WorldWideScience

Sample records for environmental fate modeling

  1. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.

    Science.gov (United States)

    Sani-Kast, Nicole; Scheringer, Martin; Slomberg, Danielle; Labille, Jérôme; Praetorius, Antonia; Ollivier, Patrick; Hungerbühler, Konrad

    2015-12-01

    Engineered nanoparticle (ENP) fate models developed to date - aimed at predicting ENP concentration in the aqueous environment - have limited applicability because they employ constant environmental conditions along the modeled system or a highly specific environmental representation; both approaches do not show the effects of spatial and/or temporal variability. To address this conceptual gap, we developed a novel modeling strategy that: 1) incorporates spatial variability in environmental conditions in an existing ENP fate model; and 2) analyzes the effect of a wide range of randomly sampled environmental conditions (representing variations in water chemistry). This approach was employed to investigate the transport of nano-TiO2 in the Lower Rhône River (France) under numerous sets of environmental conditions. The predicted spatial concentration profiles of nano-TiO2 were then grouped according to their similarity by using cluster analysis. The analysis resulted in a small number of clusters representing groups of spatial concentration profiles. All clusters show nano-TiO2 accumulation in the sediment layer, supporting results from previous studies. Analysis of the characteristic features of each cluster demonstrated a strong association between the water conditions in regions close to the ENP emission source and the cluster membership of the corresponding spatial concentration profiles. In particular, water compositions favoring heteroaggregation between the ENPs and suspended particulate matter resulted in clusters of low variability. These conditions are, therefore, reliable predictors of the eventual fate of the modeled ENPs. The conclusions from this study are also valid for ENP fate in other large river systems. Our results, therefore, shift the focus of future modeling and experimental research of ENP environmental fate to the water characteristic in regions near the expected ENP emission sources. Under conditions favoring heteroaggregation in these

  2. Illustrating sensitivity in environmental fate models using partitioning maps - application to selected contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.; Wania, F. [Univ. of Toronto at Scarborough - DPES, Toronto (Canada)

    2004-09-15

    Generic environmental multimedia fate models are important tools in the assessment of the impact of organic pollutants. Because of limited possibilities to evaluate generic models by comparison with measured data and the increasing regulatory use of such models, uncertainties of model input and output are of considerable concern. This led to a demand for sensitivity and uncertainty analyses for the outputs of environmental fate models. Usually, variations of model predictions of the environmental fate of organic contaminants are analyzed for only one or at most a few selected chemicals, even though parameter sensitivity and contribution to uncertainty are widely different for different chemicals. We recently presented a graphical method that allows for the comprehensive investigation of model sensitivity and uncertainty for all neutral organic chemicals simultaneously. This is achieved by defining a two-dimensional hypothetical ''chemical space'' as a function of the equilibrium partition coefficients between air, water, and octanol (K{sub OW}, K{sub AW}, K{sub OA}), and plotting sensitivity and/or uncertainty of a specific model result to each input parameter as function of this chemical space. Here we show how such sensitivity maps can be used to quickly identify the variables with the highest influence on the environmental fate of selected, chlorobenzenes, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs) and brominated flame retardents (BFRs).

  3. Environmental fate of rice paddy pesticides in a model ecosystem.

    Science.gov (United States)

    Tomizawa, C; Kazano, H

    1979-01-01

    The distribution and metabolic fate of several rice paddy pesticides were evaluated in a modified model ecosystem. Among the three BHC isomers, beta-isomer was the most stable and bioconcentrated in all of the organisms. Alpha- and gamma-isomers were moderately persistent and degraded to some extent during the 33 day period. Disulfoton was relatively persistent due to the transformation to its oxidation products. Pyridaphenthion was fairly biodegradable. N-Phenyl maleic hydrazide derived from the hydrolysis of pyridaphenthion was not detected in the organisms though it was found in the aquarium water after 33 days. Cartap and edifenphos were considerably biodegradable, and the ratio of the conversion to water soluble metabolites was very high. There was a distinct difference in the persistence of Kitazin P and edifenphos in the aquarium water. It appeared that the hydrolysis rate of the pesticides affected their fate in the organisms. PCP appeared to be moderately biodegradable. CNP was considerably stable and stored in the organisms though the concentration in the aquarium water was relatively low. The persistence and distribution of the pesticides in the model ecosystem were dependent on their chemical structures. In spite of the limitation derived from short experimental period, the model ecosystem may be applicable for predicting the environmental fate of pesticides.

  4. Evaluating the Environmental Fate of Short-Chain Chlorinated Paraffins (SCCPs) in the Nordic Environment Using a Dynamic Multimedia Model

    OpenAIRE

    Krogseth, Ingjerd Sunde; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders; Schlabach, Martin

    2013-01-01

    Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SC...

  5. A multimedia fate model to evaluate the fate of PAHs in Songhua River, China

    International Nuclear Information System (INIS)

    Wang Ce; Feng Yujie; Sun Qingfang; Zhao Shanshan; Gao Peng; Li Bailian

    2012-01-01

    A multimedia fate model coupling dynamic water flow with a level IV fugacity model has been developed and applied to simulate the temporal and spatial fate of Polycyclic Aromatic Hydrocarbons (PAHs) in the Songhua River, China. The model has two components: in the first, the one-dimensional network kinematic wave equation is used to calculate varying water flow and depth. In the second, Fugacity IV equations are implemented to predict contaminant distributions in four environmental media. The estimated concentrations of eight PAHs in Songhua River are obtained, and all simulated results are in acceptable agreement with monitoring data, as verified with the Theil’s inequality coefficient test. The sensitivity of PAH concentration in each environmental phase to input parameters are also evaluated. Our results show the model predicts reasonably accurate contaminant concentrations in natural rivers, and that it can be used to supply necessary information for control and management of water pollution. - Highlights: ► The model used was developed based on kinematic wave equation and level IV fugacity principle. ► The model was applied to describe the fate and transport of organic chemicals in natural river. ► The concentrations of PAHs in water column were satisfactorily simulated when compared with monitoring data. ► Temporal and spatial variability of PAHs concentration among multimedia environmental phases was illustrated. - A dynamic water flow based multimedia fate model is developed to characterize the fate and transport of organic contaminant in natural rivers.

  6. Environmental fate of pesticides applied on coffee crops in ...

    African Journals Online (AJOL)

    The aim of this paper was evaluate the environmental fate of pesticides applied in coffee crops in southeast of Brazil, using the level I fugacity model. Chemical and physical characteristics of the pesticides were considered in different environmental compartments and applied fugacity equations. The preliminary evaluation ...

  7. Environmental fate and exposure models: advances and challenges in 21st century chemical risk assessment.

    Science.gov (United States)

    Di Guardo, Antonio; Gouin, Todd; MacLeod, Matthew; Scheringer, Martin

    2018-01-24

    Environmental fate and exposure models are a powerful means to integrate information on chemicals, their partitioning and degradation behaviour, the environmental scenario and the emissions in order to compile a picture of chemical distribution and fluxes in the multimedia environment. A 1995 pioneering book, resulting from a series of workshops among model developers and users, reported the main advantages and identified needs for research in the field of multimedia fate models. Considerable efforts were devoted to their improvement in the past 25 years and many aspects were refined; notably the inclusion of nanomaterials among the modelled substances, the development of models at different spatial and temporal scales, the estimation of chemical properties and emission data, the incorporation of additional environmental media and processes, the integration of sensitivity and uncertainty analysis in the simulations. However, some challenging issues remain and require research efforts and attention: the need of methods to estimate partition coefficients for polar and ionizable chemical in the environment, a better description of bioavailability in different environments as well as the requirement of injecting more ecological realism in exposure predictions to account for the diversity of ecosystem structures and functions in risk assessment. Finally, to transfer new scientific developments into the realm of regulatory risk assessment, we propose the formation of expert groups that compare, discuss and recommend model modifications and updates and help develop practical tools for risk assessment.

  8. Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model.

    Science.gov (United States)

    Fohrer, Nicola; Dietrich, Antje; Kolychalow, Olga; Ulrich, Uta

    2014-01-01

    This study aims to assess the environmental fate of the commonly used herbicides flufenacet and metazachlor in the Northern German Lowlands with the ecohydrological Soil and Water Assessment Tool (SWAT model) and to test the sensitivity of pesticide-related input parameters on the modeled transport dynamics. The river discharge of the Kielstau watershed was calibrated (Nash-Sutcliffe efficiency [NSE], 0.83; = 0.84) and validated (NSE, 0.76; = 0.77) for a daily time step. The environmental fate of metazachlor (NSE, 0.68; = 0.62) and flufenacet (NSE, 0.13; = 0.51) was simulated adequately. In comparison to metazachlor, the simulated flufenacet concentration and loads show a lower model efficiency due to the weaker simulation of the stream flow. The in-stream herbicide loads were less than 0.01% of the applied amount in the observed time period and thus not in conflict with European Environmental Legislation. The sensitivity analysis showed that, besides the accurate simulation of stream flow, the parameterization of the temporal and spatial distribution of the herbicide application throughout the watershed is the key factor for appropriate modeling results, whereas the physicochemical properties of the pesticides play a minor role in the modeling process. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Evaluating the environmental fate of short-chain chlorinated paraffins (SCCPs) in the Nordic environment using a dynamic multimedia model.

    Science.gov (United States)

    Krogseth, Ingjerd S; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders R; Schlabach, Martin

    2013-12-01

    Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SCCPs in the Nordic environment. Realistic SCCP emission scenarios, resolved by formula group, were estimated and used to predict the composition and concentrations of SCCPs in the environment and the human food chain. Emissions at the upper end of the estimated range resulted in predicted total concentrations that were often within a factor of 6 of observations. Similar model performance for a complex group of organic contaminants as for the well-known polychlorinated biphenyls strengthens the confidence in the CoZMoMAN model and implies a relatively good mechanistic understanding of the environmental fate of SCCPs. However, the degree of chlorination predicted for SCCPs in sediments, fish, and humans was higher than observed and poorly established environmental half-lives and biotransformation rate constants contributed to the uncertainties in the predicted composition and ∑SCCP concentrations. Improving prediction of the SCCP composition will also require better constrained estimates of the composition of SCCP emissions. There is, however, also large uncertainty and lack of coherence in the existing observations, and better model-measurement agreement will require improved analytical methods and more strategic sampling. More measurements of SCCP levels and compositions in samples from background regions are particularly important.

  10. Modelling the fate of organic micropollutants in stormwater ponds

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna

    2011-01-01

    ). The four simulated organic stormwater MP (iodopropynyl butylcarbamate — IPBC, benzene, glyphosate and pyrene) were selected according to their different urban sources and environmental fate. This ensures that the results can be extended to other relevant stormwater pollutants. All three models use......Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia...... models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP...

  11. Predictions by the multimedia environmental fate model SimpleBox compared to field data: Intermedia concentration ratios of two phthalate esters

    NARCIS (Netherlands)

    Struijs J; Peijnenburg WJGM; ECO

    2003-01-01

    The multimedia environmental fate model SimpleBox is applied to compute steady-state concentration ratios with the aim to harmonize environmetal quality objectives of air, water, sediment and soil. In 1995 the Dutch Health Council recommended validation of the model. Several activities were

  12. OPERA models for predicting physicochemical properties and environmental fate endpoints.

    Science.gov (United States)

    Mansouri, Kamel; Grulke, Chris M; Judson, Richard S; Williams, Antony J

    2018-03-08

    The collection of chemical structure information and associated experimental data for quantitative structure-activity/property relationship (QSAR/QSPR) modeling is facilitated by an increasing number of public databases containing large amounts of useful data. However, the performance of QSAR models highly depends on the quality of the data and modeling methodology used. This study aims to develop robust QSAR/QSPR models for chemical properties of environmental interest that can be used for regulatory purposes. This study primarily uses data from the publicly available PHYSPROP database consisting of a set of 13 common physicochemical and environmental fate properties. These datasets have undergone extensive curation using an automated workflow to select only high-quality data, and the chemical structures were standardized prior to calculation of the molecular descriptors. The modeling procedure was developed based on the five Organization for Economic Cooperation and Development (OECD) principles for QSAR models. A weighted k-nearest neighbor approach was adopted using a minimum number of required descriptors calculated using PaDEL, an open-source software. The genetic algorithms selected only the most pertinent and mechanistically interpretable descriptors (2-15, with an average of 11 descriptors). The sizes of the modeled datasets varied from 150 chemicals for biodegradability half-life to 14,050 chemicals for logP, with an average of 3222 chemicals across all endpoints. The optimal models were built on randomly selected training sets (75%) and validated using fivefold cross-validation (CV) and test sets (25%). The CV Q 2 of the models varied from 0.72 to 0.95, with an average of 0.86 and an R 2 test value from 0.71 to 0.96, with an average of 0.82. Modeling and performance details are described in QSAR model reporting format and were validated by the European Commission's Joint Research Center to be OECD compliant. All models are freely available as an open

  13. Development and evaluation of the bacterial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model.

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Jeong, Jaehak; Pachepsky, Yakov A

    2018-02-15

    The Agricultural Policy/Environmental eXtender (APEX) is a watershed-scale water quality model that includes detailed representation of agricultural management. The objective of this work was to develop a process-based model for simulating the fate and transport of manure-borne bacteria on land and in streams with the APEX model. The bacteria model utilizes manure erosion rates to estimate the amount of edge-of-field bacteria export. Bacteria survival in manure is simulated as a two-stage process separately for each manure application event. In-stream microbial fate and transport processes include bacteria release from streambeds due to sediment resuspension during high flow events, active release from the streambed sediment during low flow periods, bacteria settling with sediment, and survival. Default parameter values were selected from published databases and evaluated based on field observations. The APEX model with the newly developed microbial fate and transport module was applied to simulate fate and transport of the fecal indicator bacterium Escherichia coli in the Toenepi watershed, New Zealand that was monitored for seven years. The stream network of the watershed ran through grazing lands with daily bovine waste deposition. Results show that the APEX with the bacteria module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water as affected by various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Published by Elsevier B.V.

  14. Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...

  15. Model ecosystem determination of the metabolic and environmental fate of tetrachloro-DDT

    International Nuclear Information System (INIS)

    Cole, R.B.; Metcalf, R.L.

    1987-01-01

    A potential hazardous waste site investigation was conducted by the Environmental Protection Agency to determine whether ground water, surface water, or area soils and sediments were contaminated as a result of waster water discharges or improper solid waste disposal practices of a pesticide manufacturer. One of the compounds discharged into the environment was 1,1,1,2-tetrachloro-2,2-bis(p-chlorophenyl)ethane, commonly referred to as tetrachloro-DDT. Unlike a great many of the DDT analogs, tetrachloro-DDT has come under only limited scrutiny, mainly because it was dismissed as having poor insecticidal properties relative to DDT and other analogs. Its metabolism in ingesting organisms, and degradative pathways in the environment have consequently been left uncertain. This model ecosystem study was undertaken to examine the unanswered questions concerning the metabolic and environmental fate of tetrachloro-DDT. The relevance of this study pertains to disposal practices of pesticide manufacturers who use tetrachloro-DDT as a product precursor

  16. Fate modelling of chemical compounds with incomplete data sets

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, Reinout

    2011-01-01

    Impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. These data are used in multi-media fate and exposure models, to calculate risk levels...... in an approximate way. The idea is that not all data needed in a multi-media fate and exposure model are completely independent and equally important, but that there are physical-chemical and biological relationships between sets of chemical properties. A statistical model is constructed to underpin this assumption...... and other indicators. ERA typically addresses one specific chemical, but in an LCIA, the number of chemicals encountered may be quite high, up to hundreds or thousands. This study explores the development of meta-models, which are supposed to reflect the “true”multi-media fate and exposure model...

  17. Investigating the Toxicity and Environmental Fate of Graphene Nanomaterials

    Science.gov (United States)

    The Hersam Laboratory at Northwestern University works with the Center for Environmental Implications of Nanotechnology and the United States Environmental Protection Agency to study the toxicity and environmental fate of emergent nanomaterials, specifically carbon-based nanomate...

  18. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural

  19. Modeling Engineered Nanomaterials (ENMs) Fate and ...

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  20. Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials

    DEFF Research Database (Denmark)

    Baun, Anders; Sayre, Phil; Steinhäuser, Klaus Günter

    2017-01-01

    The widespread use of manufactured nanomaterials (MN) increases the need for describing and predicting their environmental fate and behaviour. A number of recent reviews have addressed the scientific challenges in disclosing the governing processes for the environmental fate and behaviour of MNs,...... data. Gaps do however exist in test methods for environmental fate, such as methods to estimate heteroagglomeration and the tendency for MNs to transform in the environment.......The widespread use of manufactured nanomaterials (MN) increases the need for describing and predicting their environmental fate and behaviour. A number of recent reviews have addressed the scientific challenges in disclosing the governing processes for the environmental fate and behaviour of MNs......, however there has been less focus on the regulatory adequacy of the data available for MN. The aim of this paper is therefore to review data, testing protocols and guidance papers which describe the environmental fate and behaviour of MN with a focus on their regulatory reliability and relevance. Given...

  1. 40 CFR 158.1300 - Environmental fate data requirements table.

    Science.gov (United States)

    2010-07-01

    ... transformation products. 7. Environmental chemistry methods used to generate data associated with this study must... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Environmental fate data requirements table. 158.1300 Section 158.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  2. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov

    2017-04-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module

  3. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.

    1997-06-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  4. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  5. Choice of pesticide fate models

    International Nuclear Information System (INIS)

    Balderacchi, Matteo; Trevisan, Marco; Vischetti, Costantino

    2006-01-01

    The choice of a pesticide fate model at field scale is linked to the available input data. The article describes the available pesticide fate models at a field scale and the guidelines for the choice of the suitable model as function of the data input requested [it

  6. Sources and fate of environmental radioactivity at the earth's surface

    International Nuclear Information System (INIS)

    El-Daoushy, F.

    2010-01-01

    Sources and fate of environmental radioactivity at the earth surface This is to link environmental radioactivity to RP in Africa? To describe the benefits of Africa from this field in terms of RP, safety and security policies. To create a mission and a vision to fulfil the needs of ONE PEOPLE, ONE GOAL, ONE FAITH. Sources, processes and fate of environmental radioactivity Previous experience helps setting up an African agenda.(1) Factors influencing cosmogenic radionuclides(2) Factors influencing artificial radionuclides: (a) nuclear weapon-tests (b) nuclear accidents (c) Energy, mining and industrial waste (3) Factors influencing the global Rn-222 and its daughters. (4) Dynamics of cycles of natural radioactivity, e.g. Pb-210. (5) Environmental radiotracers act as DIAGNOSTIC TOOLS to assess air and water quality and impacts of the atmospheric and hydrospheric compartments on ecosystems.6) Definition of base-lines for rehabilitation and protection. Climate influences sources/behaviour/fate of environmental radioactivity. Impacts on life forms in Africa would be severe. Assessing environmental radioactivity resolves these issue

  7. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review.

    Science.gov (United States)

    Amde, Meseret; Liu, Jing-Fu; Pang, Long

    2015-11-03

    Ionic liquids (ILs) comprise mostly of organic salts with negligible vapor pressure and low flammability that are proposed as replacements for volatile solvents. ILs have been promoted as "green" solvents and widely investigated for their various applications. Although the utility of these chemicals is unquestionable, their toxic effects have attracted great attention. In order to manage their potential hazards and design environmentally benign ILs, understanding their environmental behavior, fate and effects is important. In this review, environmentally relevant issues of ILs, including their environmental application, environmental behavior and toxicity are addressed. In addition, also presented are the influence of ILs on the environmental fate and toxicity of other coexisting contaminants, important routes for designing nontoxic ILs and the techniques that might be adopted for the removal of ILs.

  8. Evaluating the environmental fate of pharmaceuticals using a level III model based on poly-parameter linear free energy relationships

    International Nuclear Information System (INIS)

    Zukowska, Barbara; Breivik, Knut; Wania, Frank

    2006-01-01

    We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties

  9. Evaluating the environmental fate of pharmaceuticals using a level III model based on poly-parameter linear free energy relationships

    Energy Technology Data Exchange (ETDEWEB)

    Zukowska, Barbara [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-952 Gdansk (Poland); Breivik, Knut [NILU- Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller (Norway)]. E-mail: knut.breivik@nilu.no; Wania, Frank [Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4 (Canada)

    2006-04-15

    We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties.

  10. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    International Nuclear Information System (INIS)

    Ying Guangguo; Yu Xiangyang; Kookana, Rai S.

    2007-01-01

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil

  11. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guangguo, Ying [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)], E-mail: guang-guo.ying@gig.ac.cn; Xiangyang, Yu [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia); Food Safety Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Kookana, Rai S [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)

    2007-12-15

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil.

  12. Modeling the fate and transport of bacteria in agricultural and pasture lands using APEX

    Science.gov (United States)

    The Agricultural Policy/Environmental eXtender (APEX) model is a whole farm to small watershed scale continuous simulation model developed for evaluating various land management strategies. The current version, APEX0806, does not have the modeling capacity for fecal indicator bacteria fate and trans...

  13. Fate of triazoles in softwood upon environmental exposure.

    Science.gov (United States)

    Kukowski, Klara; Martinská, Veronika; Sedgeman, Carl A; Kuplic, Paige; Kozliak, Evguenii I; Fisher, Stephen; Kubátová, Alena

    2017-10-01

    Determining the fate of preservatives in commercial wood products is essential to minimize their losses and improve protective impregnation techniques. The fate of triazole fungicides in ponderosa pine wood was investigated in both outdoor and controlled-environment experiments using a representative triazole, tebuconazole (TAZ), which was accompanied by propiconazole (PAZ) in selected experiments. The study was designed to mimic industrial settings used in window frame manufacturing. To investigate the TAZ fate in detail, loosely and strongly bound fractions were differentiated using a multi-step extraction. The loosely bound TAZ fraction extracted through two sonications accounted for 85± 5% of the total TAZ, while the strongly bound TAZ was extracted only with an exhaustive Soxhlet extraction and corresponded to the remaining 15± 5%. A significant fraction (∼80%) of the original TAZ remained in the wood despite a six-month exposure to harsh environmental conditions, maintaining wood preservation and assuring minimal environmental impact. Depletion of loosely bound TAZ was observed from cross-sectional surfaces when exposed to rain, high humidity and sunlight. Water leaching was deemed to be the major route leading to triazole losses from wood. Leaching rate was found to be slightly higher for TAZ than for PAZ. The contribution of bio-, photo- and thermal degradation of triazoles was negligible as both PAZ and TAZ sorbed in wood remained intact. Triazole evaporation was also found to be minor at the moderate temperature (20-25 °C) recorded throughout the outdoor study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Controls on the Environmental Fate of Compounds Controlled by Coupled Hydrologic and Reactive Processes

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; McConville, M.; Remucal, C.

    2017-12-01

    Current understanding of how compounds interact with hydrologic processes or reactive processes have been well established. However, the environmental fate for compounds that interact with hydrologic AND reactive processes is not well known, yet critical in evaluating environmental risk. Evaluations of risk are often simplified to homogenize processes in space and time and to assess processes independently of one another. However, we know spatial heterogeneity and time-variable reactivities complicate predictions of environmental transport and fate, and is further complicated by the interaction of these processes, limiting our ability to accurately predict risk. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  15. The environmental fate of polybrominated diphenyl ethers in the centre of Stockholm - Assessment using a multimedia fugacity model

    Energy Technology Data Exchange (ETDEWEB)

    Palm, Anna

    2001-01-01

    A local-scale assessment of the environmental fate of three congeners of polybrominated diphenyl ethers (PBDEs) has been performed for the centre of Stockholm. The partitioning properties and main transport processes of these congeners in Stockholm are identified using a site-specific multimedia fugacity model, called CeStoc, that was developed and parameterized for the area of interest. CeStoc was based on level III and IV fugacity models. Five compartments were included: air, water, soil, sediment and an organic film covering the impervious surfaces in the city. The model was satisfactory calibrated with the PAH fluoranthene, before it was run for the compounds of interest. Validation with environmental levels of PBDEs was made where possible, showing reasonable agreement with model results. According to the CeStoc results, the majority of the PBDEs emitted are transported out of the region through air advection, implying that Stockholm may act as a source for chemical release to other regions. The largest sink for PBDEs in Stockholm is soil, closely followed by sediment, the two compartments together accounting for about 98 % of the total amount remaining in the system. The degree of bromination does not seem to have a large impact on the environmental distribution in this area, but further research on e.g. physical-chemical properties is necessary before this can be finally concluded. Predicted concentrations of individual PBDE congeners in sediment and water lie in the same range as measured levels of individual PCB-congeners, indicating that PBDEs could have an environmental impact of about the same size as the PCBs.

  16. Study of the photodegradation of a fragrance ingredient for aquatic environmental fate assessment.

    Science.gov (United States)

    Lin, Jianming; Emberger, Matthew

    2017-04-01

    Photodegradation is an important abiotic degradation process to be taken into account for more accurate assessment of the fate of chemicals in the aquatic environment, especially those that are not readily biodegradable. Although the significant role of indirect photodegradation in the environmental fate of chemicals has been revealed in recent research, because of the many confounding factors affecting its kinetics, no straightforward approaches can be used to investigate this degradation process for environmental fate assessment. The indirect photodegradation of a fragrance ingredient named Pamplewood was studied in this work for its fate assessment. Indirect photodegradation rates under various indoor and outdoor conditions were measured by using an LC-MS method. Although the half-lives varied from 4 to 13 days, they collectively indicated that Pamplewood is intrinsically photolabile and can undergo rapid photodegradation. Results from quencher experiments revealed that ⋅OH was the main reactive intermediate responsible for indirect photodegradation, with a half-life of about 18 days in sunlit surface water, based on the experimentally determined second-order rate constant (8.48 ± 0.19 × 10 9  M -1  s -1 ). Photodegradation products of Pamplewood were also studied by GC-MS, LC-MS and total organic carbon content analyses. The results indicated that intermediates of Pamplewood photodegradation continued to photodegrade into smaller and more polar species. Complete mineralization of Pamplewood was observed when it was reacted with hydroxyl radicals in an aqueous solution. This novel approach can be applied for a more realistic environmental fate assessment of other non-readily biodegradable, hydrolysis-resistant, and non-sunlight-absorbing fragrance ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Climate-based archetypes for the environmental fate assessment of chemicals.

    Science.gov (United States)

    Ciuffo, Biagio; Sala, Serenella

    2013-11-15

    Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits

  18. GLOBOX : A spatially differentiated global fate, intake and effect model for toxicity assessment in LCA

    NARCIS (Netherlands)

    Wegener Sleeswijk, Anneke; Heijungs, Reinout

    GLOBOX is a model for the calculation of spatially differentiated LCA toxicity characterisation factors on a global scale. It can also be used for human and environmental risk assessment. The GLOBOX model contains equations for the calculation of fate, intake and effect factors, and equations for

  19. Challenges in assessing the environmental fate and exposure of nano silver

    International Nuclear Information System (INIS)

    Whiteley, Cherrie M; Jones, Kevin C; Sweetman, Andy J; Dalla Valle, Matteo

    2011-01-01

    There are significant challenges in assessing the fate and exposure of nano particles (NPs) owing to the lack of information on their use and potential pathways and sinks in the environment. This paper discusses these issues using nanosilver as a case study. The approach taken is to assess the production of nanosilver, the range of products that utilise its properties, potential environmental release pathways and subsequent fate. Estimates of UK nanosilver released into the environment have been made and sewage sludge identified as an important receiving compartment. This work aims to highlight the on-going challenges faced when assessing NPs in the environment. Using nanosilver as an example, difficulties in assessing production, use and release are discussed. The study also recommends a potential approach to assess the fate and behaviour assessment of nanosilver in the environment.

  20. Assessing the transport and fate of bioengineered microorganisms in the environment

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Palumbo, A.V.

    1985-01-01

    We review the methods currently available for quantifying the transport and fate of microbes in atmospheric and aqueous media and assess their adequacy for purposes of risk assessment. We review the literature on transport and fate of microorganisms, including studies of: (1) pathways of migration, (2) the survival of microorganisms during transport and fate. In addition, we review the transport and fate models that have been used in environmental risk assessments for radionuclides and toxic chemicals and evaluate their applicability to the problem of assessing environmental risks of bioengineered microorganisms

  1. 40 CFR 158.2150 - Microbial pesticides nontarget organisms and environmental fate data requirements table.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Microbial pesticides nontarget... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Microbial Pesticides § 158.2150 Microbial pesticides nontarget organisms and environmental fate data...

  2. The environmental fate of polybrominated diphenyl ethers in the Great Lakes Basin

    Science.gov (United States)

    Gouin, Todd William

    Semi-volatile organic compounds, such as the polybrominated diphenyl ethers (PBDEs) have the potential to undergo long-range atmospheric transport (LRAT) to remote locations, which can increase the exposure of sensitive ecosystems to potentially harmful substances. Regulatory instruments, such as the Stockholm Convention on persistent organic pollutants (POPs), have been implemented to limit and/or prevent this exposure. Through the acquisition of scientific data, knowledge can be gained about the environmental fate and human exposure of chemical substances, and the risks associated with using those substances assessed. PBDEs are a class of flame retardants that are used in a wide range of commercial products. In response to growing concern over the detection of PBDEs in remote regions, a number of regulatory bodies have implemented measures to restrict the use of PBDEs. Using a suite of environmental fate models it is shown that PBDEs will most likely partition to organic carbon in soil and sediment, and that their persistence in the environment will be strongly influenced by their reactivity in those compartments. The transport potential of the PBDEs is investigated using the transport and persistence level III model TaPL3, using model environments with and without vegetation. It is suggested that the LRAT potential of the PBDEs is likely to be greater for the more volatile lower brominated congeners than for the higher brominated congeners, and that the LRAT may be sensitive to seasonal changes in the environment, such as temperature, vegetation and changes in precipitation. Furthermore, model results suggest that the PBDEs may be subject to a "spring pulse" effect, whereby concentrations are elevated in air during the early spring. Field studies support the theory of a "spring pulse" effect, where concentrations were observed to be five times greater during the period between snowmelt and bud burst than the average concentration before and after, but conclude

  3. Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model

    International Nuclear Information System (INIS)

    Prevedouros, Konstantinos; MacLeod, Matthew; Jones, Kevin C.; Sweetman, Andrew J.

    2004-01-01

    A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of γ-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5 deg. x 5 deg. grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5-10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it

  4. Environmental fate of TCDD and Agent Orange and bioavailability to troops in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Karch, N.J.; Watkins, D.K.; Ginevan, M.E. [Exponent, Inc., Washington, DC (United States); Young, A.L. [Oklahoma Univ., Norman, OK (United States)

    2004-09-15

    This paper reviews the environmental fate of Agent Orange and the contaminant, 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD), and discusses how this affects the bioavailability of TCDD for ground troops in Vietnam.

  5. Environmental fate and behaviour of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Skjolding, Lars Michael; Hansen, Steffen Foss

    In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified.......In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified....

  6. BETR global - A geographically-explicit global-scale multimedia contaminant fate model

    International Nuclear Information System (INIS)

    MacLeod, Matthew; Waldow, Harald von; Tay, Pascal; Armitage, James M.; Woehrnschimmel, Henry; Riley, William J.; McKone, Thomas E.; Hungerbuhler, Konrad

    2011-01-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15 o x 15 o grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5). - Two new software implementations of the Berkeley-Trent Global Contaminant Fate Model are available. The new model software is illustrated using a case study of the global fate of decamethylcyclopentasiloxane (D5).

  7. Review of nitrogen fate models applicable to forest landscapes in the Southern U.S.

    Science.gov (United States)

    D. M. Amatya; C. G. Rossi; A. Saleh; Z. Dai; M. A. Youssef; R. G. Williams; D. D. Bosch; G. M. Chescheir; G. Sun; R. W. Skaggs; C. C. Trettin; E. D. Vance; J. E. Nettles; S. Tian

    2013-01-01

    Assessing the environmental impacts of fertilizer nitrogen (N) used to increase productivity in managed forests is complex due to a wide range of abiotic and biotic factors affecting its forms and movement. Models developed to predict fertilizer N fate (e.g., cycling processes) and water quality impacts vary widely in their design, scope, and potential application. We...

  8. Fate modeling of mercury species and fluxes estimation in an urban river

    International Nuclear Information System (INIS)

    Tong, Yindong; Zhang, Wei; Chen, Cen; Chen, Long; Wang, Wentao; Hu, Xindi; Wang, Huanhuan; Hu, Dan; Ou, Langbo; Wang, Xuejun; Wang, Qiguang

    2014-01-01

    The fate and transfer of mercury in urban river is an important environmental concern. In this study, QWASI (Quantitative Water–Air–Sediment Interaction) model was selected to estimate the levels of total mercury and three mercury species in water and sediment, and was used to quantify the fluxes of mercury at water/air and sediment/water interfaces of an urban river. The predicted mercury levels in water and sediments were closed to the measured values. Water inflow, re-suspension of sediment and diffusion from sediment to water are major input sources of mercury in water. The net mercury transfer flux from water to air was 0.16 ng/(m 2 h). At the sediment/water interface, a net total mercury transfer of 1.32 ng/(m 2 h) from water to sediment was seen. In addition to the existing dynamic flux chambers measurement, this model method could provide a new perspective to identify the distribution and transfer of mercury in the urban river. -- Highlights: • QWASI could be a good tool to quantify transfer and fate of mercury in environment. • Distribution and flux of mercury species in an urban river was modeled. • Mercury in water mainly came from water inflow, sediment re-suspension and diffusion. • Net mercury transfer from water to air and sediment were 0.16 and 1.32 ng/(m 2 h). -- Quantitative Water–Air–Sediment Interaction model was used to quantify the transfer and fate of mercury in an urban river

  9. Effects of pH upon the environmental fate of [14C]fenitrothion in an aquatic microcosm

    International Nuclear Information System (INIS)

    Fisher, S.W.

    1985-01-01

    The environmental fate of [ 14 C]fenitrothion was evaluated in aquatic microcosms held at pH 8.3 or 6.7. No general effect attributable to pH was observed; however, several significant interactions were identified. Of these, the findings that statistically higher amounts of radioactivity were present in water held at pH 6.7 and that significantly less metabolism of the parent compound occurred in the organisms at pH 8.3 were preeminent. These differences seen in metabolism and environmental fate between pH values are relatively minor and do not compromise the safety of the compound

  10. Environmental Behavior and Fate of Explosives in Groundwater from the Milan Army Ammunition Plant in Aquatic and Wetland Plants. Fate of TNT and RDX

    National Research Council Canada - National Science Library

    Best, Elly

    1998-01-01

    The present study was performed to elucidate the environmental behavior and fate of TNT and RDX in aquatic and wetland plants collected from a field-scale wetland demonstration deployed at Milan Army...

