WorldWideScience

Sample records for environmental genomic fragments

  1. Unsupervised binning of environmental genomic fragments based on an error robust selection of l-mers.

    Science.gov (United States)

    Yang, Bin; Peng, Yu; Leung, Henry Chi-Ming; Yiu, Siu-Ming; Chen, Jing-Chi; Chin, Francis Yuk-Lun

    2010-04-16

    With the rapid development of genome sequencing techniques, traditional research methods based on the isolation and cultivation of microorganisms are being gradually replaced by metagenomics, which is also known as environmental genomics. The first step, which is still a major bottleneck, of metagenomics is the taxonomic characterization of DNA fragments (reads) resulting from sequencing a sample of mixed species. This step is usually referred as "binning". Existing binning methods are based on supervised or semi-supervised approaches which rely heavily on reference genomes of known microorganisms and phylogenetic marker genes. Due to the limited availability of reference genomes and the bias and instability of marker genes, existing binning methods may not be applicable in many cases. In this paper, we present an unsupervised binning method based on the distribution of a carefully selected set of l-mers (substrings of length l in DNA fragments). From our experiments, we show that our method can accurately bin DNA fragments with various lengths and relative species abundance ratios without using any reference and training datasets. Another feature of our method is its error robustness. The binning accuracy decreases by less than 1% when the sequencing error rate increases from 0% to 5%. Note that the typical sequencing error rate of existing commercial sequencing platforms is less than 2%. We provide a new and effective tool to solve the metagenome binning problem without using any reference datasets or markers information of any known reference genomes (species). The source code of our software tool, the reference genomes of the species for generating the test datasets and the corresponding test datasets are available at http://i.cs.hku.hk/~alse/MetaCluster/.

  2. Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea

    DEFF Research Database (Denmark)

    Treusch, Alexander H; Kletzin, Arnulf; Raddatz, Guenter

    2004-01-01

    Complex genomic libraries are increasingly being used to retrieve complete genes, operons or large genomic fragments directly from environmental samples, without the need to cultivate the respective microorganisms. We report on the construction of three large-insert fosmid libraries in total...... (approximately 1% each) have been captured in our libraries. The diversity of putative protein-encoding genes, as reflected by their distribution into different COG clusters, was comparable to that encoded in complete genomes of cultivated microorganisms. A huge variety of genomic fragments has been captured...

  3. An Efficient Genome Fragment Assembling Using GA with Neighborhood Aware Fitness Function

    Directory of Open Access Journals (Sweden)

    Satoko Kikuchi

    2012-01-01

    Full Text Available To decode a long genome sequence, shotgun sequencing is the state-of-the-art technique. It needs to properly sequence a very large number, sometimes as large as millions, of short partially readable strings (fragments. Arranging those fragments in correct sequence is known as fragment assembling, which is an NP-problem. Presently used methods require enormous computational cost. In this work, we have shown how our modified genetic algorithm (GA could solve this problem efficiently. In the proposed GA, the length of the chromosome, which represents the volume of the search space, is reduced with advancing generations, and thereby improves search efficiency. We also introduced a greedy mutation, by swapping nearby fragments using some heuristics, to improve the fitness of chromosomes. We compared results with Parsons’ algorithm which is based on GA too. We used fragments with partial reads on both sides, mimicking fragments in real genome assembling process. In Parsons’ work base-pair array of the whole fragment is known. Even then, we could obtain much better results, and we succeeded in restructuring contigs covering 100% of the genome sequences.

  4. Mind the gap; seven reasons to close fragmented genome assemblies.

    Science.gov (United States)

    Thomma, Bart P H J; Seidl, Michael F; Shi-Kunne, Xiaoqian; Cook, David E; Bolton, Melvin D; van Kan, Jan A L; Faino, Luigi

    2016-05-01

    Like other domains of life, research into the biology of filamentous microbes has greatly benefited from the advent of whole-genome sequencing. Next-generation sequencing (NGS) technologies have revolutionized sequencing, making genomic sciences accessible to many academic laboratories including those that study non-model organisms. Thus, hundreds of fungal genomes have been sequenced and are publically available today, although these initiatives have typically yielded considerably fragmented genome assemblies that often lack large contiguous genomic regions. Many important genomic features are contained in intergenic DNA that is often missing in current genome assemblies, and recent studies underscore the significance of non-coding regions and repetitive elements for the life style, adaptability and evolution of many organisms. The study of particular types of genetic elements, such as telomeres, centromeres, repetitive elements, effectors, and clusters of co-regulated genes, but also of phenomena such as structural rearrangements, genome compartmentalization and epigenetics, greatly benefits from having a contiguous and high-quality, preferably even complete and gapless, genome assembly. Here we discuss a number of important reasons to produce gapless, finished, genome assemblies to help answer important biological questions. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Metagenome Fragment Classification Using -Mer Frequency Profiles

    Directory of Open Access Journals (Sweden)

    Gail Rosen

    2008-01-01

    Full Text Available A vast amount of microbial sequencing data is being generated through large-scale projects in ecology, agriculture, and human health. Efficient high-throughput methods are needed to analyze the mass amounts of metagenomic data, all DNA present in an environmental sample. A major obstacle in metagenomics is the inability to obtain accuracy using technology that yields short reads. We construct the unique -mer frequency profiles of 635 microbial genomes publicly available as of February 2008. These profiles are used to train a naive Bayes classifier (NBC that can be used to identify the genome of any fragment. We show that our method is comparable to BLAST for small 25 bp fragments but does not have the ambiguity of BLAST's tied top scores. We demonstrate that this approach is scalable to identify any fragment from hundreds of genomes. It also performs quite well at the strain, species, and genera levels and achieves strain resolution despite classifying ubiquitous genomic fragments (gene and nongene regions. Cross-validation analysis demonstrates that species-accuracy achieves 90% for highly-represented species containing an average of 8 strains. We demonstrate that such a tool can be used on the Sargasso Sea dataset, and our analysis shows that NBC can be further enhanced.

  6. Physical mapping of 20 unmapped fragments of the btau_4.0 genome assembly in cattle, sheep and river buffalo.

    Science.gov (United States)

    De Lorenzi, L; Genualdo, V; Perucatti, A; Iannuzzi, A; Iannuzzi, L; Parma, P

    2013-01-01

    The recent advances in sequencing technology and bioinformatics have revolutionized genomic research, making the decoding of the genome an easier task. Genome sequences are currently available for many species, including cattle, sheep and river buffalo. The available reference genomes are very accurate, and they represent the best possible order of loci at this time. In cattle, despite the great accuracy achieved, a part of the genome has been sequenced but not yet assembled: these genome fragments are called unmapped fragments. In the present study, 20 unmapped fragments belonging to the Btau_4.0 reference genome have been mapped by FISH in cattle (Bos taurus, 2n = 60), sheep (Ovis aries, 2n = 54) and river buffalo (Bubalus bubalis, 2n = 50). Our results confirm the accuracy of the available reference genome, though there are some discrepancies between the expected localization and the observed localization. Moreover, the available data in the literature regarding genomic homologies between cattle, sheep and river buffalo are confirmed. Finally, the results presented here suggest that FISH was, and still is, a useful technology to validate the data produced by genome sequencing programs. Copyright © 2013 S. Karger AG, Basel.

  7. Genomic Relatedness of Chlamydia Isolates Determined by Amplified Fragment Length Polymorphism Analysis

    OpenAIRE

    Meijer, Adam; Morré, Servaas A.; Van Den Brule, Adriaan J. C.; Savelkoul, Paul H. M.; Ossewaarde, Jacobus M.

    1999-01-01

    The genomic relatedness of 19 Chlamydia pneumoniae isolates (17 from respiratory origin and 2 from atherosclerotic origin), 21 Chlamydia trachomatis isolates (all serovars from the human biovar, an isolate from the mouse biovar, and a porcine isolate), 6 Chlamydia psittaci isolates (5 avian isolates and 1 feline isolate), and 1 Chlamydia pecorum isolate was studied by analyzing genomic amplified fragment length polymorphism (AFLP) fingerprints. The AFLP procedure was adapted from a previously...

  8. Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae).

    Science.gov (United States)

    Kolano, Bozena; Bednara, Edyta; Weiss-Schneeweiss, Hanna

    2013-10-01

    High heterogeneity was observed among conserved domains of reverse transcriptase ( rt ) isolated from quinoa. Only one Ty1- copia rt was highly amplified. Reverse transcriptase sequences were located predominantly in pericentromeric region of quinoa chromosomes. The heterogeneity, genomic abundance, and chromosomal distribution of reverse transcriptase (rt)-coding fragments of Ty1-copia and Ty3-gypsy long terminal repeat retrotransposons were analyzed in the Chenopodium quinoa genome. Conserved domains of the rt gene were amplified and characterized using degenerate oligonucleotide primer pairs. Sequence analyses indicated that half of Ty1-copia rt (51 %) and 39 % of Ty3-gypsy rt fragments contained intact reading frames. High heterogeneity among rt sequences was observed for both Ty1-copia and Ty3-gypsy rt amplicons, with Ty1-copia more heterogeneous than Ty3-gypsy. Most of the isolated rt fragments were present in quinoa genome in low copy numbers, with only one highly amplified Ty1-copia rt sequence family. The gypsy-like RNase H fragments co-amplified with Ty1-copia-degenerate primers were shown to be highly amplified in the quinoa genome indicating either higher abundance of some gypsy families of which rt domains could not be amplified, or independent evolution of this gypsy-region in quinoa. Both Ty1-copia and Ty3-gypsy retrotransposons were preferentially located in pericentromeric heterochromatin of quinoa chromosomes. Phylogenetic analyses of newly amplified rt fragments together with well-characterized retrotransposon families from other organisms allowed identification of major lineages of retroelements in the genome of quinoa and provided preliminary insight into their evolutionary dynamics.

  9. Molecular and FISH analyses of a 53-kbp intact DNA fragment inserted by biolistics in wheat (Triticum aestivum L.) genome.

    Science.gov (United States)

    Partier, A; Gay, G; Tassy, C; Beckert, M; Feuillet, C; Barret, P

    2017-10-01

    A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.

  10. Non PCR-amplified Transcripts and AFLP fragments as reduced representations of the quail genome for 454 Titanium sequencing

    Directory of Open Access Journals (Sweden)

    Leterrier Christine

    2010-07-01

    Full Text Available Abstract Background SNP (Single Nucleotide Polymorphism discovery is now routinely performed using high-throughput sequencing of reduced representation libraries. Our objective was to adapt 454 GS FLX based sequencing methodologies in order to obtain the largest possible dataset from two reduced representations libraries, produced by AFLP (Amplified Fragment Length Polymorphism for genomic DNA, and EST (Expressed Sequence Tag for the transcribed fraction of the genome. Findings The expressed fraction was obtained by preparing cDNA libraries without PCR amplification from quail embryo and brain. To optimize the information content for SNP analyses, libraries were prepared from individuals selected in three quail lines and each individual in the AFLP library was tagged. Sequencing runs produced 399,189 sequence reads from cDNA and 373,484 from genomic fragments, covering close to 250 Mb of sequence in total. Conclusions Both methods used to obtain reduced representations for high-throughput sequencing were successful after several improvements. The protocols may be used for several sequencing applications, such as de novo sequencing, tagged PCR fragments or long fragment sequencing of cDNA.

  11. Endogenous hepatitis C virus homolog fragments in European rabbit and hare genomes replicate in cell culture.

    Directory of Open Access Journals (Sweden)

    Eliane Silva

    Full Text Available Endogenous retroviruses, non-retroviral RNA viruses and DNA viruses have been found in the mammalian genomes. The origin of Hepatitis C virus (HCV, the major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans, remains unclear since its discovery. Here we show that fragments homologous to HCV structural and non-structural (NS proteins present in the European rabbit (Oryctolagus cuniculus and hare (Lepus europaeus genomes replicate in bovine cell cultures. The HCV genomic homolog fragments were demonstrated by RT-PCR, PCR, mass spectrometry, and replication in bovine cell cultures by immunofluorescence assay (IFA and immunogold electron microscopy (IEM using specific MAbs for HCV NS3, NS4A, and NS5 proteins. These findings may lead to novel research approaches on the HCV origin, genesis, evolution and diversity.

  12. Nuclear targeting by fragmentation of the Potato spindle tuber viroid genome

    International Nuclear Information System (INIS)

    Abraitiene, Asta; Zhao Yan; Hammond, Rosemarie

    2008-01-01

    Transient expression of engineered reporter RNAs encoding an intron-containing green fluorescent protein (GFP) from a Potato virus X-based expression vector previously demonstrated the nuclear targeting capability of the 359 nucleotide Potato spindle tuber viroid (PSTVd) RNA genome. To further delimit the putative nuclear-targeting signal, PSTVd subgenomic fragments were embedded within the intron, and recombinant reporter RNAs were inoculated onto Nicotiana benthamiana plants. Appearance of green fluorescence in leaf tissue inoculated with PSTVd-fragment-containing constructs indicated shuttling of the RNA into the nucleus by fragments as short as 80 nucleotides in length. Plant-to-plant variation in the timing of intron removal and subsequent GFP fluorescence was observed; however, earliest and most abundant GFP expression was obtained with constructs containing the conserved hairpin I palindrome structure and embedded upper central conserved region. Our results suggest that this conserved sequence and/or the stem-loop structure it forms is sufficient for import of PSTVd into the nucleus

  13. Genome-wide macrosynteny among Fusarium species in the Gibberella fujikuroi complex revealed by amplified fragment length polymorphisms.

    Directory of Open Access Journals (Sweden)

    Lieschen De Vos

    Full Text Available The Gibberella fujikuroi complex includes many Fusarium species that cause significant losses in yield and quality of agricultural and forestry crops. Due to their economic importance, whole-genome sequence information has rapidly become available for species including Fusarium circinatum, Fusarium fujikuroi and Fusarium verticillioides, each of which represent one of the three main clades known in this complex. However, no previous studies have explored the genomic commonalities and differences among these fungi. In this study, a previously completed genetic linkage map for an interspecific cross between Fusarium temperatum and F. circinatum, together with genomic sequence data, was utilized to consider the level of synteny between the three Fusarium genomes. Regions that are homologous amongst the Fusarium genomes examined were identified using in silico and pyrosequenced amplified fragment length polymorphism (AFLP fragment analyses. Homology was determined using BLAST analysis of the sequences, with 777 homologous regions aligned to F. fujikuroi and F. verticillioides. This also made it possible to assign the linkage groups from the interspecific cross to their corresponding chromosomes in F. verticillioides and F. fujikuroi, as well as to assign two previously unmapped supercontigs of F. verticillioides to probable chromosomal locations. We further found evidence of a reciprocal translocation between the distal ends of chromosome 8 and 11, which apparently originated before the divergence of F. circinatum and F. temperatum. Overall, a remarkable level of macrosynteny was observed among the three Fusarium genomes, when comparing AFLP fragments. This study not only demonstrates how in silico AFLPs can aid in the integration of a genetic linkage map to the physical genome, but it also highlights the benefits of using this tool to study genomic synteny and architecture.

  14. Distant homology between yeast photoreactivating gene fragment and human genomic digests

    International Nuclear Information System (INIS)

    Meechan, P.J.; Milam, K.M.; Cleaver, J.E.

    1985-01-01

    Hybridization of DNA coding for the yeast DNA photolyase to human genomic DNA appears to allow one to determine whether a conserved enzyme is coded for in human cells. Under stringent conditions (68 0 C), hybridization is not found between the cloned yeast fragment (YEp13-phr1) and human or chick genomic digests. At less stringent conditions (60 0 C), hybridization is observed with chick digests, indicating evolutionary divergence even among organisms capable of photo-reactivation. At 50 0 C, weak hybridization with human digests was observed, indicating further divergence from the cloned gene. Data concerning the precise extent of homology and methods to clone the chick gene for use as another probe are discussed

  15. Restriction site extension PCR: a novel method for high-throughput characterization of tagged DNA fragments and genome walking.

    Directory of Open Access Journals (Sweden)

    Jiabing Ji

    Full Text Available BACKGROUND: Insertion mutant isolation and characterization are extremely valuable for linking genes to physiological function. Once an insertion mutant phenotype is identified, the challenge is to isolate the responsible gene. Multiple strategies have been employed to isolate unknown genomic DNA that flanks mutagenic insertions, however, all these methods suffer from limitations due to inefficient ligation steps, inclusion of restriction sites within the target DNA, and non-specific product generation. These limitations become close to insurmountable when the goal is to identify insertion sites in a high throughput manner. METHODOLOGY/PRINCIPAL FINDINGS: We designed a novel strategy called Restriction Site Extension PCR (RSE-PCR to efficiently conduct large-scale isolation of unknown genomic DNA fragments linked to DNA insertions. The strategy is a modified adaptor-mediated PCR without ligation. An adapter, with complementarity to the 3' overhang of the endonuclease (KpnI, NsiI, PstI, or SacI restricted DNA fragments, extends the 3' end of the DNA fragments in the first cycle of the primary RSE-PCR. During subsequent PCR cycles and a second semi-nested PCR (secondary RSE-PCR, touchdown and two-step PCR are combined to increase the amplification specificity of target fragments. The efficiency and specificity was demonstrated in our characterization of 37 tex mutants of Arabidopsis. All the steps of RSE-PCR can be executed in a 96 well PCR plate. Finally, RSE-PCR serves as a successful alternative to Genome Walker as demonstrated by gene isolation from maize, a plant with a more complex genome than Arabidopsis. CONCLUSIONS/SIGNIFICANCE: RSE-PCR has high potential application in identifying tagged (T-DNA or transposon sequence or walking from known DNA toward unknown regions in large-genome plants, with likely application in other organisms as well.

  16. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation

    Directory of Open Access Journals (Sweden)

    Takashi Kubota

    2015-08-01

    Full Text Available The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC unloads PCNA genome-wide following Okazaki fragment ligation. In the absence of Elg1, PCNA is retained on chromosomes in the wake of replication forks, rather than at specific sites. Degradation of the Okazaki fragment ligase Cdc9 leads to PCNA accumulation on chromatin, similar to the accumulation caused by lack of Elg1. We demonstrate that Okazaki fragment ligation is the critical prerequisite for PCNA unloading, since Chlorella virus DNA ligase can substitute for Cdc9 in yeast and simultaneously promotes PCNA unloading. Our results suggest that Elg1-RLC acts as a general PCNA unloader and is dependent upon DNA ligation during chromosome replication.

  17. Environmental Medicine Genome Bank (EMGB): Current Composition

    National Research Council Canada - National Science Library

    Sonna, Larry

    2000-01-01

    The USARIEM Environmental Medicine Genome Bank (EMGB) project is an ongoing effort to identify and characterize genes relevant to environmental injuries and illnesses and to human physical performance...

  18. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts.

    Science.gov (United States)

    Wei, Guifang; Pan, Li; Du, Huimin; Chen, Junyi; Zhao, Liping

    2004-10-01

    Bacterial populations common to healthy human guts may play important roles in human health. A new strategy for discovering genomic sequences as markers for these bacteria was developed using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR fingerprinting. Structural features within microbial communities are compared with ERIC-PCR followed by DNA hybridization to identify genomic fragments shared by samples from healthy human individuals. ERIC-PCR profiles of fecal samples from 12 diseased or healthy human and piglet subjects demonstrated stable, unique banding patterns for each individual tested. Sequence homology of DNA fragments in bands of identical size was examined between samples by hybridization under high stringency conditions with DIG-labeled ERIC-PCR products derived from the fecal sample of one healthy child. Comparative analysis of the hybridization profiles with the original agarose fingerprints identified three predominant bands as signatures for populations associated with healthy human guts with sizes of 500, 800 and 1000 bp. Clone library profiling of the three bands produced 17 genome fragments, three of which showed high similarity only with regions of the Bacteroides thetaiotaomicron genome, while the remainder were orphan sequences. Association of these sequences with healthy guts was validated by sequence-selective PCR experiments, which showed that a single fragment was present in all 32 healthy humans and 13 healthy piglets tested. Two fragments were present in the healthy human group and in 18 children with non-infectious diarrhea but not in eight children with infectious diarrhea. Genome fragments identified with this novel strategy may be used as genome-specific markers for dynamic monitoring and sequence-guided isolation of functionally important bacterial populations in complex communities such as human gut microflora.

  19. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes.

    Science.gov (United States)

    Ranade, Sonali Sachin; García-Gil, María Rosario; Rosselló, Josep A

    2016-04-01

    Many genes have been lost from the prokaryote plastidial genome during the early events of endosymbiosis in eukaryotes. Some of them were definitively lost, but others were relocated and functionally integrated to the host nuclear genomes through serial events of gene transfer during plant evolution. In gymnosperms, plastid genome sequencing has revealed the loss of ndh genes from several species of Gnetales and Pinaceae, including Norway spruce (Picea abies). This study aims to trace the ndh genes in the nuclear and organellar Norway spruce genomes. The plastid genomes of higher plants contain 11 ndh genes which are homologues of mitochondrial genes encoding subunits of the proton-pumping NADH-dehydrogenase (nicotinamide adenine dinucleotide dehydrogenase) or complex I (electron transport chain). Ndh genes encode 11 NDH polypeptides forming the Ndh complex (analogous to complex I) which seems to be primarily involved in chloro-respiration processes. We considered ndh genes from the plastidial genome of four gymnosperms (Cryptomeria japonica, Cycas revoluta, Ginkgo biloba, Podocarpus totara) and a single angiosperm species (Arabidopsis thaliana) to trace putative homologs in the nuclear and organellar Norway spruce genomes using tBLASTn to assess the evolutionary fate of ndh genes in Norway spruce and to address their genomic location(s), structure, integrity and functionality. The results obtained from tBLASTn were subsequently analyzed by performing homology search for finding ndh specific conserved domains using conserved domain search. We report the presence of non-functional plastid ndh gene fragments, excepting ndhE and ndhG genes, in the nuclear genome of Norway spruce. Regulatory transcriptional elements like promoters, TATA boxes and enhancers were detected in the upstream regions of some ndh fragments. We also found transposable elements in the flanking regions of few ndh fragments suggesting nuclear rearrangements in those regions. These evidences

  20. [Genomics basis of Arthrobacter spp. environmental adaptability– A review].

    Science.gov (United States)

    Zhang, Xinjian; Zhang, Guangzhi; Yang, Hetong

    2016-04-04

    Arthrobacter species are found ecologically diverse and can survive in various environments. Many strains of these species have metabolic versatility and can degrade many environmental pollutants. Arthrobacter species are thought to play important roles in catabolism of environmental pollutants in nature. In recent years, the genomes of many Arthrobacter strains have been sequenced, which provides comprehensive information to clarify the molecular mechanisms related to environmental adaptability of Arthrobacter species. These genomics findings revealed several features that are commonly observed in Arthrobacter strains allowing for survival under stressful conditions. These include an array of genes associated with sigma factors and responses to oxidative, osmotic, starvation and temperature stresses. The genomics basis of their environmental adaptability are reviewed, which is expected to provide useful information for applying Arthrobacter strains in pollution remediation and shed some light on other bacterial environmental adaptability researches.

  1. Generalizing genetical genomics: getting added value from environmental perturbation.

    Science.gov (United States)

    Li, Yang; Breitling, Rainer; Jansen, Ritsert C

    2008-10-01

    Genetical genomics is a useful approach for studying the effect of genetic perturbations on biological systems at the molecular level. However, molecular networks depend on the environmental conditions and, thus, a comprehensive understanding of biological systems requires studying them across multiple environments. We propose a generalization of genetical genomics, which combines genetic and sensibly chosen environmental perturbations, to study the plasticity of molecular networks. This strategy forms a crucial step toward understanding why individuals respond differently to drugs, toxins, pathogens, nutrients and other environmental influences. Here we outline a strategy for selecting and allocating individuals to particular treatments, and we discuss the promises and pitfalls of the generalized genetical genomics approach.

  2. Getting complete genomes from complex samples using nanopore sequencing

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; Karst, Søren Michael; Albertsen, Mads

    Background Short read DNA sequencing and metagenomic binning workflows have made it possible to extract bacterial genome bins from environmental microbial samples containing hundreds to thousands of different species. However, these genome bins often do not represent complete genomes......, as they are mostly fragmented, incomplete and often contaminated with foreign DNA. The value of these `draft genomes` have limited, lasting value to the scientific community, as gene synteny is broken and there is some uncertainty of what is missing1. The genetic material most often missed is important multi......-copy and/or conserved marker genes such as the 16S rRNA gene, as sequence micro-heterogeneity prevents assembly of these genes in the de novo assembly. However, long read sequencing technologies are emerging promising an end to fragmented genome assemblies2. Experimental design We extracted DNA from a full...

  3. A multi-scale metrics approach to forest fragmentation for Strategic Environmental Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunyoung, E-mail: eykim@kei.re.kr [Korea Environment Institute, 215 Jinheungno, Eunpyeong-gu, Seoul 122-706 (Korea, Republic of); Song, Wonkyong, E-mail: wksong79@gmail.com [Suwon Research Institute, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of); Lee, Dongkun, E-mail: dklee7@snu.ac.kr [Department of Landscape Architecture and Rural System Engineering, Seoul National University, 599 Gwanakro, Gwanak-gu, Seoul 151-921 (Korea, Republic of); Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)

    2013-09-15

    Forests are becoming severely fragmented as a result of land development. South Korea has responded to changing community concerns about environmental issues. The nation has developed and is extending a broad range of tools for use in environmental management. Although legally mandated environmental compliance requirements in South Korea have been implemented to predict and evaluate the impacts of land-development projects, these legal instruments are often insufficient to assess the subsequent impact of development on the surrounding forests. It is especially difficult to examine impacts on multiple (e.g., regional and local) scales in detail. Forest configuration and size, including forest fragmentation by land development, are considered on a regional scale. Moreover, forest structure and composition, including biodiversity, are considered on a local scale in the Environmental Impact Assessment process. Recently, the government amended the Environmental Impact Assessment Act, including the SEA, EIA, and small-scale EIA, to require an integrated approach. Therefore, the purpose of this study was to establish an impact assessment system that minimizes the impacts of land development using an approach that is integrated across multiple scales. This study focused on forest fragmentation due to residential development and road construction sites in selected Congestion Restraint Zones (CRZs) in the Greater Seoul Area of South Korea. Based on a review of multiple-scale impacts, this paper integrates models that assess the impacts of land development on forest ecosystems. The applicability of the integrated model for assessing impacts on forest ecosystems through the SEIA process is considered. On a regional scale, it is possible to evaluate the location and size of a land-development project by considering aspects of forest fragmentation, such as the stability of the forest structure and the degree of fragmentation. On a local scale, land-development projects should

  4. High-resolution genomic fingerprinting of Campylobacter jejuni and Campylobacter coli by analysis of amplified fragment length polymorphisms

    DEFF Research Database (Denmark)

    Kokotovic, Branko; On, Stephen L.W.

    1999-01-01

    A method for high-resolution genomic fingerprinting of the enteric pathogens Campylobacter jejuni and Campylobacter coli, based on the determination of amplified fragment length polymorphism, is described. The potential of this method for molecular epidemiological studies of these species...... is evaluated with 50 type, reference, and well-characterised field strains. Amplified fragment length polymorphism fingerprints comprised over 60 bands detected in the size range 35-500 bp. Groups of outbreak strains, replicate subcultures, and 'genetically identical' strains from humans, poultry and cattle......, proved indistinguishable by amplified fragment length polymorphism fingerprinting, but were differentiated fi-om unrelated isolates. Previously unknown relationships between three hippurate-negative C. jejuni strains, and two C. coil var, hyoilei strains, were identified. These relationships corresponded...

  5. Genomic diversity among Danish field strains of Mycoplasma hyosynoviae assessed by amplified fragment length polymorphism analysis

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Friis, Niels F.; Nielsen, Elisabeth O.

    2002-01-01

    Genomic diversity among strains of Mycoplasma hyosynoviae isolated in Denmark was assessed by using amplified fragment length polymorphism (AFLP) analysis. Ninety-six strains, obtained from different specimens and geographical locations during 30 years and the type strain of M. hyosynoviae S16(T......) were concurrently examined for variance in BglII-MfeI and EcoRI-Csp6I-A AFLP markers. A total of 56 different genomic fingerprints having an overall similarity between 77 and 96% were detected. No correlation between AFLP variability and period of isolation or anatomical site of isolation could...

  6. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    Science.gov (United States)

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  7. Modeling the integration of bacterial rRNA fragments into the human cancer genome.

    Science.gov (United States)

    Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C

    2016-03-21

    Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

  8. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments.

    Science.gov (United States)

    Nunoura, Takuro; Hirayama, Hisako; Takami, Hideto; Oida, Hanako; Nishi, Shinro; Shimamura, Shigeru; Suzuki, Yohey; Inagaki, Fumio; Takai, Ken; Nealson, Kenneth H; Horikoshi, Koki

    2005-12-01

    Within a phylum Crenarchaeota, only some members of the hyperthermophilic class Thermoprotei, have been cultivated and characterized. In this study, we have constructed a metagenomic library from a microbial mat formation in a subsurface hot water stream of the Hishikari gold mine, Japan, and sequenced genome fragments of two different phylogroups of uncultivated thermophilic Crenarchaeota: (i) hot water crenarchaeotic group (HWCG) I (41.2 kb), and (ii) HWCG III (49.3 kb). The genome fragment of HWCG I contained a 16S rRNA gene, two tRNA genes and 35 genes encoding proteins but no 23S rRNA gene. Among the genes encoding proteins, several genes for putative aerobic-type carbon monoxide dehydrogenase represented a potential clue with regard to the yet unknown metabolism of HWCG I Archaea. The genome fragment of HWCG III contained a 16S/23S rRNA operon and 44 genes encoding proteins. In the 23S rRNA gene, we detected a homing-endonuclease encoding a group I intron similar to those detected in hyperthermophilic Crenarchaeota and Bacteria, as well as eukaryotic organelles. The reconstructed phylogenetic tree based on the 23S rRNA gene sequence reinforced the intermediate phylogenetic affiliation of HWCG III bridging the hyperthermophilic and non-thermophilic uncultivated Crenarchaeota.

  9. A genomic point-of-view on environmental factors influencing the human brain methylome.

    Science.gov (United States)

    LaSalle, Janine M

    2011-07-01

    The etiologic paradigm of complex human disorders such as autism is that genetic and environmental risk factors are independent and additive, but the interactive effects at the epigenetic interface are largely ignored. Genomic technologies have radically changed perspective on the human genome and how the epigenetic interface may impact complex human disorders. Here, I review recent genomic, environmental, and epigenetic findings that suggest a new paradigm of "integrative genomics" in which genetic variation in genomic size may be impacted by dietary and environmental factors that influence the genomic saturation of DNA methylation. Human genomes are highly repetitive, but the interface of large-scale genomic differences with environmental factors that alter the DNA methylome such as dietary folate is under-explored. In addition to obvious direct effects of some environmental toxins on the genome by causing chromosomal breaks, non-mutagenic toxin exposures correlate with DNA hypomethylation that can lead to rearrangements between repeats or increased retrotransposition. Since human neurodevelopment appears to be particularly sensitive to alterations in epigenetic pathways, a further focus will be on how developing neurons may be particularly impacted by even subtle alterations to DNA methylation and proposing new directions towards understanding the quixotic etiology of autism by integrative genomic approaches.

  10. A Survey of 6,300 Genomic Fragments for cis-Regulatory Activity in the Imaginal Discs of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Aurélie Jory

    2012-10-01

    Full Text Available Over 6,000 fragments from the genome of Drosophila melanogaster were analyzed for their ability to drive expression of GAL4 reporter genes in the third-instar larval imaginal discs. About 1,200 reporter genes drove expression in the eye, antenna, leg, wing, haltere, or genital imaginal discs. The patterns ranged from large regions to individual cells. About 75% of the active fragments drove expression in multiple discs; 20% were expressed in ventral, but not dorsal, discs (legs, genital, and antenna, whereas ∼23% were expressed in dorsal but not ventral discs (wing, haltere, and eye. Several patterns, for example, within the leg chordotonal organ, appeared a surprisingly large number of times. Unbiased searches for DNA sequence motifs suggest candidate transcription factors that may regulate enhancers with shared activities. Together, these expression patterns provide a valuable resource to the community and offer a broad overview of how transcriptional regulatory information is distributed in the Drosophila genome.

  11. Climate-driven range shifts of the king penguin in a fragmented ecosystem

    Science.gov (United States)

    Cristofari, Robin; Liu, Xiaoming; Bonadonna, Francesco; Cherel, Yves; Pistorius, Pierre; Le Maho, Yvon; Raybaud, Virginie; Stenseth, Nils Christian; Le Bohec, Céline; Trucchi, Emiliano

    2018-03-01

    Range shift is the primary short-term species response to rapid climate change, but it is often hampered by natural or anthropogenic habitat fragmentation. Different critical areas of a species' niche may be exposed to heterogeneous environmental changes and modelling species response under such complex spatial and ecological scenarios presents well-known challenges. Here, we use a biophysical ecological niche model validated through population genomics and palaeodemography to reconstruct past range shifts and identify future vulnerable areas and potential refugia of the king penguin in the Southern Ocean. Integrating genomic and demographic data at the whole-species level with specific biophysical constraints, we present a refined framework for predicting the effect of climate change on species relying on spatially and ecologically distinct areas to complete their life cycle (for example, migratory animals, marine pelagic organisms and central-place foragers) and, in general, on species living in fragmented ecosystems.

  12. Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach.

    Science.gov (United States)

    Amorim, Mónica J B; Lin, Sijie; Schlich, Karsten; Navas, José M; Brunelli, Andrea; Neubauer, Nicole; Vilsmeier, Klaus; Costa, Anna L; Gondikas, Andreas; Xia, Tian; Galbis, Liliana; Badetti, Elena; Marcomini, Antonio; Hristozov, Danail; Kammer, Frank von der; Hund-Rinke, Kerstin; Scott-Fordsmand, Janeck J; Nel, André; Wohlleben, Wendel

    2018-02-06

    Nanoenabled products (NEPs) have numerous outdoor uses in construction, transportation or consumer scenarios, and there is evidence that their fragments are released in the environment at low rates. We hypothesized that the lower surface availability of NEPs fragment reduced their environmental effects with respect to pristine nanomaterials. This hypothesis was explored by testing fragments generated by intentional micronisation ("the SUN approach"; Nowack et al. Meeting the Needs for Released Nanomaterials Required for Further Testing: The SUN Approach. Environmental Science & Technology, 2016 (50), 2747). The NEPs were composed of four matrices (epoxy, polyolefin, polyoxymethylene, and cement) with up to 5% content of three nanomaterials (carbon nanotubes, iron oxide, and organic pigment). Regardless of the type of nanomaterial or matrix used, it was observed that nanomaterials were only partially exposed at the NEP fragment surface, indicating that mostly the intrinsic and extrinsic properties of the matrix drove the NEP fragment toxicity. Ecotoxicity in multiple assays was done covering relevant media from terrestrial to aquatic, including sewage treatment plant (biological activity), soil worms (Enchytraeus crypticus), and fish (zebrafish embryo and larvae and trout cell lines). We designed the studies to explore the possible modulation of ecotoxicity by nanomaterial additives in plastics/polymer/cement, finding none. The results support NEPs grouping by the matrix material regarding ecotoxicological effect during the use phase. Furthermore, control results on nanomaterial-free polymer fragments representing microplastic had no significant adverse effects up to the highest concentration tested.

  13. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    Science.gov (United States)

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  14. Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences.

    Science.gov (United States)

    Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A

    2016-10-15

    Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool-Genome Puzzle Master (GPM)-that enables the integration of additional genomic signposts to edit and build 'new-gen-assemblies' that result in high-quality 'annotation-ready' pseudomolecules. With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to 'group,' 'merge,' 'order and orient' sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user's total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS CONTACTS: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population

    Directory of Open Access Journals (Sweden)

    Alencar Xavier

    2018-02-01

    Full Text Available Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations.

  16. Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics

    DEFF Research Database (Denmark)

    Quaiser, Achim; Ochsenreiter, Torsten; Lanz, Christa

    2003-01-01

    fragments differed between 2.3% and 19.9% and were placed into two different subgroups of Acidobacteria (groups III and V). Although partial co-linearity was found between genomic fragments, the gene content around the rRNA operons was generally not conserved. Phylogenetic reconstructions with orthologues......Acidobacteria have been established as a novel phylum of Bacteria that is consistently detected in many different habitats around the globe by 16S rDNA-based molecular surveys. The phylogenetic diversity, ubiquity and abundance of this group, particularly in soil habitats, suggest an important...... palustris and Bradyrhizobium japonicum, including a conserved two-component system. Phylogenetic analysis of the putative response regulator confirmed that this similarity between Rhizobiales and Acidobacteria might be due to a horizontal gene transfer. In total, our data give first insight into the genome...

  17. Challenges and Opportunities in Genome-Wide Environmental Interaction (GWEI) studies

    Science.gov (United States)

    Aschard, Hugues; Lutz, Sharon; Maus, Bärbel; Duell, Eric J.; Fingerlin, Tasha; Chatterjee, Nilanjan; Kraft, Peter; Van Steen, Kristel

    2012-01-01

    The interest in performing gene-environment interaction studies has seen a significant increase with the increase of advanced molecular genetics techniques. Practically, it became possible to investigate the role of environmental factors in disease risk and hence to investigate their role as genetic effect modifiers. The understanding that genetics is important in the uptake and metabolism of toxic substances is an example of how genetic profiles can modify important environmental risk factors to disease. Several rationales exist to set up gene-environment interaction studies and the technical challenges related to these studies – when the number of environmental or genetic risk factors is relatively small – has been described before. In the post-genomic era, it is now possible to study thousands of genes and their interaction with the environment. This brings along a whole range of new challenges and opportunities. Despite a continuing effort in developing efficient methods and optimal bioinformatics infrastructures to deal with the available wealth of data, the challenge remains how to best present and analyze Genome-Wide Environmental Interaction (GWEI) studies involving multiple genetic and environmental factors. Since GWEIs are performed at the intersection of statistical genetics, bioinformatics and epidemiology, usually similar problems need to be dealt with as for Genome-Wide Association gene-gene Interaction (GWAI) studies. However, additional complexities need to be considered which are typical for large-scale epidemiological studies, but are also related to “joining” two heterogeneous types of data in explaining complex disease trait variation or for prediction purposes. PMID:22760307

  18. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation.

    Science.gov (United States)

    Gao, Lexuan; Geng, Yupeng; Li, Bo; Chen, Jiakuan; Yang, Ji

    2010-11-01

    Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome-wide methylation profiling using methylation-sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome-wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors. © 2010 Blackwell Publishing Ltd.

  19. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery.

    Science.gov (United States)

    Bradley, Anthony R; Echalier, Aude; Fairhead, Michael; Strain-Damerell, Claire; Brennan, Paul; Bullock, Alex N; Burgess-Brown, Nicola A; Carpenter, Elisabeth P; Gileadi, Opher; Marsden, Brian D; Lee, Wen Hwa; Yue, Wyatt; Bountra, Chas; von Delft, Frank

    2017-11-08

    The ongoing explosion in genomics data has long since outpaced the capacity of conventional biochemical methodology to verify the large number of hypotheses that emerge from the analysis of such data. In contrast, it is still a gold-standard for early phenotypic validation towards small-molecule drug discovery to use probe molecules (or tool compounds), notwithstanding the difficulty and cost of generating them. Rational structure-based approaches to ligand discovery have long promised the efficiencies needed to close this divergence; in practice, however, this promise remains largely unfulfilled, for a host of well-rehearsed reasons and despite the huge technical advances spearheaded by the structural genomics initiatives of the noughties. Therefore the current, fourth funding phase of the Structural Genomics Consortium (SGC), building on its extensive experience in structural biology of novel targets and design of protein inhibitors, seeks to redefine what it means to do structural biology for drug discovery. We developed the concept of a Target Enabling Package (TEP) that provides, through reagents, assays and data, the missing link between genetic disease linkage and the development of usefully potent compounds. There are multiple prongs to the ambition: rigorously assessing targets' genetic disease linkages through crowdsourcing to a network of collaborating experts; establishing a systematic approach to generate the protocols and data that comprise each target's TEP; developing new, X-ray-based fragment technologies for generating high quality chemical matter quickly and cheaply; and exploiting a stringently open access model to build multidisciplinary partnerships throughout academia and industry. By learning how to scale these approaches, the SGC aims to make structures finally serve genomics, as originally intended, and demonstrate how 3D structures systematically allow new modes of druggability to be discovered for whole classes of targets. © 2017 The

  20. Getting complete genomes from complex samples using nanopore sequencing

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; Karst, Søren Michael; Albertsen, Mads

    Short read sequencing and metagenomic binning workflows have made it possible to extract bacterial genome bins from environmental microbial samples containing hundreds to thousands of different species. However, these genome bins often do not represent complete genomes, as they are mostly...... fragmented, incomplete and often contaminated with foreign DNA and with no robust strategies to validate the quality. The value of these `draft genomes` have limited, lasting value to the scientific community, as gene synteny is broken and the uncertainty of what is missing. The genetic material most often...... missed is important multi-copy and/or conserved marker genes such as the 16S rRNA gene, as sequence micro-heterogeneity prevents assembly of these genes in the de novo assembly. We demonstrate that using nanopore long reads it is now possible to overcome these issues and make complete genomes from...

  1. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification.

    Directory of Open Access Journals (Sweden)

    Yohei Nishikawa

    Full Text Available Whole genome amplification (WGA is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA, using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples.

  2. Performances of Different Fragment Sizes for Reduced Representation Bisulfite Sequencing in Pigs.

    Science.gov (United States)

    Yuan, Xiao-Long; Zhang, Zhe; Pan, Rong-Yang; Gao, Ning; Deng, Xi; Li, Bin; Zhang, Hao; Sangild, Per Torp; Li, Jia-Qi

    2017-01-01

    Reduced representation bisulfite sequencing (RRBS) has been widely used to profile genome-scale DNA methylation in mammalian genomes. However, the applications and technical performances of RRBS with different fragment sizes have not been systematically reported in pigs, which serve as one of the important biomedical models for humans. The aims of this study were to evaluate capacities of RRBS libraries with different fragment sizes to characterize the porcine genome. We found that the Msp I-digested segments between 40 and 220 bp harbored a high distribution peak at 74 bp, which were highly overlapped with the repetitive elements and might reduce the unique mapping alignment. The RRBS library of 110-220 bp fragment size had the highest unique mapping alignment and the lowest multiple alignment. The cost-effectiveness of the 40-110 bp, 110-220 bp and 40-220 bp fragment sizes might decrease when the dataset size was more than 70, 50 and 110 million reads for these three fragment sizes, respectively. Given a 50-million dataset size, the average sequencing depth of the detected CpG sites in the 110-220 bp fragment size appeared to be deeper than in the 40-110 bp and 40-220 bp fragment sizes, and these detected CpG sties differently located in gene- and CpG island-related regions. In this study, our results demonstrated that selections of fragment sizes could affect the numbers and sequencing depth of detected CpG sites as well as the cost-efficiency. No single solution of RRBS is optimal in all circumstances for investigating genome-scale DNA methylation. This work provides the useful knowledge on designing and executing RRBS for investigating the genome-wide DNA methylation in tissues from pigs.

  3. Assembly of the Complete Sitka Spruce Chloroplast Genome Using 10X Genomics' GemCode Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Lauren Coombe

    Full Text Available The linked read sequencing library preparation platform by 10X Genomics produces barcoded sequencing libraries, which are subsequently sequenced using the Illumina short read sequencing technology. In this new approach, long fragments of DNA are partitioned into separate micro-reactions, where the same index sequence is incorporated into each of the sequencing fragment inserts derived from a given long fragment. In this study, we exploited this property by using reads from index sequences associated with a large number of reads, to assemble the chloroplast genome of the Sitka spruce tree (Picea sitchensis. Here we report on the first Sitka spruce chloroplast genome assembled exclusively from P. sitchensis genomic libraries prepared using the 10X Genomics protocol. We show that the resulting 124,049 base pair long genome shares high sequence similarity with the related white spruce and Norway spruce chloroplast genomes, but diverges substantially from a previously published P. sitchensis- P. thunbergii chimeric genome. The use of reads from high-frequency indices enabled separation of the nuclear genome reads from that of the chloroplast, which resulted in the simplification of the de Bruijn graphs used at the various stages of assembly.

  4. Predicting genotypes environmental range from genome-environment associations.

    Science.gov (United States)

    Manel, Stéphanie; Andrello, Marco; Henry, Karine; Verdelet, Daphné; Darracq, Aude; Guerin, Pierre-Edouard; Desprez, Bruno; Devaux, Pierre

    2018-05-17

    Genome-environment association methods aim to detect genetic markers associated with environmental variables. The detected associations are usually analysed separately to identify the genomic regions involved in local adaptation. However, a recent study suggests that single-locus associations can be combined and used in a predictive way to estimate environmental variables for new individuals on the basis of their genotypes. Here, we introduce an original approach to predict the environmental range (values and upper and lower limits) of species genotypes from the genetic markers significantly associated with those environmental variables in an independent set of individuals. We illustrate this approach to predict aridity in a database constituted of 950 individuals of wild beets and 299 individuals of cultivated beets genotyped at 14,409 random Single Nucleotide Polymorphisms (SNPs). We detected 66 alleles associated with aridity and used them to calculate the fraction (I) of aridity-associated alleles in each individual. The fraction I correctly predicted the values of aridity in an independent validation set of wild individuals and was then used to predict aridity in the 299 cultivated individuals. Wild individuals had higher median values and a wider range of values of aridity than the cultivated individuals, suggesting that wild individuals have higher ability to resist to stress-aridity conditions and could be used to improve the resistance of cultivated varieties to aridity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Generalizing genetical genomics : getting added value from environmental perturbation

    NARCIS (Netherlands)

    Li, Yang; Breitling, Rainer; Jansen, Ritsert C.

    2008-01-01

    Genetical genomics is a useful approach for studying the effect of genetic perturbations on biological systems at the molecular level. However, molecular networks depend on the environmental conditions and, thus, a comprehensive understanding of biological systems requires studying them across

  6. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System.

    Science.gov (United States)

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C T; Shui, Lingling

    2017-01-18

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1-10 Kbp fragment lengths with a yield of 75.30-91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future.

  7. Towards the Genomic Basis of Local Adaptation in Landraces

    Directory of Open Access Journals (Sweden)

    Giandomenico Corrado

    2017-11-01

    Full Text Available Landraces are key elements of agricultural biodiversity that have long been considered a source of useful traits. Their importance goes beyond subsistence agriculture and the essential need to preserve genetic diversity, because landraces are farmer-developed populations that are often adapted to environmental conditions of significance to tackle environmental concerns. It is therefore increasingly important to identify adaptive traits in crop landraces and understand their molecular basis. This knowledge is potentially useful for promoting more sustainable agricultural techniques, reducing the environmental impact of high-input cropping systems, and diminishing the vulnerability of agriculture to global climate change. In this review, we present an overview of the opportunities and limitations offered by landraces’ genomics. We discuss how rapid advances in DNA sequencing techniques, plant phenotyping, and recombinant DNA-based biotechnology encourage both the identification and the validation of the genomic signature of local adaptation in crop landraces. The integration of ‘omics’ sciences, molecular population genetics, and field studies can provide information inaccessible with earlier technological tools. Although empirical knowledge on the genetic and genomic basis of local adaptation is still fragmented, it is predicted that genomic scans for adaptation will unlock an intraspecific molecular diversity that may be different from that of modern varieties.

  8. Genome-reconstruction for eukaryotes from complex natural microbial communities.

    Science.gov (United States)

    West, Patrick T; Probst, Alexander J; Grigoriev, Igor V; Thomas, Brian C; Banfield, Jillian F

    2018-04-01

    Microbial eukaryotes are integral components of natural microbial communities, and their inclusion is critical for many ecosystem studies, yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies, we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k -mer-based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation, and prediction of metabolic potential. We used this approach to test the effect of addition of organic carbon on a geyser-associated microbial community and detected a substantial change of the community metabolism, with selection against almost all candidate phyla bacteria and archaea and for eukaryotes. Near complete genomes were reconstructed for three fungi placed within the Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were important functions in the geyser community prior to carbon addition, the organic carbon-impacted community showed enrichment for secreted proteases, secreted lipases, cellulose targeting CAZymes, and methanol oxidation. We demonstrate the broader utility of EukRep by reconstructing and evaluating relatively high-quality fungal, protist, and rotifer genomes from complex environmental samples. This approach opens the way for cultivation-independent analyses of whole microbial communities. © 2018 West et al.; Published by Cold Spring Harbor Laboratory Press.

  9. OCCURRENCE OF SMALL HOMOLOGOUS AND COMPLEMENTARY FRAGMENTS IN HUMAN VIRUS GENOMES AND THEIR POSSIBLE ROLE

    Directory of Open Access Journals (Sweden)

    E. P. Kharchenko

    2017-01-01

    Full Text Available With computer analysis occurrence of small homologous and complementary fragments (21 nucleotides in length has been studied in genomes of 14 human viruses causing most dangerous infections. The sample includes viruses with (+ and (– single stranded RNA and DNA-containing hepatitis A virus. Analysis of occurrence of homologous sequences has shown the existence two extreme situations. On the one hand, the same virus contains homologous sequences to almost all other viruses (for example, Ebola virus, severe acute respiratory syndrome-related coronavirus, and mumps virus, and numerous homologous sequences to the same other virus (especially in severe acute respiratory syndrome-related coronavirus to Dengue virus and in Ebola virus to poliovirus. On the other hand, there are rare occurrence and not numerous homologous sequences in genomes of other viruses (rubella virus, hepatitis A virus, and hepatitis B virus. Similar situation exists for occurrence of complementary sequences. Rubella virus, the genome of which has the high content of guanine and cytosine, has no complementary sequences to almost all other viruses. Most viruses have moderate level of occurrence for homologous and complementary sequences. Autocomplementary sequences are numerous in most viruses and one may suggest that the genome of single stranded RNA viruses has branched secondary structure. In addition to possible role in recombination among strains autocomplementary sequences could be regulators of translation rate of virus proteins and determine its optimal proportion in virion assembly with genome and mRNA folding. Occurrence of small homologous and complementary sequences in RNA- and DNA-containing viruses may be the result of multiple recombinations in the past and the present and determine their adaptation and variability. Recombination may take place in coinfection of human and/or common hosts. Inclusion of homologous and complementary sequences into genome could not

  10. Genomic selection using indicator traits to reduce the environmental impact of milk production

    DEFF Research Database (Denmark)

    Hansen Axelsson, H; Fikse, W F; Kargo, Morten

    2013-01-01

    The aim of this simulation study was to test the hypothesis that phenotype information of specific indicator traits of environmental importance recorded on a small-scale can be implemented in breeding schemes with genomic selection to reduce the environmental impact of milk production. A stochastic...... was, however, best in the scenarios where the genetic correlation between IT and EI was ≥0.30 and the accuracy of direct genomic value was ≥0.40. The genetic gain in EI was 26 to 34% higher when indicator traits such as greenhouse gases in the breath of the cow and methane recorded in respiration...... of direct genomic values will be reasonably high...

  11. Comparison of Drosophilidae (Diptera) assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies

    OpenAIRE

    Cavasini, R; Buschini, MLT; Machado, LPB; Mateus, RP

    2014-01-01

    Flies from the Drosophilidae family are model organisms for biological studies and are often suggested as bioindicators of environmental quality. The Araucaria Forest, one of Atlantic Forest phyto-physiognomy, displays a highly fragmented distribution due to the expansion of agriculture and urbanization. Thus, this work aimed to evaluate and compare the drosophilid assemblages from two highland Araucaria Forest fragments, one a conservation unit (PMA – Parque Municipal das Araucárias) and the...

  12. Gene prediction in metagenomic fragments: A large scale machine learning approach

    Directory of Open Access Journals (Sweden)

    Morgenstern Burkhard

    2008-04-01

    Full Text Available Abstract Background Metagenomics is an approach to the characterization of microbial genomes via the direct isolation of genomic sequences from the environment without prior cultivation. The amount of metagenomic sequence data is growing fast while computational methods for metagenome analysis are still in their infancy. In contrast to genomic sequences of single species, which can usually be assembled and analyzed by many available methods, a large proportion of metagenome data remains as unassembled anonymous sequencing reads. One of the aims of all metagenomic sequencing projects is the identification of novel genes. Short length, for example, Sanger sequencing yields on average 700 bp fragments, and unknown phylogenetic origin of most fragments require approaches to gene prediction that are different from the currently available methods for genomes of single species. In particular, the large size of metagenomic samples requires fast and accurate methods with small numbers of false positive predictions. Results We introduce a novel gene prediction algorithm for metagenomic fragments based on a two-stage machine learning approach. In the first stage, we use linear discriminants for monocodon usage, dicodon usage and translation initiation sites to extract features from DNA sequences. In the second stage, an artificial neural network combines these features with open reading frame length and fragment GC-content to compute the probability that this open reading frame encodes a protein. This probability is used for the classification and scoring of gene candidates. With large scale training, our method provides fast single fragment predictions with good sensitivity and specificity on artificially fragmented genomic DNA. Additionally, this method is able to predict translation initiation sites accurately and distinguishes complete from incomplete genes with high reliability. Conclusion Large scale machine learning methods are well-suited for gene

  13. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities

    DEFF Research Database (Denmark)

    Aylward, Frank O.; McDonald, Bradon R.; Adams, Sandra M.

    2013-01-01

    to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer...... and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible...... a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling....

  14. A practical guide to environmental association analysis in landscape genomics

    OpenAIRE

    Rellstab Christian; Gugerli Felix; Eckert Andrew J.; Hancock Angela M.; Holderegger Rolf

    2015-01-01

    Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next generation sequencing which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel data sets describing environmental factors have greatly improved and increasingly become pu...

  15. Genomic DNA fingerprinting of clinical Haemophilus influenzae isolates by polymerase chain reaction amplification: comparison with major outer-membrane protein and restriction fragment length polymorphism analysis

    NARCIS (Netherlands)

    van Belkum, A.; Duim, B.; Regelink, A.; Möller, L.; Quint, W.; van Alphen, L.

    1994-01-01

    Non-capsulate strains of Haemophilus influenzae were genotyped by analysis of variable DNA segments obtained by amplification of genomic DNA with the polymerase chain reaction (PCR fingerprinting). Discrete fragments of 100-2000 bp were obtained. The reproducibility of the procedure was assessed by

  16. GENOMIC DNA-FINGERPRINTING OF CLINICAL HAEMOPHILUS-INFLUENZAE ISOLATES BY POLYMERASE CHAIN-REACTION AMPLIFICATION - COMPARISON WITH MAJOR OUTER-MEMBRANE PROTEIN AND RESTRICTION-FRAGMENT-LENGTH-POLYMORPHISM ANALYSIS

    NARCIS (Netherlands)

    VANBELKUM, A; DUIM, B; REGELINK, A; MOLLER, L; QUINT, W; VANALPHEN, L

    Non-capsulate strains of Haemophilus influenzae were genotyped by analysis of variable DNA segments obtained by amplification of genomic DNA with the polymerase chain reaction (PCR fingerprinting). Discrete fragments of 100-2000 bp were obtained. The reproducibility of the procedure was assessed by

  17. Genetic diversity of clinical and environmental isolates of Vibrio cholerae determined by amplified fragment length polymorphism fingerprinting.

