effort was being undertaken in preparing a PEIS for DOE's Environmental Restoration/Waste Management (ER/WM) program, characteristics and the maturity of the UMTRA project made it more appropriate to prepare a separate PEIS. The ER/WM PEIS is intended to examine environmental restoration and waste management issues from a very broad perspective. For UMTRA, with surface remediation completed or well under way at 18 of the 24 sites, a more focused programmatic approach for groundwater restoration is more effective than including the UMTRA project within the ER/WM environmental impact statements. A separate document allows a more focused and detailed analysis necessary to efficiently tier site-specific environmental assessments for groundwater restoration at each of the 24 UMTRA former processing sites

  5. A systematic approach to evaluate erosion potential at environmental restoration sites

    International Nuclear Information System (INIS)

    Veenis, S.J.; Mays, D.C.

    1998-01-01

    The Environmental Restoration (ER) Project at the Los Alamos National Laboratory (LANL) is responsible for investigation and remediation of solid waste management units (SWMUs) under the Resource Conservation and Recovery Act and area of concerns (AOCs) under the direction of the Department of Energy. During the investigation and remediation phases, information may be gathered that indicates that conditions may be present at the site which may effect surface water quality. Depending on the constituent found, its concentration, and erosion/sediment transport potential, it may be necessary to implement temporary or permanent mitigative measures

  6. Proceedings of the remediation technologies symposium, RemTech 2010

    International Nuclear Information System (INIS)

    2010-01-01

    In response to concerns regarding environmental impacts resulting from the extraction and production of fossil fuels, many oil and gas operators are seeking ways to reduce their environmental footprint and ensure the sustainable development of the industry. This symposium provided a forum to discuss innovations in soil and groundwater remediation. It highlighted recent work conducted in the field of contamination and remediation of industrial pollutant treatments. The conference technical sessions were entitled: British Columbia perspective; DND sites; hydrocarbons; oilfield remediation; Saskatchewan perspective; brownfields; miscellaneous; Quebec perspective; laboratory analysis and testing; landfill management and remediation; and, in-situ treatment methods. Some presentations also reviewed biological and non-biological treatment methods; thermal desorption; encapsulation; natural attenuation; multi-phase extraction; solar detoxification; electrochemical remediation; pre-treatment considerations; phytoremediation; and environmental management. The pre-conference workshop discussed methods of working with the federal government on future contaminated sites. The symposium featured 67 presentations, of which 26 have been catalogued separately for inclusion in this database

  7. Proceedings of the remediation technologies symposium, RemTech 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    In response to concerns regarding environmental impacts resulting from the extraction and production of fossil fuels, many oil and gas operators are seeking ways to reduce their environmental footprint and ensure the sustainable development of the industry. This symposium provided a forum to discuss innovations in soil and groundwater remediation. It highlighted recent work conducted in the field of contamination and remediation of industrial pollutant treatments. The conference technical sessions were entitled: British Columbia perspective; DND sites; hydrocarbons; oilfield remediation; Saskatchewan perspective; brownfields; miscellaneous; Quebec perspective; laboratory analysis and testing; landfill management and remediation; and, in-situ treatment methods. Some presentations also reviewed biological and non-biological treatment methods; thermal desorption; encapsulation; natural attenuation; multi-phase extraction; solar detoxification; electrochemical remediation; pre-treatment considerations; phytoremediation; and environmental management. The pre-conference workshop discussed methods of working with the federal government on future contaminated sites. The symposium featured 67 presentations, of which 26 have been catalogued separately for inclusion in this database. tabs., figs.

  8. Remediation of polluted sites. The risks, liabilities and costs; Rehabilitation de sites pollues. Quels risques? Quelles responsabilites? Quels couts?

    Energy Technology Data Exchange (ETDEWEB)

    Paquot, A. [Ministere de l' Ecologie et du Developpement Durable 75 - Paris (France); Darmendrail, D. [BRGM, 75 - Paris (France); Mensah, J. [Etablissement public foncier Nord Pas de Calais, 59 - Lille (France); Costil, J. [BURGEAP, 69 - Lyon (France); Carbon, S. [Gaz de France (GDF), 75 - Paris (France); Gervaise, Y. [SGS Multilab, 51 - Rouen (France); Bonin, H. [GRS Valtech, 69 - Rilleux-la-Pape (France); Delfaud, L. [Projenor, 59 - Lille (France); Croze, V. [ICF Environnement, 92 - Gennevilliers (France); Ricour, J. [ANTEA, des solutions globales, durables et rentables, 45 - Orleans (France); Langlois, P.