  11. Environmental fate of tungsten from military use

    International Nuclear Information System (INIS)

    Clausen, Jay L.; Korte, Nic

    2009-01-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use

  12. Environmental fate of hexabromocyclododecane from a new Canadian electronic recycling facility.

    Science.gov (United States)

    Tomko, Geoffrey; McDonald, Karen M

    2013-01-15

    An electronics recycling facility began operation at the municipal landfill site for the City of Edmonton, Canada in March 2008 with the goal of processing 30,000 tonnes of electronic wastes per year. Of the many by-products from the process, brominated fire retardants such as hexabromocyclododecane (HBCD) can evolve off of e-wastes and be released into the environmental media. HBCD has been identified by many countries and international bodies as a chemical of concern because of its ability to bioaccumulate in the ecosystem. An evaluation of the potential emission of HBCD indicates that up to 500 kg per year may be released from a landfill and recycling facility such as that operating in Edmonton. A multimedia fugacity model was used to evaluate the dispersion and fate of atmospherically emitted HBCD traveling into surrounding agricultural land and forested parkland. The model indicates that the three isomers of HBCD partitioned into environmental media similarly. Much of the HBCD is lost through atmospheric advection, but it is also found in soil and sediment. Modeled air concentrations are similar to those measured at locations with a history of e-waste recycling. Since HBCD has been shown to bioaccumulate, the HBCD released from this source has the long-term potential to affect agricultural food crops and the park ecosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment

    NARCIS (Netherlands)

    Huijbregts, M.A.J.; Struijs, Jaap; Goedkoop, Mark; Heijungs, Reinout; Jan Hendriks, A.; Van De Meent, Dik

    2005-01-01

    The present paper outlines an update of the fate and exposure part of the fate, exposure and effects model USES-LCA. The new fate and exposure module of USES-LCA was applied to calculate human population intake fractions and fate factors of the freshwater, marine and terrestrial environment for 3393

  14. A polynomial based model for cell fate prediction in human diseases.

    Science.gov (United States)

    Ma, Lichun; Zheng, Jie

    2017-12-21

    Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to treat human diseases that are related to abnormal cell development. In this study, we proposed a polynomial based model to predict cell fate. This model was derived from Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model. As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition, we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as well as assessing the variances of the predicted values at randomly selected points. Results show that, within both the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within genes of the apoptosis pathway is much more stable. Considering both the prediction accuracy and the stability of polynomial models of different degrees, the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The presented cell fate prediction model can be extended to other cells, which may be important for basic research as well as clinical study of cell development related diseases.

  15. Using integrated environmental modeling to automate a process-based Quantitative Microbial Risk Assessment

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, an...

  16. Environmental fate of tungsten from military use

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jay L. [Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire, 03755 (United States)], E-mail: Jay.L.Clausen@erdc.usace.army.mil; Korte, Nic [1946 Clover Ct., Grand Junction, Colorado, 81506 (United States)

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  17. Using Integrated Environmental Modeling to Automate a Process-Based Quantitative Microbial Risk Assessment (presentation)

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and...

  18. Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases.

    Science.gov (United States)

    van Zelm, Rosalie; Stam, Gea; Huijbregts, Mark A J; van de Meent, Dik

    2013-01-01

    Freshwater fate and exposure factors were determined for organic acids and bases, making use of the knowledge on electrical interaction of ionizing chemicals and their sorption to particles. The fate factor represents the residence time in the environment whereas exposure factors equal the dissolved fraction of a chemical. Multimedia fate, exposure, and effect model USES-LCA was updated to take into account the influence of ionization, based upon the acid dissociation constant (pK(a)) of a chemical, and the environmental pH. Freshwater fate (FF) and exposure (XF) factors were determined for 415 acids and 496 bases emitted to freshwater, air, and soil. The relevance of taking account of the degree of ionization of chemicals was tested by determining the ratio (R) of the new vs. fate and exposure factors determined with USES-LCA suitable for neutral chemicals only. Our results show that the majority of freshwater fate and exposure factors of chemicals that are largely ionized in the environment are larger with the ionics model compared to the factors determined with the neutrals model version. R(FF) ranged from 2.4×10(-1) to 1.6×10(1) for freshwater emissions, from 1.2×10(-2) to 2.0×10(4) for soil emissions and from 5.8×10(-2) to 6.0×10(3) for air emissions, and R(XF) from 5.3×10(-1) to 2.2×10(1). Prediction of changed solid-water partitioning, implying a change in runoff and in removal via sedimentation, and prediction of negligible air-water partition coefficient, leading to negligible volatilization were the main contributors to the changes in freshwater fate factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Environmental Fate and Effects of Organotin Biocides: A Molecular and Microbiological Assessment.

    Science.gov (United States)

    1986-12-12

    and effects of the toxic tributyltin species, an active agent in new ship antifouling coatings. -44-4eiped- vltratrace’butyltin measurement’ ehdl c d...environments. However, the environmental occurrence, fate and effects of the highly toxic tributyltin species leached from the paints was virtually unexplored...biodegradation of tributyltin species; and 4) provided novel molecular topological correlations between molecular geometry and toxicity of organotin

  20. [Environmental behavior of graphene and its effect on the transport and fate of pollutants in environment].

    Science.gov (United States)

    Ren, Wen-Jie; Teng, Ying

    2014-09-01

    Graphene is one of the most popular research topics in carbon nanomaterials. Because of its special physical and chemical properties, graphene will have wide applications. As the production and application amount is increasing, graphene will be inevitably released to the environment, resulting in risks of ecological environment and human health. It is of very vital significance for evaluating environmental risks of graphene scientifically and objectively to understand its environmental behavior and fate and explore its effect on the environmental behaviors of pollutants. This paper reviewed the environmental behavior of graphene, such as colloid properties and its stability in the aqueous environment and its transport through porous media. Additionally, the paper reviewed the effect of graphene on the transport and fate of pollutants. The interactions between graphene and heavy metals or organic compounds were especially discussed. Important topics should be explored including sorption mechanisms, interactions between graphene and soil components, influence of graphene on the transport and bioavailability of pollutants in environment, as well as approaches to quantifying graphene. The review might identify potential new ideas for further research in applications of graphene.

  1. Surface Immobilization of Engineered Nanomaterials for in Situ Study of their Environmental Transformations and Fate

    Science.gov (United States)

    The transformation and environmental fate of engineered nanomaterials (ENMs) is the focus of intense research due to concerns about their potential impacts in the environment as a result of their uniquely engineered properties. Many approaches are being applied to investigate th...

  2. Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: A case study for gasoline hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Matthew; McKone, Thomas E.; Foster, Karen L.; Maddalena, Randy L.; Parkerton, Thomas F.; Mackay, Don

    2004-02-01

    Mass balance models of chemical fate and transport can be applied in ecological risk assessments for quantitative estimation of concentrations in air, water, soil and sediment. These concentrations can, in turn, be used to estimate organism exposures and ultimately internal tissue concentrations that can be compared to mode-of-action-based critical body residues that correspond to toxic effects. From this comparison, risks to the exposed organism can be evaluated. To illustrate the practical utility of fate models in ecological risk assessments of commercial products, the EQC model and a simple screening level biouptake model including three organisms, (a bird, a mammal and a fish) is applied to gasoline. In this analysis, gasoline is divided into 24 components or ''blocks'' with similar environmental fate properties that are assumed to elicit ecotoxicity via a narcotic mode of action. Results demonstrate that differences in chemical properties and mode of entry into the environment lead to profound differences in the efficiency of transport from emission to target biota. We discuss the implications of these results and insights gained into the regional fate and ecological risks associated with gasoline. This approach is particularly suitable for assessing mixtures of components that have similar modes of action. We conclude that the model-based methodologies presented are widely applicable for screening level ecological risk assessments that support effective chemicals management.

  3. Developing climatic scenarios for pesticide fate modelling in Europe

    International Nuclear Information System (INIS)

    Blenkinsop, S.; Fowler, H.J.; Dubus, I.G.; Nolan, B.T.; Hollis, J.M.

    2008-01-01

    A climatic classification for Europe suitable for pesticide fate modelling was constructed using a 3-stage process involving the identification of key climatic variables, the extraction of the dominant modes of spatial variability in those variables and the use of k-means clustering to identify regions with similar climates. The procedure identified 16 coherent zones that reflect the variability of climate across Europe whilst maintaining a manageable number of zones for subsequent modelling studies. An analysis of basic climatic parameters for each zone demonstrates the success of the scheme in identifying distinct climatic regions. Objective criteria were used to identify one representative 26-year daily meteorological series from a European dataset for each zone. The representativeness of each series was then verified against the zonal classifications. These new FOOTPRINT climate zones provide a state-of-the-art objective classification of European climate complete with representative daily data that are suitable for use in pesticide fate modelling. - The FOOTPRINT climatic zones provide an objective climatic classification and daily climate series that may be used for the modelling of pesticide fate across Europe

  4. Overview of research and development in subsurface fate and transport modeling

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Chehata, M.

    1995-05-01

    The US Department of Energy is responsible for the remediation of over 450 different subsurface-contaminated sites. Contaminant plumes at these sites range in volume from several to millions of cubic yards. The concentration of contaminants also ranges over several orders of magnitude. Contaminants include hazardous wastes such as heavy metals and organic chemicals, radioactive waste including tritium, uranium, and thorium, and mixed waste, which is a combination of hazardous and radioactive wastes. The physical form of the contaminants includes solutes, nonaqueous phase liquids (NAPLs), and vapor phase contaminants such as volatilized organic chemicals and radon. The subject of contaminant fate and transport modeling is multi-disciplinary, involving hydrology, geology, microbiology, chemistry, applied mathematics, computer science, and other areas of expertise. It is an issue of great significance in the United States and around the world. As such, many organizations have substantial programs in this area. In gathering data to prepare this report, a survey was performed of research and development work that is funded by US government agencies to improve the understanding and mechanistic modeling of processes that control contaminant movement through subsurface systems. Government agencies which fund programs that contain fate and transport modeling components include the Environmental Protection Agency, Nuclear Regulatory Commission, Department of Agriculture, Department of Energy, National Science Foundation, Department of Defense, United States Geological Survey, and National Institutes of Health

  5. Evaluating the usefulness of dynamic pollutant fate models for implementing the EU Water Framework Directive.

    Science.gov (United States)

    Gevaert, Veerle; Verdonck, Frederik; Benedetti, Lorenzo; De Keyser, Webbey; De Baets, Bernard

    2009-06-01

    The European Water Framework Directive (WFD) aims at achieving a good ecological and chemical status of surface waters in river basins by 2015. The chemical status is considered good if the Environmental Quality Standards (EQSs) are met for all substances listed on the priority list and eight additional specific emerging substances. To check compliance with these standards, the WFD requires the establishment of monitoring programmes. The minimum measuring frequency for priority substances is currently set at once per month. This can result in non-representative sampling and increased probability of misinterpretation of the surface water quality status. To assist in the classification of the water body, the combined use of monitoring data and pollutant fate models is recommended. More specifically, dynamic models are suggested, as possible exceedance of the quality standards can be predicted by such models. In the presented work, four realistic scenarios are designed and discussed to illustrate the usefulness of dynamic pollutant fate models for implementing the WFD. They comprise a combination of two priority substances and two rivers, representative for Western Europe.

  6. In silico environmental chemical science: properties and processes from statistical and computational modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tratnyek, P. G.; Bylaska, Eric J.; Weber, Eric J.

    2017-01-01

    Quantitative structure–activity relationships (QSARs) have long been used in the environmental sciences. More recently, molecular modeling and chemoinformatic methods have become widespread. These methods have the potential to expand and accelerate advances in environmental chemistry because they complement observational and experimental data with “in silico” results and analysis. The opportunities and challenges that arise at the intersection between statistical and theoretical in silico methods are most apparent in the context of properties that determine the environmental fate and effects of chemical contaminants (degradation rate constants, partition coefficients, toxicities, etc.). The main example of this is the calibration of QSARs using descriptor variable data calculated from molecular modeling, which can make QSARs more useful for predicting property data that are unavailable, but also can make them more powerful tools for diagnosis of fate determining pathways and mechanisms. Emerging opportunities for “in silico environmental chemical science” are to move beyond the calculation of specific chemical properties using statistical models and toward more fully in silico models, prediction of transformation pathways and products, incorporation of environmental factors into model predictions, integration of databases and predictive models into more comprehensive and efficient tools for exposure assessment, and extending the applicability of all the above from chemicals to biologicals and materials.

  7. In silico environmental chemical science: properties and processes from statistical and computational modelling.

    Science.gov (United States)

    Tratnyek, Paul G; Bylaska, Eric J; Weber, Eric J

    2017-03-22

    Quantitative structure-activity relationships (QSARs) have long been used in the environmental sciences. More recently, molecular modeling and chemoinformatic methods have become widespread. These methods have the potential to expand and accelerate advances in environmental chemistry because they complement observational and experimental data with "in silico" results and analysis. The opportunities and challenges that arise at the intersection between statistical and theoretical in silico methods are most apparent in the context of properties that determine the environmental fate and effects of chemical contaminants (degradation rate constants, partition coefficients, toxicities, etc.). The main example of this is the calibration of QSARs using descriptor variable data calculated from molecular modeling, which can make QSARs more useful for predicting property data that are unavailable, but also can make them more powerful tools for diagnosis of fate determining pathways and mechanisms. Emerging opportunities for "in silico environmental chemical science" are to move beyond the calculation of specific chemical properties using statistical models and toward more fully in silico models, prediction of transformation pathways and products, incorporation of environmental factors into model predictions, integration of databases and predictive models into more comprehensive and efficient tools for exposure assessment, and extending the applicability of all the above from chemicals to biologicals and materials.

  8. Using gridded multimedia model to simulate spatial fate of Benzo[α]pyrene on regional scale.

    Science.gov (United States)

    Liu, Shijie; Lu, Yonglong; Wang, Tieyu; Xie, Shuangwei; Jones, Kevin C; Sweetman, Andrew J

    2014-02-01

    Predicting the environmental multimedia fate is an essential step in the process of assessing the human exposure and health impacts of chemicals released into the environment. Multimedia fate models have been widely applied to calculate the fate and distribution of chemicals in the environment, which can serve as input to a human exposure model. In this study, a grid based multimedia fugacity model at regional scale was developed together with a case study modeling the fate and transfer of Benzo[α]pyrene (BaP) in Bohai coastal region, China. Based on the estimated emission and in-site survey in 2008, the BaP concentrations in air, vegetation, soil, fresh water, fresh water sediment and coastal water as well as the transfer fluxes were derived under the steady-state assumption. The model results were validated through comparison between the measured and modeled concentrations of BaP. The model results indicated that the predicted concentrations of BaP in air, fresh water, soil and sediment generally agreed with field observations. Model predictions suggest that soil was the dominant sink of BaP in terrestrial systems. Flow from air to soil, vegetation and costal water were three major pathways of BaP inter-media transport processes. Most of the BaP entering the sea was transferred by air flow, which was also the crucial driving force in the spatial distribution processes of BaP. The Yellow River, Liaohe River and Daliao River played an important role in the spatial transformation processes of BaP. Compared with advection outflow, degradation was more important in removal processes of BaP. Sensitivities of the model estimates to input parameters were tested. The result showed that emission rates, compartment dimensions, transport velocity and degradation rates of BaP were the most influential parameters for the model output. Monte Carlo simulation was carried out to determine parameter uncertainty, from which the coefficients of variation for the estimated Ba

  9. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  10. A workshop model simulating fate and effect of drilling muds and cuttings on benthic communities

    Science.gov (United States)

    Auble, Gregor T.; Andrews, Austin K.; Hamilton, David B.; Roelle, James E.; Shoemaker, Thomas G.

    1984-01-01

    Oil and gas exploration and production at marine sites has generated concern over potential environmental impacts resulting from the discharge of spent drilling muds and cuttings. This concern has led to a broad array of publicly and privately sponsored research. This report described a cooperative modeling effort designed to focus information resulting from this research through construction of explicit equations that simulate the potential impacts of discharge drilling fluids (muds) and cuttings on marine communities. The model is the result of collaboration among more than 30 scientists. The principal cooperating organizations were the E.S. Environmental Protection Agency, the U.S. Minerals Management Service, the Offshore Operators Committee, and the Alaska Oil and Gas Association. The overall simulation model can be conceptualized as three connected submodels: Discharge and Plume Fate, Sediment Redistribution, and Benthic Community Effects. On each day of simulation, these submodels are executed in sequence, with flows of information between submodels. The Benthic Community Effects submodel can be further divided into sections that calculate mortality due to burial, mortality due to toxicity, mortality due to resuspension disturbance, and growth of the community. The model represents a series of seven discrete 1-m2 plots at specified distances along a transect in one direction away from a discharge point. It consists of coupled difference equations for which parameter values can easily be set to evaluate different conditions or to examine the sensitivity of output to various assumptions. Sets of parameter values were developed to represent four general cases or scenarios: (1) a shallow (5 m), cold environment with ice cover during a substantial fraction of the year, such as might be encountered in the Beaufort Sea, Alaska; (2) a shallow (20 m), temperate environment, such as might be encountered in the Gulf of Mexico; (3) a deeper (80 m), temperate environment

  11. Cell fate determination dynamics in bacteria

    Science.gov (United States)

    Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Garcia-Ojalvo, Jordi; Suel, Gurol

    2010-03-01

    The fitness of an organism depends on many processes that serve the purpose to adapt to changing environment in a robust and coordinated fashion. One example of such process is cellular fate determination. In the presence of a variety of alternative responses each cell adopting a particular fate represents a ``choice'' that must be tightly regulated to ensure the best survival strategy for the population taking into account the broad range of possible environmental challenges. We investigated this problem in the model organism B.Subtilis which under stress conditions differentiates terminally into highly resistant spores or initiates an alternative transient state of competence. The dynamics underlying cell fate choice remains largely unknown. We utilize quantitative fluorescent microscopy to track the activities of genes involved in these responses on a single-cell level. We explored the importance of temporal interactions between competing cell fates by re- engineering the differentiation programs. I will discuss how the precise dynamics of cellular ``decision-making'' governed by the corresponding biological circuits may enable cells to adjust to diverse environments and determine survival.

  12. Exposure levels, environmental fate modelling and human health risk assessment of lindane in Ghana

    International Nuclear Information System (INIS)

    Adu-Kumi, S.

    2011-01-01

    -HCH which is a known environmental estrogen, was predominant contaminant measured (geometric mean concentrations 4.18 ng g -1 lipid wt. and 4.35 ng g -1 lipid wt. for pooled and individual samples respectively). The levels of Lindane, α-HCH and β-HCH in edible fish (catfish and tilapia) sourced from Lake Bosumtwi and the Weija Lake, were concurrently investigated using HRGC/HRMS. Concentrations of HCHs were found to be generally low (mainly limits of detection) probably reflecting the historical use of Lindane and technical HCH mixtures. Catfish sourced from Lake Volta (purchased from the Madina market) however contained appreciable amounts of Lindane (average concentration of 0.72 ng g -1 lipid wt). Measured values are lower than the maximum acceptable limit for human consumption established by the FAO/WHO (FAO/WHO, 1986). Hence there is no potential health risk from HCHs (Lindane, α-HCH and β-HCH) in fish for the general population of Ghana. Level III and level IV fugacity models were successfully applied to investigate the environmental fate of Lindane in the compartments of air, water, sediment, soil and biota (fish). Model estimates showed that air, water, soil and fish constitute important exposure pathways of Lindane for the general population of Ghana. The estimated total amount of Lindane accumulated in all media at steady-state was 136 tonnes, the soil compartment accounting for ore than 97% of the total accumulation. Time trends in concentration and fluxes simulated in for the period 1959-2020 predicted that less than 1% of the 2002 concentration levels of Lindane in air, water and soil, respectively, will be left in 2020. Finally, health risks associated with the exposure of the general population of Ghana to Lindane via the pathways of air, water, soil, food (or diet) were characterized using the combined field measurements and results of the multi-media environmental fate modelling. Diet (mainly vegetables), soil and to a lesser extent water constituted

  13. Modelling the Fate of Xenobiotic Trace Chemicals via Wastewater Treatment and Agricultural Resource Reuse

    DEFF Research Database (Denmark)

    Polesel, Fabio

    the comprehension of XTC fate, and thus the predictive capabilities of fate models: (i) at process scale, with a focus on sorption and biological transformation of XTCs in biological treatment systems; (ii) in full-scale WWTPs, assessing the impact of retransformation and WWTP operation on XTC elimination; and (iii......) in integrated WWTP-agricultural systems. Different modelling tools, suiting the specific purposes of our investigations, were developed, extended and/or innovatively applied. Fate models used as reference in this thesis include: the Activated Sludge Modelling framework for Xenobiotics (ASM-X); the generic WWTP...... model SimpleTreat Activity; and the dynamic soil-plant model for fate prediction in agricultural systems. Experimental and model-based observations were combined to assess sorption of ionizable XTCs onto activated sludge and XTC biotransformation in moving bed biofilm reactors (MBBRs). Most XTCs...

  14. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, E., E-mail: emma.undeman@itm.su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Department of Applied Environmental Science, Stockholm University, 11418 Stockholm (Sweden); Gustafsson, E., E-mail: erik.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Gustafsson, B.G., E-mail: bo.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden)

    2014-11-01

    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate.

  15. Fate and transport of fragrance materials in principal environmental sinks.

    Science.gov (United States)

    Zhang, Xiaolei; Brar, Satinder Kaur; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2013-10-01

    Fragrance materials are widely present in the environment, such as air, water, and soil. Concerns have been raised due to the increasing utilization and suspected impact on human health. The bioaccumulating property is considered as one of the causes of the toxicity to human beings. The removal of fragrance materials from environmental sinks has not been paid enough attention due to the lack of regulation and research on their toxicity. This paper provides systematic information on how fragrance materials are transferred to the environment, how do they affect human lives, and what is their fate in water, wastewater, wastewater sludge, and soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Aqueous chemistry of chlorine: chemistry, analysis, and environmental fate of reactive oxidant species

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Carpenter, J.H.

    1982-01-01

    This report reviews (1) the chemistry of chlorine relative to its reactions in fresh, estuarine, and marine waters and the formation of reactive oxidant species; (2) the current status of chemical analysis of reactive chlorine species and chlorine-produced oxidant species relative to analysis of low concentrations (microgram-per-liter range) and determination of accuracy and precision of methods; and (3) the environmental fate of chlorine and chlorine-produced oxidant species.

  17. BETR Global - A geographically explicit global-scale multimedia contaminant fate model

    Energy Technology Data Exchange (ETDEWEB)

    Macleod, M.; Waldow, H. von; Tay, P.; Armitage, J. M.; Wohrnschimmel, H.; Riley, W.; McKone, T. E.; Hungerbuhler, K.

    2011-04-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15{sup o} x 15{sup o} grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5).

  18. Simplified fate modelling in respect to ecotoxicological and human toxicological characterisation of emissions of chemical compounds

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, Reinout

    2011-01-01

    The impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. The purpose of the present study is to explore statistical options for reduction...... of the data demand associated with characterisation of chemical emissions in LCIA and ERA.Based on a USEtox™ characterisation factor set consisting of 3,073 data records, multi-dimensional bilinear models for emission compartment specific fate characterisation of chemical emissions were derived by application...... the independent chemical input parameters from the minimum data set, needed for characterisation in USEtox™, according to general availability, importance and relevance for fate factor prediction.Each approach (63% and 75% of the minimum data set needed for characterisation in USEtox™) yielded 66 meta...

  19. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  20. Linking the environmental loads to the fate of PPCPs in Beijing: Considering both the treated and untreated wastewater sources

    International Nuclear Information System (INIS)

    Wang, Bin; Dai, Guohua; Deng, Shubo; Huang, Jun; Wang, Yujue; Yu, Gang

    2015-01-01

    The environmental loads of pharmaceutical and personal care products (PPCPs) in Beijing were estimated from direct discharge of untreated wastewater and WWTP treated effluent. The annual environmental loads of 15 PPCP components ranged from 16.3 kg (propranolol) to 9.85 tons (caffeine). A fugacity model was developed to successfully estimate the PPCP pollution based on the estimated environmental load. The modeled results approximated the observed PPCP concentrations in Beijing. The untreated wastewater contributed significantly to PPCP pollution in Beijing, ranging from 46% (propranolol) to 99% (caffeine). The total environmental burden of target PPCPs ranged from 0.90 kg (propranolol) to 536 kg (caffeine). Water is the most important media for the fate of PPCPs. Monte Carlo-based concentration distributions of PPCPs are consistent with the observed results. The most important way to reduce the PPCP pollution is to both improve wastewater collection rate and adopt deep treatment technologies. - Highlights: • Annual environmental loads of PPCPs ranged from 16.3 kg to 9.85 tons in Beijing. • The environmental loads can be linked to PPCP pollution by fugacity model. • Untreated wastewater significantly contributed to PPCP pollution in Beijing. • The environmental burden of 15 PPCPs in Beijing ranged from 0.90 kg to 536 kg. • Uncertainty simulation successfully generated PPCP concentration distribution. - The environmental loads from both the treated and untreated wastewater sources contribute to PPCPs pollution in the surface water in Beijing, China

  1. Polycyclic aromatic hydrocarbons - fate and long-range atmospheric transport studied using a global model, EMAC-SVOC

    Science.gov (United States)

    Octaviani, Mega; Tost, Holger; Lammel, Gerhard

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted by incomplete combustion from fossil fuel, vehicles, and biomass burning. They may persist in environmental compartments, pose a health hazard and may bio accumulate along food chains. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model had been used to simulate global tropospheric, stratospheric chemistry and climate. In this study, we improve the model to include simulations of the transport and fate of semi-volatile organic compounds (SVOC). The EMAC-SVOC model takes into account essential environmental processes including gas-particle partitioning, dry and wet deposition, chemical and bio-degradation, and volatilization from sea surface, soils, vegetation, and snow. The model was evaluated against observational data in the Arctic, mid-latitudes, and tropics, and further applied to study total environmental lifetime and long-range transport potential (LRTP) of PAHs. We selected four compounds for study, spanning a wide range of volatility, i.e., phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene. Several LRTP indicators were investigated, including the Arctic contamination potential, meridional spreading, and zonal and meridional fluxes to remote regions.

  2. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling (proceedings)

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  3. Interaction of Physical and Chemical Processes Controlling the Environmental Fate and Transport of Lampricides Through Stream-Hyporheic Systems

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; Schmadel, N.; McConville, M.; Remucal, C.

    2016-12-01

    The transport and fate of contaminants of emerging concern through the environment is complicated by the heterogeneity of natural systems and the unique reaction pathways of individual compounds. Our current evaluation of risk is often simplified to controls assumed to be homogeneous in space and time. However, we know spatial heterogeneity and time-variable reaction rates complicate predictions of environmental transport and fate, and therefore risk. These complications are the result of the interactions between the physical and chemical systems and the time-variable equilibrium that exists between the two. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  4. Large-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in multimedia over China

    Science.gov (United States)

    Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.

    2017-12-01

    In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at

  5. Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China.

    Science.gov (United States)

    Zhang, Qian-Qian; Ying, Guang-Guo; Chen, Zhi-Feng; Liu, You-Sheng; Liu, Wang-Rong; Zhao, Jian-Liang

    2015-07-01

    Climbazole is an antidandruff active ingredient commonly used in personal care products, but little is known about its environmental fate. The aim of this study was to evaluate the fate of climbazole in water, sediment, soil and air compartments of the whole China by using a level III multimedia fugacity model. The usage of climbazole was calculated to be 345 t in the whole China according to the market research data, and after wastewater treatment a total emission of 245 t was discharged into the receiving environment with approximately 93% into the water compartment and 7% into the soil compartment. The developed fugacity model was successfully applied to estimate the contamination levels and mass inventories of climbazole in various environmental compartments of the river basins in China. The predicted environmental concentration ranges of climbazole were: 0.20-367 ng/L in water, and 0.009-25.2 ng/g dry weight in sediment. The highest concentration was mainly found in Haihe River basin and the lowest was in basins of Tibet and Xinjiang regions. The mass inventory of climbazole in the whole China was estimated to be 294 t, with 6.79% in water, 83.7% in sediment, 9.49% in soil, and 0.002% in air. Preliminary risk assessment showed high risks in sediment posed by climbazole in 2 out of 58 basins in China. The medium risks in water and sediment were mostly concentrated in north China. To the best of our knowledge, it is the first report on the emissions and multimedia fate of climbazole in the river basins of the whole China. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Multimedia fate modeling of perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS) in the shallow lake Chaohu, China.

    Science.gov (United States)

    Kong, Xiangzhen; Liu, Wenxiu; He, Wei; Xu, Fuliu; Koelmans, Albert A; Mooij, Wolf M

    2018-06-01

    Freshwater shallow lake ecosystems provide valuable ecological services to human beings. However, these systems are subject to severe contamination from anthropogenic sources. Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), are among the contaminants that have received substantial attention, primarily due to abundant applications, environment persistence, and potential threats to ecological and human health. Understanding the environmental behavior of these contaminants in shallow freshwater lake environments using a modeling approach is therefore critical. Here, we characterize the fate, transport and transformation of both PFOA and PFOS in the fifth largest freshwater lake in China (Chaohu) during a two-year period (2013-2015) using a fugacity-based multimedia fate model. A reasonable agreement between the measured and modeled concentrations in various compartments confirms the model's reliability. The model successfully quantifies the environmental processes and identifies the major sources and input pathways of PFOA and PFOS to the Chaohu water body. Sensitivity analysis reveals the critical role of nonlinear Freundlich sorption, which contributes to a variable fraction of the model true uncertainty in different compartments (8.1%-93.6%). Through additional model scenario analyses, we further elucidate the importance of nonlinear Freundlich sorption that is essential for the reliable model performance. We also reveal the distinct composition of emission sources for the two contaminants, as the major sources are indirect soil volatilization and direct release from human activities for PFOA and PFOS, respectively. The present study is expected to provide implications for local management of PFASs pollution in Lake Chaohu and to contribute to developing a general model framework for the evaluation of PFASs in shallow lakes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Building 235-F Goldsim Fate And Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. A.; Phifer, M. A.

    2012-09-14

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

  8. Building 235-F Goldsim Fate And Transport Model

    International Nuclear Information System (INIS)

    Taylor, G. A.; Phifer, M. A.

    2012-01-01

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D and D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ρCi/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ρCi/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met

  9. Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review

    Science.gov (United States)

    Caruso, B.S.; Cox, T.J.; Runkel, Robert L.; Velleux, M.L.; Bencala, Kenneth E.; Nordstrom, D. Kirk; Julien, P.Y.; Butler, B.A.; Alpers, Charles N.; Marion, A.; Smith, Kathleen S.

    2008-01-01

    Metals pollution in surface waters from point and non-point sources (NPS) is a widespread problem in the United States and worldwide (Lofts et al., 2007; USEPA, 2007). In the western United States, metals associated with acid mine drainage (AMD) from hardrock mines in mountainous areas impact aquatic ecosystems and human health (USEPA, 1997a; Caruso and Ward, 1998; Church et al., 2007). Metals fate and transport modelling in streams and watersheds is sometimes needed for assessment and restoration of surface waters, including mining-impacted streams (Runkel and Kimball, 2002; Caruso, 2003; Velleux et al., 2006). The Water Quality Analysis Simulation Program (WASP; Wool et al., 2001), developed by the US Environmental Protection Agency (USEPA), is an example of a model used for such analyses. Other approaches exist and appropriate model selection depends on site characteristics, data availability and modelling objectives. However, there are a wide range of assumptions, input parameters, data requirements and gaps, and calibration and validation issues that must be addressed by model developers, users and decision makers. Despite substantial work on model development, their successful application has been more limited because they are not often used by decision makers for stream and watershed assessment and restoration. Bringing together scientists, model developers, users and decision makers should stimulate the development of appropriate models and improve the applicability of their results. To address these issues, the USEPA Office of Research and Development and Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) hosted a workshop in Denver, Colorado on February 13–14, 2007. The workshop brought together approximately 35 experts from government, academia and consulting to address the state of the art for modelling metals fate and transport, knowledge gaps and future directions in metals modelling. It focused on modelling metals in high

  10. Prediction of overall persistence and long-range transport potential with multimedia fate models: robustness and sensitivity of results

    International Nuclear Information System (INIS)

    Fenner, Kathrin; Scheringer, Martin; Hungerbuehler, Konrad

    2004-01-01

    The hazard indicators persistence (P) and long-range transport potential (LRTP) are used in chemicals assessment to characterize chemicals with regard to the temporal and spatial extent of their environmental exposure. They are often calculated based on the results of multimedia fate models. The environmental and substance-specific input parameters of such models are subject to a range of methodological uncertainties and also influenced by natural variability. We employed probabilistic uncertainty analysis to quantify variance in P and LRTP predictions for chemicals with different partitioning and transport behavior. Variance found in the results is so large that it prevents a clear distinction between chemicals. Additionally, only small improvements are observed when evaluating the results relative to a benchmark chemical. This can be explained by the dominance of substance-specific parameters and the only small direct influence of environmental parameters on P and LRTP as model outcomes. The findings underline the importance of learning how environmental conditions cause variability in substance behavior for improved substance ranking and classification. - Environmental conditions cause variability in substance behavior which need to be considered in chemical ranking schemes

  11. A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems.

    Science.gov (United States)

    Rosi-Marshall, E J; Snow, D; Bartelt-Hunt, S L; Paspalof, A; Tank, J L

    2015-01-23

    Although illicit drugs are detected in surface waters throughout the world, their environmental fate and ecological effects are not well understood. Many illicit drugs and their breakdown products have been detected in surface waters and temporal and spatial variability in use translates into "hot spots and hot moments" of occurrence. Illicit drug occurrence in regions of production and use and areas with insufficient wastewater treatment are not well studied and should be targeted for further study. Evidence suggests that illicit drugs may not be persistent, as their half-lives are relatively short, but may exhibit "pseudo-persistence" wherein continual use results in persistent occurrence. We reviewed the literature on the ecological effects of these compounds on aquatic organisms and although research is limited, a wide array of aquatic organisms, including bacteria, algae, invertebrates, and fishes, have receptors that make them potentially sensitive to these compounds. In summary, illicit drugs occur in surface waters and aquatic organisms may be affected by these compounds; research is needed that focuses on concentrations of illicit drugs in areas of production and high use, environmental fate of these compounds, and effects of these compounds on aquatic ecosystems at the concentrations that typically occur in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Fate factors and emission flux estimates for emerging contaminants in surface waters

    Directory of Open Access Journals (Sweden)

    Hoa T. Trinh

    2016-01-01

    Full Text Available Pharmaceuticals, personal care products, hormones, and wastewater products are emerging environmental concerns for manifold reasons, including the potential of some compounds found in these products for endocrine disruption at a very low chronic exposure level. The environmental occurrences and sources of these contaminants in the water, soil, sediment and biota in European nations and the United States are well documented. This work reports a screening-level emission and fate assessment of thirty compounds, listed in the National Reconnaissance of the United States Geological Survey (USGS, 1999–2000 as the most frequently detected organic wastewater contaminants in U.S. streams and rivers. Estimations of the surface water fate factors were based on Level II and Level III multimedia fugacity models for a 1000 km2 model environment, the size of a typical county in the eastern United States. The compounds are categorized into three groups based upon the sensitivity of their predicted surface water fate factors to uncertainties in their physicochemical property values and the landscape parameters. The environmental fate factors, mass distributions, and loss pathways of all of the compounds are strongly affected by their assumed modes of entry into the environment. It is observed that for thirteen of the thirty organic wastewater contaminants most commonly detected in surface waters, conventional treatment strategies may be ineffective for their removal from wastewater effluents. The surface water fate factors predicted by the fugacity models were used in conjunction with the surface water concentrations measured in the USGS reconnaissance to obtain emission flux estimates for the compounds into U.S. streams and rivers. These include estimated fluxes of 6.8 × 10−5 to 0.30 kg/h km2 for the biomarker coprostanol; 1.7 × 10−5 to 6.5 × 10−5 kg/h km2 for the insect repellent N,N-diethyltoluamide; and 4.3 × 10−6 to 3.1 × 10−5 kg/h km2 for

  13. ENM fate in freshwater through adaption of USEtox

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Birkved, Morten; Olsen, Stig Irving

    Engineered nanomaterials (ENMs) have in recent time received substantial attention, both in scientific and consumer circles, as these materials are introduced to a steadily increasing number of consumer products. This has led to environmental concerns on how this new material class behaves...... in the environment, at which concentrations organisms are exposed to the materials and what effects these materials may have on the environment. In relation to metal-oxide engineered nanomaterials (ENMs), as is the general case for ENMs, many environmental aspects are still unknown and/or hence not properly...... scientifically mapped. One approach that has not been given much attention in relation to environmental assessment of ENM, more precisely the fate, exposure and effect modelling of metal-oxide ENMs is the application of adapted characterization modelling (ACM) and hence application of characterisation models...