    Science.gov (United States)

    Jiang, S C; Matte, M; Matte, G; Huq, A; Colwell, R R

    2000-01-01

    Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain

  18. Comparison of Drosophilidae (Diptera assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies

    Directory of Open Access Journals (Sweden)

    R Cavasini

    Full Text Available Flies from the Drosophilidae family are model organisms for biological studies and are often suggested as bioindicators of environmental quality. The Araucaria Forest, one of Atlantic Forest phyto-physiognomy, displays a highly fragmented distribution due to the expansion of agriculture and urbanization. Thus, this work aimed to evaluate and compare the drosophilid assemblages from two highland Araucaria Forest fragments, one a conservation unit (PMA – Parque Municipal das Araucárias and the other a private property without any conservational policy (FBL – Fazenda Brandalise, in space and time, using species abundances and richness, ecological indexes and Neotropical and exotic species proportions as parameters to establish the level of environmental quality of these fragments. Our results showed that the observed diversity in PMA (H′ = 2.221 was approximately 40% higher than in FBL (H′ = 1.592. This could be due to higher preservation quality and habitat diversity in PMA, indicating the importance of conservation units. However, richness were similar for these areas, with PMA (Dmg = 6.602 only 8% higher than FBL (Dmg = 6.128, which suggest that the larger distance from city limits and the larger size of FBL forested area could be compensating the higher disturbance caused by antrophic extractive exploitation of this fragment. This points out that, besides the quality of presevertion, the size and/or connection with other fragments should be considered for areas destined for biodiversity conservation. In general, both areas presented similar drosophilid assemblages, and the expressive abundance of both Neotropical species (mostly of the subgroup willistoni and the exotic species D. kikkawai suggests that these areas are in intermediate stages of conservation.

  19. Comparison of Drosophilidae (Diptera) assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies.

    Science.gov (United States)

    Cavasini, R; Buschini, M L T; Machado, L P B; Mateus, R P

    2014-11-01

    Flies from the Drosophilidae family are model organisms for biological studies and are often suggested as bioindicators of environmental quality. The Araucaria Forest, one of Atlantic Forest phyto-physiognomy, displays a highly fragmented distribution due to the expansion of agriculture and urbanization. Thus, this work aimed to evaluate and compare the drosophilid assemblages from two highland Araucaria Forest fragments, one a conservation unit (PMA - Parque Municipal das Araucárias) and the other a private property without any conservational policy (FBL - Fazenda Brandalise), in space and time, using species abundances and richness, ecological indexes and Neotropical and exotic species proportions as parameters to establish the level of environmental quality of these fragments. Our results showed that the observed diversity in PMA (H' = 2.221) was approximately 40% higher than in FBL (H' = 1.592). This could be due to higher preservation quality and habitat diversity in PMA, indicating the importance of conservation units. However, richness were similar for these areas, with PMA (Dmg = 6.602) only 8% higher than FBL (Dmg = 6.128), which suggest that the larger distance from city limits and the larger size of FBL forested area could be compensating the higher disturbance caused by antrophic extractive exploitation of this fragment. This points out that, besides the quality of presevertion, the size and/or connection with other fragments should be considered for areas destined for biodiversity conservation. In general, both areas presented similar drosophilid assemblages, and the expressive abundance of both Neotropical species (mostly of the subgroup willistoni) and the exotic species D. kikkawai suggests that these areas are in intermediate stages of conservation.

  20. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-09-01

    Full Text Available Abstract Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements

  1. Genome analysis of environmental and clinical P. aeruginosa isolates from sequence type-1146.

    Directory of Open Access Journals (Sweden)

    David Sánchez

    Full Text Available The genomes of Pseudomonas aeruginosa isolates of the new sequence type ST-1146, three environmental (P37, P47 and P49 and one clinical (SD9 isolates, with differences in their antibiotic susceptibility profiles have been sequenced and analysed. The genomes were mapped against P. aeruginosa PAO1-UW and UCBPP-PA14. The allelic profiles showed that the highest number of differences were in "Related to phage, transposon or plasmid" and "Secreted factors" categories. The clinical isolate showed a number of exclusive alleles greater than that for the environmental isolates. The phage Pf1 region in isolate SD9 accumulated the highest number of nucleotide substitutions. The ORF analysis of the four genomes assembled de novo indicated that the number of isolate-specific genes was higher in isolate SD9 (132 genes than in isolates P37 (24 genes, P47 (16 genes and P49 (21 genes. CRISPR elements were found in all isolates and SD9 showed differences in the spacer region. Genes related to bacteriophages F116 and H66 were found only in isolate SD9. Genome comparisons indicated that the isolates of ST-1146 are close related, and most genes implicated in pathogenicity are highly conserved, suggesting a genetic potential for infectivity in the environmental isolates similar to the clinical one. Phage-related genes are responsible of the main differences among the genomes of ST-1146 isolates. The role of bacteriophages has to be considered in the adaptation processes of isolates to the host and in microevolution studies.

  2. Comparative Genomic Analysis of Clinical and Environmental Vibrio Vulnificus Isolates Revealed Biotype 3 Evolutionary Relationships

    Directory of Open Access Journals (Sweden)

    Yael eKotton

    2015-01-01

    Full Text Available In 1996 a common-source outbreak of severe soft tissue and bloodstream infections erupted among Israeli fish farmers and fish consumers due to changes in fish marketing policies. The causative pathogen was a new strain of Vibrio vulnificus, named biotype 3, which displayed a unique biochemical and genotypic profile. Initial observations suggested that the pathogen erupted as a result of genetic recombination between two distinct populations. We applied a whole genome shotgun sequencing approach using several V. vulnificus strains from Israel in order to study the pan genome of V. vulnificus and determine the phylogenetic relationship of biotype 3 with existing populations. The core genome of V. vulnificus based on 16 draft and complete genomes consisted of 3068 genes, representing between 59% and 78% of the whole genome of 16 strains. The accessory genome varied in size from 781 kbp to 2044 kbp. Phylogenetic analysis based on whole, core, and accessory genomes displayed similar clustering patterns with two main clusters, clinical (C and environmental (E, all biotype 3 strains formed a distinct group within the E cluster. Annotation of accessory genomic regions found in biotype 3 strains and absent from the core genome yielded 1732 genes, of which the vast majority encoded hypothetical proteins, phage-related proteins, and mobile element proteins. A total of 1916 proteins (including 713 hypothetical proteins were present in all human pathogenic strains (both biotype 3 and non-biotype 3 and absent from the environmental strains. Clustering analysis of the non-hypothetical proteins revealed 148 protein clusters shared by all human pathogenic strains; these included transcriptional regulators, arylsulfatases, methyl-accepting chemotaxis proteins, acetyltransferases, GGDEF family proteins, transposases, type IV secretory system (T4SS proteins, and integrases. Our study showed that V. vulnificus biotype 3 evolved from environmental populations and

  3. Structural determinants and mechanism of HIV-1 genome packaging.

    Science.gov (United States)

    Lu, Kun; Heng, Xiao; Summers, Michael F

    2011-07-22

    Like all retroviruses, the human immunodeficiency virus selectively packages two copies of its unspliced RNA genome, both of which are utilized for strand-transfer-mediated recombination during reverse transcription-a process that enables rapid evolution under environmental and chemotherapeutic pressures. The viral RNA appears to be selected for packaging as a dimer, and there is evidence that dimerization and packaging are mechanistically coupled. Both processes are mediated by interactions between the nucleocapsid domains of a small number of assembling viral Gag polyproteins and RNA elements within the 5'-untranslated region of the genome. A number of secondary structures have been predicted for regions of the genome that are responsible for packaging, and high-resolution structures have been determined for a few small RNA fragments and protein-RNA complexes. However, major questions regarding the RNA structures (and potentially the structural changes) that are responsible for dimeric genome selection remain unanswered. Here, we review efforts that have been made to identify the molecular determinants and mechanism of human immunodeficiency virus type 1 genome packaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Building on the Past, Shaping the Future: The Environmental Mutagenesis and Genomics Society

    Science.gov (United States)

    In late 2012 the members of the Environmental Mutagen Society voted to change its name to the Environmental Mutagenesis and Genomics Society. Here we describe the thought process that led to adoption of the new name, which both respects the rich history of a Society founded in 19...

  5. Mutant DNA quantification by digital PCR can be confounded by heating during DNA fragmentation.

    Science.gov (United States)

    Kang, Qing; Parkin, Brian; Giraldez, Maria D; Tewari, Muneesh

    2016-04-01

    Digital PCR (dPCR) is gaining popularity as a DNA mutation quantification method for clinical specimens. Fragmentation prior to dPCR is required for non-fragmented genomic DNA samples; however, the effect of fragmentation on DNA analysis has not been well-studied. Here we evaluated three fragmentation methods for their effects on dPCR point mutation assay performance. Wild-type (WT) human genomic DNA was fragmented by heating, restriction digestion, or acoustic shearing using a Covaris focused-ultrasonicator. dPCR was then used to determine the limit of blank (LoB) by quantifying observed WT and mutant allele counts of the proto-oncogenes KRAS and BRAF in the WT DNA sample. DNA fragmentation by heating to 95°C, while the simplest and least expensive method, produced a high background mutation frequency for certain KRAS mutations relative to the other methods. This was due to heat-induced mutations, specifically affecting dPCR assays designed to interrogate guanine to adenine (G>A) mutations. Moreover, heat-induced fragmentation overestimated gene copy number, potentially due to denaturation and partition of single-stranded DNA into different droplets. Covaris acoustic shearing and restriction enzyme digestion showed similar LoBs and gene copy number estimates to one another. It should be noted that moderate heating, commonly used in genomic DNA extraction protocols, did not significantly increase observed KRAS mutation counts.

  6. Origin and differentiation of a special fragment from Capra hircus ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... regions of the special fragment in the GenBank of NCBI. A total number of 80 fragments with identity ... recombined during the long period of evolution within and among species, and might be related to ..... and their association to coat color phenotypes in horses (Equus caballus). Mammalian Genome, 12: ...

  7. Genomic Sequencing of Single Microbial Cells from Environmental Samples

    Energy Technology Data Exchange (ETDEWEB)

    Ishoey, Thomas; Woyke, Tanja; Stepanauskas, Ramunas; Novotny, Mark; Lasken, Roger S.

    2008-02-01

    Recently developed techniques allow genomic DNA sequencing from single microbial cells [Lasken RS: Single-cell genomic sequencing using multiple displacement amplification, Curr Opin Microbiol 2007, 10:510-516]. Here, we focus on research strategies for putting these methods into practice in the laboratory setting. An immediate consequence of single-cell sequencing is that it provides an alternative to culturing organisms as a prerequisite for genomic sequencing. The microgram amounts of DNA required as template are amplified from a single bacterium by a method called multiple displacement amplification (MDA) avoiding the need to grow cells. The ability to sequence DNA from individual cells will likely have an immense impact on microbiology considering the vast numbers of novel organisms, which have been inaccessible unless culture-independent methods could be used. However, special approaches have been necessary to work with amplified DNA. MDA may not recover the entire genome from the single copy present in most bacteria. Also, some sequence rearrangements can occur during the DNA amplification reaction. Over the past two years many research groups have begun to use MDA, and some practical approaches to single-cell sequencing have been developed. We review the consensus that is emerging on optimum methods, reliability of amplified template, and the proper interpretation of 'composite' genomes which result from the necessity of combining data from several single-cell MDA reactions in order to complete the assembly. Preferred laboratory methods are considered on the basis of experience at several large sequencing centers where >70% of genomes are now often recovered from single cells. Methods are reviewed for preparation of bacterial fractions from environmental samples, single-cell isolation, DNA amplification by MDA, and DNA sequencing.

  8. ALIS-FLP: Amplified ligation selected fragment-length polymorphism method for microbial genotyping

    DEFF Research Database (Denmark)

    Brillowska-Dabrowska, A.; Wianecka, M.; Dabrowski, Slawomir

    2008-01-01

    A DNA fingerprinting method known as ALIS-FLP (amplified ligation selected fragment-length polymorphism) has been developed for selective and specific amplification of restriction fragments from TspRI restriction endonuclease digested genomic DNA. The method is similar to AFLP, but differs...

  9. Phylogenetic analysis of Gossypium L. using restriction fragment length polymorphism of repeated sequences.

    Science.gov (United States)

    Zhang, Meiping; Rong, Ying; Lee, Mi-Kyung; Zhang, Yang; Stelly, David M; Zhang, Hong-Bin

    2015-10-01

    Cotton is the world's leading textile fiber crop and is also grown as a bioenergy and food crop. Knowledge of the phylogeny of closely related species and the genome origin and evolution of polyploid species is significant for advanced genomics research and breeding. We have reconstructed the phylogeny of the cotton genus, Gossypium L., and deciphered the genome origin and evolution of its five polyploid species by restriction fragment analysis of repeated sequences. Nuclear DNA of 84 accessions representing 35 species and all eight genomes of the genus were analyzed. The phylogenetic tree of the genus was reconstructed using the parsimony method on 1033 polymorphic repeated sequence restriction fragments. The genome origin of its polyploids was determined by calculating the diploid-polyploid restriction fragment correspondence (RFC). The tree is consistent with the morphological classification, genome designation and geographic distribution of the species at subgenus, section and subsection levels. Gossypium lobatum (D7) was unambiguously shown to have the highest RFC with the D-subgenomes of all five polyploids of the genus, while the common ancestor of Gossypium herbaceum (A1) and Gossypium arboreum (A2) likely contributed to the A-subgenomes of the polyploids. These results provide a comprehensive phylogenetic tree of the cotton genus and new insights into the genome origin and evolution of its polyploid species. The results also further demonstrate a simple, rapid and inexpensive method suitable for phylogenetic analysis of closely related species, especially congeneric species, and the inference of genome origin of polyploids that constitute over 70 % of flowering plants.

  10. Amplified-fragment length polymorphism fingerprinting of Mycoplasma species

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Friis, N.F.; Jensen, J.S.

    1999-01-01

    Amplified-fragment length polymorphism (AFLP) is a whole-genome fingerprinting method based on selective amplification of restriction fragments. The potential of the method for the characterization of mycoplasmas was investigated in a total of 50 strains of human and animal origin, including...... Mycoplasma genitalium (n = 11), Mycoplasma pneumoniae (n = 5), Mycoplasma hominis (n = 5), Mycoplasma hyopneunmoniae (n = 9), Myco plasma flocculare (n = 5), Mycoplasma hyosynoviae (n = 10), and Mycoplasma dispar (n = 5), AFLP templates were prepared by the digestion of mycoplasmal DNA with BglII and Mfe...... to discriminate the analyzed strains at species and intraspecies levels as well, Each of the tested Mycoplasma species developed a banding pattern entirely different from those obtained from other species under analysis, Subtle intraspecies genomic differences were detected among strains of all of the Mycoplasma...

  11. Influence of environmental conditions on the regenerative capacity and the survivability of Elodea nuttallii fragments

    Directory of Open Access Journals (Sweden)

    Markus A. Hoffmann

    2014-06-01

    Full Text Available The presented study was conducted to determine which environmental factors and conditions can affect the regenerative capacity and survivability of Elodea nuttallii [o1] and therefore the efficiency of mechanical management methods like cutting and harvesting. The influence of water temperature, light intensity and nutrient concentration in the sediment on the survivability and regenerative capacity of the invasive species E. nuttallii was determined in three laboratory and one field experiments. E. nuttallii fragments with one to four nodes were stored in aquaria under constant temperature and/or light conditions. To examine the influence of water temperature, four aquaria were kept at a constant water temperature of either 15°C or 20°C. The influence of light intensity was studied by shading the aquaria with different types of mesh. The fragments were stored at constant light intensities of 215, 161, 86 and 31 µmol photons m–2 s–1. Fragments in aquaria filled with sediment with 20 µg P2O5-P g–1 soil, 150 µg P2O5-P g–1 soil or without sediment were studied to determine the influence of the sediment. The results of the laboratory experiments showed how the mechanical management methods are most efficient during periods with low water temperatures, high turbidity or low global irradiation and nutrient poor waters. The field experiment was designed to study the influence of the nutrient compositions in the sediment on the growth and regenerative capacity of rooted E. nuttallii. E. nuttallii fragments were planted in compartments treated with PO43-- and/or NH4+-fertiliser and were trimmed after six weeks. The experiment revealed that the growth before a harvest and the growth after a harvest (regenerative capacity differ significantly, depending on the nutrient composition in the substrate. An increase of the PO43- concentration in the sediment, for example, reduced the growth of E. nuttallii before the harvest, but increased the

  12. Construction of a genomic library of the human cytomegalovirus genome and analysis of late transcription of its inverted internal repeat region

    International Nuclear Information System (INIS)

    Silva, K.F.S.T.

    1989-01-01

    The investigations described in this dissertation were designed to determine the transcriptionally active DNA sequences of IIR region and to identify the viral mRNA transcribed from the transcriptionally most active DNA sequences of that region during late phase of HCMV Towne infection. Preliminary transcriptional studies which included the hybridization of a southern blot of XbaI digested entire HCMV genome to 32 P-labelled late phase infected cell A + RNA, indicated that late viral transcripts homologous to XbaI Q fragment of IIR region were very highly abundant while XbaI Q fragment showed a very low transcriptional activity. To facilitate further analysis of late transcription of IIR region, the entire DNA sequences of IIR region were molecularly cloned as U, S, and H BamHI fragments in pACYC-184 plasmid vector. In addition, to be used in future studies on other regions of the genome, except for y and c' smaller fragments the entire 240 kb HCMV genome was cloned as BamHI fragments in the same vector. Furthermore, the U, S, and H BamHI fragments were mapped with six other restriction enzymes in order to use that mapping data in subsequent transcriptional analysis of the IIR region. Further localization of transcriptionally active DNA sequences within IIR region was achieved by hybridization of southern blots of restricted U, S, and H BamHI fragments with 3' 32 P-labelled infected cell late A + RNA. The 1.5 kb EcooRI subfragments of S BamHI fragment and the adjoining 0.72 kb XhoI subfragment of H BamHI fragment revealed the highest level of transcription, although the remainder of the S fragment was also transcribed at a substantial level. The U fragment and the remainder of the H fragment was transcribed at a very low level

  13. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification.

    Science.gov (United States)

    Direito, Susana O L; Zaura, Egija; Little, Miranda; Ehrenfreund, Pascale; Röling, Wilfred F M

    2014-03-01

    Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement amplification (MDA)] and one new primer-free method [primase-based whole genome amplification (pWGA)] were compared using a polymerase chain reaction (PCR)-based method as control. Pyrosequencing of an environmental sample and principal component analysis revealed that MDA impacted community profiles more strongly than pWGA and indicated that this related to species GC content, although an influence of DNA integrity could not be excluded. Subsequently, biases by species GC content, DNA integrity and fragment size were separately analysed using defined mixtures of DNA from various species. We found significantly less amplification of species with the highest GC content for MDA-based templates and, to a lesser extent, for pWGA. DNA fragmentation also interfered severely: species with more fragmented DNA were less amplified with MDA and pWGA. pWGA was unable to amplify low molecular weight DNA (microbial communities in low-biomass environments and for currently planned astrobiological missions to Mars. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Restricted fragmentation of poliovirus type 1, 2, and 3 RNAs by ribonuclease III

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, A. (State Univ. of New York, Stony Brook); Lee, Y.F.; Babich, A.; Jacobson, A.; Dunn, J.J.; Wimmer, E.

    1979-01-01

    Cleavage of the genome RNAs of poliovirus type 1, 2, and 3 with the ribonuclease III of Escherichia coli has been investigated with the following results: (1) at or above physiological salt concentration, the RNAs are completely resistant to the action of the enzyme, an observation suggesting that the RNAs lack primary cleavage sites; (2) lowering the salt concentration to 0.1 M or below allows RNase III to cleave the RNAs at secondary sites. Both large and small fragments can be obtained in a reproducible manner depending on salt conditions chosen for cleavage. Fingerprints of three large fragments of poliovirus type 2 RNA show that they originate from unique segments and represent most if not all sequences of the genome. Based upon binding to poly(U) filters of poly(A)-linked fragments, a physical map of the large fragments of poliovirus type 2 RNA was constructed. The data suggest that RNase III cleavage of single-stranded RNA provides a useful method to fragment the RNA for further studies.

  15. Why close a bacterial genome? The plasmid of Alteromonas macleodii HOT1A3 is a vector for inter-specific transfer of a flexible genomic island

    Directory of Open Access Journals (Sweden)

    Eduard eFadeev

    2016-03-01

    Full Text Available Genome sequencing is rapidly becoming a staple technique in environmental and clinical microbiology, yet computational challenges still remain, leading to many draft genomes which are typically fragmented into many contigs. We sequenced and completely assembled the genome of a marine heterotrophic bacterium, Alteromonas macleodii HOT1A3, and compared its full genome to several draft genomes obtained using different reference-based and de-novo methods. In general, the de-novo assemblies clearly outperformed the reference-based or hybrid ones, covering>99% of the genes and representing essentially all of the gene functions. However, only the fully closed genome (~4.5Mbp allowed us to identify the presence of a large, 148 kbp plasmid, pAM1A3. While HOT1A3 belongs to Alteromonas macleodii, typically found in surface waters (surface ecotype, this plasmid consists of an almost complete flexible genomic island, containing many genes involved in metal resistance previously identified in the genomes of Alteromonas mediterranea (deep ecotype. Indeed, similar to A. mediterranea, A. macleodii HOT1A3 grows at concentrations of zinc, mercury and copper that are inhibitory for other A. macleodii strains. The presence of a plasmid encoding almost an entire flexible genomic island suggests that wholesale genomic exchange between heterotrophic marine bacteria belonging to related but ecologically different populations is not uncommon.

  16. Genome chaos: survival strategy during crisis.

    Science.gov (United States)

    Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H

    2014-01-01

    Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.

  17. Specific single-cell isolation and genomic amplification of uncultured microorganisms

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Lasken, R.S.

    2007-01-01

    We in this study describe a new method for genomic studies of individual uncultured prokaryotic organisms, which was used for the isolation and partial genome sequencing of a soil archaeon. The diversity of Archaea in a soil sample was mapped by generating a clone library using group-specific pri......We in this study describe a new method for genomic studies of individual uncultured prokaryotic organisms, which was used for the isolation and partial genome sequencing of a soil archaeon. The diversity of Archaea in a soil sample was mapped by generating a clone library using group......-specific primers in combination with a terminal restriction fragment length polymorphism profile. Intact cells were extracted from the environmental sample, and fluorescent in situ hybridization probing with Cy3-labeled probes designed from the clone library was subsequently used to detect the organisms...... of interest. Single cells with a bright fluorescent signal were isolated using a micromanipulator and the genome of the single isolated cells served as a template for multiple displacement amplification (MDA) using the Phi29 DNA polymerase. The generated MDA product was afterwards used for 16S rRNA gene...

  18. Molecular markers. Amplified fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2005-01-01

    Full Text Available Amplified Fragment Length Polymorphism molecular markers (AFLPs has been developed combining procedures of RFLPs and RAPDs molekular markers, i.e. the first step is restriction digestion of the genomic DNA that is followed by selective amplification of the restricted fragments. The advantage of the AFLP technique is that it allows rapid generation of a large number of reproducible markers. The reproducibility of AFLPs markers is assured by the use of restriction site-specific adapters and adapter-specific primers for PCR reaction. Only fragments containing the restriction site sequence plus the additional nucleotides will be amplified and the more selected nucleotides added on the primer sequence the fewer the number of fragments amplified by PCR. The amplified products are normally separated on a sequencing gel and visualized after exposure to X-ray film or by using fluorescent labeled primers. AFLP shave proven to be extremely proficient in revealing diversity at below the species level. A disadvantage of AFLP technique is that AFLPs are essentially a dominant marker system and not able to identify heterozygotes.

  19. Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Milbury Coren A

    2010-09-01

    Full Text Available Abstract Background Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters. Results In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes. Conclusions Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.

  20. Progress towards construction of a total restriction fragment map of a human chromosome.

    NARCIS (Netherlands)

    H. Vissing; F.G. Grosveld (Frank); E. Solomon; G. Moore; N. Lench; N. Shennan; R. Williamson

    1987-01-01

    textabstractWe present an approach to the construction of an overlapping restriction fragment map of a single human chromosome. A genomic cosmid library genome was constructed from a mouse-human hybrid cell line containing chromosome 17 as its only human genetic component. Cosmids containing human

  1. Biofilm function and variability in a hydrothermal ecosystem: insights from environmental genomes

    Science.gov (United States)

    Meyer-Dombard, D. R.; Raymond, J.; Shock, E. L.

    2007-12-01

    The ability to adapt to variable environmental conditions is key to survival for all organisms, but may be especially crucial to microorganisms in extreme environments such as hydrothermal systems. Streamer biofilm communities (SBCs) made up of thermophilic chemotrophic microorganisms are common in alkaline-chloride geothermal environments worldwide, but the in situ physiochemical growth parameters and requirements of SBCs are largely unknown [1]. Hot springs in Yellowstone National Park's alkaline geyser basins support SBC growth. However, despite the relative geochemical homogeneity of source pools and widespread ecosystem suitability in these regions (as indicated by energetic profiling [2]), SBCs are not ubiquitous in these ecosystems. The ability of hydrothermal systems to support the growth of SBCs, the relationship between these geochemically driven environments and the microbes that live there, and the function of individuals in these communities are aspects that are adressed here by applying environmental genomics. Analysis of 16S rRNA and total membrane lipid extracts have revealed that community composition of SBCs in "Bison Pool" varies as a function of changing environmental conditions along the outflow channel. In addition, a significant crenarchaeal component was discovered in the "Bison Pool" SBCs. In general, the SBC bacterial diversity triples while the archaeal component varies little (from 3 to 2 genera) in a 5-10°C gradient with distance from the source. While these SBCs are low in overall diversity, the majority of the taxa identified represent uncultured groups of Bacteria and Archaea. As a result, the community function of these taxa and their role in the formation of the biofilms is unknown. However, recent genomic analysis from environmental DNA affords insight into the roles of specific organisms within SBCs at "Bison Pool," and integration of these data with an extensive corresponding geochemical dataset may indicate shifting community

  2. Environmental whole-genome amplification to access microbial populations in contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, Carl B [Diversa Corporation; Wyborski, Denise L. [Diversa Corporation; Garcia, Joseph A. [Diversa Corporation; Podar, Mircea [ORNL; Chen, Wenqiong [Diversa Corporation; Chang, Sherman H. [Diversa Corporation; Chang, Hwai W. [Diversa Corporation; Watson, David B [ORNL; Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hazen, Terry [Lawrence Berkeley National Laboratory (LBNL); Keller, Martin [ORNL

    2006-05-01

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using {phi}29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2% genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small-subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9% of the sequences had significant similarities to known proteins, and 'clusters of orthologous groups' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  3. Environmental Whole-Genome Amplification to Access Microbial Diversity in Contaminated Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, C.B.; Wyborski, D.L.; Garcia, J.; Podar, M.; Chen, W.; Chang, S.H.; Chang, H.W.; Watson, D.; Brodie,E.I.; Hazen, T.C.; Keller, M.

    2005-12-10

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using ?29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2 percent genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9 percent of the sequences had significant similarities to known proteins, and ''clusters of orthologous groups'' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  4. Herbarium genomics

    DEFF Research Database (Denmark)

    Bakker, Freek T.; Lei, Di; Yu, Jiaying

    2016-01-01

    Herbarium genomics is proving promising as next-generation sequencing approaches are well suited to deal with the usually fragmented nature of archival DNA. We show that routine assembly of partial plastome sequences from herbarium specimens is feasible, from total DNA extracts and with specimens...... up to 146 years old. We use genome skimming and an automated assembly pipeline, Iterative Organelle Genome Assembly, that assembles paired-end reads into a series of candidate assemblies, the best one of which is selected based on likelihood estimation. We used 93 specimens from 12 different...... correlation between plastome coverage and nuclear genome size (C value) in our samples, but the range of C values included is limited. Finally, we conclude that routine plastome sequencing from herbarium specimens is feasible and cost-effective (compared with Sanger sequencing or plastome...

  5. Binning of shallowly sampled metagenomic sequence fragments reveals that low abundance bacteria play important roles in sulfur cycling and degradation of complex organic polymers in an acid mine drainage community

    Science.gov (United States)

    Dick, G. J.; Andersson, A.; Banfield, J. F.

    2007-12-01

    Our understanding of environmental microbiology has been greatly enhanced by community genome sequencing of DNA recovered directly the environment. Community genomics provides insights into the diversity, community structure, metabolic function, and evolution of natural populations of uncultivated microbes, thereby revealing dynamics of how microorganisms interact with each other and their environment. Recent studies have demonstrated the potential for reconstructing near-complete genomes from natural environments while highlighting the challenges of analyzing community genomic sequence, especially from diverse environments. A major challenge of shotgun community genome sequencing is identification of DNA fragments from minor community members for which only low coverage of genomic sequence is present. We analyzed community genome sequence retrieved from biofilms in an acid mine drainage (AMD) system in the Richmond Mine at Iron Mountain, CA, with an emphasis on identification and assembly of DNA fragments from low-abundance community members. The Richmond mine hosts an extensive, relatively low diversity subterranean chemolithoautotrophic community that is sustained entirely by oxidative dissolution of pyrite. The activity of these microorganisms greatly accelerates the generation of AMD. Previous and ongoing work in our laboratory has focused on reconstrucing genomes of dominant community members, including several bacteria and archaea. We binned contigs from several samples (including one new sample and two that had been previously analyzed) by tetranucleotide frequency with clustering by Self-Organizing Maps (SOM). The binning, evaluated by comparison with information from the manually curated assembly of the dominant organisms, was found to be very effective: fragments were correctly assigned with 95% accuracy. Improperly assigned fragments often contained sequences that are either evolutionarily constrained (e.g. 16S rRNA genes) or mobile elements that are

  6. Telomere Restriction Fragment (TRF) Analysis.

    Science.gov (United States)

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    While telomerase is expressed in ~90% of primary human tumors, most somatic tissue cells except transiently proliferating stem-like cells do not have detectable telomerase activity (Shay and Wright, 1996; Shay and Wright, 2001). Telomeres progressively shorten with each cell division in normal cells, including proliferating stem-like cells, due to the end replication (lagging strand synthesis) problem and other causes such as oxidative damage, therefore all somatic cells have limited cell proliferation capacity (Hayflick limit) (Hayflick and Moorhead, 1961; Olovnikov, 1973). The progressive telomere shortening eventually leads to growth arrest in normal cells, which is known as replicative senescence (Shay et al. , 1991). Once telomerase is activated in cancer cells, telomere length is stabilized by the addition of TTAGGG repeats to the end of chromosomes, thus enabling the limitless continuation of cell division (Shay and Wright, 1996; Shay and Wright, 2001). Therefore, the link between aging and cancer can be partially explained by telomere biology. There are many rapid and convenient methods to study telomere biology such as Telomere Restriction Fragment (TRF), Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015b) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this protocol paper we describe Telomere Restriction Fragment (TRF) analysis to determine average telomeric length of cells. Telomeric length can be indirectly measured by a technique called Telomere Restriction Fragment analysis (TRF). This technique is a modified Southern blot, which measures the heterogeneous range of telomere lengths in a cell population using the length distribution of the terminal restriction fragments (Harley et al. , 1990; Ouellette et al. , 2000). This method can be used in eukaryotic cells. The description below focuses on the measurement of human cancer cells telomere length. The principle of this method relies on the lack of

  7. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution.

    Science.gov (United States)

    Bolton, Melvin D; de Jonge, Ronnie; Inderbitzin, Patrik; Liu, Zhaohui; Birla, Keshav; Van de Peer, Yves; Subbarao, Krishna V; Thomma, Bart P H J; Secor, Gary A

    2014-01-01

    Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species. Published by Elsevier Inc.

  8. The complete mitochondrial genome sequence of Eimeria innocua (Eimeriidae, Coccidia, Apicomplexa).

    Science.gov (United States)

    Hafeez, Mian Abdul; Vrba, Vladimir; Barta, John Robert

    2016-07-01

    The complete mitochondrial genome of Eimeria innocua KR strain (Eimeriidae, Coccidia, Apicomplexa) was sequenced. This coccidium infects turkeys (Meleagris gallopavo), Bobwhite quails (Colinus virginianus), and Grey partridges (Perdix perdix). Genome organization and gene contents were comparable with other Eimeria spp. infecting galliform birds. The circular-mapping mt genome of E. innocua is 6247 bp in length with three protein-coding genes (cox1, cox3, and cytb), 19 gene fragments encoding large subunit (LSU) rRNA and 14 gene fragments encoding small subunit (SSU) rRNA. Like other Apicomplexa, no tRNA was encoded. The mitochondrial genome of E. innocua confirms its close phylogenetic affinities to Eimeria dispersa.

  9. Digital Droplet Multiple Displacement Amplification (ddMDA for Whole Genome Sequencing of Limited DNA Samples.

    Directory of Open Access Journals (Sweden)

    Minsoung Rhee

    Full Text Available Multiple displacement amplification (MDA is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet, ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.

  10. VirSorter: mining viral signal from microbial genomic data

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2015-05-01

    Full Text Available Viruses of microbes impact all ecosystems where microbes drive key energy and substrate transformations including the oceans, humans and industrial fermenters. However, despite this recognized importance, our understanding of viral diversity and impacts remains limited by too few model systems and reference genomes. One way to fill these gaps in our knowledge of viral diversity is through the detection of viral signal in microbial genomic data. While multiple approaches have been developed and applied for the detection of prophages (viral genomes integrated in a microbial genome, new types of microbial genomic data are emerging that are more fragmented and larger scale, such as Single-cell Amplified Genomes (SAGs of uncultivated organisms or genomic fragments assembled from metagenomic sequencing. Here, we present VirSorter, a tool designed to detect viral signal in these different types of microbial sequence data in both a reference-dependent and reference-independent manner, leveraging probabilistic models and extensive virome data to maximize detection of novel viruses. Performance testing shows that VirSorter’s prophage prediction capability compares to that of available prophage predictors for complete genomes, but is superior in predicting viral sequences outside of a host genome (i.e., from extrachromosomal prophages, lytic infections, or partially assembled prophages. Furthermore, VirSorter outperforms existing tools for fragmented genomic and metagenomic datasets, and can identify viral signal in assembled sequence (contigs as short as 3kb, while providing near-perfect identification (>95% Recall and 100% Precision on contigs of at least 10kb. Because VirSorter scales to large datasets, it can also be used in “reverse” to more confidently identify viral sequence in viral metagenomes by sorting away cellular DNA whether derived from gene transfer agents, generalized transduction or contamination. Finally, VirSorter is made

  11. VirSorter: mining viral signal from microbial genomic data

    Science.gov (United States)

    Roux, Simon; Enault, Francois; Hurwitz, Bonnie L.

    2015-01-01

    Viruses of microbes impact all ecosystems where microbes drive key energy and substrate transformations including the oceans, humans and industrial fermenters. However, despite this recognized importance, our understanding of viral diversity and impacts remains limited by too few model systems and reference genomes. One way to fill these gaps in our knowledge of viral diversity is through the detection of viral signal in microbial genomic data. While multiple approaches have been developed and applied for the detection of prophages (viral genomes integrated in a microbial genome), new types of microbial genomic data are emerging that are more fragmented and larger scale, such as Single-cell Amplified Genomes (SAGs) of uncultivated organisms or genomic fragments assembled from metagenomic sequencing. Here, we present VirSorter, a tool designed to detect viral signal in these different types of microbial sequence data in both a reference-dependent and reference-independent manner, leveraging probabilistic models and extensive virome data to maximize detection of novel viruses. Performance testing shows that VirSorter’s prophage prediction capability compares to that of available prophage predictors for complete genomes, but is superior in predicting viral sequences outside of a host genome (i.e., from extrachromosomal prophages, lytic infections, or partially assembled prophages). Furthermore, VirSorter outperforms existing tools for fragmented genomic and metagenomic datasets, and can identify viral signal in assembled sequence (contigs) as short as 3kb, while providing near-perfect identification (>95% Recall and 100% Precision) on contigs of at least 10kb. Because VirSorter scales to large datasets, it can also be used in “reverse” to more confidently identify viral sequence in viral metagenomes by sorting away cellular DNA whether derived from gene transfer agents, generalized transduction or contamination. Finally, VirSorter is made available through the i

  12. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    Science.gov (United States)

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  13. Comprehensive genomic characterization of campylobacter genus reveals some underlying mechanisms for its genomic diversification.

    Directory of Open Access Journals (Sweden)

    Yizhuang Zhou

    Full Text Available Campylobacter species.are phenotypically diverse in many aspects including host habitats and pathogenicities, which demands comprehensive characterization of the entire Campylobacter genus to study their underlying genetic diversification. Up to now, 34 Campylobacter strains have been sequenced and published in public databases, providing good opportunity to systemically analyze their genomic diversities. In this study, we first conducted genomic characterization, which includes genome-wide alignments, pan-genome analysis, and phylogenetic identification, to depict the genetic diversity of Campylobacter genus. Afterward, we improved the tetranucleotide usage pattern-based naïve Bayesian classifier to identify the abnormal composition fragments (ACFs, fragments with significantly different tetranucleotide frequency profiles from its genomic tetranucleotide frequency profiles including horizontal gene transfers (HGTs to explore the mechanisms for the genetic diversity of this organism. Finally, we analyzed the HGTs transferred via bacteriophage transductions. To our knowledge, this study is the first to use single nucleotide polymorphism information to construct liable microevolution phylogeny of 21 Campylobacter jejuni strains. Combined with the phylogeny of all the collected Campylobacter species based on genome-wide core gene information, comprehensive phylogenetic inference of all 34 Campylobacter organisms was determined. It was found that C. jejuni harbors a high fraction of ACFs possibly through intraspecies recombination, whereas other Campylobacter members possess numerous ACFs possibly via intragenus recombination. Furthermore, some Campylobacter strains have undergone significant ancient viral integration during their evolution process. The improved method is a powerful tool for bacterial genomic analysis. Moreover, the findings would provide useful information for future research on Campylobacter genus.

  14. Genome-Wide Single-Nucleotide Polymorphisms Discovery and High-Density Genetic Map Construction in Cauliflower Using Specific-Locus Amplified Fragment Sequencing

    Science.gov (United States)

    Zhao, Zhenqing; Gu, Honghui; Sheng, Xiaoguang; Yu, Huifang; Wang, Jiansheng; Huang, Long; Wang, Dan

    2016-01-01

    Molecular markers and genetic maps play an important role in plant genomics and breeding studies. Cauliflower is an important and distinctive vegetable; however, very few molecular resources have been reported for this species. In this study, a novel, specific-locus amplified fragment (SLAF) sequencing strategy was employed for large-scale single nucleotide polymorphism (SNP) discovery and high-density genetic map construction in a double-haploid, segregating population of cauliflower. A total of 12.47 Gb raw data containing 77.92 M pair-end reads were obtained after processing and 6815 polymorphic SLAFs between the two parents were detected. The average sequencing depths reached 52.66-fold for the female parent and 49.35-fold for the male parent. Subsequently, these polymorphic SLAFs were used to genotype the population and further filtered based on several criteria to construct a genetic linkage map of cauliflower. Finally, 1776 high-quality SLAF markers, including 2741 SNPs, constituted the linkage map with average data integrity of 95.68%. The final map spanned a total genetic length of 890.01 cM with an average marker interval of 0.50 cM, and covered 364.9 Mb of the reference genome. The markers and genetic map developed in this study could provide an important foundation not only for comparative genomics studies within Brassica oleracea species but also for quantitative trait loci identification and molecular breeding of cauliflower. PMID:27047515

  15. Binding-site assessment by virtual fragment screening.

    Directory of Open Access Journals (Sweden)

    Niu Huang

    2010-04-01

    Full Text Available The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock approximately 11,000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.

  16. An efficient approach to BAC based assembly of complex genomes.

    Science.gov (United States)

    Visendi, Paul; Berkman, Paul J; Hayashi, Satomi; Golicz, Agnieszka A; Bayer, Philipp E; Ruperao, Pradeep; Hurgobin, Bhavna; Montenegro, Juan; Chan, Chon-Kit Kenneth; Staňková, Helena; Batley, Jacqueline; Šimková, Hana; Doležel, Jaroslav; Edwards, David

    2016-01-01

    There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate 'gold' reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes.

  17. An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the Expected Fragment Starting-Point and Coverage Profile.

    Science.gov (United States)

    Prakash, Celine; Haeseler, Arndt Von

    2017-03-01

    RNA sequencing (RNA-seq) has emerged as the method of choice for measuring the expression of RNAs in a given cell population. In most RNA-seq technologies, sequencing the full length of RNA molecules requires fragmentation into smaller pieces. Unfortunately, the issue of nonuniform sequencing coverage across a genomic feature has been a concern in RNA-seq and is attributed to biases for certain fragments in RNA-seq library preparation and sequencing. To investigate the expected coverage obtained from fragmentation, we develop a simple fragmentation model that is independent of bias from the experimental method and is not specific to the transcript sequence. Essentially, we enumerate all configurations for maximal placement of a given fragment length, F, on transcript length, T, to represent every possible fragmentation pattern, from which we compute the expected coverage profile across a transcript. We extend this model to incorporate general empirical attributes such as read length, fragment length distribution, and number of molecules of the transcript. We further introduce the fragment starting-point, fragment coverage, and read coverage profiles. We find that the expected profiles are not uniform and that factors such as fragment length to transcript length ratio, read length to fragment length ratio, fragment length distribution, and number of molecules influence the variability of coverage across a transcript. Finally, we explore a potential application of the model where, with simulations, we show that it is possible to correctly estimate the transcript copy number for any transcript in the RNA-seq experiment.

  18. Repetitive elements may comprise over two-thirds of the human genome.

    Directory of Open Access Journals (Sweden)

    A P Jason de Koning

    2011-12-01

    Full Text Available Transposable elements (TEs are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo "clouds". We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%-69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM, to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∼25 bp. Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed "element-specific" P-clouds (ESPs to identify novel Alu and MIR SINE elements, and using it we identified ∼100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed.

  19. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    Science.gov (United States)

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  1. Quantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health.

    Science.gov (United States)

    Hazkani-Covo, Einat; Martin, William F

    2017-05-01

    Fragments of organelle genomes are often found as insertions in nuclear DNA. These fragments of mitochondrial DNA (numts) and plastid DNA (nupts) are ubiquitous components of eukaryotic genomes. They are, however, often edited out during the genome assembly process, leading to systematic underestimation of their frequency. Numts and nupts, once inserted, can become further fragmented through subsequent insertion of mobile elements or other recombinational events that disrupt the continuity of the inserted sequence relative to the genuine organelle DNA copy. Because numts and nupts are typically identified through sequence comparison tools such as BLAST, disruption of insertions into smaller fragments can lead to systematic overestimation of numt and nupt frequencies. Accurate identification of numts and nupts is important, however, both for better understanding of their role during evolution, and for monitoring their increasingly evident role in human disease. Human populations are polymorphic for 141 numt loci, five numts are causal to genetic disease, and cancer genomic studies are revealing an abundance of numts associated with tumor progression. Here, we report investigation of salient parameters involved in obtaining accurate estimates of numt and nupt numbers in genome sequence data. Numts and nupts from 44 sequenced eukaryotic genomes reveal lineage-specific differences in the number, relative age and frequency of insertional events as well as lineage-specific dynamics of their postinsertional fragmentation. Our findings outline the main technical parameters influencing accurate identification and frequency estimation of numts in genomic studies pertinent to both evolution and human health. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Genome Size Diversity in Lilium (Liliaceae Is Correlated with Karyotype and Environmental Traits

    Directory of Open Access Journals (Sweden)

    Yun-peng Du

    2017-07-01

    Full Text Available Genome size (GS diversity is of fundamental biological importance. The occurrence of giant genomes in angiosperms is restricted to just a few lineages in the analyzed genome size of plant species so far. It is still an open question whether GS diversity is shaped by neutral or natural selection. The genus Lilium, with giant genomes, is phylogenetically and horticulturally important and is distributed throughout the northern hemisphere. GS diversity in Lilium and the underlying evolutionary mechanisms are poorly understood. We performed a comprehensive study involving phylogenetically independent analysis on 71 species to explore the diversity and evolution of GS and its correlation with karyological and environmental traits within Lilium (including Nomocharis. The strong phylogenetic signal detected for GS in the genus provides evidence consistent with that the repetitive DNA may be the primary contributors to the GS diversity, while the significant positive relationships detected between GS and the haploid chromosome length (HCL provide insights into patterns of genome evolution. The relationships between GS and karyotypes indicate that ancestral karyotypes of Lilium are likely to have exhibited small genomes, low diversity in centromeric index (CVCI values and relatively high relative variation in chromosome length (CVCL values. Significant relationships identified between GS and annual temperature and between GS and annual precipitation suggest that adaptation to habitat strongly influences GS diversity. We conclude that GS in Lilium is shaped by both neutral (genetic drift and adaptive evolution. These findings will have important consequences for understanding the evolution of giant plant genomes, and exploring the role of repetitive DNA fraction and chromosome changes in a plant group with large genomes and conservation of chromosome number.

  3. Homology of yeast photoreactivating gene fragment with human genomic digests

    International Nuclear Information System (INIS)

    Meechan, P.J.; Milam, K.M.; Cleaver, J.E.

    1984-01-01

    Enzymatic photoreactivation of UV-induced DNA lesions has been demonstrated for a variety of prokaryotic and eukaryotic organisms. Its presence in placental mammals, however, has not been clearly established. The authors attempted to resolve this question by assaying for the presence (or absence) of sequences in human DNA complimentary to a fragment of the photoreactivating gene from S. cerevisiae that has recently been cloned. In another study, DNA from human, chick E. coli and yeast cells was digested with either HindIII of BglII, electrophoresed on a 0.5% agarose gel, transferred (Southern blot) to a nylon membrane and probed for homology against a Sau3A restriction fragment from S. cerevisiae that compliments phr/sup -/ cells. Hybridization to human DNA digests was observed only under relatively non-stringent conditions indicating the gene is not conserved in placental mammals. These results are correlated with current literature data concerning photoreactivating enzymes

  4. Site-specific genomic (SSG and random domain-localized (RDL mutagenesis in yeast

    Directory of Open Access Journals (Sweden)

    Honigberg Saul M

    2004-04-01

    Full Text Available Abstract Background A valuable weapon in the arsenal available to yeast geneticists is the ability to introduce specific mutations into yeast genome. In particular, methods have been developed to introduce deletions into the yeast genome using PCR fragments. These methods are highly efficient because they do not require cloning in plasmids. Results We have modified the existing method for introducing deletions in the yeast (S. cerevisiae genome using PCR fragments in order to target point mutations to this genome. We describe two PCR-based methods for directing point mutations into the yeast genome such that the final product contains no other disruptions. In the first method, site-specific genomic (SSG mutagenesis, a specific point mutation is targeted into the genome. In the second method, random domain-localized (RDL mutagenesis, a mutation is introduced at random within a specific domain of a gene. Both methods require two sequential transformations, the first transformation integrates the URA3 marker into the targeted locus, and the second transformation replaces URA3 with a PCR fragment containing one or a few mutations. This PCR fragment is synthesized using a primer containing a mutation (SSG mutagenesis or is synthesized by error-prone PCR (RDL mutagenesis. In SSG mutagenesis, mutations that are proximal to the URA3 site are incorporated at higher frequencies than distal mutations, however mutations can be introduced efficiently at distances of at least 500 bp from the URA3 insertion. In RDL mutagenesis, to ensure that incorporation of mutations occurs at approximately equal frequencies throughout the targeted region, this region is deleted at the same time URA3 is integrated. Conclusion SSG and RDL mutagenesis allow point mutations to be easily and efficiently incorporated into the yeast genome without disrupting the native locus.

  5. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  6. Toward a physical map of the genome of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Coulson, A.; Sulston, J.; Brenner, S.; Karn, J.

    1986-01-01

    A technique for digital characterization and comparison of DNA fragments, using restriction enzymes, is described. The technique is being applied to fragments from the nematode Caenorhabditis elegans (i) to facilitate cross-indexing of clones emanating from different laboratories and (ii) to construct a physical map of the genome. Eight hundred sixty clusters of clones, from 35 to 350 kilobases long and totaling about 60% of the genome, have been characterized

  7. Use of genomic models to study genetic control of environmental variance

    DEFF Research Database (Denmark)

    Yang, Ye; Christensen, Ole Fredslund; Sorensen, Daniel

    2011-01-01

    . The genomic model commonly found in the literature, with marker effects affecting mean only, is extended to investigate putative effects at the level of the environmental variance. Two classes of models are proposed and their behaviour, studied using simulated data, indicates that they are capable...... of detecting genetic variation at the level of mean and variance. Implementation is via Markov chain Monte Carlo (McMC) algorithms. The models are compared in terms of a measure of global fit, in their ability to detect QTL effects and in terms of their predictive power. The models are subsequently fitted...... to back fat thickness data in pigs. The analysis of back fat thickness shows that the data support genomic models with effects on the mean but not on the variance. The relative sizes of experiment necessary to detect effects on mean and variance is discussed and an extension of the McMC algorithm...

  8. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations

    KAUST Repository

    Jiang, Caifu; Mithani, Aziz; Belfield, Eric J.; Mott, Richard; Hurst, Laurence D.; Harberd, Nicholas P.

    2014-01-01

    Evolution is fueled by phenotypic diversity, which is in turn due to underlying heritable genetic (and potentially epigenetic) variation. While environmental factors are well known to influence the accumulation of novel variation in microorganisms and human cancer cells, the extent to which the natural environment influences the accumulation of novel variation in plants is relatively unknown. Here we use whole-genome and whole-methylome sequencing to test if a specific environmental stress (high-salinity soil) changes the frequency and molecular profile of accumulated mutations and epimutations (changes in cytosine methylation status) in mutation accumulation (MA) lineages of Arabidopsis thaliana. We first show that stressed lineages accumulate ∼100% more mutations, and that these mutations exhibit a distinctive molecular mutational spectrum (specific increases in relative frequency of transversion and insertion/deletion [indel] mutations). We next show that stressed lineages accumulate ∼45% more differentially methylated cytosine positions (DMPs) at CG sites (CG-DMPs) than controls, and also show that while many (∼75%) of these CG-DMPs are inherited, some can be lost in subsequent generations. Finally, we show that stress-associated CG-DMPs arise more frequently in genic than in nongenic regions of the genome. We suggest that commonly encountered natural environmental stresses can accelerate the accumulation and change the profiles of novel inherited variants in plants. Our findings are significant because stress exposure is common among plants in the wild, and they suggest that environmental factors may significantly alter the rates and patterns of incidence of the inherited novel variants that fuel plant evolution.

  9. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations

    KAUST Repository

    Jiang, Caifu

    2014-10-14

    Evolution is fueled by phenotypic diversity, which is in turn due to underlying heritable genetic (and potentially epigenetic) variation. While environmental factors are well known to influence the accumulation of novel variation in microorganisms and human cancer cells, the extent to which the natural environment influences the accumulation of novel variation in plants is relatively unknown. Here we use whole-genome and whole-methylome sequencing to test if a specific environmental stress (high-salinity soil) changes the frequency and molecular profile of accumulated mutations and epimutations (changes in cytosine methylation status) in mutation accumulation (MA) lineages of Arabidopsis thaliana. We first show that stressed lineages accumulate ∼100% more mutations, and that these mutations exhibit a distinctive molecular mutational spectrum (specific increases in relative frequency of transversion and insertion/deletion [indel] mutations). We next show that stressed lineages accumulate ∼45% more differentially methylated cytosine positions (DMPs) at CG sites (CG-DMPs) than controls, and also show that while many (∼75%) of these CG-DMPs are inherited, some can be lost in subsequent generations. Finally, we show that stress-associated CG-DMPs arise more frequently in genic than in nongenic regions of the genome. We suggest that commonly encountered natural environmental stresses can accelerate the accumulation and change the profiles of novel inherited variants in plants. Our findings are significant because stress exposure is common among plants in the wild, and they suggest that environmental factors may significantly alter the rates and patterns of incidence of the inherited novel variants that fuel plant evolution.

  10. Visualization of genome signatures of eukaryote genomes by batch-learning self-organizing map with a special emphasis on Drosophila genomes.

    Science.gov (United States)

    Abe, Takashi; Hamano, Yuta; Ikemura, Toshimichi

    2014-01-01

    A strategy of evolutionary studies that can compare vast numbers of genome sequences is becoming increasingly important with the remarkable progress of high-throughput DNA sequencing methods. We previously established a sequence alignment-free clustering method "BLSOM" for di-, tri-, and tetranucleotide compositions in genome sequences, which can characterize sequence characteristics (genome signatures) of a wide range of species. In the present study, we generated BLSOMs for tetra- and pentanucleotide compositions in approximately one million sequence fragments derived from 101 eukaryotes, for which almost complete genome sequences were available. BLSOM recognized phylotype-specific characteristics (e.g., key combinations of oligonucleotide frequencies) in the genome sequences, permitting phylotype-specific clustering of the sequences without any information regarding the species. In our detailed examination of 12 Drosophila species, the correlation between their phylogenetic classification and the classification on the BLSOMs was observed to visualize oligonucleotides diagnostic for species-specific clustering.

  11. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts

    KAUST Repository

    Huang, Chao-Li; Pu, Pei-Hua; Huang, Hao-Jen; Sung, Huang-Mo; Liaw, Hung-Jiun; Chen, Yi-Min; Chen, Chien-Ming; Huang, Ming-Ban; Osada, Naoki; Gojobori, Takashi; Pai, Tun-Wen; Chen, Yu-Tin; Hwang, Chi-Chuan; Chiang, Tzen-Yuh

    2015-01-01

    Background: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Results: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Conclusion: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification. © Huang et al.

  12. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts

    KAUST Repository

    Huang, Chao-Li

    2015-03-15

    Background: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Results: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Conclusion: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification. © Huang et al.