    2003-10-01

    This conference deals with the following topics: the mastery of the economic, regulation, juridical and contractual framework; liabilities and financing distribution between the intervenors; the diagnostic cost; the financial security in the sites acquisition and social right transfer; the efficient technologies of sites remediation; the communication near the site in remediation. (A.L.B.)

  9. Novel sorbents for environmental remediation

    Science.gov (United States)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session

  10. Remedial actions of nuclear safety shot sites: Double Tracks and Clean Slates

    International Nuclear Information System (INIS)

    Sanchez, M.; Shotton, M.; Lyons, C.

    1998-03-01

    Remedial actions of plutonium (Pu)-contaminated soils are in the preliminary stages of development at the Nevada Test Site (NTS). Interim clean-up actions were completed at the Double Tracks and Clean Slate 1 safety shot sites in 1996 and 1997, respectively. Soil at both sites, with a total transuranic activity greater than 20 picoCuries per gram (pCi/g), was excavated and shipped to the NTS for disposal. Characterization and assessment efforts were initiated at the Double Tracks site in 1995, and the clean-up of this site as an interim action was completed in 1996. Clean-up of this site consisted of taking site-specific data and applying rationale for dose and risk calculations in selecting parameter values for the interim corrective action level. The remediation process included excavating and stockpiling the contaminated soil and loading the soil into supersacks with approximately 1,513 cubic meters (53,500 cubic feet) being shipped to the NTS for disposal. In 1997, remediation began on the Clean Slate 1 site on which characterization had already been completed using a very similar approach; however, the site incorporated lessons learned, cost efficiencies, and significant improvements to the process. This paper focuses on those factors and the progress that has been made in cleaning up the sites. The application of a technically reasonable remediation method, as well as the cost factors that supported transport and disposal of the low-level waste in bulk are discussed

  11. Finding of No Significant Impact, proposed remediation of the Maybell Uranium Mill Processing Site, Maybell, Colorado

    International Nuclear Information System (INIS)

    1995-01-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0347) on the proposed surface remediation of the Maybell uranium mill processing site in Moffat County, Colorado. The mill site contains radioactively contaminated materials from processing uranium ore that would be stabilized in place at the existing tailings pile location. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, Public Law 91-190 (42 U.S.C. section 4321 et seq.), as amended. Therefore, preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI)

  12. Hydrogeological site investigation for the efficient remediation of uranium mining sites -- an integrated approach

    International Nuclear Information System (INIS)

    Biehler, D.; Jaquet, O.; Croise, J.; Lavanchy, J.-M.

    2002-01-01

    The currently practised remediation of former uranium mines in Eastern Germany involves the flooding of underground and open pit mines, and the stabilization of waste rock dumps and tailings ponds, e.g. by dewatering, covering, improving dams, cleaning effluents. This article presents examples demonstrating that the remediation concepts developed and implemented have failed their targets, resulting in uncontrolled flow behaviour and migration of contaminated water, leading to increased costs and additional threats to the environment. A generic series of steps for an improved remediation management with respect to financial efforts and environmental safety are proposed in terms of an integrated approach. (author)

  13. A possibilistic analysis approach for environmental risk assessment of petroleum-contaminated sites

    International Nuclear Information System (INIS)

    Liu, L.; Huang, G.H.; Fuller, G.A.

    1999-01-01

    A possibilistic approach for assessing risks associated with petroleum-contaminated sites is provided. The approach is applied to an illustrative case study in order to show its applicability and implementation for decision making in effective site remediation and management. The approach consists of three main parts: (1) the determination of fuzzy steady state contaminant concentrations in a aquifer based on an analytical solute transport model; (2) possibilistic analysis of fuzzy criteria for different risk levels; and (3) environmental risk assessment based on the Euclidian method. Based on results from an illustrative case study, environmental risks at a petroleum-contaminated site can be effectively evaluated using the developed methodology. The risk assessment framework can effectively handle uncertainities presented as fuzzy numbers. The fuzzy nature of water quality and risk level criteria were seen in the related simulation and evaluation models, and the framework is especially useful for situations in which probabilistic information is not available. This use of this approach is new in the area of petroleum waste management under uncertainty, and its results are useful for the related site remediation and management decisions. 36 refs., 1 tab., 4 figs