  14. Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Moeys, Julien; Barriuso, Enrique; Larsbo, Mats; Marín-Benito, Jesús-María; Justes, Eric; Alletto, Lionel; Ubertosi, Marjorie; Nicolardot, Bernard; Munier-Jolain, Nicolas; Mamy, Laure

    2017-03-01

    The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO). STICS-MACRO has the advantage of being able to simulate pesticides fate in complex cropping systems and to consider some agricultural practices such as fertilization, mulch, or crop residues management, which cannot be accounted for with MACRO. The performance of STICS-MACRO was tested, without calibration, from measurements done in two French experimental sites with contrasted soil and climate properties. The prediction of water percolation and pesticides concentrations with STICS-MACRO was satisfactory, but it varied with the pedoclimatic context. The performance of STICS-MACRO was shown to be similar or better than that of MACRO. The improvement of the simulation of crop growth allowed better estimate of crop transpiration therefore of water balance. It also allowed better estimate of pesticide interception by the crop which was found to be crucial for the prediction of pesticides concentrations in water. STICS-MACRO is a new promising tool to improve the assessment of the environmental risks of pesticides used in cropping systems.

  15. A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Handley-Sidhu, Stephanie, E-mail: s.handley-sidhu@bham.ac.uk [Water Sciences Research Group, School of Geography, Earth, Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Keith-Roach, Miranda J. [Biogeochemistry and Environmental Analytical Chemistry Research Group, and School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Lloyd, Jonathan R.; Vaughan, David J. [Williamson Research Centre for Molecular Environmental Science, and School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL (United Kingdom)

    2010-11-01

    Depleted uranium (DU) is a by-product of nuclear fuel enrichment and is used in antitank penetrators due to its high density, self-sharpening, and pyrophoric properties. Military activities have left a legacy of DU waste in terrestrial and marine environments, and there have been only limited attempts to clean up affected environments. Ten years ago, very little information was available on the dispersion of DU as penetrators hit their targets or the fate of DU penetrators left behind in environmental systems. However, the marked increase in research since then has improved our knowledge of the environmental impact of firing DU and the factors that control the corrosion of DU and its subsequent migration through the environment. In this paper, the literature is reviewed and consolidated to provide a detailed overview of the current understanding of the environmental behaviour of DU and to highlight areas that need further consideration.

  16. The environmental release and fate of antibiotics.

    Science.gov (United States)

    Manzetti, Sergio; Ghisi, Rossella

    2014-02-15

    Antibiotics have been used as medical remedies for over 50 years and have recently emerged as new pollutants in the environment. This review encompasses the fate of several antibiotics in the environment, including sulfonamides, nitrofurans, terfenadines, cephalosporins and cyclosporins. It investigates the cycle of transfer from humans and animals including their metabolic transformation. The results show that antibiotic metabolites are of considerable persistence and are localized to ground-water and drinking water supplies. Furthermore, the results also show that several phases of the cycle of antibiotics in the environment are not well understood, such as how low concentrations of antibiotic metabolites in the diet affect humans and animals. This review also shows that improved wastewater decontamination processes are remediating factors for these emerging pollutants. The results obtained here may help legislators and authorities in understanding the fate and transformation of antibiotics in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Environmental fate and ecotoxicological risk of the antibiotic sulfamethoxazole across the Katari catchment (Bolivian Altiplano) : application of the GREAT-ER model

    OpenAIRE

    Archundia, D.; Boithias, Laurie; Duwig, Céline; Morel, M. C.; Aviles, G. F.; Martins, J. M. F.

    2018-01-01

    Antibiotics are emergent contaminants that can induce adverse effects in terrestrial and aquatic organisms. The surface water compartment is of particular concern as it receives direct waste water discharge. Modeling is highlighted as an essential tool to understand the fate and behavior of these compounds and to assess their eco-toxicological risk. This study aims at testing the ability of the GREAT-ER model in simulating sulfamethoxazole (SMX) concentrations in the surface waters of the ari...

  18. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    Science.gov (United States)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  19. Transformation and distribution processes governing the fate and behaviour of nanomaterials in the environment: an overview

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Hartmann, Nanna B.; Baun, Anders

    2015-01-01

    assessment. Chemical fate modelling is one approach to fill this gap within a short time frame. To ensure the reliability of predicted environmental concentrations informed choices are needed during model formulation and development. A major knowledge gap, hampering the further development of such model...... present in the environment. Specific nanomaterials are used as case studies to illustrate these processes. Key environmental processes are identified and ranked and key knowledge gaps are identified, feeding into the longer-term goal of improving the existing models for predicted environmental...

  20. Environmental risk assessment of selected organic chemicals based on TOC test and QSAR estimation models.

    Science.gov (United States)

    Chi, Yulang; Zhang, Huanteng; Huang, Qiansheng; Lin, Yi; Ye, Guozhu; Zhu, Huimin; Dong, Sijun

    2018-02-01

    Environmental risks of organic chemicals have been greatly determined by their persistence, bioaccumulation, and toxicity (PBT) and physicochemical properties. Major regulations in different countries and regions identify chemicals according to their bioconcentration factor (BCF) and octanol-water partition coefficient (Kow), which frequently displays a substantial correlation with the sediment sorption coefficient (Koc). Half-life or degradability is crucial for the persistence evaluation of chemicals. Quantitative structure activity relationship (QSAR) estimation models are indispensable for predicting environmental fate and health effects in the absence of field- or laboratory-based data. In this study, 39 chemicals of high concern were chosen for half-life testing based on total organic carbon (TOC) degradation, and two widely accepted and highly used QSAR estimation models (i.e., EPI Suite and PBT Profiler) were adopted for environmental risk evaluation. The experimental results and estimated data, as well as the two model-based results were compared, based on the water solubility, Kow, Koc, BCF and half-life. Environmental risk assessment of the selected compounds was achieved by combining experimental data and estimation models. It was concluded that both EPI Suite and PBT Profiler were fairly accurate in measuring the physicochemical properties and degradation half-lives for water, soil, and sediment. However, the half-lives between the experimental and the estimated results were still not absolutely consistent. This suggests deficiencies of the prediction models in some ways, and the necessity to combine the experimental data and predicted results for the evaluation of environmental fate and risks of pollutants. Copyright © 2016. Published by Elsevier B.V.

  1. Fate of pesticides in field ditches: the TOXSWA simulation model

    NARCIS (Netherlands)

    Adriaanse, P.I.

    1996-01-01

    The TOXSWA model describes the fate of pesticides entering field ditches by spray drift, atmospheric deposition, surface run-off, drainage or leaching. It considers four processes: transport, transformation, sorption and volatilization. Analytical andnumerical solutions corresponded well. A sample

  2. Modeling the fate and end-of-life phase of engineered nanomaterials in the Japanese construction sector.

    Science.gov (United States)

    Suzuki, Shinya; Part, Florian; Matsufuji, Yasushi; Huber-Humer, Marion

    2018-02-01

    To date construction materials that contain engineered nanomaterials (ENMs) are available at the markets, but at the same time very little is known about their environmental fate. Therefore, this study aimed at modeling the potential fate of ENMs by using the example of the Japanese construction sector and by conducting a dynamic material flow analysis. Expert interviews and national reports revealed that about 3920-4660 tons of ENMs are annually used for construction materials in Japan. Nanoscale TiO 2 , SiO 2 , Al 2 O 3 and carbon black have already been applied for decades to wall paints, road markings or concrete. The dynamic material flow model indicates that in 2016 about 95% of ENMs, which have been used since their year of market penetration, remained in buildings, whereas only 5% ended up in the Japanese waste management system or were diffusely released into the environment. Considering the current Japanese waste management system, ENMs were predicted to end up in recycled materials (40-47%) or in landfills (36-41%). It was estimated that only a small proportion was used in agriculture (5-7%, as ENM-containing sewage sludges) or was diffusely released into soils, surface waters or the atmosphere (5-19%). The results indicate that ENM release predominantly depend on their specific applications and characteristics. The model also highlights the importance of adequate collection and treatment of ENM-containing wastes. In future, similar dynamic flow models for other countries should consider, inasmuch as available, historical data on ENM production (e.g. like declaration reports that are annually published by relevant public authorities or associations), as such input data is very important regarding data reliability in order to decrease uncertainties and to continuously improve model accuracy. In addition, more environmental monitoring studies that aim at the quantification of ENM release and inadvertent transfer, particularly triggered by waste treatment

  3. Characterization of the Flow Field and Wind Speed Profiles in Microbalance Wind Tunnels for Measurement of Agent Fate

    National Research Council Canada - National Science Library

    Weber, Daniel J; Molnar, John W; Scudder, Mary K; Shuely, Wendel

    2005-01-01

    An important goal is to model chemical warfare agent fate on environmental and interior surfaces and therefore, rigorously measured evaporation and desorption rates are required to develop equations...

  4. Using model-based screening to help discover unknown environmental contaminants.

    Science.gov (United States)

    McLachlan, Michael S; Kierkegaard, Amelie; Radke, Michael; Sobek, Anna; Malmvärn, Anna; Alsberg, Tomas; Arnot, Jon A; Brown, Trevor N; Wania, Frank; Breivik, Knut; Xu, Shihe

    2014-07-01

    Of the tens of thousands of chemicals in use, only a small fraction have been analyzed in environmental samples. To effectively identify environmental contaminants, methods to prioritize chemicals for analytical method development are required. We used a high-throughput model of chemical emissions, fate, and bioaccumulation to identify chemicals likely to have high concentrations in specific environmental media, and we prioritized these for target analysis. This model-based screening was applied to 215 organosilicon chemicals culled from industrial chemical production statistics. The model-based screening prioritized several recognized organosilicon contaminants and generated hypotheses leading to the selection of three chemicals that have not previously been identified as potential environmental contaminants for target analysis. Trace analytical methods were developed, and the chemicals were analyzed in air, sewage sludge, and sediment. All three substances were found to be environmental contaminants. Phenyl-tris(trimethylsiloxy)silane was present in all samples analyzed, with concentrations of ∼50 pg m(-3) in Stockholm air and ∼0.5 ng g(-1) dw in sediment from the Stockholm archipelago. Tris(trifluoropropyl)trimethyl-cyclotrisiloxane and tetrakis(trifluoropropyl)tetramethyl-cyclotetrasiloxane were found in sediments from Lake Mjøsa at ∼1 ng g(-1) dw. The discovery of three novel environmental contaminants shows that models can be useful for prioritizing chemicals for exploratory assessment.

  5. Regional Persistent Organic Pollutants' Environmental Impact Assessment and Control Model

    Directory of Open Access Journals (Sweden)

    Jurgis Staniskis

    2008-10-01

    Full Text Available The sources of formation, environmental distribution and fate of persistent organic pollutants (POPs are increasingly seen as topics to be addressed and solved at the global scale. Therefore, there are already two international agreements concerning persistent organic pollutants: the Protocol of 1998 to the 1979 Convention on the Long-Range Transboundary Air Pollution on Persistent Organic Pollutants (Aarhus Protocol; and the Stockholm Convention on Persistent Organic Pollutants. For the assessment of environmental pollution of POPs, for the risk assessment, for the evaluation of new pollutants as potential candidates to be included in the POPs list of the Stokholmo or/and Aarhus Protocol, a set of different models are developed or under development. Multimedia models help describe and understand environmental processes leading to global contamination through POPs and actual risk to the environment and human health. However, there is a lack of the tools based on a systematic and integrated approach to POPs management difficulties in the region.

  6. Modelling the occurrence, transport and fate of pharmaceuticals in wastewater systems

    DEFF Research Database (Denmark)

    Snip, Laura J.P.; Flores Alsina, Xavier; Plósz, Benedek Gy

    2014-01-01

    This paper demonstrates how occurrence, transport and fate of pharmaceuticals at trace levels can be assessed when modelling wastewater treatment systems using two case studies. Firstly, two approaches based on: 1) phenomenology; and, 2) Markov Chains, are developed to describe the dynamics...... approach; and, iii) future pathways to improve the overall modelling of micropollutants...

  7. Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model.

    Science.gov (United States)

    Liu, Shijie; Lu, Yonglong; Xie, Shuangwei; Wang, Tieyu; Jones, Kevin C; Sweetman, Andrew J

    2015-12-01

    Perfluorooctane Sulfonate (PFOS) and related substances have been widely applied in both industrial processes and domestic products in China. Exploring the environmental fate and transport of PFOS using modeling methods provides an important link between emission and multimedia diffusion which forms a vital part in the human health risk assessment and chemical management for these substances. In this study, the gridded fugacity based BETR model was modified to make it more suitable to model transfer processes of PFOS in a coastal region, including changes to PFOS partition coefficients to reflect the influence of water salinity on its sorption behavior. The fate and transport of PFOS in the Bohai coastal region of China were simulated under steady state with the modified version of the model. Spatially distributed emissions of PFOS and related substances in 2010 were estimated and used in these simulations. Four different emission scenarios were investigated, in which a range of half-lives for PFOS related substances were considered. Concentrations of PFOS in air, vegetation, soil, fresh water, fresh water sediment and coastal water were derived from the model under the steady-state assumption. The median modeled PFOS concentrations in fresh water, fresh water sediment and soil were 7.20ng/L, 0.39ng/g and 0.21ng/g, respectively, under Emission Scenario 2 (which assumed all PFOS related substances immediately degrade to PFOS) for the whole region, while the maximum concentrations were 47.10ng/L, 4.98ng/g and 2.49ng/g, respectively. Measured concentration data for PFOS in the Bohai coastal region around the year of 2010 were collected from the literature. The reliability of the model results was evaluated by comparing the range of modeled concentrations with the measured data, which generally matched well for the main compartments. Fate and transfer fluxes were derived from the model based on the calculated inventory within the compartments, transfer fluxes between

  8. A Review of Environmental Occurrence, Fate, Exposure, and Toxicity of Benzothiazoles.

    Science.gov (United States)

    Liao, Chunyang; Kim, Un-Jung; Kannan, Kurunthachalam

    2018-05-01

    Benzothiazole and its derivatives (BTs) are high production volume chemicals that have been used for several decades in a large number of industrial and consumer products, including vulcanization accelerators, corrosion inhibitors, fungicides, herbicides, algicides, and ultraviolet (UV) light stabilizers. Several benzothiazole derivatives are used commercially, and widespread use of these chemicals has led to ubiquitous occurrence in diverse environmental compartments. BTs have been reported to be dermal sensitizers, respiratory tract irritants, endocrine disruptors, carcinogens, and genotoxicants. This article reviews occurrence and fate of a select group of BTs in the environment, as well as human exposure and toxicity. BTs have frequently been found in various environmental matrices at concentrations ranging from sub-ng/L (surface water) to several tens of μg/g (indoor dust). The use of BTs in a number of consumer products, especially in rubber products, has resulted in widespread human exposure. BTs undergo chemical, biological, and photolytic degradation in the environment, creating several transformation products. Of these, 2-thiocyanomethylthio-benzothiazole (2-SCNMeS-BTH) has been shown to be the most toxic. Epidemiological studies have shown excess risks of cancers, including bladder cancer, lung cancer, and leukemia, among rubber factory workers, particularly those exposed to 2-mercapto-benzothiazole (2-SH-BTH). Human exposure to BTs continues to be a concern.

  9. Estimating demographic parameters using a combination of known-fate and open N-mixture models.

    Science.gov (United States)

    Schmidt, Joshua H; Johnson, Devin S; Lindberg, Mark S; Adams, Layne G

    2015-10-01

    Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark-resight data sets. We provide implementations in both the BUGS language and an R package.

  10. Fate and transport modelling of uranium in Port Hope Harbour

    International Nuclear Information System (INIS)

    Pinilla, C.E.; Garisto, N.; Peters, R.

    2010-01-01

    Fate and transport modelling of contaminants in Port Hope Harbour and near-shore Lake Ontario was undertaken in support of an ecological and human health risk assessment. Uranium concentrations in the Harbour and near-shore Lake Ontario due to groundwater and storm water loadings were estimated with a state-of-the-art 3D hydrodynamic and contaminant transport model (ECOMSED). The hydrodynamic model was simplified to obtain a first estimate of the flow pattern in the Harbour. The model was verified with field data using a tracer (fluoride). The modelling results generally showed good agreement with the tracer field data. (author)

  11. Parameters for the Evaluation of the Fate, Transport, and Environmental Impacts of Chemical Agents in Marine Environments

    Science.gov (United States)

    2007-07-01

    Anal. Bering/Chukchi, accessed 3 January 2007, http://www.osdpd.noaa.gov/PSB/EPS/SST/data/beringst.c.gif. RE-2 15 Brewer , P. G.; Glover, D. M...Highly Purified Mustard Gas and its Action on Yeast , ” J. Am. Chem. Soc., 1947, 69(7), 1808-1809. 135 Redemann, C. E.; Chaikin, S. W.; Fearing, R. B...171 MacNaughton, M. G.; Brewer , J. H., Environmental Chemistry and Fate of Chemical Warfare Agents, Southwest Research Institute, San Antonio TX, 1994

  12. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    International Nuclear Information System (INIS)

    Cousins, Anna Palm

    2012-01-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical–chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK OA and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: ► A novel indoor-inclusive multimedia urban fate model is developed and applied. ► Emissions indoors may increase the urban chemical residence time. ► Indoor removal from surfaces constitutes an additional loss process

  13. Emissions and fate of brominated flame retardants in the indoor environment: A critical review of modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Liagkouridis, Ioannis, E-mail: ioannis.liagkouridis@ivl.se [IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden); ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm (Sweden); Cousins, Ian T. [ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm (Sweden); Cousins, Anna Palm [IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden)

    2014-09-01

    This review explores the existing understanding and the available approaches to estimating the emissions and fate of semi-volatile organic compounds (SVOCs) and in particular focuses on the brominated flame retardants (BFRs). Volatilisation, an important emission mechanism for the more volatile compounds can be well described using current emission models. More research is needed, however, to better characterise alternative release mechanisms such as direct material–particle partitioning and material abrasion. These two particle-mediated emissions are likely to result in an increased chemical release from the source than can be accounted for by volatilisation, especially for low volatile compounds, and emission models need to be updated in order to account for these. Air–surface partitioning is an important fate process for SVOCs such as BFRs however it is still not well characterised indoors. In addition, the assumption of an instantaneous air–particle equilibrium adopted by current indoor fate models might not be valid for high-molecular weight, strongly sorbing compounds. A better description of indoor particle dynamics is required to assess the effect of particle-associated transport as this will control the fate of low volatile BFRs. We suggest further research steps that will improve modelling precision and increase our understanding of the factors that govern the indoor fate of a wide range of SVOCs. It is also considered that the appropriateness of the selected model for a given study relies on the individual characteristics of the study environment and scope of the study. - Highlights: • Current emission models likely underestimate the release of low volatile BFRs from products. • Material abrasion and direct material–dust partitioning are important, yet understudied emission mechanisms. • Indoor surfaces can be significant sinks, but the mechanism is poorly understood. • Indoor fate of low volatile BFRs is strongly associated with particle

  14. Environmental Fate of the Herbicide Fluazifop-P-butyl and Its Degradation Products in Two Loamy Agricultural Soils: A Combined Laboratory and Field Study

    DEFF Research Database (Denmark)

    Badawi, Nora; Rosenbom, Anette E.; Olsen, Preben

    2015-01-01

    The herbicide fluazifop-P-butyl (FPB) is used against grasses in agricultural crops such as potato, oilseed rape and sugar beet. Limited information is available in Scientific literature on its environmental fate, therefore extensive monitoring at two agricultural test fields was combined...

  15. Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives

    Science.gov (United States)

    Graham, Thomas G. W.; Tabei, S. M. Ali; Dinner, Aaron R.; Rebay, Ilaria

    2010-01-01

    A major goal of developmental biology is to understand the molecular mechanisms whereby genetic signaling networks establish and maintain distinct cell types within multicellular organisms. Here, we review cell-fate decisions in the developing eye of Drosophila melanogaster and the experimental results that have revealed the topology of the underlying signaling circuitries. We then propose that switch-like network motifs based on positive feedback play a central role in cell-fate choice, and discuss how mathematical modeling can be used to understand and predict the bistable or multistable behavior of such networks. PMID:20570936

  16. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    Science.gov (United States)

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-07-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. (c) 2010 SETAC.

  17. Modelling micro-pollutant fate in wastewater collection and treatment systems: status and challenges

    DEFF Research Database (Denmark)

    Plósz, Benedek G.; Benedetti, L.; Daigger, G. T.

    2013-01-01

    of such models. In brief, we conclude that, in order to predict the contaminant removal in centralised treatment works, considering the dramatic improvement in monitoring and detecting MPs in wastewater, more mechanistic approaches should be used to complement conventional, heuristic and other fate models...

  18. Degradation of Fluorotelomer-Based Polymers Contributes to the Global Occurrence of Fluorotelomer Alcohol and Perfluoroalkyl Carboxylates: A Combined Dynamic Substance Flow and Environmental Fate Modeling Analysis.

    Science.gov (United States)

    Li, Li; Liu, Jianguo; Hu, Jianxin; Wania, Frank

    2017-04-18

    Using coupled dynamic substance flow and environmental fate models, CiP-CAFE and BETR-Global, we investigated whether the degradation of side-chain fluorotelomer-based polymers (FTPs), mostly in waste stocks (i.e., landfills and dumps), serves as a long-term source of fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylates (PFCAs) to the global environment. The modeling results indicate that, in the wake of the worldwide transition from long-chain to short-chain products, in-use stocks of C8 FTPs will peak and decline afterward, while the in-use stocks of C6 FTPs, and the waste stocks of both FTPs will generally grow. FTP degradation in waste stocks is making an increasing contribution to FTOH generation, the bulk of which readily migrates from waste stocks and degrades into PFCAs in the environment; the remaining part of the generated FTOHs degrade in waste stocks, which makes those stocks reservoirs that slowly release PFCAs into the environment over the long run because of the low leaching rate and extreme persistence of PFCAs. Short-chain FTPs have higher relative release rates of PFCAs from waste stocks than long-chain ones. Estimates of in-use and waste stocks of FTPs were more sensitive to the selected lifespan of finished products, while those of the emissions of FTOHs and PFCAs were more sensitive to the degradation half-life of FTPs in waste stocks. Our preliminary calculations highlight the need for environmentally sound management of obsolete FTP-containing products into the foreseeable future.

  19. Environmental Risk Assessment Strategy for Nanomaterials

    Directory of Open Access Journals (Sweden)

    Janeck J. Scott‐Fordsmand

    2017-10-01

    Full Text Available An Environmental Risk Assessment (ERA for nanomaterials (NMs is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i materials, (ii release, fate and exposure, (iii hazard and (iv risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES and relevant exposure scenarios (RES and, subsequently, the possible release routes, both with regard to which compartment(s NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC, but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC, either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models.

  20. Environmental Risk Assessment Strategy for Nanomaterials.

    Science.gov (United States)

    Scott-Fordsmand, Janeck J; Peijnenburg, Willie J G M; Semenzin, Elena; Nowack, Bernd; Hunt, Neil; Hristozov, Danail; Marcomini, Antonio; Irfan, Muhammad-Adeel; Jiménez, Araceli Sánchez; Landsiedel, Robert; Tran, Lang; Oomen, Agnes G; Bos, Peter M J; Hund-Rinke, Kerstin

    2017-10-19

    An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials, (ii) release, fate and exposure, (iii) hazard and (iv) risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES) and relevant exposure scenarios (RES) and, subsequently, the possible release routes, both with regard to which compartment(s) NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC), but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC), either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC) or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models.

  1. Environmental fate model for ultra-low-volume insecticide applications used for adult mosquito management

    Science.gov (United States)

    Schleier, Jerome J.; Peterson, Robert K.D.; Irvine, Kathryn M.; Marshall, Lucy M.; Weaver, David K.; Preftakes, Collin J.

    2012-01-01

    One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.

  2. An evaluation of the environmental fate and behavior of munitions materiel (Tetryl and polar metabolites of TNT) in soil and plant systems. Environmental fate and behavior of tetryl

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.

    1993-09-01

    The objective of the present studies was to elucidate the environmental behavior and fate of 2,4,6trintrophenylmethylnitramine (tetryl) in the soil/plant system in three different types of soils incubated for 60 days. No tetryl was detectable after 11 days; most of the radiolabel was associated with non-extractable soil components and four transformation products appeared rapidly, of which two were identified as N-methyl-2,4,6-trintroaniline and N-methyl-aminodinitroaniline isomer. Short-term hydroponic studies indicated no significant difference in uptake rates for the three plant species employed. Kinetic studies indicated that plants have a high affinity and capacity for absorbing tetryl. Partitioning patterns indicated that the root is the major accumulation site for tetryl. Chemical fractionation and analyses of tissues showed rapid metabolism of tetryl in tissues of all species, which proceeded toward more polar metabolic products. Plant maturity studies indicated significant differences in the total relative uptake of tetryl by all three plant species based on soil type.

  3. Simulation-based model checking approach to cell fate specification during Caenorhabditis elegans vulval development by hybrid functional Petri net with extension

    Directory of Open Access Journals (Sweden)

    Ueno Kazuko

    2009-04-01

    Full Text Available Abstract Background Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. Results A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules – Rule I and Rule II – to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in

  4. Improving substance information in usetox®, part 2: Data for estimating fate and ecosystem exposure factors

    DEFF Research Database (Denmark)

    Saouter, Erwan; Aschberger, Karin; Fantke, Peter

    2017-01-01

    substance properties, USEtox® quantifies potential human toxicity and freshwater ecotoxicity impacts by combining environmental fate, exposure and toxicity effects information, considering multimedia fate and multi-pathway exposure processes. The main source to obtain substance properties for USEtox® 1......The scientific consensus model USEtox® is developed since 2003 under the auspices of the UNEP-SETAC Life Cycle Initiative as a harmonized approach for characterizing human and freshwater toxicity in life cycle assessment (LCA) and other comparative assessment frameworks. Using physicochemical.......01 and 2.0 is the Estimation Program Interface (EPI SuiteTM ) from the U.S. Environmental Protection Agency. However, since the development of the original USEtox® substance databases, new chemical regulations have been enforced in Europe such as the REACH and the Plant Protection Products regulations...

  5. Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making.

    Science.gov (United States)

    Hendren, Christine Ogilvie; Lowry, Michael; Grieger, Khara D; Money, Eric S; Johnston, John M; Wiesner, Mark R; Beaulieu, Stephen M

    2013-02-05

    As the use of engineered nanomaterials becomes more prevalent, the likelihood of unintended exposure to these materials also increases. Given the current scarcity of experimental data regarding fate, transport, and bioavailability, determining potential environmental exposure to these materials requires an in depth analysis of modeling techniques that can be used in both the near- and long-term. Here, we provide a critical review of traditional and emerging exposure modeling approaches to highlight the challenges that scientists and decision-makers face when developing environmental exposure and risk assessments for nanomaterials. We find that accounting for nanospecific properties, overcoming data gaps, realizing model limitations, and handling uncertainty are key to developing informative and reliable environmental exposure and risk assessments for engineered nanomaterials. We find methods suited to recognizing and addressing significant uncertainty to be most appropriate for near-term environmental exposure modeling, given the current state of information and the current insufficiency of established deterministic models to address environmental exposure to engineered nanomaterials.

  6. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    Science.gov (United States)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  7. Fate and Transport of Mercury in Environmental Media and Human Exposure

    Science.gov (United States)

    Kim, Moon-Kyung

    2012-01-01

    Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental (Hg0) and divalent (Hg2+) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly Hg2+, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans. PMID:23230463

  8. Fate and potential environmental effects of methylenediphenyl diisocyanate and toluene diisocyanate released into the atmosphere.

    Science.gov (United States)

    Tury, Bernard; Pemberton, Denis; Bailey, Robert E

    2003-01-01

    Information from a variety of sources has been collected and summarized to facilitate an overview of the atmospheric fate and potential environmental effects of emissions of methylenediphenyl diisocyanate (MDI) or toluene diisocyanate (TDI) to the atmosphere. Atmospheric emissions of both MDI and TDI are low, both in terms of concentration and mass, because of their low volatility and the need for careful control over all aspects of their lifecycle from manufacture through disposal. Typical emission losses for TDI are 25 g/t of TDI used in slabstock foam production. MDI emission losses are lower, often less than 1 g/t of MDI used. Dispersion modeling predicts that concentrations at the fenceline or beyond are very low for typical releases. Laboratory studies show that TDI (and by analogy MDI) does not react with water in the gas phase at a significant rate. The primary degradation reaction of these aromatic diisocyanates in the atmosphere is expected to be oxidation by OH radicals with an estimated half-life of one day. Laboratory studies also show that this reaction is not expected to result in increased ground-level ozone accumulation.

  9. The energy-environmental profile of building bio-materials. A decision-making model

    International Nuclear Information System (INIS)

    Beccali, G.; Cellura, M.; Lo Cicero

    2000-01-01

    In this article it is presented a reckoning model used for comparing concrete blocks made with recycled aggregates with blocks realised with quarry inerts. Both algorithm and procedural passages are easily transferable to handmade products having different characteristics. From the results one can infer how an open circuit recycling process allows to improve energy-environmental performances of the handmade product even when the technological performances of the blocks are essentially similar. This underlines the importance of a procedural approach taking into account environmental design right from the start of the planning process, also as far as the final fate of the building material at the end of its useful life is concerned [it

  10. The OECD expert meeting on ecotoxicology and environmental fate — Towards the development of improved OECD guidelines for the testing of nanomaterials

    International Nuclear Information System (INIS)

    Kühnel, Dana; Nickel, Carmen

    2014-01-01

    On behalf of the OECD Working Party on Manufactured Nanomaterials (WPMN) an expert meeting on ecotoxicology and environmental fate of nanomaterials (NMs) took place in January 2013 in Berlin. At this meeting experts from science, industry and regulatory bodies discussed the applicability of OECD test guidelines (TGs) for chemicals to nanomaterials. The objective was to discuss the current state of the relevant science and provide recommendations to the OECD WPMN on (1) the need for updating current OECD TGs and the need for developing new ones specific to nanomaterials; and (2) guidance needed for the appropriate and valid testing of environmental fate and ecotoxicity endpoints for NMs. Experts at the workshop agreed that the majority of the OECD TG for chemicals were generally applicable for the testing of NM, with the exception of TG 105 (water solubility) and 106 (adsorption-desorption). Additionally, the workshop also highlighted considerations when conducting OECD chemical TG on nanomaterials (e.g., sample preparation, dispersion, analysis, dosimetry and characterisation). These considerations will lead to the future development of proposals for new TG and guidance documents (GDs) to ensure that OECD TG give meaningful, repeatable, and accurate results when used for nanomaterials. This report provides a short overview of topics discussed during the meeting and the main outcomes. A more detailed report of the workshop will become available through the OECD, however, due to the urgency of having OECD TG relevant for nanomaterials, this brief report is being shared with the scientific community through this communication. - Highlights: • OECD test guidelines (TGs) were developed for the testing of conventional chemicals. • Need for discussion on applicability of current TGs to nanomaterials • An expert meeting addressing this issue was held. • The focus was on TGs covering ecotoxicology and environmental fate. • Recommendations for updating current OECD

  11. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  12. Erratum: Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    Science.gov (United States)

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-10-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. © 2010 SETAC.

  13. Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles

    NARCIS (Netherlands)

    Jacobs, Rianne; Meesters, Johannes A.J.; Braak, ter Cajo J.F.; Meent, van de Dik; Voet, van der Hilko

    2016-01-01

    There is a growing need for good environmental risk assessment of engineered nanoparticles (ENPs). Environmental risk assessment of ENPs has been hampered by lack of data and knowledge about ENPs, their environmental fate, and their toxicity. This leads to uncertainty in the risk assessment. To

  14. Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles

    NARCIS (Netherlands)

    Jacobs, R.; Meesters, J.A.J.; Ter Braak, C.J.; Meent, D. van de; van der Voet, H.

    2016-01-01

    There is a growing need for good environmental risk assessment of engineered nanoparticles (ENPs). Environmental risk assessment of ENPs has been hampered by lack of data and knowledge about ENPs, their environmental fate, and their toxicity. This leads to uncertainty in the risk assessment. To deal

  15. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Anna Palm, E-mail: anna.cousins@ivl.se

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK{sub OA} and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: Black-Right-Pointing-Pointer A novel indoor-inclusive multimedia urban fate model is developed and applied. Black-Right-Pointing-Pointer Emissions indoors may increase the urban chemical residence time. Black

  16. The potential use of Chernobyl fallout data to test and evaluate the predictions of environmental radiological assessment models

    International Nuclear Information System (INIS)

    Richmond, C.R.; Hoffman, F.O.; Blaylock, B.G.; Eckerman, K.F.; Lesslie, P.A.; Miller, C.W.; Ng, Y.C.; Till, J.E.

    1988-06-01

    The objectives of the Model Validation Committee were to collaborate with US and foreign scientists to collect, manage, and evaluate data for identifying critical research issues and data needs to support an integrated assessment of the Chernobyl nuclear accident; test environmental transport, human dosimetric, and health effects models against measured data to determine their efficacy in guiding decisions on protective actions and in estimating exposures to populations and individuals following a nuclear accident; and apply Chernobyl data to quantifications of key processes governing the environmental transport, fate and effects of radionuclides and other trace substances. 55 refs

  17. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    International Nuclear Information System (INIS)

    Badea, Silviu-Laurentiu; Danet, Andrei-Florin

    2015-01-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed

  18. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Silviu-Laurentiu, E-mail: badeasilviu@gmail.com [Department of Chemistry, Umeå University, SE-901 87 Umeå (Sweden); Danet, Andrei-Florin [Department of Analytical Chemistry, University of Bucharest, Faculty of Chemistry, 90-92 Panduri Str., Bucharest 050657 (Romania)

    2015-05-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed.

  19. The fate of cyanide in leach wastes at gold mines: An environmental perspective

    International Nuclear Information System (INIS)

    Johnson, Craig A.