  13. Genomic DNA sequence and cytosine methylation changes of adult rice leaves after seeds space flight

    Science.gov (United States)

    Shi, Jinming

    In this study, cytosine methylation on CCGG site and genomic DNA sequence changes of adult leaves of rice after seeds space flight were detected by methylation-sensitive amplification polymorphism (MSAP) and Amplified fragment length polymorphism (AFLP) technique respectively. Rice seeds were planted in the trial field after 4 days space flight on the shenzhou-6 Spaceship of China. Adult leaves of space-treated rice including 8 plants chosen randomly and 2 plants with phenotypic mutation were used for AFLP and MSAP analysis. Polymorphism of both DNA sequence and cytosine methylation were detected. For MSAP analysis, the average polymorphic frequency of the on-ground controls, space-treated plants and mutants are 1.3%, 3.1% and 11% respectively. For AFLP analysis, the average polymorphic frequencies are 1.4%, 2.9%and 8%respectively. Total 27 and 22 polymorphic fragments were cloned sequenced from MSAP and AFLP analysis respectively. Nine of the 27 fragments from MSAP analysis show homology to coding sequence. For the 22 polymorphic fragments from AFLP analysis, no one shows homology to mRNA sequence and eight fragments show homology to repeat region or retrotransposon sequence. These results suggest that although both genomic DNA sequence and cytosine methylation status can be effected by space flight, the genomic region homology to the fragments from genome DNA and cytosine methylation analysis were different.

  14. The evolutionary value of recombination is constrained by genome modularity.

    Directory of Open Access Journals (Sweden)

    Darren P Martin

    2005-10-01

    Full Text Available Genetic recombination is a fundamental evolutionary mechanism promoting biological adaptation. Using engineered recombinants of the small single-stranded DNA plant virus, Maize streak virus (MSV, we experimentally demonstrate that fragments of genetic material only function optimally if they reside within genomes similar to those in which they evolved. The degree of similarity necessary for optimal functionality is correlated with the complexity of intragenomic interaction networks within which genome fragments must function. There is a striking correlation between our experimental results and the types of MSV recombinants that are detectable in nature, indicating that obligatory maintenance of intragenome interaction networks strongly constrains the evolutionary value of recombination for this virus and probably for genomes in general.

  15. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics

    Energy Technology Data Exchange (ETDEWEB)

    Raisuddin, Sheikh [Department of Chemistry and the National Research Lab of Marine Molecular and Environmental Bioscience, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Kwok, Kevin W.H. [Swire Institute of Marine Science, Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam, Hong Kong (China); Leung, Kenneth M.Y. [Swire Institute of Marine Science, Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam, Hong Kong (China); Schlenk, Daniel [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Lee, Jae-Seong [Department of Chemistry and the National Research Lab of Marine Molecular and Environmental Bioscience, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)]. E-mail: jslee2@hanyang.ac.kr

    2007-07-20

    There is an increasing body of evidence to support the significant role of invertebrates in assessing impacts of environmental contaminants on marine ecosystems. Therefore, in recent years massive efforts have been directed to identify viable and ecologically relevant invertebrate toxicity testing models. Tigriopus, a harpacticoid copepod has a number of promising characteristics which make it a candidate worth consideration in such efforts. Tigriopus and other copepods are widely distributed and ecologically important organisms. Their position in marine food chains is very prominent, especially with regard to the transfer of energy. Copepods also play an important role in the transportation of aquatic pollutants across the food chains. In recent years there has been a phenomenal increase in the knowledge base of Tigriopus spp., particularly in the areas of their ecology, geophylogeny, genomics and their behavioural, biochemical and molecular responses following exposure to environmental stressors and chemicals. Sequences of a number of important marker genes have been studied in various Tigriopus spp., notably T. californicus and T. japonicus. These genes belong to normal biophysiological functions (e.g. electron transport system enzymes) as well as stress and toxic chemical exposure responses (heat shock protein 20, glutathione reductase, glutathione S-transferase). Recently, 40,740 expressed sequenced tags (ESTs) from T. japonicus, have been sequenced and of them, 5673 ESTs showed significant hits (E-value, >1.0E-05) to the red flour beetle Tribolium genome database. Metals and organic pollutants such as antifouling agents, pesticides, polycyclic aromatic hydrocarbons (PAH) and polychrlorinated biphenyls (PCB) have shown reproducible biological responses when tested in Tigriopus spp. Promising results have been obtained when Tigriopus was used for assessment of risk associated with exposure to endocrine-disrupting chemicals (EDCs). Application of environmental

  16. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics

    International Nuclear Information System (INIS)

    Raisuddin, Sheikh; Kwok, Kevin W.H.; Leung, Kenneth M.Y.; Schlenk, Daniel; Lee, Jae-Seong

    2007-01-01

    There is an increasing body of evidence to support the significant role of invertebrates in assessing impacts of environmental contaminants on marine ecosystems. Therefore, in recent years massive efforts have been directed to identify viable and ecologically relevant invertebrate toxicity testing models. Tigriopus, a harpacticoid copepod has a number of promising characteristics which make it a candidate worth consideration in such efforts. Tigriopus and other copepods are widely distributed and ecologically important organisms. Their position in marine food chains is very prominent, especially with regard to the transfer of energy. Copepods also play an important role in the transportation of aquatic pollutants across the food chains. In recent years there has been a phenomenal increase in the knowledge base of Tigriopus spp., particularly in the areas of their ecology, geophylogeny, genomics and their behavioural, biochemical and molecular responses following exposure to environmental stressors and chemicals. Sequences of a number of important marker genes have been studied in various Tigriopus spp., notably T. californicus and T. japonicus. These genes belong to normal biophysiological functions (e.g. electron transport system enzymes) as well as stress and toxic chemical exposure responses (heat shock protein 20, glutathione reductase, glutathione S-transferase). Recently, 40,740 expressed sequenced tags (ESTs) from T. japonicus, have been sequenced and of them, 5673 ESTs showed significant hits (E-value, >1.0E-05) to the red flour beetle Tribolium genome database. Metals and organic pollutants such as antifouling agents, pesticides, polycyclic aromatic hydrocarbons (PAH) and polychrlorinated biphenyls (PCB) have shown reproducible biological responses when tested in Tigriopus spp. Promising results have been obtained when Tigriopus was used for assessment of risk associated with exposure to endocrine-disrupting chemicals (EDCs). Application of environmental

  17. Human Contamination in Public Genome Assemblies.

    Science.gov (United States)

    Kryukov, Kirill; Imanishi, Tadashi

    2016-01-01

    Contamination in genome assembly can lead to wrong or confusing results when using such genome as reference in sequence comparison. Although bacterial contamination is well known, the problem of human-originated contamination received little attention. In this study we surveyed 45,735 available genome assemblies for evidence of human contamination. We used lineage specificity to distinguish between contamination and conservation. We found that 154 genome assemblies contain fragments that with high confidence originate as contamination from human DNA. Majority of contaminating human sequences were present in the reference human genome assembly for over a decade. We recommend that existing contaminated genomes should be revised to remove contaminated sequence, and that new assemblies should be thoroughly checked for presence of human DNA before submitting them to public databases.

  18. Functional genomics of tomato

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... 1Repository of Tomato Genomics Resources, Department of Plant Sciences, School .... Due to its position at the crossroads of Sanger's sequencing .... replacement for the microarray-based expression profiling. .... during RNA fragmentation step prior to library construction, ...... tomato pollen as a test case.

  19. Comparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages.

    Science.gov (United States)

    Leushkin, Evgeny V; Logacheva, Maria D; Penin, Aleksey A; Sutormin, Roman A; Gerasimov, Evgeny S; Kochkina, Galina A; Ivanushkina, Natalia E; Vasilenko, Oleg V; Kondrashov, Alexey S; Ozerskaya, Svetlana M

    2015-05-21

    Pseudogymnoascus spp. is a wide group of fungi lineages in the family Pseudorotiaceae including an aggressive pathogen of bats P. destructans. Although several lineages of P. spp. were shown to produce ascospores in culture, the vast majority of P. spp. demonstrates no evidence of sexual reproduction. P. spp. can tolerate a wide range of different temperatures and salinities and can survive even in permafrost layer. Adaptability of P. spp. to different environments is accompanied by extremely variable morphology and physiology. We sequenced genotypes of 14 strains of P. spp., 5 of which were extracted from permafrost, 1 from a cryopeg, a layer of unfrozen ground in permafrost, and 8 from temperate surface environments. All sequenced genotypes are haploid. Nucleotide diversity among these genomes is very high, with a typical evolutionary distance at synonymous sites dS ≈ 0.5, suggesting that the last common ancestor of these strains lived >50 Mya. The strains extracted from permafrost do not form a separate clade. Instead, each permafrost strain has close relatives from temperate environments. We observed a strictly clonal population structure with no conflicting topologies for ~99% of genome sequences. However, there is a number of short (~100-10,000 nt) genomic segments with the total length of 67.6 Kb which possess phylogenetic patterns strikingly different from the rest of the genome. The most remarkable case is a MAT-locus, which has 2 distinct alleles interspersed along the whole-genome phylogenetic tree. Predominantly clonal structure of genome sequences is consistent with the observations that sexual reproduction is rare in P. spp. Small number of regions with noncanonical phylogenies seem to arise due to some recombination events between derived lineages of P. spp., with MAT-locus being transferred on multiple occasions. All sequenced strains have heterothallic configuration of MAT-locus.

  20. Genome-Wide Locations of Potential Epimutations Associated with Environmentally Induced Epigenetic Transgenerational Inheritance of Disease Using a Sequential Machine Learning Prediction Approach.

    Science.gov (United States)

    Haque, M Muksitul; Holder, Lawrence B; Skinner, Michael K

    2015-01-01

    Environmentally induced epigenetic transgenerational inheritance of disease and phenotypic variation involves germline transmitted epimutations. The primary epimutations identified involve altered differential DNA methylation regions (DMRs). Different environmental toxicants have been shown to promote exposure (i.e., toxicant) specific signatures of germline epimutations. Analysis of genomic features associated with these epimutations identified low-density CpG regions (machine learning computational approach to predict all potential epimutations in the genome. A number of previously identified sperm epimutations were used as training sets. A novel machine learning approach using a sequential combination of Active Learning and Imbalance Class Learner analysis was developed. The transgenerational sperm epimutation analysis identified approximately 50K individual sites with a 1 kb mean size and 3,233 regions that had a minimum of three adjacent sites with a mean size of 3.5 kb. A select number of the most relevant genomic features were identified with the low density CpG deserts being a critical genomic feature of the features selected. A similar independent analysis with transgenerational somatic cell epimutation training sets identified a smaller number of 1,503 regions of genome-wide predicted sites and differences in genomic feature contributions. The predicted genome-wide germline (sperm) epimutations were found to be distinct from the predicted somatic cell epimutations. Validation of the genome-wide germline predicted sites used two recently identified transgenerational sperm epimutation signature sets from the pesticides dichlorodiphenyltrichloroethane (DDT) and methoxychlor (MXC) exposure lineage F3 generation. Analysis of this positive validation data set showed a 100% prediction accuracy for all the DDT-MXC sperm epimutations. Observations further elucidate the genomic features associated with transgenerational germline epimutations and identify a genome

  1. Epigenetic regulation of ageing: linking environmental inputs to genomic stability

    Science.gov (United States)

    Benayoun, Bérénice A.; Pollina, Elizabeth A.; Brunet, Anne

    2016-01-01

    Preface Ageing is affected by both genetic and non-genetic factors. Here, we review the chromatin-based epigenetic changes that occur during ageing, the role of chromatin modifiers in modulating lifespan and the importance of epigenetic signatures as biomarkers of ageing. We also discuss how epigenome remodeling by environmental stimuli impacts several aspects of transcription and genomic stability, with important consequences on longevity, and outline epigenetic differences between the ‘mortal soma’ and the ‘immortal germline’. Finally, we discuss the inheritance of ageing characteristics and potential chromatin-based strategies to delay or reverse hallmarks of ageing or age-related diseases. PMID:26373265

  2. Bird diversity along a gradient of fragmented habitats of the Cerrado.

    Science.gov (United States)

    Jesus, Shayana DE; Pedro, Wagner A; Bispo, Arthur A

    2018-01-01

    Understanding the factors that affect biodiversity is of central interest to ecology, and essential to species conservation and ecosystems management. We sampled bird communities in 17 forest fragments in the Cerrado biome, the Central-West region of Brazil. We aimed to know the communities structure pattern and the influence of geographical distance and environmental variables on them, along a gradient of fragmented habitats at both local and landscape scales. Eight structural variables of the fragments served as an environmental distance measurement at the local scale while five metrics served as an environmental distance measurement at the landscape scale. Species presence-absence data were used to calculate the dissimilarity index. Beta diversity was calculated using three indices (βsim, βnes and βsor), representing the spatial species turnover, nestedness and total beta diversity, respectively. Spatial species turnover was the predominant pattern in the structure of the communities. Variations in beta diversity were explained only by the environmental variables of the landscape with spatial configuration being more important than the composition. This fact indicates that, in Cerrado of Goiás avian communities structure, deterministic ecological processes associated to differences in species responses to landscape fragmentation are more important than stochastic processes driven by species dispersal.

  3. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    Energy Technology Data Exchange (ETDEWEB)

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J. (UWASH); (Emerald)

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  4. Note: Primer Amysat 001; Fragment size is 211bp

    Indian Academy of Sciences (India)

    Renuka

    Bhandara : Lanes 1–14 represent different strains of Bhandara Ecorace. Note: Primer Amysat 001; Fragment size is 211bp. Fig. 1. SSR profiles generated from genomic DNA of 16 strains from different individuals of (A.L, D. TV, D. BV, Modal, Sukinda, Raily, Bhandara) ecoraces of tasar silk worm, Antheraea mylitta using the.

  5. Modulation of the Genome and Epigenome of Individuals Susceptible to Autism by Environmental Risk Factors

    Directory of Open Access Journals (Sweden)

    Costas Koufaris

    2015-04-01

    Full Text Available Diverse environmental factors have been implicated with the development of autism spectrum disorders (ASD. Genetic factors also underlie the differential vulnerability to environmental risk factors of susceptible individuals. Currently the way in which environmental risk factors interact with genetic factors to increase the incidence of ASD is not well understood. A greater understanding of the metabolic, cellular, and biochemical events involved in gene x environment interactions in ASD would have important implications for the prevention and possible treatment of the disorder. In this review we discuss various established and more alternative processes through which environmental factors implicated in ASD can modulate the genome and epigenome of genetically-susceptible individuals.

  6. Causes of genome instability

    DEFF Research Database (Denmark)

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel

    2015-01-01

    function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make......Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus...

  7. DNA methylation alteration is a major consequence of genome doubling in autotetraploid Brassica rapa

    Directory of Open Access Journals (Sweden)

    Xu Yanhao

    2017-01-01

    Full Text Available Polyploids are typically classified as autopolyploids or allopolyploids based on the origin of their chromosome sets. Autopolyploidy is much more common than traditionally believed. Allopolyploidization, accompanied by genomic and transcriptomic changes, has been well investigated. In this study, genetic, DNA methylation and gene expression changes in autotetraploid Brassica rapa were investigated. No genetic alteration was detected using an amplified fragment length polymorphism (AFLP approach. Using a cDNA-AFLP approach, approximately 0.58% of fragments showed changes in gene expression in autotetraploid B. rapa. The methylation-sensitive amplification polymorphism (MSAP analysis showed that approximately 1.7% of the fragments underwent DNA methylation changes upon genome doubling, with hypermethylation and demethylation changes equally affected. Fragments displaying changes in gene expression and methylation status were isolated and then sequenced and characterized, respectively. This study showed that variation in cytosine methylation is a major consequence of genome doubling in autotetraploid Brassica rapa.

  8. Morphological, Genome and Gene Expression Changes in Newly Induced Autopolyploid Chrysanthemum lavandulifolium (Fisch. ex Trautv. Makino

    Directory of Open Access Journals (Sweden)

    Ri Gao

    2016-10-01

    Full Text Available Autopolyploidy is widespread in higher plants and plays an important role in the process of evolution. The present study successfully induced autotetraploidys from Chrysanthemum lavandulifolium by colchicine. The plant morphology, genomic, transcriptomic, and epigenetic changes between tetraploid and diploid plants were investigated. Ligulate flower, tubular flower and leaves of tetraploid plants were greater than those of the diploid plants. Compared with diploid plants, the genome changed as a consequence of polyploidization in tetraploid plants, namely, 1.1% lost fragments and 1.6% novel fragments occurred. In addition, DNA methylation increased after genome doubling in tetraploid plants. Among 485 common transcript-derived fragments (TDFs, which existed in tetraploid and diploid progenitors, 62 fragments were detected as differentially expressed TDFs, 6.8% of TDFs exhibited up-regulated gene expression in the tetraploid plants and 6.0% exhibited down-regulation. The present study provides a reference for further studying the autopolyploidization role in the evolution of C. lavandulifolium. In conclusion, the autopolyploid C. lavandulifolium showed a global change in morphology, genome and gene expression compared with corresponding diploid.

  9. [Genome editing of industrial microorganism].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  10. Genome-Wide Locations of Potential Epimutations Associated with Environmentally Induced Epigenetic Transgenerational Inheritance of Disease Using a Sequential Machine Learning Prediction Approach.

    Directory of Open Access Journals (Sweden)

    M Muksitul Haque

    Full Text Available Environmentally induced epigenetic transgenerational inheritance of disease and phenotypic variation involves germline transmitted epimutations. The primary epimutations identified involve altered differential DNA methylation regions (DMRs. Different environmental toxicants have been shown to promote exposure (i.e., toxicant specific signatures of germline epimutations. Analysis of genomic features associated with these epimutations identified low-density CpG regions (<3 CpG / 100bp termed CpG deserts and a number of unique DNA sequence motifs. The rat genome was annotated for these and additional relevant features. The objective of the current study was to use a machine learning computational approach to predict all potential epimutations in the genome. A number of previously identified sperm epimutations were used as training sets. A novel machine learning approach using a sequential combination of Active Learning and Imbalance Class Learner analysis was developed. The transgenerational sperm epimutation analysis identified approximately 50K individual sites with a 1 kb mean size and 3,233 regions that had a minimum of three adjacent sites with a mean size of 3.5 kb. A select number of the most relevant genomic features were identified with the low density CpG deserts being a critical genomic feature of the features selected. A similar independent analysis with transgenerational somatic cell epimutation training sets identified a smaller number of 1,503 regions of genome-wide predicted sites and differences in genomic feature contributions. The predicted genome-wide germline (sperm epimutations were found to be distinct from the predicted somatic cell epimutations. Validation of the genome-wide germline predicted sites used two recently identified transgenerational sperm epimutation signature sets from the pesticides dichlorodiphenyltrichloroethane (DDT and methoxychlor (MXC exposure lineage F3 generation. Analysis of this positive validation

  11. Who controls the logistics emissions? Challenges in making fragmented supply chains environmentally sustainable from logistics service providers’ perspective

    DEFF Research Database (Denmark)

    Abbasi, Maisam; Sternberg, Henrik; Nilsson, Fredrik

    2014-01-01

    that impact the cost and time requirements from customers of logistics services are not yet a reality. Research limitations/implications (if applicable) This paper implies that LSP sustainability cannot be investigated in isolation if a company does not manage proprietary resources. Practical implications (if......Purpose The purpose of this article is to explore the environmental impact of Logistics Service Provider (LSP) activities in the light of increased customer attention and fragmentation of the industry. It also explores to what extent the LSPs can actually monitor the environmental impact...... of logistics activities in the supply chain? Design/methodology/approach The methodology of this paper is a literature review, a qualitative interview survey, and three case studies. A framework on sustainability challenges in supply chains derived from the literature is used to structure and analyze...

  12. GAAP: Genome-organization-framework-Assisted Assembly Pipeline for prokaryotic genomes.

    Science.gov (United States)

    Yuan, Lina; Yu, Yang; Zhu, Yanmin; Li, Yulai; Li, Changqing; Li, Rujiao; Ma, Qin; Siu, Gilman Kit-Hang; Yu, Jun; Jiang, Taijiao; Xiao, Jingfa; Kang, Yu

    2017-01-25

    Next-generation sequencing (NGS) technologies have greatly promoted the genomic study of prokaryotes. However, highly fragmented assemblies due to short reads from NGS are still a limiting factor in gaining insights into the genome biology. Reference-assisted tools are promising in genome assembly, but tend to result in false assembly when the assigned reference has extensive rearrangements. Herein, we present GAAP, a genome assembly pipeline for scaffolding based on core-gene-defined Genome Organizational Framework (cGOF) described in our previous study. Instead of assigning references, we use the multiple-reference-derived cGOFs as indexes to assist in order and orientation of the scaffolds and build a skeleton structure, and then use read pairs to extend scaffolds, called local scaffolding, and distinguish between true and chimeric adjacencies in the scaffolds. In our performance tests using both empirical and simulated data of 15 genomes in six species with diverse genome size, complexity, and all three categories of cGOFs, GAAP outcompetes or achieves comparable results when compared to three other reference-assisted programs, AlignGraph, Ragout and MeDuSa. GAAP uses both cGOF and pair-end reads to create assemblies in genomic scale, and performs better than the currently available reference-assisted assembly tools as it recovers more assemblies and makes fewer false locations, especially for species with extensive rearranged genomes. Our method is a promising solution for reconstruction of genome sequence from short reads of NGS.

  13. Whole-Genome Sequences of 94 Environmental Isolates of Bacillus cereus Sensu Lato

    Science.gov (United States)

    Feldgarden, Michael; Kolter, Roberto; Mahillon, Jacques

    2013-01-01

    Bacillus cereus sensu lato is a species complex that includes the anthrax pathogen Bacillus anthracis and other bacterial species of medical, industrial, and ecological importance. Their phenotypes of interest are typically linked to large plasmids that are closely related to the anthrax plasmids pXO1 and pXO2. Here, we present the draft genome sequences of 94 isolates of B. cereus sensu lato, which were chosen for their plasmid content and environmental origins. PMID:24092776

  14. Genetic relatedness of Legionella longbeachae isolates from human and environmental sources in Australia

    International Nuclear Information System (INIS)

    Lanser, J.A.; Doyle, R.; Sangster, N.; Steele, T.W.; Adams, M.

    1990-01-01

    The genetic relatedness of Legionella longbeachae isolated in Australia since 1987 was investigated by restriction fragment length polymorphism (RFLP) analysis and allozyme electrophoresis. Three radiolabeled probes were used in Southern hybridizations for the RFLP studies. They were Escherichia coli 16S and 23S rRNA and cloned fragments of L. longbeachae selected empirically from genomal banks in lambda and a cosmid. The legionellae included in the study comprised 11 Legionella longbeachae serogroup 1 organisms isolated form humans, 28 L. longbeachae serogroup 1 isolates from environmental sources, 3 L. longbeachae serogroup 2 environmental isolates. These were compared with the American Type Culture Collection reference strains of both serogroups and some other related Legionella species. Results of allozyme and RFLP analysis showed that all the isolates from humans and all but three of the environmental L. longbeachae serogroup 1 isolates were closely related. They were also closely related to L. longbeachae serogroup 1 ATCC 33462. There was wider variation among the three L. longbeachae serogroup 2 environmental isolates. One of these was closely related to L. longbeachae serogroup 2 ATCC 33484. RFLP studies with the rRNA probe provided the most discrimination among isolates but did not distinguish between the two serogroups

  15. Integrated Bioinformatics, Environmental Epidemiologic and Genomic Approaches to Identify Environmental and Molecular Links between Endometriosis and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Deodutta Roy

    2015-10-01

    Full Text Available We present a combined environmental epidemiologic, genomic, and bioinformatics approach to identify: exposure of environmental chemicals with estrogenic activity; epidemiologic association between endocrine disrupting chemical (EDC and health effects, such as, breast cancer or endometriosis; and gene-EDC interactions and disease associations. Human exposure measurement and modeling confirmed estrogenic activity of three selected class of environmental chemicals, polychlorinated biphenyls (PCBs, bisphenols (BPs, and phthalates. Meta-analysis showed that PCBs exposure, not Bisphenol A (BPA and phthalates, increased the summary odds ratio for breast cancer and endometriosis. Bioinformatics analysis of gene-EDC interactions and disease associations identified several hundred genes that were altered by exposure to PCBs, phthalate or BPA. EDCs-modified genes in breast neoplasms and endometriosis are part of steroid hormone signaling and inflammation pathways. All three EDCs–PCB 153, phthalates, and BPA influenced five common genes—CYP19A1, EGFR, ESR2, FOS, and IGF1—in breast cancer as well as in endometriosis. These genes are environmentally and estrogen responsive, altered in human breast and uterine tumors and endometriosis lesions, and part of Mitogen Activated Protein Kinase (MAPK signaling pathways in cancer. Our findings suggest that breast cancer and endometriosis share some common environmental and molecular risk factors.

  16. A Saccharomyces cerevisiae mitochondrial DNA fragment activates Reg1p-dependent glucose-repressible transcription in the nucleus.

    Science.gov (United States)

    Santangelo, G M; Tornow, J

    1997-12-01

    As part of an effort to identify random carbon-source-regulated promoters in the Saccharomyces cerevisiae genome, we discovered that a mitochondrial DNA fragment is capable of directing glucose-repressible expression of a reporter gene. This fragment (CR24) originated from the mitochondrial genome adjacent to a transcription initiation site. Mutational analyses identified a GC cluster within the fragment that is required for transcriptional induction. Repression of nuclear CR24-driven transcription required Reg1p, indicating that this mitochondrially derived promoter is a member of a large group of glucose-repressible nuclear promoters that are similarly regulated by Reg1p. In vivo and in vitro binding assays indicated the presence of factors, located within the nucleus and the mitochondria, that bind to the GC cluster. One or more of these factors may provide a regulatory link between the nucleus and mitochondria.

  17. Genome analysis and DNA marker-based characterisation of pathogenic trypanosomes

    NARCIS (Netherlands)

    Agbo, Edwin Chukwura

    2003-01-01

    The advances in genomics technologies and genome analysis methods that offer new leads for accelerating discovery of putative targets for developing overall control tools are reviewed in Chapter 1. In Chapter 2, a PCR typing method based on restriction fragment length polymorphism analysis of the

  18. INFLUENCE OF ENVIRONMENTAL FACTORS IN TREE COMPONENT OF FOREST FRAGMENTS IN SÃO FRANCISCO DE PAULA - RIO GRANDE DO SUL

    Directory of Open Access Journals (Sweden)

    Daniele Guarienti Rorato

    2015-12-01

    Full Text Available This study aimed to characterize the influence of the soil and topography in the tree component of the fragments, in around the Divisa Reservoir, in the region of the Campos de Cima da Serra, Southern Brazil. The vegetation survey was conducted in four fragments, with each plot (10 x 20 m performed the identification and measurement of the circumference at breast height (CAP of subjects with CAP ≥ 30 cm. The vegetation data were subjected to cluster analysis. In addition, environmental variables were obtained as an average slope of plots and soil samples at 0-20 cm depth. The correlation between vegetation data and environmental data was performed by means of Canonical Correspondence Analysis. The soil physical characteristics showed no influence on the groups formed and species. In the geldings, the constant presence of cattle influenced negatively the structure of the understory, as well as the chemical characteristics of the soil. Aluminium and aluminum saturation have higher influenced on the predominant species of riparian vegetation as influenced copper and sulfur species present in geldings. Species such as Araucaria angustifolia, Eugenia uruguayensis, Blepharocalyx salicifolius, Calyptranthes concinna, Lithraea brasiliensis, Myrsine coriacea, Ocotea pulchella and Sebastiania commersoniana are adapted to riparian and can be used in the recovery and enrichment of these environments.

  19. A simple and inexpensive method for genomic restriction mapping analysis

    International Nuclear Information System (INIS)

    Huang, C.H.; Lam, V.M.S.; Tam, J.W.O.

    1988-01-01

    The Southern blotting procedure for the transfer of DNA fragments from agarose gels to nitrocellulose membranes has revolutionized nucleic acid detection methods, and it forms the cornerstone of research in molecular biology. Basically, the method involves the denaturation of DNA fragments that have been separated on an agarose gel, the immobilization of the fragments by transfer to a nitrocellulose membrane, and the identification of the fragments of interest through hybridization to /sup 32/P-labeled probes and autoradiography. While the method is sensitive and applicable to both genomic and cloned DNA, it suffers from the disadvantages of being time consuming and expensive, and fragments of greater than 15 kb are difficult to transfer. Moreover, although theoretically the nitrocellulose membrane can be washed and hybridized repeatedly using different probes, in practice, the membrane becomes brittle and difficult to handle after a few cycles. A direct hybridization method for pure DNA clones was developed in 1975 but has not been widely exploited. The authors report here a modification of their procedure as applied to genomic DNA. The method is simple, rapid, and inexpensive, and it does not involve transfer to nitrocellulose membranes

  20. Divide and conquer: enriching environmental sequencing data.

    Directory of Open Access Journals (Sweden)

    Anne Bergeron

    2007-09-01

    Full Text Available In environmental sequencing projects, a mix of DNA from a whole microbial community is fragmented and sequenced, with one of the possible goals being to reconstruct partial or complete genomes of members of the community. In communities with high diversity of species, a significant proportion of the sequences do not overlap any other fragment in the sample. This problem will arise not only in situations with a relatively even distribution of many species, but also when the community in a particular environment is routinely dominated by the same few species. In the former case, no genomes may be assembled at all, while in the latter case a few dominant species in an environment will always be sequenced at high coverage to the detriment of coverage of the greater number of sparse species.Here we show that, with the same global sequencing effort, separating the species into two or more sub-communities prior to sequencing can yield a much higher proportion of sequences that can be assembled. We first use the Lander-Waterman model to show that, if the expected percentage of singleton sequences is higher than 25%, then, under the uniform distribution hypothesis, splitting the community is always a wise choice. We then construct simulated microbial communities to show that the results hold for highly non-uniform distributions. We also show that, for the distributions considered in the experiments, it is possible to estimate quite accurately the relative diversity of the two sub-communities.Given the fact that several methods exist to split microbial communities based on physical properties such as size, density, surface biochemistry, or optical properties, we strongly suggest that groups involved in environmental sequencing, and expecting high diversity, consider splitting their communities in order to maximize the information content of their sequencing effort.

  1. Keeping it complicated: Mitochondrial genome plasticity across diplonemids.

    Science.gov (United States)

    Valach, Matus; Moreira, Sandrine; Hoffmann, Steve; Stadler, Peter F; Burger, Gertraud

    2017-10-26

    Chromosome rearrangements are important drivers in genome and gene evolution, with implications ranging from speciation to development to disease. In the flagellate Diplonema papillatum (Euglenozoa), mitochondrial genome rearrangements have resulted in nearly hundred chromosomes and a systematic dispersal of gene fragments across the multipartite genome. Maturation into functional RNAs involves separate transcription of gene pieces, joining of precursor RNAs via trans-splicing, and RNA editing by substitution and uridine additions both reconstituting crucial coding sequence. How widespread these unusual features are across diplonemids is unclear. We have analyzed the mitochondrial genomes and transcriptomes of four species from the Diplonema/Rhynchopus clade, revealing a considerable genomic plasticity. Although gene breakpoints, and thus the total number of gene pieces (~80), are essentially conserved across this group, the number of distinct chromosomes varies by a factor of two, with certain chromosomes combining up to eight unrelated gene fragments. Several internal protein-coding gene pieces overlap substantially, resulting, for example, in a stretch of 22 identical amino acids in cytochrome c oxidase subunit 1 and NADH dehydrogenase subunit 5. Finally, the variation of post-transcriptional editing patterns across diplonemids indicates compensation of two adverse trends: rapid sequence evolution and loss of genetic information through unequal chromosome segregation.

  2. Accurate phylogenetic classification of DNA fragments based onsequence composition

    Energy Technology Data Exchange (ETDEWEB)

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis; Hugenholtz, Philip; Rigoutsos, Isidore

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequence characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.

  3. Genomic applications in forensic medicine

    DEFF Research Database (Denmark)

    Børsting, Claus; Morling, Niels

    2016-01-01

    Since the 1980s, advances in DNA technology have revolutionized the scope and practice of forensic medicine. From the days of restriction fragment length polymorphisms (RFLPs) to short tandem repeats (STRs), the current focus is on the next generation genome sequencing. It has been almost a decad...

  4. Cell size, genome size and the dominance of Angiosperms

    Science.gov (United States)

    Simonin, K. A.; Roddy, A. B.

    2016-12-01

    Angiosperms are capable of maintaining the highest rates of photosynthetic gas exchange of all land plants. High rates of photosynthesis depends mechanistically both on efficiently transporting water to the sites of evaporation in the leaf and on regulating the loss of that water to the atmosphere as CO2 diffuses into the leaf. Angiosperm leaves are unique in their ability to sustain high fluxes of liquid and vapor phase water transport due to high vein densities and numerous, small stomata. Despite the ubiquity of studies characterizing the anatomical and physiological adaptations that enable angiosperms to maintain high rates of photosynthesis, the underlying mechanism explaining why they have been able to develop such high leaf vein densities, and such small and abundant stomata, is still incomplete. Here we ask whether the scaling of genome size and cell size places a fundamental constraint on the photosynthetic metabolism of land plants, and whether genome downsizing among the angiosperms directly contributed to their greater potential and realized primary productivity relative to the other major groups of terrestrial plants. Using previously published data we show that a single relationship can predict guard cell size from genome size across the major groups of terrestrial land plants (e.g. angiosperms, conifers, cycads and ferns). Similarly, a strong positive correlation exists between genome size and both stomatal density and vein density that together ultimately constrains maximum potential (gs, max) and operational stomatal conductance (gs, op). Further the difference in the slopes describing the covariation between genome size and both gs, max and gs, op suggests that genome downsizing brings gs, op closer to gs, max. Taken together the data presented here suggests that the smaller genomes of angiosperms allow their final cell sizes to vary more widely and respond more directly to environmental conditions and in doing so bring operational photosynthetic

  5. Wind energy's subtle effect - habitat fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Pruett, Jay

    2011-07-01

    Full text: New wind energy production facilities are being built to accommodate demands for more, renewable, emission-free energy. This development is most often in windy, remote parts of the United States, so new transmission infrastructure capacity is also needed for shipment of energy from prairies, hilltops and shorelines to distant population centres. Well known environmental effects from wind energy development have included direct mortality to birds and bats. However, there is a more subtle effect also at play. 'Habitat fragmentation' is an impact caused by the siting and presence of infrastructure features on wildlife species. Instead of direct mortality, there is behavioural avoidance of such features because of activity, noise and even simply the presence of vertical structures that are different from the original nature of the habitat. This fragmentation threatens to make some of the last remaining habitat for declining species, especially grassland birds, unusable by them. Prairie grouse such as prairie chickens and sage grouse appear to be particularly susceptible to habitat fragmentation due to the presence of vertical structures. Other species such as the grasshopper sparrow have also been shown to avoid such features. It is believed that these species have evolved to avoid any vertical structure because it can serve as a perch for bird-eating raptors, including eagles, hawks, falcons and owls. Certain life cycle stages, such as nesting and chick rearing, appear to be most vulnerable to these fragmentation influences. Some of the research contributing to concern over habitat fragmentation, along with the mechanism of such fragmentation, will be presented. Solutions will also be offered for the siting of wind energy facilities and transmission lines to avoid this negative environmental impact. (Author)

  6. Applicability of SCAR markers to food genomics: olive oil traceability.

    Science.gov (United States)

    Pafundo, Simona; Agrimonti, Caterina; Maestri, Elena; Marmiroli, Nelson

    2007-07-25

    DNA analysis with molecular markers has opened a shortcut toward a genomic comprehension of complex organisms. The availability of micro-DNA extraction methods, coupled with selective amplification of the smallest extracted fragments with molecular markers, could equally bring a breakthrough in food genomics: the identification of original components in food. Amplified fragment length polymorphisms (AFLPs) have been instrumental in plant genomics because they may allow rapid and reliable analysis of multiple and potentially polymorphic sites. Nevertheless, their direct application to the analysis of DNA extracted from food matrixes is complicated by the low quality of DNA extracted: its high degradation and the presence of inhibitors of enzymatic reactions. The conversion of an AFLP fragment to a robust and specific single-locus PCR-based marker, therefore, could extend the use of molecular markers to large-scale analysis of complex agro-food matrixes. In the present study is reported the development of sequence characterized amplified regions (SCARs) starting from AFLP profiles of monovarietal olive oils analyzed on agarose gel; one of these was used to identify differences among 56 olive cultivars. All the developed markers were purposefully amplified in olive oils to apply them to olive oil traceability.

  7. Genome-wide association analysis accounting for environmental factors through propensity-score matching: application to stressful live events in major depressive disorder.

    Science.gov (United States)

    Power, Robert A; Cohen-Woods, Sarah; Ng, Mandy Y; Butler, Amy W; Craddock, Nick; Korszun, Ania; Jones, Lisa; Jones, Ian; Gill, Michael; Rice, John P; Maier, Wolfgang; Zobel, Astrid; Mors, Ole; Placentino, Anna; Rietschel, Marcella; Aitchison, Katherine J; Tozzi, Federica; Muglia, Pierandrea; Breen, Gerome; Farmer, Anne E; McGuffin, Peter; Lewis, Cathryn M; Uher, Rudolf

    2013-09-01

    Stressful life events are an established trigger for depression and may contribute to the heterogeneity within genome-wide association analyses. With depression cases showing an excess of exposure to stressful events compared to controls, there is difficulty in distinguishing between "true" cases and a "normal" response to a stressful environment. This potential contamination of cases, and that from genetically at risk controls that have not yet experienced environmental triggers for onset, may reduce the power of studies to detect causal variants. In the RADIANT sample of 3,690 European individuals, we used propensity score matching to pair cases and controls on exposure to stressful life events. In 805 case-control pairs matched on stressful life event, we tested the influence of 457,670 common genetic variants on the propensity to depression under comparable level of adversity with a sign test. While this analysis produced no significant findings after genome-wide correction for multiple testing, we outline a novel methodology and perspective for providing environmental context in genetic studies. We recommend contextualizing depression by incorporating environmental exposure into genome-wide analyses as a complementary approach to testing gene-environment interactions. Possible explanations for negative findings include a lack of statistical power due to small sample size and conditional effects, resulting from the low rate of adequate matching. Our findings underscore the importance of collecting information on environmental risk factors in studies of depression and other complex phenotypes, so that sufficient sample sizes are available to investigate their effect in genome-wide association analysis. Copyright © 2013 Wiley Periodicals, Inc.

  8. Certain amplified genomic-DNA fragments (AGFs) may be involved in cell cycle progression and chloroquine is found to induce the production of cell-cycle-associated AGFs (CAGFs) in Plasmodium falciparum

    OpenAIRE

    Li, Gao-De

    2015-01-01

    It is well known that cyclins are a family of proteins that control cell-cycle progression by activating cyclin-dependent kinase. Based on our experimental results, we propose here a novel hypothesis that certain amplified genomic-DNA fragments (AGFs) may also be required for the cell cycle progression of eukaryotic cells and thus can be named as cell-cycle-associated AGFs (CAGFs). Like fluctuation in cyclin levels during cell cycle progression, these CAGFs are amplified and degraded at diffe...

  9. Green-Frag: Energy-Efficient Frame Fragmentation Scheme for Wireless Sensor Networks

    KAUST Repository

    Daghistani, Anas H.

    2013-05-15

    Power management is an active area of research in wireless sensor networks (WSNs). Efficient power management is necessary because WSNs are battery-operated devices that can be deployed in mission-critical applications. From the communications perspective, one main approach to reduce energy is to maximize throughput so the data can be transmitted in a short amount of time. Frame fragmentation techniques aim to achieve higher throughput by reducing retransmissions. Using experiments on a WSN testbed, we show that frame fragmentation helps to reduce energy consumption. We then study and compare recent frame fragmentation schemes to find the most energy-efficient scheme. Our main contribution is to propose a new frame fragmentation scheme that is optimized to be energy efficient, which is originated from the chosen frame fragmentation scheme. This new energy-efficient frame fragmentation protocol is called (Green-Frag). Green-Frag uses an algorithm that gives sensor nodes the ability to transmit data with optimal transmit power and optimal frame structure based on environmental conditions. Green-Frag takes into consideration the channel conditions, interference patterns and level, as well as the distance between sender and receiver. The thesis discusses various design and implementation considerations for Green-Frag. Also, it shows empirical results of comparing Green-Frag with other frame fragmentation protocols in terms of energy efficiency. Green-Frag performance results shows that it is capable of choosing the best transmit according to the channel conditions. Subsequently, Green-Frag achieves the least energy consumption in all environmental conditions.

  10. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?

    Czech Academy of Sciences Publication Activity Database

    Flegontov, Pavel; Gray, M.W.; Burger, G.; Lukeš, Julius

    2011-01-01

    Roč. 57, č. 4 (2011), 225-232 ISSN 0172-8083 Institutional research plan: CEZ:AV0Z60220518 Keywords : Euglena * Diplonema * Mitochondrial genome * RNA editing * Constructive neutral evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.556, year: 2011

  11. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era.

    Science.gov (United States)

    Chiu, Weihsueh A; Euling, Susan Y; Scott, Cheryl Siegel; Subramaniam, Ravi P

    2013-09-15

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA)--i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on "augmentation" of weight of evidence--using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards "integration" of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for "expansion" of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual "reorientation" of QRA towards approaches that more directly link environmental exposures to human outcomes. Published by Elsevier Inc.

  12. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Weihsueh A., E-mail: chiu.weihsueh@epa.gov [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, 20460 (United States); Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P. [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, 20460 (United States)

    2013-09-15

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes.

  13. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    International Nuclear Information System (INIS)

    Chiu, Weihsueh A.; Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P.

    2013-01-01

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes

  14. Quantifying Urban Fragmentation under Economic Transition in Shanghai City, China

    Directory of Open Access Journals (Sweden)

    Heyuan You

    2015-12-01

    Full Text Available Urban fragmentation affects sustainability through multiple impacts on economic, social, and environmental cost. Characterizing the dynamics of urban fragmentation in relation to economic transition should provide implications for sustainability. However, rather few efforts have been made in this issue. Using the case of Shanghai (China, this paper quantifies urban fragmentation in relation to economic transition. In particular, urban fragmentation is quantified by a time-series of remotely sensed images and a set of landscape metrics; and economic transition is described by a set of indicators from three aspects (globalization, decentralization, and marketization. Results show that urban fragmentation presents an increasing linear trend. Multivariate regression identifies positive linear correlation between urban fragmentation and economic transition. More specifically, the relative influence is different for the three components of economic transition. The relative influence of decentralization is stronger than that of globalization and marketization. The joint influences of decentralization and globalization are the strongest for urban fragmentation. The demonstrated methodology can be applicable to other places after making suitable adjustment of the economic transition indicators and fragmentation metrics.

  15. A simple strategy for subcloning and amplifying random multimegabase subchromosomal acentric DNA fragments as double minute chromosomes

    International Nuclear Information System (INIS)

    Hahn, P.J.; Giddings, L.; Lane, M.J.

    1989-01-01

    Restriction mapping of relatively large genomes (e.g. human) utilizing randomly generated DNA segments requires high mapping redundancy to successfully organize 'contigs' to represent the entire genome. The number of independent DNA segment maps required is dependent on the average size of a mapping segment; the larger the segment, the fewer required. The authors have developed a strategy for subcloning intact multimegabase subchromosomal fragments as double minute chromosomes. Such fragments could serve as primary mapping elements or as adjunct (linking) fragments to rapidly connect already existent contigs generated using yeast artificial chromosomes or cosmids. They present several lines of evidence supporting the viability of this approach. (1) X-ray treated EMT-6 mouse cells (7.5 Gr.) which are selected over several months with increasing levels of methotrexate (MTX) contain highly amplified circular DNA molecules (double minutes) which include the dihydrofolate reductase (DHFR) gene in a size range between 1,000 and 3,500 kilobases as determined by pulsed-field gel electrophoresis and these acentric chromosomal fragments have been stably maintained in culture for at least a year. (2) Preliminary data based on experiments involving fusion of X-irradiated Chinese Hamster Ovary (CH0 DG44) cells containing randomly inserted cotransfected Neomycin resistance and DHFR genes to mouse EMT-6 cells shows that the linked genes can be readily cotransferred as acentric subchromosomal fragment(s) suitable for gene amplification. (3) The studies of CHO cells with cell fusion transferred X-ray induced chromosomal fragments containing the natural CHO DHFR gene suggest that transferred chromosome fragments undergo gene amplification much more readily than nonfragmented endogenous DHFR genes

  16. DNA Length Modulates the Affinity of Fragments of Genomic DNA for the Nuclear Matrix In Vitro.

    Science.gov (United States)

    García-Vilchis, David; Aranda-Anzaldo, Armando

    2017-12-01

    Classical observations have shown that during the interphase the chromosomal DNA of metazoans is organized in supercoiled loops attached to a compartment known as the nuclear matrix (NM). Fragments of chromosomal DNA able to bind the isolated NM in vitro are known as matrix associated/attachment/addressed regions or MARs. No specific consensus sequence or motif has been found that may constitute a universal, defining feature of MARs. On the other hand, high-salt resistant DNA-NM interactions in situ define true DNA loop anchorage regions or LARs, that might correspond to a subset of the potential MARs but are not necessarily identical to MARs characterized in vitro, since there are several examples of MARs able to bind the NM in vitro but which are not actually bound to the NM in situ. In the present work we assayed the capacity of two LARs, as well as of shorter fragments within such LARs, for binding to the NM in vitro. Paradoxically the isolated (≈2 kb) LARs cannot bind to the NM in vitro while their shorter (≈300 pb) sub-fragments and other non-related but equally short DNA fragments, bind to the NM in a high-salt resistant fashion. Our results suggest that the ability of a given DNA fragment for binding to the NM in vitro primarily depends on the length of the fragment, suggesting that binding to the NM is modulated by the local topology of the DNA fragment in suspension that it is known to depend on the DNA length. J. Cell. Biochem. 118: 4487-4497, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.

    Science.gov (United States)

    Pfeiffer, Friedhelm; Zamora-Lagos, Maria-Antonia; Blettinger, Martin; Yeroslaviz, Assa; Dahl, Andreas; Gruber, Stephan; Habermann, Bianca H

    2018-01-05

    Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental.

  18. Genome-wide mapping of autonomous promoter activity in human cells.

    Science.gov (United States)

    van Arensbergen, Joris; FitzPatrick, Vincent D; de Haas, Marcel; Pagie, Ludo; Sluimer, Jasper; Bussemaker, Harmen J; van Steensel, Bas

    2017-02-01

    Previous methods to systematically characterize sequence-intrinsic activity of promoters have been limited by relatively low throughput and the length of the sequences that could be tested. Here we present 'survey of regulatory elements' (SuRE), a method that assays more than 10 8 DNA fragments, each 0.2-2 kb in size, for their ability to drive transcription autonomously. In SuRE, a plasmid library of random genomic fragments upstream of a 20-bp barcode is constructed, and decoded by paired-end sequencing. This library is used to transfect cells, and barcodes in transcribed RNA are quantified by high-throughput sequencing. When applied to the human genome, we achieve 55-fold genome coverage, allowing us to map autonomous promoter activity genome-wide in K562 cells. By computational modeling we delineate subregions within promoters that are relevant for their activity. We show that antisense promoter transcription is generally dependent on the sense core promoter sequences, and that most enhancers and several families of repetitive elements act as autonomous transcription initiation sites.

  19. [Environmental variability and physiological responses from Polylepis cuadrijuga (Rosaceae) in a fragmented environment in the Páramo de la Rusia (Colombia].

    Science.gov (United States)

    Ramos, Carolina; Buitrago, Sindy P; Pulido, Karen L; Vanegas, Leidy J

    2013-03-01

    Polylepis cuadrijuga is an endemic woody species from the Colombian Eastern range, being the only tree species with capacity to live on mountainous environments beyond 4 000m of altitude. Grazing and agriculture have transformed at least 30% of the Guantiva-La Rusia region, turning continuous extensions of high Andean forest in a fragmented landscape, and P cuadrijuga remnants have become smaller and more isolated. The aim of this study was to establish the environmental differences between a matrix of grazing pastures and the interior of fragments, to evaluate the physiological responses of P cuadrijuga and determining the edge effect. Air temperature and humidity, soil water holding capacity and photosynthetic active radiation, were measured along two 50X2m transects from the matrix toward the center of fragment. Six trees inside the transects were chosen in each one of three sites (matrix, edge and interior) to measure the index chlorophyll content and to sample leaves to assess the leaf area, leaf biomass, specific leaf area, anatomy, health condition and pubescence. Results showed significantly differences between the matrix and the interior and intermediate conditions in the edge. Radiation, temperature and air desiccation were higher in the matrix than in the interior, submitting P cuadrijuga trees to a stressing environment, where they presented stratification of epidermis and palisade parenchyma, and a higher leaf area, leaf thickness, chlorophyll content and pubescence than in the interior of fragments. All these physiological traits allow avoiding the photoxidation and damages by freezing or desiccation to which trees are exposed in a grazing pasture matrix. Nevertheless, there was a higher frequency of healthy leaves in the interior of fragments, showing that high irradiations and extreme air temperature and humidity reach adversely affect to P cuadrijuga. Individuals in the edge had ecophysiological traits similar to the matrix ones, which confirm an

  20. A linear mitochondrial genome of Cyclospora cayetanensis (Eimeriidae, Eucoccidiorida, Coccidiasina, Apicomplexa) suggests the ancestral start position within mitochondrial genomes of eimeriid coccidia.

    Science.gov (United States)

    Ogedengbe, Mosun E; Qvarnstrom, Yvonne; da Silva, Alexandre J; Arrowood, Michael J; Barta, John R

    2015-05-01

    The near complete mitochondrial genome for Cyclospora cayetanensis is 6184 bp in length with three protein-coding genes (Cox1, Cox3, CytB) and numerous lsrDNA and ssrDNA fragments. Gene arrangements were conserved with other coccidia in the Eimeriidae, but the C. cayetanensis mitochondrial genome is not circular-mapping. Terminal transferase tailing and nested PCR completed the 5'-terminus of the genome starting with a 21 bp A/T-only region that forms a potential stem-loop. Regions homologous to the C. cayetanensis mitochondrial genome 5'-terminus are found in all eimeriid mitochondrial genomes available and suggest this may be the ancestral start of eimeriid mitochondrial genomes. Copyright © 2015 Australian Society for Parasitology Inc. All rights reserved.

  1. Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology

    Science.gov (United States)

    Neumann, Lars; Ritscher, Allegra; Müller, Gerhard; Hafenbradl, Doris

    2009-08-01

    For the detection of the precise and unambiguous binding of fragments to a specific binding site on the target protein, we have developed a novel reporter displacement binding assay technology. The application of this technology for the fragment screening as well as the fragment evolution process with a specific modelling based design strategy is demonstrated for inhibitors of the protein kinase p38alpha. In a fragment screening approach seed fragments were identified which were then used to build compounds from the deep-pocket towards the hinge binding area of the protein kinase p38alpha based on a modelling approach. BIRB796 was used as a blueprint for the alignment of the fragments. The fragment evolution of these deep-pocket binding fragments towards the fully optimized inhibitor BIRB796 included the modulation of the residence time as well as the affinity. The goal of our study was to evaluate the robustness and efficiency of our novel fragment screening technology at high fragment concentrations, compare the screening data with biochemical activity data and to demonstrate the evolution of the hit fragments with fast kinetics, into slow kinetic inhibitors in an in silico approach.

  2. RadGenomics project

    Energy Technology Data Exchange (ETDEWEB)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu [National Inst. of Radiological Sciences, Chiba (Japan). Frontier Research Center] [and others

    2002-06-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  3. RadGenomics project

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu

    2002-01-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  4. Application of Whole Genome Expression Analysis to Assess Bacterial Responses to Environmental Conditions

    Science.gov (United States)

    Vukanti, R. V.; Mintz, E. M.; Leff, L. G.

    2005-05-01

    Bacterial responses to environmental signals are multifactorial and are coupled to changes in gene expression. An understanding of bacterial responses to environmental conditions is possible using microarray expression analysis. In this study, the utility of microarrays for examining changes in gene expression in Escherichia coli under different environmental conditions was assessed. RNA was isolated, hybridized to Affymetrix E. coli Genome 2.0 chips and analyzed using Affymetrix GCOS and Genespring software. Major limiting factors were obtaining enough quality RNA (107-108 cells to get 10μg RNA)and accounting for differences in growth rates under different conditions. Stabilization of RNA prior to isolation and taking extreme precautions while handling RNA were crucial. In addition, use of this method in ecological studies is limited by availability and cost of commercial arrays; choice of primers for cDNA synthesis, reproducibility, complexity of results generated and need to validate findings. This method may be more widely applicable with the development of better approaches for RNA recovery from environmental samples and increased number of available strain-specific arrays. Diligent experimental design and verification of results with real-time PCR or northern blots is needed. Overall, there is a great potential for use of this technology to discover mechanisms underlying organisms' responses to environmental conditions.

  5. Diverse circovirus-like genome architectures revealed by environmental metagenomics.

    Science.gov (United States)

    Rosario, Karyna; Duffy, Siobain; Breitbart, Mya

    2009-10-01

    Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.

  6. The whole genome sequences and experimentally phased haplotypes of over 100 personal genomes.

    Science.gov (United States)

    Mao, Qing; Ciotlos, Serban; Zhang, Rebecca Yu; Ball, Madeleine P; Chin, Robert; Carnevali, Paolo; Barua, Nina; Nguyen, Staci; Agarwal, Misha R; Clegg, Tom; Connelly, Abram; Vandewege, Ward; Zaranek, Alexander Wait; Estep, Preston W; Church, George M; Drmanac, Radoje; Peters, Brock A

    2016-10-11

    Since the completion of the Human Genome Project in 2003, it is estimated that more than 200,000 individual whole human genomes have been sequenced. A stunning accomplishment in such a short period of time. However, most of these were sequenced without experimental haplotype data and are therefore missing an important aspect of genome biology. In addition, much of the genomic data is not available to the public and lacks phenotypic information. As part of the Personal Genome Project, blood samples from 184 participants were collected and processed using Complete Genomics' Long Fragment Read technology. Here, we present the experimental whole genome haplotyping and sequencing of these samples to an average read coverage depth of 100X. This is approximately three-fold higher than the read coverage applied to most whole human genome assemblies and ensures the highest quality results. Currently, 114 genomes from this dataset are freely available in the GigaDB repository and are associated with rich phenotypic data; the remaining 70 should be added in the near future as they are approved through the PGP data release process. For reproducibility analyses, 20 genomes were sequenced at least twice using independent LFR barcoded libraries. Seven genomes were also sequenced using Complete Genomics' standard non-barcoded library process. In addition, we report 2.6 million high-quality, rare variants not previously identified in the Single Nucleotide Polymorphisms database or the 1000 Genomes Project Phase 3 data. These genomes represent a unique source of haplotype and phenotype data for the scientific community and should help to expand our understanding of human genome evolution and function.