  14. 77 FR 74838 - Environmental Management Site-Specific Advisory Board, Northern New Mexico

    Science.gov (United States)

    2012-12-18

    ...This notice announces a combined meeting of the Environmental Monitoring, Surveillance and Remediation Committee and Waste Management Committee of the Environmental Management Site-Specific Advisory Board (EM SSAB), Northern New Mexico (known locally as the Northern New Mexico Citizens' Advisory Board [NNMCAB]). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  15. 78 FR 10612 - Environmental Management Site-Specific Advisory Board, Northern New Mexico

    Science.gov (United States)

    2013-02-14

    ...This notice announces a combined meeting of the Environmental Monitoring, Surveillance and Remediation Committee and Waste Management Committee of the Environmental Management Site-Specific Advisory Board (EM SSAB), Northern New Mexico (known locally as the Northern New Mexico Citizens' Advisory Board [NNMCAB]). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  16. 77 FR 64800 - Environmental Management Site-Specific Advisory Board, Northern New Mexico

    Science.gov (United States)

    2012-10-23

    ...This notice announces a combined meeting of the Environmental Monitoring, Surveillance and Remediation Committee and Waste Management Committee of the Environmental Management Site-Specific Advisory Board (EM SSAB), Northern New Mexico (known locally as the Northern New Mexico Citizens' Advisory Board [NNMCAB]). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  17. 78 FR 4140 - Environmental Management Site-Specific Advisory Board, Northern New Mexico

    Science.gov (United States)

    2013-01-18

    ...This notice announces a combined meeting of the Environmental Monitoring, Surveillance and Remediation Committee and Waste Management Committee of the Environmental Management Site-Specific Advisory Board (EM SSAB), Northern New Mexico (known locally as the Northern New Mexico Citizens' Advisory Board [NNMCAB]). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  18. Summary performance assessment of in situ remediation technologies demonstrated at Savannah River

    International Nuclear Information System (INIS)

    Rosenberg, N.D.; Robinson, B.A.; Birdsell, K.H.; Travis, B.J.

    1994-06-01

    The Office of Technology Development (OTD) in the Department of Energy's (DOE) Office of Environmental Restoration and Waste Management is investigating new technologies for ''better, faster, cheaper, safer'' environmental remediation. A program at DOE's Savannah River site was designed to demonstrate innovative technologies for the remediation of volatile organic compounds (VOCs) at nonarid sites. Two remediation technologies, in situ air stripping and in situ bioremediation--both using horizontal wells, were demonstrated at the site between 1990--1993. This brief report summarizes the conclusions from three separate modeling studies on the performance of these technologies

  19. Finding of no significant impact proposed remedial action at two uranium processing sites near Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0339) of the proposed remedial action at two uranium processing sites near Slick Rock in San Miguel County, Colorado. These sites contain radioactively contaminated materials that would be removed and stabilized at a remote location. Based on the information and analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321 et seq.), as amended. Therefore, preparation of an environmental impact statement is not required, and the DOE is issuing this Finding of No Significant Impact (ONSI)

  20. Lessons learned implementing environmental regulations at non-Department of Energy sites

    International Nuclear Information System (INIS)

    Craig, R.B.; Dippo, G.L.

    1991-01-01

    The Hazardous Waste Remedial Actions Program (HAZWRAP) has been involved in the implementation of environmental regulations at non-Department of Energy (DOE) facilities for > 5 years. If any common thread has been identified in working at these sites, it is that no two sites can be treated the same. Each site and its associated wastes, governing regulations, and environmental conditions are different. The list of technical lessons learned is long, and their applicability to other sites must be looked at for each specific case. That is far too large a task to undertake here. The most important lesson HAZWRAP learned is not technical. Implementing environmental regulations at non-DOE sites is not any different from implementing regulations or anything else done at DOE facilities. The key to success lies in quality, planning, and communication. Taking the time to implement a good quality program based on sound planning and open communication will ensure program success

  1. RFI to CMS: An Approach to Regulatory Acceptance of Site Remediation Technologies

    Science.gov (United States)

    Rowland, Martin A.