    2015-01-01

    Highlights: • This paper reviews the fate of cyanide in mineral processing wastes at gold mines. • Ore leaching produces numerous cyanide-containing species besides the gold complex. • Many cyanide species are eliminated or sequestered naturally over time. • Sequestered cyanide can be remobilized if conditions change. • Toxicity of released solutions can be reduced by photolytic reactions or offgassing. - Abstract: This paper reviews the basic chemistry of cyanide, methods by which cyanide can be analyzed, and aspects of cyanide behavior that are most relevant to environmental considerations at mineral processing operations associated with gold mines. The emphasis is on research results reported since 1999 and on data gathered for a series of U.S. Geological Survey studies that began in the late 1990s. Cyanide is added to process solutions as the CN − anion, but ore leaching produces numerous other cyanide-containing and cyanide-related species in addition to the desired cyanocomplex of gold. These can include hydrogen cyanide (HCN); cyanometallic complexes of iron, copper, zinc, nickel, and many other metals; cyanate (CNO − ); and thiocyanate (SCN − ). The fate of these species in solid wastes and residual process solutions that remain once gold recovery activities are terminated and in any water that moves beyond the ore processing facility dictates the degree to which cyanide poses a risk to aquatic organisms and aquatic-dependent organisms in the local environment. Cyanide-containing and cyanide-related species are subject to attenuation mechanisms that lead to dispersal to the atmosphere, chemical transformation to other carbon and nitrogen species, or sequestration as cyanometallic precipitates or adsorbed species on mineral surfaces. Dispersal to the atmosphere and chemical transformation amount to permanent elimination of cyanide, whereas sequestration amounts to storage of cyanide in locations from which it can potentially be remobilized by

  20. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in Life Cycle Analysis

    DEFF Research Database (Denmark)

    Andrew D, Henderson; Hauschild, Michael Zwicky; Van de Meent, Dik

    2011-01-01

    orders of magnitude. However, for an emission to air or soil, differences in chemical properties may decrease the CF by up to 10 orders of magnitude, as a result of intermedia transfer and degradation. This result brings new clarity to the relative contributions of fate and freshwater ecotoxicity...... with characteristic properties, this work provides understanding of the basis for calculations of CFs in USEtox. In addition, it offers insight into the chemical properties and critical mechanisms covering the continuum from chemical emission to freshwater ecosystem toxicity. For an emission directly to water......The USEtox model was developed in a scientific consensus process involving comparison of and harmonization between existing environmental multimedia fate models. For freshwater ecosystem toxicity, it covers the entire impact pathway, i.e., transforming a chemical emission into potential impacts...

  1. Fate of pollutants

    International Nuclear Information System (INIS)

    Chapta, S.C.; Boyer, J.M.

    1990-01-01

    A literature review is presented of the fate of pollutants in sediment and water systems. Topics of discussion include the following: modeling, observations, and general studies; chlorinated xenobiotic chemicals; nonchlorinated xenobiotic chemicals; pesticides; heavy metals; and radionuclides

  2. Integrative modelling of the influence of MAPK network on cancer cell fate decision.

    Directory of Open Access Journals (Sweden)

    Luca Grieco

    2013-10-01

    Full Text Available The Mitogen-Activated Protein Kinase (MAPK network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the balance between cell proliferation and cell death (cell fate decision in pathological circumstances remain elusive. Based on an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations for different signal combinations and network perturbations were found globally coherent with published data. In silico experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR over-expression and Fibroblast Growth Factor Receptor 3 (FGFR3 activating mutations.

  3. Indirect human exposure assessment of airborne lead deposited on soil via a simplified fate and speciation modelling approach.

    Science.gov (United States)

    Pizzol, Massimo; Bulle, Cécile; Thomsen, Marianne

    2012-04-01

    In order to estimate the total exposure to the lead emissions from a municipal waste combustion plant in Denmark, the indirect pathway via ingestion of lead deposited on soil has to be quantified. Multi-media fate models developed for both Risk Assessment (RA) and Life Cycle Assessment (LCA) can be used for this purpose, but present high uncertainties in the assessment of metal's fate. More sophisticated and metal-specific geochemical models exist, that could lower the uncertainties by e.g. accounting for metal speciation, but they require a large amount of data and are unpractical to combine broadly with other fate and dispersion models. In this study, a Simplified Fate & Speciation Model (SFSM) is presented, that is based on the parsimony principle: "as simple as possible, as complex as needed", and that can be used for indirect human exposure assessment in different context like RA and regionalized LCA. SFSM couples traditional multi-media mass balances with empirical speciation models in a tool that has a simple theoretical framework and that is not data-intensive. The model calculates total concentration, dissolved concentration, and free ion activity of Cd, Cu, Ni, Pb and Zn in different soil layers, after accounting for metal deposition and dispersion. The model is tested for these five metals by using data from peer reviewed literature. Results show good accordance between measured and calculated values (factor of 3). The model is used to predict the human exposure via soil to lead initially emitted into air by the waste combustion plant and both the lead cumulative exposure and intake fraction are calculated. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Environmental effect and fate of selected phenols in aquatic ecosystems using microcosm approaches

    International Nuclear Information System (INIS)

    Portier, R.J.; Chen, H.M.; Meyers, S.P.

    1983-01-01

    Microbiological studies, together with physicochemical analyses of selected industrial source phenols of environmental significance, were conducted in continuous flow and carbon metabolism microcosms to determine the behavior of these priority pollutants in soil and sediment-water systems typical of coastal wetlands. Phenols used included 4- nitrophenol, 2,4,6-trichlorophenol, 2-chlorophenol, and phenol. The organophosphate, 14 C-UL-Methyl Parathion, was used as a benchmark toxicant control while 14 C-Ring-Phenol was employed for all phenolic compound additions. Microbial diversity, ATP, and specific enzyme systems (i.e., phosphatase, dehydrogenase) were continuously monitored along with 14 CO 2 expiration and 14 C assimilation by the cellular component. Residual analysis of all microcosm tests employed procedures using combined gas chromatography/high-performance liquid chromatography. Statistical analyses were conducted of variations of testing criteria, along with a ranking profile of relative biotransformation and biodegradation potential. Data presented confirm the validity of microcosm approaches and related correlation analysis in toxic substance fate investigations. 17 references, 6 figures, 1 table

  5. An Evaluation of the Environmental Fate and Behavior of Munitions Material (TNT, RDX) in Soil and Plant Systems. Environmental Fate and Behavior of RDX

    Science.gov (United States)

    1990-08-01

    2.2 2.2 SOIL CHARACTERIZATION AND SAMPLING ............................................. 2.7 2.3 PLANT CULTIVATION ...cycle. 2.3 Plant Cultivation and Samoling The chemical fate of RDX in plants was evaluated using bush beans K (Phaseolus vulgaris), wheat (Triticum...particularly in light of the high tissue concentrations observed, may be important from the standpoint of food-chain transfer and ecotoxicology

  6. Monod kinetics rather than a first-order degradation model explains atrazine fate in soil mini-columns: Implications for pesticide fate modelling

    International Nuclear Information System (INIS)

    Cheyns, K.; Mertens, J.; Diels, J.; Smolders, E.; Springael, D.

    2010-01-01

    Pesticide transport models commonly assume first-order pesticide degradation kinetics for describing reactive transport in soil. This assumption was assessed in mini-column studies with associated batch degradation tests. Soil mini-columns were irrigated with atrazine in two intermittent steps of about 30 days separated by 161 days application of artificial rain water. Atrazine concentration in the effluent peaked to that of the influent concentration after initial break-through but sharply decreased while influx was sustained, suggesting a degradation lag phase. The same pattern was displayed in the second step but peak height and percentage of atrazine recovered in the effluent were lower. A Monod model with biomass decay was successfully calibrated to this data. The model was successfully evaluated against batch degradation data and mini-column experiments at lower flow rate. The study suggested that first-order degradation models may underestimate risk of pesticide leaching if the pesticide degradation potential needs amplification during degradation. - Population dynamics of pesticide degrading population should be taken into account when predictions of pesticide fate are made to avoid underestimation of pesticide break-through towards groundwater.

  7. Survey and discussion of models applicable to the transport and fate thrust area of the Department of Energy Chemical and Biological Nonproliferation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The availability and easy production of toxic chemical and biological agents by domestic and international terrorists pose a serious threat to US national security, especially to civilian populations in and around urban areas. To address this threat, the Department of Energy (DOE) has established the Chemical and Biological Nonproliferation Program (CBNP) with the goal of focusing the DOE`s technical resources and expertise on capabilities to deny, deter, mitigate and respond to clandestine releases of chemical and biological agents. With the intent to build on DOE core competencies, the DOE has established six technology thrust areas within the CBNP Program: Biological Information Resources; Point Sensor Systems; Stand-off Detection; Transport and Fate; Decontamination; and Systems Analysis and Integration. The purpose of the Transport and Fate Thrust is to accurately predict the dispersion, concentration and ultimate fate of chemical and biological agents released into the urban and suburban environments and has two major goals: (1) to develop an integrated and validated state-of-the-art atmospheric transport and fate modeling capability for chemical and biological agent releases within the complex urban environment from the regional scale down to building and subway interiors, and (2) to apply this modeling capability in a broad range of simulation case studies of chemical and biological agent release scenarios in suburban, urban and confined (buildings and subways) environments and provide analysis for the incident response user community. Sections of this report discuss subway transport and fate models; buildings interior transport and fate modeling; models for flow and transport around buildings; and local-regional meteorology and dispersion models.

  8. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water.

    Science.gov (United States)

    Ma, Yini; Huang, Anna; Cao, Siqi; Sun, Feifei; Wang, Lianhong; Guo, Hongyan; Ji, Rong

    2016-12-01

    Contamination of fine plastic particles (FPs), including micrometer to millimeter plastics (MPs) and nanometer plastics (NPs), in the environment has caught great concerns. FPs are strong adsorbents for hydrophobic toxic pollutants and may affect their fate and toxicity in the environment; however, such information is still rare. We studied joint toxicity of FPs with phenanthrene to Daphnia magna and effects of FPs on the environmental fate and bioaccumulation of 14 C-phenanthrene in fresh water. Within the five sizes particles we tested (from 50 nm to 10 μm), 50-nm NPs showed significant toxicity and physical damage to D. magna. The joint toxicity of 50-nm NPs and phenanthrene to D. magna showed an additive effect. During a 14-days incubation, the presence of NPs significantly enhanced bioaccumulation of phenanthrene-derived residues in daphnid body and inhibited the dissipation and transformation of phenanthrene in the medium, while 10-μm MPs did not show significant effects on the bioaccumulation, dissipation, and transformation of phenanthrene. The differences may be attributed to higher adsorption of phenanthrene on 50-nm NPs than 10-μm MPs. Our findings underlined the high potential ecological risks of FPs, and suggested that NPs should be given more concerns, in terms of their interaction with hydrophobic pollutants in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Ocean Dredged Material Disposal Site (ODMDS) Authorization and Short-Term FATE (STFATE) Model Analysis: 2014-2015 Working Group Findings Report

    Science.gov (United States)

    2016-03-01

    fractions A grain size or sieve analysis typically yields the mass fraction of each particle size class after dispersing all of the material. However...ER D C TR -1 6- 2 Ocean Dredged Material Disposal Site (ODMDS) Authorization and Short-Term FATE (STFATE) Model Analysis 2014 – 2015...Term FATE (STFATE) Model Analysis 2014 – 2015 Working Group Findings Report Jase D. Ousley Coastal and Hydraulics Laboratory U.S. Army Engineer

  10. Fate of nano- and microplastic in freshwater systems: A modeling study

    NARCIS (Netherlands)

    Besseling, Ellen; Quik, Joris T.K.; Sun, Muzhi; Koelmans, Bart

    2017-01-01

    Riverine transport to the marine environment is an important pathway for microplastic. However, information on fate and transport of nano- and microplastic in freshwater systems is lacking. Here we present scenario studies on the fate and transport of nano-to millimetre sized spherical particles

  11. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review

    International Nuclear Information System (INIS)

    Joo, Sung Hee; Zhao, Dongye

    2017-01-01

    Highlights: • Influence of contaminants on the mobility of metal oxide nanoparticles (MNPs). • Synergistic effects of MNPs in the presence of contaminants. • Effect of environmental factors on the transformed MNPs. • Research direction on the toxicity modeling assessment of heterogeneous systems. - Abstract: Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics – both in homogeneous and heterogeneous systems – and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.

  12. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Sung Hee, E-mail: s.joo1@miami.edu [Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630 (United States); Zhao, Dongye [Department of Civil and Environmental Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849 (United States)

    2017-01-15

    Highlights: • Influence of contaminants on the mobility of metal oxide nanoparticles (MNPs). • Synergistic effects of MNPs in the presence of contaminants. • Effect of environmental factors on the transformed MNPs. • Research direction on the toxicity modeling assessment of heterogeneous systems. - Abstract: Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics – both in homogeneous and heterogeneous systems – and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.

  13. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    Science.gov (United States)

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Spatially Referenced Regression on Watershed Attributes (SPARROW) was used to provide empirical estimates of the sources, fate, and transport of total nitrogen (TN) and total phosphorus (TP) in the Chesapeake Bay watershed, and the mean annual TN and TP flux to the bay and in each of 80,579 nontidal tributary stream reaches. Restoration efforts in recent decades have been insufficient to meet established standards for water quality and ecological conditions in Chesapeake Bay. The bay watershed includes 166,000 square kilometers of mixed land uses, multiple nutrient sources, and variable hydrogeologic, soil, and weather conditions, and bay restoration is complicated by the multitude of nutrient sources and complex interacting factors affecting the occurrence, fate, and transport of nitrogen and phosphorus from source areas to streams and the estuary. Effective and efficient nutrient management at the regional scale in support of Chesapeake Bay restoration requires a comprehensive understanding of the sources, fate, and transport of nitrogen and phosphorus in the watershed, which is only available through regional models. The current models, Chesapeake Bay nutrient SPARROW models, version 4 (CBTN_v4 and CBTP_v4), were constructed at a finer spatial resolution than previous SPARROW models for the Chesapeake Bay watershed (versions 1, 2, and 3), and include an updated timeframe and modified sources and other explantory terms.

  14. Proceedings of the international symposium on environmental modeling and radioecology

    International Nuclear Information System (INIS)

    Hisamatsu, Shun'ichi; Ueda, Shinji; Kakiuchi, Hideki; Akata, Naofumi

    2007-03-01

    Environmental models using radioecological parameters are essential for predicting the behavior of radionuclides in the environment. Due to the complex behaviors of radionuclides in the environment, simplified models and parameters with ample margins are used for the safety assessment of nuclear facilities to ensure the safety of people in the surrounding area. As a consequence, radiation exposure doses from the radionuclides have generally been overestimated. Information with more precise predictions of the fate of the radionuclides in the environment and realistic radiation dose estimates are necessary for the public acceptance of nuclear facilities. Realistic dose estimates require continuous improvement of the models and their parameters as well as using state of the art modeling techniques and radioecological knowledge. The first commercial nuclear fuel reprocessing plant in Japan has been built in Rokkasho, Aomori, and the Institute for Environmental Sciences was established for the purpose of assessing the effects of radionuclides released from the plant. Test runs by the plant using actual spent nuclear fuel began in March 2006. With commercial operation soon to begin, there is increasing concern regarding the behavior of radionuclides in the environment. This was a good time to hold a symposium here in Rokkasho to discuss recent progress in the field of environmental modeling and studies of the behaviors of radionuclides in the environment. The exchange of up-to-date information between modelers and experiments was an important aspect of the symposium. The symposium featured 26 oral lectures and 32 poster presentations. The 57 of the presented papers are indexed individually. (J.P.N.)

  15. Predicting the environmental fate properties of petroleum hydrocarbon mixtures

    International Nuclear Information System (INIS)

    Pisigan, R.A. Jr.; Tucker, W.A.

    1995-01-01

    The environmental fate and transport of petroleum products for risk assessment can be evaluated based on the physico-chemical properties of an indicator chemical or a surrogate compound, or the whole mixture. A study was conducted to develop a simple representation of the hydrocarbon mixture as if it contained only few constituents, each of which represents a large number of compounds. The products considered are gasoline, diesel fuel, and jet fuel (JP4). Each petroleum hydrocarbon was characterized as a mixture of six constituents: short chain alkanes, long chain alkanes, short chain cycloalkanes and alkenes, long chain cycloalkanes and alkenes, BTEX, and other aromatics. The carbon number used as a cut-off between short and long chain alkanes, alkenes, and cycloalkanes varies with the type of product. Each mixture has different average molecular weight, water solubility, vapor pressure, organic carbon partition coefficient, and air diffusivity. The properties of each constituent of gasoline were derived from the weighted average of all compounds belonging to each constituent group. For diesel fuel and JP4, the properties of each constituent were generated from the properties of the component most representative of the group. Any property that is missing or not available from common literature sources was derived from regression equations developed from the data base for gasoline. These regression equations express the property as function of the number of carbon atoms. The R 2 values of the regression equations range from 0.82--0.92. Some case studies involving petroleum product contamination in which the estimated properties were applied are presented

  16. Environmental fate and transport analysis with compartment modeling

    National Research Council Canada - National Science Library

    Little, Keith W

    2012-01-01

    .... Discussing various modeling issues in a single volume, this text provides an introduction to a specific numerical modeling technique called the compartment approach and offers a practical user's guide to the GEM...

  17. Environmental fate of natural radioactive contaminants in fertilizers and phosphogypsum

    International Nuclear Information System (INIS)

    Batalha, Marcia Salamoni; Genuchten, Martinus Theodorus van

    2010-01-01

    Agricultural soils often require the use of fertilizers and soil conditioners for optimal production. Phosphate fertilizers produced from igneous phosphate rock often contain small amounts of natural radionuclides (notably uranium and thorium), while the byproduct phosphogypsum (dihydrated calcium sulfate) is typically enriched in radium and lead. It is important to understand the long-term fate of these radionuclides when routinely applied via fertilizers ( 238 U and 234 U) and phosphogypsum as an amendment ( 226 Ra and 210 Pb) to agricultural lands. This study addresses the results of modeling their transport in a typical Cerrado soil profile. The HYDRUS-1D code was used to compare possible soil and groundwater pollution scenarios following the long term use of fertilizers and phosphogypsum in agricultural operations. Results using the equilibrium transport approach suggest that radionuclide concentrations originating from the use of phosphate fertilizers and phosphogypsum are relatively modest and will not pose a major risk to polluting underlying groundwater resources. (author)

  18. Environmental fate of natural radioactive contaminants in fertilizers and phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Marcia Salamoni; Genuchten, Martinus Theodorus van, E-mail: msbatalha@oi.com.b, E-mail: rvangenuchten@yahoo.co [Federal University of Rio de Janeiro (LTTC/COPPE/UFRJ), RJ (Brazil). Dept. of Mechanical Engineering. Lab. de Transmissao e Tecnologia do Calor; Bezerra, Camila Rosa, E-mail: camila.rosabz@gmail.co [Federal University of Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Dept. of Civil Engineering; Pontedeiro, Elizabeth May, E-mail: bettymay@cnen.gov.b [Brazilian Nuclear Energy Commission (CNEN), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    Agricultural soils often require the use of fertilizers and soil conditioners for optimal production. Phosphate fertilizers produced from igneous phosphate rock often contain small amounts of natural radionuclides (notably uranium and thorium), while the byproduct phosphogypsum (dihydrated calcium sulfate) is typically enriched in radium and lead. It is important to understand the long-term fate of these radionuclides when routinely applied via fertilizers ({sup 238}U and {sup 234}U) and phosphogypsum as an amendment ({sup 226}Ra and {sup 210}Pb) to agricultural lands. This study addresses the results of modeling their transport in a typical Cerrado soil profile. The HYDRUS-1D code was used to compare possible soil and groundwater pollution scenarios following the long term use of fertilizers and phosphogypsum in agricultural operations. Results using the equilibrium transport approach suggest that radionuclide concentrations originating from the use of phosphate fertilizers and phosphogypsum are relatively modest and will not pose a major risk to polluting underlying groundwater resources. (author)

  19. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review

    Science.gov (United States)

    Lead, Jamie R.; Batley, Graeme E.; Alvarez, Pedro J.J.; Croteau, Marie-Noele; Handy, Richard D.; McLaughlin, Michael J.; Judy, Jonathon D.; Schirmer, Kristin

    2018-01-01

    This review covers developments in studies of nanomaterials (NMs) in the environment, since the much‐cited review of Klaine et al. (2008). It discusses novel insights on fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms and environmental impacts, with a focus on terrestrial and aquatic systems. Overall the findings were that: i) despite the substantial developments, there remain critical gaps, in large part due to the lack of analytical, modelling and field capabilities and in part due to the breadth and complexity of the area; ii) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; iii) there is substantial evidence that there are nano‐specific effects (different from both ions and larger particles) in the environment in terms of fate, bioavailability and toxicity, but this is not consistent for all NMs, species and all relevant processes; iv) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; v) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, however, with the uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. 

  20. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling.

    Science.gov (United States)

    Lorenz, Carmen; Prigione, Alessandro

    2017-12-01

    Modulation of energy metabolism is emerging as a key aspect associated with cell fate transition. The establishment of a correct metabolic program is particularly relevant for neural cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system commonly involve mitochondrial impairment. Recent studies in animals and in neural derivatives of human pluripotent stem cells (PSCs) highlighted the importance of mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells (NSCs) may be used for modeling neurological disorders. Understanding how metabolic programming is orchestrated during neural commitment may provide important information for the development of therapies against conditions affecting neural functions, including aging and mitochondrial disorders. Copyright © 2017. Published by Elsevier Ltd.

  1. Acute and chronic environmental effects of clandestine methamphetamine waste.

    Science.gov (United States)

    Kates, Lisa N; Knapp, Charles W; Keenan, Helen E

    2014-09-15

    The illicit manufacture of methamphetamine (MAP) produces substantial amounts of hazardous waste that is dumped illegally. This study presents the first environmental evaluation of waste produced from illicit MAP manufacture. Chemical oxygen demand (COD) was measured to assess immediate oxygen depletion effects. A mixture of five waste components (10mg/L/chemical) was found to have a COD (130 mg/L) higher than the European Union wastewater discharge regulations (125 mg/L). Two environmental partition coefficients, K(OW) and K(OC), were measured for several chemicals identified in MAP waste. Experimental values were input into a computer fugacity model (EPI Suite™) to estimate environmental fate. Experimental log K(OW) values ranged from -0.98 to 4.91, which were in accordance with computer estimated values. Experimental K(OC) values ranged from 11 to 72, which were much lower than the default computer values. The experimental fugacity model for discharge to water estimates that waste components will remain in the water compartment for 15 to 37 days. Using a combination of laboratory experimentation and computer modelling, the environmental fate of MAP waste products was estimated. While fugacity models using experimental and computational values were very similar, default computer models should not take the place of laboratory experimentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Arms race between selfishness and policing: two-trait quantitative genetic model for caste fate conflict in eusocial Hymenoptera.

    Science.gov (United States)

    Dobata, Shigeto

    2012-12-01

    Policing against selfishness is now regarded as the main force maintaining cooperation, by reducing costly conflict in complex social systems. Although policing has been studied extensively in social insect colonies, its coevolution against selfishness has not been fully captured by previous theories. In this study, I developed a two-trait quantitative genetic model of the conflict between selfish immature females (usually larvae) and policing workers in eusocial Hymenoptera over the immatures' propensity to develop into new queens. This model allows for the analysis of coevolution between genomes expressed in immatures and workers that collectively determine the immatures' queen caste fate. The main prediction of the model is that a higher level of polyandry leads to a smaller fraction of queens produced among new females through caste fate policing. The other main prediction of the present model is that, as a result of arms race, caste fate policing by workers coevolves with exaggerated selfishness of the immatures achieving maximum potential to develop into queens. Moreover, the model can incorporate genetic correlation between traits, which has been largely unexplored in social evolution theory. This study highlights the importance of understanding social traits as influenced by the coevolution of conflicting genomes. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.

  3. Assessing the environmental fate of selected polybrominated diphenyl ethers in the region surrounding the Zhuoshui River of Taiwan based on an Equilibrium Constant fugacity model

    Science.gov (United States)

    O'Driscoll, Kieran; Doherty, Rory; Robinson, Jill; Chiang, Wen-Son; Kao Kao, Ruey-Chy

    2015-04-01

    Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants that have been in use since the 1970s. They are included in the list of hazardous substances known as persistent organic pollutants (POPs) because they are extremely hazardous to the environment and human health. PBDEs have been extensively used in industry and manufacturing in Taiwan, thus its citizens are at high risk of exposure to these chemicals. An assessment of the environmental fate of these compounds in the Zhuoshui river and Changhua County regions of western Taiwan, and also including the adjacent area of the Taiwan Strait, was conducted for three high risk congeners, BDE-47, -99 and -209, to obtain information regarding the partitioning, advection, transfer and long range transport potential of the PBDEs in order to identify the level of risk posed by the pollutants in this region. The results indicate that large amounts of PBDEs presently reside in all model compartments - air, soil, water, and sediment - with particularly high levels found in air and especially in sediment. The high levels found in sediment, particularly for BDE-209, are significant, since there is the threat of these pollutants entering the food chain, either directly through benthic feeding, or through resuspension and subsequent feeding in the pelagic region of the water column which is a distinct possibility in the strong currents found within the Taiwan Strait. Another important result is that a substantial portion of emissions leave the model domain directly through advection, particularly for BDE-47 (58%) and BDE-209 (75%), thus posing a risk to adjacent communities. Model results were generally in reasonable agreement with available measured concentrations. In air, model concentrations are in reasonably good agreement with available measured values. For both BDE-47 and -99, model concentrations are a factor of 2-3 higher and BDE-209 within the range of measured values. In soil, model results are somewhat

  4. Fate of 14C-labelled compounds in marine environment

    International Nuclear Information System (INIS)

    Kale, S.P.; Raghu, K.; Sherkhane, P.D.; Murthy, N.B.K.

    1999-01-01

    Model ecosystems have played an important role in predicting environmental behavior of agrochemicals. The microcosms used in these studies generally include soil units containing usual biotic components common for that ecosystem. In present studies, scope of two such ecosystems has been extended to study the fate of 14 C-labelled pesticides in marine environment. 14 C-labelled pesticides used in these studies were chlorpyrifos, DDT and HCH. Two systems were developed in laboratory simulating marine environment to study the fate of these pesticides. The first system was developed in an all glass aquarium tank with marine sediments, seawater, clams and algae and is referred to as marine ecosystem. The second system was developed to permit the total 14 C-mass balance studies. It contained marine sediments under moist (60% water holding capacity) or flooded conditions and it is referred to as continuous flow system. Fate of 14 C-DDT was studied in marine ecosystem while degradation of 14 C-chlorpyrifos and 14 C-HCH was studied in continuous flow system. 14 C-DDT did not bioaccumulate in clams while at the end of 60 days 50% of the applied 14 C-activity was present in sediment fraction of marine ecosystem. 14 C-HCH degradation showed about 22-26% mineralization while 45-55% of the applied activity was recovered as organic volatiles. No significant bound residues were formed. 14 C-chorpyrifos underwent considerable degradation in marine environment. TCP was the major degradation product. (author)

  5. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria.

    Science.gov (United States)

    Lönnberg, Tapio; Svensson, Valentine; James, Kylie R; Fernandez-Ruiz, Daniel; Sebina, Ismail; Montandon, Ruddy; Soon, Megan S F; Fogg, Lily G; Nair, Arya Sheela; Liligeto, Urijah; Stubbington, Michael J T; Ly, Lam-Ha; Bagger, Frederik Otzen; Zwiessele, Max; Lawrence, Neil D; Souza-Fonseca-Guimaraes, Fernando; Bunn, Patrick T; Engwerda, Christian R; Heath, William R; Billker, Oliver; Stegle, Oliver; Haque, Ashraful; Teichmann, Sarah A

    2017-03-03

    Differentiation of naïve CD4 + T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo . By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates.

  6. Environmental transport and fate of endocrine disruptors from non-potable reuse of municipal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, B; Beller, H; Bartel, C M; Kane, S; Campbell, C; Grayson, A; Liu, N; Burastero, S

    2005-11-16

    This project was designed to investigate the important but virtually unstudied topic of the subsurface transport and fate of Endocrine Disrupting Compounds (EDCs) when treated wastewater is used for landscape irrigation (non-potable water reuse). Although potable water reuse was outside the scope of this project, the investigation clearly has relevance to such water recycling practices. The target compounds, which are discussed in the following section and include EDCs such as 4-nonylphenol (NP) and 17{beta}-estradiol, were studied not only because of their potential estrogenic effects on receptors but also because they can be useful as tracers of wastewater residue in groundwater. Since the compounds were expected to occur at very low (part per trillion) concentrations in groundwater, highly selective and sensitive analytical techniques had to be developed for their analysis. This project assessed the distributions of these compounds in wastewater effluents and groundwater, and examined their fate in laboratory soil columns simulating the infiltration of treated wastewater into an aquifer (e.g., as could occur during irrigation of a golf course or park with nonpotable treated water). Bioassays were used to determine the estrogenic activity present in effluents and groundwater, and the results were correlated with those from chemical analysis. In vitro assays for estrogenic activity were employed to provide an integrated measure of estrogenic potency of environmental samples without requiring knowledge or measurement of all bioactive compounds in the samples. For this project, the Las Positas Golf Course (LPGC) in the City of Livermore provided an ideal setting. Since 1978, irrigation of this area with treated wastewater has dominated the overall water budget. For a variety of reasons, a group of 10 monitoring wells were installed to evaluate wastewater impacts on the local groundwater. Additionally, these wells were regularly monitored for tritium ({sup 3}H

  7. The fate of cyanide in leach wastes at gold mines: an environmental perspective

    Science.gov (United States)

    Johnson, Craig A.

    2015-01-01

    This paper reviews the basic chemistry of cyanide, methods by which cyanide can be analyzed, and aspects of cyanide behavior that are most relevant to environmental considerations at mineral processing operations associated with gold mines. The emphasis is on research results reported since 1999 and on data gathered for a series of U.S. Geological Survey studies that began in the late 1990s. Cyanide is added to process solutions as the CN− anion, but ore leaching produces numerous other cyanide-containing and cyanide-related species in addition to the desired cyanocomplex of gold. These can include hydrogen cyanide (HCN); cyanometallic complexes of iron, copper, zinc, nickel, and many other metals; cyanate (CNO−); and thiocyanate (SCN−). The fate of these species in solid wastes and residual process solutions that remain once gold recovery activities are terminated and in any water that moves beyond the ore processing facility dictates the degree to which cyanide poses a risk to aquatic organisms and aquatic-dependent organisms in the local environment.

  8. Implementation of the Leaching Environmental Assessment Framework

    Science.gov (United States)

    New leaching tests are available in the U.S. for developing more accurate source terms for use in fate and transport models. For beneficial use or disposal, the use of the leaching environmental assessment framework (LEAF) will provide leaching results that reflect field condit...

  9. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai.

    Science.gov (United States)

    Liu, Yu; Li, Changyou; Anderson, Bruce; Zhang, Sheng; Shi, Xiaohong; Zhao, Shengnan

    2017-06-01

    Mercury contamination from industrial and agricultural drainage into lakes and rivers is a growing concern in Northern China. Lake Ulansuhai, located in Hetao irrigation district in Inner Mongolia, is the only sink for the all industrial and agricultural drainage and sole outlet for this district to the Yellow River, which is one of the main source of drinking water for the numerous cities and towns downstream. Because Ulansuahi is ice-covered during winter, the QWASI model was modified by adding an ice equation to get a more accurate understanding of the fate and transport of mercury within the lake. Both laboratory and field tests were carried out during the ice growth period. The aquivalence and mass balance approaches were used to develop the modified QWASI + ice model. The margins of error between the modelled and the measured average concentrations of Hg in ice, water, and sediment were 30%, 26.2%, and 19.8% respectively. These results suggest that the new QWASI + ice model could be used to more accurately represent the fate and transport of mercury in the seasonally ice-covered lakes, during the ice growth period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Integrated fate and toxicity assessment for site contaminants

    International Nuclear Information System (INIS)

    MacDonell, Margaret; Peterson, John; Finster, Molly; Douglas, R.

    2007-01-01

    Understanding the fate and toxicity of environmental contaminants is essential to framing practical management decisions. Forms and bioavailable concentrations often change over time due to natural physical, chemical, and biological processes. For some sites, hundreds of contaminants may be of initial interest, and even small projects can involve a substantial number of contaminants. With multiple assessments common, attention to effectiveness and efficiency is important, and integrating fate and toxicity information provides a valuable way to focus the analyses. Fate assessments help identify what forms may be present where and when, while toxicity information indicates what health effects could result if people were exposed. The integration process is illustrated by an application for the Hanford site, to support long-term management decisions for the cesium and strontium capsules. Fate data, health-based benchmarks, and related toxicity information were effectively combined to indicate performance targets for chemicals and radionuclides identified for capsule leachate that could migrate to groundwater. More than 50 relevant benchmarks and toxicity context were identified for 15 of the 17 study contaminants; values for chronic drinking water exposure provided the common basis for selected indicators. For two chemicals, toxicity information was identified from the scientific literature to guide the performance targets. (authors)

  11. Organic pollutants and heavy metals in rainwater runoff and their fate in the unsaturated soil zone. Final report

    International Nuclear Information System (INIS)

    Grotehusmann, D.; Rohlfing, R.; Weyer, G.; Dittrich, D.; Gowik, P.; Pernak, P.

    1991-01-01

    This bibliographic study is part of the BMFT intergrated project ''Possibilitiis and limits of [ drainage in consederation of the soil and groundwater protection''. Subjects: Environmental relevance and general distribution of organic pollutants; organic pollutants in rain water, soil, and groundwater; fate of organic pollutants in soil; environmental relevance of heavy metals in soil, rain water, and runof; fate of heavy metals in the unsaturated soil rare. (orig./BBR) [de

  12. Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles.

    Science.gov (United States)

    Jacobs, Rianne; Meesters, Johannes A J; Ter Braak, Cajo J F; van de Meent, Dik; van der Voet, Hilko

    2016-12-01

    There is a growing need for good environmental risk assessment of engineered nanoparticles (ENPs). Environmental risk assessment of ENPs has been hampered by lack of data and knowledge about ENPs, their environmental fate, and their toxicity. This leads to uncertainty in the risk assessment. To deal with uncertainty in the risk assessment effectively, probabilistic methods are advantageous. In the present study, the authors developed a method to model both the variability and the uncertainty in environmental risk assessment of ENPs. This method is based on the concentration ratio and the ratio of the exposure concentration to the critical effect concentration, both considered to be random. In this method, variability and uncertainty are modeled separately so as to allow the user to see which part of the total variation in the concentration ratio is attributable to uncertainty and which part is attributable to variability. The authors illustrate the use of the method with a simplified aquatic risk assessment of nano-titanium dioxide. The authors' method allows a more transparent risk assessment and can also direct further environmental and toxicological research to the areas in which it is most needed. Environ Toxicol Chem 2016;35:2958-2967. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  13. The Impacts of Different Meteorology Data Sets on Nitrogen Fate and Transport in the SWAT Watershed Model

    Science.gov (United States)

    In this study, we investigated how different meteorology data sets impacts nitrogen fate and transport responses in the Soil and Water Assessment Tool (SWAT) model. We used two meteorology data sets: National Climatic Data Center (observed) and Mesoscale Model 5/Weather Research ...