  7. Genomic and environmental selection patterns in two distinct lettuce crop–wild hybrid crosses

    Science.gov (United States)

    Hartman, Yorike; Uwimana, Brigitte; Hooftman, Danny A P; Schranz, Michael E; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; van Tienderen, Peter H

    2013-01-01

    Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop–wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids. We detected consistent results across field sites and crosses for a fitness QTL at linkage group 7, where a selective advantage was conferred by the wild allele. Two fitness QTL were detected on linkage group 5 and 6, which were unique to one of the crop–wild crosses. Average hybrid fitness was lower than the fitness of the wild parent, but several hybrid lineages outperformed the wild parent, especially in a novel habitat for the wild type. In early-generation hybrids, this may partly be due to heterosis effects, whereas in late-generation hybrids transgressive segregation played a major role. The study of genomic selection patterns can identify crop genomic regions under negative selection across multiple environments and cultivar–wild crosses that might be applicable in transgene mitigation strategies. At the same time, results were cultivar-specific, so that a case-by-case environmental risk assessment is still necessary, decreasing its general applicability. PMID:23789025

  8. Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses.

    Science.gov (United States)

    Hartman, Yorike; Uwimana, Brigitte; Hooftman, Danny A P; Schranz, Michael E; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; van Tienderen, Peter H

    2013-06-01

    Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop-wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids. We detected consistent results across field sites and crosses for a fitness QTL at linkage group 7, where a selective advantage was conferred by the wild allele. Two fitness QTL were detected on linkage group 5 and 6, which were unique to one of the crop-wild crosses. Average hybrid fitness was lower than the fitness of the wild parent, but several hybrid lineages outperformed the wild parent, especially in a novel habitat for the wild type. In early-generation hybrids, this may partly be due to heterosis effects, whereas in late-generation hybrids transgressive segregation played a major role. The study of genomic selection patterns can identify crop genomic regions under negative selection across multiple environments and cultivar-wild crosses that might be applicable in transgene mitigation strategies. At the same time, results were cultivar-specific, so that a case-by-case environmental risk assessment is still necessary, decreasing its general applicability.

  9. [Detection of Cryptospordium spp. in environmental water samples by FTA-PCR].

    Science.gov (United States)

    Zhang, Xiao-Ping; Zhu, Qian; He, Yan-Yan; Jiang, Li; Jiang, Shou-Fu

    2011-02-01

    To establish a FTA-polymeras chain reaction (FTA-PCR) method in detection of Cryptospordium spp. in different sources of water. The semi automated immunomagnetic separation (IMS) of Cryptospordium oocysts in environmental water samples was performed firstly, and then genomic DNA of Cryptospordium oocysts was extracted by FTA filters disk. Oligonucleotide primers were designed based on the DNA fragment of the 18 S rRNA gene from C. parvum. Plate DNA was amplified with primers in PCR. The control DNA samples from Toxoplasma gondii,Sarcocystis suihominis, Echinococcus granulosus, and Clonorchis sinensis were amplified simultaneously. All PCR products were detected by agar electrophoresis dyed with ethidium bromide. The 446 bp fragment of DNA was detected in all samples of C. parvum, C. andersoni, and C. baileyi, while it was not detected in control groups in laboratory. No positive samples were found from 10 samples collected from tape water in 5 districts of Shanghai City by FTA-PCR. Nine positive samples were detected totally from 70 different environmental water samples, there were 0 out of 15 samples from the source of tape water, 2 out of 25 from the Huangpu River, 5 out of 15 from rivers around the animal farmers, 1 out of 9 from output water of contaminating water treatment factory, 1 out of 6 from the out gate of living contaminating water. The 446 bp fragment was detected from all the amplified positive water samples. FTA-PCR is an efficient method for gene detection of Cryptospordium oocysts, which could be used in detection of environmental water samples. The contamination degree of Cryptospordium oocysts in the river water around animal farms is high.

  10. First insight into the genome of an uncultivated crenarchaeote from soil

    DEFF Research Database (Denmark)

    Quaiser, Achim; Ochsenreiter, Torsten; Klenk, Hans-Peter

    2002-01-01

    RNA genes and of several protein encoding genes (e.g. DNA polymerase, FixAB, glycosyl transferase) confirmed the specific affiliation of the genomic fragment with the non-thermophilic clade of the crenarchaeota. Content and structure of the genomic fragment indicated that the archaea from soil differ......Molecular phylogenetic surveys based on the characterization of 16S rRNA genes have revealed that soil is an environment particularly rich in microbial diversity. A clade of crenarchaeota (archaea) has frequently been detected among many other novel lineages of uncultivated bacteria. In this study...... we have initiated a genomic approach for the characterization of uncultivated microorganisms from soil. We have developed a procedure based on a two-phase electrophoresis technique that allows the fast and reliable purification of concentrated and clonable, high molecular weight DNA. From this DNA we...

  11. Restriction map of the single-stranded DNA genome of Kilham rat virus strain 171, a nondefective parvovirus

    International Nuclear Information System (INIS)

    Banerjee, P.T.; Rathrock, R.; Mitra, S.

    1981-01-01

    A physical map of Kilham rat virus strain 171 DNA was constructed by analyzing the sizes and locations of restriction endonuclease-generated fragments of the replicative-form viral DNA synthesized in vitro. BglI, KpnI, BamHI, SmaI, XhoI, and XorII did not appear to have any cleavage sites, whereas 11 other enzymes cleaved the genome at one to eight sites, and AluI generated more than 12 distinct fragments. The 30 restriction sites that were mapped were distributed randomly in the viral genome. A comparison of the restriction fragments of in vivo- and in vitro-replicated replicative-form DNAs showed that these DNAs were identical except in the size or configuration of the terminal fragments

  12. Comparative Genomics of Carp Herpesviruses

    Science.gov (United States)

    Kurobe, Tomofumi; Gatherer, Derek; Cunningham, Charles; Korf, Ian; Fukuda, Hideo; Hedrick, Ronald P.; Waltzek, Thomas B.

    2013-01-01

    Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus. PMID:23269803

  13. A comprehensive evaluation of rodent malaria parasite genomes and gene expression

    KAUST Repository

    Otto, Thomas D

    2014-10-30

    Background: Rodent malaria parasites (RMP) are used extensively as models of human malaria. Draft RMP genomes have been published for Plasmodium yoelii, P. berghei ANKA (PbA) and P. chabaudi AS (PcAS). Although availability of these genomes made a significant impact on recent malaria research, these genomes were highly fragmented and were annotated with little manual curation. The fragmented nature of the genomes has hampered genome wide analysis of Plasmodium gene regulation and function. Results: We have greatly improved the genome assemblies of PbA and PcAS, newly sequenced the virulent parasite P. yoelii YM genome, sequenced additional RMP isolates/lines and have characterized genotypic diversity within RMP species. We have produced RNA-seq data and utilized it to improve gene-model prediction and to provide quantitative, genome-wide, data on gene expression. Comparison of the RMP genomes with the genome of the human malaria parasite P. falciparum and RNA-seq mapping permitted gene annotation at base-pair resolution. Full-length chromosomal annotation permitted a comprehensive classification of all subtelomeric multigene families including the `Plasmodium interspersed repeat genes\\' (pir). Phylogenetic classification of the pir family, combined with pir expression patterns, indicates functional diversification within this family. Conclusions: Complete RMP genomes, RNA-seq and genotypic diversity data are excellent and important resources for gene-function and post-genomic analyses and to better interrogate Plasmodium biology. Genotypic diversity between P. chabaudi isolates makes this species an excellent parasite to study genotype-phenotype relationships. The improved classification of multigene families will enhance studies on the role of (variant) exported proteins in virulence and immune evasion/modulation.

  14. Oral lead bullet fragment exposure in northern bobwhite (Colinus virginianus).

    Science.gov (United States)

    Kerr, Richard; Holladay, Jeremy; Holladay, Steven; Tannenbaum, Lawrence; Selcer, Barbara; Meldrum, Blair; Williams, Susan; Jarrett, Timothy; Gogal, Robert

    2011-11-01

    Lead (Pb) is a worldwide environmental contaminant known to adversely affect multiple organ systems in both mammalian and avian species. In birds, a common route of exposure is via oral ingestion of lead particles. Data are currently lacking for the retention and clearance of Pb bullet fragments in gastrointestinal (GI) tract of birds while linking toxicity with blood Pb levels. In the present study, northern bobwhite quail fed a seed-based diet were orally gavaged with Pb bullet fragments (zero, one or five fragments/bird) and evaluated for rate of fragment clearance, and changes in peripheral blood, renal, immune, and gastrointestinal parameters. Based on radiographs, the majority of the birds cleared or absorbed the fragments by seven days, with the exception of one five-fragment bird which took between 7 and 14 days. Blood Pb levels were higher in males than females, which may be related to egg production in females. In males but not females, feed consumption, body weight gain, packed cell volume (PCV), plasma protein concentration, and δ-aminolevulinic acid dehydratase (δ-ALAD) activity were all adversely affected by five Pb fragments. Birds of both sexes that received a single Pb fragment displayed depressed δ-ALAD, suggesting altered hematologic function, while all birds dosed with five bullet fragments exhibited greater morbidity.

  15. Draft Genome Sequence of Exiguobacterium sp. Strain BMC-KP, an Environmental Isolate from Bryn Mawr, Pennsylvania.

    Science.gov (United States)

    Hyson, Peter; Shapiro, Joshua A; Wien, Michelle W

    2015-10-08

    Exiguobacterium sp. strain BMC-KP was isolated as part of a student environmental sampling project at Bryn Mawr College, PA. Sequencing of bacterial DNA assembled a 3.32-Mb draft genome. Analysis suggests the presence of genes for tolerance to cold and toxic metals, broad carbohydrate metabolism, and genes derived from phage. Copyright © 2015 Hyson et al.

  16. eGenomics: Cataloguing Our Complete Genome Collection III

    Directory of Open Access Journals (Sweden)

    Dawn Field

    2007-01-01

    Full Text Available This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS, Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS specification (v1.1, consensus on a variety of features to be added to the Genome Catalogue (GCat, agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates and working towards a single, global list of all public genomes and metagenomes.

  17. Structural fragment clustering reveals novel structural and functional motifs in α-helical transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Vassilev Boris

    2010-04-01

    Full Text Available Abstract Background A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology. Results We introduce a technique called structural fragment clustering, which learns sequential motifs from 3D structural fragments. From over 500,000 fragments, we obtain 213 statistically significant, non-redundant, and novel motifs that are highly specific to α-helical transmembrane proteins. From these 213 motifs, 58 of them were assigned to function and checked in the scientific literature for a biological assessment. Seventy percent of the motifs are found in co-factor, ligand, and ion binding sites, 30% at protein interaction interfaces, and 12% bind specific lipids such as glycerol or cardiolipins. The vast majority of motifs (94% appear across evolutionarily unrelated families, highlighting the modularity of functional design in membrane proteins. We describe three novel motifs in detail: (1 a dimer interface motif found in voltage-gated chloride channels, (2 a proton transfer motif found in heme-copper oxidases, and (3 a convergently evolved interface helix motif found in an aspartate symporter, a serine protease, and cytochrome b. Conclusions Our findings suggest that functional modules exist in membrane proteins, and that they occur in completely different evolutionary contexts and cover different binding sites. Structural fragment clustering allows us to link sequence motifs to function through clusters of structural fragments. The sequence motifs can be applied to identify and characterize membrane proteins in novel genomes.

  18. The Complete Mitochondrial Genome of the Foodborne Parasitic Pathogen Cyclospora cayetanensis.

    Directory of Open Access Journals (Sweden)

    Hediye Nese Cinar

    Full Text Available Cyclospora cayetanensis is a human-specific coccidian parasite responsible for several food and water-related outbreaks around the world, including the most recent ones involving over 900 persons in 2013 and 2014 outbreaks in the USA. Multicopy organellar DNA such as mitochondrion genomes have been particularly informative for detection and genetic traceback analysis in other parasites. We sequenced the C. cayetanensis genomic DNA obtained from stool samples from patients infected with Cyclospora in Nepal using the Illumina MiSeq platform. By bioinformatically filtering out the metagenomic reads of non-coccidian origin sequences and concentrating the reads by targeted alignment, we were able to obtain contigs containing Eimeria-like mitochondrial, apicoplastic and some chromosomal genomic fragments. A mitochondrial genomic sequence was assembled and confirmed by cloning and sequencing targeted PCR products amplified from Cyclospora DNA using primers based on our draft assembly sequence. The results show that the C. cayetanensis mitochondrion genome is 6274 bp in length, with 33% GC content, and likely exists in concatemeric arrays as in Eimeria mitochondrial genomes. Phylogenetic analysis of the C. cayetanensis mitochondrial genome places this organism in a tight cluster with Eimeria species. The mitochondrial genome of C. cayetanensis contains three protein coding genes, cytochrome (cytb, cytochrome C oxidase subunit 1 (cox1, and cytochrome C oxidase subunit 3 (cox3, in addition to 14 large subunit (LSU and nine small subunit (SSU fragmented rRNA genes.

  19. Enhanced resolution of DNA restriction fragments: A procedure by two-dimensional electrophoresis and double-labeling

    International Nuclear Information System (INIS)

    Yi, M.; Au, L.C.; Ichikawa, N.; Ts'o, P.O.

    1990-01-01

    A probe-free method was developed to detect DNA rearrangement in bacteria based on the electrophoretic separation of twice-digested restriction fragments of genomic DNA into a two-dimensional (2-D) pattern. The first restriction enzyme digestion was done in solution, followed by electrophoresis of the restriction fragments in one dimension. A second restriction enzyme digestion was carried out in situ in the gel, followed by electrophoresis in a second dimension perpendicular to the first electrophoresis. The 2-D pattern provides for the resolution of 300-400 spots, which are defined and indexed by an x,y coordinate system with size markers. This approach has greatly increased the resolution power over conventional one-dimensional (1-D) electrophoresis. To study DNA rearrangement, a 2-D pattern from a test strain was compared with the 2-D pattern from a reference strain. After the first digestion, genomic DNA fragments from the test strain were labeled with 35S, while those from the reference strain were labeled with 32P. This was done to utilize the difference in the energy emission of 35S and 32P isotopes for autoradiography when two x-ray films were exposed simultaneously on top of the gel after the 2-D electrophoresis. The irradiation from the decay of 35S exposed only the lower film, whereas the irradiation from the decay of 32P exposed both the lower and upper films. Different DNA fragments existed in the test DNA compared with the reference DNA can be identified unambiguously by the differential two 2-D patterns produced on two films upon exposure to the 35S and 32P fragments in the same gel. An appropriate photographic procedure further simplified the process, allowing only the difference in DNA fragments between these two patterns to be shown in the map

  20. IDENTIFICATION OF AVIAN-SPECIFIC FECAL METAGENOMIC SEQUENCES USING GENOME FRAGMENT ENRICHMENTS

    Science.gov (United States)

    Sequence analysis of microbial genomes has provided biologists the opportunity to compare genetic differences between closely related microorganisms. While random sequencing has also been used to study natural microbial communities, metagenomic comparisons via sequencing analysis...

  1. Contribution of transposable elements in the plant's genome.

    Science.gov (United States)

    Sahebi, Mahbod; Hanafi, Mohamed M; van Wijnen, Andre J; Rice, David; Rafii, M Y; Azizi, Parisa; Osman, Mohamad; Taheri, Sima; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat; Noor, Yusuf Muhammad

    2018-07-30

    Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Virtual fragment preparation for computational fragment-based drug design.

    Science.gov (United States)

    Ludington, Jennifer L

    2015-01-01

    Fragment-based drug design (FBDD) has become an important component of the drug discovery process. The use of fragments can accelerate both the search for a hit molecule and the development of that hit into a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR and X-ray Crystallography screens, computational techniques are playing an increasingly important role. The success of the computational simulations is due in large part to how the database of virtual fragments is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD differs from other approaches and the issues inherent in building up molecules from smaller fragment pieces. The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has an experimental binding affinity consistent with the additive predicted binding affinities of the virtual fragments. Computationally predicting binding affinities is a complex process, with many opportunities for introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid introducing additional inaccuracies.This chapter is focused on the preparation process used to create a virtual fragment database. Several key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed. The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for calibration, binding site characterization, hit identification, or lead optimization), general factors such as synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other aspects of preparing the virtual fragments for simulation are the generation of three-dimensional conformations and the assignment of the associated atomic point charges.

  3. Analysis of DNA restriction fragments greater than 5.7 Mb in size from the centromeric region of human chromosomes.

    Science.gov (United States)

    Arn, P H; Li, X; Smith, C; Hsu, M; Schwartz, D C; Jabs, E W

    1991-01-01

    Pulsed electrophoresis was used to study the organization of the human centromeric region. Genomic DNA was digested with rare-cutting enzymes. DNA fragments from 0.2 to greater than 5.7 Mb were separated by electrophoresis and hybridized with alphoid and simple DNA repeats. Rare-cutting enzymes (Mlu I, Nar I, Not I, Nru I, Sal I, Sfi I, Sst II) demonstrated fewer restriction sites at centromeric regions than elsewhere in the genome. The enzyme Not I had the fewest restriction sites at centromeric regions. As much as 70% of these sequences from the centromeric region are present in Not I DNA fragments greater than 5.7 and estimated to be as large as 10 Mb in size. Other repetitive sequences such as short interspersed repeated segments (SINEs), long interspersed repeated segments (LINEs), ribosomal DNA, and mini-satellite DNA that are not enriched at the centromeric region, are not enriched in Not I fragments of greater than 5.7 Mb in size.

  4. Separating metagenomic short reads into genomes via clustering

    Directory of Open Access Journals (Sweden)

    Tanaseichuk Olga

    2012-09-01

    Full Text Available Abstract Background The metagenomics approach allows the simultaneous sequencing of all genomes in an environmental sample. This results in high complexity datasets, where in addition to repeats and sequencing errors, the number of genomes and their abundance ratios are unknown. Recently developed next-generation sequencing (NGS technologies significantly improve the sequencing efficiency and cost. On the other hand, they result in shorter reads, which makes the separation of reads from different species harder. Among the existing computational tools for metagenomic analysis, there are similarity-based methods that use reference databases to align reads and composition-based methods that use composition patterns (i.e., frequencies of short words or l-mers to cluster reads. Similarity-based methods are unable to classify reads from unknown species without close references (which constitute the majority of reads. Since composition patterns are preserved only in significantly large fragments, composition-based tools cannot be used for very short reads, which becomes a significant limitation with the development of NGS. A recently proposed algorithm, AbundanceBin, introduced another method that bins reads based on predicted abundances of the genomes sequenced. However, it does not separate reads from genomes of similar abundance levels. Results In this work, we present a two-phase heuristic algorithm for separating short paired-end reads from different genomes in a metagenomic dataset. We use the observation that most of the l-mers belong to unique genomes when l is sufficiently large. The first phase of the algorithm results in clusters of l-mers each of which belongs to one genome. During the second phase, clusters are merged based on l-mer repeat information. These final clusters are used to assign reads. The algorithm could handle very short reads and sequencing errors. It is initially designed for genomes with similar abundance levels and then

  5. Forest edge disturbance increases rattan abundance in tropical rain forest fragments.

    Science.gov (United States)

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Laurance, Susan G; Alamgir, Mohammed; Porolak, Gabriel; Laurance, William F

    2017-07-20

    Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.

  6. Environmental assessment for construction and operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Lawrence Berkeley Laboratory (LBL) proposes to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center (HGC). This document addresses the potential direct, indirect, and cumulative environmental and human-health effects from the proposed facility construction and operation. This document was prepared in accordance the National Environmental Policy Act of 1969 (United States Codes 42 USC 4321-4347) (NEPA) and the US Department of Energy`s (DOE) Final Rule for NEPA Implementing Procedures [Code of Federal Regulations 10CFR 1021].

  7. The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).

    Science.gov (United States)

    Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis.

  8. Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Lau Susanna KP

    2011-06-01

    Full Text Available Abstract Background Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches. Results L. hongkongensis possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two arc gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na+:H+ antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs. Conclusions The L. hongkongensis genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals.

  9. Sizing up arthropod genomes: an evaluation of the impact of environmental variation on genome size estimates by flow cytometry and the use of qPCR as a method of estimation.

    Science.gov (United States)

    Gregory, T Ryan; Nathwani, Paula; Bonnett, Tiffany R; Huber, Dezene P W

    2013-09-01

    A study was undertaken to evaluate both a pre-existing method and a newly proposed approach for the estimation of nuclear genome sizes in arthropods. First, concerns regarding the reliability of the well-established method of flow cytometry relating to impacts of rearing conditions on genome size estimates were examined. Contrary to previous reports, a more carefully controlled test found negligible environmental effects on genome size estimates in the fly Drosophila melanogaster. Second, a more recently touted method based on quantitative real-time PCR (qPCR) was examined in terms of ease of use, efficiency, and (most importantly) accuracy using four test species: the flies Drosophila melanogaster and Musca domestica and the beetles Tribolium castaneum and Dendroctonus ponderosa. The results of this analysis demonstrated that qPCR has the tendency to produce substantially different genome size estimates from other established techniques while also being far less efficient than existing methods.

  10. Extensive error in the number of genes inferred from draft genome assemblies.

    Directory of Open Access Journals (Sweden)

    James F Denton

    2014-12-01

    Full Text Available Current sequencing methods produce large amounts of data, but genome assemblies based on these data are often woefully incomplete. These incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. In this paper we investigate the magnitude of the problem, both in terms of total gene number and the number of copies of genes in specific families. To do this, we compare multiple draft assemblies against higher-quality versions of the same genomes, using several new assemblies of the chicken genome based on both traditional and next-generation sequencing technologies, as well as published draft assemblies of chimpanzee. We find that upwards of 40% of all gene families are inferred to have the wrong number of genes in draft assemblies, and that these incorrect assemblies both add and subtract genes. Using simulated genome assemblies of Drosophila melanogaster, we find that the major cause of increased gene numbers in draft genomes is the fragmentation of genes onto multiple individual contigs. Finally, we demonstrate the usefulness of RNA-Seq in improving the gene annotation of draft assemblies, largely by connecting genes that have been fragmented in the assembly process.

  11. High-Resolution Amplified Fragment Length Polymorphism Typing of Lactococcus lactis Strains Enables Identification of Genetic Markers for Subspecies-Related Phenotypes▿

    Science.gov (United States)

    Kütahya, Oylum Erkus; Starrenburg, Marjo J. C.; Rademaker, Jan L. W.; Klaassen, Corné H. W.; van Hylckama Vlieg, Johan E. T.; Smid, Eddy J.; Kleerebezem, Michiel

    2011-01-01

    A high-resolution amplified fragment length polymorphism (AFLP) methodology was developed to achieve the delineation of closely related Lactococcus lactis strains. The differentiation depth of 24 enzyme-primer-nucleotide combinations was experimentally evaluated to maximize the number of polymorphisms. The resolution depth was confirmed by performing diversity analysis on 82 L. lactis strains, including both closely and distantly related strains with dairy and nondairy origins. Strains clustered into two main genomic lineages of L. lactis subsp. lactis and L. lactis subsp. cremoris type-strain-like genotypes and a third novel genomic lineage rooted from the L. lactis subsp. lactis genomic lineage. Cluster differentiation was highly correlated with small-subunit rRNA homology and multilocus sequence analysis (MLSA) studies. Additionally, the selected enzyme-primer combination generated L. lactis subsp. cremoris phenotype-specific fragments irrespective of the genotype. These phenotype-specific markers allowed the differentiation of L. lactis subsp. lactis phenotype from L. lactis subsp. cremoris phenotype strains within the same L. lactis subsp. cremoris type-strain-like genomic lineage, illustrating the potential of AFLP for the generation of phenotype-linked genetic markers. PMID:21666014

  12. Transposon domestication versus mutualism in ciliate genome rearrangements.

    Directory of Open Access Journals (Sweden)

    Alexander Vogt

    Full Text Available Ciliated protists rearrange their genomes dramatically during nuclear development via chromosome fragmentation and DNA deletion to produce a trimmer and highly reorganized somatic genome. The deleted portion of the genome includes potentially active transposons or transposon-like sequences that reside in the germline. Three independent studies recently showed that transposase proteins of the DDE/DDD superfamily are indispensible for DNA processing in three distantly related ciliates. In the spirotrich Oxytricha trifallax, high copy-number germline-limited transposons mediate their own excision from the somatic genome but also contribute to programmed genome rearrangement through a remarkable transposon mutualism with the host. By contrast, the genomes of two oligohymenophorean ciliates, Tetrahymena thermophila and Paramecium tetraurelia, encode homologous PiggyBac-like transposases as single-copy genes in both their germline and somatic genomes. These domesticated transposases are essential for deletion of thousands of different internal sequences in these species. This review contrasts the events underlying somatic genome reduction in three different ciliates and considers their evolutionary origins and the relationships among their distinct mechanisms for genome remodeling.

  13. Response of the agile antechinus to habitat edge, configuration and condition in fragmented forest.

    Directory of Open Access Journals (Sweden)

    Christopher P Johnstone

    Full Text Available Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR, did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals.

  14. Whole Genome Sequencing of Enterovirus species C Isolates by High-throughput Sequencing: Development of Generic Primers

    Directory of Open Access Journals (Sweden)

    Maël Bessaud

    2016-08-01

    Full Text Available Enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Enterovirus species C (EV-C consists of more than 20 types, among which the 3 serotypes of polioviruses, the etiological agents of poliomyelitis, are included. Biodiversity and evolution of EV-C genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating EV-C strains require the sequencing of different genomic regions.A simple method was developed to sequence quickly the entire genome of EV-C isolates. Four overlapping fragments were produced separately by RT-PCR performed with generic primers. The four amplicons were then pooled and purified prior to be sequenced by high-throughput technique.The method was assessed on a panel of EV-Cs belonging to a wide-range of types. It can be used to determine full-length genome sequences through de novo assembly of thousands of reads. It was also able to discriminate reads from closely related viruses in mixtures.By decreasing the workload compared to classical Sanger-based techniques, this method will serve as a precious tool for sequencing large panels of EV-Cs isolated in cell cultures during environmental surveillance or from patients, including vaccine-derived polioviruses.

  15. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  16. Immunogenic properties of Streptococcus agalactiae FbsA fragments.

    Directory of Open Access Journals (Sweden)

    Salvatore Papasergi

    Full Text Available Several species of Gram-positive bacteria can avidly bind soluble and surface-associated fibrinogen (Fng, a property that is considered important in the pathogenesis of human infections. To gain insights into the mechanism by which group B Streptococcus (GBS, a frequent neonatal pathogen, interacts with Fng, we have screened two phage displayed genomic GBS libraries. All of the Fng-binding phage clones contained inserts encoding fragments of FbsA, a protein displaying multiple repeats. Since the functional role of this protein is only partially understood, representative fragments were recombinantly expressed and analyzed for Fng binding affinity and ability to induce immune protection against GBS infection. Maternal immunization with 6pGST, a fragment containing five repeats, significantly protected mouse pups against lethal GBS challenge and these protective effects could be recapitulated by administration of anti-6pGST serum from adult animals. Notably, a monoclonal antibody that was capable of neutralizing Fng binding by 6pGST, but not a non-neutralizing antibody, could significantly protect pups against lethal GBS challenge. These data suggest that FbsA-Fng interaction promotes GBS pathogenesis and that blocking such interaction is a viable strategy to prevent or treat GBS infections.

  17. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

  18. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    DEFF Research Database (Denmark)

    Machado, Henrique; Gram, Lone

    2017-01-01

    was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.......Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand...... the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two...

  19. Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: Challenges, opportunities, and research needs

    International Nuclear Information System (INIS)

    Burgess-Herbert, Sarah L.; Euling, Susan Y.

    2013-01-01

    A critical challenge for environmental chemical risk assessment is the characterization and reduction of uncertainties introduced when extrapolating inferences from one species to another. The purpose of this article is to explore the challenges, opportunities, and research needs surrounding the issue of how genomics data and computational and systems level approaches can be applied to inform differences in response to environmental chemical exposure across species. We propose that the data, tools, and evolutionary framework of comparative genomics be adapted to inform interspecies differences in chemical mechanisms of action. We compare and contrast existing approaches, from disciplines as varied as evolutionary biology, systems biology, mathematics, and computer science, that can be used, modified, and combined in new ways to discover and characterize interspecies differences in chemical mechanism of action which, in turn, can be explored for application to risk assessment. We consider how genetic, protein, pathway, and network information can be interrogated from an evolutionary biology perspective to effectively characterize variations in biological processes of toxicological relevance among organisms. We conclude that comparative genomics approaches show promise for characterizing interspecies differences in mechanisms of action, and further, for improving our understanding of the uncertainties inherent in extrapolating inferences across species in both ecological and human health risk assessment. To achieve long-term relevance and consistent use in environmental chemical risk assessment, improved bioinformatics tools, computational methods robust to data gaps, and quantitative approaches for conducting extrapolations across species are critically needed. Specific areas ripe for research to address these needs are recommended

  20. Magnetic bead purification of labeled DNA fragments forhigh-throughput capillary electrophoresis sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Elkin, Christopher; Kapur, Hitesh; Smith, Troy; Humphries, David; Pollard, Martin; Hammon, Nancy; Hawkins, Trevor

    2001-09-15

    We have developed an automated purification method for terminator sequencing products based on a magnetic bead technology. This 384-well protocol generates labeled DNA fragments that are essentially free of contaminates for less than $0.005 per reaction. In comparison to laborious ethanol precipitation protocols, this method increases the phred20 read length by forty bases with various DNA templates such as PCR fragments, Plasmids, Cosmids and RCA products. Our method eliminates centrifugation and is compatible with both the MegaBACE 1000 and ABIPrism 3700 capillary instruments. As of September 2001, this method has produced over 1.6 million samples with 93 percent averaging 620 phred20 bases as part of Joint Genome Institutes Production Process.

  1. Importance of riparian remnants for frog species diversity in a highly fragmented rainforest.

    Science.gov (United States)

    Rodríguez-Mendoza, Clara; Pineda, Eduardo

    2010-12-23

    Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.

  2. About human genome Acerca del genoma humano

    Directory of Open Access Journals (Sweden)

    Mojica Tobias

    2000-12-01

    Full Text Available The sequence ofthe human genome, an undertaking ofadvanced countries, is nearly complete. In fact The Human Genome Project has around 85% ofthe genome sequenced 4 times on the average, with an accuracy of roughly 1 in 1000 nucleotides. Celera Genomics, on the other hand, has 99% of the sequence of one person, with an accuracy of slightly less than 1 in 100. The Human Genome project trives to produce a physical map for public consumption following a step by step strategy, in which the researcher sequences short DNA fragments belonging to Iarger fragments of known relative
    position. Celera Genomics wants to have very rapidly a physical map which can be quickly used to develop genetic tests and drugs, which can be later sold. We feel that the sequence ofthe human genome is something, which will widen the gap between advanced and backward countries.En este artículo se revisan los eventos, alrededor del secuenciamiento del genoma humano, que han llevado a tanta excitación en los medios noticiosos y académicos en meses recientes. Se explican las estrategias que han llevado a que tengamos dos borradores diferentes pero complementarios, la estrategia llevada a cabo con el dinero
    de los contribuyentes que consiste en establecer el orden de fragmentos grandes de DNA antes de ser secuenciados y la estrategia llevada a cabo con dineros aportados por la industria privada, con la intención de explotar gananciosamente el conocimiento derivado del genoma humano. El genoma humano a mediados del año 2000 es
    un borrador incompleto que cubre aliededor del 85% de la secuencia con una precisión de un error en 1000 y el 99% de la secuencia con una precisión menor de 1 en 100 nucleótidos, También se discuten algunas de las posibles avenidas

  3. Toward The Reconstitution of the Maturation of Okazaki Fragments Multiprotein Complex in Human At The Single Molecule Level

    KAUST Repository

    Joudeh, Luay

    2017-01-01

    The maturation of Okazaki fragments on the lagging strand in eukaryotes is mediated by a highly coordinated multistep process involving several proteins that ensure the accurate and efficient replication of genomic DNA. Human proliferating cell

  4. Comparison by restriction fragment pattern analyses and molecular characterization of some European isolates of Suid herpesvirus 1: A contribution to strain differentiation of European isolates

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig

    1988-01-01

    Eleven European isolates of Suid herpesvirus type 1 (SHV-1) were compared by restriction fragment pattern analyses and Southern blot hybridization using different genomic probes. The presence of strain discriminative 4 major genome types and several subtypes as well as the molecular distinctions...

  5. Genome-Wide Locations of Potential Epimutations Associated with Environmentally Induced Epigenetic Transgenerational Inheritance of Disease Using a Sequential Machine Learning Prediction Approach

    OpenAIRE

    Haque, M. Muksitul; Holder, Lawrence B.; Skinner, Michael K.

    2015-01-01

    Environmentally induced epigenetic transgenerational inheritance of disease and phenotypic variation involves germline transmitted epimutations. The primary epimutations identified involve altered differential DNA methylation regions (DMRs). Different environmental toxicants have been shown to promote exposure (i.e., toxicant) specific signatures of germline epimutations. Analysis of genomic features associated with these epimutations identified low-density CpG regions (

  6. Study in mutation of alfalfa genome DNA due to low energy N+ implantation using RAPD

    International Nuclear Information System (INIS)

    Chen Roulei; Song Daojun; Yu Zengliang; Li Yufeng; Liang Yunzhang

    2001-01-01

    After implanted by various dosage N + beams, germination rate of alfalfa seeds appears to be saddle line with dosage increasing. The authors have studied in mutation of genome DNA due to low energy N + implantation, and concluded that 30 differential DNA fragments have been amplified by 8 primers (S 41 , S 42 , S 45 , S 46 , S 50 , S 52 , S 56 , S 58 ) in 100 primers, moreover, number of differential DNA fragments between CK and treatments increases with dosage. Consequently, low energy ion implantation can cause mutation of alfalfa genome DNA. The more dosage it is, the more mutation alfalfa will be

  7. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    Science.gov (United States)

    Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal

  8. Genetic control of environmental variation of two quantitative traits of Drosophila melanogaster revealed by whole-genome sequencing

    DEFF Research Database (Denmark)

    Sørensen, Peter; de los Campos, Gustavo; Morgante, Fabio

    2015-01-01

    and others more volatile performance. Understanding the mechanisms responsible for environmental variability not only informs medical questions but is relevant in evolution and in agricultural science. In this work fully sequenced inbred lines of Drosophila melanogaster were analyzed to study the nature...... of genetic control of environmental variance for two quantitative traits: starvation resistance (SR) and startle response (SL). The evidence for genetic control of environmental variance is compelling for both traits. Sequence information is incorporated in random regression models to study the underlying...... genetic signals, which are shown to be different in the two traits. Genomic variance in sexual dimorphism was found for SR but not for SL. Indeed, the proportion of variance captured by sequence information and the contribution to this variance from four chromosome segments differ between sexes in SR...

  9. Jet fragmentation

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1985-10-01

    The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)

  10. Exploring Lactobacillus plantarum genome diversity by using microarrays

    NARCIS (Netherlands)

    Molenaar, D.; Bringel, F.; Schuren, F.H.; Vos, de W.M.; Siezen, R.J.; Kleerebezem, M.

    2005-01-01

    Lactobacillus plantarum is a versatile and flexible species that is encountered in a variety of niches and can utilize a broad range of fermentable carbon sources. To assess if this versatility is linked to a variable gene pool, microarrays containing a subset of small genomic fragments of L.

  11. Missing Fragments: Detecting Cooperative Binding in Fragment-Based Drug Design

    Science.gov (United States)

    2012-01-01

    The aim of fragment-based drug design (FBDD) is to identify molecular fragments that bind to alternate subsites within a given binding pocket leading to cooperative binding when linked. In this study, the binding of fragments to human phenylethanolamine N-methyltransferase is used to illustrate how (a) current protocols may fail to detect fragments that bind cooperatively, (b) theoretical approaches can be used to validate potential hits, and (c) apparent false positives obtained when screening against cocktails of fragments may in fact indicate promising leads. PMID:24900472

  12. Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA[reg])

    International Nuclear Information System (INIS)

    Evenson, Donald P.; Wixon, Regina

    2005-01-01

    Studies over the past two decades have clearly shown that reproductive toxicants cause sperm DNA fragmentation. This DNA fragmentation can usually be detected prior to observing alterations of metaphase chromosomes in embryos. Thus, Sperm Chromatin Structure Assay (SCSA)-detected DNA damage is viewed as the molecular precursor to later gross chromosome damage observed under the light microscope. SCSA measurements of animal or human sperm consist of first obtaining a fresh or flash frozen neat semen sample in LN2 or dry ice. Samples are then sent to a SCSA diagnostic laboratory where the samples are thawed, diluted to ∼1-2 x 106 sperm/ml, treated for 30 s with a pH 1.2 detergent buffer and then stained with acridine orange (AO). The low pH partially denatures DNA at the sites of DNA strand breaks and the AO-ssDNA fluoresces red while the AO-dsDNA fluoresces green. Flow cytometry measurements of 5000 sperm/sample provide statistically robust data on the ratio of red to green sperm, the extent of the DNA fragmentation and the standard deviations of measures. Numerous experiments on rodents treated with reproductive toxicants clearly showed that SCSA measures are highly dose responsive and have a very low CV. Different agents that act on germ cells at various stages of development usually showed sperm DNA fragmentation when that germ cell fraction arrived in the epididymis or ejaculate. Some of these treated samples were capable of successful in vitro fertilization but with frequent embryo failure. A 2-year longitudinal study of men living a valley town with a reported abnormal level of infertility and spontaneous miscarriages and also a seasonal atmospheric smog pollution, showed, for the first time, that SCSA measurements of human sperm DNA fragmentation were detectable and correlated with dosage of air pollution while the classical semen measures were not correlated. Also, young men spraying pesticides without protective gear are at an increased risk for elevated

  13. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    Energy Technology Data Exchange (ETDEWEB)

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-11-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus.

  14. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    International Nuclear Information System (INIS)

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-01-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus

  15. IMG 4 version of the integrated microbial genomes comparative analysis system

    Science.gov (United States)

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Pillay, Manoj; Ratner, Anna; Huang, Jinghua; Woyke, Tanja; Huntemann, Marcel; Anderson, Iain; Billis, Konstantinos; Varghese, Neha; Mavromatis, Konstantinos; Pati, Amrita; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2014-01-01

    The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu). PMID:24165883

  16. IMG 4 version of the integrated microbial genomes comparative analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Chen, I-Min A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Palaniappan, Krishna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Chu, Ken [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Szeto, Ernest [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Pillay, Manoj [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Ratner, Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Huang, Jinghua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Woyke, Tanja [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Huntemann, Marcel [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Anderson, Iain [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Billis, Konstantinos [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Varghese, Neha [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Mavromatis, Konstantinos [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Pati, Amrita [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Ivanova, Natalia N. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Kyrpides, Nikos C. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program

    2013-10-27

    The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Finally, different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu).

  17. Molecular cloning and restriction analysis of EcoRI-fragments of Vicia faba rDNA

    International Nuclear Information System (INIS)

    Yakura, Kimitaka; Tanifuji, Shigeyuki.

    1983-01-01

    EcoRI-fragments of Vicia faba rDNA were cloned in plasmid pBR325. Southern blot hybridization of BamHI-digests of these cloned plasmids and Vicia genomic DNA led to the determination of relative positions of BamHI sites in the rDNA and the physical map that had been tentatively made is corrected. (author)

  18. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method

    Directory of Open Access Journals (Sweden)

    Bingfu Guo

    2016-07-01

    Full Text Available Molecular characterization of sequences flanking exogenous fragment insertions is essential for safety assessment and labeling of genetically modified organisms (GMO. In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS method. About 21 Gb sequence data (~21× coverage for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundary of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of the genomic insertion site of the G2-EPSPS and GAT transgenes will facilitate the use of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS is a cost-effective and rapid method of identifying sites of T-DNA insertions and flanking sequences in soybean.

  19. Barcode server: a visualization-based genome analysis system.

    Directory of Open Access Journals (Sweden)

    Fenglou Mao

    Full Text Available We have previously developed a computational method for representing a genome as a barcode image, which makes various genomic features visually apparent. We have demonstrated that this visual capability has made some challenging genome analysis problems relatively easy to solve. We have applied this capability to a number of challenging problems, including (a identification of horizontally transferred genes, (b identification of genomic islands with special properties and (c binning of metagenomic sequences, and achieved highly encouraging results. These application results inspired us to develop this barcode-based genome analysis server for public service, which supports the following capabilities: (a calculation of the k-mer based barcode image for a provided DNA sequence; (b detection of sequence fragments in a given genome with distinct barcodes from those of the majority of the genome, (c clustering of provided DNA sequences into groups having similar barcodes; and (d homology-based search using Blast against a genome database for any selected genomic regions deemed to have interesting barcodes. The barcode server provides a job management capability, allowing processing of a large number of analysis jobs for barcode-based comparative genome analyses. The barcode server is accessible at http://csbl1.bmb.uga.edu/Barcode.

  20. Resolving prokaryotic taxonomy without rRNA: longer oligonucleotide word lengths improve genome and metagenome taxonomic classification.

    Science.gov (United States)

    Alsop, Eric B; Raymond, Jason

    2013-01-01

    Oligonucleotide signatures, especially tetranucleotide signatures, have been used as method for homology binning by exploiting an organism's inherent biases towards the use of specific oligonucleotide words. Tetranucleotide signatures have been especially useful in environmental metagenomics samples as many of these samples contain organisms from poorly classified phyla which cannot be easily identified using traditional homology methods, including NCBI BLAST. This study examines oligonucleotide signatures across 1,424 completed genomes from across the tree of life, substantially expanding upon previous work. A comprehensive analysis of mononucleotide through nonanucleotide word lengths suggests that longer word lengths substantially improve the classification of DNA fragments across a range of sizes of relevance to high throughput sequencing. We find that, at present, heptanucleotide signatures represent an optimal balance between prediction accuracy and computational time for resolving taxonomy using both genomic and metagenomic fragments. We directly compare the ability of tetranucleotide and heptanucleotide world lengths (tetranucleotide signatures are the current standard for oligonucleotide word usage analyses) for taxonomic binning of metagenome reads. We present evidence that heptanucleotide word lengths consistently provide more taxonomic resolving power, particularly in distinguishing between closely related organisms that are often present in metagenomic samples. This implies that longer oligonucleotide word lengths should replace tetranucleotide signatures for most analyses. Finally, we show that the application of longer word lengths to metagenomic datasets leads to more accurate taxonomic binning of DNA scaffolds and have the potential to substantially improve taxonomic assignment and assembly of metagenomic data.

  1. Resolving prokaryotic taxonomy without rRNA: longer oligonucleotide word lengths improve genome and metagenome taxonomic classification.

    Directory of Open Access Journals (Sweden)

    Eric B Alsop

    Full Text Available Oligonucleotide signatures, especially tetranucleotide signatures, have been used as method for homology binning by exploiting an organism's inherent biases towards the use of specific oligonucleotide words. Tetranucleotide signatures have been especially useful in environmental metagenomics samples as many of these samples contain organisms from poorly classified phyla which cannot be easily identified using traditional homology methods, including NCBI BLAST. This study examines oligonucleotide signatures across 1,424 completed genomes from across the tree of life, substantially expanding upon previous work. A comprehensive analysis of mononucleotide through nonanucleotide word lengths suggests that longer word lengths substantially improve the classification of DNA fragments across a range of sizes of relevance to high throughput sequencing. We find that, at present, heptanucleotide signatures represent an optimal balance between prediction accuracy and computational time for resolving taxonomy using both genomic and metagenomic fragments. We directly compare the ability of tetranucleotide and heptanucleotide world lengths (tetranucleotide signatures are the current standard for oligonucleotide word usage analyses for taxonomic binning of metagenome reads. We present evidence that heptanucleotide word lengths consistently provide more taxonomic resolving power, particularly in distinguishing between closely related organisms that are often present in metagenomic samples. This implies that longer oligonucleotide word lengths should replace tetranucleotide signatures for most analyses. Finally, we show that the application of longer word lengths to metagenomic datasets leads to more accurate taxonomic binning of DNA scaffolds and have the potential to substantially improve taxonomic assignment and assembly of metagenomic data.

  2. Biogeography and environmental genomics of the Roseobacter-affiliated pelagic CHAB-I-5 lineage

    DEFF Research Database (Denmark)

    Billerbeck, Sara; Wemheuer, Bernd; Voget, Sonja

    2016-01-01

    The identification and functional characterization of microbial communities remains a prevailing topic in microbial oceanography as information on environmentally relevant pelagic prokaryotes is still limited. The Roseobacter group, an abundant lineage of marine Alphaproteobacteria, can constitute...... large proportions of the bacterioplankton. Roseobacters also occur associated with eukaryotic organisms and possess streamlined as well as larger genomes from 2.2 to >5 Mpb. Here, we show that one pelagic cluster of this group, CHAB-I-5, occurs globally from tropical to polar regions and accounts for up...

  3. Phylogenetic signal from rearrangements in 18 Anopheles species by joint scaffolding extant and ancestral genomes.

    Science.gov (United States)

    Anselmetti, Yoann; Duchemin, Wandrille; Tannier, Eric; Chauve, Cedric; Bérard, Sèverine

    2018-05-09

    Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions. We present a computational method, ADSEQ, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats. ADSEQ provides simultaneously improved assemblies and ancestral genomes, with statistical supports on all local features. Compared to previous comparative methods, it runs in polynomial time, it samples solutions in a probabilistic space, and it can handle a significantly larger gene complement from the considered extant genomes, with complex histories including gene duplications and losses. We use ADSEQ to provide improved assemblies and a genome history made of duplications, losses, gene translocations, rearrangements, of 18 complete Anopheles genomes, including several important malaria vectors. We also provide additional support for a differentiated mode of evolution of the sex chromosome and of the autosomes in these mosquito genomes. We demonstrate the method's ability to improve extant assemblies accurately through a procedure simulating realistic assembly fragmentation. We study a debated issue regarding the phylogeny of the Gambiae complex group of Anopheles genomes in the light of the evolution of chromosomal rearrangements, suggesting that the phylogenetic signal they carry can differ from the phylogenetic signal carried by gene sequences, more prone to introgression.

  4. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Henrik [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Cantor, Michael [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Dusheyko, Serge [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Hua, Susan [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Poliakov, Alexander [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Shabalov, Igor [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Smirnova, Tatyana [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Grigoriev, Igor V. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Dubchak, Inna [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2013-11-12

    The U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a national user facility, serves the diverse scientific community by providing integrated high-throughput sequencing and computational analysis to enable system-based scientific approaches in support of DOE missions related to clean energy generation and environmental characterization. The JGI Genome Portal (http://genome.jgi.doe.gov) provides unified access to all JGI genomic databases and analytical tools. The JGI maintains extensive data management systems and specialized analytical capabilities to manage and interpret complex genomic data. A user can search, download and explore multiple data sets available for all DOE JGI sequencing projects including their status, assemblies and annotations of sequenced genomes. In this paper, we describe major updates of the Genome Portal in the past 2 years with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI.

  5. Homogeneous versus heterogeneous probes for microbial ecological microarrays.

    Science.gov (United States)

    Bae, Jin-Woo; Park, Yong-Ha

    2006-07-01

    Microbial ecological microarrays have been developed for investigating the composition and functions of microorganism communities in environmental niches. These arrays include microbial identification microarrays, which use oligonucleotides, gene fragments or microbial genomes as probes. In this article, the advantages and disadvantages of each type of probe are reviewed. Oligonucleotide probes are currently useful for probing uncultivated bacteria that are not amenable to gene fragment probing, whereas the functional gene fragments amplified randomly from microbial genomes require phylogenetic and hierarchical categorization before use as microbial identification probes, despite their high resolution for both specificity and sensitivity. Until more bacteria are sequenced and gene fragment probes are thoroughly validated, heterogeneous bacterial genome probes will provide a simple, sensitive and quantitative tool for exploring the ecosystem structure.

  6. Evolution of linear chromosomes and multipartite genomes in yeast mitochondria

    Science.gov (United States)

    Valach, Matus; Farkas, Zoltan; Fricova, Dominika; Kovac, Jakub; Brejova, Brona; Vinar, Tomas; Pfeiffer, Ilona; Kucsera, Judit; Tomaska, Lubomir; Lang, B. Franz; Nosek, Jozef

    2011-01-01

    Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance. PMID:21266473

  7. The complete mitochondrial genomes of five Eimeria species infecting domestic rabbits.

    Science.gov (United States)

    Liu, Guo-Hua; Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-12-01

    Rabbit coccidiosis caused by members of the genus Eimeria can cause enormous economic impact worldwide, but the genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced and annotated the complete mitochondrial (mt) genomes of five Eimeria species that commonly infect the domestic rabbits. The complete mt genomes of Eimeria intestinalis, Eimeria flavescens, Eimeria media, Eimeria vejdovskyi and Eimeria irresidua were 6261bp, 6258bp, 6168bp, 6254bp, 6259bp in length, respectively. All of the mt genomes consist of 3 genes for proteins (cytb, cox1, and cox3), 14 gene fragments for the large subunit (LSU) rRNA and 11 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA (tRNA) genes. The gene order of the mt genomes is similar to that of Plasmodium, but distinct from Haemosporida and Theileria. Phylogenetic analyses based on full nucleotide sequences using Bayesian analysis revealed that the monophyly of the Eimeria of rabbits was strongly statistically supported with a Bayesian posterior probabilities. These data provide novel mtDNA markers for studying the population genetics and molecular epidemiology of the Eimeria species, and should have implications for the molecular diagnosis, prevention and control of coccidiosis in rabbits. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of chromera velia

    KAUST Repository

    Janouškovec, Jan

    2013-08-22

    The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function. © The Author 2013.

  9. Algorithms and Complexity Results for Genome Mapping Problems.

    Science.gov (United States)

    Rajaraman, Ashok; Zanetti, Joao Paulo Pereira; Manuch, Jan; Chauve, Cedric

    2017-01-01

    Genome mapping algorithms aim at computing an ordering of a set of genomic markers based on local ordering information such as adjacencies and intervals of markers. In most genome mapping models, markers are assumed to occur uniquely in the resulting map. We introduce algorithmic questions that consider repeats, i.e., markers that can have several occurrences in the resulting map. We show that, provided with an upper bound on the copy number of repeated markers and with intervals that span full repeat copies, called repeat spanning intervals, the problem of deciding if a set of adjacencies and repeat spanning intervals admits a genome representation is tractable if the target genome can contain linear and/or circular chromosomal fragments. We also show that extracting a maximum cardinality or weight subset of repeat spanning intervals given a set of adjacencies that admits a genome realization is NP-hard but fixed-parameter tractable in the maximum copy number and the number of adjacent repeats, and tractable if intervals contain a single repeated marker.

  10. The genomic sequence of Exiguobacterium chiriqhucha str. N139 reveals a species that thrives in cold waters and extreme environmental conditions

    Directory of Open Access Journals (Sweden)

    Ana Gutiérrez-Preciado

    2017-04-01

    Full Text Available We report the genome sequence of Exiguobacterium chiriqhucha str. N139, isolated from a high-altitude Andean lake. Comparative genomic analyses of the Exiguobacterium genomes available suggest that our strain belongs to the same species as the previously reported E. pavilionensis str. RW-2 and Exiguobacterium str. GIC 31. We describe this species and propose the chiriqhucha name to group them. ‘Chiri qhucha’ in Quechua means ‘cold lake’, which is a common origin of these three cosmopolitan Exiguobacteria. The 2,952,588-bp E. chiriqhucha str. N139 genome contains one chromosome and three megaplasmids. The genome analysis of the Andean strain suggests the presence of enzymes that confer E. chiriqhucha str. N139 the ability to grow under multiple environmental extreme conditions, including high concentrations of different metals, high ultraviolet B radiation, scavenging for phosphorous and coping with high salinity. Moreover, the regulation of its tryptophan biosynthesis suggests that novel pathways remain to be discovered, and that these pathways might be fundamental in the amino acid metabolism of the microbial community from Laguna Negra, Argentina.

  11. Using nanopore sequencing to get complete genomes from complex samples

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; Karst, Søren Michael; Nielsen, Per Halkjær

    The advantages of “next generation sequencing” has come at the cost of genome finishing. The dominant sequencing technology provides short reads of 150-300 bp, which has made genome assembly very difficult as the reads do not span important repeat regions. Genomes have thus been added...... to the databases as fragmented assemblies and not as finished contigs that resemble the chromosomes in which the DNA is organised within the cells. This is especially troublesome for genomes derived from complex metagenome sequencing. Databases with incomplete genomes can lead to false conclusions about...... the absence of genes and functional predictions of the organisms. Furthermore, it is common that repetitive elements and marker genes such as the 16S rRNA gene are missing completely from these genome bins. Using nanopore long reads, we demonstrate that it is possible to span these regions and make complete...

  12. Structures of endothiapepsin-fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library.

    Science.gov (United States)

    Huschmann, Franziska U; Linnik, Janina; Sparta, Karine; Ühlein, Monika; Wang, Xiaojie; Metz, Alexander; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard; Weiss, Manfred S; Mueller, Uwe

    2016-05-01

    Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein-ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin-fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity.

  13. Structures of endothiapepsin–fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library

    Science.gov (United States)

    Huschmann, Franziska U.; Linnik, Janina; Sparta, Karine; Ühlein, Monika; Wang, Xiaojie; Metz, Alexander; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard; Weiss, Manfred S.; Mueller, Uwe

    2016-01-01

    Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein–ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin–fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity. PMID:27139825

  14. One bacterial cell, one complete genome.

    Directory of Open Access Journals (Sweden)

    Tanja Woyke

    2010-04-01

    Full Text Available While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200-900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA. Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs, indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

  15. One Bacterial Cell, One Complete Genome

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos; Clum, Alicia; Copeland, Alex; Schackwitz, Wendy; Lapidus, Alla; Wu, Dongying; McCutcheon, John P.; McDonald, Bradon R.; Moran, Nancy A.; Bristow, James; Cheng, Jan-Fang

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

  16. ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation

    Directory of Open Access Journals (Sweden)

    Porter Christopher J

    2007-09-01

    Full Text Available Abstract Background SNP microarrays are designed to genotype Single Nucleotide Polymorphisms (SNPs. These microarrays report hybridization of DNA fragments and therefore can be used for the purpose of detecting genomic fragments. Results Here, we demonstrate that a SNP microarray can be effectively used in this way to perform chromatin immunoprecipitation (ChIP on chip as an alternative to tiling microarrays. We illustrate this novel application by mapping whole genome histone H4 hyperacetylation in human myoblasts and myotubes. We detect clusters of hyperacetylated histone H4, often spanning across up to 300 kilobases of genomic sequence. Using complementary genome-wide analyses of gene expression by DNA microarray we demonstrate that these clusters of hyperacetylated histone H4 tend to be associated with expressed genes. Conclusion The use of a SNP array for a ChIP-on-chip application (ChIP on SNP-chip will be of great value to laboratories whose interest is the determination of general rules regarding the relationship of specific chromatin modifications to transcriptional status throughout the genome and to examine the asymmetric modification of chromatin at heterozygous loci.