    2001-01-01

    Lockheed Martin made a smooth transition from RCRA Facility Investigation (RFI) at the National Aeronautics and Space Administrations'(NASA) Michoud Assembly Facility (MA-F) to its Corrective Measures Study (CMS) phase within the RCRA Corrective Action Process. We located trichloroethylene (TCE) contamination that resulted from the manufacture of the Apollo Program Saturn V rocket and the Space Shuttle External Tank, began the cleanup, and identified appropriate technologies for final remedies. This was accomplished by establishing a close working relationship with the state environmental regulatory agency through each step of the process, and resulted in receiving approvals for each of those steps. The agency has designated Lockheed Martin's management of the TCE-contamination at the MAF site as a model for other manufacturing sites in a similar situation. In February 1984, the Louisiana Department of Environmental Quality (LDEQ) issued a compliance order to begin the clean up of groundwater contaminated with TCE. In April 1984 Lockheed Martin began operating a groundwater recovery well to capture the TCE plume. The well not only removes contaminants, but also sustains an inward groundwater hydraulic gradient so that the potential offsite migration of the TCE plume is greatly diminished. This effort was successful, and for the agency to give orders and for a regulated industry to follow them is standard procedure, but this is a passive approach to solving environmental problems. The goal of the company thereafter was to take a leadership, proactive role and guide the MAF contamination clean up to its best conclusion at minimum time and lowest cost to NASA. To accomplish this goal, we have established a positive working relationship with LDEQ, involving them interactively in the implementation of advanced remedial activities at MAF as outlined in the following paragraphs.

  2. Strategic Considerations for the Sustainable Remediation of Nuclear Installations

    International Nuclear Information System (INIS)

    Miller, Susan; Wilson, Ian; Decung, Fabien; Ollivier Dehaye, Catherine; Pellenz, Gilles; Palut-Laurent, Odile; Nitzsche, Olaf; Rehs, Bernd; Altavilla, Massimo; Osimani, Celso; Florya, Sergey; Revilla, Jose-Luis; Efraimsson, Henrik; Baines, Kim; Clark, Anna; Cruickshank, Julian; Mitchell, Nick; Mobbs, Shelly; Orr, Peter; Abu-Eid, Rateb Boby; Durham, Lisa; Morse, John; Walker, Stuart; Weber, Inge; ); Monken-Fernandes, Horst; )

    2016-01-01

    Nuclear sites around the world are being decommissioned and remedial actions are being undertaken to enable sites, or parts of sites, to be reused. Although such activities are relatively straightforward for most sites, experience has suggested that preventative action is needed to minimise the impact of remediation activities on the environment and the potential burden to future generations. Removing all contamination in order to make a site suitable for any use generates waste and has associated environmental, social and economic drawbacks and benefits. Site remediation should thus be sustainable and result in an overall net benefit. This report draws on recent experience of NEA member countries in nuclear site remediation during decommissioning in order to identify strategic considerations for the sustainable remediation of subsurface contamination - predominantly contaminated soil and groundwater - to describe good practice, and to make recommendations for further research and development. It provides insights for the decision makers, regulators, implementers and stakeholders involved in nuclear site decommissioning so as to ensure the sustainable remediation of nuclear sites, now and in the future. (authors)

  3. Remediation of hazardous waste sites by heap leaching

    International Nuclear Information System (INIS)

    Samani, Z.; Hanson, A.; Dwyer, B.

    1994-01-01

    Efforts are being made to devise technologies and treatment systems to remediate contaminated soil-on site without generating significant wastes for off-site disposal. Heap leaching, a technique used extensively in the mining industry, has been investigated as a method for remediation of hazardous chemical contamination of the vadose zone. In the mining industry, metal-bearing ore is excavated and mounded on a pad. The metals are removed by passing a special leaching solution through the ore. In this study, the removal of chromium(VI) from the New Mexico soils (sand, sandy loam, and clay) using heap leaching was evaluated at a column scale. The heap leaching study demonstrated greater than 99% removal of Cr(VI) from all three soils using tap water as the leaching agent. (author) 13 figs., 5 tabs., 21 refs

  4. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  5. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

    International Nuclear Information System (INIS)

    2005-01-01

    The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) (section) 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments

  6. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  7. Site-wide remedial alternative development in Bear Creek Valley, Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Anderson, M.