  14. Uncertainty quantification for environmental models

    Science.gov (United States)

    Hill, Mary C.; Lu, Dan; Kavetski, Dmitri; Clark, Martyn P.; Ye, Ming

    2012-01-01

    Environmental models are used to evaluate the fate of fertilizers in agricultural settings (including soil denitrification), the degradation of hydrocarbons at spill sites, and water supply for people and ecosystems in small to large basins and cities—to mention but a few applications of these models. They also play a role in understanding and diagnosing potential environmental impacts of global climate change. The models are typically mildly to extremely nonlinear. The persistent demand for enhanced dynamics and resolution to improve model realism [17] means that lengthy individual model execution times will remain common, notwithstanding continued enhancements in computer power. In addition, high-dimensional parameter spaces are often defined, which increases the number of model runs required to quantify uncertainty [2]. Some environmental modeling projects have access to extensive funding and computational resources; many do not. The many recent studies of uncertainty quantification in environmental model predictions have focused on uncertainties related to data error and sparsity of data, expert judgment expressed mathematically through prior information, poorly known parameter values, and model structure (see, for example, [1,7,9,10,13,18]). Approaches for quantifying uncertainty include frequentist (potentially with prior information [7,9]), Bayesian [13,18,19], and likelihood-based. A few of the numerous methods, including some sensitivity and inverse methods with consequences for understanding and quantifying uncertainty, are as follows: Bayesian hierarchical modeling and Bayesian model averaging; single-objective optimization with error-based weighting [7] and multi-objective optimization [3]; methods based on local derivatives [2,7,10]; screening methods like OAT (one at a time) and the method of Morris [14]; FAST (Fourier amplitude sensitivity testing) [14]; the Sobol' method [14]; randomized maximum likelihood [10]; Markov chain Monte Carlo (MCMC) [10

  15. Fate of a mutation in a fluctuating environment

    Science.gov (United States)

    Cvijović, Ivana; Good, Benjamin H.; Jerison, Elizabeth R.; Desai, Michael M.

    2015-01-01

    Natural environments are never truly constant, but the evolutionary implications of temporally varying selection pressures remain poorly understood. Here we investigate how the fate of a new mutation in a fluctuating environment depends on the dynamics of environmental variation and on the selective pressures in each condition. We find that even when a mutation experiences many environmental epochs before fixing or going extinct, its fate is not necessarily determined by its time-averaged selective effect. Instead, environmental variability reduces the efficiency of selection across a broad parameter regime, rendering selection unable to distinguish between mutations that are substantially beneficial and substantially deleterious on average. Temporal fluctuations can also dramatically increase fixation probabilities, often making the details of these fluctuations more important than the average selection pressures acting on each new mutation. For example, mutations that result in a trade-off between conditions but are strongly deleterious on average can nevertheless be more likely to fix than mutations that are always neutral or beneficial. These effects can have important implications for patterns of molecular evolution in variable environments, and they suggest that it may often be difficult for populations to maintain specialist traits, even when their loss leads to a decline in time-averaged fitness. PMID:26305937

  16. Modelling impact of climate change on atmospheric transport and fate of persistent organic pollutants in the Arctic

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-03-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Artic and their environmental fate within the Arctic. Two sets of simulations were performed, one with initial environmental concentrations from a 20 year spin-up simulation and one with initial environmental concentrations set to zero. Each set of simulations consisted of two ten-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. The same POP emissions were applied in all simulations to ensure that the difference in predicted concentrations for each set of simulations only arises from the difference in climate input. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 20% higher across the Northern Hemisphere. The mass of HCHs within the Arctic was predicted to be up to 39% higher, whereas the change in mass of the PCBs was predicted to range from 14% lower to 17% higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depend on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of a changed climate on

  17. (Environmental technology)

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  18. The effect of the indoor environment on the fate of organic chemicals in the urban landscape.

    Science.gov (United States)

    Cousins, Anna Palm

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK(OA) and the impact of the ventilation rate on the urban fate of organic chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Scandinavian belief in fate

    Directory of Open Access Journals (Sweden)

    Åke Ström

    1967-02-01

    Full Text Available In point of principle, Christianity does not give room for any belief in fate. Astrology, horoscopes, divination, etc., are strictly rejected. Belief in fate never disappeared in Christian countries, nor did it in Scandinavia in Christian times. Especially in folklore we can find it at any period: People believed in an implacable fate. All folklore is filled up with this belief in destiny. Nobody can escape his fate. The future lies in the hands of fate, and the time to come takes its form according to inscrutable laws. The pre-Christian period in Scandinavia, dominated by pagan Norse religion, and the secularized epoch of the 20th century, however, show more distinctive and more widespread beliefs in fate than does the Christian period. The present paper makes a comparison between these forms of belief.

  20. Fates of Chemical Elements in Biomass during Its Pyrolysis.

    Science.gov (United States)

    Liu, Wu-Jun; Li, Wen-Wei; Jiang, Hong; Yu, Han-Qing

    2017-05-10

    Biomass is increasingly perceived as a renewable resource rather than as an organic solid waste today, as it can be converted to various chemicals, biofuels, and solid biochar using modern processes. In the past few years, pyrolysis has attracted growing interest as a promising versatile platform to convert biomass into valuable resources. However, an efficient and selective conversion process is still difficult to be realized due to the complex nature of biomass, which usually makes the products complicated. Furthermore, various contaminants and inorganic elements (e.g., heavy metals, nitrogen, phosphorus, sulfur, and chlorine) embodied in biomass may be transferred into pyrolysis products or released into the environment, arousing environmental pollution concerns. Understanding their behaviors in biomass pyrolysis is essential to optimizing the pyrolysis process for efficient resource recovery and less environmental pollution. However, there is no comprehensive review so far about the fates of chemical elements in biomass during its pyrolysis. Here, we provide a critical review about the fates of main chemical elements (C, H, O, N, P, Cl, S, and metals) in biomass during its pyrolysis. We overview the research advances about the emission, transformation, and distribution of elements in biomass pyrolysis, discuss the present challenges for resource-oriented conversion and pollution abatement, highlight the importance and significance of understanding the fate of elements during pyrolysis, and outlook the future development directions for process control. The review provides useful information for developing sustainable biomass pyrolysis processes with an improved efficiency and selectivity as well as minimized environmental impacts, and encourages more research efforts from the scientific communities of chemistry, the environment, and energy.

  1. Investigating Particle Transport and Fate in the Sacramento–San Joaquin Delta Using a Particle-Tracking Model

    Directory of Open Access Journals (Sweden)

    Wim J. Kimmerer

    2008-02-01

    Full Text Available Movements of pelagic organisms in the tidal freshwater regions of estuaries are sensitive to the movements of water. In the Sacramento-San Joaquin Delta—the tidal freshwater reach of the San Francisco Estuary—such movements are key to losses of fish and other organisms to entrainment in large water-export facilities. We used the Delta Simulation Model-2 hydrodynamic model and its particle tracking model to examine the principal determinants of entrainment losses to the export facilities and how movement of fish through the Delta may be influenced by flow. We modeled 936 scenarios for 74 different conditions of flow, diversions, tides, and removable barriers to address seven questions regarding hydrodynamics and entrainment risk in the Delta. Tide had relatively small effects on fate and residence time of particles. Release location and hydrology interacted to control particle fate and residence time. The ratio of flow into the export facilities to freshwater flow into the Delta (export:inflow or EI ratio was a useful predictor of entrainment probability if the model were allowed to run long enough to resolve particles’ ultimate fate. Agricultural diversions within the Delta increased total entrainment losses and altered local movement patterns. Removable barriers in channels of the southern Delta and gates in the Delta Cross Channel in the northern Delta had minor effects on particles released in the rivers above these channels. A simulation of losses of larval delta smelt showed substantial cumulative losses depending on both inflow and export flow. A simulation mimicking mark–recapture experiments on Chinook salmon smolts suggested that both inflow and export flow may be important factors determining survival of salmon in the upper estuary. To the extent that fish behave passively, this model is probably suitable for describing Delta-wide movement, but it is less suitable for smaller scales or alternative configurations of the Delta.

  2. Agrochemical fate models applied in agricultural areas from Colombia

    Science.gov (United States)

    Garcia-Santos, Glenda; Yang, Jing; Andreoli, Romano; Binder, Claudia

    2010-05-01

    The misuse application of pesticides in mainly agricultural catchments can lead to severe problems for humans and environment. Especially in developing countries where there is often found overuse of agrochemicals and incipient or lack of water quality monitoring at local and regional levels, models are needed for decision making and hot spots identification. However, the complexity of the water cycle contrasts strongly with the scarce data availability, limiting the number of analysis, techniques, and models available to researchers. Therefore there is a strong need for model simplification able to appropriate model complexity and still represent the processes. We have developed a new model so-called Westpa-Pest to improve water quality management of an agricultural catchment located in the highlands of Colombia. Westpa-Pest is based on the fully distributed hydrologic model Wetspa and a fate pesticide module. We have applied a multi-criteria analysis for model selection under the conditions and data availability found in the region and compared with the new developed Westpa-Pest model. Furthermore, both models were empirically calibrated and validated. The following questions were addressed i) what are the strengths and weaknesses of the models?, ii) which are the most sensitive parameters of each model?, iii) what happens with uncertainties in soil parameters?, and iv) how sensitive are the transfer coefficients?

  3. A fate model for nitrogen dynamics in the Scheldt basin

    Science.gov (United States)

    Haest, Pieter Jan; van der Kwast, Johannes; Broekx, Steven; Seuntjens, Piet

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good ecological status' by 2015. However, the large population density in combination with agricultural and industrial activities in some European river basins pose challenges for river basin managers in meeting this status. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded waters. For this purpose, a numerical spatio-temporal model is developed to evaluate innovative technologies versus conventional measures at the river basin scale. The numerical model describes the nitrogen dynamics in the Scheldt river basin. Nitrogen is examined since nitrate is of specific concern in Belgium, the country comprising the largest area of the Scheldt basin. The Scheldt basin encompasses 20000 km2 and houses over 10 million people. The governing factors describing nitrogen fluxes at this large scale differ from the field scale with a larger uncertainty on input data. As such, the environmental modeling language PCRaster was selected since it was found to provide a balance between process descriptions and necessary input data. The resulting GIS-based model simulates the nitrogen dynamics in the Scheldt basin with a yearly time step and a spatial resolution of 1 square kilometer. A smaller time step is being evaluated depending on the description of the hydrology. The model discerns 4 compartments in the Scheldt basin: the soil, shallow groundwater, deep groundwater and the river network. Runoff and water flow occurs along the steepest slope in all model compartments. Diffuse emissions and direct inputs are calculated from administrative and statistical data. These emissions are geographically defined or are distributed over the domain according to land use and connectivity to the sewer system. The reactive mass transport is described using

  4. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation

    Directory of Open Access Journals (Sweden)

    Min-Hee Jang

    2014-12-01

    Full Text Available Objectives Nanoscale zero-valent iron (nZVI particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Methods Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. Results The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. Conclusions In this regard, the primary focus of future study should be on 1 the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2 assessing their potential environmental risks using in situ field scale applications.

  5. Fate of linear alkylbenzenes and benzothiazoles of anthropogenic origin and their potential as environmental molecular markers in the Pearl River Delta, South China

    International Nuclear Information System (INIS)

    Ni Honggang; Shen Rulang; Zeng Hui; Zeng, Eddy Y.

    2009-01-01

    The mass emissions of linear alkylbenzenes (LABs), benzothiazole (BT), and 2-[4-morpholinyl]benzothiazole (24MoBT) from anthropogenic activities within one year were estimated according to the population and the number of automobiles in the Pearl River Delta (PRD), South China. Based on the estimation, the distribution of these compounds among various environmental media was simulated with a mass balance box model established in the present study. The results showed that 79% of LABs generated in the PRD was stored in sediment while only 1.3% of LABs was presumably transported to the adjacent South China Sea (SCS). On the contrary, 47% of BT and 77% of 24MoBT generated in the region were carried with riverine runoff to the coastal ocean. The results from the present study suggest that hydrophobic compounds tend to stay in the watershed of the PRD, whereas hydrophilic ones mainly outflow to the coastal ocean. - A simple mass balance box model examines the fate of linear alkylbenzenes and benzothiazoles in the Pearl River Delta, South China.

  6. The Multimedia Environmental Pollutant Assessment System (MEPAS)reg-sign: Riverine pathway formulations

    International Nuclear Information System (INIS)

    Whelan, G.; McDonald, J.P.

    1996-11-01

    This report describes the mathematical formulations used for contaminant fate and transport in the riverine pathway of the Multimedia Environmental Pollutant Assessment System (MEPAS). Of the many types of surface-water bodies (e.g., nontidal rivers, estuaries, lakes, open coasts, reservoirs, impoundments, etc.) in which contaminant fate and transport could be simulated, only a nontidal river model is currently incorporated into MEPAS. Nontidal rivers refer to freshwater bodies with unidirectional flow in definable channels. Because the MEPAS methodology is compositely coupled, other surface-water models can be added when deemed necessary

  7. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly

  8. The impact of organochlorines cycling in the cryosphere on global distributions and fate – 2. Land ice and temporary snow cover

    International Nuclear Information System (INIS)

    Hofmann, Lorenz; Stemmler, Irene; Lammel, Gerhard

    2012-01-01

    Global fate and transport of γ-HCH and DDT was studied using a global multicompartment chemistry-transport model, MPI-MCTM, with and without inclusion of land ice (in Antarctica and Greenland) or snow cover (dynamic). MPI-MCTM is based on coupled ocean and atmosphere general circulation models. After a decade of simulation 4.2% γ-HCH and 2.3% DDT are stored in land ice and snow. Neglection of land ice and snow in modelling would underestimate the total environmental residence time, τ ov , of γ-HCH and overestimate τ ov for DDT, both on the order of 1% and depending on actual compartmental distribution. Volatilisation of DDT from boreal, seasonally snow covered land is enhanced throughout the year, while volatilisation of γ-HCH is only enhanced during the snow-free season. Including land ice and snow cover in modelling matters in particular for the Arctic, where higher burdens are predicted to be stored. - Highlights: ► Land ice and snow hosts 2–4% of the global environmental burden of γ-HCH and DDT. ► Inclusion of land ice and snow cover matters for global environmental residence time. ► Including of land ice and snow cover matters in particular for the Arctic. - The inclusion of cycling in temporary snow cover and land ice in the model is found relevant for predicted POPs multicompartmental distribution and fate in the Arctic and on the global scale.

  9. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    Science.gov (United States)

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  10. Modelling of migration and fate of selected persistent organic pollutants in the Gulf of Gdansk and the Vistula catchment (Poland): selected results from the EU ELOISE EuroCat project

    Science.gov (United States)

    Zukowska, Barbara; Pacyna, Jozef; Namiesnik, Jacek

    2005-02-01

    The ELOISE EU EuroCat project integrated natural and social sciences to link the impacts affecting the coastal sea to the human activities developed along the catchments. In EuroCat project river catchments' changes and their impact on the inflow area were analysed. The information was linked with environmental models. The part of the EU ELOISE EuroCat project focusing on the Vistula River catchment and the Baltic Sea costal zone was named VisCat. Within the framework of the EU ELOISE EuroCat - VisCat project, CoZMo-POP (Coastal Zone Model for Persistent Organic Pollutants), a non-steady-state multicompartmental mass balance model of long-term chemical fate in the coastal environment or the drainage basin of a large lake environment was used. The model is parameterised and tested herein to simulate the long-term fate and distribution of selected HCHs (hexachlorocyclohexanes) and PCBs (polychlorinated biphenyls) in the Gulf of Gdansk and the Vistula River drainage basin environment. The model can also be used in the future to predict future concentrations in relation to various emission scenarios and in management of economic development and regulations of substance-emission to this environment. However, this would require more extensive efforts in the future on model parameterisation and validation in order to increase the confidence in current model outputs.

  11. Predicting the fate of micropollutants during wastewater treatment: Calibration and sensitivity analysis.

    Science.gov (United States)

    Baalbaki, Zeina; Torfs, Elena; Yargeau, Viviane; Vanrolleghem, Peter A

    2017-12-01

    The presence of micropollutants in the environment and their toxic impacts on the aquatic environment have raised concern about their inefficient removal in wastewater treatment plants. In this study, the fate of micropollutants of four different classes was simulated in a conventional activated sludge plant using a bioreactor micropollutant fate model coupled to a settler model. The latter was based on the Bürger-Diehl model extended for the first time to include micropollutant fate processes. Calibration of model parameters was completed by matching modelling results with full-scale measurements (i.e. including aqueous and particulate phase concentrations of micropollutants) obtained from a 4-day sampling campaign. Modelling results showed that further biodegradation takes place in the sludge blanket of the settler for the highly biodegradable caffeine, underlining the need for a reactive settler model. The adopted Monte Carlo based calibration approach also provided an overview of the model's global sensitivity to the parameters. This analysis showed that for each micropollutant and according to the dominant fate process, a different set of one or more parameters had a significant impact on the model fit, justifying the selection of parameter subsets for model calibration. A dynamic local sensitivity analysis was also performed with the calibrated parameters. This analysis supported the conclusions from the global sensitivity and provided guidance for future sampling campaigns. This study expands the understanding of micropollutant fate models when applied to different micropollutants, in terms of global and local sensitivity to model parameters, as well as the identifiability of the parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Modeling seasonal redox dynamics and the corresponding fate of the pharmaceutical residue phenazone during artificial recharge of groundwater.

    Science.gov (United States)

    Greskowiak, Janek; Prommer, Henning; Massmann, Gudrun; Nützmann, Gunnar

    2006-11-01

    Reactive multicomponent transport modeling was used to investigate and quantify the factors that affect redox zonation and the fate of the pharmaceutical residue phenazone during artificial recharge of groundwater at an infiltration site in Berlin, Germany. The calibrated model and the corresponding sensitivity analysis demonstrated thattemporal and spatial redox zonation at the study site was driven by seasonally changing, temperature-dependent organic matter degradation rates. Breakthrough of phenazone at monitoring wells occurred primarily during the warmer summer months, when anaerobic conditions developed. Assuming a redox-sensitive phenazone degradation behavior the model results provided an excellent agreement between simulated and measured phenazone concentrations. Therefore, the fate of phenazone was shown to be indirectly controlled by the infiltration water temperature through its effect on the aquifer's redox conditions. Other factors such as variable residence times appeared to be of less importance.

  13. The OECD expert meeting on ecotoxicology and environmental fate--towards the development of improved OECD guidelines for the testing of nanomaterials.

    Science.gov (United States)

    Kühnel, Dana; Nickel, Carmen

    2014-02-15

    On behalf of the OECD Working Party on Manufactured Nanomaterials (WPMN) an expert meeting on ecotoxicology and environmental fate of nanomaterials (NMs) took place in January 2013 in Berlin. At this meeting experts from science, industry and regulatory bodies discussed the applicability of OECD test guidelines (TGs) for chemicals to nanomaterials. The objective was to discuss the current state of the relevant science and provide recommendations to the OECD WPMN on (1) the need for updating current OECD TGs and the need for developing new ones specific to nanomaterials; and (2) guidance needed for the appropriate and valid testing of environmental fate and ecotoxicity endpoints for NMs. Experts at the workshop agreed that the majority of the OECD TG for chemicals were generally applicable for the testing of NM, with the exception of TG 105 (water solubility) and 106 (adsorption-desorption). Additionally, the workshop also highlighted considerations when conducting OECD chemical TG on nanomaterials (e.g., sample preparation, dispersion, analysis, dosimetry and characterisation). These considerations will lead to the future development of proposals for new TG and guidance documents (GDs) to ensure that OECD TG give meaningful, repeatable, and accurate results when used for nanomaterials. This report provides a short overview of topics discussed during the meeting and the main outcomes. A more detailed report of the workshop will become available through the OECD, however, due to the urgency of having OECD TG relevant for nanomaterials, this brief report is being shared with the scientific community through this communication. Copyright © 2013. Published by Elsevier B.V.

  14. The fate of accreting white dwarfs: type I supernovae vs. collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi

    1986-01-01

    The fate of accreting white dwarfs is examined with respect to thermonuclear explosion or collapse. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy 1986. Effects of accretion and the fate of white dwarfs, models for type 1a and 1b supernovae, collapse induced by carbon deflagration at high density, and fate of double white dwarfs, are all discussed. (U.K.)

  15. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  16. Modeling environmental policy

    International Nuclear Information System (INIS)

    Martin, W.E.; McDonald, L.A.

    1997-01-01

    The eight book chapters demonstrate the link between the physical models of the environment and the policy analysis in support of policy making. Each chapter addresses an environmental policy issue using a quantitative modeling approach. The volume addresses three general areas of environmental policy - non-point source pollution in the agricultural sector, pollution generated in the extractive industries, and transboundary pollutants from burning fossil fuels. The book concludes by discussing the modeling efforts and the use of mathematical models in general. Chapters are entitled: modeling environmental policy: an introduction; modeling nonpoint source pollution in an integrated system (agri-ecological); modeling environmental and trade policy linkages: the case of EU and US agriculture; modeling ecosystem constraints in the Clean Water Act: a case study in Clearwater National Forest (subject to discharge from metal mining waste); costs and benefits of coke oven emission controls; modeling equilibria and risk under global environmental constraints (discussing energy and environmental interrelations); relative contribution of the enhanced greenhouse effect on the coastal changes in Louisiana; and the use of mathematical models in policy evaluations: comments. The paper on coke area emission controls has been abstracted separately for the IEA Coal Research CD-ROM

  17. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A VENTURI/PACKED COLUMN SCRUBBER - VOLUME I: TECHNICAL RESULTS

    Science.gov (United States)

    A five week series of pilot-scale incineration tests, using a synthetic waste feed, was performed at the Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator. Eight tests studied the fate of five ha...

  18. Spatially explicit fate factors of waterborne nitrogen emissions at the global scale

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Mayorga, Emilio; Hauschild, Michael Zwicky

    2017-01-01

    water. Spatial aggregation of the FFs at the continental level decreases this variation to 1 order of magnitude or less for all routes. Coastal water residence time was found to show inconsistency and scarcity of literature sources. Improvement of data quality for this parameter is suggested......Purpose: Marine eutrophication impacts due to waterborne nitrogen (N) emissions may vary significantly with their type and location. The environmental fate of dissolved inorganic nitrogen (DIN) forms is essential to understand the impacts they may trigger in receiving coastal waters. Current life...... and river basin resolution. Methods: The FF modelling work includes DIN removal processes in both inland (soil and river) and marine compartments. Model input parameters are the removal coefficients extracted from the Global NEWS 2-DIN model and residence time of receiving coastal waters. The resulting FFs...

  19. Pollutant transport and fate in ecosystems

    International Nuclear Information System (INIS)

    Coughtrey, P.J.; Martin, M.H.; Unsworth, M.H.

    1987-01-01

    This publication contains a selection of the papers that were presented at a meeting of the Industrial Ecology Group of the British Ecological Society, held at the University of Bristol 1-4 April 1985. The aim of the meeting was to discuss the processes and mechanisms underlying the transfer of pollutants and contaminants in ecological systems. The discussion of the impact of pollutants on individual organisms, populations and communities was specifically excluded. Parallels between transfer, distribution and fate of a wide range of materials were identified. The papers presented at the meeting provided examples of mechanisms and processes involved in pollutant transport through ecosystems as well as of the significance of long-term or widespread investigations in the identification of temporal or geographical trends. Examples were also provided of studies involving complex systems and diverse materials with the aim of identifying underlying principles. Topics of current environmental concern e.g. acid deposition, heavy metals, radioactivity, etc. for which information is being collated in order to provide a basis for assessments concerning future impact were presented. Such assessments will require a combination of the information on transport and fate within ecosystems with knowledge of the effects of pollutants on the system. The interpretation of data concerning effects of a pollutant needs to be placed in the wider context of the occurrence, distribution and fate of that pollutant. The purpose of this publication is to provide that wider context. (author)

  20. A pollution fate and transport model application in a semi-arid region: Is some number better than no number?

    Science.gov (United States)

    Özcan, Zeynep; Başkan, Oğuz; Düzgün, H Şebnem; Kentel, Elçin; Alp, Emre

    2017-10-01

    Fate and transport models are powerful tools that aid authorities in making unbiased decisions for developing sustainable management strategies. Application of pollution fate and transport models in semi-arid regions has been challenging because of unique hydrological characteristics and limited data availability. Significant temporal and spatial variability in rainfall events, complex interactions between soil, vegetation and topography, and limited water quality and hydrological data due to insufficient monitoring network make it a difficult task to develop reliable models in semi-arid regions. The performances of these models govern the final use of the outcomes such as policy implementation, screening, economical analysis, etc. In this study, a deterministic distributed fate and transport model, SWAT, is applied in Lake Mogan Watershed, a semi-arid region dominated by dry agricultural practices, to estimate nutrient loads and to develop the water budget of the watershed. To minimize the discrepancy due to limited availability of historical water quality data extensive efforts were placed in collecting site-specific data for model inputs such as soil properties, agricultural practice information and land use. Moreover, calibration parameter ranges suggested in the literature are utilized during calibration in order to obtain more realistic representation of Lake Mogan Watershed in the model. Model performance is evaluated using comparisons of the measured data with 95%CI for the simulated data and comparison of unit pollution load estimations with those provided in the literature for similar catchments, in addition to commonly used evaluation criteria such as Nash-Sutcliffe simulation efficiency, coefficient of determination and percent bias. These evaluations demonstrated that even though the model prediction power is not high according to the commonly used model performance criteria, the calibrated model may provide useful information in the comparison of the

  1. Sensitivity analysis of the noble gas transport and fate model: CASCADR9

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Barker, L.E.

    1994-03-01

    CASCADR9 is a desert alluvial soil site-specific noble gas transport and fate model. Input parameters for CASCADR9 are: man-made source term, background concentration of radionuclides, radon half-life, soil porosity, period of barometric pressure wave, amplitude of barometric pressure wave, and effective eddy diffusivity. Using average flux, total flow, and radon concentration at the 40 day mark as output parameters, a sensitivity analysis for CASCADR9 is carried out, under a variety of scenarios. For each scenario, the parameter to which output parameters are most sensitive are identified

  2. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    2015-01-01

    Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation with freshwa......Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation...... with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan-TCS, furosemide-FUR, ciprofloxacin-CIP) from human...... and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model...

  3. Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-06-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Arctic and their environmental fate within the Arctic. Three sets of simulations were performed, one with present day emissions and initial environmental concentrations from a 20-year spin-up simulation, one with present day emissions and with initial environmental concentrations set to zero and one without emissions but with initial environmental concentrations from the 20-year spin-up simulation. Each set of simulations consisted of two 10-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES (Special Report on Emissions Scenarios) A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 55 % lower across the Northern Hemisphere at the end of the 2090s than in the 1990s. The mass of HCHs within the Arctic was predicted to be up to 38 % higher, whereas the change in mass of the PCBs was predicted to range from 38 % lower to 17 % higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depends on the physical-chemical properties of the compounds. Previous model

  4. Fate and Transport of Nanoparticles in Porous Media: A Numerical Study

    Science.gov (United States)

    Taghavy, Amir

    Understanding the transport characteristics of NPs in natural soil systems is essential to revealing their potential impact on the food chain and groundwater. In addition, many nanotechnology-based remedial measures require effective transport of NPs through soil, which necessitates accurate understanding of their transport and retention behavior. Based upon the conceptual knowledge of environmental behavior of NPs, mathematical models can be developed to represent the coupling of processes that govern the fate of NPs in subsurface, serving as effective tools for risk assessment and/or design of remedial strategies. This work presents an innovative hybrid Eulerian-Lagrangian modeling technique for simulating the simultaneous reactive transport of nanoparticles (NPs) and dissolved constituents in porous media. Governing mechanisms considered in the conceptual model include particle-soil grain, particle-particle, particle-dissolved constituents, and particle- oil/water interface interactions. The main advantage of this technique, compared to conventional Eulerian models, lies in its ability to address non-uniformity in physicochemical particle characteristics. The developed numerical simulator was applied to investigate the fate and transport of NPs in a number of practical problems relevant to the subsurface environment. These problems included: (1) reductive dechlorination of chlorinated solvents by zero-valent iron nanoparticles (nZVI) in dense non-aqueous phase liquid (DNAPL) source zones; (2) reactive transport of dissolving silver nanoparticles (nAg) and the dissolved silver ions; (3) particle-particle interactions and their effects on the particle-soil grain interactions; and (4) influence of particle-oil/water interface interactions on NP transport in porous media.

  5. The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants.

    Science.gov (United States)

    Kallenborn, Roland; Halsall, Crispin; Dellong, Maud; Carlsson, Pernilla

    2012-11-01

    The effect of climate change on the global distribution and fate of persistent organic pollutants (POPs) is of growing interest to both scientists and policy makers alike. The impact of warmer temperatures and the resulting changes to earth system processes on chemical fate are, however, unclear, although there are a growing number of studies that are beginning to examine these impacts and changes in a quantitative way. In this review, we examine broad areas where changes are occurring or are likely to occur with regard to the environmental cycling and fate of chemical contaminants. For this purpose we are examining scientific information from long-term monitoring data with particular emphasis on the Arctic, to show apparent changes in chemical patterns and behaviour. In addition, we examine evidence of changing chemical processes for a number of environmental compartments and indirect effects of climate change on contaminant emissions and behaviour. We also recommend areas of research to address knowledge gaps. In general, our findings indicate that the indirect consequences of climate change (i.e. shifts in agriculture, resource exploitation opportunities, etc.) will have a more marked impact on contaminants distribution and fate than direct climate change.

  6. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Laura-Jayne A.; Valsami-Jones, Eugenia [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lead, Jamie R., E-mail: Jlead@mailbox.sc.edu [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia 29208 (United States); Baalousha, Mohammed, E-mail: Mbaalous@mailbox.sc.edu [Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia 29208 (United States)

    2016-10-15

    The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water – MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV–visible spectrometry (UV–vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28 days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96 h (4 days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. - Highlights: • Aquatic microcosms were used to study the transport and behavior of AgNPs • Experiments were conducted in low

  7. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment

    International Nuclear Information System (INIS)

    Ellis, Laura-Jayne A.; Valsami-Jones, Eugenia; Lead, Jamie R.; Baalousha, Mohammed

    2016-01-01

    The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water – MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV–visible spectrometry (UV–vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28 days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96 h (4 days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. - Highlights: • Aquatic microcosms were used to study the transport and behavior of AgNPs • Experiments were conducted in low

  8. Modeling the Environmental Fate of Graphene Oxide and Its Phototransformation Products in Brier Creek Watershed Using the Water Quality Analysis Simulation Program 8 (WASP8)

    Science.gov (United States)

    Han, Y.; Bouchard, D.; Chang, X.; Hsieh, H. S.; Knightes, C. D.; Spear, J.; Zepp, R. G.

    2017-12-01

    The production of graphene-family nanoparticles (GFNs) appreciably increased in recent years. Among GFNs, graphene oxide (GO) is one of the most highly studied members due to its inexpensive synthesis cost compared to graphene, its stability in aqueous media and its broad application. However, GO also has been found to be the most toxic among GFNs. Lab studies showed that GO undergoes phototransformation in surface waters, resulting in products that include reduced GO (rGO) and polycyclic aromatic hydrocarbons (PAHs). Due to technical and analytical limitations, it is still difficult to conduct in-situ measurement of GO and rGO concentrations released in the environment, and it is of utmost importance to establish a model that can predict their environmental exposure concentrations in the environment. In this study, we develop a fate and transport model to predict time-dependent environmental exposure concentrations of GO for the Brier Creek Watershed in the GA coastal plain. We investigate the influence of sunlight radiation on the distribution of GO and its phototransformation products in the watershed over a 20-year period using the most updated Water Quality Analysis Simulation Program (WASP8). Flow rate, sediment transport data and sunlight radiation data are input into WASP8, and WASP8 is used to internally calculate a GO phototransformation rate and productions of rGO and PAHs. Heteroaggregation coefficients of GO and rGO with suspended solids were measured in an EPA laboratory, and then input into WASP8. GO and rGO concentrations in the watershed are calculated by WASP8. Mass fraction results show that GO is the predominant species among GO derived species, which account for 99% of the mass throughout the whole watershed of interest, while rGO species, including free rGO and rGO heteroaggregated to suspended solids, only account for 1%. We also found that almost all free GO and rGO are present in water column due to their extremely low settling velocity. r

  9. Fate of acetone in an outdoor model stream with a nitrate supplement, southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1991-01-01

    The fate of acetone in an outdoor model stream to which nitrate was added as a nutrient supplement was determined. The stream, in southern Mississippi, U.S.A. was 234 m long. Water was supplied to the stream by an artesian well at about 1.21 s-1, resulting in a mean water velocity of about 0.5 m min-1. Acetone was injected continuously for 26 days resulting in concentrations of 20-40 mg l-1. A nitrate solution was injected for 21 days resulting in an instream concentration of about 1.7 mg l-1 at the upstream end of the stream. Rhodamine-WT dye was used to determine the travel time and dispersion characteristics of the stream, and t-butyl alcohol was used to determine the volatilization characteristics. Volatilization controlled the fate of acetone in the model stream. The lack of substantial bacterial degradation of acetone was contrary to expectations based on the results of laboratory degradation studies using model stream water enriched with nitrate. A possible explanation for the lack of significant degradation in the model stream may be the limited 6-h residence time of the acetone in the stream. ?? 1991.

  10. Multiphase CFD modeling of nearfield fate of sediment plumes

    DEFF Research Database (Denmark)

    Saremi, Sina; Hjelmager Jensen, Jacob

    2014-01-01

    Disposal of dredged material and the overflow discharge during the dredging activities is a matter of concern due to the potential risks imposed by the plumes on surrounding marine environment. This gives rise to accurately prediction of the fate of the sediment plumes released in ambient waters...

  11. Supplemental mathematical formulations, Atmospheric pathway: The Multimedia Environmental Pollutant Assessment System (MEPAS)

    International Nuclear Information System (INIS)

    Droppo, J.G.; Buck, J.W.

    1996-03-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) is an integrated software implementation of physics-based fate and transport models for health and environmental risk assessments of both radioactive and hazardous pollutants. This atmospheric component report is one of a series of formulation reports that document the MEPAS mathematical models. MEPAS is a ''multimedia'' model; pollutant transport is modeled within, through, and between multiple media (air, soil, groundwater, and surface water). The estimated concentrations in the various media are used to compute exposures and impacts to the environment, to maximum individuals, and to populations

  12. A dynamic contaminant fate model of organic compound: a case study of Nitrobenzene pollution in Songhua River, China.