  17. Analysis of cis-elements that facilitate extrachromosomal persistence of human papillomavirus genomes

    International Nuclear Information System (INIS)

    Pittayakhajonwut, Daraporn; Angeletti, Peter C.

    2008-01-01

    Human papillomaviruses (HPVs) are maintained latently in dividing epithelial cells as nuclear plasmids. Two virally encoded proteins, E1, a helicase, and E2, a transcription factor, are important players in replication and stable plasmid maintenance in host cells. Recent experiments in yeast have demonstrated that viral genomes retain replication and maintenance function independently of E1 and E2 [Angeletti, P.C., Kim, K., Fernandes, F.J., and Lambert, P.F. (2002). Stable replication of papillomavirus genomes in Saccharomyces cerevisiae. J. Virol. 76(7), 3350-8; Kim, K., Angeletti, P.C., Hassebroek, E.C., and Lambert, P.F. (2005). Identification of cis-acting elements that mediate the replication and maintenance of human papillomavirus type 16 genomes in Saccharomyces cerevisiae. J. Virol. 79(10), 5933-42]. Flow cytometry studies of EGFP-reporter vectors containing subgenomic HPV fragments with or without a human ARS (hARS), revealed that six fragments located in E6-E7, E1-E2, L1, and L2 regions showed a capacity for plasmid stabilization in the absence of E1 and E2 proteins. Interestingly, four fragments within E7, the 3' end of L2, and the 5' end of L1 exhibited stability in plasmids that lacked an hARS, indicating that they possess both replication and maintenance functions. Two fragments lying in E1-E2 and the 3' region of L1 were stable only in the presence of hARS, that they contained only maintenance function. Mutational analyses of HPV16-GFP reporter constructs provided evidence that genomes lacking E1 and E2 could replicate to an extent similar to wild type HPV16. Together these results support the concept that cellular factors influence HPV replication and maintenance, independently, and perhaps in conjunction with E1 and E2, suggesting a role in the persistent phase of the viral lifecycle

  18. Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales

    Directory of Open Access Journals (Sweden)

    Jordan T Bird

    2016-08-01

    Full Text Available The recently proposed candidatus order Altiarchaeales remains an uncultured archaeal lineage composed of genetically diverse, globally widespread organisms frequently observed in anoxic subsurface environments. In spite of 15 years of studies on the psychrophilic biofilm-producing Candidatus (Ca. Altiarchaeum hamiconexum and its close relatives, very little is known about the phylogenetic and functional diversity of the widespread free-living marine members of this taxon. From methanogenic sediments in the White Oak River Estuary, NC, we sequenced a single cell amplified genome (SAG, WOR_SCG_SM1, and used it to identify and refine two high-quality genomes from metagenomes, WOR_79 and WOR_86-2, from the same site in a different year. These three genomic reconstructions form a monophyletic group which also includes three previously published genomes from metagenomes from terrestrial springs and a SAG from Sakinaw Lake in a group previously designated as pMC2A384. A synapomorphic mutation in the Altiarchaeales tRNA synthetase β subunit, pheT, causes the protein to be encoded as two subunits at distant loci. Consistent with the terrestrial spring clades, our estuarine genomes contain a near-complete autotrophic metabolism, H2 or CO as potential electron donors, a reductive acetyl-CoA pathway for carbon fixation, and methylotroph-like NADP(H-dependent dehydrogenase. Phylogenies based on 16S rRNA genes and concatenated conserved proteins identify two distinct sub-clades of Altiarchaeales, Alti-1 populated by organisms from actively flowing springs, and Alti-2 which is more widespread, diverse, and not associated with visible mats. The core Alti-1 genome supports Alti-1 as adapted for the stream environment, with lipopolysaccharide production capacity, extracellular hami structures. The core Alti-2 genome members of this clade are free-living, with distinct mechanisms for energy maintenance, motility, osmoregulation, and sulfur redox reactions. These

  19. Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment-fragment interactions

    Science.gov (United States)

    Forgan, D. H.; Hall, C.; Meru, F.; Rice, W. K. M.

    2018-03-01

    It is likely that most protostellar systems undergo a brief phase where the protostellar disc is self-gravitating. If these discs are prone to fragmentation, then they are able to rapidly form objects that are initially of several Jupiter masses and larger. The fate of these disc fragments (and the fate of planetary bodies formed afterwards via core accretion) depends sensitively not only on the fragment's interaction with the disc, but also with its neighbouring fragments. We return to and revise our population synthesis model of self-gravitating disc fragmentation and tidal downsizing. Amongst other improvements, the model now directly incorporates fragment-fragment interactions while the disc is still present. We find that fragment-fragment scattering dominates the orbital evolution, even when we enforce rapid migration and inefficient gap formation. Compared to our previous model, we see a small increase in the number of terrestrial-type objects being formed, although their survival under tidal evolution is at best unclear. We also see evidence for disrupted fragments with evolved grain populations - this is circumstantial evidence for the formation of planetesimal belts, a phenomenon not seen in runs where fragment-fragment interactions are ignored. In spite of intense dynamical evolution, our population is dominated by massive giant planets and brown dwarfs at large semimajor axis, which direct imaging surveys should, but only rarely, detect. Finally, disc fragmentation is shown to be an efficient manufacturer of free-floating planetary mass objects, and the typical multiplicity of systems formed via gravitational instability will be low.

  20. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination.

    Science.gov (United States)

    Sammler, Svenja; Bleidorn, Christoph; Tiedemann, Ralph

    2011-01-14

    Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB

  1. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae provide evidence for pervasive mitochondrial DNA recombination

    Directory of Open Access Journals (Sweden)

    Bleidorn Christoph

    2011-01-01

    Full Text Available Abstract Background Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni and 22,737 bp (P. panini, they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. Conclusions The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB, which has been

  2. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.

  3. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium.

    Science.gov (United States)

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur , amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.

  4. Global biogeography of Prochlorococcus genome diversity in the surface ocean.

    Science.gov (United States)

    Kent, Alyssa G; Dupont, Chris L; Yooseph, Shibu; Martiny, Adam C

    2016-08-01

    Prochlorococcus, the smallest known photosynthetic bacterium, is abundant in the ocean's surface layer despite large variation in environmental conditions. There are several genetically divergent lineages within Prochlorococcus and superimposed on this phylogenetic diversity is extensive gene gain and loss. The environmental role in shaping the global ocean distribution of genome diversity in Prochlorococcus is largely unknown, particularly in a framework that considers the vertical and lateral mechanisms of evolution. Here we show that Prochlorococcus field populations from a global circumnavigation harbor extensive genome diversity across the surface ocean, but this diversity is not randomly distributed. We observed a significant correspondence between phylogenetic and gene content diversity, including regional differences in both phylogenetic composition and gene content that were related to environmental factors. Several gene families were strongly associated with specific regions and environmental factors, including the identification of a set of genes related to lower nutrient and temperature regions. Metagenomic assemblies of natural Prochlorococcus genomes reinforced this association by providing linkage of genes across genomic backbones. Overall, our results show that the phylogeography in Prochlorococcus taxonomy is echoed in its genome content. Thus environmental variation shapes the functional capabilities and associated ecosystem role of the globally abundant Prochlorococcus.

  5. Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria.

    Science.gov (United States)

    Repar, Jelena; Supek, Fran; Klanjscek, Tin; Warnecke, Tobias; Zahradka, Ksenija; Zahradka, Davor

    2017-04-01

    A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compensate for the genome-destabilizing effect of environmental DNA damage and may be expected to result in a more conserved gene order in radiation-resistant species. However, here we show that rates of genome rearrangements, measured as loss of gene order conservation with time, are higher in radiation-resistant species in multiple, phylogenetically independent groups of bacteria. Comparison of indicators of selection for genome organization between radiation-resistant and phylogenetically matched, nonresistant species argues against tolerance to disruption of genome structure as a strategy for radiation resistance. Interestingly, an important mechanism affecting genome rearrangements in prokaryotes, the symmetrical inversions around the origin of DNA replication, shapes genome structure of both radiation-resistant and nonresistant species. In conclusion, the opposing effects of environmental DNA damage and DNA repair result in elevated rates of genome rearrangements in radiation-resistant bacteria. Copyright © 2017 Repar et al.

  6. Comprehensive preimplantation genetic screening and sperm deoxyribonucleic acid fragmentation from three males carrying balanced chromosome rearrangements.

    Science.gov (United States)

    Ramos, Laia; Daina, Gemma; Del Rey, Javier; Ribas-Maynou, Jordi; Fernández-Encinas, Alba; Martinez-Passarell, Olga; Boada, Montserrat; Benet, Jordi; Navarro, Joaquima

    2015-09-01

    To assess whether preimplantation genetic screening can successfully identify cytogenetically normal embryos in couples carrying balanced chromosome rearrangements in addition to increased sperm DNA fragmentation. Comprehensive preimplantation genetic screening was performed on three couples carrying chromosome rearrangements. Sperm DNA fragmentation was assessed for each patient. Academic center. One couple with the male partner carrying a chromosome 2 pericentric inversion and two couples with the male partners carrying a Robertsonian translocation (13:14 and 14:21, respectively). A single blastomere from each of the 18 cleavage-stage embryos obtained was analysed by metaphase comparative genomic hybridization. Single- and double-strand sperm DNA fragmentation was determined by the alkaline and neutral Comet assays. Single- and double-strand sperm DNA fragmentation values and incidence of chromosome imbalances in the blastomeres were analyzed. The obtained values of single-strand sperm DNA fragmentation were between 47% and 59%, and the double-strand sperm DNA fragmentation values were between 43% and 54%. No euploid embryos were observed in the couple showing the highest single-strand sperm DNA fragmentation. However, euploid embryos were observed in the other two couples: embryo transfer was performed, and pregnancy was achieved by the couple showing the lowest sperm DNA fragmentation values. Preimplantation genetic screening enables the detection of euploid embryos in couples affected by balanced chromosome rearrangements and increased sperm DNA fragmentation. Even though sperm DNA fragmentation may potentially have clinical consequences on fertility, comprehensive preimplantation genetic screening allows for the identification and transfer of euploid embryos. Copyright © 2015. Published by Elsevier Inc.

  7. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  8. Green-Frag: Energy-efficient frame fragmentation scheme for wireless sensor networks

    KAUST Repository

    Daghistani, Anas

    2013-10-01

    Frame fragmentation techniques aim to achieve higher throughput by reducing retransmissions. Using experiments on a WSN testbed, we show that frame fragmentation also helps to reduce energy consumption. In this paper we propose Green-Frag, a new energy-efficient protocol based on efficient frame fragmentation technique. Green-Frag allows sensor nodes to transmit data with optimal transmit power and frame structure based on environmental conditions. Green-Frag takes into consideration the channel conditions, interference patterns and level, as well as the distance between sender and receiver. The paper discusses various design and implementation considerations for Green-Frag. Using experimental evaluation on a sensor mote testbed, we show that Green-Frag achieves the least energy consumption by choosing the best transmit power according to the channel conditions.

  9. Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes.

    Science.gov (United States)

    Ehrmann, Steffen; Liira, Jaan; Gärtner, Stefanie; Hansen, Karin; Brunet, Jörg; Cousins, Sara A O; Deconchat, Marc; Decocq, Guillaume; De Frenne, Pieter; De Smedt, Pallieter; Diekmann, Martin; Gallet-Moron, Emilie; Kolb, Annette; Lenoir, Jonathan; Lindgren, Jessica; Naaf, Tobias; Paal, Taavi; Valdés, Alicia; Verheyen, Kris; Wulf, Monika; Scherer-Lorenzen, Michael

    2017-09-06

    The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers. Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers. Our findings suggest that the ecosystem disservices of tick-borne diseases, via the

  10. Universal elements of fragmentation

    International Nuclear Information System (INIS)

    Yanovsky, V. V.; Tur, A. V.; Kuklina, O. V.

    2010-01-01

    A fragmentation theory is proposed that explains the universal asymptotic behavior of the fragment-size distribution in the large-size range, based on simple physical principles. The basic principles of the theory are the total mass conservation in a fragmentation process and a balance condition for the energy expended in increasing the surface of fragments during their breakup. A flux-based approach is used that makes it possible to supplement the basic principles and develop a minimal theory of fragmentation. Such a supplementary principle is that of decreasing fragment-volume flux with increasing energy expended in fragmentation. It is shown that the behavior of the decreasing flux is directly related to the form of a power-law fragment-size distribution. The minimal theory is used to find universal asymptotic fragment-size distributions and to develop a natural physical classification of fragmentation models. A more general, nonlinear theory of strong fragmentation is also developed. It is demonstrated that solutions to a nonlinear kinetic equation consistent with both basic principles approach a universal asymptotic size distribution. Agreement between the predicted asymptotic fragment-size distributions and experimental observations is discussed.

  11. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity

    Science.gov (United States)

    Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Here we ...

  12. The isolation and localization of arbitrary restriction fragment length polymorphisms in Southern African populations

    International Nuclear Information System (INIS)

    Conn, V.

    1987-01-01

    The main aim of this study was to contribute to the mapping of the human genome by searching for and characterizing a number of RFLPs (restriction fragment length polymorphisms) in the human genome. The more specific aims of this study were: 1. To isolate single-copy human DNA sequences from a human genomic library. 2. To use these single-copy sequences as DNA probes to search for polymorphic variation among Caucasoid individuals. 3. To show by means of family studies that the RFLPs were inherited in a co-dominant Mendelian fashion. 4. To determine the population frequencies of these RFLPs in Southern African Populations, namely the Bantu-speaking Negroids and the San. 5. To assign these RFLP-detecting DNA sequences to human chromosomes using somatic cell hybrid lines. In this study DNA was labelled with Phosphorus 32

  13. Genome projects and the functional-genomic era.

    Science.gov (United States)

    Sauer, Sascha; Konthur, Zoltán; Lehrach, Hans

    2005-12-01

    The problems we face today in public health as a result of the -- fortunately -- increasing age of people and the requirements of developing countries create an urgent need for new and innovative approaches in medicine and in agronomics. Genomic and functional genomic approaches have a great potential to at least partially solve these problems in the future. Important progress has been made by procedures to decode genomic information of humans, but also of other key organisms. The basic comprehension of genomic information (and its transfer) should now give us the possibility to pursue the next important step in life science eventually leading to a basic understanding of biological information flow; the elucidation of the function of all genes and correlative products encoded in the genome, as well as the discovery of their interactions in a molecular context and the response to environmental factors. As a result of the sequencing projects, we are now able to ask important questions about sequence variation and can start to comprehensively study the function of expressed genes on different levels such as RNA, protein or the cell in a systematic context including underlying networks. In this article we review and comment on current trends in large-scale systematic biological research. A particular emphasis is put on technology developments that can provide means to accomplish the tasks of future lines of functional genomics.

  14. Genomic and gene variation in Mycoplasma hominis strains

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Andersen, H; Birkelund, Svend

    1987-01-01

    DNAs from 14 strains of Mycoplasma hominis isolated from various habitats, including strain PG21, were analyzed for genomic heterogeneity. DNA-DNA filter hybridization values were from 51 to 91%. Restriction endonuclease digestion patterns, analyzed by agarose gel electrophoresis, revealed...... no identity or cluster formation between strains. Variation within M. hominis rRNA genes was analyzed by Southern hybridization of EcoRI-cleaved DNA hybridized with a cloned fragment of the rRNA gene from the mycoplasma strain PG50. Five of the M. hominis strains showed identical hybridization patterns....... These hybridization patterns were compared with those of 12 other mycoplasma species, which showed a much more complex band pattern. Cloned nonribosomal RNA gene fragments of M. hominis PG21 DNA were analyzed, and the fragments were used to demonstrate heterogeneity among the strains. A monoclonal antibody against...

  15. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip.

    Science.gov (United States)

    Jang, Jun Hyeong; Kim, Sun-Joong; Yoon, Bo Hyun; Ryu, Jee-Hoon; Gu, Man Bock; Chang, Hyo-Ihl

    2011-06-01

    This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry.

  16. Exploration of the Germline Genome of the Ciliate Chilodonella uncinata through Single-Cell Omics (Transcriptomics and Genomics

    Directory of Open Access Journals (Sweden)

    Xyrus X. Maurer-Alcalá

    2018-01-01

    Full Text Available Separate germline and somatic genomes are found in numerous lineages across the eukaryotic tree of life, often separated into distinct tissues (e.g., in plants, animals, and fungi or distinct nuclei sharing a common cytoplasm (e.g., in ciliates and some foraminifera. In ciliates, germline-limited (i.e., micronuclear-specific DNA is eliminated during the development of a new somatic (i.e., macronuclear genome in a process that is tightly linked to large-scale genome rearrangements, such as deletions and reordering of protein-coding sequences. Most studies of germline genome architecture in ciliates have focused on the model ciliates Oxytricha trifallax, Paramecium tetraurelia, and Tetrahymena thermophila, for which the complete germline genome sequences are known. Outside of these model taxa, only a few dozen germline loci have been characterized from a limited number of cultivable species, which is likely due to difficulties in obtaining sufficient quantities of “purified” germline DNA in these taxa. Combining single-cell transcriptomics and genomics, we have overcome these limitations and provide the first insights into the structure of the germline genome of the ciliate Chilodonella uncinata, a member of the understudied class Phyllopharyngea. Our analyses reveal the following: (i large gene families contain a disproportionate number of genes from scrambled germline loci; (ii germline-soma boundaries in the germline genome are demarcated by substantial shifts in GC content; (iii single-cell omics techniques provide large-scale quality germline genome data with limited effort, at least for ciliates with extensively fragmented somatic genomes. Our approach provides an efficient means to understand better the evolution of genome rearrangements between germline and soma in ciliates.

  17. Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloe island, Chile.

    Science.gov (United States)

    Farias, Ariel A; Jaksic, Fabian M

    2011-07-01

    1. Changes in land use and habitat fragmentation are major drivers of global change, and studying their effects on biodiversity constitutes a major research programme. However, biodiversity is a multifaceted concept, with a functional component linking species richness to ecosystem function. Currently, the interaction between functional and taxonomic components of biodiversity under realistic scenarios of habitat degradation is poorly understood. 2. The expected functional richness (FR)-species richness relationship (FRSR) is positive, and attenuated for functional redundancy in species-rich assemblages. Further, environmental filters are expected to flatten that association by sorting species with similar traits. Thus, analysing FRSR can inform about the response of biodiversity to environmental gradients and habitat fragmentation, and its expected functional consequences. 3. Top predators affect ecosystem functioning through prey consumption and are particularly vulnerable to changes in land use and habitat fragmentation, being good indicators of ecosystem health and suitable models for assessing the effects of habitat fragmentation on their FR. 4. Thus, this study analyses the functional redundancy of a vertebrate predator assemblage at temperate forest fragments in a rural landscape of Chiloe island (Chile), testing the existence of environmental filters by contrasting an empirically derived FRSR against those predicted from null models, and testing the association between biodiversity components and the structure of forest fragments. 5. Overall, contrasts against null models indicate that regional factors determine low levels of FR and redundancy for the vertebrate predator assemblage studied, while recorded linear FRSR indicates proportional responses of the two biodiversity components to the structure of forest fragments. Further, most species were positively associated with either fragment size or shape complexity, which are highly correlated. This, and the

  18. Gene calling and bacterial genome annotation with BG7.

    Science.gov (United States)

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).

  19. An Amazonian rainforest and its fragments as a laboratory of global change.

    Science.gov (United States)

    Laurance, William F; Camargo, José L C; Fearnside, Philip M; Lovejoy, Thomas E; Williamson, G Bruce; Mesquita, Rita C G; Meyer, Christoph F J; Bobrowiec, Paulo E D; Laurance, Susan G W

    2018-02-01

    We synthesize findings from one of the world's largest and longest-running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ∼1000 km 2 in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38-year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional- and global-change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long-term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction-prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or fluctuating

  20. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    Directory of Open Access Journals (Sweden)

    Renata Calixto Campos

    Full Text Available Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h, a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  1. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    Science.gov (United States)

    Campos, Renata Calixto; Hernández, Malva Isabel Medina

    2015-01-01

    Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  2. Health behavior change: can genomics improve behavioral adherence?

    Science.gov (United States)

    McBride, Colleen M; Bryan, Angela D; Bray, Molly S; Swan, Gary E; Green, Eric D

    2012-03-01

    The National Human Genome Research Institute recommends pursuing "genomic information to improve behavior change interventions" as part of its strategic vision for genomics. The limited effectiveness of current behavior change strategies may be explained, in part, by their insensitivity to individual variation in adherence responses. The first step in evaluating whether genomics can inform customization of behavioral recommendations is evidence reviews to identify adherence macrophenotypes common across behaviors and individuals that have genetic underpinnings. Conceptual models of how biological, psychological, and environmental factors influence adherence also are needed. Researchers could routinely collect biospecimens and standardized adherence measurements of intervention participants to enable understanding of genetic and environmental influences on adherence, to guide intervention customization and prospective comparative effectiveness studies.

  3. Personalized medicine: new genomics, old lessons

    OpenAIRE

    Offit, Kenneth

    2011-01-01

    Personalized medicine uses traditional, as well as emerging concepts of the genetic and environmental basis of disease to individualize prevention, diagnosis and treatment. Personalized genomics plays a vital, but not exclusive role in this evolving model of personalized medicine. The distinctions between genetic and genomic medicine are more quantitative than qualitative. Personalized genomics builds on principles established by the integration of genetics into medical practice. Principles s...

  4. Advanced Whole-Genome Sequencing and Analysis of Fetal Genomes from Amniotic Fluid.

    Science.gov (United States)

    Mao, Qing; Chin, Robert; Xie, Weiwei; Deng, Yuqing; Zhang, Wenwei; Xu, Huixin; Zhang, Rebecca Yu; Shi, Quan; Peters, Erin E; Gulbahce, Natali; Li, Zhenyu; Chen, Fang; Drmanac, Radoje; Peters, Brock A

    2018-04-01

    Amniocentesis is a common procedure, the primary purpose of which is to collect cells from the fetus to allow testing for abnormal chromosomes, altered chromosomal copy number, or a small number of genes that have small single- to multibase defects. Here we demonstrate the feasibility of generating an accurate whole-genome sequence of a fetus from either the cellular or cell-free DNA (cfDNA) of an amniotic sample. cfDNA and DNA isolated from the cell pellet of 31 amniocenteses were sequenced to approximately 50× genome coverage by use of the Complete Genomics nanoarray platform. In a subset of the samples, long fragment read libraries were generated from DNA isolated from cells and sequenced to approximately 100× genome coverage. Concordance of variant calls between the 2 DNA sources and with parental libraries was >96%. Two fetal genomes were found to harbor potentially detrimental variants in chromodomain helicase DNA binding protein 8 ( CHD8 ) and LDL receptor-related protein 1 ( LRP1 ), variations of which have been associated with autism spectrum disorder and keratosis pilaris atrophicans, respectively. We also discovered drug sensitivities and carrier information of fetuses for a variety of diseases. We were able to elucidate the complete genome sequence of 31 fetuses from amniotic fluid and demonstrate that the cfDNA or DNA from the cell pellet can be analyzed with little difference in quality. We believe that current technologies could analyze this material in a highly accurate and complete manner and that analyses like these should be considered for addition to current amniocentesis procedures. © 2018 American Association for Clinical Chemistry.

  5. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics.

    Science.gov (United States)

    Zou, Xuan; Wang, Lianrong; Li, Zhiqiang; Luo, Jie; Wang, Yunfu; Deng, Zixin; Du, Shiming; Chen, Shi

    2018-01-01

    Antibiotic production is often governed by large gene clusters composed of genes related to antibiotic scaffold synthesis, tailoring, regulation, and resistance. With the expansion of genome sequencing, a considerable number of antibiotic gene clusters has been isolated and characterized. The emerging genome engineering techniques make it possible towards more efficient engineering of antibiotics. In addition to genomic editing, multiple synthetic biology approaches have been developed for the exploration and improvement of antibiotic natural products. Here, we review the progress in the development of these genome editing techniques used to engineer new antibiotics, focusing on three aspects of genome engineering: direct cloning of large genomic fragments, genome engineering of gene clusters, and regulation of gene cluster expression. This review will not only summarize the current uses of genomic engineering techniques for cloning and assembly of antibiotic gene clusters or for altering antibiotic synthetic pathways but will also provide perspectives on the future directions of rebuilding biological systems for the design of novel antibiotics. © 2017 Wiley Periodicals, Inc.

  6. LRSim: A Linked-Reads Simulator Generating Insights for Better Genome Partitioning

    Directory of Open Access Journals (Sweden)

    Ruibang Luo

    Full Text Available Linked-read sequencing, using highly-multiplexed genome partitioning and barcoding, can span hundreds of kilobases to improve de novo assembly, haplotype phasing, and other applications. Based on our analysis of 14 datasets, we introduce LRSim that simulates linked-reads by emulating the library preparation and sequencing process with fine control over variants, linked-read characteristics, and the short-read profile. We conclude from the phasing and assembly of multiple datasets, recommendations on coverage, fragment length, and partitioning when sequencing genomes of different sizes and complexities. These optimizations improve results by orders of magnitude, and enable the development of novel methods. LRSim is available at https://github.com/aquaskyline/LRSIM. Keywords: Linked-read, Molecular barcoding, Reads partitioning, Phasing, Reads simulation, Genome assembly, 10X Genomics

  7. Controlled fragmentation

    International Nuclear Information System (INIS)

    Arnold, Werner

    2002-01-01

    Contrary to natural fragmentation, controlled fragmentation offers the possibility to adapt fragment parameters like size and mass to the performance requirements in a very flexible way. Known mechanisms like grooves inside the casing, weaken the structure. This is, however, excluded for applications with high accelerations during launch or piercing requirements for example on a semi armor piercing penetrator. Another method to achieve controlled fragmentation with an additional grid layer is presented with which the required grooves are produced 'just in time' inside the casing during detonation of the high explosive. The process of generating the grooves aided by the grid layer was studied using the hydrocode HULL with respect to varying grid designs and material combinations. Subsequent to this, a large range of these theoretically investigated combinations was contemplated in substantial experimental tests. With an optimised grid design and a suitable material selection, the controlled fragment admits a very flexible adaptation to the set requirements. Additional advantages like the increase of perforation performance or incendiary amplification can be realized with the grid layer

  8. Improving Unsustainable Environmental Governance in South Africa: the Case for Holistic Governance

    Directory of Open Access Journals (Sweden)

    LJ Kotze

    2006-05-01

    Full Text Available Environmental law in South Africa has developed in a rapid fashion since the inception of the new constitutional dispensation in 1994. This development is evident from, inter alia, the constitutionalisation of the environmental right in section 24 of the Constitution of the Republic of South Africa, 1996. Section 24 contains amongst other provisions, directive principles that impose duties on government to protect the environment for present and future generations through reasonable legislative and other measures. It is apparent from section 24 that these measures should ensure environmental governance practices that are aimed at the achievement of sustainable results. The South African environmental governance regime is, however, characterised by fragmentation that may negate the achievement of sustainable environmental governance. It is argued in this article that, for environmental governance to become sustainable, it is necessary to integrate environmental governance efforts, possibly by way of a holistic approach to environmental governance. In light of the above, this article: investigates the nature and extent of fragmentation; explores reasons for fragmentation; discusses disadvantages of fragmented governance efforts in South Africa; investigates the concept of integration and holistic governance as means to achieve sustainable environmental governance results; and makes recommendations regarding the eventual achievement of integrated, holistic and sustainable environmental governance.

  9. [Fingerprints identification of Gynostemma pentaphyllum by RAPD and cloning and analysis of its specific DNA fragment].

    Science.gov (United States)

    Jiang, Jun-fu; Li, Xiong-ying; Wu, Yao-sheng; Luo, Yu; Zhao, Rui-qiang; Lan, Xiu-wan

    2009-02-01

    To identify the resources of Gynostemma pentaphyllum and its spurious breed plant Cayratia japonica at level of DNA. Two random primers ( WGS001, WGS004) screened were applied to do random amplification with genomic DNA extracted from Gynostemma pentaphyllum and Cayratia japonica which were collected from different habitats. After amplificated with WGS004, one characteristic fragment about 500 bp which was common to all Gynostemma pentaphyllum samples studied but not to Cayratia japonica was cloned and sequenced. Then these sequences obtained were analyzed for identity and compared by Blastn program in GenBank. There were obvious different bands amplified by above two primers in their fingerprints of genomic DNA. On the basis of these different bands of DNA fingerprints, they could distinguish Gynostemma pentaphyllum and Cayratia japonica obviously. Sequence alignment of seven cloned bands showed that their identities ranged from 45.7% - 94.5%. There was no similar genome sequences searched in GenBank. This indicated that these seven DNA fragments had not been reported before and they should be new sequences. RAPD technique can be used for the accurate identification of Gynostemma pentaphyllum and its counterfeit goods Cayratia japonica. Besides, these specific DNA sequences for Gynostemmna pentaphyllum in this study are useful for the further research on identification of species and assisted selection breeding in Gynostemma pentaphyllum.

  10. Impact of genome assembly status on ChIP-Seq and ChIP-PET data mapping

    Directory of Open Access Journals (Sweden)

    Sachs Laurent

    2009-12-01

    Full Text Available Abstract Background ChIP-Seq and ChIP-PET can potentially be used with any genome for genome wide profiling of protein-DNA interaction sites. Unfortunately, it is probable that most genome assemblies will never reach the quality of the human genome assembly. Therefore, it remains to be determined whether ChIP-Seq and ChIP-PET are practicable with genome sequences other than a few (e.g. human and mouse. Findings Here, we used in silico simulations to assess the impact of completeness or fragmentation of genome assemblies on ChIP-Seq and ChIP-PET data mapping. Conclusions Most currently published genome assemblies are suitable for mapping the short sequence tags produced by ChIP-Seq or ChIP-PET.

  11. Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation.

    Science.gov (United States)

    Qin, Qi-Long; Xie, Bin-Bin; Yu, Yong; Shu, Yan-Li; Rong, Jin-Cheng; Zhang, Yan-Jiao; Zhao, Dian-Li; Chen, Xiu-Lan; Zhang, Xi-Ying; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2014-06-01

    To what extent the genomes of different species belonging to one genus can be diverse and the relationship between genomic differentiation and environmental factor remain unclear for oceanic bacteria. With many new bacterial genera and species being isolated from marine environments, this question warrants attention. In this study, we sequenced all the type strains of the published species of Glaciecola, a recently defined cold-adapted genus with species from diverse marine locations, to study the genomic diversity and cold-adaptation strategy in this genus.The genome size diverged widely from 3.08 to 5.96 Mb, which can be explained by massive gene gain and loss events. Horizontal gene transfer and new gene emergence contributed substantially to the genome size expansion. The genus Glaciecola had an open pan-genome. Comparative genomic research indicated that species of the genus Glaciecola had high diversity in genome size, gene content and genetic relatedness. This may be prevalent in marine bacterial genera considering the dynamic and complex environments of the ocean. Species of Glaciecola had some common genomic features related to cold adaptation, which enable them to thrive and play a role in biogeochemical cycle in the cold marine environments.

  12. Fragmentation cross sections outside the limiting-fragmentation regime

    CERN Document Server

    Sümmerer, K

    2003-01-01

    The empirical parametrization of fragmentation cross sections, EPAX, has been successfully applied to estimate fragment production cross sections in reactions of heavy ions at high incident energies. It is checked whether a similar parametrization can be found for proton-induced spallation around 1 GeV, the range of interest for ISOL-type RIB facilities. The validity of EPAX for medium-energy heavy-ion induced reactions is also checked. Only a few datasets are available, but in general EPAX predicts the cross sections rather well, except for fragments close to the projectile, where the experimental cross sections are found to be larger.

  13. Mapping of RNA initiation sites by high doses of uv iradiation: evidence for three independent promoters within the left 11% of the Ad-2 genome

    International Nuclear Information System (INIS)

    Wilson, M.C.; Fraser, N.W.; Darnell, J.E. Jr.

    1979-01-01

    Cells infected with Ad-2 virus were irradiated so that uv-induced lesions were introduced every 500 to 1000 nucleotides in the genomes, consequently leading to the premature termination of RNA transcription. Such cells when labeled with [ 3 H]uridine accumulate labeled promoter proximal RNA. Hybridization of this RNA after size fractionation to restriction fragments of the Ad-2 genome allowed the identification of DNA sequences containing active RNA initiation sites. Early during the infectious cycle two active RNA initiation sites were found within the left 11% of the Ad-2 genome within the 0 to 3.0 and 4.4 to 8.0 restriction fragments. During late infection (15 hr) an additional uv resistant transcript was detected indicating that a newly activated RNA initiation site, presumably for protein IX, resides within the fragment 8.0 to 11.2

  14. Universality of fragment shapes.

    Science.gov (United States)

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-16

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  15. A mechanism of gene amplification driven by small DNA fragments.

    Directory of Open Access Journals (Sweden)

    Kuntal Mukherjee

    Full Text Available DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s. Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation

  16. Anomalous nuclear fragments

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1983-01-01

    Experimental data are given, the status of anomalon problem is discussed, theoretical approaches to this problem are outlined. Anomalons are exotic objects formed following fragmentation of nuclei-targets under the effect of nuclei - a beam at the energy of several GeV/nucleon. These nuclear fragments have an anomalously large cross section of interaction and respectively, small free path, considerably shorter than primary nuclei have. The experimental daa are obtained in accelerators following irradiation of nuclear emulsions by 16 O, 56 Fe, 40 Ar beams, as well as propane by 12 C beams. The experimental data testify to dependence of fragment free path on the distance L from the point of the fragment formation. A decrease in the fragment free path is established more reliably than its dependence on L. The problem of the anomalon existence cannot be yet considered resolved. Theoretical models suggested for explanation of anomalously large cross sections of nuclear fragment interaction are variable and rather speculative

  17. Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest

    Science.gov (United States)

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the

  18. Genome-guided analysis of physiological capacities of Tepidanaerobacter acetatoxydans provides insights into environmental adaptations and syntrophic acetate oxidation.

    Directory of Open Access Journals (Sweden)

    Bettina Müller

    Full Text Available This paper describes the genome-based analysis of Tepidanaerobacter acetatoxydans strain Re1, a syntrophic acetate-oxidising bacterium (SAOB. Principal issues such as environmental adaptations, metabolic capacities, and energy conserving systems have been investigated and the potential consequences for syntrophic acetate oxidation discussed. Briefly, in pure culture, T. acetatoxydans grows with different organic compounds and produces acetate as the main product. In a syntrophic consortium with a hydrogenotrophic methanogen, it can also reverse its metabolism and instead convert acetate to formate/H2 and CO2. It can only proceed if the product formed is continuously removed. This process generates a very small amount of energy that is scarcely enough for growth, which makes this particular syntrophy of special interest. As a crucial member of the biogas-producing community in ammonium-rich engineered AD processes, genomic features conferring ammonium resistance, bacterial defense, oxygen and temperature tolerance were found, as well as attributes related to biofilm formation and flocculation. It is likely that T. acetatoxydans can form an electrochemical gradient by putative electron-bifurcating Rnf complex and [Fe-Fe] hydrogenases, as observed in other acetogens. However, genomic deficiencies related to acetogenic metabolism and anaerobic respiration were discovered, such as the lack of formate dehydrogenase and F1F0 ATP synthase. This has potential consequences for the metabolic pathways used under SAO and non-SAO conditions. The two complete sets of bacteriophage genomes, which were found to be encoded in the genome, are also worthy of mention.

  19. Hybridization Capture Using RAD Probes (hyRAD, a New Tool for Performing Genomic Analyses on Collection Specimens.

    Directory of Open Access Journals (Sweden)

    Tomasz Suchan

    Full Text Available In the recent years, many protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been published. Among them, RAD-sequencing is one of the most widely used. It relies on digesting DNA with specific restriction enzymes and performing size selection on the resulting fragments. Despite its acknowledged utility, this method is of limited use with degraded DNA samples, such as those isolated from museum specimens, as these samples are less likely to harbor fragments long enough to comprise two restriction sites making possible ligation of the adapter sequences (in the case of double-digest RAD or performing size selection of the resulting fragments (in the case of single-digest RAD. Here, we address these limitations by presenting a novel method called hybridization RAD (hyRAD. In this approach, biotinylated RAD fragments, covering a random fraction of the genome, are used as baits for capturing homologous fragments from genomic shotgun sequencing libraries. This simple and cost-effective approach allows sequencing of orthologous loci even from highly degraded DNA samples, opening new avenues of research in the field of museum genomics. Not relying on the restriction site presence, it improves among-sample loci coverage. In a trial study, hyRAD allowed us to obtain a large set of orthologous loci from fresh and museum samples from a non-model butterfly species, with a high proportion of single nucleotide polymorphisms present in all eight analyzed specimens, including 58-year-old museum samples. The utility of the method was further validated using 49 museum and fresh samples of a Palearctic grasshopper species for which the spatial genetic structure was previously assessed using mtDNA amplicons. The application of the method is eventually discussed in a wider context. As it does not rely on the restriction site presence, it is therefore not sensitive to among-sample loci polymorphisms in the restriction sites

  20. [Genome similarity of Baikal omul and sig].

    Science.gov (United States)

    Bychenko, O S; Sukhanova, L V; Ukolova, S S; Skvortsov, T A; Potapov, V K; Azhikina, T L; Sverdlov, E D

    2009-01-01

    Two members of the Baikal sig family, a lake sig (Coregonus lavaretus baicalensis Dybovsky) and omul (C. autumnalis migratorius Georgi), are close relatives that diverged from the same ancestor 10-20 thousand years ago. In this work, we studied genomic polymorphism of these two fish species. The method of subtraction hybridization (SH) did not reveal the presence of extended sequences in the sig genome and their absence in the omul genome. All the fragments found by SH corresponded to polymorphous noncoding genome regions varying in mononucleotide substitutions and short deletions. Many of them are mapped close to genes of the immune system and have regions identical to the Tc-1-like transposons abundant among fish, whose transcription activity may affect the expression of adjacent genes. Thus, we showed for the first time that genetic differences between Baikal sig family members are extremely small and cannot be revealed by the SH method. This is another endorsement of the hypothesis on the close relationship between Baikal sig and omul and their evolutionarily recent divergence from a common ancestor.

  1. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak

    Directory of Open Access Journals (Sweden)

    Trout-Yakel Keri M

    2010-02-01

    Full Text Available Abstract Background A large, multi-province outbreak of listeriosis associated with ready-to-eat meat products contaminated with Listeria monocytogenes serotype 1/2a occurred in Canada in 2008. Subtyping of outbreak-associated isolates using pulsed-field gel electrophoresis (PFGE revealed two similar but distinct AscI PFGE patterns. High-throughput pyrosequencing of two L. monocytogenes isolates was used to rapidly provide the genome sequence of the primary outbreak strain and to investigate the extent of genetic diversity associated with a change of a single restriction enzyme fragment during PFGE. Results The chromosomes were collinear, but differences included 28 single nucleotide polymorphisms (SNPs and three indels, including a 33 kbp prophage that accounted for the observed difference in AscI PFGE patterns. The distribution of these traits was assessed within further clinical, environmental and food isolates associated with the outbreak, and this comparison indicated that three distinct, but highly related strains may have been involved in this nationwide outbreak. Notably, these two isolates were found to harbor a 50 kbp putative mobile genomic island encoding translocation and efflux functions that has not been observed in other Listeria genomes. Conclusions High-throughput genome sequencing provided a more detailed real-time assessment of genetic traits characteristic of the outbreak strains than could be achieved with routine subtyping methods. This study confirms that the latest generation of DNA sequencing technologies can be applied during high priority public health events, and laboratories need to prepare for this inevitability and assess how to properly analyze and interpret whole genome sequences in the context of molecular epidemiology.

  2. Genomic variations of Mycoplasma capricolum subsp capripneumoniae detected by amplified fragment length polymorphism (AFLP) analysis

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Bolske, G.; Ahrens, Peter

    2000-01-01

    The genetic diversity of Mycoplasma capricolum subsp. capripneumoniae strains based on determination of amplified fragment length polymorphisms (AFLP) is described. AFLP fingerprints of 38 strains derived from different countries in Africa and the Middle East consisted of over 100 bands in the size...

  3. Using Short-Term Enrichments and Metagenomics to Obtain Genomes from uncultured Activated Sludge Microorganisms

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Nielsen, Per Halkjær; Albertsen, Mads

    is that they depend on system-specific reference genomes in order to analyze the vast amounts of data (Albertsen et al., 2012). This limits the application of -omics to environments for which a comprehensive catalogue of reference genomes exists e.g. the human gut. Several strategies for obtaining microbial genomes...... exist today, but their ability to obtain complete genomes from complex microbial communities on a large scale is still inadequate (Lasken, 2012). In theory, conventional metagenomics should be able to recover genomes from complex communities, but in practice the approach is hampered by the presence...... of microdiversity. This leads to fragmented and chimeric de novo assemblies, which prevent the extraction of complete genomes. The new approach presented here involves reducing the impact of microdiversity and increasing genome extraction efficiency by what we term “metagenome triangulation”. The microdiversity...

  4. Bacterial natural transformation by highly fragmented and damaged DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic Antoine Alexandre

    2013-01-01

    for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake......DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often DNA is recognized as nutrient source...... of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations...

  5. Nuclear fragmentation

    International Nuclear Information System (INIS)

    Chung, K.C.

    1989-01-01

    An introduction to nuclear fragmentation, with emphasis in percolation ideas, is presented. The main theoretical models are discussed and as an application, the uniform expansion approximation is presented and the statistical multifragmentation model is used to calculate the fragment energy spectra. (L.C.)

  6. The complete chloroplast genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection.

    Directory of Open Access Journals (Sweden)

    Leila do Nascimento Vieira

    Full Text Available BACKGROUND: Podocarpus lambertii (Podocarpaceae is a native conifer from the Brazilian Atlantic Forest Biome, which is considered one of the 25 biodiversity hotspots in the world. The advancement of next-generation sequencing technologies has enabled the rapid acquisition of whole chloroplast (cp genome sequences at low cost. Several studies have proven the potential of cp genomes as tools to understand enigmatic and basal phylogenetic relationships at different taxonomic levels, as well as further probe the structural and functional evolution of plants. In this work, we present the complete cp genome sequence of P. lambertii. METHODOLOGY/PRINCIPAL FINDINGS: The P. lambertii cp genome is 133,734 bp in length, and similar to other sequenced cupressophytes, it lacks one of the large inverted repeat regions (IR. It contains 118 unique genes and one duplicated tRNA (trnN-GUU, which occurs as an inverted repeat sequence. The rps16 gene was not found, which was previously reported for the plastid genome of another Podocarpaceae (Nageia nagi and Araucariaceae (Agathis dammara. Structurally, P. lambertii shows 4 inversions of a large DNA fragment ∼20,000 bp compared to the Podocarpus totara cp genome. These unexpected characteristics may be attributed to geographical distance and different adaptive needs. The P. lambertii cp genome presents a total of 28 tandem repeats and 156 SSRs, with homo- and dipolymers being the most common and tri-, tetra-, penta-, and hexapolymers occurring with less frequency. CONCLUSION: The complete cp genome sequence of P. lambertii revealed significant structural changes, even in species from the same genus. These results reinforce the apparently loss of rps16 gene in Podocarpaceae cp genome. In addition, several SSRs in the P. lambertii cp genome are likely intraspecific polymorphism sites, which may allow highly sensitive phylogeographic and population structure studies, as well as phylogenetic studies of species of

  7. Palaeosymbiosis revealed by genomic fossils of Wolbachia in a strongyloidean nematode.

    Directory of Open Access Journals (Sweden)

    Georgios Koutsovoulos

    2014-06-01

    Full Text Available Wolbachia are common endosymbionts of terrestrial arthropods, and are also found in nematodes: the animal-parasitic filaria, and the plant-parasite Radopholus similis. Lateral transfer of Wolbachia DNA to the host genome is common. We generated a draft genome sequence for the strongyloidean nematode parasite Dictyocaulus viviparus, the cattle lungworm. In the assembly, we identified nearly 1 Mb of sequence with similarity to Wolbachia. The fragments were unlikely to derive from a live Wolbachia infection: most were short, and the genes were disabled through inactivating mutations. Many fragments were co-assembled with definitively nematode-derived sequence. We found limited evidence of expression of the Wolbachia-derived genes. The D. viviparus Wolbachia genes were most similar to filarial strains and strains from the host-promiscuous clade F. We conclude that D. viviparus was infected by Wolbachia in the past, and that clade F-like symbionts may have been the source of filarial Wolbachia infections.

  8. A new location to split Cre recombinase for protein fragment complementation.

    Science.gov (United States)

    Rajaee, Maryam; Ow, David W

    2017-11-01

    We have previously described a recombinase-mediated gene stacking system in which the Cre recombinase is used to remove lox-site flanked DNA no longer needed after each round of Bxb1 integrase-mediated site-specific integration. The Cre recombinase can be conveniently introduced by hybridization with a cre-expressing plant. However, maintaining an efficient cre-expressing line over many generations can be a problem, as high production of this DNA-binding protein might interfere with normal chromosome activities. To counter this selection against high Cre activity, we considered a split-cre approach, in which Cre activity is reconstituted after separate parts of Cre are brought into the same genome by hybridization. To insure that the recombinase-mediated gene stacking system retains its freedom to operate, we tested for new locations to split Cre into complementing fragments. In this study, we describe testing four new locations for splitting the Cre recombinase for protein fragment complementation and show that the two fragments of Cre split between Lys244 and Asn245 can reconstitute activity that is comparable to that of wild-type Cre. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. GENOME ANALYSIS OF BURKHOLDERIA CEPACIA AC1100

    Science.gov (United States)

    Burkholderia cepacia is an important organism in bioremediation of environmental pollutants and it is also of increasing interest as a human pathogen. The genomic organization of B. cepacia is being studied in order to better understand its unusual adaptive capacity and genome pl...

  10. Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    Science.gov (United States)

    Šmajs, David; Zobaníková, Marie; Strouhal, Michal; Čejková, Darina; Dugan-Rocha, Shannon; Pospíšilová, Petra; Norris, Steven J.; Albert, Tom; Qin, Xiang; Hallsworth-Pepin, Kym; Buhay, Christian; Muzny, Donna M.; Chen, Lei; Gibbs, Richard A.; Weinstock, George M.

    2011-01-01

    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies. PMID:21655244

  11. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay.

    Directory of Open Access Journals (Sweden)

    David Šmajs

    Full Text Available Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp, arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51. In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84 affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9% of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies.

  12. Transition from Connected to Fragmented Vegetation across an Environmental Gradient: Scaling Laws in Ecotone Geometry.

    Science.gov (United States)

    Gastner, Michael T; Oborny, Beata; Zimmermann, D K; Pruessner, Gunnar

    2009-07-01

    A change in the environmental conditions across space-for example, altitude or latitude-can cause significant changes in the density of a vegetation type and, consequently, in spatial connectivity. We use spatially explicit simulations to study the transition from connected to fragmented vegetation. A static (gradient percolation) model is compared to dynamic (gradient contact process) models. Connectivity is characterized from the perspective of various species that use this vegetation type for habitat and differ in dispersal or migration range, that is, "step length" across the landscape. The boundary of connected vegetation delineated by a particular step length is termed the " hull edge." We found that for every step length and for every gradient, the hull edge is a fractal with dimension 7/4. The result is the same for different spatial models, suggesting that there are universal laws in ecotone geometry. To demonstrate that the model is applicable to real data, a hull edge of fractal dimension 7/4 is shown on a satellite image of a piñon-juniper woodland on a hillside. We propose to use the hull edge to define the boundary of a vegetation type unambiguously. This offers a new tool for detecting a shift of the boundary due to a climate change.

  13. Molecular analysis of Leptospira spp. isolated from humans by restriction fragment length polymorphism, real-time PCR and pulsed-field gel electrophoresis.

    Science.gov (United States)

    Turk, Nenad; Milas, Zoran; Mojcec, Vesna; Ruzic-Sabljic, Eva; Staresina, Vilim; Stritof, Zrinka; Habus, Josipa; Postic, Daniele

    2009-11-01

    A total of 17 Leptospira clinical strains isolated from humans in Croatia were serologically and genetically analysed. For serovar identification, the microscopic agglutination test (MAT) and pulsed-field gel electrophoresis (PFGE) were used. To identify isolates on genomic species level, PCR-based restriction fragment length polymorphism (RFLP) and real-time PCR were performed. MAT revealed the following serogroup affinities: Grippotyphosa (seven isolates), Icterohaemorrhagiae (eight isolates) and Javanica (two isolates). RFLP of PCR products from a 331-bp-long fragment of rrs (16S rRNA gene) digested with endonucleases MnlI and DdeI and real-time PCR revealed three Leptospira genomic species. Grippotyphosa isolates belonged to Leptospira kirschneri, Icterohaemorrhagiae isolates to Leptospira interrogans and Javanica isolates to Leptospira borgpetersenii. Genomic DNA from 17 leptospiral isolates was digested with NotI and SgrAI restriction enzymes and analysed by PFGE. Results showed that seven isolates have the same binding pattern to serovar Grippotyphosa, eight isolates to serovar Icterohaemorrhagiae and two isolates to serovar Poi. Results demonstrate the diversity of leptospires circulating in Croatia. We point out the usefulness of a combination of PFGE, RFLP and real-time PCR as appropriate molecular methods in molecular analysis of leptospires.

  14. Genotyping of human and porcine Yersinia enterocolitica, Yersinia intertmedia, and Yersinia bercovieri strains from Switzerland by amplified fragment length polymorphism analysis

    DEFF Research Database (Denmark)

    Kuehni-Boghenbor, Kathrin; On, Stephen L.W.; Kokotovic, Branko

    2006-01-01

    In this study, 231 strains of Yersinia enterocolitica, 25 strains of Y. intermedia, and 10 strains of Y. bercovieri from human and porcine sources (including reference strains) were analyzed using amplified fragment length polymorphism (AFLP), a whole-genome fingerprinting method for subtyping...

  15. Computational Analysis of Uncharacterized Proteins of Environmental Bacterial Genome

    Science.gov (United States)

    Coxe, K. J.; Kumar, M.

    2017-12-01

    Betaproteobacteria strain CB is a gram-negative bacterium in the phylum Proteobacteria and are found naturally in soil and water. In this complex environment, bacteria play a key role in efficiently eliminating the organic material and other pollutants from wastewater. To investigate the process of pollutant removal from wastewater using bacteria, it is important to characterize the proteins encoded by the bacterial genome. Our study combines a number of bioinformatics tools to predict the function of unassigned proteins in the bacterial genome. The genome of Betaproteobacteria strain CB contains 2,112 proteins in which function of 508 proteins are unknown, termed as uncharacterized proteins (UPs). The localization of the UPs with in the cell was determined and the structure of 38 UPs was accurately predicted. These UPs were predicted to belong to various classes of proteins such as enzymes, transporters, binding proteins, signal peptides, transmembrane proteins and other proteins. The outcome of this work will help better understand wastewater treatment mechanism.

  16. Hypothesis for prediction of environmental stability of chemicals by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tremolada, P; Di Guardo, A; Calamari, D; Davoli, E; Fanelli, R [Milan Univ. (Italy). Ist. di Entomologia Agraria Istituto di Ricerche Farmacologiche Mario Negri, Milan (Italy)

    1992-01-01

    The environmental persistence of organic chemicals is generally very hard to predict. In this work, the hypothesis of the use of fragmentation data in Mass Spectrometry (MS) as a possible 'stability index' of the molecules is presented. Since the fragmentation is determined by the thermodynamic properties of the molecules, it is possible to deduct information about the 'intrinsic stability' of a chemical. Such information can be used and correlated to predict the environmental degradability of a substance, especially referring to abiotic degradation. To study this relation, three different methods of measuring the fragmentation patterns are compared. All the methods show similar behaviour and one of them, in particular, shows a very good qualitative correlation between fragmentation data and persistence values found in literature. A possible 'stability index' for the quantitative prediction of the environmental degradation of a chemical is discussed.

  17. String fragmentation; La fragmentation des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J.; Werner, K. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France)

    1997-10-01

    The classical string model is used in VENUS as a fragmentation model. For the soft domain simple 2-parton strings were sufficient, whereas for higher energies up to LHC, the perturbative regime of the QCD gives additional soft gluons, which are mapped on the string as so called kinks, energy singularities between the leading partons. The kinky string model is chosen to handle fragmentation of these strings by application of the Lorentz invariant area law. The `kinky strings` model, corresponding to the perturbative gluons coming from pQCD, takes into consideration this effect by treating the partons and gluons on the same footing. The decay law is always the Artru-Menessier area law which is the most realistic since it is invariant to the Lorentz and gauge transformations. For low mass strings a manipulation of the rupture point is necessary if the string corresponds already to an elementary particle determined by the mass and the flavor content. By means of the fragmentation model it will be possible to simulate the data from future experiments at LHC and RHIC 3 refs.

  18. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups.

    Science.gov (United States)

    Braschler, Brigitte; Baur, Bruno

    2016-01-01

    Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice) in 12 small (1.5 m * 1.5 m) and 12 large (4.5 m * 4.5 m) fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species' preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in abundance related to

  19. Prokaryotic Phylogenies Inferred from Whole-Genome Sequence and Annotation Data

    Directory of Open Access Journals (Sweden)

    Wei Du

    2013-01-01

    Full Text Available Phylogenetic trees are used to represent the evolutionary relationship among various groups of species. In this paper, a novel method for inferring prokaryotic phylogenies using multiple genomic information is proposed. The method is called CGCPhy and based on the distance matrix of orthologous gene clusters between whole-genome pairs. CGCPhy comprises four main steps. First, orthologous genes are determined by sequence similarity, genomic function, and genomic structure information. Second, genes involving potential HGT events are eliminated, since such genes are considered to be the highly conserved genes across different species and the genes located on fragments with abnormal genome barcode. Third, we calculate the distance of the orthologous gene clusters between each genome pair in terms of the number of orthologous genes in conserved clusters. Finally, the neighbor-joining method is employed to construct phylogenetic trees across different species. CGCPhy has been examined on different datasets from 617 complete single-chromosome prokaryotic genomes and achieved applicative accuracies on different species sets in agreement with Bergey's taxonomy in quartet topologies. Simulation results show that CGCPhy achieves high average accuracy and has a low standard deviation on different datasets, so it has an applicative potential for phylogenetic analysis.

  20. Omics and Environmental Science Genomic Approaches With Natural Fish Populations From Polluted Environments

    Science.gov (United States)

    Bozinovic, Goran; Oleksiak, Marjorie F.