    1995-07-01

    This paper presents a case study of an environmental restoration project at a major mixed waste site that poses unique challenges to remediation efforts. Bear Creek Valley is located immediately west of the Y-12 Plant on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The Y-12 Plant was built in 1943 as part of the Manhattan Project, with its original mission being electromagnetic separation of uranium. Since being completed, the Y-12 Plant has also been used for chemical processing of uranium and lithium compounds as well as precision fabrication of components containing these and other materials. Wastes containing radionuclides, metals, chlorinated solvents, oils, coolants, polychlorinated biphenyis (PCBs), and others were disposed of in large quantities at Bear Creek Valley as a result of manufacturing operations at the Y-12 Plant. The Bear Creek Valley feasibility study is using innovative strategies to efficiently and thoroughly consider the information available regarding Bear Creek Valley and process options that could be combined into its remedial alternatives

  8. Evolution of EPA/DOE technical cooperation in remediation of radiation/mixed waste contaminated sites

    International Nuclear Information System (INIS)

    Dyer, Robert S.; Garcia-Frias, Beverly; Wolbarst, Anthony B.; Coe, Larry J.

    1992-01-01

    The EPA Office of Radiation Programs (ORP) and the DOE Office of Environmental Restoration and Waste Management (EM) are cooperating in efforts related to restoration of radioactive and mixed waste sites. The impetus for these efforts derived from DOE's need to perform restoration activities according to CERCLA/RCRA requirements, and from ORP's role as a supplier of radiation expertise to federal agencies. These activities include: assessing remediation technology, developing radioanalytical protocols; matching cleanup technologies to soil characteristics; developing a process for the evaluation, selection, and appropriate use of groundwater models; reviewing incinerator practices; and addressing technical issues associated with the WIPP. Cooperative projects planned for the future include: evaluation of methodologies for streamlining the restoration process; assessment of the applicability of process knowledge for waste characterization; evaluation of recycling of radioactive metals; and expansion of selected environmental protection initiatives at the International Atomic Energy Agency (IAEA). Public acceptance is a crucial component of the remediation process. An underlying objective of these cooperative initiatives is to address issues of concern to the public in an open and honest fashion. (author)

  9. Environmental analysis of a formerly utilized MED/AEC site: Site A and plot M, Palos Forest Preserve, Palos Park, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    This environmental analysis report describes the existing site environment and evaluates the environmental impacts of 8 options for remedial action, including allowing buried waste to remain undisturbed. Conformity or conflict with governmental statutes, regulations and standards was determined, especially with regard to compliance with contamination criteria and guidelines. The program of measurements, documentation, and control to demonstrate compliance with these criteria and guidelines was identified.

  10. Environmental analysis of a formerly utilized MED/AEC site: Site A and plot M, Palos Forest Preserve, Palos Park, Illinois

    International Nuclear Information System (INIS)

    1979-09-01

    This environmental analysis report describes the existing site environment and evaluates the environmental impacts of 8 options for remedial action, including allowing buried waste to remain undisturbed. Conformity or conflict with governmental statutes, regulations and standards was determined, especially with regard to compliance with contamination criteria and guidelines. The program of measurements, documentation, and control to demonstrate compliance with these criteria and guidelines was identified

  11. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

  12. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    International Nuclear Information System (INIS)

    1999-01-01

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy's (DOE's) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites

  13. Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

    2006-08-07

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

  14. Ames Laboratory Site Environmental Report, Calendar year 1991

    International Nuclear Information System (INIS)

    Mathison, L.

    1991-01-01

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. This program is a working requirement of Department of Energy (DOE) Order 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements'' and Order 5400.1, ''General Environmental Protection Program.'' Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies several buildings owned by the DOE. The Laboratory also leases space in ISU-owned buildings. Laboratory research activities involve less than ten percent of the total chemical use and one percent of the radioisotope use on the ISU campus. Ames Laboratory is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells and upstream and downstream sites on the nearby Squaw Creek show no detectable migration of the contents of the burial site. A Site Assessment plan submitted to the State of Iowa Department of Natural Resources (DNR) was approved. A Remedial Investigation/Feasibility Study work plan has been completed for additional studies at the site. This has been reviewed and approved by the DOE Chicago Field Office and the DNR. A National Environmental Policy Act (NEPA) review of the site resulted in a categorical exclusion finding which has been approved by the DOE. Ames Laboratory has an area contaminated by diesel fuel at the location of a storage tank which was removed in 1970. Soil corings and groundwater have been analyzed for contamination and an assessment written. Pollution awareness and waste minimization programs and plans were implemented in 1990. Included in this effort was the implementation of a waste white paper and green computer paper recycling program

  15. Colonie Interim Storage Site environmental report for calendar year 1992, 1130 Central Avenue, Colonie, New York

    International Nuclear Information System (INIS)