    Science.gov (United States)

    Wang, Ce; Feng, Yujie; Zhao, Shanshan; Li, Bai-Lian

    2012-06-01

    A one-dimensional dynamic contaminant fate model, coupling kinematic wave flow option with advection-dispersion-reaction equation, has been applied to predict Nitrobenzene pollution emergency in Songhua River, China that occurred on November 13, 2005. The model includes kinetic processes including volatilization, photolysis and biodegradation, and diffusive mass exchange between water column and sediment layer as a function of particles settling and resuspension. Four kinds of quantitative statistical tests, namely Nash-Sutcliffe efficiency, percent bias, ratio of root-mean-square to the standard deviation of monitoring data and Theil's inequality coefficient, are adopted to evaluate model performance. The results generally show that the modeled and detected concentrations exhibit good consistency. Flow velocity in the river is most sensitive parameter to Nitrobenzene concentration in water column based on sensitivity analysis of input parameters. It indicates flow velocity has important impact on both distribution and variance of contaminant concentration. The model performs satisfactory for prediction of organic pollutant fate in Songhua River, with the ability to supply necessary information for pollution event control and early warning, which could be applied to similar long natural rivers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Decision support for environmental management of industrial non-hazardous secondary materials: New analytical methods combined with simulation and optimization modeling.

    Science.gov (United States)

    Little, Keith W; Koralegedara, Nadeesha H; Northeim, Coleen M; Al-Abed, Souhail R

    2017-07-01

    Non-hazardous solid materials from industrial processes, once regarded as waste and disposed in landfills, offer numerous environmental and economic advantages when put to beneficial uses (BUs). Proper management of these industrial non-hazardous secondary materials (INSM) requires estimates of their probable environmental impacts among disposal as well as BU options. The U.S. Environmental Protection Agency (EPA) has recently approved new analytical methods (EPA Methods 1313-1316) to assess leachability of constituents of potential concern in these materials. These new methods are more realistic for many disposal and BU options than historical methods, such as the toxicity characteristic leaching protocol. Experimental data from these new methods are used to parameterize a chemical fate and transport (F&T) model to simulate long-term environmental releases from flue gas desulfurization gypsum (FGDG) when disposed of in an industrial landfill or beneficially used as an agricultural soil amendment. The F&T model is also coupled with optimization algorithms, the Beneficial Use Decision Support System (BUDSS), under development by EPA to enhance INSM management. Published by Elsevier Ltd.

  14. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Directory of Open Access Journals (Sweden)

    Federico Baltar

    2018-01-01

    Full Text Available Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached, and dissolved (i.e., cell-free enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100% of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.

  15. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Science.gov (United States)

    Baltar, Federico

    2018-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles. PMID:29354095

  16. Fate, behaviour and weathering of priority HNS in the marine environment: An online tool

    International Nuclear Information System (INIS)

    Cunha, Isabel; Oliveira, Helena; Neuparth, Teresa; Torres, Tiago; Santos, Miguel Machado

    2016-01-01

    Literature data and data obtained with modelling tools were compiled to derive the physicochemical behaviour of 24 priority Hazardous and Noxious Substances (HNS), as a proxy to improve environmental, public health and political issues in relation to HNS spills. Parameters that rule the HNS behaviour in water and those that determine their distribution and persistence in the environment, such as fugacity, physicochemical degradation, biodegradation, bioaccumulation/biotransformation and aquatic toxicity, were selected. Data systematized and produced in the frame of the Arcopol Platform project was made available through a public database ( (http://www.ciimar.up.pt/hns/substances.php)). This tool is expected to assist stakeholders involved in HNS spills preparedness and response, policy makers and legislators, as well as to contribute to a current picture of the scientific knowledge on the fate, behaviour, weathering and toxicity of priority HNS, being essential to support future improvements in maritime safety and coastal pollution response before, during and after spill incidents. - Highlights: • Fate, behaviour and weathering of priority HNS in marine environments are addressed. • Environmental and public health issues in relation to HNS spills are discussed. • Physicochemical behaviour is derived through mathematical tools and literature data. • Data produced are made available through a public online database. • Database can assist relevant bodies involved in HNS spills preparedness and response.

  17. Estuarine Human Activities Modulate the Fate of Changjiang-derived Materials in Adjacent Seas

    Science.gov (United States)

    WU, H.

    2017-12-01

    Mega constructions have been built in many river estuaries, but their environmental consequences in the adjacent coastal oceans were often overlooked. This issue was addressed with an example of the Changjiang River Estuary, which was recently built with massive navigation and reclamation constructions in recent years. Based on the model validations against cruises data and the numerical scenario experiments, it is shown that the estuarine constructions profoundly affected the fates of riverine materials in an indeed large offshore area. This is because estuarine dynamics are highly sensitive to their bathymetries. Previously, the Three Gorges Dam (TGD) was thought to be responsible for some offshore environmental changes through modulating the river plume extension, but here we show that its influences are secondary. Since the TGD and the mega estuarine constructions were built during the similar period, their influences might be confused.

  18. Data for developing metamodels to assess the fate, transport, and bioaccumulation of organic chemicals in rivers. Chemicals have log Kow ranging from 3 to 14, and rivers have mean annual discharges ranging from 1.09 to 3240 m3/s.

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset was developed to demonstrate how metamodels of high resolution, process-based models that simulate the fate, transport, and bioaccumulation of organic...

  19. Modelling the fate of sulphur-35 in crops. 1. Calibration data

    International Nuclear Information System (INIS)

    Collins, Chris; Cunningham, Nathan

    2005-01-01

    Gas-cooled nuclear power plants in the UK release sulphur-35 during their routine operation. The gas is in the form of COS which can be readily assimilated by vegetation. It is therefore necessary to be able to model the uptake of such releases in order to quantify any potential contamination of the food chain. To develop such models experimental data are required. A series of experiments was undertaken to determine the rate of deposition, the partition and subsequent loss of sulphur-35 in crops exposed to CO 35 S. The mass normalised deposition rate was similar for the range of crops tested, while the partition of the 35 S paralleled the growth of crop components. There was no significant loss of radioactivity other than that expected from radioactive decay. - The deposition, fate and loss of 35 S in crops were quantified following exposure to COS

  20. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments.

    Science.gov (United States)

    Bejarano, Adriana C; Farr, James K; Jenne, Polly; Chu, Valerie; Hielscher, Al

    2016-06-01

    The Chemical Aquatic Fate and Effects (CAFE) database is a centralized repository that allows for rapid and unrestricted access to data. Information in CAFE is integrated into a user-friendly tool with modules containing fate and effects data for 32 377 and 4498 chemicals, respectively. Toxicity data are summarized in the form of species sensitivity distributions (SSDs) with associated 1st and 5th percentile hazard concentrations (HCs). An assessment of data availability relative to reported chemical incidents showed that CAFE had fate and toxicity data for 32 and 20 chemicals, respectively, of 55 chemicals reported in the US National Response Center database (2000-2014), and fate and toxicity data for 86 and 103, respectively, of 205 chemicals reported by the National Oceanic and Atmospheric Administration (2003-2014). Modeled environmental concentrations of 2 hypothetical spills (acrylonitrile, 625 barrels; and denatured ethanol, 857 barrels) were used to demonstrate CAFE's practical application. Most species in the 24-h SSD could be potentially impacted by acrylonitrile and denatured ethanol during the first 35 min and 15 h post spill, respectively, with concentrations falling below their HC5s (17 mg/L and 2676 mg/L) at 45 min and 60 h post spill, respectively. Comparisons of CAFE-based versus published HC5 values for 100 chemicals showed that nearly half of values were within a 2-fold difference, with a relatively small number of comparisons exceeding a 10-fold difference. The development of CAFE facilitates access to relevant environmental information, with potential uses likely expanding beyond those related to assessment of spills in aquatic environments. Environ Toxicol Chem 2016;35:1576-1586. © 2015 SETAC. © 2015 SETAC.

  1. Fate of Gases generated from Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M.; Francis, A. J. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Francis, A. J. [Brookhaven National Laboratory, New York (United States)

    2013-05-15

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO{sub 2}. Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term.

  2. Application of SPARROW modeling to understanding contaminant fate and transport from uplands to streams

    Science.gov (United States)

    Ator, Scott; Garcia, Ana Maria.

    2016-01-01

    Understanding spatial variability in contaminant fate and transport is critical to efficient regional water-quality restoration. An approach to capitalize on previously calibrated spatially referenced regression (SPARROW) models to improve the understanding of contaminant fate and transport was developed and applied to the case of nitrogen in the 166,000 km2 Chesapeake Bay watershed. A continuous function of four hydrogeologic, soil, and other landscape properties significant (α = 0.10) to nitrogen transport from uplands to streams was evaluated and compared among each of the more than 80,000 individual catchments (mean area, 2.1 km2) in the watershed. Budgets (including inputs, losses or net change in storage in uplands and stream corridors, and delivery to tidal waters) were also estimated for nitrogen applied to these catchments from selected upland sources. Most (81%) of such inputs are removed, retained, or otherwise processed in uplands rather than transported to surface waters. Combining SPARROW results with previous budget estimates suggests 55% of this processing is attributable to denitrification, 23% to crop or timber harvest, and 6% to volatilization. Remaining upland inputs represent a net annual increase in landscape storage in soils or biomass exceeding 10 kg per hectare in some areas. Such insights are important for planning watershed restoration and for improving future watershed models.

  3. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Microbial contamination of waters in agricultural watershed is the critical public health issue. The watershed-scale model has been proven to be one of the candidate tools for predicting microbial water quality and evaluating management practices. The Agricultural Policy/Environmental eXtender (APEX...

  4. SimpleTreat: a spreadsheet-based box model to predict the fate of xenobiotics in a municipal waste water treatment plant

    NARCIS (Netherlands)

    Struijs J; van de Meent D; Stoltenkamp J

    1991-01-01

    A non-equilibrium steady state box model is reported, that predicts the fate of new chemicals in a conventional sewage treatment plant from a minimal input data set. The model, written in an electronic spreadsheet (Lotus TM 123), requires a minimum input: some basic properties of the chemical, its

  5. Ultimate fate of constrained voters

    International Nuclear Information System (INIS)

    Vazquez, F; Redner, S

    2004-01-01

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed

  6. Ultimate fate of constrained voters

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, F [Department of Physics, Center for BioDynamics, Boston University, Boston, MA 02215 (United States); Redner, S [Department of Physics, Center for Polymer Studies, Boston University, Boston, MA 02215 (United States)

    2004-09-03

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed.

  7. BETR-World: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic

    International Nuclear Information System (INIS)

    Toose, L.; Woodfine, D.G.; MacLeod, M.; Mackay, D.; Gouin, J.

    2004-01-01

    The Berkeley-Trent (BETR)-World model, a 25 compartment, geographically explicit fugacity-based model is described and applied to evaluate the transport of chemicals from temperate source regions to receptor regions (such as the Arctic). The model was parameterized using GIS and an array of digital data on weather, oceans, freshwater, vegetation and geo-political boundaries. This version of the BETR model framework includes modification of atmospheric degradation rates by seasonally variable hydroxyl radical concentrations and temperature. Degradation rates in all other compartments vary with seasonally changing temperature. Deposition to the deep ocean has been included as a loss mechanism. A case study was undertaken for α-HCH. Dynamic emission scenarios were estimated for each of the 25 regions. Predicted environmental concentrations showed good agreement with measured values for the northern regions in air, and fresh and oceanic water and with the results from a previous model of global chemical fate. Potential for long-range transport and deposition to the Arctic region was assessed using a Transfer Efficiency combined with estimated emissions. European regions and the Orient including China have a high potential to contribute α-HCH contamination in the Arctic due to high rates of emission in these regions despite low Transfer Efficiencies. Sensitivity analyses reveal that the performance and reliability of the model is strongly influenced by parameters controlling degradation rates. - A geographically explicit multi-compartment model is applied to the transport of α-HCH to the Arctic, showing Europe and the Orient are key sources

  8. Fate of chemical warfare agents and toxic indutrial chemicals in landfills

    DEFF Research Database (Denmark)

    Bartelt-Hunt, D.L.; Barlaz, M.A.; Knappe, D.R.U.

    2006-01-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs......], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from...... CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis halflives. Monte Carlo simulations were performed to assess...

  9. SIMAP oil and Orimulsion fate and effects model

    International Nuclear Information System (INIS)

    French, D.P.; Mendelsohn, D.; Rines, H.

    1995-01-01

    SIMAP, ASA's Spill Impact MAPping model system, simulates the physical fates and biological effects of spilled oils and fuels in 3-dimensional space, allow evaluation of the effectiveness of spill response activities, and evaluate probabilities of trajectories and resulting impacts. It may be used for real-time spill simulation, contingency planning, and ecological risk assessments. SIMAP has been verified for oil spills using data from the Exxon Valdez, the August 1993 No. 6 fuel spill in Tampa Bay, the North Cape No. 2 oil spill in RI January 1996, and others. SIMAP has been extended to apply to the alternative fuel Orimulsion trademark by development of algorithms describing the characteristics of this fuel and mechanisms of dispersion if it is spilled. Orimulsion is a mixture of approximately70% bitumen, surfactant, and water (about 30%). This emulsion readily mixes into the water column when it is spilled, as opposed to remaining as a surface slick as do oils. Thus, Orimulsion is tracked in the model as two fractions dispersed in an initial water volume: (1) fuel (bitumen) droplets with attached surfactant, and (2) dissolved low molecular weight aromatics. The toxicity of each component is considered separately and as additive. The model evaluates exposure, toxicity, mortality, and sublethal losses of biota resulting from the spill. Toxic effects are a function of time and temperature of exposure to concentrations, exposure to surface slicks and shoreline oil, and physiological response based on biological classifications. Losses of fish, shellfish, and wildlife are evaluated in the context of natural and harvest mortality rates in the absence of the spill

  10. Modeling the fate transport of cesium in crushed granite

    International Nuclear Information System (INIS)

    Lee, C.B.; Kuo, Y.M.; Hsu, C.N.; Li, M.H.; Cheng, H.P.; Teng, S.P.

    2005-01-01

    Full text of publication follows: In order to assess the safety of a underground radwaste repository, reactive transport models suitable for evaluating the fate and transport of radionuclides need to be established based on experimental observation and analysis. The goal of this study is to construct adequate models simulating the reactive transport of cesium (Cs) in crushed granite through a systematic analysis, where synthetic groundwater (SGW) and synthetic seawater (SSW) were employed as the liquid phase. To build such models, this study applied N 2 -BET, x-ray diffraction (XRD), polar-microscopy/ auto-radiography, and solid-phase digestion for the analysis of granite, kinetic batch tests for the characterization of sorption/desorption of Cs, and multi-stage advection-dispersion column tests for the determination of major transport processes and the calibration/validation of hypothesized reactive transport models. Based on the results of solid phase analysis and batch tests, a two-site Langmuir kinetic model has been determined capable of appropriately describing Cs sorption/desorption under test conditions. From the results of non-reactive HTO column tests, a mobile/immobile transport model was proposed to capture the major transport processes in our column system. However, the combination of the two-site Langmuir model and the mobile/immobile transport model failed to provide numerical breakthrough curves matching the Cs experimental breakthroughs. It implied that our model needs to be further refined. To achieve this, the setup of our column test needs to be modified first to reduce the volume of column connecting space, so that the effect of extra diffusion/dispersion on breakthroughs would be minimized and major transport characteristics can be clearly revealed. Moreover, more investigations on the reaction mechanisms and transport processes of the reactive transport system must be conducted. (authors)

  11. Fate and effect of hexabromocyclododecane in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Hunziker, R.W.; Friederich, U. [Dow Europe, GmbH, Horgen (Switzerland); MacGregor, J.A.; Desjardins, D. [Wildlife International, Ltd., Easton, MD (United States); Ariano, J. [Great Lakes Chemical Corp., West Lafayette, IN (United States); Gonsior, S.

    2004-09-15

    Hexabromocyclododecane (HBCD) is used as a flame retardant mainly in building insulation composed of extruded or expanded polystyrene foam. A minor use is in flame retardant back-coats of some upholstery textiles. Sales in Europe are estimated to be 9000 t/yr. HBCD has been detected in a number of environmental samples mainly in sediment of urban areas. In a series of acute aquatic toxicity tests, no effect was exhibited at concentrations equal to or below the water solubility of the technical product which consists of ca. 85% {gamma} diastereomer. However, considerable bioconcentration has been reported (log BCF=4). In recent work it has been reported that a shift occurs along the food chain, from {gamma}, the predominant isomer in the technical product, to the {alpha} isomer. HBCD is very hydrophobic and not readily biodegradable, and has been presumed to be persistent in the environment. It is therefore important to have a good understanding of the environmental fate and lifetime of all HBCD isomers. This paper describes new findings on the water solubility of HBCD with respect to its 3 individual isomers, presents results on the acute toxicity in the marine alga Skeletonema costatum at the limit of solubility of all individual isomers and shows first data of an ongoing fate study with {sup 14}C-HBCD where the primary biodegradation of the individual metabolites is differentiated.

  12. Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis.

    Science.gov (United States)

    Hall, Benjamin A; Jackson, Ethan; Hajnal, Alex; Fisher, Jasmin

    2014-09-06

    Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or 'retrodict', compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Fate and transport of mercury in soil systems : a numerical model in HP1 and sensitivity analysis

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2013-04-01

    Mercury (Hg) poses threats for human health and the environment, notably due to its persistence and its ability to bioaccumulate in ecosystems. Anthropogenic activities are major contributors of mercury release to soils. Main sources of contamination include manufacturing (chlor-alkali plants, manometer spill), mine tailings from mercury, gold and silver mining industries, wood preservation. The objective of this study was to develop a reactive transport model for simulating mercury fate and transport in the unsaturated zone, and to gain insight in the fate and transport of Hg following anthropogenic soil contamination. The present work is done in the framework of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. A model of mercury fate and transport in soil systems was developed using the reactive transport code HP1 (Jacques and Šimůnek, 2010). The geochemical database THERMODDEM (Blanc et al., 2012) is used, augmented with some speciation data from (Skyllberg, 2012). The main processes accounted for in the model are : Hg aqueous speciation (including complexation with dissolved organic matter (DOM) - humic and fulvic acids, and thiol groups), Hg sorption to solid organic matter (SOM), dissolution of solid phase Hg (e.g. cinnabar HgS(s)), dissolution of Hg non-aqueous liquid phase (NAPL), sunlight-driven Hg(II) reduction to Hg(0), Hg(0) diffusion in the gas phase and volatilization, DOM sorption to soil minerals. Colloid facilitated transport is implicitly accounted for by solute transport of Hg-DOM complexes. Because we focused on soil systems having a high Hg contamination, some processes showing relatively smaller Hg fluxes could be neglected such as vegetation uptake and atmospheric wet and dry deposition. NAPL migration and entrapment is not modelled, as pollution is assumed to be historical and only residual NAPL to be present. Mercury methylation and

  14. "Fate: The short film"

    OpenAIRE

    Maya Quintana, Jennifer

    2014-01-01

    "Fate: The Short Film" is a four minute short film which reflects the idea that nobody can escape from the fate. It has a good picture and sound quality with an understandable message for all public and with the collaboration of actors, filmmaker, stylist, script advisor and media technician.

  15. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...... the transport and fate of VOCs in the gaseous phase, thus contributing to the overall understanding of VOCs behavior in soil, which eventually will facilitate future cleanup....

  16. Validation of an orimulsion spill fates model using observations from field test spills

    International Nuclear Information System (INIS)

    French, D. P.; Rines, H.; Masciangioli, P.

    1997-01-01

    The SIMAP Spill Impact Model system was developed to simulate fates and effects of spilled oil and other fuels in 3-D and time. Orimulsion is a Venezuelan product consisting of 70 per cent bitumen and 30 per cent water which has been shipped to many parts of the world for some time without an accidental spill into coastal or marine waters. In July 1966 two intentional spills of Orimulsion into Carribean waters were made and sampled in detail in order to verify the SIMAP model. Data on physical dispersion was collected at the same time. Data collected in the field was compared with model simulations. Results confirmed SIMAP's ability to predict the increasing dispersion and shearing of the bitumen plume as wind speed increases, as well as the actual field distribution of subsurface and surface bitumen. 17 refs., 7 tabs., 26 figs

  17. Modeling fate and transport of fecally-derived microorganisms at the watershed scale: state of the science and future opportunities

    Science.gov (United States)

    Natural waters provide habitats for various groups of fecal indicator organisms (FIOs) and pathogenic microorganisms originating from animal manures and animal waste. A number of watershed modeling works have been carried out to have a better understanding to the fate and transport of fecal indicato...

  18. Environmental Satellite Models for a Macroeconomic Model

    International Nuclear Information System (INIS)

    Moeller, F.; Grinderslev, D.; Werner, M.

    2003-01-01

    To support national environmental policy, it is desirable to forecast and analyse environmental indicators consistently with economic variables. However, environmental indicators are physical measures linked to physical activities that are not specified in economic models. One way to deal with this is to develop environmental satellite models linked to economic models. The system of models presented gives a frame of reference where emissions of greenhouse gases, acid gases, and leaching of nutrients to the aquatic environment are analysed in line with - and consistently with - macroeconomic variables. This paper gives an overview of the data and the satellite models. Finally, the results of applying the model system to calculate the impacts on emissions and the economy are reviewed in a few illustrative examples. The models have been developed for Denmark; however, most of the environmental data used are from the CORINAIR system implemented in numerous countries

  19. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment

    Science.gov (United States)

    Duran, Robert; Cravo-Laureau, Cristiana

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms. PMID:28201512

  20. A hybrid mathematical modeling approach of the metabolic fate of a fluorescent sphingolipid analogue to predict cancer chemosensitivity.

    Science.gov (United States)

    Molina-Mora, J A; Kop-Montero, M; Quirós-Fernández, I; Quiros, S; Crespo-Mariño, J L; Mora-Rodríguez, R A

    2018-04-13

    Sphingolipid (SL) metabolism is a complex biological system that produces and transforms ceramides and other molecules able to modulate other cellular processes, including survival or death pathways key to cell fate decisions. This signaling pathway integrates several types of stress signals, including chemotherapy, into changes in the activity of its metabolic enzymes, altering thereby the cellular composition of bioactive SLs. Therefore, the SL pathway is a promising sensor of chemosensitivity in cancer and a target hub to overcome resistance. However, there is still a gap in our understanding of how chemotherapeutic drugs can disturb the SL pathway in order to control cellular fate. We propose to bridge this gap by a systems biology approach to integrate i) a dynamic model of SL analogue (BODIPY-FL fluorescent-sphingomyelin analogue, SM-BOD) metabolism, ii) a Gaussian mixture model (GMM) of the fluorescence features to identify how the SL pathway senses the effect of chemotherapy and iii) a fuzzy logic model (FLM) to associate SL composition with cell viability by semi-quantitative rules. Altogether, this hybrid model approach was able to predict the cell viability of double experimental perturbations with chemotherapy, indicating that the SL pathway is a promising sensor to design strategies to overcome drug resistance in cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Evaluation of terrestrial microcosms for detection, fate, and survival analysis of genetically engineered microorganisms and their recombinant genetic material

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, J.K.; Seidler, R.J.

    1989-02-01

    The research included in this document represents the current scientific information available regarding the applicability of terrestrial microcosms and related methodologies for evaluating detection methods and the fate and survival of microorganisms in the environment. The three terrestrial microcosms described in this document were used to evaluate the survival and fate of recombinant bacteria in soils and in association with plant surfaces and insects and their transport through soil with percolating water and root systems, and to test new methods and procedures to improve detection and enumeration of bacteria in soil. Simple (potting soil composed of peat mix and perlite, lacking environmental control and monitoring) and complex microcosms (agricultural soil with partial control and monitoring of environmental conditions) were demonstrated to be useful tools for preliminary assessments of microbial viability in terrestrial ecosystems. These studies evaluated the survival patterns of Enterobacter cloacae (pBR322) in soil and on plant surfaces and the ingestion of this same microorganism by cutworms and survival in the foregut and frass. The Versacore microcosm design was used to monitor the fate and competitiveness of genetically engineered bacteria in soil. Both selective media and gene probes were used successfully to follow the fate of two recombinant Pseudomonas sp. introduced into Versacore microcosms. Intact soil-core microcosms were employed to evaluate the fate and transport of genetically altered Azospirillum sp. and Pseudomonas sp. in soil and the plant rhizosphere. The usefulness of these various microcosms as a tool for risk assessment is underscored by the ease in obtaining soil from a proposed field release site to evaluate subsequent GEM fate and survival.

  2. Modelling atmospheric transport of persistent organic pollutants in the Northern Hemisphere with a 3-D dynamical model: DEHM-POP

    OpenAIRE

    Hansen , K. M.; Christensen , J. H.; Brandt , J.; Frohn , L. M.; Geels , C.

    2004-01-01

    International audience; The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of...

  3. Developmental fate and lineage commitment of singled mouse blastomeres.

    Science.gov (United States)

    Lorthongpanich, Chanchao; Doris, Tham Puay Yoke; Limviphuvadh, Vachiranee; Knowles, Barbara B; Solter, Davor

    2012-10-01

    The inside-outside model has been invoked to explain cell-fate specification of the pre-implantation mammalian embryo. Here, we investigate whether cell-cell interaction can influence the fate specification of embryonic blastomeres by sequentially separating the blastomeres in two-cell stage mouse embryos and continuing separation after each cell division throughout pre-implantation development. This procedure eliminates information provided by cell-cell interaction and cell positioning. Gene expression profiles, polarity protein localization and functional tests of these separated blastomeres reveal that cell interactions, through cell position, influence the fate of the blastomere. Blastomeres, in the absence of cell contact and inner-outer positional information, have a unique pattern of gene expression that is characteristic of neither inner cell mass nor trophectoderm, but overall they have a tendency towards a 'trophectoderm-like' gene expression pattern and preferentially contribute to the trophectoderm lineage.

  4. Metabolic fate of 14-C-fenitrothion in a rice field model ecosystem

    International Nuclear Information System (INIS)

    Nashriyah binti Mat; Nambu, K.; Miyashita, T.; Sakata, S.; Ohshima, M.

    1991-01-01

    Pesticide fenitrothion (Sumithion sup R)is widely used to control rice stem borer and other pests. Its metabolic fate and degradation was studied using the sup 14 C-ring labelled fenitrothion in a model ecosystem consisting of Takarazuka paddy field soil, rice plant (Oryza sativa var. nihonbare), carp fish (Cyprinus carpio L.) and dechlorinated water. Radioactive fenitrothion was applied at a normal rate as used by Japanese farmers and samples of rice plant, fish soil and water were analysed after ten days of application. Fenitrothion was readily metabolized in rice plant and fish and also readily degraded to a number of metabolites in water and flooded soil. Most of the radioactivity applied was found in the soil component of the ecosystem. A trace amount of fenitrooxon, the activated metabolite of fenitrothion was detected only in soil and water. A possible metabolic pathway of fenitrothion in the rice model ecosystem was proposed

  5. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  6. Environmental fate and effects of nicotine released during cigarette production.

    Science.gov (United States)

    Seckar, Joel A; Stavanja, Mari S; Harp, Paul R; Yi, Yongsheng; Garner, Charles D; Doi, Jon

    2008-07-01

    A variety of test methods were used to study the gradation, bioaccumulation, and toxicity of nicotine. Studies included determination of the octanol-water partition coefficient, conversion to CO2 in soil and activated sludge, and evaluation of the effects on microbiological and algal inhibition as well as plant germination and root elongation. The partitioning of nicotine between octanol and water indicated that nicotine will not bioaccumulate regardless of the pH of the medium. The aqueous and soil-based biodegradation studies indicated that nicotine is readily biodegradable in both types of media. The microbiological inhibition and aquatic and terrestrial toxicity tests indicated that nicotine has low toxicity. The U.S. Environmental Protection Agency Persistence, Bioaccumulation, and Toxicity Profiler model, based on the structure of nicotine and the predictive rates of hydroxyl radical and ozone reactions, estimated an atmospheric half-life of less than 5.0 h. Using this value in the Canadian Environmental Modeling Center level III model, the half-life of nicotine was estimated as 3.0 d in water and 0.5 d in soil. This model also estimated nicotine discharge into the environment; nicotine would be expected to be found predominantly in water (93%), followed by soil (4%), air (3%), and sediment (0.4%). Using the estimated nicotine concentrations in water, soil, and sediment and the proper median effective concentrations derived from the algal growth, biomass inhibition, and buttercrunch lettuce (Lactuca sativa) seed germination and root elongation studies, hazard quotients of between 10(-7) and 10(-8) were calculated, providing further support for the conclusion that the potential for nicotine toxicity to aquatic and terrestrial species in the environment is extremely low.

  7. The Yin and Yang of chromatin dynamics in adult stem cell fate selection

    Science.gov (United States)

    Adam, Rene C.; Fuchs, Elaine

    2015-01-01

    Adult organisms rely on tissue stem cells for maintenance and repair. During homeostasis, the concerted action of local niche signals and epigenetic regulators establish stable gene expression patterns to ensure that stem cells are not lost over time. However, stem cells also provide host tissues with a remarkable plasticity to respond to perturbations. How adult stem cells choose and acquire new fates is unknown, but the genome-wide mapping of epigenetic landscapes suggests a critical role for chromatin remodeling in these processes. Here, we explore the emerging role of chromatin modifiers and pioneer transcription factors in adult stem cell fate decisions and plasticity, which ensure that selective lineage choices are only made when environmentally cued. PMID:26689127

  8. Fate and effects of clothianidin in fields using conservation practices.

    Science.gov (United States)

    de Perre, Chloé; Murphy, Tracye M; Lydy, Michael J

    2015-02-01

    Despite the extensive use of the neonicotinoid insecticide clothianidin, and its known toxicity to beneficial insects such as pollinators, little attention has been given to its fate under agricultural field conditions. The present study investigated the fate and toxicity of clothianidin applied every other year as a corn seed-coating at 2 different rates, 0.25 mg/seed and 0.50 mg/seed, in an agricultural field undergoing a corn-soybean annual rotation, and conservation tillage. Concentrations were measured in soil, surface runoff, infiltration, and groundwater from 2011 to 2013. Clothianidin was detected at low concentrations in soil and water throughout the 2-yr corn and soybean rotation. Low and no-tillage had little or no effect on clothianidin concentrations. Laboratory toxicity bioassays were performed on nontarget species, including Daphnia magna, Hyalella azteca, Chironomus dilutus, Pimephales promelas and Eisenia fetida. Risk quotients were calculated from clothianidin concentrations measured in the field and compared with the laboratory toxicity bioassay results to assess the environmental risk of the insecticide. The risk quotient was found to be lower than the level of concern for C. dilutus, which was the most sensitive species tested; therefore, no short-term environmental risk was expected for the species investigated in the present study. © 2014 SETAC.

  9. Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: A cross disciplinary approach to assessing diffuse pollution to surface waters

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Koehler, Stephan; Jones, Kevin C.; Tysklind, Mats; Wiberg, Karin

    2010-01-01

    The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day -1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons. - The fate of hydrophobic organic contaminants in a boreal forest catchment is connected to the flux of dissolved organic carbon and seasonal deposition.

  10. What determines PCB concentrations in soils in rural and urban areas? Insights from a multi-media fate model for Switzerland as a case study.

    Science.gov (United States)

    Glüge, Juliane; Bogdal, Christian; Scheringer, Martin; Hungerbühler, Konrad

    2016-04-15

    Polychlorinated biphenyls (PCBs) are banned worldwide under the Stockholm Convention on Persistent Organic Pollutants. However, PCBs are still emitted in appreciable amounts from remaining primary sources in urban areas or landfills and are ubiquitous environmental contaminants, inter alia in soil and air. Concentrations of PCBs have been measured in various media by numerous studies worldwide. However, monitoring data do not always provide quantitative information about transport processes between different media, deposition fluxes to ground, or distribution of PCBs between environmental compartments. Also future trends in environmental contamination by PCBs cannot be predicted from monitoring data, but such information is highly relevant for decision-makers. Here, we present a new regionally resolved dynamic multimedia mass balance model for Switzerland to investigate the origin of PCBs in air and to investigate their long-term fate and mass balance in the environment. The model was validated with existing field data for PCBs. We find that advective inflow of PCBs from outside Switzerland into the atmospheric boundary layer is responsible for 80% of PCBs present in air in Switzerland, whereas Swiss emissions cause the remaining 20%. Furthermore, we show that the atmospheric deposition of the higher-chlorinated PCBs is dominated by particle-bound deposition, whereas the deposition of the lower-chlorinated PCBs is a combination of particle-bound and gaseous deposition. The volume fraction of particles in air is in both cases an important factor driving the deposition of PCBs to ground and, thus, contributing to the higher concentrations of PCBs generally observed in populated and polluted areas. Regional emissions influence the deposition fluxes only to a limited extent. We also find that secondary emissions from environmental reservoirs do not exceed primary emissions for all PCB congeners until at least 2036. Finally, we use our model to evaluate the effect of

  11. Macro-economic environmental models

    International Nuclear Information System (INIS)

    Wier, M.

    1993-01-01

    In the present report, an introduction to macro-economic environmental models is given. The role of the models as a tool for policy analysis is discussed. Future applications, as well as the limitations given by the data, are brought into focus. The economic-ecological system is described. A set of guidelines for implementation of the system in a traditional economic macro-model is proposed. The characteristics of empirical national and international environmental macro-economic models so far are highlighted. Special attention is paid to main economic causalities and their consequences for the environmental policy recommendations sat by the models. (au) (41 refs.)

  12. Modelling the fate of the Tijuana River discharge plume

    Science.gov (United States)

    van Ormondt, M.; Terrill, E.; Hibler, L. F.; van Dongeren, A. R.

    2010-12-01

    After rainfall events, the Tijuana River discharges excess runoff into the ocean in a highly turbid plume. The runoff waters contain large suspended solids concentrations, as well as high levels of toxic contaminants, bacteria, and hepatitis and enteroviruses. Public health hazards posed by the effluent often result in beach closures for several kilometers northward along the U.S. shoreline. A Delft3D model has been set up to predict the fate of the Tijuana River plume. The model takes into account the effects of tides, wind, waves, salinity, and temperature stratification. Heat exchange with the atmosphere is also included. The model consists of a relatively coarse outer domain and a high-resolution surf zone domain that are coupled with Domain Decomposition. The offshore boundary conditions are obtained from the larger NCOM SoCal model (operated by the US Navy) that spans the entire Southern California Bight. A number of discharge events are investigated, in which model results are validated against a wide range of field measurements in the San Diego Bight. These include HF Radar surface currents, REMUS tracks, drifter deployments, satellite imagery, as well as current and temperature profile measurements at a number of locations. The model is able to reproduce the observed current and temperature patterns reasonably well. Under calm conditions, the model results suggest that the hydrodynamics in the San Diego Bight are largely governed by internal waves. During rainfall events, which are typically accompanied by strong winds and high waves, wind and wave driven currents become dominant. An analysis will be made of what conditions determine the trapping and mixing of the plume inside the surfzone and/or the propagation of the plume through the breakers and onto the coastal shelf. The model is now also running in operational mode. Three day forecasts are made every 24 hours. This study was funded by the Office of Naval Research.

  13. Modelling the fate of sulphur-35 in crops. 2. Development and validation of the CROPS-35 model

    International Nuclear Information System (INIS)

    Collins, Chris; Cunningham, Nathan

    2005-01-01

    Gas-cooled nuclear power plants in the UK release sulphur-35 during their routine operation, which can be readily assimilated by vegetation. It is therefore necessary to be able to model the uptake of such releases in order to quantify any potential contamination of the food chain. A model is described which predicts the concentration of 35 S in crop components following an aerial gaseous release. Following deposition the allocation to crop components is determined by an export function from a labile pool, the leaves, to those components growing most actively post exposure. The growth rates are determined by crop growth data, which is also used to determine the concentration. The loss of activity is controlled by radioactive decay only. The paper describes the calibration and the validation of the model. To improve the model, further experimental work is required particularly on the export kinetics of 35 S. It may be possible to adapt such a modelling approach to the prediction of crop content for gaseous releases of 3 H and 14 C from nuclear facilities. - The calibration and validation of a model for the prediction of the fate of 35 S in vegetation is described

  14. Ecological fate and effects of solvent-refined-coal (SRC) materials: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A. III; Vaughan, B.E. (eds.)