    2010-01-01

    Transcriptomics and population genomics are two complementary genomic approaches that can be used to gain insight into pollutant effects in natural populations. Transcriptomics identify altered gene expression pathways while population genomics approaches more directly target the causative genomic polymorphisms. Neither approach is restricted to a pre-determined set of genes or loci. Instead, both approaches allow a broad overview of genomic processes. Transcriptomics and population genomic approaches have been used to explore genomic responses in populations of fish from polluted environments and have identified sets of candidate genes and loci that appear biologically important in response to pollution. Often differences in gene expression or loci between polluted and reference populations are not conserved among polluted populations suggesting a biological complexity that we do not yet fully understand. As genomic approaches become less expensive with the advent of new sequencing and genotyping technologies, they will be more widely used in complimentary studies. However, while these genomic approaches are immensely powerful for identifying candidate gene and loci, the challenge of determining biological mechanisms that link genotypes and phenotypes remains. PMID:21072843

  1. Differentiation and diagnosis of Pseudocercosporella herpotrichoides (Fron) Deighton with genomic DNA probes

    DEFF Research Database (Denmark)

    Frei, U; Wenzel, G.

    1993-01-01

    Repetitive genomic clones were used to differentiate between varieties within the species Pseudocercosporella herpotrichoides. From 21 clones tested 13 revealed restriction fragment length polymorphisms among isolates. Cluster analysis was performed based on these data. Differentiation of isolate...

  2. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    Directory of Open Access Journals (Sweden)

    Maruoka Shuichiro

    2008-12-01

    Full Text Available Abstract Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK, a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived from specific locations in the genome. The resulting tag frequencies determine in a quantitative manner the methylation level of the corresponding loci. Results Genomic DNA from whole lung was isolated and subjected to MSDK analysis using the methylation-sensitive enzyme Not I as the mapping enzyme and Nla III as the fragmenting enzyme. In a pair wise comparison of the generated mouse MSDK libraries we identified 158 loci that are significantly differentially methylated (P-value = 0.05 after perinatal dietary changes in our mouse model. Quantitative methylation specific PCR and sequence analysis of bisulfate modified genomic DNA confirmed changes in methylation at specific loci. Differences in genomic MSDK tag counts for a selected set of genes, correlated well with changes in transcription levels as measured by real-time PCR. Furthermore serial analysis of gene expression profiling demonstrated a dramatic difference in expressed transcripts in mice exposed to perinatal nutritional changes. Conclusion The genome-wide methylation survey applied in this study allowed for an unbiased methylation profiling revealing subtle changes in DNA methylation in mice maternally exposed to dietary changes in methyl-donor content. The MSDK method is applicable for mouse models

  3. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  4. GFVO: the Genomic Feature and Variation Ontology

    KAUST Repository

    Baran, Joachim

    2015-05-05

    Falling costs in genomic laboratory experiments have led to a steady increase of genomic feature and variation data. Multiple genomic data formats exist for sharing these data, and whilst they are similar, they are addressing slightly different data viewpoints and are consequently not fully compatible with each other. The fragmentation of data format specifications makes it hard to integrate and interpret data for further analysis with information from multiple data providers. As a solution, a new ontology is presented here for annotating and representing genomic feature and variation dataset contents. The Genomic Feature and Variation Ontology (GFVO) specifically addresses genomic data as it is regularly shared using the GFF3 (incl. FASTA), GTF, GVF and VCF file formats. GFVO simplifies data integration and enables linking of genomic annotations across datasets through common semantics of genomic types and relations. Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology’s GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations); examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0) and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use.

  5. Intra-strain polymorphisms are detected but no genomic alteration is found in cloned mice

    International Nuclear Information System (INIS)

    Gotoh, Koshichi; Inoue, Kimiko; Ogura, Atsuo; Oishi, Michio

    2006-01-01

    In-gel competitive reassociation (IGCR) is a method for differential subtraction of polymorphic (RFLP) DNA fragments between two DNA samples of interest without probes or specific sequence information. Here, we applied the IGCR procedure to two cloned mice derived from an F1 hybrid of the C57BL/6Cr and DBA/2 strains, in order to investigate the possibility of genomic alteration in the cloned mouse genomes. Each of the five of the genomic alterations we detected between the two cloned mice corresponded to the 'intra-strain' polymorphisms in the C57BL/6Cr and DBA/2 mouse strains. Our result suggests that no severe aberration of genome sequences occurs due to somatic cell nuclear transfer

  6. Screening and identification of male-specific DNA fragments in common carps Cyprinus carpio using suppression subtractive hybridization.

    Science.gov (United States)

    Chen, J J; Du, Q Y; Yue, Y Y; Dang, B J; Chang, Z J

    2010-08-01

    In this study, a sex subtractive genomic DNA library was constructed using suppression subtractive hybridization (SSH) between male and female Cyprinus carpio. Twenty-two clones with distinguishable hybridization signals were selected and sequenced. The specific primers were designed based on the sequence data. Those primers were then used to amplify the sex-specific fragments from the genomic DNA of male and female carp. The amplified fragments from two clones showed specificity to males but not to females, which were named as Ccmf2 [387 base pairs (bp)] and Ccmf3 (183 bp), respectively. The sex-specific pattern was analysed in a total of 40 individuals from three other different C. carpio. stocks and grass carp Ctenopharyngodon idella using Ccmf2 and Ccmf3 as dot-blotting probes. The results revealed that the molecular diversity exists on the Y chromosome of C. carpio. No hybridization signals, however, were detected from individuals of C. idella, suggesting that the two sequences are specific to C. carpio. No significant homologous sequences of Ccmf2 and Ccmf3 were found in GenBank. Therefore, it was interpreted that the results as that Ccmf2 and Ccmf3 are two novel male-specific sequences; and both fragments could be used as markers to rapidly and accurately identify the genetic sex of part of C. carpio. This may provide a very efficient selective tool for practically breeding monosex female populations in aquacultural production.

  7. Whole-Genome Sequence of the Soil Bacterium Micrococcus sp. KBS0714.

    Science.gov (United States)

    Kuo, V; Shoemaker, W R; Muscarella, M E; Lennon, J T

    2017-08-10

    We present here a draft genome assembly of Micrococcus sp. KBS0714, which was isolated from agricultural soil. The genome provides insight into the strategies that Micrococcus spp. use to contend with environmental stressors such as desiccation and starvation in environmental and host-associated ecosystems. Copyright © 2017 Kuo et al.

  8. Azimuthal Anisotropies in Nuclear Fragmentation

    International Nuclear Information System (INIS)

    Dabrowska, A.; Szarska, M.; Trzupek, A.; Wolter, W.; Wosiek, B.

    2002-01-01

    The directed and elliptic flow of fragments emitted from the excited projectile nuclei has been observed for 158 AGeV Pb collisions with the lead and plastic targets. For comparison the flow analysis has been performed for 10.6 AGeV Au collisions with the emulsion target. The strong directed flow of heaviest fragments is found. Light fragments exhibit directed flow opposite to that of heavy fragments. The elliptic flow for all multiply charged fragments is positive and increases with the charge of the fragment. The observed flow patterns in the fragmentation of the projectile nucleus are practically independent of the mass of the target nucleus and the collision energy. Emission of fragments in nuclear multifragmentation shows similar, although weaker, flow effects. (author)

  9. Methyl-CpG island-associated genome signature tags

    Science.gov (United States)

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  10. [Recent advances of amplified fragment length polymorphism and its applications in forensic botany].

    Science.gov (United States)

    Li, Cheng-Tao; Li, Li

    2008-10-01

    Amplified fragment length polymorphism (AFLP) is a new molecular marker to detect genomic polymorphism. This new technology has advantages of high resolution, good stability, and reproducibility. Great achievements have been derived in recent years in AFLP related technologies with several AFLP expanded methodologies available. AFLP technology has been widely used in the fields of plant, animal, and microbes. It has become one of the hotspots in Forensic Botany. This review focuses on the recent advances of AFLP and its applications in forensic biology.

  11. Analysis of fission-fragment mass distribution within the quantum-mechanical fragmentation theory

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pardeep; Kaur, Harjeet [Guru Nanak Dev University, Department of Physics, Amritsar (India)

    2016-11-15

    The fission-fragment mass distribution is analysed for the {sup 208}Pb({sup 18}O, f) reaction within the quantum-mechanical fragmentation theory (QMFT). The reaction potential has been calculated by taking the binding energies, Coulomb potential and proximity potential of all possible decay channels and a stationary Schroedinger equation has been solved numerically to calculate the fission-fragment yield. The overall results for mass distribution are compared with those obtained in experiment. Fine structure dips in yield, corresponding to fragment shell closures at Z = 50 and N=82, which are observed by Bogachev et al., are reproduced successfully in the present calculations. These calculations will help to estimate the formation probabilities of fission fragments and to understand many related phenomena occurring in the fission process. (orig.)

  12. Designer genes. Recombinant antibody fragments for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A.M.; Yazaki, P.J. [Beckman Research Institute of the City of Hope, Duarte, CA (United States). Dept. of Molecular Biology

    2000-09-01

    Monoclonal antibodies (MAbs), with high specificity and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs or toxins in vivo. However, the implementation of radiolabeled antibodies as magic bullets for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-17 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-C{sub H}3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor: blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering

  13. Designer genes. Recombinant antibody fragments for biological imaging

    International Nuclear Information System (INIS)

    Wu, A.M.; Yazaki, P.J.

    2000-01-01

    Monoclonal antibodies (MAbs), with high specificy and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs or toxins in vivo. However, the implementation of radiolabeled antibodies as magic bullets for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-17 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-C H 3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor: blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering and

  14. Effects of local tree diversity on herbivore communities diminish with increasing forest fragmentation on the landscape scale.

    Directory of Open Access Journals (Sweden)

    Franziska Peter

    Full Text Available Forest fragmentation and plant diversity have been shown to play a crucial role for herbivorous insects (herbivores, hereafter. In turn, herbivory-induced leaf area loss is known to have direct implications for plant growth and reproduction as well as long-term consequences for ecosystem functioning and forest regeneration. So far, previous studies determined diverging responses of herbivores to forest fragmentation and plant diversity. Those inconsistent results may be owed to complex interactive effects of both co-occurring environmental factors albeit they act on different spatial scales. In this study, we investigated whether forest fragmentation on the landscape scale and tree diversity on the local habitat scale show interactive effects on the herbivore community and leaf area loss in subtropical forests in South Africa. We applied standardized beating samples and a community-based approach to estimate changes in herbivore community composition, herbivore abundance, and the effective number of herbivore species on the tree species-level. We further monitored leaf area loss to link changes in the herbivore community to the associated process of herbivory. Forest fragmentation and tree diversity interactively affected the herbivore community composition, mainly by a species turnover within the family of Curculionidae. Furthermore, herbivore abundance increased and the number of herbivore species decreased with increasing tree diversity in slightly fragmented forests whereas the effects diminished with increasing forest fragmentation. Surprisingly, leaf area loss was neither affected by forest fragmentation or tree diversity, nor by changes in the herbivore community. Our study highlights the need to consider interactive effects of environmental changes across spatial scales in order to draw reliable conclusions for community and interaction patterns. Moreover, forest fragmentation seems to alter the effect of tree diversity on the herbivore

  15. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples

    International Nuclear Information System (INIS)

    Voordouw, G.; Voordouw, J.K.; Karkhoff-Schweizer, R.R.; Fedorak, P.M.; Westlake, D.W.S.

    1991-01-01

    A novel method for identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a standard) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples

  16. Environmental genomics of "Haloquadratum walsbyi" in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species

    Directory of Open Access Journals (Sweden)

    Bolhuis Henk

    2006-07-01

    Full Text Available Abstract Background Mature saturated brine (crystallizers communities are largely dominated (>80% of cells by the square halophilic archaeon "Haloquadratum walsbyi". The recent cultivation of the strain HBSQ001 and thesequencing of its genome allows comparison with the metagenome of this taxonomically simplified environment. Similar studies carried out in other extreme environments have revealed very little diversity in gene content among the cell lineages present. Results The metagenome of the microbial community of a crystallizer pond has been analyzed by end sequencing a 2000 clone fosmid library and comparing the sequences obtained with the genome sequence of "Haloquadratum walsbyi". The genome of the sequenced strain was retrieved nearly complete within this environmental DNA library. However, many ORF's that could be ascribed to the "Haloquadratum" metapopulation by common genome characteristics or scaffolding to the strain genome were not present in the specific sequenced isolate. Particularly, three regions of the sequenced genome were associated with multiple rearrangements and the presence of different genes from the metapopulation. Many transposition and phage related genes were found within this pool which, together with the associated atypical GC content in these areas, supports lateral gene transfer mediated by these elements as the most probable genetic cause of this variability. Additionally, these sequences were highly enriched in putative regulatory and signal transduction functions. Conclusion These results point to a large pan-genome (total gene repertoire of the genus/species even in this highly specialized extremophile and at a single geographic location. The extensive gene repertoire is what might be expected of a population that exploits a diverse nutrient pool, resulting from the degradation of biomass produced at lower salinities.

  17. Multistable Perception in Older Adults: Constructing a Whole from Fragments.

    Science.gov (United States)

    Patel, Khushi; Reed, Maureen

    2016-03-22

    Visual perception is constructive in nature; that is, a coherent whole is generated from ambiguous fragments that are encountered in dynamic visual scenes. Creating this coherent whole from fragmented sensory inputs requires one to detect, identify, distinguish and organize sensory input. The organization of fragments into a coherent whole is facilitated by the continuous interactions between lower level sensory inputs and higher order processes. However, age-related declines are found in both neural structures and cognitive processes (e.g., attention and inhibition). The impact of these declines on the constructive nature of visual processing was the focus of this study. Here we asked younger adults, young-old (65-79 years), and old-old adults (80+ years) to view a multistable figure (i.e., Necker cube) under four conditions (free, priming, volition, and adaptation) and report, via a button press, when percepts spontaneously changed. The oldest-olds, unlike young-olds and younger adults, were influenced by priming, had less visual stability during volition and showed less ability to adapt to multistable stimuli. These results suggest that the ability to construct a coherent whole from fragments declines with age. More specifically, vision is constructed differently in the old-olds, which might influence environmental interpretations and navigational abilities in this age group.

  18. Multistable Perception in Older Adults: Constructing a Whole from Fragments

    Directory of Open Access Journals (Sweden)

    Khushi Patel

    2016-03-01

    Full Text Available Visual perception is constructive in nature; that is, a coherent whole is generated from ambiguous fragments that are encountered in dynamic visual scenes. Creating this coherent whole from fragmented sensory inputs requires one to detect, identify, distinguish and organize sensory input. The organization of fragments into a coherent whole is facilitated by the continuous interactions between lower level sensory inputs and higher order processes. However, age-related declines are found in both neural structures and cognitive processes (e.g., attention and inhibition. The impact of these declines on the constructive nature of visual processing was the focus of this study. Here we asked younger adults, young-old (65–79 years, and old-old adults (80+ years to view a multistable figure (i.e., Necker cube under four conditions (free, priming, volition, and adaptation and report, via a button press, when percepts spontaneously changed. The oldest-olds, unlike young-olds and younger adults, were influenced by priming, had less visual stability during volition and showed less ability to adapt to multistable stimuli. These results suggest that the ability to construct a coherent whole from fragments declines with age. More specifically, vision is constructed differently in the old-olds, which might influence environmental interpretations and navigational abilities in this age group.

  19. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  20. Hypervelocity Impact Test Fragment Modeling: Modifications to the Fragment Rotation Analysis and Lightcurve Code

    Science.gov (United States)

    Gouge, Michael F.

    2011-01-01

    Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.

  1. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha

    Directory of Open Access Journals (Sweden)

    Baumann Paul

    2004-08-01

    Full Text Available Abstract Background With some exceptions, mitochondria within the class Insecta have the same gene content, and generally, a similar gene order allowing the proposal of an ancestral gene order. The principal exceptions are several orders within the Hemipteroid assemblage including the order Thysanoptera, a sister group of the order Hemiptera. Within the Hemiptera, there are available a number of completely sequenced mitochondrial genomes that have a gene order similar to that of the proposed ancestor. None, however, are available from the suborder Sternorryncha that includes whiteflies, psyllids and aphids. Results We have determined the complete nucleotide sequence of the mitochondrial genomes of six species of whiteflies, one psyllid and one aphid. Two species of whiteflies, one psyllid and one aphid have mitochondrial genomes with a gene order very similar to that of the proposed insect ancestor. The remaining four species of whiteflies had variations in the gene order. In all cases, there was the excision of a DNA fragment encoding for cytochrome oxidase subunit III(COIII-tRNAgly-NADH dehydrogenase subunit 3(ND3-tRNAala-tRNAarg-tRNAasn from the ancestral position between genes for ATP synthase subunit 6 and NADH dehydrogenase subunit 5. Based on the position in which all or part of this fragment was inserted, the mitochondria could be subdivided into four different gene arrangement types. PCR amplification spanning from COIII to genes outside the inserted region and sequence determination of the resulting fragments, indicated that different whitefly species could be placed into one of these arrangement types. A phylogenetic analysis of 19 whitefly species based on genes for mitochondrial cytochrome b, NADH dehydrogenase subunit 1, and 16S ribosomal DNA as well as cospeciating endosymbiont 16S and 23S ribosomal DNA indicated a clustering of species that corresponded to the gene arrangement types. Conclusions In whiteflies, the region of the

  2. Fragment capture device

    Science.gov (United States)

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  3. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.

    Science.gov (United States)

    Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun

    2018-06-01

    The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Untangling Genomes from Metagenomes: Revealing an Uncultured Class of Marine Euryarchaeota

    Science.gov (United States)

    Iverson, Vaughn; Morris, Robert M.; Frazar, Christian D.; Berthiaume, Chris T.; Morales, Rhonda L.; Armbrust, E. Virginia

    2012-02-01

    Ecosystems are shaped by complex communities of mostly unculturable microbes. Metagenomes provide a fragmented view of such communities, but the ecosystem functions of major groups of organisms remain mysterious. To better characterize members of these communities, we developed methods to reconstruct genomes directly from mate-paired short-read metagenomes. We closed a genome representing the as-yet uncultured marine group II Euryarchaeota, assembled de novo from 1.7% of a metagenome sequenced from surface seawater. The genome describes a motile, photo-heterotrophic cell focused on degradation of protein and lipids and clarifies the origin of proteorhodopsin. It also demonstrates that high-coverage mate-paired sequence can overcome assembly difficulties caused by interstrain variation in complex microbial communities, enabling inference of ecosystem functions for uncultured members.

  5. Genomic differentiation among two strains of the PS1 clade isolated from geographically separated marine habitats

    KAUST Repository

    Jimenez Infante, Francy M.

    2014-05-22

    Using dilution-to-extinction cultivation, we isolated a strain affiliated with the PS1 clade from surface waters of the Red Sea. Strain RS24 represents the second isolate of this group of marine Alphaproteobacteria after IMCC14465 that was isolated from the East (Japan) Sea. The PS1 clade is a sister group to the OCS116 clade, together forming a putatively novel order closely related to Rhizobiales. While most genomic features and most of the genetic content are conserved between RS24 and IMCC14465, their average nucleotide identity (ANI) is < 81%, suggesting two distinct species of the PS1 clade. Next to encoding two different variants of proteorhodopsin genes, they also harbor several unique genomic islands that contain genes related to degradation of aromatic compounds in IMCC14465 and in polymer degradation in RS24, possibly reflecting the physicochemical differences in the environment they were isolated from. No clear differences in abundance of the genomic content of either strain could be found in fragment recruitment analyses using different metagenomic datasets, in which both genomes were detectable albeit as minor part of the communities. The comparative genomic analysis of both isolates of the PS1 clade and the fragment recruitment analysis provide first insights into the ecology of this group. © 2014 Federation of European Microbiological Societies.

  6. Dynamics of Pellet Fragmentation and Aggregation in Liquid-Grown Cultures of Streptomyces lividans

    Directory of Open Access Journals (Sweden)

    Boris Zacchetti

    2018-05-01

    Full Text Available Streptomycetes are extensively used for the production of valuable products, including various antibiotics and industrial enzymes. The preferred way to grow these bacteria in industrial settings is in large-scale fermenters. Growth of streptomycetes under these conditions is characterized by the formation of complex mycelial particles, called pellets. While the process of pellet formation is well characterized, little is known about their disintegration. Here, we use a qualitative and quantitative approach to show that pellet fragmentation in Streptomyces lividans is initiated when cultures enter the stationary phase, which coincides with a remarkable change in pellet architecture. Unlike young pellets, aging pellets have a less dense appearance and are characterized by the appearance of filaments protruding from their outer edges. These morphological changes are accompanied by a dramatic increase in the number of mycelial fragments in the culture broth. In the presence of fresh nutrients, these fragments are able to aggregate with other small fragments, but not with disintegrating pellets, to form new mycelial particles. Altogether, our work indicates that fragmentation might represent an escape mechanism from the environmental stress caused by nutrient scarcity, with striking similarities to the disassembly of bacterial biofilms.

  7. Exact Solutions of Fragmentation Equations with General Fragmentation Rates and Separable Particles Distribution Kernels

    Directory of Open Access Journals (Sweden)

    S. C. Oukouomi Noutchie

    2014-01-01

    Full Text Available We make use of Laplace transform techniques and the method of characteristics to solve fragmentation equations explicitly. Our result is a breakthrough in the analysis of pure fragmentation equations as this is the first instance where an exact solution is provided for the fragmentation evolution equation with general fragmentation rates. This paper is the key for resolving most of the open problems in fragmentation theory including “shattering” and the sudden appearance of infinitely many particles in some systems with initial finite particles number.

  8. Land fragmentation and production diversification

    NARCIS (Netherlands)

    Ciaian, Pavel; Guri, Fatmir; Rajcaniova, Miroslava; Drabik, Dusan; Paloma, Sergio Gomez Y.

    2018-01-01

    We analyze the impact of land fragmentation on production diversification in rural Albania. Albania represents a particularly interesting case for studying land fragmentation as the fragmentation is a direct outcome of land reforms. The results indicate that land fragmentation is an important driver

  9. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius.

    Directory of Open Access Journals (Sweden)

    Evgeny I Rogaev

    2006-03-01

    Full Text Available Phylogenetic relationships between the extinct woolly mammoth (Mammuthus primigenius, and the Asian (Elephas maximus and African savanna (Loxodonta africana elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch--the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as approximately 1,600-1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests that M. primigenius and E. maximus are sister species that diverged soon after their common ancestor split from the L. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population of M. primigenius throughout the late Pleistocene.

  10. Helicobacter pylori genomic microevolution during naturally occurring transmission between adults.

    Directory of Open Access Journals (Sweden)

    Bodo Linz

    Full Text Available The human gastric pathogen Helicobacter pylori is usually acquired during childhood and, in the absence of treatment, chronic infection persists through most of the host's life. However, the frequency and importance of H. pylori transmission between adults is underestimated. Here we sequenced the complete genomes of H. pylori strains that were transmitted between spouses and analysed the genomic changes. Similar to H. pylori from chronic infection, a significantly high proportion of the determined 31 SNPs and 10 recombinant DNA fragments affected genes of the hop family of outer membrane proteins, some of which are known to be adhesins. In addition, changes in a fucosyltransferase gene modified the LPS component of the bacterial cell surface, suggesting strong diversifying selection. In contrast, virulence factor genes were not affected by the genomic changes. We propose a model of the genomic changes that are associated with the transmission and adaptation of H. pylori to a new human host.

  11. Genomics innovation: transforming healthcare, business, and the global economy.

    Science.gov (United States)

    Jimenez-Sanchez, Gerardo

    2015-12-01

    The genomics revolution has generated an unprecedented number of assets to propel innovation. Initial availability of genomics-based applications show a significant potential to contribute addressing global challenges, such as human health, food security, alternative sources of energies, and environmental sustainability. In the last years, most developed and emerging nations have established bioeconomy agendas where genomics plays a major role to meet their local needs. Genomic medicine is one of the most visible areas where genomics innovation is likely to contribute to a more individualized, predictive, and preventive medical practice. Examples in agriculture, dairy and beef, fishery, aquaculture, and forests industries include the effective selection of genetic variants associated to traits of economic value. Some, in addition to producing more and better foods, already represent an important increase in revenues to their respective industries. It is reasonable to predict that genomics applications will lead to a paradigm shift in our ability to ease significant health, economic, and social burdens. However, to successfully benefit from genomics innovations, it is imperative to address a number of hurdles related to generating robust scientific evidence, developing lower-cost sequencing technologies, effective bioinformatics, as well as sensitive ethical, economical, environmental, legal, and social aspects associated with the development and use of genomics innovations.

  12. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Legrain, R.

    1984-08-01

    Projectile and nuclear fragmentation are defined and processes referred to are recalled. The two different aspects of fragmentation are considered but the emphasis is also put on heavy ion induced reactions. The preliminary results of an experiment performed at GANIL to study peripheral heavy ions induced reactions at intermediate energy are presented. The results of this experiment will illustrate the characteristics of projectile fragmentation and this will also give the opportunity to study projectile fragmentation in the transition region. Then nuclear fragmentation is considered which is associated with more central collisions in the case of heavy ion induced reactions. This aspect of fragmentation is also ilustrated with two heavy ion experiments in which fragments emitted at large angle have been observed

  13. Genome plasticity and systems evolution in Streptomyces

    Science.gov (United States)

    2012-01-01

    Background Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the producers of a great variety of natural products such as antibiotics, antifungals, antiparasitics, and anticancer agents and the decomposers of organic substances for carbon recycling. They are also model organisms for the studies of gene regulatory networks, morphological differentiation, and stress response. The availability of sets of genomes from closely related Streptomyces strains makes it possible to assess the mechanisms underlying genome plasticity and systems adaptation. Results We present the results of a comprehensive analysis of the genomes of five Streptomyces species with distinct phenotypes. These streptomycetes have a pan-genome comprised of 17,362 orthologous families which includes 3,096 components in the core genome, 5,066 components in the dispensable genome, and 9,200 components that are uniquely present in only one species. The core genome makes up about 33%-45% of each genome repertoire. It contains important genes for Streptomyces biology including those involved in gene regulation, secretion, secondary metabolism and morphological differentiation. Abundant duplicate genes have been identified, with 4%-11% of the whole genomes composed of lineage-specific expansions (LSEs), suggesting that frequent gene duplication or lateral gene transfer events play a role in shaping the genome diversification within this genus. Two patterns of expansion, single gene expansion and chromosome block expansion are observed, representing different scales of duplication. Conclusions Our results provide a catalog of genome components and their potential functional roles in gene regulatory networks and metabolic networks. The core genome components reveal the minimum requirement for streptomycetes to sustain a successful lifecycle in the soil environment, reflecting the effects of both genome evolution and environmental stress acting upon the expressed phenotypes. A

  14. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  15. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.

    Science.gov (United States)

    Kawano, Fuun; Okazaki, Risako; Yazawa, Masayuki; Sato, Moritoshi

    2016-12-01

    Genome engineering techniques represented by the Cre-loxP recombination system have been used extensively for biomedical research. However, powerful and useful techniques for genome engineering that have high spatiotemporal precision remain elusive. Here we develop a highly efficient photoactivatable Cre recombinase (PA-Cre) to optogenetically control genome engineering in vivo. PA-Cre is based on the reassembly of split Cre fragments by light-inducible dimerization of the Magnet system. PA-Cre enables sharp induction (up to 320-fold) of DNA recombination and is efficiently activated even by low-intensity illumination (∼0.04 W m -2 ) or short periods of pulsed illumination (∼30 s). We demonstrate that PA-Cre allows for efficient DNA recombination in an internal organ of living mice through noninvasive external illumination using a LED light source. The present PA-Cre provides a powerful tool to greatly facilitate optogenetic genome engineering in vivo.

  16. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups.

    Directory of Open Access Journals (Sweden)

    Brigitte Braschler

    Full Text Available Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice in 12 small (1.5 m * 1.5 m and 12 large (4.5 m * 4.5 m fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species' preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in

  17. Genomic rearrangement in radiation-induced murine myeloid leukemia

    International Nuclear Information System (INIS)

    Ishihara, Hiroshi

    1994-01-01

    After whole body irradiation of 3Gy X ray to C3H/He male mice, acute myeloid leukemia is induced at an incidence of 20 to 30% within 2 years. We have studied the mechanism of occurrence of this radiation-induced murine myeloid leukemia. Detection and isolation of genomic structural aberration which may be accumulated accompanied with leukemogenesis are helpful in analyzing the complicated molecular process from radiation damage to leukemogenesis. So, our research work was done in three phases. First, structures of previously characterized oncogenes and cytokine-related genes were analyzed, and abnormal structures of fms(protooncogene encoding M-CSF receptor gene)-related and myc-related genes were found in several leukemia cells. Additionally, genomic structural aberration of IL-3 gene was observed in some leukemia cells, so that construction of genomic libraries and cloning of the abnormal IL-3 genomic DNAs were performed to characterize the structure. Secondly, because the breakage of chromosome 2 that is frequently observed in myeloid leukemia locates in proximal position of IL-1 gene cluster in some cases, the copy number of IL-1 gene was determined and the gene was cloned. Lastly, the abnormal genome of leukemia cell was cloned by in-gel competence reassociation method. We discussed these findings and evaluated the analysis of the molecular process of leukemogenesis using these cloned genomic fragments. (author)

  18. Whole-genome analysis of herbicide-tolerant mutant rice generated by Agrobacterium-mediated gene targeting.

    Science.gov (United States)

    Endo, Masaki; Kumagai, Masahiko; Motoyama, Ritsuko; Sasaki-Yamagata, Harumi; Mori-Hosokawa, Satomi; Hamada, Masao; Kanamori, Hiroyuki; Nagamura, Yoshiaki; Katayose, Yuichi; Itoh, Takeshi; Toki, Seiichi

    2015-01-01

    Gene targeting (GT) is a technique used to modify endogenous genes in target genomes precisely via homologous recombination (HR). Although GT plants are produced using genetic transformation techniques, if the difference between the endogenous and the modified gene is limited to point mutations, GT crops can be considered equivalent to non-genetically modified mutant crops generated by conventional mutagenesis techniques. However, it is difficult to guarantee the non-incorporation of DNA fragments from Agrobacterium in GT plants created by Agrobacterium-mediated GT despite screening with conventional Southern blot and/or PCR techniques. Here, we report a comprehensive analysis of herbicide-tolerant rice plants generated by inducing point mutations in the rice ALS gene via Agrobacterium-mediated GT. We performed genome comparative genomic hybridization (CGH) array analysis and whole-genome sequencing to evaluate the molecular composition of GT rice plants. Thus far, no integration of Agrobacterium-derived DNA fragments has been detected in GT rice plants. However, >1,000 single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were found in GT plants. Among these mutations, 20-100 variants might have some effect on expression levels and/or protein function. Information about additive mutations should be useful in clearing out unwanted mutations by backcrossing. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  19. Large scale meta-analysis of fragment-based screening campaigns: privileged fragments and complementary technologies.

    Science.gov (United States)

    Kutchukian, Peter S; Wassermann, Anne Mai; Lindvall, Mika K; Wright, S Kirk; Ottl, Johannes; Jacob, Jaison; Scheufler, Clemens; Marzinzik, Andreas; Brooijmans, Natasja; Glick, Meir

    2015-06-01

    A first step in fragment-based drug discovery (FBDD) often entails a fragment-based screen (FBS) to identify fragment "hits." However, the integration of conflicting results from orthogonal screens remains a challenge. Here we present a meta-analysis of 35 fragment-based campaigns at Novartis, which employed a generic 1400-fragment library against diverse target families using various biophysical and biochemical techniques. By statistically interrogating the multidimensional FBS data, we sought to investigate three questions: (1) What makes a fragment amenable for FBS? (2) How do hits from different fragment screening technologies and target classes compare with each other? (3) What is the best way to pair FBS assay technologies? In doing so, we identified substructures that were privileged for specific target classes, as well as fragments that were privileged for authentic activity against many targets. We also revealed some of the discrepancies between technologies. Finally, we uncovered a simple rule of thumb in screening strategy: when choosing two technologies for a campaign, pairing a biochemical and biophysical screen tends to yield the greatest coverage of authentic hits. © 2014 Society for Laboratory Automation and Screening.

  20. Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii genome.

    Directory of Open Access Journals (Sweden)

    Byrappa Venkatesh

    2007-04-01

    Full Text Available Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4x coverage and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element-like and long interspersed element-like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes.

  1. pico-PLAZA, a genome database of microbial photosynthetic eukaryotes.

    Science.gov (United States)

    Vandepoele, Klaas; Van Bel, Michiel; Richard, Guilhem; Van Landeghem, Sofie; Verhelst, Bram; Moreau, Hervé; Van de Peer, Yves; Grimsley, Nigel; Piganeau, Gwenael

    2013-08-01

    With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives.

    Science.gov (United States)

    Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S S; Kudrna, David A; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A; Luo, Meizhong

    2013-11-01

    Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.

  3. Fragment-based drug design.

    Science.gov (United States)

    Feyfant, Eric; Cross, Jason B; Paris, Kevin; Tsao, Désirée H H

    2011-01-01

    Fragment-based drug design (FBDD), which is comprised of both fragment screening and the use of fragment hits to design leads, began more than 15 years ago and has been steadily gaining in popularity and utility. Its origin lies on the fact that the coverage of chemical space and the binding efficiency of hits are directly related to the size of the compounds screened. Nevertheless, FBDD still faces challenges, among them developing fragment screening libraries that ensure optimal coverage of chemical space, physical properties and chemical tractability. Fragment screening also requires sensitive assays, often biophysical in nature, to detect weak binders. In this chapter we will introduce the technologies used to address these challenges and outline the experimental advantages that make FBDD one of the most popular new hit-to-lead process.

  4. Fragment informatics and computational fragment-based drug design: an overview and update.

    Science.gov (United States)

    Sheng, Chunquan; Zhang, Wannian

    2013-05-01

    Fragment-based drug design (FBDD) is a promising approach for the discovery and optimization of lead compounds. Despite its successes, FBDD also faces some internal limitations and challenges. FBDD requires a high quality of target protein and good solubility of fragments. Biophysical techniques for fragment screening necessitate expensive detection equipment and the strategies for evolving fragment hits to leads remain to be improved. Regardless, FBDD is necessary for investigating larger chemical space and can be applied to challenging biological targets. In this scenario, cheminformatics and computational chemistry can be used as alternative approaches that can significantly improve the efficiency and success rate of lead discovery and optimization. Cheminformatics and computational tools assist FBDD in a very flexible manner. Computational FBDD can be used independently or in parallel with experimental FBDD for efficiently generating and optimizing leads. Computational FBDD can also be integrated into each step of experimental FBDD and help to play a synergistic role by maximizing its performance. This review will provide critical analysis of the complementarity between computational and experimental FBDD and highlight recent advances in new algorithms and successful examples of their applications. In particular, fragment-based cheminformatics tools, high-throughput fragment docking, and fragment-based de novo drug design will provide the focus of this review. We will also discuss the advantages and limitations of different methods and the trends in new developments that should inspire future research. © 2012 Wiley Periodicals, Inc.

  5. The B73 maize genome: complexity, diversity, and dynamics.

    Science.gov (United States)

    Schnable, Patrick S; Ware, Doreen; Fulton, Robert S; Stein, Joshua C; Wei, Fusheng; Pasternak, Shiran; Liang, Chengzhi; Zhang, Jianwei; Fulton, Lucinda; Graves, Tina A; Minx, Patrick; Reily, Amy Denise; Courtney, Laura; Kruchowski, Scott S; Tomlinson, Chad; Strong, Cindy; Delehaunty, Kim; Fronick, Catrina; Courtney, Bill; Rock, Susan M; Belter, Eddie; Du, Feiyu; Kim, Kyung; Abbott, Rachel M; Cotton, Marc; Levy, Andy; Marchetto, Pamela; Ochoa, Kerri; Jackson, Stephanie M; Gillam, Barbara; Chen, Weizu; Yan, Le; Higginbotham, Jamey; Cardenas, Marco; Waligorski, Jason; Applebaum, Elizabeth; Phelps, Lindsey; Falcone, Jason; Kanchi, Krishna; Thane, Thynn; Scimone, Adam; Thane, Nay; Henke, Jessica; Wang, Tom; Ruppert, Jessica; Shah, Neha; Rotter, Kelsi; Hodges, Jennifer; Ingenthron, Elizabeth; Cordes, Matt; Kohlberg, Sara; Sgro, Jennifer; Delgado, Brandon; Mead, Kelly; Chinwalla, Asif; Leonard, Shawn; Crouse, Kevin; Collura, Kristi; Kudrna, Dave; Currie, Jennifer; He, Ruifeng; Angelova, Angelina; Rajasekar, Shanmugam; Mueller, Teri; Lomeli, Rene; Scara, Gabriel; Ko, Ara; Delaney, Krista; Wissotski, Marina; Lopez, Georgina; Campos, David; Braidotti, Michele; Ashley, Elizabeth; Golser, Wolfgang; Kim, HyeRan; Lee, Seunghee; Lin, Jinke; Dujmic, Zeljko; Kim, Woojin; Talag, Jayson; Zuccolo, Andrea; Fan, Chuanzhu; Sebastian, Aswathy; Kramer, Melissa; Spiegel, Lori; Nascimento, Lidia; Zutavern, Theresa; Miller, Beth; Ambroise, Claude; Muller, Stephanie; Spooner, Will; Narechania, Apurva; Ren, Liya; Wei, Sharon; Kumari, Sunita; Faga, Ben; Levy, Michael J; McMahan, Linda; Van Buren, Peter; Vaughn, Matthew W; Ying, Kai; Yeh, Cheng-Ting; Emrich, Scott J; Jia, Yi; Kalyanaraman, Ananth; Hsia, An-Ping; Barbazuk, W Brad; Baucom, Regina S; Brutnell, Thomas P; Carpita, Nicholas C; Chaparro, Cristian; Chia, Jer-Ming; Deragon, Jean-Marc; Estill, James C; Fu, Yan; Jeddeloh, Jeffrey A; Han, Yujun; Lee, Hyeran; Li, Pinghua; Lisch, Damon R; Liu, Sanzhen; Liu, Zhijie; Nagel, Dawn Holligan; McCann, Maureen C; SanMiguel, Phillip; Myers, Alan M; Nettleton, Dan; Nguyen, John; Penning, Bryan W; Ponnala, Lalit; Schneider, Kevin L; Schwartz, David C; Sharma, Anupma; Soderlund, Carol; Springer, Nathan M; Sun, Qi; Wang, Hao; Waterman, Michael; Westerman, Richard; Wolfgruber, Thomas K; Yang, Lixing; Yu, Yeisoo; Zhang, Lifang; Zhou, Shiguo; Zhu, Qihui; Bennetzen, Jeffrey L; Dawe, R Kelly; Jiang, Jiming; Jiang, Ning; Presting, Gernot G; Wessler, Susan R; Aluru, Srinivas; Martienssen, Robert A; Clifton, Sandra W; McCombie, W Richard; Wing, Rod A; Wilson, Richard K

    2009-11-20

    We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.

  6. Integrative environmental governance: enhancing governance in the era of synergies

    NARCIS (Netherlands)

    Visseren-Hamakers, I.J.

    2015-01-01

    The issue of regime complexity in global environmental governance is widely recognized. The academic debate on regime fragmentation has itself however been rather fragmented, with discussions circling around different concepts, including inter-organizational relations, polycentric governance,

  7. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  8. Habitat Fragmentation Drives Plant Community Assembly Processes across Life Stages

    Science.gov (United States)

    Hu, Guang; Feeley, Kenneth J.; Yu, Mingjian

    2016-01-01

    Habitat fragmentation is one of the principal causes of biodiversity loss and hence understanding its impacts on community assembly and disassembly is an important topic in ecology. We studied the relationships between fragmentation and community assembly processes in the land-bridge island system of Thousand Island Lake in East China. We focused on the changes in species diversity and phylogenetic diversity that occurred between life stages of woody plants growing on these islands. The observed diversities were compared with the expected diversities from random null models to characterize assembly processes. Regression tree analysis was used to illustrate the relationships between island attributes and community assembly processes. We found that different assembly processes predominate in the seedlings-to-saplings life-stage transition (SS) vs. the saplings-to-trees transition (ST). Island area was the main attribute driving the assembly process in SS. In ST, island isolation was more important. Within a fragmented landscape, the factors driving community assembly processes were found to differ between life stage transitions. Environmental filtering had a strong effect on the seedlings-to-saplings life-stage transition. Habitat isolation and dispersal limitation influenced all plant life stages, but had a weaker effect on communities than area. These findings add to our understanding of the processes driving community assembly and species coexistence in the context of pervasive and widespread habitat loss and fragmentation. PMID:27427960

  9. Assessment of fragment projection hazard: probability distributions for the initial direction of fragments.

    Science.gov (United States)

    Tugnoli, Alessandro; Gubinelli, Gianfilippo; Landucci, Gabriele; Cozzani, Valerio

    2014-08-30

    The evaluation of the initial direction and velocity of the fragments generated in the fragmentation of a vessel due to internal pressure is an important information in the assessment of damage caused by fragments, in particular within the quantitative risk assessment (QRA) of chemical and process plants. In the present study an approach is proposed to the identification and validation of probability density functions (pdfs) for the initial direction of the fragments. A detailed review of a large number of past accidents provided the background information for the validation procedure. A specific method was developed for the validation of the proposed pdfs. Validated pdfs were obtained for both the vertical and horizontal angles of projection and for the initial velocity of the fragments. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Knowledge-based Fragment Binding Prediction

    Science.gov (United States)

    Tang, Grace W.; Altman, Russ B.

    2014-01-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971

  11. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.

    Directory of Open Access Journals (Sweden)

    Young Shin Ryu

    Full Text Available Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.

  12. Environmental genomics reveals a single species ecosystem deep within the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Chivian, Dylan; Brodie, Eoin L.; Alm, Eric J.; Culley, David E.; Dehal, Paramvir S.; DeSantis, Todd Z.; Gihring, Thomas M.; Lapidus, Alla; Lin, Li-Hung; Lowry, Stephen R.; Moser, Duane P.; Richardson, Paul; Southam, Gordon; Wanger, Greg; Pratt, Lisa M.; Andersen, Gary L.; Hazen, Terry C.; Brockman, Fred J.; Arkin, Adam P.; Onstott, Tullis C.

    2008-09-17

    DNA from low biodiversity fracture water collected at 2.8 km depth in a South African gold mine was sequenced and assembled into a single, complete genome. This bacterium, Candidatus Desulforudis audaxviator, comprises>99.9percent of the microorganisms inhabiting the fluid phase of this particular fracture. Its genome indicates a motile, sporulating, sulfate reducing, chemoautotrophic thermophile that can fix its own nitrogen and carbon using machinery shared with archaea. Candidatus Desulforudis audaxviator is capable of an independent lifestyle well suited to long-term isolation from the photosphere deep within Earth?s crust, and offers the first example of a natural ecosystem that appears to have its biological component entirely encoded within a single genome.

  13. Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments.

    Science.gov (United States)

    Lirman

    2000-08-23

    Acropora palmata, a branching coral abundant on shallow reef environments throughout the Caribbean, is susceptible to physical disturbance caused by storms. Accordingly, the survivorship and propagation of this species are tied to its capability to recover after fragmentation. Fragments of A. palmata comprised 40% of ramets within populations that had experienced recent storms. While the survivorship of A. palmata fragments was not directly related to the size of fragments, removal of fragments from areas where they settled was influenced by size. Survivorship of fragments was also affected by type of substratum; the greatest mortality (58% loss within the first month) was observed on sand, whereas fragments placed on top of live colonies of A. palmata fused to the underlying tissue and did not experience any losses. Fragments created by Hurricane Andrew on a Florida reef in August 1992 began developing new growth (proto-branches) 7 months after the storm. The number of proto-branches on fragments was dependent on size, but growth was not affected by the size of fragments. Growth-rates of proto-branches increased exponentially with time (1.7 cm year(-1) for 1993-1994, 2.7 cm year(-1) for 1994-1995, 4.2 cm year(-1) for 1995-1996, and 6.5 cm year(-1) for 1996-1997), taking over 4 years for proto-branches to achieve rates comparable to those of adult colonies on the same reef (6.9 cm year(-1)). In addition to the initial mortality and reduced growth-rates, fragmentation resulted in a loss of reproductive potential. Neither colonies that experienced severe fragmentation nor fragments contained gametes until 4 years after the initial damage. Although A. palmata may survive periodic fragmentation, the long-term effects of this process will depend ultimately on the balance between the benefits and costs of this process.

  14. Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD.

    Science.gov (United States)

    Grinenko, T V; Kapustianenko, L G; Yatsenko, T A; Yusova, O I; Rybachuk, V N

    2016-01-01

    Specific plasminogen-binding sites of fibrin molecule are located in Аα148-160 regions of C-terminal domains. Plasminogen interaction with these sites initiates the activation process of proenzyme and subsequent fibrin lysis. In this study we investigated the binding of plasminogen fragments K 1-3 and K 5 with fibrin fragment DD and their effect on Glu-plasminogen interaction with DD. It was shown that the level of Glu-plasminogen binding to fibrin fragment DD is decreased by 50-60% in the presence of K 1-3 and K 5. Fragments K 1-3 and K 5 have high affinity to fibrin fragment DD (Kd is 0.02 for K 1-3 and 0.054 μМ for K 5). K 5 interaction is independent and K 1-3 is partly dependent on C-terminal lysine residues. K 1-3 interacts with complex of fragment DD-immobilized K 5 as well as K 5 with complex of fragment DD-immobilized K 1-3. The plasminogen fragments do not displace each other from binding sites located in fibrin fragment DD, but can compete for the interaction. The results indicate that fibrin fragment DD contains different binding sites for plasminogen kringle fragments K 1-3 and K 5, which can be located close to each other. The role of amino acid residues of fibrin molecule Аα148-160 region in interaction with fragments K 1-3 and K 5 is discussed.

  15. Fractal statistics of brittle fragmentation

    Directory of Open Access Journals (Sweden)

    M. Davydova

    2013-04-01

    Full Text Available The study of fragmentation statistics of brittle materials that includes four types of experiments is presented. Data processing of the fragmentation of glass plates under quasi-static loading and the fragmentation of quartz cylindrical rods under dynamic loading shows that the size distribution of fragments (spatial quantity is fractal and can be described by a power law. The original experimental technique allows us to measure, apart from the spatial quantity, the temporal quantity - the size of time interval between the impulses of the light reflected from the newly created surfaces. The analysis of distributions of spatial (fragment size and temporal (time interval quantities provides evidence of obeying scaling laws, which suggests the possibility of self-organized criticality in fragmentation.

  16. A genomic analysis of the archael system Ignicoccus hospitalis-Nanoarchaeum equitans

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui; Anderson, Iain; Makarova, Kira S.; Elkins, James G.; Ivanova, Natalia; Wall, Mark A.; Lykidis, Athanasios; Mavromatis, Konstantinos; Podar, Mircea; Hudson, Matthew E.; Chen, Wenqiong; Deciu, Cosmin; Hutchinson, Don; Eads, Jonathan R.; Anderson, Abraham; Fernandes, Fillipe; Szeto, Ernest; Lapidus, Alla; Kyrpides, NikosC.; Saier Jr., Milton G.; Richardson, Paul M.; Rachel, Reinhard; Huber, Harald; Eisen, Jonathan A.; Koonin, Eugene V.; Keller, Martin; Stetter, Karl O.

    2008-09-01

    BACKGROUND: The relationship between the hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans is the only known example of a specific association between two species of Archaea. Little is known about the mechanisms that enable this relationship. RESULTS: We sequenced the complete genome of I. hospitalis and found it to be the smallest among independent, free-living organisms. A comparative genomic reconstruction suggests that the I. hospitalis lineage has lost most of the genes associated with a heterotrophic metabolism that is characteristic of most of the Crenarchaeota. A streamlined genome is also suggested by a low frequency of paralogs and fragmentation of many operons. However, this process appears to be partially balanced by lateral gene transfer from archaeal and bacterial sources. CONCLUSIONS: A combination of genomic and cellular features suggests highly efficient adaptation to the low energy yield of sulfur-hydrogen respiration and efficient inorganic carbon and nitrogen assimilation. Evidence of lateral gene exchange between N. equitans and I. hospitalis indicates that the relationship has impacted both genomes. This association is the simplest symbiotic system known to date and a unique model for studying mechanisms of interspecific relationships at the genomic and metabolic levels.

  17. A Blueprint for Genomic Nursing Science

    Science.gov (United States)

    Calzone, Kathleen A.; Jenkins, Jean; Bakos, Alexis D.; Cashion, Ann; Donaldson, Nancy; Feero, Greg; Feetham, Suzanne; Grady, Patricia A.; Hinshaw, Ada Sue; Knebel, Ann R.; Robinson, Nellie; Ropka, Mary E.; Seibert, Diane; Stevens, Kathleen R.; Tully, Lois A.; Webb, Jo Ann

    2012-01-01

    Purpose This article reports on recommendations arising from an invitational workshop series held at the National Institutes of Health for the purposes of identifying critical genomics problems important to the health of the public that can be addressed through nursing science. The overall purpose of the Genomic Nursing State of the Science Initiative is to establish a nursing research blueprint based on gaps in the evidence and expert evaluation of the current state of the science and through public comment. Organizing Constructs A Genomic Nursing State of the Science Advisory Panel was convened in 2012 to develop the nursing research blueprint. The Advisory Panel, which met via two webinars and two in-person meetings, considered existing evidence from evidence reviews, testimony from key stakeholder groups, presentations from experts in research synthesis, and public comment. Findings The genomic nursing science blueprint arising from the Genomic Nursing State of Science Advisory Panel focuses on biologic plausibility studies as well as interventions likely to improve a variety of outcomes (e.g., clinical, economic, environmental). It also includes all care settings and diverse populations. The focus is on (a) the client, defined as person, family, community, or population; (b) the context, targeting informatics support systems, capacity building, education, and environmental influences; and (c) cross-cutting themes. It was agreed that building capacity to measure the impact of nursing actions on costs, quality, and outcomes of patient care is a strategic and scientific priority if findings are to be synthesized and aggregated to inform practice and policy. Conclusions The genomic nursing science blueprint provides the framework for furthering genomic nursing science to improve health outcomes. This blueprint is an independent recommendation of the Advisory Panel with input from the public and is not a policy statement of the National Institutes of Health or the

  18. Efficient identification of Y chromosome sequences in the human and Drosophila genomes

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G.

    2013-01-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes. PMID:23921660

  19. Efficient identification of Y chromosome sequences in the human and Drosophila genomes.

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2013-11-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.

  20. Optimal resource allocation to survival and reproduction in parasitic wasps foraging in fragmented habitats.

    Directory of Open Access Journals (Sweden)

    Eric Wajnberg

    Full Text Available Expansion and intensification of human land use represents the major cause of habitat fragmentation. Such fragmentation can have dramatic consequences on species richness and trophic interactions within food webs. Although the associated ecological consequences have been studied by several authors, the evolutionary effects on interacting species have received little research attention. Using a genetic algorithm, we quantified how habitat fragmentation and environmental variability affect the optimal reproductive strategies of parasitic wasps foraging for hosts. As observed in real animal species, the model is based on the existence of a negative trade-off between survival and reproduction resulting from competitive allocation of resources to either somatic maintenance or egg production. We also asked to what degree plasticity along this trade-off would be optimal, when plasticity is costly. We found that habitat fragmentation can indeed have strong effects on the reproductive strategies adopted by parasitoids. With increasing habitat fragmentation animals should invest in greater longevity with lower fecundity; yet, especially in unpredictable environments, some level of phenotypic plasticity should be selected for. Other consequences in terms of learning ability of foraging animals were also observed. The evolutionary consequences of these results are discussed.

  1. Properties of promoters cloned randomly from the Saccharomyces cerevisiae genome.

    Science.gov (United States)

    Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K

    1988-01-01

    Promoters were isolated at random from the genome of Saccharomyces cerevisiae by using a plasmid that contains a divergently arrayed pair of promoterless reporter genes. A comprehensive library was constructed by inserting random (DNase I-generated) fragments into the intergenic region upstream from the reporter genes. Simple in vivo assays for either reporter gene product (alcohol dehydrogenase or beta-galactosidase) allowed the rapid identification of promoters from among these random fragments. Poly(dA-dT) homopolymer tracts were present in three of five randomly cloned promoters. With two exceptions, each RNA start site detected was 40 to 100 base pairs downstream from a TATA element. All of the randomly cloned promoters were capable of activating reporter gene transcription bidirectionally. Interestingly, one of the promoter fragments originated in a region of the S. cerevisiae rDNA spacer; regulated divergent transcription (presumably by RNA polymerase II) initiated in the same region. Images PMID:2847031

  2. Transcriptomic resources for environmental risk assessment: a case study in the Venice lagoon

    International Nuclear Information System (INIS)

    Milan, M.; Pauletto, M.; Boffo, L.; Carrer, C.; Sorrentino, F.; Ferrari, G.; Pavan, L.; Patarnello, T.; Bargelloni, L.

    2015-01-01

    The development of new resources to evaluate the environmental status is becoming increasingly important representing a key challenge for ocean and coastal management. Recently, the employment of transcriptomics in aquatic toxicology has led to increasing initiatives proposing to integrate eco-toxicogenomics in the evaluation of marine ecosystem health. However, several technical issues need to be addressed before introducing genomics as a reliable tool in regulatory ecotoxicology. The Venice lagoon constitutes an excellent case, in which the assessment of environmental risks derived from the nearby industrial activities represents a crucial task. In this context, the potential role of genomics to assist environmental monitoring was investigated through the definition of reliable gene expression markers associated to chemical contamination in Manila clams, and their subsequent employment for the classification of Venice lagoon areas. Overall, the present study addresses key issues to evaluate the future outlooks of genomics in the environmental monitoring and risk assessment. - Highlights: • Growing need to develop new resources for the evaluation of the environmental status. • Identification of gene expression markers associated to chemical contamination. • Employment of genomics to evaluate the environmental status of Venice lagoon areas. • Hurdles and future outlooks of genomic tools in environmental risk assessment. - Genomics in risk assessment of Venice lagoon

  3. Biodiversity in environmental assessment-current practice and tools for prediction

    International Nuclear Information System (INIS)

    Gontier, Mikael; Balfors, Berit; Moertberg, Ulla

    2006-01-01

    Habitat loss and fragmentation are major threats to biodiversity. Environmental impact assessment and strategic environmental assessment are essential instruments used in physical planning to address such problems. Yet there are no well-developed methods for quantifying and predicting impacts of fragmentation on biodiversity. In this study, a literature review was conducted on GIS-based ecological models that have potential as prediction tools for biodiversity assessment. Further, a review of environmental impact statements for road and railway projects from four European countries was performed, to study how impact prediction concerning biodiversity issues was addressed. The results of the study showed the existing gap between research in GIS-based ecological modelling and current practice in biodiversity assessment within environmental assessment

  4. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Heilbronn, T.; Jahn, G.; Buerkle, A.; Freese, U.K.; Fleckenstein, B.; Zur Hausen, H.