    1993-05-01

    This report describes the environmental surveillance program at the Colonie Interim Storage Site (CISS) and provides the results for 1992. The site is located in eastern New York State, approximately 6.4 km (4.0 mi) northwest of downtown Albany. From 1958 to 1984, National Lead (NL) Industries used the facility to manufacture various components from depleted and enriched uranium natural thorium. Environmental monitoring of CISS began in 1984 when Congress added, the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental surveillance program at CISS includes sampling networks for external gamma radiation exposure and for thorium-232 and total uranium concentrations in surface water, sediment, and groundwater. Several chemical parameters are also measured in groundwater, including total metals, volatile organics, and water quality parameters. This surveillance program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results are compared with applicable Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements

  16. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Rifle, Colorado

    International Nuclear Information System (INIS)

    1990-02-01

    This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Rifle sites. That remedial action consists of removing approximately 4,185,000 cubic yards (cy) of tailings and contaminated materials from their current locations, transporting, and stabilizing the tailings material at the Estes Gulch disposal site, approximately six miles north of Rifle. The tailings and contaminated materials are comprised of approximately 597,000 cy from Old Rifle, 3,232,000 cy from New Rifle, and 322,000 cy from vicinity properties and about 34,000 cy from demolition. The remedial action plan includes specific design requirements for the detailed design and construction of the remedial action. An extensive amount of data and supporting information have been generated for this remedial action and cannot all be incorporated into this document. Pertinent information and data are included with reference given to the supporting documents

  17. Remedial action at the Acid/Pueblo Canyon site, Los Alamos, New Mexico. Final report

    International Nuclear Information System (INIS)

    1984-10-01

    The Acid/Pueblo Canyon site (TA-45) was designated in 1976 for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). During the period 1943 to 1964 untreated and treated liquid wastes generated by nuclear weapons research activities at the Los Alamos Scientific Laboratory (LASL) were discharged into the two canyons. A survey of the site conducted by LASL in 1976 to 1977 identified two areas where radiological contamination exceeded criteria levels. The selected remedial action was based on extensive radiological characterization and comprehensive engineering assessments and comprised the excavation and disposal of 390 yd 3 of contaminated soil and rock. This document describes the background to the remedial action, the parties involved in administering and executing it, the chronology of the work, verification of the adequacy of the remedial action, and the cost incurred. 14 references, 5 figures, 5 tables

  18. Radiological guidelines for application to DOE's Formerly Utilized Sites Remedial Action Program. [FUSRAP sites

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    The US Department of Energy has implemented a program to evaluate and, where necessary, take action to protect the public from contamination at sites that were used in the past to process and/or store radioactive materials for the former US Army Corps of Engineers Manhattan Engineer District or the US Atomic Energy Commission. The program is identified as the Formerly Utilized Sites Remedial Action Program (FUSRAP). This document describes methods considered appropriate for the evaluation of health effects that might possible be caused by radioactive contamination at FUSRAP sites. This assessment methodology is applied to a typical site for the purposeof deriving guidelines for the cleanup of contaminated soil. Additional guidance is provided for planning site-specific remedial action that is consistent with the overall objectives of FUSRAP.

  19. Colonie Interim Storage Site: Annual environmental report for calendar year 1990, Colonie, New York

    International Nuclear Information System (INIS)

    1991-09-01

    Environmental monitoring of the US Department of Energy's (DOE) Colonie Interim Storage Site (CISS) and surrounding area began in 1984. CISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sties where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The routine environmental monitoring program at CISS includes sampling networks for external gamma radiation exposures and for radium-226, throium-232, an total uranium concentrations in surface water, sediment, and groundwater. Additionally, the nonradiological parameters volatile and semivolatile organics, pesticides/polychlorinated biphenyls (PCBs), metals, total organic carbon (TOC), total organic halides (TOX), specific conductivity, and pH are measured in groundwater. 14 refs., 20 figs., 25 tabs

  20. Annual Site Environmental Report: 2009(ASER)

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-01

    needed for its mission: returned 28 sealed sources to the manufacturer, transferred additional 3 sources to Los Alamos National Laboratory, and disposed of 636 kilograms of depleted uranium tiles. In 2009, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region on October 19, 2009, for the investigation and remediation of impacted soil and groundwater at SLAC. Risk-based preliminary cleanup goals for impacted soil and groundwater have been established for SLAC, and the remedial efforts are being designed to meet these established goals.