    1981-10-01

    Non-occupational health effects associated with SRC operation will be determined by environmental factors governing the form, transport, and persistence of SRC materials and wastes - factors which also mediate exposure to man. Accordingly, the research described is an attempt to determine the fate of disposed solid wastes and spilled SRC materials, and it necessarily focuses on water soluble, persistent materials with greatest potential for mobility and incorporation into water and food supplies. Initially, aqueous equilibrations of SRC-II liquid material and SRC-I nongasified mineral residue were subjected to chemical characterization. Subsequently, laboratory studies were performed on the interaction of aqueous equilibrates of SRC-II liquid and SRC-I non-gasified mineral residue with soil materials isolated suspended sediments, and bottom sediments. These studies were designed to identify effects of specific sorption reactions ion or induced-ion exchange reactions, and toxicity of water soluble, biologically active materials derived from liquid and solid wastes. Results of these experiments have applicability to the environmental fate and effects of biologically active compounds released under different scenarios from product spills and solid waste disposal.

  15. Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: Application to tire and road wear particles

    International Nuclear Information System (INIS)

    Unice, Kenneth M.; Bare, Jennifer L.; Kreider, Marisa L.; Panko, Julie M.

    2015-01-01

    Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N′-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f C ), tire wear (f W ), terrestrial weathering (f S ), leaching from TRWP (f L ), and environmental availability from TRWP (f A ) by liquid chromatography–tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F T ) and release to water (F R ) were calculated for the tire chemicals and 13 transformation products. F T for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5 × 10 −4 (6-PPD) to 0.06 (CBS) was observed for F R at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p < 0.05) in the weathering factor, f S , were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f L , and environmental availability factor, f A, was also observed when chemicals were categorized by log K ow . Our methodology should be useful for lifecycle analysis of other functional polymer chemicals. - Highlights: • Studied two vulcanization accelerators and an antioxidant additive used in tire tread

  16. Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: Application to tire and road wear particles

    Energy Technology Data Exchange (ETDEWEB)

    Unice, Kenneth M., E-mail: ken.unice@cardno.com; Bare, Jennifer L.; Kreider, Marisa L.; Panko, Julie M.

    2015-11-15

    Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N′-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f{sub C}), tire wear (f{sub W}), terrestrial weathering (f{sub S}), leaching from TRWP (f{sub L}), and environmental availability from TRWP (f{sub A}) by liquid chromatography–tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F{sub T}) and release to water (F{sub R}) were calculated for the tire chemicals and 13 transformation products. F{sub T} for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5 × 10{sup −4} (6-PPD) to 0.06 (CBS) was observed for F{sub R} at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p < 0.05) in the weathering factor, f{sub S}, were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f{sub L}, and environmental availability factor, f{sub A,} was also observed when chemicals were categorized by log K{sub ow}. Our methodology should be useful for lifecycle analysis of other functional polymer chemicals. - Highlights: • Studied two vulcanization

  17. Multimedia fate and source apportionment of polycyclic aromatic hydrocarbons in a coking industry city in Northern China

    International Nuclear Information System (INIS)

    Wang, Y.L.; Xia, Z.H.; Liu, D.; Qiu, W.X.; Duan, X.L.; Wang, R.; Liu, W.J.; Zhang, Y.H.; Wang, D.; Tao, S.; Liu, W.X.

    2013-01-01

    A steady state Level III fate model was established and applied to quantify source–receptor relationship in a coking industry city in Northern China. The local emission inventory of PAHs, as the model input, was acquired based on energy consumption and emission factors. The model estimations were validated by measured data and indicated remarkable variations in the paired isomeric ratios. When a rectification factor, based on the receptor-to-source ratio, was calculated by the fate model, the quantitatively verified molecular diagnostic ratios provided reasonable results of local PAH emission sources. Due to the local ban and measures on small scale coking activities implemented from the beginning of 2004, the model calculations indicated that the local emission amount of PAHs in 2009 decreased considerably compared to that in 2003. -- Highlights: •A steady-state fate model could well elucidate the multimedia fate of PAHs. •A rectification factor for correcting the paired isomeric ratio was calculated. •The corrected isomeric ratios were successfully applied to source apportionment. -- Based on multimedia model correction, the specific isomeric ratios could provide reasonable apportionments for the local PAHs emission sources

  18. Impacts of soil redistribution on the transport and fate of organic carbon in loess soils

    NARCIS (Netherlands)

    Wang, X.

    2014-01-01

    Soil erosion is an important environmental process leading to loss of topsoil including carbon (C) and nutrients, reducing soil quality and loss of biomass production. So far, the fate of soil organic carbon (SOC) in eroding landscapes is not yet fully understood and remains an important uncertainty

  19. Presence and fate of priority substances in domestic greywater treatment and reuse systems

    DEFF Research Database (Denmark)

    Donner, E.; Eriksson, Eva; Revitt, M.

    2010-01-01

    ) or "Priority Hazardous Substances" (PHS). Significant knowledge gaps are identified. A wide range of potential treatment trains are available for greywater treatment and reuse but treatment efficiency data for priority substances and other micropollutants is very limited. Geochemical modelling indicates......A wide range of household sources may potentially contribute to contaminant loads in domestic greywater. The ability of greywater treatment systems to act as emission control barriers for household micropollutants, thereby providing environmental benefits in addition to potable water savings, have...... not been fully explored. This paper investigates the sources, presence and potential fate of a selection of xenobiotic micropollutants in on-site greywater treatment systems. All of the investigated compounds are listed under the European Water Framework Directive as either "Priority Substances" (PS...

  20. Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model

    Science.gov (United States)

    Parajulee, Abha; Wania, Frank

    2014-01-01

    Emissions of organic substances with potential toxicity to humans and the environment are a major concern surrounding the rapid industrial development in the Athabasca oil sands region (AOSR). Although concentrations of polycyclic aromatic hydrocarbons (PAHs) in some environmental samples have been reported, a comprehensive picture of organic contaminant sources, pathways, and sinks within the AOSR has yet to be elucidated. We sought to use a dynamic multimedia environmental fate model to reconcile the emissions and residue levels reported for three representative PAHs in the AOSR. Data describing emissions to air compiled from two official sources result in simulated concentrations in air, soil, water, and foliage that tend to fall close to or below the minimum measured concentrations of phenanthrene, pyrene, and benzo(a)pyrene in the environment. Accounting for evaporative emissions (e.g., from tailings pond disposal) provides a more realistic representation of PAH distribution in the AOSR. Such indirect emissions to air were found to be a greater contributor of PAHs to the AOSR atmosphere relative to reported direct emissions to air. The indirect pathway transporting uncontrolled releases of PAHs to aquatic systems via the atmosphere may be as significant a contributor of PAHs to aquatic systems as other supply pathways. Emission density estimates for the three PAHs that account for tailings pond disposal are much closer to estimated global averages than estimates based on the available emissions datasets, which fall close to the global minima. Our results highlight the need for improved accounting of PAH emissions from oil sands operations, especially in light of continued expansion of these operations. PMID:24596429

  1. Evaluating the fate of organic compounds in the Cameroon ...

    African Journals Online (AJOL)

    ISHIOMA

    A level III fugacity model was developed to evaluate the fate of chemicals in the Cameroon ... environment, quantify intermedia transfer processes and the major loss ... perform baseline exposure and risk assessment of chemicals used in ...

  2. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1993-02-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one-space dimensional transport and fate model for M-chain radionuclides in very dry homogeneous or heterogeneous soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advection velocity is derived from an embedded air-pumping submodel. The air-pumping submodel is based on an assumption of isothermal conditions, which is driven by barometric pressure. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions are used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  3. CASCADER: An m-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1992-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes as they are advected and/or dispersed. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one space dimensional transport and fate model for an m-chain of radionuclides in very dry soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advocation velocity is derived from an embedded air-pumping submodel. The airpumping submodel is based on an assumption of isothermal conditions and is barometric pressure driven. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions is used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  4. Risk assessment framework of fate and transport models applied to hazardous waste sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1993-06-01

    Risk assessment is an increasingly important part of the decision-making process in the cleanup of hazardous waste sites. Despite guidelines from regulatory agencies and considerable research efforts to reduce uncertainties in risk assessments, there are still many issues unanswered. This paper presents new research results pertaining to fate and transport models, which will be useful in estimating exposure concentrations and will help reduce uncertainties in risk assessment. These developments include an approach for (1) estimating the degree of emissions and concentration levels of volatile pollutants during the use of contaminated water, (2) absorption of organic chemicals in the soil matrix through the skin, and (3) steady state, near-field, contaminant concentrations in the aquifer within a waste boundary

  5. Environmental Fate and Analysis of Ptaquiloside from the Bracken Fern

    DEFF Research Database (Denmark)

    Clauson-Kaas, Frederik

    The naturally occurring phytotoxin ptaquiloside (PTA) has long been known to be both acute toxic and carcinogenic. Contents of more than 1% ptaquiloside on dry weight has been detected in bracken (Pteridium spp.), a fern distributed across the globe in often dense populations. This work focused...... on the fate of PTA in the soil-water system, from where it may leach to drinking water sources. PTA was detected in concentrations up to 2.2 µg/L in natural waters receiving drainage from bracken populations, and was found in both surface and groundwater. It was shown that ptaquiloside leached off bracken...... fronds (the leaves of ferns) in concentrations up to 169 µ/L during rainfall events. Rainfall further determined the concentration in a stream that drained a bracken-covered catchment, suggesting that this is a potent driver of ptaquiloside exposure in the environment. In both pure and natural waters, p...

  6. Comparing rankings of selected TRI organic chemicals for two environments using a level III fugacity model and toxicity

    International Nuclear Information System (INIS)

    Edwards, F.G.; Egemen, E.; Nirmalakhandan, N.

    1998-01-01

    The Toxics Release Inventory, TRI (USEPA, 1995) is a comprehensive listing of chemicals, mass released, source of releases, and other related information for chemicals which are released into the environment in the US. These chemicals are then ranked according to the mass released as a indication of their environmental impact. Industries have been encouraged to adopt production methods to decrease the release of chemicals which are ranked highly in the TRI. Clearly, this ranking of the chemicals based upon the mass released fails to take into account very important environmental aspects. The first and most obvious aspect is the wide range of toxicity's of the chemicals released. Numerous researchers have proposed systems to rank chemicals according to their toxicity. The second aspect, which a mass released based ranking does not take into account, is the fate and transport of each chemical within the environment. Cohen and Ryan (1985) and Mackay and Paterson (1991) have proposed models to evaluate the fate and transport of chemicals released into the environment. Some authors have incorporated the mass released and toxicity with some fate and transport aspects to rank the impact of released chemicals. But, due to the complexities of modeling the environment, the lack of published data on properties of chemicals, and the lack of information on the speciation of chemicals in complex systems, modeling the fate and transport of toxic chemicals in the environment remains difficult. To provide an indication of the need to rank chemicals according to their environmental impact instead of the mass released, the authors have utilized a subset of 45 organic chemicals from the TRI, modeled the fate and transport of the chemicals using a Level III fugacity model, and compared those equilibrium concentrations with toxicity data to yield a hazard value for each chemical

  7. Environmental risk analysis for offshore oil and gas activities

    Energy Technology Data Exchange (ETDEWEB)

    Brude, Odd Willy; Aspholm, Ole O.; Rudberg, Anders [Det Norske Veritas (Brazil)

    2008-07-01

    Offshore oil and gas activities always have a risk for environmental impact due to potential accidental releases of oil and gas. The environmental risk can be calculated as a combination of the frequency of such accidents to occur and their environmental consequences in terms of environmental damage to habitats or populations. A method for conducting environmental risk analysis has been in use in Norwegian offshore waters for a decade, with a continuously refinement of methodology over the past years. This paper outlines the principles in the MIRA method and gives examples and discussions regarding use in different environmental compartments. The risk assessment starts with identification of oil spill scenarios with frequencies of potential release rates and spill durations. The next step is to model the oil drift for each accidental oil spill scenario. Drift and fate of oil is modeled probabilistic. Based on the oil spill scenarios and their probability of oil pollution, the potential environmental damage is quantified for each scenario. The endpoint of environmental damage is reduction of a population and the resulting recovery time (in years) for various species and habitats. Environmental risk levels are then evaluated against the operating companies' environmental acceptance criteria. (author)

  8. Bacteria transport simulation using APEX model in the Toenepi watershed, New Zealand

    Science.gov (United States)

    The Agricultural Policy/Environmental eXtender (APEX) model is a distributed, continuous, daily-time step small watershed-scale hydrologic and water quality model. In this study, the newly developed fecal-derived bacteria fate and transport subroutine was applied and evalated using APEX model. The e...

  9. Aquatic pathways model to predict the fate of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  10. Application of SELECT and SWAT models to simulate source load, fate, and transport of fecal bacteria in watersheds.

    Science.gov (United States)

    Ranatunga, T.

    2017-12-01

    Modeling of fate and transport of fecal bacteria in a watershed is a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads from SELECT model were input to the SWAT model, and simulate the bacteria transport through the land and in-stream. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on regional land use, population and household forecast (up to 2040). Based on the reductions required to meet the water quality standards in-stream, the corresponding required source load reductions were estimated.

  11. Determination of fluorotelomer alcohols in selected consumer products and preliminary investigation of their fate in the indoor environment

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has established an ongoing effort to identify the major perfluorocarboxylic acid (PFCA) sources in nonoccupational indoor environments and characterize their transport and fate. This study determined the concentrations of perfluorote...

  12. Modeling of the residue transport of lambda cyhalothrin, cypermethrin, malathion and endosulfan in three different environmental compartments in the Philippines

    OpenAIRE

    Senoro, Delia B.; Maravillas, Sharon L.; Ghafari, Nima; Rivera, Clarissa C.; Quiambao, Erwin C.; Lorenzo, Maria Carmina M.

    2016-01-01

    This study aims to determine the environmental transport and fate of the residue of four Philippines priority chemicals; i.e., lambda cyhalothrin (L-cyhalothrin), cypermethrin, endosulfan and malathion, in three different environmental compartments (air, water and soil). In the Philippines, pesticide application is the most common method of controlling pests and weeds in rice and vegetable farming. This practice aided the agricultural industry to minimize losses and increase yield. However, i...

  13. Environmental Modeling Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Modeling Center provides the computational tools to perform geostatistical analysis, to model ground water and atmospheric releases for comparison...

  14. A model assessment of polychlorinated dibenzo-p-dioxin and dibenzofuran sources and fate in the Baltic Sea.

    Science.gov (United States)

    Armitage, James M; McLachlan, Michael S; Wiberg, Karin; Jonsson, Per

    2009-06-01

    The contamination of the Baltic Sea with polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) has resulted in restrictions on the marketing and consumption of Baltic Sea fish, making this a priority environmental issue in the European Union. To date there is no consensus on the relative importance of different sources of PCDD/Fs to the Baltic Sea, and hence no consensus on how to address this issue. In this work we synthesized the available information to create a PCDD/F budget for the Baltic Sea, focusing on the two largest basins, the Bothnian Sea and the Baltic Proper. The non-steady state multimedia fate and transport model POPCYCLING-Baltic was employed, using recent data for PCDD/F concentrations in air and sediment as boundary conditions. The PCDD/F concentrations in water predicted by the model were in good agreement with recent measurements. The budget demonstrated that atmospheric deposition was the dominant source of PCDD/Fs to the basins as a whole. This conclusion was supported by a statistical comparison of the PCDD/F congener patterns in surface sediments from accumulation bottoms with the patterns in ambient air, bulk atmospheric deposition, and a range of potential industrial sources. Prospective model simulations indicated that the PCDD/F concentrations in the water column will continue to decrease in the coming years due to the slow response of the Baltic Sea system to falling PCDD/F inputs in the last decades, but that the decrease would be more pronounced if ambient air concentrations were to drop further in the future, for instance as a result of reduced emissions. The study illustrates the usefulness of using monitoring data and multimedia models in an integrated fashion to address complex organic contaminant issues.

  15. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field

    International Nuclear Information System (INIS)

    Wilkinson, John; Hooda, Peter S.; Barker, James; Barton, Stephen; Swinden, Julian

    2017-01-01

    Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved. This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components. An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta

  16. Environmental model for a capital city

    Directory of Open Access Journals (Sweden)

    Claudia Eugenia Toca Torres

    2013-06-01

    Full Text Available From a review of the various options for modeling a sustainable development in its environmental dimension, this research proposes a model of environmental impact for Bogota, using the Vensim PLE software to model the pollution, the pollution load and soil contamination. The model includes a limited number of endogenous variables, as well as a greater number of exogenous variables. This modeling allows us to anticipate the environmental situation in the capital, in order to support public policies for addressing issues such as economic sanctions and moral regulations on emissions, discharges and waste, environmental measures and environmentally friendly practices

  17. National, holistic, watershed-scale approach to understand the sources, transport, and fate of agricultural chemicals

    Science.gov (United States)

    Capel, P.D.; McCarthy, K.A.; Barbash, J.E.

    2008-01-01

    This paper is an introduction to the following series of papers that report on in-depth investigations that have been conducted at five agricultural study areas across the United States in order to gain insights into how environmental processes and agricultural practices interact to determine the transport and fate of agricultural chemicals in the environment. These are the first study areas in an ongoing national study. The study areas were selected, based on the combination of cropping patterns and hydrologic setting, as representative of nationally important agricultural settings to form a basis for extrapolation to unstudied areas. The holistic, watershed-scale study design that involves multiple environmental compartments and that employs both field observations and simulation modeling is presented. This paper introduces the overall study design and presents an overview of the hydrology of the five study areas. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  18. Emerging organic contaminants in sludges. Analysis, fate and biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vicent, Teresa [Univ. Autonoma de Barcelona, Bellaterra (Spain). Chemical Engineering Dept.; Eljarrat, Ethel [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Caminal, Gloria [IQAC-CSIC, Barcelona (Spain). Grupo de biocatalisis Aplicada y biodegradacion; Barcelo, Damia (eds.) [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Girona Univ. (Spain). Catalan Inst. for Water Research

    2013-07-01

    A comprehensive review. Written by experts. Richly illustrated. There are a growing number of new chemicals in the environment that represent an ascertained or potential risk. Many of them can be found in sewage sludge and are the subject of this volume. Experts in the field highlight their occurrence and fate, risks of biosolid use, advanced chemical analysis methods, and degradation techniques with a special focus on biodegradation using fungi. In the final chapter conclusions and trends are offered as a point of departure for future studies. The double-disciplinary approach combining environmental analysis and engineering makes the book a valuable and comprehensive source of information for a broad audience, such as environmental chemists and engineers, biotechnologists, ecotoxicologists and professionals responsible for waste and water management.

  19. The sources, fate, and toxicity of chemical warfare agent degradation products.

    Science.gov (United States)

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  20. A model library for dynamic transport and fate of micropollutants in integrated urban wastewater and stormwater systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Benedetti, Lorenzo; Gevaert, Veerle

    2014-01-01

    by using substance inherent properties, following an approach commonly used in large-scale MP multimedia fate and transport models. The chosen level of complexity ensures a low data requirement and minimizes the need for field measurements. Next to a synthesis of model applications, a didactic example......The increasing efforts in reducing the emission of micropollutants (MP) into the natural aquatic environment require the development of modelling tools to support the decision making process. This article presents a library of dynamic modelling tools for estimating MP fluxes within Integrated Urban...... Wastewater and Stormwater system (IUWS – including drainage network, stormwater treatment units, wastewater treatment plants, sludge treatment, and the receiving water body). The models are developed by considering the high temporal variability of the processes taking place in the IUWS, providing a basis...

  1. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros

    2015-11-01

    Full Text Available Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.

  2. Decision Support for Environmental Management of Industrial ...

    Science.gov (United States)

    Non-hazardous solid materials from industrial processes, once regarded as waste and disposed in landfills, offer numerous environmental and economic advantages when put to beneficial uses (BUs). Proper management of these industrial non-hazardous secondary materials (INSM) requires estimates of their probable environmental impacts among disposal as well as BU options. The U.S. Environmental Protection Agency (EPA) has recently approved new analytical methods (EPA Methods 1313–1316) to assess leachability of constituents of potential concern in these materials. These new methods are more realistic for many disposal and BU options than historical methods, such as the toxicity characteristic leaching protocol. Experimental data from these new methods are used to parameterize a chemical fate and transport (F&T) model to simulate long-term environmental releases from flue gas desulfurization gypsum (FGDG) when disposed of in an industrial landfill or beneficially used as an agricultural soil amendment. The F&T model is also coupled with optimization algorithms, the Beneficial Use Decision Support System (BUDSS), under development by EPA to enhance INSM management. The objective of this paper is to demonstrate the methodologies and encourage similar applications to improve environmental management and BUs of INSM through F&T simulation coupled with optimization, using realistic model parameterization.

  3. Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

    2012-11-01

    This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

  4. The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast

    Science.gov (United States)

    Li, Yongkai; Yi, Ming; Zou, Xiufen

    2014-01-01

    To gain insights into the mechanisms of cell fate decision in a noisy environment, the effects of intrinsic and extrinsic noises on cell fate are explored at the single cell level. Specifically, we theoretically define the impulse of Cln1/2 as an indication of cell fates. The strong dependence between the impulse of Cln1/2 and cell fates is exhibited. Based on the simulation results, we illustrate that increasing intrinsic fluctuations causes the parallel shift of the separation ratio of Whi5P but that increasing extrinsic fluctuations leads to the mixture of different cell fates. Our quantitative study also suggests that the strengths of intrinsic and extrinsic noises around an approximate linear model can ensure a high accuracy of cell fate selection. Furthermore, this study demonstrates that the selection of cell fates is an entropy-decreasing process. In addition, we reveal that cell fates are significantly correlated with the range of entropy decreases. PMID:25042292

  5. Advanced simulation capability for environmental management - current status and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, Mark; Scheibe, Timothy [Pacific Northwest National Laboratory, Richland, Washington (United States); Robinson, Bruce; Moulton, J. David; Dixon, Paul [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Marble, Justin; Gerdes, Kurt [U.S. Department of Energy, Office of Environmental Management, Washington DC (United States); Stockton, Tom [Neptune and Company, Inc, Los Alamos, New Mexico (United States); Seitz, Roger [Savannah River National Laboratory, Aiken, South Carolina (United States); Black, Paul [Neptune and Company, Inc, Lakewood, Colorado (United States)

    2013-07-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater (EM-12), is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach that is currently aimed at understanding and predicting contaminant fate and transport in natural and engineered systems. ASCEM is a modular and open source high-performance computing tool. It will be used to facilitate integrated approaches to modeling and site characterization, and provide robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of capabilities, with current emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) multi-process simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The integration of the Platform and HPC capabilities were tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities in 2012. The current maturity of the ASCEM computational and analysis capabilities has afforded the opportunity for collaborative efforts to develop decision analysis tools to support and optimize radioactive waste disposal. Recent advances in computerized decision analysis frameworks provide the perfect opportunity to bring this capability into ASCEM. This will allow radioactive waste

  6. Microplastics in the environment: What can we learn from a decade of engineered nanoparticle fate and risk assessment?

    Science.gov (United States)

    Hüffer, T.; Praetorius, A.; Wagner, S.; von der Kammer, F.; Hofmann, T.

    2016-12-01

    The field of environmental fate and risk assessment is frequently dominated by "hot topics" of emerging contaminants; in recent years for example pharmaceuticals, nanomaterials or, most recently, microplastics. Since no emerging pollutant is entirely new, a careful assessment of existing knowledge on related substances can help us direct our research efforts and employ the limited resources in a more efficient way. Crucial questions on the environmental implications of microplastics, for example the need for analytical tools, adequate protocols to study their fate, or the effects of aging and a risk assessment based thereon remain largely unanswered. Over the last decade, the field of environmental implications of engineered nanoparticles (ENPs) has been facing similar challenges. The goal of this contribution is to suggest a road-map to pursue the risk assessment of microplastics based on our experience in one decade in ENPs research. We highlight how to avoid potential dead-ends in microplastics research. We also illustrate that cross-linking other research fields, especially polymer chemistry and material sciences, may facilitate filling the urgent knowledge gaps.

  7. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    Science.gov (United States)

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  8. A reactive transport model for mercury fate in soil--application to different anthropogenic pollution sources.

    Science.gov (United States)

    Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik

    2014-11-01

    Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of

  9. The influence of global climate change on the environmental fate of persistent organic pollutants: A review with emphasis on the Northern Hemisphere and the Arctic as a receptor

    Science.gov (United States)

    Ma, Jianmin; Hung, Hayley; Macdonald, Robie W.

    2016-11-01

    Following worldwide bans and restrictions on the use of many persistent organic pollutants (POPs) from the late 1970s, their regional and global distributions have become governed increasingly by phase partitioning between environmental reservoirs, such as air, water, soil, vegetation and ice, where POPs accumulated during the original applications. Presently, further transport occurs within the atmospheric and aquatic reservoirs. Increasing temperatures provide thermodynamic forcing to drive these chemicals out of reservoirs, like soil, vegetation, water and ice, and into the atmosphere where they can be transported rapidly by winds and then recycled among environmental media to reach locations where lower temperatures prevail (e.g., polar regions and high elevations). Global climate change, widely considered as global warming, is also manifested by changes in hydrological systems and in the cryosphere; with the latter now exhibiting widespread loss of ice cover on the Arctic Ocean and thawing of permafrost. All of these changes alter the cycling and fate of POPs. There is abundant evidence from observations and modeling showing that climate variation has an effect on POPs levels in biotic and abiotic environments. This article reviews recent progress in research on the effects of climate change on POPs with the intention of promoting awareness of the importance of interactions between climate and POPs in the geophysical and ecological systems.

  10. Simulation of Reactive Constituent Fate and Transport in Hydrologic Simulator GSSHA

    National Research Council Canada - National Science Library

    Downer, Charles W

    2009-01-01

    The purpose of this System-Wide Water Resources Program (SWWRP) technical note is to describe the new fate and transport routines in the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model...

  11. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    International Nuclear Information System (INIS)

    Ligaray, Mayzonee; Baek, Sang Soo; Kwon, Hye-Ok; Choi, Sung-Deuk; Cho, Kyung Hwa

    2016-01-01

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  12. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    Energy Technology Data Exchange (ETDEWEB)

    Ligaray, Mayzonee; Baek, Sang Soo [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Kwon, Hye-Ok [Disaster Scientific Investigation Division, National Disaster Management Research Institute, 365 Jongga-ro Jung-gu, Ulsan 44538 (Korea, Republic of); Choi, Sung-Deuk, E-mail: sdchoi@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Cho, Kyung Hwa, E-mail: khcho@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of)

    2016-12-15

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  13. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters.

    Science.gov (United States)

    Vione, D; Calza, P; Galli, F; Fabbri, D; Santoro, V; Medana, C

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with OH radicals would be negligible and that with (3)CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling

    DEFF Research Database (Denmark)

    Fantke, Peter; Wieland, Peter; Wannaz, Cedric

    2013-01-01

    Dynamic plant uptake models are suitable for assessing environmental fate and behavior of toxic chemicals in food crops. However, existing tools mostly lack in-depth analysis of system dynamics. Furthermore, no existing model is available as parameterized version that is easily applicable for use...

  15. Environmental Risk Assessment of antimicrobials applied in veterinary medicine-A field study and laboratory approach.

    Science.gov (United States)

    Slana, Marko; Dolenc, Marija Sollner

    2013-01-01

    The fate and environmental risk of antimicrobial compounds of different groups of veterinary medicine pharmaceuticals (VMP's) have been compared. The aim was to demonstrate a correlation between the physical and chemical properties of active compounds and their metabolism in target animals, as well as their fate in the environment. In addition, the importance of techniques for manure management and agricultural practice and their influence on the fate of active compounds is discussed. The selected active compounds are shown to be susceptible to at least one environmental factor (sun, water, bacterial or fungal degradation) to which they are exposed during their life cycle, which contributes to its degradation. Degradation under a number of environmental factors has also to be considered as authentic information additional to that observed in the limited conditions in laboratory studies and in Environmental Risk Assessment calculations. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    Science.gov (United States)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  17. Modeling fates and impacts for bio-economic analysis of hypothetical oil spill scenarios in San Francisco Bay

    International Nuclear Information System (INIS)

    French McCay, D.; Whittier, N.; Sankaranarayanan, S.; Jennings, J.; Etkin, D.S.

    2002-01-01

    The oil spill risks associated with four submerged rock pinnacles near Alcatraz Island in San Francisco Bay are being evaluated by the United States Army Corps of Engineers. Oil spill modeling has been conducted for a hypothetical oil spill to determine biological impacts, damages to natural resources and response costs. The scenarios are hypothetical vessel grounding on the pinnacles. The SIMAP modeling software by the Applied Science Associates was used to model 3 spill sizes (20, 50 and 95 percentile by volume) and 4 types of oil (gasoline, diesel, heavy fuel oil, and crude oil). The frequency distribution of oil fates and impacts was determined by first running each scenario in stochastic mode. The oil fates and biological effects of the spills were the focus of this paper. It was shown that diesel and crude oil spills would have greater impacts in the water column than heavy fuel or gasoline because gasoline is more volatile and less toxic and because heavy oil spills would be small in volume. It was determined that the major impacts and damage to birds would be low due to the high dilution potential of the bay. It was also noted that dispersants would be very effective in reducing impacts on wildlife and the shoreline. These results are being used to evaluate the cost-benefit analysis of removing the rocks versus the risk of an oil spill. The work demonstrates a statistically quantifiable method to estimate potential impacts that could be used in ecological risk assessment and cost-benefit analysis. 15 refs., 13 tabs., 11 figs

  18. NEIMiner: nanomaterial environmental impact data miner.

    Science.gov (United States)

    Tang, Kaizhi; Liu, Xiong; Harper, Stacey L; Steevens, Jeffery A; Xu, Roger

    2013-01-01

    As more engineered nanomaterials (eNM) are developed for a wide range of applications, it is crucial to minimize any unintended environmental impacts resulting from the application of eNM. To realize this vision, industry and policymakers must base risk management decisions on sound scientific information about the environmental fate of eNM, their availability to receptor organisms (eg, uptake), and any resultant biological effects (eg, toxicity). To address this critical need, we developed a model-driven, data mining system called NEIMiner, to study nanomaterial environmental impact (NEI). NEIMiner consists of four components: NEI modeling framework, data integration, data management and access, and model building. The NEI modeling framework defines the scope of NEI modeling and the strategy of integrating NEI models to form a layered, comprehensive predictability. The data integration layer brings together heterogeneous data sources related to NEI via automatic web services and web scraping technologies. The data management and access layer reuses and extends a popular content management system (CMS), Drupal, and consists of modules that model the complex data structure for NEI-related bibliography and characterization data. The model building layer provides an advanced analysis capability for NEI data. Together, these components provide significant value to the process of aggregating and analyzing large-scale distributed NEI data. A prototype of the NEIMiner system is available at http://neiminer.i-a-i.com/.

  19. Environmental fate and behaviour of the biocontrol agent Bacillus amyloliquefaciens CPA-8 after preharvest application to stone fruit.

    Science.gov (United States)

    Vilanova, Laura; Teixidó, Neus; Usall, Josep; Balsells-Llauradó, Marta; Gotor-Vila, Amparo; Torres, Rosario

    2018-02-01

    Bacillus amyloliquefaciens strain CPA-8 has been described as an effective biocontrol agent to control brown rot in stone fruit for both preharvest and postharvest applications. However, no information about the environmental fate and behaviour of this strain under field conditions is available. The dispersion of the CPA-8 application was evaluated using water-sensitive papers, and complete coverage was observed on the leaves of treated trees, while treatment. On non-treated trees, CPA-8 was detected on leaves until 180 days after treatment, and on weeds, the CPA-8 population was dependent on the distance from the treated trees. A high persistence of CPA-8 was detected on inert materials, such as clothes and gloves worn by handlers and plastic harvesting boxes. More than 99% of the samples with a CPA-8 phenotype were confirmed as CPA-8 using polymerase chain reaction (PCR). This work demonstrated a good distribution, persistence and adaptation of the CPA-8 strain to field and postharvest conditions. Monitoring of dispersion and persistence is an excellent tool to determine the time of application and provides valuable information for registering issues. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models

    Science.gov (United States)

    Anaya, A. A.; Padilla, I. Y.

    2012-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes

  1. Yeast Colonies: A Model for Studies of Aging, Environmental Adaptation, and Longevity

    Directory of Open Access Journals (Sweden)

    Libuše Váchová

    2012-01-01

    Full Text Available When growing on solid surfaces, yeast, like other microorganisms, develops organized multicellular populations (colonies and biofilms that are composed of differentiated cells with specialized functions. Life within these populations is a prevalent form of microbial existence in natural settings that provides the cells with capabilities to effectively defend against environmental attacks as well as efficiently adapt and survive long periods of starvation and other stresses. Under such circumstances, the fate of an individual yeast cell is subordinated to the profit of the whole population. In the past decade, yeast colonies, with their complicated structure and high complexity that are also developed under laboratory conditions, have become an excellent model for studies of various basic cellular processes such as cell interaction, signaling, and differentiation. In this paper, we summarize current knowledge on the processes related to chronological aging, adaptation, and longevity of a colony cell population and of its differentiated cell constituents. These processes contribute to the colony ability to survive long periods of starvation and mostly differ from the survival strategies of individual yeast cells.

  2. An Comparative Study of Jane Eyre's Fate and Tess's Fate from Femi-nist Viewpoint%An Comparative Study of Jane Eyre's Fate and Tess's Fate from Femi?nist Viewpoint

    Institute of Scientific and Technical Information of China (English)

    陈静; 何泠静

    2017-01-01

    In"Jane Eyre", Charlotte Bronte's masterpiece the heroine, Jane Eyre has fully reflected her self-esteem, equality, and pure personality, which are also reflected in her concept of love vividly. However, Thomas Hardy's Tess is poor and kind, but she does not have a complete love like Jane Eyre, and she is described by his criticism of the old moral character with good vir-tues in the traditional sense. She is a new image of modern feminism who suffered from the old moral sense and gradually has re-volt consciousness. From the feminism viewpoint, this paper attempts to analysis the causes of their different fate from different points and reveal the impact of social background on their fates.

  3. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  4. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  5. [Status Quo, Uncertainties and Trends Analysis of Environmental Risk Assessment for PFASs].