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein

  5. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Directory of Open Access Journals (Sweden)

    Can Alkan

    2007-09-01

    Full Text Available The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  6. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Science.gov (United States)

    Alkan, Can; Ventura, Mario; Archidiacono, Nicoletta; Rocchi, Mariano; Sahinalp, S Cenk; Eichler, Evan E

    2007-09-01

    The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  7. Bird communities in two fragments of semideciduos forest in rural São Paulo state

    Directory of Open Access Journals (Sweden)

    D. D. Pozza

    Full Text Available A quali-quantitative survey was done in two fragments (75 and 100 ha of semideciduous forest in rural São Paulo State. The aim was to characterize the bird community according to richness, abundance, and occurrence frequency in these areas. The qualitative survey showed 145 species in the Estação Ecológica de São Carlos - EESCar (Brotas - and 173 in the Fazenda Santa Cecília - FSC (Patrocínio Paulista, while the quantitative survey showed the presence of 60 and 72 species in EESCar and FSC respectively. The isolation and the lower environmental quality of the EESCar fragment may be responsible for the lower number of species in this area compared to that of FSC. Abundance index value analysis (IPA showed that both areas have a large number of species with low IPA and few species with intermediate or high IPA compared to the pattern observed in other surveys. At FSC, a larger number of occurrences of species in danger of extinction in São Paulo State was also observed. Apparently, the FSC fragment had better environmental quality for sheltering a larger number of species, including the endangered ones. The study of the community of birds is important in planning management and conservation of natural areas.

  8. Bird communities in two fragments of semideciduos forest in rural São Paulo state

    Directory of Open Access Journals (Sweden)

    Pozza D. D.

    2003-01-01

    Full Text Available A quali-quantitative survey was done in two fragments (75 and 100 ha of semideciduous forest in rural São Paulo State. The aim was to characterize the bird community according to richness, abundance, and occurrence frequency in these areas. The qualitative survey showed 145 species in the Estação Ecológica de São Carlos - EESCar (Brotas - and 173 in the Fazenda Santa Cecília - FSC (Patrocínio Paulista, while the quantitative survey showed the presence of 60 and 72 species in EESCar and FSC respectively. The isolation and the lower environmental quality of the EESCar fragment may be responsible for the lower number of species in this area compared to that of FSC. Abundance index value analysis (IPA showed that both areas have a large number of species with low IPA and few species with intermediate or high IPA compared to the pattern observed in other surveys. At FSC, a larger number of occurrences of species in danger of extinction in São Paulo State was also observed. Apparently, the FSC fragment had better environmental quality for sheltering a larger number of species, including the endangered ones. The study of the community of birds is important in planning management and conservation of natural areas.

  9. Chameleon fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Upadhye, Amol, E-mail: philippe.brax@cea.fr, E-mail: aupadhye@anl.gov [Institute for the Early Universe, Ewha University, International Education, Building #601, 11-1, Daehyun-Dong Seodaemun-Gu, Seoul 120-750 (Korea, Republic of)

    2014-02-01

    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ{sup 4} and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.

  10. Chameleon fragmentation

    International Nuclear Information System (INIS)

    Brax, Philippe; Upadhye, Amol

    2014-01-01

    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ 4 and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments

  11. Genomic Inbreeding and Relatedness in Wild Panda Populations.

    Science.gov (United States)

    Garbe, John R; Prakapenka, Dzianis; Tan, Cheng; Da, Yang

    2016-01-01

    Inbreeding and relatedness in wild panda populations are important parameters for panda conservation. Habitat loss and fragmentation are expected to increase inbreeding but the actual inbreeding levels in natural panda habitats were unknown. Using 150,025 SNPs and 14,926 SNPs selected from published whole-genome sequences, we estimated genomic inbreeding coefficients and relatedness of 49 pandas including 34 wild pandas sampled from six habitats. Qinling and Liangshan pandas had the highest levels of inbreeding and relatedness measured by genomic inbreeding and coancestry coefficients, whereas the inbreeding levels in Qionglai and Minshan were 28-45% of those in Qinling and Liangshan. Genomic coancestry coefficients between pandas from different habitats showed that panda populations from the four largest habitats, Minshan, Qionglai, Qinling and Liangshan, were genetically unrelated. Pandas between these four habitats on average shared 66.0-69.1% common alleles and 45.6-48.6% common genotypes, whereas pandas within each habitat shared 71.8-77.0% common alleles and 51.7-60.4% common genotypes. Pandas in the smaller populations of Qinling and Liangshan were more similarly to each other than pandas in the larger populations of Qionglai and Minshan according to three genomic similarity measures. Panda genetic differentiation between these habitats was positively related to their geographical distances. Most pandas separated by 200 kilometers or more shared no common ancestral alleles. The results provided a genomic quantification of the actual levels of inbreeding and relatedness among pandas in their natural habitats, provided genomic confirmation of the relationship between genetic diversity and geographical distances, and provided genomic evidence to the urgency of habitat protection.

  12. Genomic Inbreeding and Relatedness in Wild Panda Populations

    Science.gov (United States)

    Da, Yang

    2016-01-01

    Inbreeding and relatedness in wild panda populations are important parameters for panda conservation. Habitat loss and fragmentation are expected to increase inbreeding but the actual inbreeding levels in natural panda habitats were unknown. Using 150,025 SNPs and 14,926 SNPs selected from published whole-genome sequences, we estimated genomic inbreeding coefficients and relatedness of 49 pandas including 34 wild pandas sampled from six habitats. Qinling and Liangshan pandas had the highest levels of inbreeding and relatedness measured by genomic inbreeding and coancestry coefficients, whereas the inbreeding levels in Qionglai and Minshan were 28–45% of those in Qinling and Liangshan. Genomic coancestry coefficients between pandas from different habitats showed that panda populations from the four largest habitats, Minshan, Qionglai, Qinling and Liangshan, were genetically unrelated. Pandas between these four habitats on average shared 66.0–69.1% common alleles and 45.6–48.6% common genotypes, whereas pandas within each habitat shared 71.8–77.0% common alleles and 51.7–60.4% common genotypes. Pandas in the smaller populations of Qinling and Liangshan were more similarly to each other than pandas in the larger populations of Qionglai and Minshan according to three genomic similarity measures. Panda genetic differentiation between these habitats was positively related to their geographical distances. Most pandas separated by 200 kilometers or more shared no common ancestral alleles. The results provided a genomic quantification of the actual levels of inbreeding and relatedness among pandas in their natural habitats, provided genomic confirmation of the relationship between genetic diversity and geographical distances, and provided genomic evidence to the urgency of habitat protection. PMID:27494031

  13. Identification of a High Affinity Nucleocapsid Protein Binding Element from The Bovine Leukemia Virus Genome

    Science.gov (United States)

    Yildiz, F. Zehra; Babalola, Kathleen; Summers, Michael F.

    2012-01-01

    Retroviral genome recognition is mediated by interactions between the nucleocapsid (NC) domain of the virally encoded Gag polyprotein and cognate RNA packaging elements that, for most retroviruses, appear to reside primarily within the 5′-untranslated region (5′-UTR) of the genome. Recent studies suggest that a major packaging determinant of Bovine Leukemia Virus (BLV), a member of the human T-cell leukemia virus (HTLV)/BLV family and a non-primate animal model for HTLV-induced leukemogenesis, resides within the gag open reading frame. We have prepared and purified the recombinant BLV NC protein and conducted electrophoretic mobility shift and isothermal titration calorimetry studies with RNA fragments corresponding to these proposed packaging elements. The gag-derived RNAs did not exhibit significant affinity for NC, suggesting an alternate role in packaging. However, an 83-nucleotide fragment of the 5′-UTR that resides just upstream of the gag start codon binds NC stoichiometrically and with high affinity (Kd = 136 ± 21 nM). These nucleotides were predicted to form tandem hairpin structures, and studies with smaller fragments indicate that the NC binding site resides exclusively within the distal hairpin (residues G369- U399, Kd = 67 ± 8 nM at physiological ionic strength). Unlike all other structurally characterized retroviral NC binding RNAs, this fragment is not expected to contain exposed guanosines, suggesting that RNA binding may be mediated by a previously uncharacterized mechanism. PMID:22846919

  14. PCR-SSCP analysis and its application to human genome study

    International Nuclear Information System (INIS)

    Hayashi, Kenshi

    1994-01-01

    A large amount of DNA sequence data are now available owing to the development of the human genome project. These data are deposited in public databases, e.g. DDBJ, GebBank and EMBL, and freely accessible to scientific community. One of the major advantages of having these databases is that we can now detect sequence differences between individuals in a large scale. Using the sequence informations, we can design primer sequences, amplify various target regions of the sample DNA's by PCR and detect abnormal sequence changes from reference, or normal sequences. Detecting sequence changes, or mutations, are essential part of searching genes responsible for hereditary diseases and also DNA diagnosis of hereditary diseases or cancer. We can also measure mutation frequency of the human genome by knowing its variability. Our group has developed and been improving a method, PCR-SSCP analysis, as an extremely rapid and easy technique for detection of sequence differences between sample DNA's. Knowing the sensitivity (percentage detection of mutations) of this technique is important in evaluating usefulness of it for the purposes stated above. Considerable number of experiences on PCR-SSCP analysis of fragments shorter than 300 b.p. are accumulating. We summarize here the sensitivity of PCR-SSCP analysis for various sequence context of this size range examined in various electrophoretic conditions conducted in many laboratories. Data on mutation detection by this technique for longer fragments are limited. We also present oue effort for defining electrophoretic conditions of PCR-SSCP analysis when examining longer (350 to 600 b.p.) fragments. (author)

  15. Fragment library design: using cheminformatics and expert chemists to fill gaps in existing fragment libraries.

    Science.gov (United States)

    Kutchukian, Peter S; So, Sung-Sau; Fischer, Christian; Waller, Chris L

    2015-01-01

    Fragment based screening (FBS) has emerged as a mainstream lead discovery strategy in academia, biotechnology start-ups, and large pharma. As a prerequisite of FBS, a structurally diverse library of fragments is desirable in order to identify chemical matter that will interact with the range of diverse target classes that are prosecuted in contemporary screening campaigns. In addition, it is also desirable to offer synthetically amenable starting points to increase the probability of a successful fragment evolution through medicinal chemistry. Herein we describe a method to identify biologically relevant chemical substructures that are missing from an existing fragment library (chemical gaps), and organize these chemical gaps hierarchically so that medicinal chemists can efficiently navigate the prioritized chemical space and subsequently select purchasable fragments for inclusion in an enhanced fragment library.

  16. Comparing forest fragmentation and its drivers in China and the USA with Globcover v2.2

    Science.gov (United States)

    Chen, Mingshi; Mao, Lijun; Zhou, Chunguo; Vogelmann, James E.; Zhu, Zhiliang

    2010-01-01

    Forest loss and fragmentation are of major concern to the international community, in large part because they impact so many important environmental processes. The main objective of this study was to assess the differences in forest fragmentation patterns and drivers between China and the conterminous United States (USA). Using the latest 300-m resolution global land cover product, Globcover v2.2, a comparative analysis of forest fragmentation patterns and drivers was made. The fragmentation patterns were characterized by using a forest fragmentation model built on the sliding window analysis technique in association with landscape indices. Results showed that China’s forests were substantially more fragmented than those of the USA. This was evidenced by a large difference in the amount of interior forest area share, with China having 48% interior forest versus the 66% for the USA. China’s forest fragmentation was primarily attributed to anthropogenic disturbances, driven particularly by agricultural expansion from an increasing and large population, as well as poor forest management practices. In contrast, USA forests were principally fragmented by natural land cover types. However, USA urban sprawl contributed more to forest fragmentation than in China. This is closely tied to the USA’s economy, lifestyle and institutional processes. Fragmentation maps were generated from this study, which provide valuable insights and implications regarding habitat planning for rare and endangered species. Such maps enable development of strategic plans for sustainable forest management by identifying areas with high amounts of human-induced fragmentation, which improve risk assessments and enable better targeting for protection and remediation efforts. Because forest fragmentation is a long-term, complex process that is highly related to political, institutional, economic and philosophical arenas, both nations need to take effective and comprehensive measures to mitigate

  17. Large inserts for big data: artificial chromosomes in the genomic era.

    Science.gov (United States)

    Tocchetti, Arianna; Donadio, Stefano; Sosio, Margherita

    2018-05-01

    The exponential increase in available microbial genome sequences coupled with predictive bioinformatic tools is underscoring the genetic capacity of bacteria to produce an unexpected large number of specialized bioactive compounds. Since most of the biosynthetic gene clusters (BGCs) present in microbial genomes are cryptic, i.e. not expressed under laboratory conditions, a variety of cloning systems and vectors have been devised to harbor DNA fragments large enough to carry entire BGCs and to allow their transfer in suitable heterologous hosts. This minireview provides an overview of the vectors and approaches that have been developed for cloning large BGCs, and successful examples of heterologous expression.

  18. Intrapopulation genome size variation in D. melanogaster reflects life history variation and plasticity.

    Directory of Open Access Journals (Sweden)

    Lisa L Ellis

    2014-07-01

    Full Text Available We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions.

  19. Intrapopulation Genome Size Variation in D. melanogaster Reflects Life History Variation and Plasticity

    Science.gov (United States)

    Ellis, Lisa L.; Huang, Wen; Quinn, Andrew M.; Ahuja, Astha; Alfrejd, Ben; Gomez, Francisco E.; Hjelmen, Carl E.; Moore, Kristi L.; Mackay, Trudy F. C.; Johnston, J. Spencer; Tarone, Aaron M.

    2014-01-01

    We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions. PMID:25057905

  20. Multiple displacement amplification of whole genomic DNA from urediospores of Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Zhang, R; Ma, Z H; Wu, B M

    2015-05-01

    Biotrophic fungi, such as Puccinia striiformis f. sp. tritici, because they cannot be cultured on nutrient media, to obtain adequate quantity of DNA for molecular genetic analysis, are usually propagated on living hosts, wheat plants in case of P. striiformis f. sp. tritici. The propagation process is time-, space- and labor-consuming and has been a bottleneck to molecular genetic analysis of this pathogen. In this study we evaluated multiple displacement amplification (MDA) of pathogen genomic DNA from urediospores as an alternative approach to traditional propagation of urediospores followed by DNA extraction. The quantities of pathogen genomic DNA in the products were further determined via real-time PCR with a pair of primers specific for the β-tubulin gene of P. striiformis f. sp. tritici. The amplified fragment length polymorphism (AFLP) fingerprints were also compared between the DNA products. The results demonstrated that adequate genomic DNA at fragment size larger than 23 Kb could be amplified from 20 to 30 urediospores via MDA method. The real-time PCR results suggested that although fresh urediospores collected from diseased leaves were the best, spores picked from diseased leaves stored for a prolonged period could also be used for amplification. AFLP fingerprints exhibited no significant differences between amplified DNA and DNA extracted with CTAB method, suggesting amplified DNA can represent the pathogen's genomic DNA very well. Therefore, MDA could be used to obtain genomic DNA from small precious samples (dozens of spores) for molecular genetic analysis of wheat stripe rust pathogen, and other fungi that are difficult to propagate.

  1. Transformation of natural genetic variation into Haemophilus influenzae genomes.

    Directory of Open Access Journals (Sweden)

    Joshua Chang Mell

    2011-07-01

    Full Text Available Many bacteria are able to efficiently bind and take up double-stranded DNA fragments, and the resulting natural transformation shapes bacterial genomes, transmits antibiotic resistance, and allows escape from immune surveillance. The genomes of many competent pathogens show evidence of extensive historical recombination between lineages, but the actual recombination events have not been well characterized. We used DNA from a clinical isolate of Haemophilus influenzae to transform competent cells of a laboratory strain. To identify which of the ~40,000 polymorphic differences had recombined into the genomes of four transformed clones, their genomes and their donor and recipient parents were deep sequenced to high coverage. Each clone was found to contain ~1000 donor polymorphisms in 3-6 contiguous runs (8.1±4.5 kb in length that collectively comprised ~1-3% of each transformed chromosome. Seven donor-specific insertions and deletions were also acquired as parts of larger donor segments, but the presence of other structural variation flanking 12 of 32 recombination breakpoints suggested that these often disrupt the progress of recombination events. This is the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, connecting experimental studies of transformation with the high levels of natural genetic variation found in isolates of the same species.

  2. Universality of projectile fragmentation model

    International Nuclear Information System (INIS)

    Chaudhuri, G.; Mallik, S.; Das Gupta, S.

    2012-01-01

    Presently projectile fragmentation reaction is an important area of research as it is used for the production of radioactive ion beams. In this work, the recently developed projectile fragmentation model with an universal temperature profile is used for studying the charge distributions of different projectile fragmentation reactions with different projectile target combinations at different incident energies. The model for projectile fragmentation consists of three stages: (i) abrasion, (ii) multifragmentation and (iii) evaporation

  3. Genome sequencing and annotation of Stenotrophomonas sp. SAM8

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Stenotrophomonas sp. strain SAM8, isolated from environmental water. The draft genome size is 3,665,538 bp with a G + C content of 67.2% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDAV00000000.

  4. New perspectives on microbial community distortion after whole-genome amplification

    Science.gov (United States)

    Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the e...

  5. Genomic Diversity of Lactobacillus salivarius▿ †

    OpenAIRE

    Raftis, Emma J.; Salvetti, Elisa; Torriani, Sandra; Felis, Giovanna E.; O'Toole, Paul W.

    2010-01-01

    Strains of Lactobacillus salivarius are increasingly employed as probiotic agents for humans or animals. Despite the diversity of environmental sources from which they have been isolated, the genomic diversity of L. salivarius has been poorly characterized, and the implications of this diversity for strain selection have not been examined. To tackle this, we applied comparative genomic hybridization (CGH) and multilocus sequence typing (MLST) to 33 strains derived from humans, animals, or foo...

  6. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.

    Science.gov (United States)

    Wang, Xiaobo; Wu, Jian; Liang, Jianli; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The Brassica database (BRAD) was built initially to assist users apply Brassica rapa and Arabidopsis thaliana genomic data efficiently to their research. However, many Brassicaceae genomes have been sequenced and released after its construction. These genomes are rich resources for comparative genomics, gene annotation and functional evolutionary studies of Brassica crops. Therefore, we have updated BRAD to version 2.0 (V2.0). In BRAD V2.0, 11 more Brassicaceae genomes have been integrated into the database, namely those of Arabidopsis lyrata, Aethionema arabicum, Brassica oleracea, Brassica napus, Camelina sativa, Capsella rubella, Leavenworthia alabamica, Sisymbrium irio and three extremophiles Schrenkiella parvula, Thellungiella halophila and Thellungiella salsuginea. BRAD V2.0 provides plots of syntenic genomic fragments between pairs of Brassicaceae species, from the level of chromosomes to genomic blocks. The Generic Synteny Browser (GBrowse_syn), a module of the Genome Browser (GBrowse), is used to show syntenic relationships between multiple genomes. Search functions for retrieving syntenic and non-syntenic orthologs, as well as their annotation and sequences are also provided. Furthermore, genome and annotation information have been imported into GBrowse so that all functional elements can be visualized in one frame. We plan to continually update BRAD by integrating more Brassicaceae genomes into the database. Database URL: http://brassicadb.org/brad/. © The Author(s) 2015. Published by Oxford University Press.

  7. A Near-Complete Haplotype-Phased Genome of the Dikaryotic Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici Reveals High Interhaplotype Diversity

    Directory of Open Access Journals (Sweden)

    Benjamin Schwessinger

    2018-02-01

    Full Text Available A long-standing biological question is how evolution has shaped the genomic architecture of dikaryotic fungi. To answer this, high-quality genomic resources that enable haplotype comparisons are essential. Short-read genome assemblies for dikaryotic fungi are highly fragmented and lack haplotype-specific information due to the high heterozygosity and repeat content of these genomes. Here, we present a diploid-aware assembly of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici based on long reads using the FALCON-Unzip assembler. Transcriptome sequencing data sets were used to infer high-quality gene models and identify virulence genes involved in plant infection referred to as effectors. This represents the most complete Puccinia striiformis f. sp. tritici genome assembly to date (83 Mb, 156 contigs, N50 of 1.5 Mb and provides phased haplotype information for over 92% of the genome. Comparisons of the phase blocks revealed high interhaplotype diversity of over 6%. More than 25% of all genes lack a clear allelic counterpart. When we investigated genome features that potentially promote the rapid evolution of virulence, we found that candidate effector genes are spatially associated with conserved genes commonly found in basidiomycetes. Yet, candidate effectors that lack an allelic counterpart are more distant from conserved genes than allelic candidate effectors and are less likely to be evolutionarily conserved within the P. striiformis species complex and Pucciniales. In summary, this haplotype-phased assembly enabled us to discover novel genome features of a dikaryotic plant-pathogenic fungus previously hidden in collapsed and fragmented genome assemblies.

  8. Effective Fragment Potential Method for H-Bonding: How To Obtain Parameters for Nonrigid Fragments.

    Science.gov (United States)

    Dubinets, Nikita; Slipchenko, Lyudmila V

    2017-07-20

    Accuracy of the effective fragment potential (EFP) method was explored for describing intermolecular interaction energies in three dimers with strong H-bonded interactions, formic acid, formamide, and formamidine dimers, which are a part of HBC6 database of noncovalent interactions. Monomer geometries in these dimers change significantly as a function of intermonomer separation. Several EFP schemes were considered, in which fragment parameters were prepared for a fragment in its gas-phase geometry or recomputed for each unique fragment geometry. Additionally, a scheme in which gas-phase fragment parameters are shifted according to relaxed fragment geometries is introduced and tested. EFP data are compared against the coupled cluster with single, double, and perturbative triple excitations (CCSD(T)) method in a complete basis set (CBS) and the symmetry adapted perturbation theory (SAPT). All considered EFP schemes provide a good agreement with CCSD(T)/CBS for binding energies at equilibrium separations, with discrepancies not exceeding 2 kcal/mol. However, only the schemes that utilize relaxed fragment geometries remain qualitatively correct at shorter than equilibrium intermolecular distances. The EFP scheme with shifted parameters behaves quantitatively similar to the scheme in which parameters are recomputed for each monomer geometry and thus is recommended as a computationally efficient approach for large-scale EFP simulations of flexible systems.

  9. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  10. Canine adenovirus type 2 vector generation via I-Sce1-mediated intracellular genome release.

    Directory of Open Access Journals (Sweden)

    Sandy Ibanes

    Full Text Available When canine adenovirus type 2 (CAdV-2, or also commonly referred to as CAV-2 vectors are injected into the brain parenchyma they preferentially transduce neurons, are capable of efficient axonal transport to afferent regions, and allow transgene expression for at last >1 yr. Yet, translating these data into a user-friendly vector platform has been limited because CAV-2 vector generation is challenging. Generation of E1-deleted adenovirus vectors often requires transfection of linear DNA fragments of >30 kb containing the vector genome into an E1-transcomplementing cell line. In contrast to human adenovirus type 5 vector generation, CAV-2 vector generation is less efficient due, in part, to a reduced ability to initiate replication and poor transfectibility of canine cells with large, linear DNA fragments. To improve CAV-2 vector generation, we generated an E1-transcomplementing cell line expressing the estrogen receptor (ER fused to I-SceI, a yeast meganuclease, and plasmids containing the I-SceI recognition sites flanking the CAV-2 vector genome. Using transfection of supercoiled plasmid and intracellular genome release via 4-OH-tamoxifen-induced nuclear translocation of I-SceI, we improved CAV-2 vector titers 1,000 fold, and in turn increased the efficacy of CAV-2 vector generation.

  11. Canine Adenovirus Type 2 Vector Generation via I-Sce1-Mediated Intracellular Genome Release

    Science.gov (United States)

    Ibanes, Sandy; Kremer, Eric J.

    2013-01-01

    When canine adenovirus type 2 (CAdV-2, or also commonly referred to as CAV-2) vectors are injected into the brain parenchyma they preferentially transduce neurons, are capable of efficient axonal transport to afferent regions, and allow transgene expression for at last >1 yr. Yet, translating these data into a user-friendly vector platform has been limited because CAV-2 vector generation is challenging. Generation of E1-deleted adenovirus vectors often requires transfection of linear DNA fragments of >30 kb containing the vector genome into an E1-transcomplementing cell line. In contrast to human adenovirus type 5 vector generation, CAV-2 vector generation is less efficient due, in part, to a reduced ability to initiate replication and poor transfectibility of canine cells with large, linear DNA fragments. To improve CAV-2 vector generation, we generated an E1-transcomplementing cell line expressing the estrogen receptor (ER) fused to I-SceI, a yeast meganuclease, and plasmids containing the I-SceI recognition sites flanking the CAV-2 vector genome. Using transfection of supercoiled plasmid and intracellular genome release via 4-OH-tamoxifen-induced nuclear translocation of I-SceI, we improved CAV-2 vector titers 1,000 fold, and in turn increased the efficacy of CAV-2 vector generation. PMID:23936483

  12. A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.

  13. Undermethylated DNA as a source of microsatellites from a conifer genome.

    Science.gov (United States)

    Zhou, Y; Bui, T; Auckland, L D; Williams, C G

    2002-02-01

    Developing microsatellites from the large, highly duplicated conifer genome requires special tools. To improve the efficiency of developing Pinus taeda L. microsatellites, undermethylated (UM) DNA fragments were used to construct a microsatellite-enriched copy library. A methylation-sensitive restriction enzyme, McrBC, was used to enrich for UM DNA before library construction. Digested DNA fragments larger than 9 kb were then excised and digested with RsaI and used to construct nine dinucleotide and trinucleotide libraries. A total of 1016 microsatellite-positive clones were detected among 11 904 clones and 620 of these were unique. Of 245 primer sets that produced a PCR product, 113 could be developed as UM microsatellite markers and 70 were polymorphic. Inheritance and marker informativeness were tested for a random sample of 36 polymorphic markers using a three-generation outbred pedigree. Thirty-one microsatellites (86%) had single-locus inheritance despite the highly duplicated nature of the P. taeda genome. Nineteen UM microsatellites had highly informative intercross mating type configurations. Allele number and frequency were estimated for eleven UM microsatellites using a population survey. Allele numbers for these UM microsatellites ranged from 3 to 12 with an average of 5.7 alleles/locus. Frequencies for the 63 alleles were mostly in the low-common range; only 14 of the 63 were in the rare allele (q < 0.05) class. Enriching for UM DNA was an efficient method for developing polymorphic microsatellites from a large plant genome.

  14. Robust Object Tracking Using Valid Fragments Selection.

    Science.gov (United States)

    Zheng, Jin; Li, Bo; Tian, Peng; Luo, Gang

    Local features are widely used in visual tracking to improve robustness in cases of partial occlusion, deformation and rotation. This paper proposes a local fragment-based object tracking algorithm. Unlike many existing fragment-based algorithms that allocate the weights to each fragment, this method firstly defines discrimination and uniqueness for local fragment, and builds an automatic pre-selection of useful fragments for tracking. Then, a Harris-SIFT filter is used to choose the current valid fragments, excluding occluded or highly deformed fragments. Based on those valid fragments, fragment-based color histogram provides a structured and effective description for the object. Finally, the object is tracked using a valid fragment template combining the displacement constraint and similarity of each valid fragment. The object template is updated by fusing feature similarity and valid fragments, which is scale-adaptive and robust to partial occlusion. The experimental results show that the proposed algorithm is accurate and robust in challenging scenarios.

  15. Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich.

    Science.gov (United States)

    Luan, Ming-Bao; Jian, Jian-Bo; Chen, Ping; Chen, Jun-Hui; Chen, Jian-Hua; Gao, Qiang; Gao, Gang; Zhou, Ju-Hong; Chen, Kun-Mei; Guang, Xuan-Min; Chen, Ji-Kang; Zhang, Qian-Qian; Wang, Xiao-Fei; Fang, Long; Sun, Zhi-Min; Bai, Ming-Zhou; Fang, Xiao-Dong; Zhao, Shan-Cen; Xiong, He-Ping; Yu, Chun-Ming; Zhu, Ai-Guo

    2018-05-01

    Ramie, Boehmeria nivea (L.) Gaudich, family Urticaceae, is a plant native to eastern Asia, and one of the world's oldest fibre crops. It is also used as animal feed and for the phytoremediation of heavy metal-contaminated farmlands. Thus, the genome sequence of ramie was determined to explore the molecular basis of its fibre quality, protein content and phytoremediation. For further understanding ramie genome, different paired-end and mate-pair libraries were combined to generate 134.31 Gb of raw DNA sequences using the Illumina whole-genome shotgun sequencing approach. The highly heterozygous B. nivea genome was assembled using the Platanus Genome Assembler, which is an effective tool for the assembly of highly heterozygous genome sequences. The final length of the draft genome of this species was approximately 341.9 Mb (contig N50 = 22.62 kb, scaffold N50 = 1,126.36 kb). Based on ramie genome annotations, 30,237 protein-coding genes were predicted, and the repetitive element content was 46.3%. The completeness of the final assembly was evaluated by benchmarking universal single-copy orthologous genes (BUSCO); 90.5% of the 1,440 expected embryophytic genes were identified as complete, and 4.9% were identified as fragmented. Phylogenetic analysis based on single-copy gene families and one-to-one orthologous genes placed ramie with mulberry and cannabis, within the clade of urticalean rosids. Genome information of ramie will be a valuable resource for the conservation of endangered Boehmeria species and for future studies on the biogeography and characteristic evolution of members of Urticaceae. © 2018 John Wiley & Sons Ltd.

  16. Restriction Fragment Pattern (RFP) analysis of genomes from Danish isolates of Suid herpesvirus 1 (Aujeszky's disease virus)

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Sørensen, K. J.; Lei, J. C.

    1987-01-01

    Purified DNA from 42 isolates of Suid herpesvirus 1 (SHV-1) collected during 1985 from clinical outbreaks of Aujezsky's disease on Danish farms was compared by restriction fragment pattern (RFP) analysis. The BamHI generated RFPs were found to be distinguishable, thus confirming RFP analysis...

  17. Self-organized criticality in fragmenting

    DEFF Research Database (Denmark)

    Oddershede, L.; Dimon, P.; Bohr, J.

    1993-01-01

    The measured mass distributions of fragments from 26 fractured objects of gypsum, soap, stearic paraffin, and potato show evidence of obeying scaling laws; this suggests the possibility of self-organized criticality in fragmenting. The probability of finding a fragment scales inversely to a power...

  18. ABC 27-2 General bat activity measured with an ultrasound detector in a fragmented tropical landscape in Los Tuxtlas, Mexico

    Directory of Open Access Journals (Sweden)

    Estrada, A.

    2004-12-01

    Full Text Available Bat tolerance to neotropical forest fragmentation may be related to ability by bats to use available habitats in the modified environmental matrix. This paper presents data on general bat activity (for three hours starting at dusk measured with an ultrasound detector in a fragmented landscape in the region of Los Tuxtlas, Mexico. Bat activity was measured in continuous forests, forests fragments, forest-pasture edges, forest corridors, linear strips of vegetation, citrus groves, pastures and the vegetation present in local villages. The highest bat activity rates were recorded in the villages, in the forest fragments and in linear strips of vegetation. The lowest activity rates were detected in pasture habitats. Data suggest that native and man-made arboreal vegetation may be important for sustaining bat activity in fragmented landscapes.

  19. Structural diversity and dynamics of genomic replication origins in Schizosaccharomyces pombe

    Science.gov (United States)

    Cotobal, Cristina; Segurado, Mónica; Antequera, Francisco

    2010-01-01

    DNA replication origins (ORI) in Schizosaccharomyces pombe colocalize with adenine and thymine (A+T)-rich regions, and earlier analyses have established a size from 0.5 to over 3 kb for a DNA fragment to drive replication in plasmid assays. We have asked what are the requirements for ORI function in the chromosomal context. By designing artificial ORIs, we have found that A+T-rich fragments as short as 100 bp without homology to S. pombe DNA are able to initiate replication in the genome. On the other hand, functional dissection of endogenous ORIs has revealed that some of them span a few kilobases and include several modules that may be as short as 25–30 contiguous A+Ts capable of initiating replication from ectopic chromosome positions. The search for elements with these characteristics across the genome has uncovered an earlier unnoticed class of low-efficiency ORIs that fire late during S phase. These results indicate that ORI specification and dynamics varies widely in S. pombe, ranging from very short elements to large regions reminiscent of replication initiation zones in mammals. PMID:20094030

  20. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  1. Museum genomics: low-cost and high-accuracy genetic data from historical specimens.

    Science.gov (United States)

    Rowe, Kevin C; Singhal, Sonal; Macmanes, Matthew D; Ayroles, Julien F; Morelli, Toni Lyn; Rubidge, Emily M; Bi, Ke; Moritz, Craig C

    2011-11-01

    Natural history collections are unparalleled repositories of geographical and temporal variation in faunal conditions. Molecular studies offer an opportunity to uncover much of this variation; however, genetic studies of historical museum specimens typically rely on extracting highly degraded and chemically modified DNA samples from skins, skulls or other dried samples. Despite this limitation, obtaining short fragments of DNA sequences using traditional PCR amplification of DNA has been the primary method for genetic study of historical specimens. Few laboratories have succeeded in obtaining genome-scale sequences from historical specimens and then only with considerable effort and cost. Here, we describe a low-cost approach using high-throughput next-generation sequencing to obtain reliable genome-scale sequence data from a traditionally preserved mammal skin and skull using a simple extraction protocol. We show that single-nucleotide polymorphisms (SNPs) from the genome sequences obtained independently from the skin and from the skull are highly repeatable compared to a reference genome. © 2011 Blackwell Publishing Ltd.

  2. Insights from the Genome Sequence of Acidovorax citrulli M6, a Group I Strain of the Causal Agent of Bacterial Fruit Blotch of Cucurbits.

    Science.gov (United States)

    Eckshtain-Levi, Noam; Shkedy, Dafna; Gershovits, Michael; Da Silva, Gustavo M; Tamir-Ariel, Dafna; Walcott, Ron; Pupko, Tal; Burdman, Saul

    2016-01-01

    Acidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major groups based on DNA fingerprint analyses and biochemical properties. Group I strains have been generally isolated from non-watermelon cucurbits, while group II strains are closely associated with watermelon. In the present study, we report the genome sequence of M6, a group I model A. citrulli strain, isolated from melon. We used comparative genome analysis to investigate differences between the genome of strain M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of A. citrulli M6 harbors 139 contigs, with an overall approximate size of 4.85 Mb. The genome of M6 is ∼500 Kb shorter than that of strain AAC00-1. Comparative analysis revealed that this size difference is mainly explained by eight fragments, ranging from ∼35-120 Kb and distributed throughout the AAC00-1 genome, which are absent in the M6 genome. In agreement with this finding, while AAC00-1 was found to possess 532 open reading frames (ORFs) that are absent in strain M6, only 123 ORFs in M6 were absent in AAC00-1. Most of these M6 ORFs are hypothetical proteins and most of them were also detected in two group I strains that were recently sequenced, tw6 and pslb65. Further analyses by PCR assays and coverage analyses with other A. citrulli strains support the notion that some of these fragments or significant portions of them are discriminative between groups I and II strains of A. citrulli. Moreover, GC content, effective number of codon values and cluster of orthologs' analyses indicate that these fragments were introduced into group II strains by horizontal gene transfer events. Our study reports the genome sequence of a model group I strain of A. citrulli, one of the most important pathogens of cucurbits. It also provides the first comprehensive comparison at the genomic level between the

  3. Fragmentation of relativistic nuclei

    International Nuclear Information System (INIS)

    Cork, B.

    1975-06-01

    Nuclei with energies of several GeV/n interact with hadrons and produce fragments that encompass the fields of nuclear physics, meson physics, and particle physics. Experimental results are now available to explore problems in nuclear physics such as the validity of the shell model to explain the momentum distribution of fragments, the contribution of giant dipole resonances to fragment production cross sections, the effective Coulomb barrier, and nuclear temperatures. A new approach to meson physics is possible by exploring the nucleon charge-exchange process. Particle physics problems are explored by measuring the energy and target dependence of isotope production cross sections, thus determining if limiting fragmentation and target factorization are valid, and measuring total cross sections to determine if the factorization relation, sigma/sub AB/ 2 = sigma/sub AA/ . sigma/sub BB/, is violated. Also, new experiments have been done to measure the angular distribution of fragments that could be explained as nuclear shock waves, and to explore for ultradense matter produced by very heavy ions incident on heavy atoms. (12 figures, 2 tables)

  4. Detection of fission fragments by secondary emission; Detection des fragments de fission par emission secondaire

    Energy Technology Data Exchange (ETDEWEB)

    Audias, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la face d'incidence et sur la face d'emergence des fragments de

  5. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments.

    Science.gov (United States)

    Jullien, Nicolas; Sampieri, François; Enjalbert, Alain; Herman, Jean-Paul

    2003-11-01

    Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. To overcome this, we have developed DiCre, a regulatable fragment complementation system for Cre. The enzyme was split into two moieties that were fused to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12-rapamycin-associated protein), respectively. These can be efficiently heterodimerized by rapamycin. Several variants, based on splitting Cre at different sites and using different linker peptides, were tested in an indicator cell line. The fusion proteins, taken separately, had no recombinase activity. Stable transformants, co-expressing complementing fragments based on splitting Cre between Asn59 and Asn60, displayed low background activity affecting 0.05-0.4% of the cells. Rapamycin induced a rapid recombination, reaching 100% by 48-72 h, with an EC50 of 0.02 nM. Thus, ligand-induced dimerization can efficiently regulate Cre, and should be useful to achieve a tight temporal control of its activity, such as in the case of the creation of conditional knock-out animals.

  6. Thermodynamics of the fuel fragmentation gas

    International Nuclear Information System (INIS)

    Perez, R.B.; Alsmiller, R.G. Jr.

    1977-01-01

    In the context of nuclear reactor safety studies, a program is in progress at ORNL whereby fuel-fragmentation situations are mocked up by the application of high-current capacitor discharges through solid UO 2 samples. The goal of the present work is to predict such quantities as the number of gas and liquid fragments and their energy distributions. The point of view adopted is that upon fragmentation, a cloud of UO 2 vapor is formed containing ''primeval'' liquid fragments which act as condensation centers. In the evolution of time, fragment growth is controlled by nucleation, coagulation and evaporation processes. Eventually, the vapor-droplet system will reach a situation in which clusters (fragments) of various sizes and UO 2 vapor will coexist in an ''association-disassociation'' equilibrium. Thus, the physical model considered here consists of the identification of the fragmentation gas with an ''imperfect'' vapor, made up of interacting UO 2 vapor and liquid fragments. The results of the study are presented

  7. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes.

    Science.gov (United States)

    Prabha, Ratna; Singh, Dhananjaya P; Sinha, Swati; Ahmad, Khurshid; Rai, Anil

    2017-04-01

    With the increasing accumulation of genomic sequence information of prokaryotes, the study of codon usage bias has gained renewed attention. The purpose of this study was to examine codon selection pattern within and across cyanobacterial species belonging to diverse taxonomic orders and habitats. We performed detailed comparative analysis of cyanobacterial genomes with respect to codon bias. Our analysis reflects that in cyanobacterial genomes, A- and/or T-ending codons were used predominantly in the genes whereas G- and/or C-ending codons were largely avoided. Variation in the codon context usage of cyanobacterial genes corresponded to the clustering of cyanobacteria as per their GC content. Analysis of codon adaptation index (CAI) and synonymous codon usage order (SCUO) revealed that majority of genes are associated with low codon bias. Codon selection pattern in cyanobacterial genomes reflected compositional constraints as major influencing factor. It is also identified that although, mutational constraint may play some role in affecting codon usage bias in cyanobacteria, compositional constraint in terms of genomic GC composition coupled with environmental factors affected codon selection pattern in cyanobacterial genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The dual role of fragments in fragment-assembly methods for de novo protein structure prediction

    Science.gov (United States)

    Handl, Julia; Knowles, Joshua; Vernon, Robert; Baker, David; Lovell, Simon C.

    2013-01-01

    In fragment-assembly techniques for protein structure prediction, models of protein structure are assembled from fragments of known protein structures. This process is typically guided by a knowledge-based energy function and uses a heuristic optimization method. The fragments play two important roles in this process: they define the set of structural parameters available, and they also assume the role of the main variation operators that are used by the optimiser. Previous analysis has typically focused on the first of these roles. In particular, the relationship between local amino acid sequence and local protein structure has been studied by a range of authors. The correlation between the two has been shown to vary with the window length considered, and the results of these analyses have informed directly the choice of fragment length in state-of-the-art prediction techniques. Here, we focus on the second role of fragments and aim to determine the effect of fragment length from an optimization perspective. We use theoretical analyses to reveal how the size and structure of the search space changes as a function of insertion length. Furthermore, empirical analyses are used to explore additional ways in which the size of the fragment insertion influences the search both in a simulation model and for the fragment-assembly technique, Rosetta. PMID:22095594

  9. Models of fragmentation with composite power laws

    Science.gov (United States)

    Tavassoli, Z.; Rodgers, G. J.

    1999-06-01

    Some models for binary fragmentation are introduced in which a time dependent transition size produces two regions of fragment sizes above and below the transition size. In the first model we assume a fixed rate of fragmentation for the largest fragment and two different rates of fragmentation in the two regions of sizes above and below the transition size. The model is solved exactly in the long time limit to reveal stable time-invariant solutions for the fragment size and mass distributions. These solutions exhibit composite power law behaviours; power laws with two different exponents for fragments in smaller and larger regions. A special case of the model with no fragmentation in the smaller size region is also examined. Another model is also introduced which have three regions of fragment sizes with different rates of fragmentation. The similarities between the stable distributions in our models and composite power law distributions from experimental work on shock fragmentation of long thin glass rods and thick clay plates are discussed.

  10. Magmatic and fragmentation controls on volcanic ash surface chemistry

    Science.gov (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  11. Kinetics of fragmentation-annihilation processes

    OpenAIRE

    Filipe, JAN; Rodgers, GJ

    1996-01-01

    We investigate the kinetics of systems in which particles of one species undergo binary fragmentation and pair annihilation. In the latter, nonlinear process, fragments react at collision to produce an inert species, causing loss of mass. We analyze these systems in the reaction-limited regime by solving a continuous model within the mean-field approximation. The rate of fragmentation for a particle of mass x to break into fragments of masses y and x-y has the form x(lambda-1) (lambda > 0), a...

  12. Fission fragment spins and spectroscopy

    International Nuclear Information System (INIS)

    Durell, J.L.

    1988-01-01

    Prompt γ-ray coincidence experiments have been carried out on γ-rays emitted from post-neutron emission fission fragments produced by the aup 19F + 197 Au and 18 O + 232 Th reactions. Decay schemes have been established for even-even nuclei ranging from 78 Se to 148 Nd. Many new states with spin up to ∼ 12h have been observed. Apart from providing a wealth of new information on the spectroscopy of neutron-rich nuclei, the data have been analyzed to determine the average spin of primary fission fragments as a function of fragment mass. The results suggest that the fragment spins are determined by the temperature and shape of the primary fragments at or near to scission

  13. Human genomics projects and precision medicine.

    Science.gov (United States)

    Carrasco-Ramiro, F; Peiró-Pastor, R; Aguado, B

    2017-09-01

    The completion of the Human Genome Project (HGP) in 2001 opened the floodgates to a deeper understanding of medicine. There are dozens of HGP-like projects which involve from a few tens to several million genomes currently in progress, which vary from having specialized goals or a more general approach. However, data generation, storage, management and analysis in public and private cloud computing platforms have raised concerns about privacy and security. The knowledge gained from further research has changed the field of genomics and is now slowly permeating into clinical medicine. The new precision (personalized) medicine, where genome sequencing and data analysis are essential components, allows tailored diagnosis and treatment according to the information from the patient's own genome and specific environmental factors. P4 (predictive, preventive, personalized and participatory) medicine is introducing new concepts, challenges and opportunities. This review summarizes current sequencing technologies, concentrates on ongoing human genomics projects, and provides some examples in which precision medicine has already demonstrated clinical impact in diagnosis and/or treatment.

  14. Environmental and molecular characterization of systems which affect genome alteration in pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Miller, R.V.; Kokjohn, T.A.; Sayler, G.S.

    1990-01-01

    Pseudomonas aeruginosa is used as a model organism to study genome alteration in freshwater microbial populations and horizontal gene transmission by both transduction and conjugation has been demonstrated. The studies have also provided data which suggest that intracellular genome instability may be increased in the aquatic environment as a result of stresses encountered by the cell in this habitat. The role of the P. aeruginosa recA analog in regulating genome instability is also addressed

  15. Comparing memory-efficient genome assemblers on stand-alone and cloud infrastructures.

    Science.gov (United States)

    Kleftogiannis, Dimitrios; Kalnis, Panos; Bajic, Vladimir B

    2013-01-01

    A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.

  16. Comparing Memory-Efficient Genome Assemblers on Stand-Alone and Cloud Infrastructures

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2013-09-27

    A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.

  17. Classic metapopulations are rare among common beetle species from a naturally fragmented landscape.

    Science.gov (United States)

    Driscoll, Don A; Kirkpatrick, Jamie B; McQuillan, Peter B; Bonham, Kevin J

    2010-01-01

    1. The general importance of metacommunity and metapopulation theories is poorly understood because few studies have examined responses of the suite of species that occupy the same fragmented landscape. In this study, we examined the importance of spatial ecological theories using a large-scale, naturally fragmented landscape. 2. We measured the occurrence and abundance of 44 common beetle species in 31 natural rainforest fragments in Tasmania, Australia. We tested for an effect on beetle distribution of geographic variables (patch area, patch isolation and amount of surrounding habitat) and of environmental variables based on plant species, after first accounting for spatial autocorrelation using principal coordinates of neighbour matrices. The environmental variables described a productivity gradient and a post-fire succession from eucalypt-dominated forest to late-successional rainforest. 3. Few species had distributions consistent with a metapopulation. However, the amount of surrounding habitat and patch isolation influenced the occurrence or abundance of 30% of beetle species, implying that dispersal into or out of patches was an important process. 4. Three species showed a distribution that could arise by interactions with dominant competitors or predators with higher occurrence in small patches. 5. Environmental effects were more commonly observed than spatial effects. Twenty-three per cent of species showed evidence of habitat-driven, deterministic metapopulations. Furthermore, almost half of the species were influenced by the plant succession or productivity gradient, including effects at the within-patch, patch and regional scales. The beetle succession involved an increase in the frequency of many species, and the addition of new species, with little evidence of species turnover. Niche-related ecological theory such as the species-sorting metacommunity theory was therefore the most broadly applicable concept. 6. We conclude that classic and source

  18. Low-pass sequencing for microbial comparative genomics

    Directory of Open Access Journals (Sweden)

    Kennedy Sean

    2004-01-01

    Full Text Available Abstract Background We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1 the metabolically versatile Haloarcula marismortui; (2 the non-pigmented Natrialba asiatica; (3 the psychrophile Halorubrum lacusprofundi and (4 the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe. Results As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI for their predicted proteins. Multiple insertion sequence (IS elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP and transcription factor IIB (TFB homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi. Conclusion Despite the diverse habitats of these species, all five halophiles share (1 high GC content and (2 low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the

  19. Azolla--a model organism for plant genomic studies.

    Science.gov (United States)

    Qiu, Yin-Long; Yu, Jun

    2003-02-01

    The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation. Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture, its unique position in plant evolution, its symbiotic relationship with the N2-fixing cyanobacterium, Anabaena azollae, and its moderate-sized genome. The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes. Together with the strategic and technical improvement as well as cost reduction of DNA sequencing, the deciphering of their genetic code is imminent.

  20. The genomic diversity and stability of field strains of Suid herpesvirus 1 (Aujeszky's disease virus)

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Sørensen, K. J.

    1991-01-01

    The genomic diversity among isolates of suid herpesvirus 1 (SHV-1) collected in the same herd and among clones from the same isolate was studied by restriction fragment pattern (RFP) analysis using BamHI. Tentatively defining a field strain as a transmissible entity, it was concluded that strains...

  1. Fragmentation of atomic clusters: A theoretical study

    International Nuclear Information System (INIS)

    Lopez, M.J.; Jellinek, J.

    1994-01-01

    Collisionless fragmentation of nonrotating model n-atom metal clusters (n=12, 13, and 14) is studied using isoergic molecular-dynamics simulations. Minimum-energy paths for fragmentation are mapped out as functions of the distance between the centers of mass of the fragments. These paths provide information on the fragmentation energies for the different fragmentation channels. Fragmentation patterns (distributions of the fragmentation channel probabilities) and global and channel-specific fragmentation rate constants are computed and analyzed as functions of the internal energy and of the size of the clusters. The trends derived from the dynamics are compared with those obtained using the RRK and TST statistical approaches. The dynamics of the fragmentation process is analyzed in terms of characteristic quantities such as the distance between the centers of mass of the fragments, their relative translational energy, and their interaction energy, all considered as functions of time

  2. [Edge effect on lichen's distribution and chlorophyll content, in fragments of Polylepis quadrijuga (Rosaceae) in Páramo de la Rusia (Boyacá-Colombia)].

    Science.gov (United States)

    Pulido Herrera, Karen; Ramos Montaño, Carolina

    2016-12-01

    The ecosystems fragmentation is one of the anthropic phenomena with highest impact at global level and the edge effect causes that only the fragments interior conserve their original biotic and abiotic characteristics. Lichens are organisms especially susceptible to environmental variability, what could be useful for bio-indication of edge effect. In this work, we evaluated the edge effect in two fragments of Polylepis quadrijuga in the Páramo de la Rusia (Boyacá-Colombia) to determine if there is an edge effect on distribution of lichens associated to P. quadrijuga and their chlorophyll content. We used three transects of 70 m across the matrix-edge-interior gradient in each fragment. We chose nine phorophytes per transect to measure the environmental variables: photosynthetically active radiation, relative humidity and air temperature, and the biological variables: richness and cover per species. Besides, we employed the species that were present in all the three zones of the gradient to quantify the content of chlorophylls a and b, and determine if there are changes in the ratio of chlorophylls a/b that could suggest physiological plasticity as a response to the edge effect. Our results showed that fragment 2 had a higher edge exposition because of its high relation perimeter/area, allowing to an environmental homogenization and lose of biodiversity in relation with fragment 1. Overall, we found 55 differentially distributed species in relation with the fragments and the matrix-edge-interior gradient. The interior of fragment 1 was the most conserved zone, harboring a composition different in more than 40 % to the composition of any other zone. We classified the lichens according with their habits: gelatinous, fruticose, crusty or foliose, but we did not find any relationship between the habit distribution and the edge effect. Six species of wide distribution showed changes in the chlorophyll content along the matrix-edge-interior gradient, what is an evidence

  3. Genomic diversity of Escherichia isolates from diverse habitats.

    Directory of Open Access Journals (Sweden)

    Seungdae Oh

    Full Text Available Our understanding of the Escherichia genus is heavily biased toward pathogenic or commensal isolates from human or animal hosts. Recent studies have recovered Escherichia isolates that persist, and even grow, outside these hosts. Although the environmental isolates are typically phylogenetically distinct, they are highly related to and phenotypically indistinguishable from their human counterparts, including for the coliform test. To gain insights into the genomic diversity of Escherichia isolates from diverse habitats, including freshwater, soil, animal, and human sources, we carried out comparative DNA-DNA hybridizations using a multi-genome E. coli DNA microarray. The microarray was validated based on hybridizations with selected strains whose genome sequences were available and used to assess the frequency of microarray false positive and negative signals. Our results showed that human fecal isolates share two sets of genes (n>90 that are rarely found among environmental isolates, including genes presumably important for evading host immune mechanisms (e.g., a multi-drug transporter for acids and antimicrobials and adhering to epithelial cells (e.g., hemolysin E and fimbrial-like adhesin protein. These results imply that environmental isolates are characterized by decreased ability to colonize host cells relative to human isolates. Our study also provides gene markers that can distinguish human isolates from those of warm-blooded animal and environmental origins, and thus can be used to more reliably assess fecal contamination in natural ecosystems.

  4. 2004 Environmental Mutagen Society Annual Meeting - Genes, Mutations and Disease: The Environmental Connection

    Energy Technology Data Exchange (ETDEWEB)

    Samson, Leona D.

    2004-08-23

    The Meeting consisted of 9 Symposia, 4 Keynote Lectures, 3 Platform Sessions and 4 Poster Sessions. In addition there were Breakfast Meetings for Special Interest Groups designed to inform attendees about the latest advances in environmental mutagenesis research. Several of the topics to be covered at this broad meeting will be of interest to the Department of Energy, Office of Science. The relevance of this meeting to the DOE derives from the fact that low dose radiation may represent one of the most significant sources of human mutations that are attributable to the environment. The EMS membership, and those who attended the EMS Annual Meeting were interested in both chemical and radiation induced biological effects, such as cell death, mutation, teratogenesis, carcinogenesis and aging. These topics thate were presented at the 2004 EMS Annual meeting that were of clear interest to DOE include: human variation in cancer susceptibility, unusual mechanisms of mutation, germ and stem cell mutagenesis, recombination and the maintenance of genomic stability, multiple roles for DNA mismatch repair, DNA helicases, mutation, cancer and aging, Genome-wide transcriptional responses to environmental change, Telomeres and genomic stability: when ends don?t meet, systems biology approach to cell phenotypic decision processes, and the surprising biology of short RNAs. Poster and platform sessions addressed topics related to environmental mutagen exposure, DNA repair, mechanisms of mutagenesis, epidemiology, genomic and proteomics and bioinformatics. These sessions were designed to give student, postdocs and more junior scientists a chance to present their work.

  5. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC).

    Science.gov (United States)

    Yamagishi, Hiroshi; Tanaka, Yoshiyuki; Terachi, Toru

    2014-11-01

    Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.

  6. Small molecules enhance CRISPR genome editing in pluripotent stem cells.

    Science.gov (United States)

    Yu, Chen; Liu, Yanxia; Ma, Tianhua; Liu, Kai; Xu, Shaohua; Zhang, Yu; Liu, Honglei; La Russa, Marie; Xie, Min; Ding, Sheng; Qi, Lei S

    2015-02-05

    The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ), but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method, we have identified small molecules that can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations. Interestingly, we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. [Citizens' veillance on environmental health through ICT and Genomics].

    Science.gov (United States)

    Tallacchini, Mariachiara; Biggeri, Annibale

    2014-01-01

    In the last decade three different phenomena have merged: the widespread use of ICT devices to collect and potentially share personal and scientific data, and to build networked communities; biobanking for genomics, namely the organized storage of human biological samples and information; and the collaboration between scientists and citizens in creating knowledge, namely peer-production of knowledge, for shared social goals. These different forms of knowledge, technical tools, and skills have merged in community based scientific and social, as well as legal, initiatives, where scientists and citizens use genetic information and ICT as powerful ways to gain more control over their health and the environment. These activities can no longer be simply qualified as epidemiological research and surveillance. Instead, they can be framed as new forms of citizens' participatory "veillance:" an attitude of cognitive proactive alertness towards the protection of common goods. This paper illustrates two Italian case-studies where citizens and scientists, by making use of both ICT and biobanking, have joined with the goal of protecting environmental health in highly polluted contexts. The statute of these initiatives still needs to be defined as to both the validity of the underlying citizen science and the lack of adequate legal tools for structuring them. However, as to their scientific quality and use of sophisticated technologies, these activities cannot be compared to previous experiences, such as those inspired by so-called popular epidemiology. Moreover, the deep awareness towards the data to be transparent, reliable, and accessible, as well as towards funding mechanisms to be crowdsourced, allows these experiences to go beyond the mere confrontation with institutional knowledge, and to represent a potential model for knowledge production for institutional implementation.

  8. Time Series of Landscape Fragmentation Caused by Transportation Infrastructure and Urban Development: a Case Study from Baden-Württemberg, Germany

    Directory of Open Access Journals (Sweden)

    Jochen A. G. Jaeger

    2007-06-01

    Full Text Available Landscape fragmentation is increasingly considered an important environmental indicator in the fields of sustainable land use and biodiversity. To set goals for future development and to plan appropriate measures, suitable empirical data on the degree of landscape fragmentation are needed to identify trends and compare different regions. However, there is still a significant lack of data on landscape fragmentation as an indicator, despite the substantial scientific literature on this topic, likely because of confusion over the definition of "fragmentation," questions associated with scale and data issues, and lack of general agreement on a fragmentation measure. This study presents a state-wide quantitative analysis of landscape fragmentation in Baden-Württemberg, Germany, by means of the "effective mesh size" (meff, which characterizes the anthropogenic penetration of landscapes from a geometric point of view and is based on the probability that two randomly chosen points in a landscape are connected, i.e., not separated by barriers such as roads, railroads, or urban areas. Baden-Württemberg is fragmented to a far greater extent than indicated by previous studies. The meff has decreased by 40% since 1930. This development is strongly related to the growing number of inhabitants, the increased use of motorized vehicles, and the hierarchical regional planning system based on the central place theory. To illustrate the suitability of the meff method for environmental monitoring, as a planning instrument and as an assessment instrument for impact assessment studies, we explored several variations of applying the method with regard to choice of fragmenting elements, consideration of noise bands, spatial differentiation (e.g., administrative districts vs. ecoregions, and way of dealing with patches at the boundaries of the reporting units. Depending on the objectives of the investigation (e.g., recreational quality vs. suitability for wildlife

  9. DNA fragmentation in spermatozoa

    DEFF Research Database (Denmark)

    Rex, A S; Aagaard, J.; Fedder, J

    2017-01-01

    Sperm DNA Fragmentation has been extensively studied for more than a decade. In the 1940s the uniqueness of the spermatozoa protein complex which stabilizes the DNA was discovered. In the fifties and sixties, the association between unstable chromatin structure and subfertility was investigated....... In the seventies, the impact of induced DNA damage was investigated. In the 1980s the concept of sperm DNA fragmentation as related to infertility was introduced as well as the first DNA fragmentation test: the Sperm Chromatin Structure Assay (SCSA). The terminal deoxynucleotidyl transferase nick end labelling...... (TUNEL) test followed by others was introduced in the nineties. The association between DNA fragmentation in spermatozoa and pregnancy loss has been extensively investigated spurring the need for a therapeutic tool for these patients. This gave rise to an increased interest in the aetiology of DNA damage...

  10. Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum†

    Science.gov (United States)

    Ventura, Marco; Canchaya, Carlos; Tauch, Andreas; Chandra, Govind; Fitzgerald, Gerald F.; Chater, Keith F.; van Sinderen, Douwe

    2007-01-01

    Summary: Actinobacteria constitute one of the largest phyla among Bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context. PMID:17804669

  11. Complete Mitochondrial Genome of the Medicinal Mushroom Ganoderma lucidum

    Science.gov (United States)

    Chen, Haimei; Chen, Xiangdong; Lan, Jin; Liu, Chang

    2013-01-01

    Ganoderma lucidum is one of the well-known medicinal basidiomycetes worldwide. The mitochondrion, referred to as the second genome, is an organelle found in most eukaryotic cells and participates in critical cellular functions. Elucidating the structure and function of this genome is important to understand completely the genetic contents of G. lucidum. In this study, we assembled the mitochondrial genome of G. lucidum and analyzed the differential expressions of its encoded genes across three developmental stages. The mitochondrial genome is a typical circular DNA molecule of 60,630 bp with a GC content of 26.67%. Genome annotation identified genes that encode 15 conserved proteins, 27 tRNAs, small and large rRNAs, four homing endonucleases, and two hypothetical proteins. Except for genes encoding trnW and two hypothetical proteins, all genes were located on the positive strand. For the repeat structure analysis, eight forward, two inverted, and three tandem repeats were detected. A pair of fragments with a total length around 5.5 kb was found in both the nuclear and mitochondrial genomes, which suggests the possible transfer of DNA sequences between two genomes. RNA-Seq data for samples derived from three stages, namely, mycelia, primordia, and fruiting bodies, were mapped to the mitochondrial genome and qualified. The protein-coding genes were expressed higher in mycelia or primordial stages compared with those in the fruiting bodies. The rRNA abundances were significantly higher in all three stages. Two regions were transcribed but did not contain any identified protein or tRNA genes. Furthermore, three RNA-editing sites were detected. Genome synteny analysis showed that significant genome rearrangements occurred in the mitochondrial genomes. This study provides valuable information on the gene contents of the mitochondrial genome and their differential expressions at various developmental stages of G. lucidum. The results contribute to the understanding of the

  12. Photon-hadron fragmentation: theoretical situation

    International Nuclear Information System (INIS)

    Peschanski, R.

    1983-07-01

    Using a selection of new experimental results models of hadronic fragmentation and their phenomenological comparison are presented. Indeed a convenient theory of hadronic fragmentation -for instance based on Q.C.D.- does not exist: low transverse momentum fragmentation involves the badly known hadronic long-range forces. Models should clarify the situation in the prospect of an eventual future theory

  13. A novel bioinformatics method for efficient knowledge discovery by BLSOM from big genomic sequence data.

    Science.gov (United States)

    Bai, Yu; Iwasaki, Yuki; Kanaya, Shigehiko; Zhao, Yue; Ikemura, Toshimichi

    2014-01-01

    With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map. By modifying the conventional SOM, we have previously developed Batch-Learning SOM (BLSOM), which allows classification of sequence fragments according to species, solely depending on the oligonucleotide composition. In the present study, we introduce the oligonucleotide BLSOM used for characterization of vertebrate genome sequences. We first analyzed pentanucleotide compositions in 100 kb sequences derived from a wide range of vertebrate genomes and then the compositions in the human and mouse genomes in order to investigate an efficient method for detecting differences between the closely related genomes. BLSOM can recognize the species-specific key combination of oligonucleotide frequencies in each genome, which is called a "genome signature," and the specific regions specifically enriched in transcription-factor-binding sequences. Because the classification and visualization power is very high, BLSOM is an efficient powerful tool for extracting a wide range of information from massive amounts of genomic sequences (i.e., big sequence data).

  14. Comparative Genomics of Methanopyrus sp. SNP6 and KOL6 Revealing Genomic Regions of Plasticity Implicated in Extremely Thermophilic Profiles

    Directory of Open Access Journals (Sweden)

    Zhiliang Yu

    2017-07-01

    Full Text Available Methanopyrus spp. are usually isolated from harsh niches, such as high osmotic pressure and extreme temperature. However, the molecular mechanisms for their environmental adaption are poorly understood. Archaeal species is commonly considered as primitive organism. The evolutional placement of archaea is a fundamental and intriguing scientific question. We sequenced the genomes of Methanopyrus strains SNP6 and KOL6 isolated from the Atlantic and Iceland, respectively. Comparative genomic analysis revealed genetic diversity and instability implicated in niche adaption, including a number of transporter- and integrase/transposase-related genes. Pan-genome analysis also defined the gene pool of Methanopyrus spp., in addition of ~120-Kb genomic region of plasticity impacting cognate genomic architecture. We believe that Methanopyrus genomics could facilitate efficient investigation/recognition of archaeal phylogenetic diverse patterns, as well as improve understanding of biological roles and significance of these versatile microbes.

  15. Genomic definition of species. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Dramanac, R.

    1992-06-01

    A genome is the sum total of the DNA sequences in the cells of an individual organism. The common usage that species possess genomes comes naturally to biochemists, who have shown that all protein and nucleic acid molecules are at the same time species and individual-specific, with minor individual variations being superimposed on a consensus sequence that is constant for a species. By extension, this property is attributed to the common features of DNA in the chromosomes of members of a given species and is called (species) genome. The definition of species based on chromosomes, genes, or genome common to its member organisms has been implied or mentioned in passing numerous times. Some population biologists think that members of species have similar ``homeostatic genotypes,`` which are to a degree resistant to mutation or environmental change in the production of a basic phenotype.

  16. Isolation and characterization of the genomic region from Drosophila kuntzei containing the Adh and Adhr genes

    NARCIS (Netherlands)

    Oppentocht, JE; van Delden, W; van de Zande, L

    The nucleotide sequences of the Adh and Adhr genes of Drosophila kuntzei were derived from combined overlapping sequences of clones isolated from a genomic library and from cloned PCR and inverse-PCR fragments. Only a proximal promoter was detected upstream of the Adh gene, indicating that D.

  17. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    Science.gov (United States)

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen

  18. Recent progress on perturbative QCD fragmentation functions

    International Nuclear Information System (INIS)

    Cheung, K.

    1995-05-01

    The recent development of perturbative QCD (PQCD) fragmentation functions has strong impact on quarkonium production. I shall summarize B c meson production based on these PQCD fragmentation functions, as well as, the highlights of some recent activities on applying these PQCD fragmentation functions to explain anomalous J/ψ and ψ' production at the Tevatron. Finally, I discuss a fragmentation model based on the PQCD fragmentation functions for heavy quarks fragmenting into heavy-light mesons

  19. Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins

    Directory of Open Access Journals (Sweden)

    David S. Shin

    2014-01-01

    Full Text Available As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine.

  20. Fragmentation and flow in central collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.; Doss, K.G.R.; Gustafsson, H.A.

    1987-01-01

    Investigation of the fragmentation mechanism requires the measurement of complicated observables. To identify what part of the reacting system gives rise to the fragments, it would be useful to tag them as participants or spectators. A large acceptance for all the reaction products and an event-by-event measurement of the fragment multiplicity is required to distinguish fragment formation via sequential emission from a large equilibrated system and multifragmentation. In order to address whether fragments are formed early or late in the collision, information about the dynamical evolution of the reaction is necessary. This can be provided by study of the global properties of the events. This paper discusses experimental techniques applicable to studying fragmentation processes. 25 refs., 8 figs

  1. Long-term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests

    Science.gov (United States)

    David J. Flaspohler; Christian P. Giardina; Gregory P. Asner; Patrick Hart; Jonathan Price; Cassie Ka’apu Lyons; Xeronimo. Castaneda

    2010-01-01

    Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments...

  2. Swabs to genomes: a comprehensive workflow

    Directory of Open Access Journals (Sweden)

    Madison I. Dunitz

    2015-05-01

    Full Text Available The sequencing, assembly, and basic analysis of microbial genomes, once a painstaking and expensive undertaking, has become much easier for research labs with access to standard molecular biology and computational tools. However, there are a confusing variety of options available for DNA library preparation and sequencing, and inexperience with bioinformatics can pose a significant barrier to entry for many who may be interested in microbial genomics. The objective of the present study was to design, test, troubleshoot, and publish a simple, comprehensive workflow from the collection of an environmental sample (a swab to a published microbial genome; empowering even a lab or classroom with limited resources and bioinformatics experience to perform it.

  3. Mass spectrometry for fragment screening.

    Science.gov (United States)

    Chan, Daniel Shiu-Hin; Whitehouse, Andrew J; Coyne, Anthony G; Abell, Chris

    2017-11-08

    Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Universal odd-even staggering in isotopic fragmentation and spallation cross sections of neutron-rich fragments

    Science.gov (United States)

    Mei, B.; Tu, X. L.; Wang, M.

    2018-04-01

    An evident odd-even staggering (OES) in fragment cross sections has been experimentally observed in many fragmentation and spallation reactions. However, quantitative comparisons of this OES effect in different reaction systems are still scarce for neutron-rich nuclei near the neutron drip line. By employing a third-order difference formula, the magnitudes of this OES in extensive experimental cross sections are systematically investigated for many neutron-rich nuclei with (N -Z ) from 1 to 23 over a broad range of atomic numbers (Z ≈3 -50 ). A comparison of these magnitude values extracted from fragment cross sections measured in different fragmentation and spallation reactions with a large variety of projectile-target combinations over a wide energy range reveals that the OES magnitude is almost independent of the projectile-target combinations and the projectile energy. The weighted average of these OES magnitudes derived from cross sections accurately measured in different reaction systems is adopted as the evaluation value of the OES magnitude. These evaluated OES magnitudes are recommended to be used in fragmentation and spallation models to improve their predictions for fragment cross sections.

  5. Physics of projectile fragments

    International Nuclear Information System (INIS)

    Minamisono, Tadanori

    1982-01-01

    This is a study report on the polarization phenomena of the projectile fragments produced by heavy ion reactions, and the beta decay of fragments. The experimental project by using heavy ions with the energy from 50 MeV/amu to 250 MeV/amu was designed. Construction of an angle-dispersion spectrograph for projectile fragments was proposed. This is a two-stage spectrograph. The first stage is a QQDQQ type separator, and the second stage is QDQD type. Estimation shows that Co-66 may be separated from the nuclei with mass of 65 and 67. The orientation of fragments can be measured by detecting beta-ray. The apparatus consists of a uniform field magnet, an energy absorber, a stopper, a RF coil and a beta-ray hodoscope. This system can be used for not only this purpose but also for the measurement of hyperfine structure. (Kato, T.)

  6. Long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele‐specific MYC expression in HeLa cells

    Science.gov (United States)

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Lu, Fengmin

    2017-01-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis‐activate the expression of proto‐oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV‐integrated haplotype, and a long‐range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long‐range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence‐associated acidic β‐gal activity in HeLa cells. These data indicate a long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. PMID:28470669

  7. Foot-and-mouth disease virus 5’-terminal S fragment is required for replication and modulation of the innate immune response in host cells

    Science.gov (United States)

    The foot-and-mouth disease virus (FMDV) contains a 5’ untranslated region (5’UTR) with multiple structural domains that regulate viral genome replication, translation, and virus-host interactions. At its 5’terminus, the S fragment of over 360 bp is predicted to form a stable stem-loop that is separ...

  8. Complete genome sequence of jacquemontia yellow vein virus, a novel begomovirus infecting Jacquemontia tamnifolia in Venezuela.

    Science.gov (United States)

    Fiallo-Olivé, Elvira; Chirinos, Dorys T; Geraud-Pouey, Francis; Navas-Castillo, Jesús

    2017-08-01

    Wild plants of the family Convolvulaceae are hosts for a few New World begomoviruses (genus Begomovirus, family Geminiviridae). In this work, we report the complete genome sequence of a new begomovirus infecting the wild convolvulaceous plant Jacquemontia tamnifolia in Venezuela. The cloned bipartite genome showed the organization of typical New World begomoviruses and was found to be phylogenetically related to those of begomoviruses from Venezuela and other Caribbean countries. Several recombination events have been shown to have occurred involving genome fragment exchange with related begomoviruses infecting crops such as tomato and cucurbits and wild plants, including Jacquemontia sp. We propose the name jacquemontia yellow vein virus (JacYVV) for this new begomovirus.

  9. Genomics Strategies for Germplasm Characterization and the Development of Climate Resilient Crops

    Directory of Open Access Journals (Sweden)

    Robert eHenry

    2014-02-01

    Full Text Available Food security requires the development and deployment of crop varieties resilient to climate variation and change. The study of variations in the genome of wild plant populations can be used to guide crop improvement. Genome variation found in wild crop relatives may be directly relevant to the breeding of environmentally adapted and climate resilient crops. Analysis of the genomes of populations growing in contrasting environments will reveal the genes subject to natural selection in adaptation to climate variations. Whole genome sequencing of these populations should define the numbers and types of genes associated with climate adaptation. This strategy is facilitated by recent advances in sequencing technologies. Wild relatives of rice and barley have been used to assess these approaches. This strategy is most easily applied to species for which a high quality reference genome sequence is available and where populations of wild relatives can be found growing in diverse environments or across environmental gradients.

  10. MRI of displaced meniscal fragments

    International Nuclear Information System (INIS)

    Dunoski, Brian; Zbojniewicz, Andrew M.; Laor, Tal

    2012-01-01

    A torn meniscus frequently requires surgical fixation or debridement as definitive treatment. Meniscal tears with associated fragment displacement, such as bucket handle and flap tears, can be difficult to recognize and accurately describe on MRI, and displaced fragments can be challenging to identify at surgery. A displaced meniscal fragment can be obscured by synovium or be in a location not usually evaluated at arthroscopy. We present a pictorial essay of meniscal tears with displaced fragments in patients referred to a pediatric hospital in order to increase recognition and accurate interpretation by the radiologist, who in turn can help assist the surgeon in planning appropriate therapy. (orig.)

  11. MRI of displaced meniscal fragments

    Energy Technology Data Exchange (ETDEWEB)

    Dunoski, Brian [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Children' s Hospital of Michigan, Department of Radiology, Detroit, MI (United States); Zbojniewicz, Andrew M.; Laor, Tal [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2012-01-15

    A torn meniscus frequently requires surgical fixation or debridement as definitive treatment. Meniscal tears with associated fragment displacement, such as bucket handle and flap tears, can be difficult to recognize and accurately describe on MRI, and displaced fragments can be challenging to identify at surgery. A displaced meniscal fragment can be obscured by synovium or be in a location not usually evaluated at arthroscopy. We present a pictorial essay of meniscal tears with displaced fragments in patients referred to a pediatric hospital in order to increase recognition and accurate interpretation by the radiologist, who in turn can help assist the surgeon in planning appropriate therapy. (orig.)

  12. Dimensional crossover in fragmentation

    Science.gov (United States)

    Sotolongo-Costa, Oscar; Rodriguez, Arezky H.; Rodgers, G. J.

    2000-11-01

    Experiments in which thick clay plates and glass rods are fractured have revealed different behavior of fragment mass distribution function in the small and large fragment regions. In this paper we explain this behavior using non-extensive Tsallis statistics and show how the crossover between the two regions is caused by the change in the fragments’ dimensionality during the fracture process. We obtain a physical criterion for the position of this crossover and an expression for the change in the power-law exponent between the small and large fragment regions. These predictions are in good agreement with the experiments on thick clay plates.

  13. Prediction of Protein-Protein Interactions by NanoLuc-Based Protein-Fragment Complementation Assay | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory has developed a new NanoLuc®-based protein-fragment complementation assay (NanoPCA) which allows the detection of novel protein-protein interactions (PPI). NanoPCA allows the study of PPI dynamics with reversible interactions.  Read the abstract. Experimental Approaches Read the detailed Experimetnal Approaches. 

  14. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.

    Science.gov (United States)

    Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V

    2010-04-01

    Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the

  15. Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    Directory of Open Access Journals (Sweden)

    Burt David W

    2010-04-01

    Full Text Available Abstract Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving

  16. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, T., E-mail: ogawa.tatsuhiko@jaea.go.jp [Research Group for Radiation Protection, Division of Environment and Radiation Sciences, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Sato, T.; Hashimoto, S. [Research Group for Radiation Protection, Division of Environment and Radiation Sciences, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Niita, K. [Research Organization for Information Science and Technology, Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan)

    2013-09-21

    The fragmentation cross-sections of relativistic energy nucleus–nucleus collisions were analyzed using the statistical multi-fragmentation model (SMM) incorporated with the Monte-Carlo radiation transport simulation code particle and heavy ion transport code system (PHITS). Comparison with the literature data showed that PHITS-SMM reproduces fragmentation cross-sections of heavy nuclei at relativistic energies better than the original PHITS by up to two orders of magnitude. It was also found that SMM does not degrade the neutron production cross-sections in heavy ion collisions or the fragmentation cross-sections of light nuclei, for which SMM has not been benchmarked. Therefore, SMM is a robust model that can supplement conventional nucleus–nucleus reaction models, enabling more accurate prediction of fragmentation cross-sections.

  17. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model

    International Nuclear Information System (INIS)

    Ogawa, T.; Sato, T.; Hashimoto, S.; Niita, K.

    2013-01-01

    The fragmentation cross-sections of relativistic energy nucleus–nucleus collisions were analyzed using the statistical multi-fragmentation model (SMM) incorporated with the Monte-Carlo radiation transport simulation code particle and heavy ion transport code system (PHITS). Comparison with the literature data showed that PHITS-SMM reproduces fragmentation cross-sections of heavy nuclei at relativistic energies better than the original PHITS by up to two orders of magnitude. It was also found that SMM does not degrade the neutron production cross-sections in heavy ion collisions or the fragmentation cross-sections of light nuclei, for which SMM has not been benchmarked. Therefore, SMM is a robust model that can supplement conventional nucleus–nucleus reaction models, enabling more accurate prediction of fragmentation cross-sections

  18. Genome-wide sequence variations among Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Chung-Yi eHsu

    2011-12-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (M. ap, the causative agent of Johne’s disease (JD, infects many farmed ruminants, wildlife animals and humans. To better understand the molecular pathogenesis of these infections, we analyzed the whole genome sequences of several M. ap and M. avium subspecies avium (M. avium strains isolated from various hosts and environments. Using Next-generation sequencing technology, all 6 M. ap isolates showed a high percentage of homology (98% to the reference genome sequence of M. ap K-10 isolated from cattle. However, 2 M. avium isolates (DT 78 and Env 77 showed significant sequence diversity from the reference strain M. avium 104. The genomes of M. avium isolates DT 78 and Env 77 exhibited only 87% and 40% homology, respectively, to the M. avium 104 reference genome. Within the M. ap isolates, genomic rearrangements (insertions/deletions, Indels were not detected, and only unique single nucleotide polymorphisms (SNPs were observed among the 6 M. ap strains. While most of the SNPs (~100 in M. ap genomes were non-synonymous, a total of ~ 6000 SNPs were detected among M. avium genomes, most of them were synonymous suggesting a differential selective pressure between M. ap and M. avium isolates. In addition, SNPs-based phylo-genomic analysis showed that isolates from goat and Oryx are closely related to the cattle (K-10 strain while the human isolate (M. ap 4B is closely related to the environmental strains, indicating environmental source to human infections. Overall, SNPs were the most common variations among M. ap isolates while SNPs in addition to Indels were prevalent among M. avium isolates. Genomic variations will be useful in designing host-specific markers for the analysis of mycobacterial evolution and for developing novel diagnostics directed against Johne’s disease in animals.

  19. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.

    Science.gov (United States)

    Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen

    2009-01-30

    In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.

  20. [The investigation of genomes of some species of the genus Gentiana in nature and in vitro cell culture].

    Science.gov (United States)

    Mel'nyk, V M; Spiridonova, K V; Andrieiev, I O; Strashniuk, N M; Kunakh, V A

    2002-01-01

    The comparative study of the genomes of intact plants-representatives of some species of the genus Gentiana L. as well as cultured cells of G. lutea and G. punctata was performed using restriction analysis. Species specificity of restriction fragment patterns for studied representatives of this genus was revealed. The differences between electrophoretic patterns of digested DNA purified from rhizome and leaves of G. lutea and G. punctata were found. The changes in genomes of G. lutea and G. punctata cells cultured in vitro compared with the genomes of intact plants were detected. The data obtained evidence that some of them may be of nonrandom character.

  1. An efficient and high fidelity method for amplification, cloning and sequencing of complete tospovirus genomic RNA segments

    Science.gov (United States)

    Amplification and sequencing of the complete M- and S-RNA segments of Tomato spotted wilt virus and Impatiens necrotic spot virus as a single fragment is useful for whole genome sequencing of tospoviruses co-infecting a single host plant. It avoids issues associated with overlapping amplicon-based ...

  2. The mitochondrial genome of Priapulus caudatus Lamarck (Priapulida: Priapulidae).

    Science.gov (United States)

    Webster, Bonnie L; Mackenzie-Dodds, Jacqueline A; Telford, Maximilian J; Littlewood, D Timothy J

    2007-03-01

    We sequenced and annotated the complete mitochondrial (mt) genome of the priapulid Priapulus caudatus in order to provide a source of phylogenetic characters including an assessment of gene order arrangement. The genome was 14,919 bp in its entirety with few, short non-coding regions. A number of protein-coding and tRNA genes overlapped, making the genome relatively compact. The gene order was: cox1, cox2, trnK, trnD, atp8, atp6, cox3, trnG, nad3, trnA, trnR, trnN, rrnS, trnV, rrnL, trnL(yaa), trnL(nag), nad1, -trnS(nga), -cob, -nad6, trnP, -trnT, nad4L, nad4, trnH, nad5, trnF, -trnE, -trnS(nct), trnI, -trnQ, trnM, nad2, trnW, -trnC, -trnY; where '-' indicates genes transcribed on the opposite strand. The gene order, although unique amongst Metazoa, shared the greatest number of gene boundaries and the longest contiguous fragments with the chelicerate Limulus polyphemus. The mt genomes of these taxa differed only by a single inversion of 18 contiguous genes bounded by rrnS and trnS(nct). Other arthropods and nematodes shared fewer gene boundaries but considerably more than the most similar non-ecdysozoan.

  3. HAL: a hierarchical format for storing and analyzing multiple genome alignments.

    Science.gov (United States)

    Hickey, Glenn; Paten, Benedict; Earl, Dent; Zerbino, Daniel; Haussler, David

    2013-05-15

    Large multiple genome alignments and inferred ancestral genomes are ideal resources for comparative studies of molecular evolution, and advances in sequencing and computing technology are making them increasingly obtainable. These structures can provide a rich understanding of the genetic relationships between all subsets of species they contain. Current formats for storing genomic alignments, such as XMFA and MAF, are all indexed or ordered using a single reference genome, however, which limits the information that can be queried with respect to other species and clades. This loss of information grows with the number of species under comparison, as well as their phylogenetic distance. We present HAL, a compressed, graph-based hierarchical alignment format for storing multiple genome alignments and ancestral reconstructions. HAL graphs are indexed on all genomes they contain. Furthermore, they are organized phylogenetically, which allows for modular and parallel access to arbitrary subclades without fragmentation because of rearrangements that have occurred in other lineages. HAL graphs can be created or read with a comprehensive C++ API. A set of tools is also provided to perform basic operations, such as importing and exporting data, identifying mutations and coordinate mapping (liftover). All documentation and source code for the HAL API and tools are freely available at http://github.com/glennhickey/hal. hickey@soe.ucsc.edu or haussler@soe.ucsc.edu Supplementary data are available at Bioinformatics online.

  4. Identification of the ``a'' Genome of Finger Millet Using Chloroplast DNA

    Science.gov (United States)

    Hilu, K. W.

    1988-01-01

    Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E. tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy. PMID:8608927

  5. Identification of the "A" genome of finger millet using chloroplast DNA.

    Science.gov (United States)

    Hilu, K W

    1988-01-01

    Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E, tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy.

  6. Reframing landscape fragmentation's effects on ecosystem services.

    Science.gov (United States)

    Mitchell, Matthew G E; Suarez-Castro, Andrés F; Martinez-Harms, Maria; Maron, Martine; McAlpine, Clive; Gaston, Kevin J; Johansen, Kasper; Rhodes, Jonathan R

    2015-04-01

    Landscape structure and fragmentation have important effects on ecosystem services, with a common assumption being that fragmentation reduces service provision. This is based on fragmentation's expected effects on ecosystem service supply, but ignores how fragmentation influences the flow of services to people. Here we develop a new conceptual framework that explicitly considers the links between landscape fragmentation, the supply of services, and the flow of services to people. We argue that fragmentation's effects on ecosystem service flow can be positive or negative, and use our framework to construct testable hypotheses about the effects of fragmentation on final ecosystem service provision. Empirical efforts to apply and test this framework are critical to improving landscape management for multiple ecosystem services. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fragment Size Distribution of Blasted Rock Mass

    Science.gov (United States)

    Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris

    2017-12-01

    Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.

  8. Remnants of an Ancient Deltaretrovirus in the Genomes of Horseshoe Bats (Rhinolophidae).

    Science.gov (United States)

    Hron, Tomáš; Farkašová, Helena; Gifford, Robert J; Benda, Petr; Hulva, Pavel; Görföl, Tamás; Pačes, Jan; Elleder, Daniel

    2018-04-10

    Endogenous retrovirus (ERV) sequences provide a rich source of information about the long-term interactions between retroviruses and their hosts. However, most ERVs are derived from a subset of retrovirus groups, while ERVs derived from certain other groups remain extremely rare. In particular, only a single ERV sequence has been identified that shows evidence of being related to an ancient Deltaretrovirus , despite the large number of vertebrate genome sequences now available. In this report, we identify a second example of an ERV sequence putatively derived from a past deltaretroviral infection, in the genomes of several species of horseshoe bats (Rhinolophidae). This sequence represents a fragment of viral genome derived from a single integration. The time of the integration was estimated to be 11-19 million years ago. This finding, together with the previously identified endogenous Deltaretrovirus in long-fingered bats (Miniopteridae), suggest a close association of bats with ancient deltaretroviruses.

  9. Reconstruction of a Bacterial Genome from DNA Cassettes

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Dupont; John Glass; Laura Sheahan; Shibu Yooseph; Lisa Zeigler Allen; Mathangi Thiagarajan; Andrew Allen; Robert Friedman; J. Craig Venter

    2011-12-31

    This basic research program comprised two major areas: (1) acquisition and analysis of marine microbial metagenomic data and development of genomic analysis tools for broad, external community use; (2) development of a minimal bacterial genome. Our Marine Metagenomic Diversity effort generated and analyzed shotgun sequencing data from microbial communities sampled from over 250 sites around the world. About 40% of the 26 Gbp of sequence data has been made publicly available to date with a complete release anticipated in six months. Our results and those mining the deposited data have revealed a vast diversity of genes coding for critical metabolic processes whose phylogenetic and geographic distributions will enable a deeper understanding of carbon and nutrient cycling, microbial ecology, and rapid rate evolutionary processes such as horizontal gene transfer by viruses and plasmids. A global assembly of the generated dataset resulted in a massive set (5Gbp) of genome fragments that provide context to the majority of the generated data that originated from uncultivated organisms. Our Synthetic Biology team has made significant progress towards the goal of synthesizing a minimal mycoplasma genome that will have all of the machinery for independent life. This project, once completed, will provide fundamentally new knowledge about requirements for microbial life and help to lay a basic research foundation for developing microbiological approaches to bioenergy.

  10. Complete Genome of Stachybotrys chartarum strain 51-11

    Data.gov (United States)

    U.S. Environmental Protection Agency — Complete genome sequence of the fungus Stachybotrys chartarum. Sequences can be used to identify genes, genetic pathways, gene clusters, genetic organization, etc....

  11. Investigation of Maternal Genotype Effects in Autism by Genome-Wide Association

    Science.gov (United States)

    Yuan, Han; Dougherty, Joseph D.

    2014-01-01

    Lay Abstract Autism spectrum disorders (ASDs) are pervasive developmental disorders which have both a genetic and environmental component. One source of the environmental component is the in utero (prenatal) environment. The maternal genome can potentially contribute to the risk of autism in children by altering this prenatal environment. In this study, the possibility of maternal genotype effects was explored by looking for common variants (single nucleotide polymorphisms, or SNPs) in the maternal genome associated with increased risk of autism in children. We performed a case/control genome-wide association study (GWAS) using mothers of probands as cases and either fathers of probands or normal females as controls, using two collections of families with autism. We did not identify any SNP that reached significance and thus a common variant of large effect is unlikely. However, there was evidence for the possibility of a large number of alleles each carrying a small effect. This suggested that if there is a contribution to autism risk through common-variant maternal genetic effects, it may be the result of multiple loci of small effects. We did not investigate rare variants in this study. Scientific Abstract Like most psychiatric disorders, autism spectrum disorders have both a genetic and an environmental component. While previous studies have clearly demonstrated the contribution of in utero (prenatal) environment on autism risk, most of them focused on transient environmental factors. Based on a recent sibling study, we hypothesized that environmental factors could also come from the maternal genome, which would result in persistent effects across siblings. In this study, the possibility of maternal genotype effects was examined by looking for common variants (single nucleotide polymorphisms, or SNPs) in the maternal genome associated with increased risk of autism in children. A case/control genome-wide association study (GWAS) was performed using mothers of

  12. Medium-scale melt-sodium fragmentation experiments

    International Nuclear Information System (INIS)

    Chu, T.Y.; Beattie, A.G.; Drotning, W.D.; Powers, D.A.

    1979-01-01

    The results of a series of fragmentation experiments involving up to 20 Kg of thermitically produced high temperature melts and 23 Kg of sodium are presented. Except for one experiment where some centimeter size particles are observed, the fragment distributions seem to be in the range of previous data. Spatial distribution of the fragments in the debris bed appears to be stratified. Scanning electron micrographs of fragments indicate fragmentation to be occurring in the molten state for the more intense interactions observed. Interaction data obtained show quiescent periods of 0.5 to 1.5 second between pressure pulses. The force impulse values per unit mass of melt seems to be in the same range as previous experiments

  13. Whole genome PCR scanning reveals the syntenic genome structure of toxigenic Vibrio cholerae strains in the O1/O139 population.

    Directory of Open Access Journals (Sweden)

    Bo Pang

    Full Text Available Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+ strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.

  14. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    Science.gov (United States)

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  15. Dual Fragment Impact of PBX Charges

    Science.gov (United States)

    Haskins, Peter; Briggs, Richard; Leeming, David; White, Nathan; Cheese, Philip; DE&S MoD UK Team; Ordnance Test Solutions Ltd Team

    2017-06-01

    Fragment impact can pose a significant hazard to many systems containing explosives or propellants. Testing for this threat is most commonly carried out using a single fragment. However, it can be argued that an initial fragment strike (or strikes) could sensitise the energetic material to subsequent impacts, which may then lead to a more violent reaction than would have been predicted based upon single fragment studies. To explore this potential hazard we have developed the capability to launch 2 fragments from the same gun at a range of velocities, and achieve impacts on an acceptor charge with good control over the spatial and temporal separation of the strikes. In this paper we will describe in detail the experimental techniques we have used, both to achieve the dual fragment launch and observe the acceptor charge response. In addition, we will describe the results obtained against PBX filled explosive targets; discuss the mechanisms controlling the target response and their significance for vulnerability assessment. Results of these tests have clearly indicated the potential for detonation upon the second strike, at velocities well below those needed for shock initiation by a single fragment.

  16. A comprehensive and quantitative exploration of thousands of viral genomes

    Science.gov (United States)

    Mahmoudabadi, Gita

    2018-01-01

    The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends – such as gene density, noncoding percentage, and abundances of functional gene categories – across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends. PMID:29624169

  17. Evolutionary analysis of whole-genome sequences confirms inter-farm transmission of Aleutian mink disease virus

    DEFF Research Database (Denmark)

    Hagberg, Emma Elisabeth; Pedersen, Anders Gorm; Larsen, Lars E

    2017-01-01

    Aleutian mink disease virus (AMDV) is a frequently encountered pathogen associated with mink farming. Previous phylogenetic analyses of AMDV have been based on shorter and more conserved parts of the genome, e.g. the partial NS1 gene. Such fragments are suitable for detection but are less useful...... direction of spread. It was however impossible to infer transmission pathways from the partial NS1 gene tree, since all samples from the case farms branched out from a single internal node. A sliding window analysis showed that there were no shorter genomic regions providing the same phylogenetic resolution...

  18. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    Science.gov (United States)

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    among isolates but also functionally essential for a given species and to further evaluate the stability or flexibility of such genome structures across lineages are of importance. Based on a large number of multi-isolate pangenomic data, our analysis reveals that a subset of core genes is organized into a core-gene-defined genome organizational framework, or cGOF. Furthermore, the lineage-associated cGOFs among Gram-positive and Gram-negative bacteria behave differently: the former, composed of 2 to 4 segments, have their fragments symmetrically rearranged around the origin-terminus axis, whereas the latter show more complex segmentation and are partitioned asymmetrically into chromosomal structures. The definition of cGOFs provides new insights into prokaryotic genome organization and efficient guidance for genome assembly and analysis. Copyright © 2014 Kang et al.

  19. Fragmentation of massive dense cores down to ≲ 1000 AU: Relation between fragmentation and density structure

    International Nuclear Information System (INIS)

    Palau, Aina; Girart, Josep M.; Estalella, Robert; Fuente, Asunción; Fontani, Francesco; Sánchez-Monge, Álvaro; Commerçon, Benoit; Hennebelle, Patrick; Busquet, Gemma; Bontemps, Sylvain; Zapata, Luis A.; Zhang, Qizhou; Di Francesco, James

    2014-01-01

    In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 μm (or 1.2 mm in two cases) and the spectral energy distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. Even though the estimated fragmentation level is strictly speaking a lower limit, its relative value is significant and several trends could be explored with our data. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations.

  20. Fragmentation of massive dense cores down to ≲ 1000 AU: Relation between fragmentation and density structure

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Aina; Girart, Josep M. [Institut de Ciències de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciències, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Estalella, Robert [Departament d' Astronomia i Meteorologia (IEEC-UB), Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès, 1, E-08028 Barcelona (Spain); Fuente, Asunción [Observatorio Astronómico Nacional, P.O. Box 112, E-28803 Alcalá de Henares, Madrid (Spain); Fontani, Francesco; Sánchez-Monge, Álvaro [Osservatorio Astrofisico di Arcetri, INAF, Lago E. Fermi 5, I-50125 Firenze (Italy); Commerçon, Benoit; Hennebelle, Patrick [Laboratoire de Radioastronomie, UMR CNRS 8112, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Busquet, Gemma [INAF-Istituto di Astrofisica e Planetologia Spaziali, Area di Recerca di Tor Vergata, Via Fosso Cavaliere 100, I-00133 Roma (Italy); Bontemps, Sylvain [Université de Bordeaux, LAB, UMR 5804, F-33270 Floirac (France); Zapata, Luis A. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090 Morelia, Michoacán (Mexico); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Di Francesco, James, E-mail: palau@ieec.uab.es [Department of Physics and Astronomy, University of Victoria, P.O. Box 355, STN CSC, Victoria, BC, V8W 3P6 (Canada)

    2014-04-10

    In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 μm (or 1.2 mm in two cases) and the spectral energy distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. Even though the estimated fragmentation level is strictly speaking a lower limit, its relative value is significant and several trends could be explored with our data. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations.

  1. Gallstone fragmentation by control electrohydraulic lithotripsy

    International Nuclear Information System (INIS)

    Tung, G.A.; Mueller, P.R.; Brink, J.A.; Saini, S.; Picus, D.; Simeone, J.F.; Ferrucci, J.T.

    1989-01-01

    The authors have performed in vitro contact electrohydraulic lithotripsy (EHL) of 100 gallstones > 10 mm in diameter to identify physical and technical factors that affect fragmentation success. Ninety-one of 100 stones were fragmented with a 3-F electrode (average, seven shocks; range, 1--42); only 12 stones were fragmented with a single shock. Of the nine stones refractory to 50 shocks, four were > 30 mm in diameter and five stones were densely calcified. The most important variable determining power requirements for fragmentation was gallstone size (R = .58), but radiographic calcification of gallstones was also important (R = .47). Stones < 15 mm tended to produce fragments of left-angle 2 mm; stones right-angle 20 mm tended to produce two to five large discrete fragments (P , .05). In addition, lithotripsy could be conducted equally well in 1:1 dilute diatrizoate contrast agent as in 1:6 normal saline, suggesting that contact EHL could be performed under fluoroscopy

  2. The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome

    Science.gov (United States)

    Nedelcu, Aurora M.; Lee, Robert W.; Lemieux, Claude; Gray, Michael W.; Burger, Gertraud

    2000-01-01

    Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced–derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced–derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF204057.] PMID:10854413

  3. Fragmentation functions approach in pQCD fragmentation phenomena

    International Nuclear Information System (INIS)

    Rolli, S.

    1996-07-01

    Next-to-leading order parton fragmentation functions into light mesons are presented. They have been extracted from real and simulated e + e - data and used to predict inclusive single particle distributions at different machines

  4. Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis

    International Nuclear Information System (INIS)

    Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.; Genovese, Luigi

    2017-01-01

    We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same time a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.

  5. Genome-wide identification of direct HBx genomic targets

    KAUST Repository

    Guerrieri, Francesca

    2017-02-17

    Background The Hepatitis B Virus (HBV) HBx regulatory protein is required for HBV replication and involved in HBV-related carcinogenesis. HBx interacts with chromatin modifying enzymes and transcription factors to modulate histone post-translational modifications and to regulate viral cccDNA transcription and cellular gene expression. Aiming to identify genes and non-coding RNAs (ncRNAs) directly targeted by HBx, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) to analyse HBV recruitment on host cell chromatin in cells replicating HBV. Results ChIP-Seq high throughput sequencing of HBx-bound fragments was used to obtain a high-resolution, unbiased, mapping of HBx binding sites across the genome in HBV replicating cells. Protein-coding genes and ncRNAs involved in cell metabolism, chromatin dynamics and cancer were enriched among HBx targets together with genes/ncRNAs known to modulate HBV replication. The direct transcriptional activation of genes/miRNAs that potentiate endocytosis (Ras-related in brain (RAB) GTPase family) and autophagy (autophagy related (ATG) genes, beclin-1, miR-33a) and the transcriptional repression of microRNAs (miR-138, miR-224, miR-576, miR-596) that directly target the HBV pgRNA and would inhibit HBV replication, contribute to HBx-mediated increase of HBV replication. Conclusions Our ChIP-Seq analysis of HBx genome wide chromatin recruitment defined the repertoire of genes and ncRNAs directly targeted by HBx and led to the identification of new mechanisms by which HBx positively regulates cccDNA transcription and HBV replication.

  6. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  7. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats.

    Science.gov (United States)

    Martino, Maria Elena; Bayjanov, Jumamurat R; Caffrey, Brian E; Wels, Michiel; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; van Hijum, Sacha A F T; Leulier, François

    2016-12-01

    The ability of bacteria to adapt to diverse environmental conditions is well-known. The process of bacterial adaptation to a niche has been linked to large changes in the genome content, showing that many bacterial genomes reflect the constraints imposed by their habitat. However, some highly versatile bacteria are found in diverse habitats that almost share nothing in common. Lactobacillus plantarum is a lactic acid bacterium that is found in a large variety of habitat. With the aim of unravelling the link between evolution and ecological versatility of L. plantarum, we analysed the genomes of 54 L. plantarum strains isolated from different environments. Comparative genome analysis identified a high level of genomic diversity and plasticity among the strains analysed. Phylogenomic and functional divergence studies coupled with gene-trait matching analyses revealed a mixed distribution of the strains, which was uncoupled from their environmental origin. Our findings revealed the absence of specific genomic signatures marking adaptations of L. plantarum towards the diverse habitats it is associated with. This suggests fundamentally similar trends of genome evolution in L. plantarum, which occur in a manner that is apparently uncoupled from ecological constraint and reflects the nomadic lifestyle of this species. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Sonia Chadha

    Full Text Available A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens.

  9. Fragmentation of neck-like structures

    International Nuclear Information System (INIS)

    Montoya, C.; Bowman, D.R.; Peaslee, G.F.; Michigan State Univ., East Lansing, MI

    1994-01-01

    Evidence for intermediate mass fragment emission from neck-like structures joining projectile- and target-like residues has been observed for peripheral 129 Xe+ nat Cu collisions at E/A=50 MeV. These framents are emitted primarily at velocities intermediate between those of the projectile and the target. Relative to the charge distribution for fragments evaporated from the projectile-like residue, the distribution for ''neck'' emission shows an enhanced emission for fragments with 4 f < 8. (orig.)

  10. Forest Fragments Surrounded by Sugar Cane Are More Inhospitable to Terrestrial Amphibian Abundance Than Fragments Surrounded by Pasture

    Directory of Open Access Journals (Sweden)

    Paula Eveline Ribeiro D’Anunciação

    2013-01-01

    Full Text Available In recent years, there has been increasing interest in matrix-type influence on forest fragments. Terrestrial amphibians are good bioindicators for this kind of research because of low vagility and high philopatry. This study compared richness, abundance, and species composition of terrestrial amphibians through pitfall traps in two sets of semideciduous seasonal forest fragments in southeastern Brazil, according to the predominant surrounding matrix (sugar cane and pasture. There were no differences in richness, but fragments surrounded by sugar cane had the lowest abundance of amphibians, whereas fragments surrounded by pastures had greater abundance. The most abundant species, Rhinella ornata, showed no biometric differences between fragment groups but like many other amphibians sampled showed very low numbers of individuals in fragments dominated by sugar cane fields. Our data indicate that the sugar cane matrix negatively influences the community of amphibians present in fragments surrounded by this type of land use.

  11. Genome Transfer Prevents Fragmentation and Restores Developmental Potential of Developmentally Compromised Postovulatory Aged Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Yamada

    2017-03-01

    Full Text Available Changes in oocyte quality can have great impact on the developmental potential of early embryos. Here we test whether nuclear genome transfer from a developmentally incompetent to a developmentally competent oocyte can restore developmental potential. Using in vitro oocyte aging as a model system we performed nuclear transfer in mouse oocytes at metaphase II or at the first interphase, and observed that development to the blastocyst stage and to term was as efficient as in control embryos. The increased developmental potential is explained primarily by correction of abnormal cytokinesis at anaphase of meiosis and mitosis, by a reduction in chromosome segregation errors, and by normalization of the localization of chromosome passenger complex components survivin and cyclin B1. These observations demonstrate that developmental decline is primarily due to abnormal function of cytoplasmic factors involved in cytokinesis, while the genome remains developmentally fully competent.

  12. Pseudomonas aeruginosa Genome Evolution in Patients and under the Hospital Environment

    Directory of Open Access Journals (Sweden)

    Céline Lucchetti-Miganeh

    2014-04-01

    Full Text Available Pseudomonas aeruginosa is a Gram-negative environmental species and an opportunistic microorganism, establishing itself in vulnerable patients, such as those with cystic fibrosis (CF or those hospitalized in intensive care units (ICU. It has become a major cause of nosocomial infections worldwide and a serious threat to Public Health because of overuse and misuse of antibiotics that have selected highly resistant strains against which very few therapeutic options exist. Herein is illustrated the intraclonal evolution of the genome of sequential isolates collected in a single CF patient from the early phase of pulmonary colonization to the fatal outcome. We also examined at the whole genome scale a pair of genotypically-related strains made of a drug susceptible, environmental isolate recovered from an ICU sink and of its multidrug resistant counterpart found to infect an ICU patient. Multiple genetic changes accumulated in the CF isolates over the disease time course including SNPs, deletion events and reduction of whole genome size. The strain isolated from the ICU patient displayed an increase in the genome size of 4.8% with major genetic rearrangements as compared to the initial environmental strain. The annotated genomes are given in free access in an interactive web application WallGene  designed to facilitate large-scale comparative analysis and thus allowing investigators to explore homologies and syntenies between P. aeruginosa strains, here PAO1 and the five clinical strains described.

  13. Detection of prosecretory mitogen lacritin in nonprimate tears primarily as a C-terminal-like fragment.

    Science.gov (United States)

    Laurie, Diane E; Splan, Rebecca K; Green, Kari; Still, Katherine M; McKown, Robert L; Laurie, Gordon W

    2012-09-12

    Lacritin is a human tear glycoprotein that promotes basal tear protein secretion in cultured rat lacrimal acinar cells and proliferation of subconfluent human corneal epithelial cells. When topically added to rabbit eyes, lacritin promotes basal tearing. Despite these activities on several species, lacritin's presence in nonprimate tears or other tissues has not been explored. Here we probed for lacritin in normal horse tears. Sequences were collected from the Ensembl genomic alignment of human LACRT gene with high-quality draft horse genome (EquCab2.0) and analyzed. Normal horse tears were collected and assayed by Western blotting, ELISA, and mass spectrometry. Newly generated rabbit antibodies, respectively, against N- and C-terminal regions of human lacritin were employed. Identity was 75% and 45%, respectively, at nucleotide and protein levels. Structural features were conserved, including a C-terminal amphipathic α-helix. Anti-C-terminal antibodies strongly detected a ∼13 kDa band in horse tears that was validated by mass spectrometry. In human tears, the same antibody detected uncleaved lacritin (∼24 kDa) strongly and C-terminal fragments of ∼13 and ∼11 kDa weakly. Anti-N-terminal antibodies were slightly reactive with a ∼24 kDa horse antigen and showed no reaction with the anti-C-terminal-reactive ∼13 kDa species. Similar respective levels of horse C-terminal versus N-terminal immunoreactivity were apparent by ELISA. Lacritin is present in horse tears, largely as a C-terminal fragment homologous to the mitogenic and bactericidal region in human lacritin, suggesting potential benefit in corneal wound repair.

  14. Fragmentation of Ceramics in Rapid Expansion Mode

    Science.gov (United States)

    Maiti, Spandan; Geubelle, Philippe H.; Rangaswamy, Krishnan

    The study of the fragmentation process goes back to more than a century, motivated primarily by problems related to mining and ore handling (Grady and Kipp, 1985). Various theories have been proposed to predict the fragmentation stress and the fragment size and distribution. But the investigations are generally case specific and relate to only a narrow set of fragmentation processes. A number of theoretical studies of dynamic fragmentation in a rapidly expanding body can be found in the literature. For example, the study summarized in (Grady, 1982) presents a model based on a simple energy balance concept between the surface energy released due to fracture and the kinetic energy of the fragments. Subsequent refinements of the energy balance model have been proposed by (Glenn and Chudnovsky, 1986), which take into account the strain energy of the fragments and specify a threshold stress below which no fragmentation occurs. These models assume that the fracture events are instantaneous and occur simultaneously. Evidently, these assumptions are quite restrictive and these models can not take into account the transient nature of the fragmentation process after the onset of fracture in the material. A more recent model proposed by (Miller et al., 1999) however takes into account this time-dependent nature of the fragmentation event and the distribution of flaws of various strengths in the original material.

  15. Percolation versus microcanonical fragmentation - comparison of fragment size distribution: Where is the liquid-gas transition in nuclei?

    International Nuclear Information System (INIS)

    Jaqaman, H.R.; Birzeit Univ.; Papp, G.; Eoetvoes Lorand Tudomanyegyetem, Budapest; Gross, D.H.E.; Freie Univ. Berlin

    1990-01-01

    The distributions of fragments produced by microcanonical multifragmentation of hot nuclei are compared with the cluster distributions predicted by a bond percolation model on a finite lattice. The conditional moments of these distributions are used together with the correlations between the largest three fragments in each event. Whereas percolation and statistical nuclear fragmentation agree in many details as in the usual plots of the averaged moments of the fragment distributions which yield the critical exponents, they turn out to be essentially different when less averaged quantities or correlations are considered. The differences between the predictions of the two models are mainly due to the particularities of the nuclear problem, especially the effect of the long-range Coulomb force which favours the break-up of the highly excited nucleus into two large fragments (pseudo-fission) and, to a somewhat lesser extent, enhances the possibility for the cracking of the nucleus into more than two large fragments. The fission events are, however, clearly separated from a second branch of critical correlations which shows up clearly in both nuclear fragmentation and percolation. We think that this critical correlation branch is due to the liquid-gas phase transition in finite nuclei. (orig.)

  16. Long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele-specific MYC expression in HeLa cells.

    Science.gov (United States)

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Chen, Xiangmei; Lu, Fengmin

    2017-08-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis-activate the expression of proto-oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV-integrated haplotype, and a long-range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long-range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence-associated acidic β-gal activity in HeLa cells. These data indicate a long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  17. The formation of planets by disc fragmentation

    Directory of Open Access Journals (Sweden)

    Stamatellos Dimitris

    2013-04-01

    Full Text Available I discuss the role that disc fragmentation plays in the formation of gas giant and terrestrial planets, and how this relates to the formation of brown dwarfs and low-mass stars, and ultimately to the process of star formation. Protostellar discs may fragment, if they are massive enough and can cool fast enough, but most of the objects that form by fragmentation are brown dwarfs. It may be possible that planets also form, if the mass growth of a proto-fragment is stopped (e.g. if this fragment is ejected from the disc, or suppressed and even reversed (e.g by tidal stripping. I will discuss if it is possible to distinguish whether a planet has formed by disc fragmentation or core accretion, and mention of a few examples of observed exoplanets that are suggestive of formation by disc fragmentation.

  18. Extraction of 16th Century Calender Fragments

    DEFF Research Database (Denmark)

    Holck, Jakob Povl; Etheridge, Christian

    at the Cultural Heritage & Archaeometric Research Team, SDU. Upon finding medieval manuscript fragments in the university library’s special collections, scholars at the Centre for Medieval Literature are consulted. In most cases, digital pictures of the finds will circulate in the international community...... fragments may require extensive use of Big Data and other forms of analysis in order to be identified. Usually, the university library prefers not to remove the fragments from their “fragment carriers”. In order to read fragments that are only partially visible or invisible, x-ray technology may be deployed...... of medieval scholars. Thousands of 16th and 17th Century books are stored in the University Library of Southern Denmark. One out of five of these books is expected to contain medieval manuscript fragments or fragments of rare prints, e.g. incunabula....

  19. Genomic science provides new insights into the biology of forest trees

    Science.gov (United States)

    Andrew Groover

    2015-01-01

    Forest biology is undergoing a fundamental change fostered by the application of genomic science to longstanding questions surrounding the evolution, adaptive traits, development, and environmental interactions of tree species. Genomic science has made major technical leaps in recent years, most notably with the advent of 'next generation sequencing' but...

  20. Double-strand breaks in genome-sized DNA caused by mechanical stress under mixing: Quantitative evaluation through single-molecule observation

    Science.gov (United States)

    Kikuchi, Hayato; Nose, Keiji; Yoshikawa, Yuko; Yoshikawa, Kenichi

    2018-06-01

    It is becoming increasingly apparent that changes in the higher-order structure of genome-sized DNA molecules of more than several tens kbp play important roles in the self-control of genome activity in living cells. Unfortunately, it has been rather difficult to prepare genome-sized DNA molecules without damage or fragmentation. Here, we evaluated the degree of double-strand breaks (DSBs) caused by mechanical mixing by single-molecule observation with fluorescence microscopy. The results show that DNA breaks are most significant for the first second after the initiation of mechanical agitation. Based on such observation, we propose a novel mixing procedure to significantly decrease DSBs.