    Science.gov (United States)

    Hao, Xue-wen; Li, Li; Wang, Jie; Cao, Yan; Liu, Jian-guo

    2015-08-01

    This study systematically combed the definition and change of terms, category and application of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in international academic, focusing on the environmental risk and exposure assessment of PFASs, to comprehensively analyze the current status, uncertainties and trends of PFASs' environmental risk assessment. Overall, the risk assessment of PFASs is facing a complicated situation involving complex substance pedigrees, various types, complex derivative relations, confidential business information and risk uncertainties. Although the environmental risk of long-chain PFASs has been widely recognized, the short-chain PFASs and short-chain fluorotelomers as their alternatives still have many research gaps and uncertainties in environmental hazards, environmental fate and exposure risk. The scope of risk control of PFASs in the international community is still worth discussing. Due to trade secrets and market competition, the chemical structure and risk information of PFASs' alternatives are generally lack of openness and transparency. The environmental risk of most fluorinated and non-fluorinated alternatives is not clear. In total, the international research on PFASs risk assessment gradually transfer from long-chain perfluoroalkyl acids (PFAAs) represented by perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to short-chain PFAAs, and then extends to other PFASs. The main problems to be solved urgently and researched continuously are: the environmental hazardous assessment indexes, such as bioaccumulation and environmental migration, optimization method, the environmental release and multimedia environmental fate of short-chain PFASs; the environmental fate of neutral PFASs and the transformation and contribution as precursors of short-chain PFASs; the risk identification and assessment of fluorinated and non-fluorinated alternatives of PFASs.

  6. Source apportionment and environmental fate of lead chromates in atmospheric dust in arid environments.

    Science.gov (United States)

    Meza-Figueroa, Diana; González-Grijalva, Belem; Romero, Francisco; Ruiz, Joaquin; Pedroza-Montero, Martín; Rivero, Carlos Ibañez-Del; Acosta-Elías, Mónica; Ochoa-Landin, Lucas; Navarro-Espinoza, Sofía

    2018-03-07

    The environmental fate of lead derived from traffic paint has been poorly studied in developing countries, mainly in arid zones. For this purpose, a developing city located in the Sonoran desert (Hermosillo, Mexico), was chosen to conduct a study. In this paper the lead chromate (crocoite) sources in atmospheric dust were addressed using a combination of Raman microspectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and Pb isotope measurements. A high concentration of Pb and Cr as micro- and nanostructured pigments of crocoite is reported in yellow traffic paint (n=80), road dust (n=146), settled dust in roofs (n=21), and atmospheric dust (n=20) from a developing city located in the Sonoran Desert. 10 samples of peri-urban soils were collected for local geochemical background. The paint photodegradation and erosion of the asphaltic cover are enhanced by the climate, and the presence of the mineral crocoite (PbCrO 4 ) in road dust with an aerodynamic diameter ranging from 100nm to 2μm suggests its integration into the atmosphere by wind resuspension processes. A positive PbCr correlation (R 2 =0.977) was found for all studied samples, suggesting a common source. The Pb-isotope data show signatures in atmospheric dust as a product of the mixing of two end members: i) local soils and ii) crocoite crystals as pigments in paint. The presence of lead chromates in atmospheric dust has not been previously documented in Latin America, and it represents an unknown health risk to the exposed population because the identified size of crystals can reach the deepest part of lungs. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Developing and applying a site-specific multimedia fate model to address ecological risk of oxytetracycline discharged with aquaculture effluent in coastal waters off Jangheung, Korea.

    Science.gov (United States)

    Kim, Woojung; Lee, Yunho; Kim, Sang Don

    2017-11-01

    The overuse of oxytetracycline (OTC) in aquaculture has become a problem because of its chronic toxic effects on marine ecosystems. The present study assessed the ecological risk of OTC in the coastal waters near the Jangheung Flatfish Farm using a site-specific multimedia fate model to analyze exposure. Before the model was applied, its performance was validated by comparing it with field data. The coastal waters in the testbed were sampled and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by solid-phase extraction (SPE). The concentrations of OTC measured varied from 7.05 to 95.39ng/L. The results of validating the models showed that the site-specific multimedia fate model performed better (root mean square error (RMSE): 24.217, index of agreement (IOA): 0.739) than conventional fugacity approaches. This result demonstrated the utility of this model in supporting effective future management of aquaculture effluent. The results of probabilistic risk assessment indicated that OTC from aquaculture effluent did not cause adverse effects, even in a maximum-use scenario. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Characterising performance of environmental models

    NARCIS (Netherlands)

    Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.; Norton, J.; Perrin, C.; Pierce, S.; Robson, B.; Seppelt, R.; Voinov, A.; Fath, B.D.; Andreassian, V.

    2013-01-01

    In order to use environmental models effectively for management and decision-making, it is vital to establish an appropriate level of confidence in their performance. This paper reviews techniques available across various fields for characterising the performance of environmental models with focus

  9. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo

    Science.gov (United States)

    Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer

    2017-01-01

    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping1 has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites2, viral barcodes3, and strategies based on transposons4 and CRISPR/Cas9 genome editing5; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system6,7. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs8–10. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure. PMID:28813413

  10. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo.

    Science.gov (United States)

    Pei, Weike; Feyerabend, Thorsten B; Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer

    2017-08-24

    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites, viral barcodes, and strategies based on transposons and CRISPR-Cas9 genome editing; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure.

  11. Nitrogen fate model for gas-phase ammonia-enhanced in situ bioventing

    International Nuclear Information System (INIS)

    Marshall, T.R.

    1995-01-01

    Subsurface bioremediation of contaminants is sometimes limited by the availability of nitrogen. Introduction of gaseous ammonia to the subsurface is a feasible and economical approach to enhance biodegradation in some environments. A gaseous nutrient source may be a practical option for sites where surface application of liquid nutrients is not possible, such as sites with shallow groundwater or sites with surface operations. A conceptual nitrogen fate model was developed to provide remediation scientists and engineers with some practical guidelines in the use of ammonia-enhanced bioventing. Ammonia supplied to the subsurface dissolves readily in soil moisture and sorbs strongly to soil particles. The ammonium ion is the preferred nutrient form of many microorganisms. Some of the ammonia will be converted to nitrate by ammonia-oxidizing organisms. Field monitoring data from an operating ammonia-enhanced bioventing remediation site for diesel fuel contamination are presented. Conservative additions of ammonia promoted appreciable increases in evolved carbon dioxide and rate of oxygen utilization. An overabundance of added ammonia promoted formation of methane from likely anaerobic hydrocarbon degradation in the presence of nitrate as the electron acceptor

  12. Evaluating the fate of organic compounds in the Cameroon ...

    African Journals Online (AJOL)

    Furthermore, a sensitivity analysis was performed to identify the key input parameters. Model simulations indicated significant differences in the fate of the chemicals that could be explained by the variation in physical-chemical properties. The log KOW, emission rate to water (EW), volume of the water compartment (VW) and ...

  13. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2009-01-01

    Integrated urban water system (IUWS) modelling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOs) and stormwater drainage systems. However, some micropollutants have the tendency to occur in more than one...... environmental medium. In this work, a multimedia fate and transport model (MFTM) is “wrapped around” a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment. The combined model was tested on a hypothetical catchment using two scenarios: a reference scenario...... and a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS). A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in a reduced surface water concentration for the latter scenario. However, the model also showed that this was at the expense...

  14. Results of an adaptive environmental assessment modeling workshop concerning potential impacts of drilling muds and cuttings on the marine environment

    Science.gov (United States)

    Auble, Gregor T.; Andrews, Austin K.; Ellison, Richard A.; Hamilton, David B.; Johnson, Richard A.; Roelle, James E.; Marmorek, David R.

    1983-01-01

    Drilling fluids or "muds" are essential components of modern drilling operations. They provide integrity for the well bore, a medium for removal of formation cuttings, and lubrication and cooling of the drill bit and pipe. The modeling workshop described in this report was conducted September 14-18, 1981 in Gulf Breeze, Florida to consider potential impacts of discharged drilling muds and cuttings on the marine environment. The broad goals of the workshop were synthesis of information on fate and effects, identification of general relationships between drilling fluids and the marine environment, and identification of site-specific variables likely to determine impacts of drilling muds and cuttings in various marine sites. The workshop was structured around construction of a model simulating fate and effects of discharges from a single rig into open water areas of the Gulf of Mexico, and discussion of factors that might produce different fate and effects in enclosed areas such as bays and estuaries. The simulation model was composed of four connected submodels. A Discharge/Fate submodel dealt with the discharge characteristics of the rig and the subsequent fate of discharged material. Three effects submodels then calculated biological responses at distances away from the rig for the water column, soft bottom benthos (assuming the rig was located over a soft bottom environment), and hard bottom benthos (assuming the rig was located over a hard bottom environment). The model focused on direct linkages between the discharge and various organisms rather than on how the marine ecosystem itself is interconnected. Behavior of the simulation model indicated relatively localized effects of drilling muds and cuttings discharged from a single platform into open water areas. Water column fate and effects were dominated by rapid dilution. Effects from deposition of spent mud and cuttings were spatially limited with relatively rapid recovery, especially in soft bottom benthic

  15. The impact of organochlorines cycling in the cryosphere on their global distribution and fate – 1. Sea ice

    International Nuclear Information System (INIS)

    Guglielmo, Francesca; Stemmler, Irene; Lammel, Gerhard

    2012-01-01

    Global fate and transport of γ-HCH and DDT was studied using a global multicompartment chemistry-transport model, MPI-MCTM, with and without a dynamic sea ice compartment. The MPI-MCTM is based on coupled ocean and atmosphere general circulation models. Sea ice hosts 7–9% of the burden of the surface ocean. Without cycling in sea ice the geographic distributions are shifted from land to sea. This shift of burdens exceeds the sea ice burden by a factor of ≈8 for γ-HCH and by a factor of ≈15 for DDT. As regional scale seasonal sea ice melting may double surface ocean contamination, a neglect of cycling in sea ice (in an otherwise unchanged model climate) would underestimate ocean exposure in high latitudes. Furthermore, it would lead to overestimates of the residence times in ocean by 40% and 33% and of the total environmental residence times, τ overall , of γ-HCH and DDT by 1.6% and 0.6%, respectively. - Highlights: ► Sea ice hosts 7–9% of the burden of γ-HCH and DDT in the surface ocean. ► Without cycling in sea ice the distributions are shifted from land to sea. ► A neglect of cycling in sea ice would underestimate ocean exposure in high latitudes. ► Persistence of γ-HCH and DDT expected enhanced in climate without sea ice. - The inclusion of cycling in sea ice is found relevant for POPs fate and transport modelling on the global scale.

  16. Environmental risk assessments for transgenic crops producing output trait enzymes

    Science.gov (United States)

    Tuttle, Ann; Shore, Scott; Stone, Terry

    2009-01-01

    The environmental risks from cultivating crops producing output trait enzymes can be rigorously assessed by testing conservative risk hypotheses of no harm to endpoints such as the abundance of wildlife, crop yield and the rate of degradation of crop residues in soil. These hypotheses can be tested with data from many sources, including evaluations of the agronomic performance and nutritional quality of the crop made during product development, and information from the scientific literature on the mode-of-action, taxonomic distribution and environmental fate of the enzyme. Few, if any, specific ecotoxicology or environmental fate studies are needed. The effective use of existing data means that regulatory decision-making, to which an environmental risk assessment provides essential information, is not unnecessarily complicated by evaluation of large amounts of new data that provide negligible improvement in the characterization of risk, and that may delay environmental benefits offered by transgenic crops containing output trait enzymes. PMID:19924556

  17. Biological fate, transport, and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin

    International Nuclear Information System (INIS)

    Abdelghani, A.; Hartley, W.; Bart, H.; Ide, C.; Ellgaard, E.; Sherry, T.; Devall, M.; Thien, L.; Horner, E.; Mizell, M.

    1993-01-01

    The objective of the cluster investigators is to develop a dynamic model for the evaluation of the biological fate, transport, and ecotoxicity from multiple chemical contamination of the Mississippi River Basin. To develop this environmental model, FY 93-94 most of cluster investigators focused on Devil's Swamp Site (DSS), a cypress swamp which lies just Northwest of Baton Rouge, Louisiana, adjacent to the Mississippi River. The DSS which includes a man-made lake has contaminated sediment, water and biota. The DSS receives flood water from the Mississippi River during high flow periods and the Baton Rouge Bayou drains through the DSS. The DSS receives toxic substances and hazardous waste from a wide variety of surrounding industrial operations including an abandoned hazardous waste disposal facility. In addition, some investigators studied Bayou Trepangnier. This research cluster will continue studying Devil Swamp. The large number of investigators in this cluster resulted from incorporating related research proposals based on reviewer recommendations. The specific aims of the cluster for the first year were to conduct a physical, chemical, ecological survey and baseline toxicological characterization of the DSS from existing databases maintained by State and federal agencies, field studies (assessment) of sediment, air, water and biota, and laboratory screening studios. This assessment will provide critical information and focus for the next two years in-depth studies of critical transport and fate processes, ecotoxicity, biomarkers of effect, and uptake, metabolism and distribution of toxicants. The primary significant outcome of the cluster researchers will be the development of an ecological risk assessment model combining biotic and physical/chemical variables for DSS with a projection of model reliability and accuracy for use at other typical Mississippi River Basin sites

  18. Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    International Nuclear Information System (INIS)

    Schaumann, Gabriele E.; Philippe, Allan; Bundschuh, Mirco; Metreveli, George; Klitzke, Sondra; Rakcheev, Denis; Grün, Alexandra

    2015-01-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO 2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag 2 S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO 2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO 2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of

  19. Environmental Chemistry Methods (ECM) Index - N

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with N as the first character.

  20. Environmental Chemistry Methods (ECM) Index - K

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with K as the first character.

  1. Environmental Chemistry Methods (ECM) Index - M

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with M as the first character.

  2. Environmental Chemistry Methods (ECM) Index - R

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with R as the first character.

  3. Environmental Chemistry Methods (ECM) Index - G

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with G as the first character.

  4. Environmental Chemistry Methods (ECM) Index - O

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with O as the first character.

  5. Environmental Chemistry Methods (ECM) Index - S

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with S as the first character.

  6. Environmental Chemistry Methods (ECM) Index - B

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with B as the first character.

  7. Environmental Chemistry Methods (ECM) Index - C

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with C as the first character.

  8. Environmental Chemistry Methods (ECM) Index - F

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with F as the first character.

  9. Environmental Chemistry Methods (ECM) Index - P

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with P as the first character.

  10. Environmental Chemistry Methods (ECM) Index - L

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with L as the first character.

  11. Environmental Chemistry Methods (ECM) Index - H

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with H as the first character.

  12. Environmental Chemistry Methods (ECM) Index - I

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with I as the first character.

  13. Environmental Chemistry Methods (ECM) Index - Z

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with Z as the first character.

  14. Environmental Chemistry Methods (ECM) Index - A

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with A as the first character.

  15. Environmental Chemistry Methods (ECM) Index - E

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with E as the first character.

  16. Environmental Chemistry Methods (ECM) Index - T

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with T as the first character.

  17. Environmental Chemistry Methods (ECM) Index - D

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with D as the first character.

  18. Environmental Chemistry Methods (ECM) Index - Q

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with Q as the first character.

  19. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A VENTURI/PACKED COLUMN SCRUBBER - VOLUME II: APPENDICES

    Science.gov (United States)

    A 5-week series of pilot-scale incineration tests, employing a synthetic waste feed, was performed at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with a venturi scrubber/p...

  20. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.

    Science.gov (United States)

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne

    2016-08-19

    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  1. Chemicals as the Sole Transformers of Cell Fate.

    Science.gov (United States)

    Ebrahimi, Behnam

    2016-05-30

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes.

  2. Simplifying modeling of nanoparticle aggregation-sedimentation behavior in environmental systems: A theoretical analysis

    NARCIS (Netherlands)

    Quik, J.T.K.; Meent, van de D.; Koelmans, A.A.

    2014-01-01

    Parameters and simplified model approaches for describing the fate of engineered nanoparticles (ENPs) are crucial to advance the risk assessment of these materials. Sedimentation behavior of ENPs in natural waters has been shown to follow apparent first order behavior, a ‘black box’ phenomenon that

  3. Numerical modelling for quantitative environmental risk assessment for the disposal of drill cuttings and mud

    Science.gov (United States)

    Wahab, Mohd Amirul Faiz Abdul; Shaufi Sokiman, Mohamad; Parsberg Jakobsen, Kim

    2017-10-01

    To investigate the fate of drilling waste and their impacts towards surrounding environment, numerical models were generated using an environmental software; MIKE by DHI. These numerical models were used to study the transportation of suspended drill waste plumes in the water column and its deposition on seabed in South China Sea (SCS). A random disposal site with the model area of 50 km × 25 km was selected near the Madalene Shoal in SCS and the ambient currents as well as other meteorological conditions were simulated in details at the proposed location. This paper was focusing on sensitivity study of different drill waste particle characteristics on impacts towards marine receiving environment. The drilling scenarios were obtained and adapted from the oil producer well at offshore Sabah (Case 1) and data from actual exploration drilling case at Pumbaa location (PL 469) in the Norwegian Sea (Case 2). The two cases were compared to study the effect of different drilling particle characteristics and their behavior in marine receiving environment after discharged. Using the Hydrodynamic and Sediment Transport models simulated in MIKE by DHI, the variation of currents and the behavior of the drilling waste particles can be analyzed and evaluated in terms of multiple degree zones of impacts.

  4. Modeling Environmental Literacy of University Students

    Science.gov (United States)

    Teksoz, Gaye; Sahin, Elvan; Tekkaya-Oztekin, Ceren

    2012-01-01

    The present study proposed an Environmental Literacy Components Model to explain how environmental attitudes, environmental responsibility, environmental concern, and environmental knowledge as well as outdoor activities related to each other. A total of 1,345 university students responded to an environmental literacy survey (Kaplowitz and Levine…

  5. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2010-01-01

    Integrated urban water system (IUWS) modeling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOS) and stormwater drainage systems However, some micropollutants tend to appear in more than one environmental...... medium (air, water, sediment, soil, groundwater, etc) In this work, a multimedia fate and transport model (MFTM) is "wrapped around" a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment The combined model was tested on a hypothetical catchment using two scenarios...... on the one hand a reference scenario with a combined sewerage system and on the other hand a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS) A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in reduced surface water concentrations...

  6. Enantioselectivity in environmental risk assessment of modern chiral pesticides

    International Nuclear Information System (INIS)

    Ye Jing; Zhao Meirong; Liu Jing; Liu Weiping

    2010-01-01

    Chiral pesticides comprise a new and important class of environmental pollutants nowadays. With the development of industry, more and more chiral pesticides will be introduced into the market. But their enantioselective ecotoxicology is not clear. Currently used synthetic pyrethroids, organophosphates, acylanilides, phenoxypropanoic acids and imidazolinones often behave enantioselectively in agriculture use and they always pose unpredictable enantioselective ecological risks on non-target organisms or human. It is necessary to explore the enantioselective toxicology and ecological fate of these chiral pesticides in environmental risk assessment. The enantioselective toxicology and the fate of these currently widely used pesticides have been discussed in this review article. - Chiral pesticides could pose unpredictable enantioselective toxicity on non-target organisms.

  7. Geochemical Fate and Transport of Sildenafil and Vardenafil

    Science.gov (United States)

    Richter, L.; Boudinot, G.; Vulava, V. M.; Cory, W. C.

    2015-12-01

    The geochemical fate of pharmaceuticals and their degradation products is a developing environmental field. The geologic, chemical, and biological fate of these pollutants has become very relevant with the increase in human population and the resulting increase in pollutant concentrations in the environment. In this study, we focus on sildenafil (SDF) and vardenafil (VDF), active compounds in Viagra and Levitra, respectively, two commonly used erectile dysfunction drugs. The main objective is to determine the sorption potential and transport behavior of these two compounds in natural soils. Both SDF and VDF are complex organic molecules with multiple amine functional groups in their structures. Two types of natural acidic soils (pH≈4.5), an organic-rich soil (7.6% OM) and clay-rich soil (5.1% clay) were used in this study to determine which soil components influence sorption behavior of both compounds. Sorption isotherms measured using batch reactors were nearly linear, but sorption was stronger in soil that contained higher clay content. Both compounds have multiple pKas due to the amine functional groups, the relevant pKas of SDF are 5.97 and 7.27, and those of VDF's are 4.72 and 6.21. These values indicate that these compounds likely behave as cations in soil suspensions and hence were strongly sorbed to negatively-charged clay minerals present in both soils. The clay composition in both soils is predominantly kaolinite with smaller amount of montmorillonite, both of which have a predominantly negative surface charge. Transport experiments using glass chromatography columns indicated that both compounds were more strongly retarded in the clay-rich soils. Breakthrough curves from the transport experiments were modeled using convection-dispersion transport equations. The organic matter in the soil seemed to play a less dominant role in the geochemistry in this study, but is likely to transform both compounds into derivative compounds as seen in other studies.

  8. Understanding the fate and biological effects of Ag- and TiO{sub 2}-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Philippe, Allan, E-mail: philippe@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau (Germany); Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, SE-75007 Uppsala (Sweden); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Klitzke, Sondra, E-mail: sondra.klitzke@tu-berlin.de [Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br. (Germany); Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin (Germany); Rakcheev, Denis, E-mail: rakcheev@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Grün, Alexandra, E-mail: alexg@uni-koblenz.de [Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz (Germany); and others

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO{sub 2} NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag{sub 2}S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO{sub 2} NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO{sub 2} NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering

  9. Fate of polycyclic aromatic hydrocarbons from the North Pacific to the Arctic: Field measurements and fugacity model simulation.

    Science.gov (United States)

    Ke, Hongwei; Chen, Mian; Liu, Mengyang; Chen, Meng; Duan, Mengshan; Huang, Peng; Hong, Jiajun; Lin, Yan; Cheng, Shayen; Wang, Xuran; Huang, Mengxue; Cai, Minggang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) have accumulated ubiquitously inArctic environments, where re-volatilization of certain organic pollutants as a result of climate change has been observed. To investigate the fate of semivolatile organic compounds in the Arctic, dissolved PAHs in the surface seawaters from the temperate Pacific Ocean to the Arctic Ocean, as well as a water column in the Arctic Ocean, were collected during the 4th Chinese National Arctic Research Expedition in summer 2010. The total concentrations of seven dissolved PAHs in surface water ranged from 1.0 to 5.1 ng L -1 , decreasing with increasing latitude. The vertical profile of PAHs in the Arctic Ocean was generally characteristic of surface enrichment and depth depletion, which emphasized the role of vertical water stratification and particle settling processes. A level III fugacity model was developed in the Bering Sea under steady state assumption. Model results quantitatively simulated the transfer processes and fate of PAHs in the air and water compartments, and highlighted a summer air-to-sea flux of PAHs in the Bering Sea, which meant that the ocean served as a sink for PAHs, at least in summer. Acenaphthylene and acenaphthene reached equilibrium in air-water diffusive exchange, and any perturbation, such as a rise in temperature, might lead to disequilibrium and remobilize these compounds from their Arctic reservoirs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Multiple spectroscopic analyses reveal the fate and metabolism of sulfamide herbicide triafamone in agricultural environments

    International Nuclear Information System (INIS)

    Wang, Mengcen; Qian, Yuan; Liu, Xiaoyu; Wei, Peng; Deng, Man; Wang, Lei; Wu, Huiming; Zhu, Guonian

    2017-01-01

    Triafamone, a sulfamide herbicide, has been extensively utilized for weed control in rice paddies in Asia. However, its fate and transformation in the environment have not been established. Through a rice paddy microcosm-based simulation trial combined with multiple spectroscopic analyses, we isolated and identified three novel metabolites of triafamone, including hydroxyl triafamone (HTA), hydroxyl triafamone glycoside (HTAG), and oxazolidinedione triafamone (OTA). When triafamone was applied to rice paddies at a concentration of 34.2 g active ingredient/ha, this was predominantly distributed in the paddy soil and water, and then rapidly dissipated in accordance with the first-order rate model, with half-lives of 4.3–11.0 days. As the main transformation pathway, triafamone was assimilated by the rice plants and was detoxified into HTAG, whereas the rest was reduced into HTA with subsequent formation of OTA. At the senescence stage, brown rice had incurred triafamone at a concentration of 0.0016 mg/kg, but the hazard quotient was <1, suggesting that long-term consumption of the triafamone-containing brown rice is relatively safe. The findings of the present study indicate that triafamone is actively metabolized in the agricultural environment, and elucidation of the link between environmental exposure to these triazine or oxazolidinedione moieties that contain metabolites and their potential impacts is warranted. - Highlights: • Multiple spectroscopic analyses were applied to investigate agrochemicals transformation in environment. • Three novel compounds were isolated and identified as triafamone metabolites. • The fate and transformation pathway of triafamone in rice paddy were revealed. • Long-term consumption of the triafamone-containing brown rice is relatively safe. • Elucidation of environmental impacts by exposure to these triazine or oxazolidinedione metabolites is warranted. - Triafamone rapidly dissipates in agricultural environments

  11. Multi-pathway exposure modelling of chemicals in cosmetics with application to shampoo

    Science.gov (United States)

    We present a novel multi-pathway, mass balance based, fate and exposure model compatible with life cycle and high-throughput screening assessments of chemicals in cosmetic products. The exposures through product use as well as post-use emissions and environmental media were quant...

  12. Fate of nanoparticles during life cycle of polymer nanocomposites

    International Nuclear Information System (INIS)

    Nguyen, T; Pellegrin, B; Bernard, C; Gu, X; Gorham, J M; Stutzman, P; Stanley, D; Shapiro, A; Byrd, E; Hettenhouser, R; Chin, J

    2011-01-01

    Nanoparticles are increasingly used in consumer and structural polymeric products to enhance a variety of properties. Under the influence of environmental factors (e.g., ultraviolet, moisture, temperature) and mechanical actions (e.g., scratching, vibrations, abrasion), nanoparticles could potentially release from the products and thus have negative effects on the environment, health and safety. The fate of nanoparticles in polymer nanocomposites during their exposure to UV environment has been investigated. Epoxy polymer containing multi-walled carbon nanotubes (MWCNTs) and silica nanoparticles were studied. Specially-designed cells containing nanocomposite specimens were irradiated with UV radiation between 295 nm and 400 nm. Chemical degradation, mass loss and surface morphology of the epoxy nanocomposites, and release of nanoparticles were measured. Epoxy containing MWCNTs exposed to UV radiation degraded at a much slower rate than the unfilled epoxy or the epoxy/nanosilica composite. Photodegradation of the matrix resulted in substantial accumulation of nanoparticles on the composite surfaces. Silica nanoparticles were found to release into the environment, but MWCNTs formed a dense network on the composite surface, with no evidence of release even after prolonged exposure. Conceptual models for silica nanoparticle release and MWCNT retention on the surface during UV exposure of nanocomposites are presented.

  13. Fate and behaviour of phenanthrene in the natural and artificial soils

    International Nuclear Information System (INIS)

    Hofman, Jakub; Rhodes, Angela; Semple, Kirk T.

    2008-01-01

    OECD artificial soil has been used routinely as a standardized substrate for soil toxicity tests. However, can be the fate, behaviour and effects of contaminants in artificial soil extrapolated to natural soils? The aim of our study was to verify this hypothesis by comparing the loss, extraction, and bioavailability of phenanthrene in three artificial and three natural soils of comparable organic carbon content. Soils were spiked with 14 C-phenanthrene and total 14 C-activity change, the fractions extracted by dichloromethane, 70% ethanol, and hydroxypropyl-β-cyclodextrin, the fraction mineralized by Pseudomonas sp., and taken up by Enchytraeus albidus were measured after 1, 14, 42, and 84 d aging. The loss, extraction, biodegradation and uptake were several times lower in the artificial than natural soils and these differences increased with increasing soil-phenanthrene contact time. These results imply that artificial soil should be used cautiously for the prediction of fate and behaviour in natural soils. - Artificial soils show substantially different fate and behaviour of phenanthrene than natural soils, which cannot be easily extrapolated or modelled

  14. Dynamic analysis of the combinatorial regulation involving transcription factors and microRNAs in cell fate decisions.

    Science.gov (United States)

    Yan, Fang; Liu, Haihong; Liu, Zengrong

    2014-01-01

    P53 and E2F1 are critical transcription factors involved in the choices between different cell fates including cell differentiation, cell cycle arrest or apoptosis. Recent experiments have shown that two families of microRNAs (miRNAs), p53-responsive miR34 (miRNA-34 a, b and c) and E2F1-inducible miR449 (miRNA-449 a, b and c) are potent inducers of these different fates and might have an important role in sensitizing cancer cells to drug treatment and tumor suppression. Identifying the mechanisms responsible for the combinatorial regulatory roles of these two transcription factors and two miRNAs is an important and challenging problem. Here, based in part on the model proposed in Tongli Zhang et al. (2007), we developed a mathematical model of the decision process and explored the combinatorial regulation between these two transcription factors and two miRNAs in response to DNA damage. By analyzing nonlinear dynamic behaviors of the model, we found that p53 exhibits pulsatile behavior. Moreover, a comparison is given to reveal the subtle differences of the cell fate decision process between regulation and deregulation of miR34 on E2F1. It predicts that miR34 plays a critical role in promoting cell cycle arrest. In addition, a computer simulation result also predicts that the miR449 is necessary for apoptosis in response to sustained DNA damage. In agreement with experimental observations, our model can account for the intricate regulatory relationship between these two transcription factors and two miRNAs in the cell fate decision process after DNA damage. These theoretical results indicate that miR34 and miR449 are effective tumor suppressors and play critical roles in cell fate decisions. The work provides a dynamic mechanism that shows how cell fate decisions are coordinated by two transcription factors and two miRNAs. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology and Clinical Implications. Guest Editor: Yudong Cai

  15. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    International Nuclear Information System (INIS)

    Vione, D.; Calza, P.; Galli, F.; Fabbri, D.; Santoro, V.; Medana, C.

    2015-01-01

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with "3CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO_2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO_2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic transformation

  16. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Vione, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Calza, P., E-mail: paola.calza@unito.it [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Galli, F.; Fabbri, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Santoro, V.; Medana, C. [Department of Molecular Biotechnology and Health Sciences, University of Torino, via P. Giuria 5, 10125 Torino (Italy)

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with {sup 3}CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO{sub 2}, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO{sub 2} yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic

  17. Simulation of the fate of faecal bacteria in estuarine and coastal waters based on a fractionated sediment transport model

    Science.gov (United States)

    Yang, Chen; Liu, Ying

    2017-08-01

    A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sediment mixture is divided into several fractions according to the grain size. A bed evolution model is adopted to simulate the processes of the bed elevation change and sediment grain size sorting. The faecal bacteria transport equation includes enhanced source and sink terms to represent bacterial kinetic transformation and disappearance or reappearance due to sediment deposition or re-suspension. A novel partition ratio and dynamic decay rates of faecal bacteria are adopted in the numerical model. The model has been applied to the turbid water environment in the Bristol Channel and Severn estuary, UK. The predictions by the present model are compared with field data and those by non-fractionated model.

  18. PATHOGEN TRANSPORT AND FATE MODELING IN THE UPPER SALEM RIVER WATERSHED USING SWAT MODEL - PEER-REVIEWED JOURNAL ARTICLE

    Science.gov (United States)

    Simulation of the fate and transport of pathogen contamination was conducted with SWAT for the Upper Salem River Watershed, located in Salem County, New Jersey. This watershed is 37 km2 and land uses are predominantly agricultural. The watershed drains to a 32 km str...

  19. Revealing the fate of the phenylcoumaran linkage during lignin oxidation reactions.

    Science.gov (United States)

    Lahive, Ciaran W; Lancefield, Christopher S; Codina, Anna; Kamer, Paul C J; Westwood, Nicholas J

    2018-03-14

    The fate of most lignin linkages, other than the β-O-4, under selective oxidation conditions is largely unknown. In this work we use advanced β-5 lignin model compounds to identify the fate of phenylcoumaran units in a softwood lignin during oxidation with DDQ. By using model compounds combined with detailed characterisation of the oxidised lignin polymer using HSQC and HMBC NMR we show that phenylcoumarones are a major product, and therefore constitute a novel non-native β-5 linkage in oxidised lignins. Additionally, the reactivity of these units in lignin led us to further investigate their connectivity in lignin, showing that they are found as both phenolic and etherified units. The findings and approach developed here will help improve the efficiency of selective oxidative lignin depolymerisation processes, particularly those aimed at the upgrading of softwood lignin in which phenylcoumarans are a major linkage.

  20. Assessment of the environmental fate of cycloxaprid in flooded and anaerobic soils by radioisotopic tracing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuanqi; Xu, Xiaoyong; Li, Chao [Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai 200237 (China); Zhang, Hanxue; Fu, Qiuguo [Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Shao, Xusheng [Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai 200237 (China); Ye, Qingfu, E-mail: qfye@zju.edu.cn [Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Li, Zhong, E-mail: lizhong@ecust.edu.cn [Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai 200237 (China)

    2016-02-01

    Cycloxaprid (CYC) is a novel broad-spectrum neonicotinoid insecticide that has been developed for agricultural pest control. The fate of the {sup 14}C-labeled racemic and enantio-pure CYC isomers in flooded and anaerobic soil was investigated using radioisotope tracing techniques. After 100 d of incubation, only a minor portion (< 1%) of the applied CYC isomers is mineralized by each of the four tested soil types. The fraction of initially applied radioactive CYC dissipated into the bound or non-extractable residues (BR) increases with increase in the length of the incubation period, reaching up to 53.0–81.6%. The dissipation of the CYC through mineralization or formation of BR is strongly influenced by soil properties, such as humic content, pH value, and retained microbial activity. Amongst the soils studied, the fluvio-marine yellow loamy soil displayed the highest tendency to mineralize CYC while the coastal saline soil exhibited the strongest tendency to form BR. The observation that the water phase retained the large portion(> 60%) of the radioactivity attributed to the total extractable residue suggested that under the experimental condition, the initially applied {sup 14}C-labeled CYC residues were readily available for leaching or offsite transport. Additionally, no enantiomer-specific behaviors are observed. The results from this study provide a framework for assessing the environmental impact resulting from the use of this pesticide. - Highlights: • Only a minor portion (<1%) of the applied CYC was mineralized. • The bound residue increased over time, reaching up to 53.0-81.6%. • CYC residues were readily available for leaching. • No enantiomer-specific behaviors were observed.

  1. Investigating undergraduate students' ideas about the fate of the Universe

    Science.gov (United States)

    Conlon, Mallory; Coble, Kim; Bailey, Janelle M.; Cominsky, Lynn R.

    2017-12-01

    As astronomers further develop an understanding of the fate of the Universe, it is essential to study students' ideas on the fate of the Universe so that instructors can communicate the field's current status more effectively. In this study, we examine undergraduate students' preinstruction ideas of the fate of the Universe in ten semester-long introductory astronomy course sections (ASTRO 101) at three institutions. We also examine students' postinstruction ideas about the fate of the Universe in ASTRO 101 over five semester-long course sections at one institution. The data include precourse surveys given during the first week of instruction (N =264 ), postinstruction exam questions (N =59 ), and interviews. We find that, preinstruction, more than a quarter of ASTRO 101 students either do not respond or respond with "I don't know" when asked what the long-term fate of the Universe is. We also find that, though the term was not necessarily used, students tend to describe a "big chill" scenario in the preinstruction surveys, among a wide variety of other scenarios. A fraction of students describe the fate of smaller-scale systems, possibly due to confusion of the hierarchical nature of structure in the Universe. Preinstruction, students mention the Universe's expansion when describing how astronomers know the fate of the Universe but do not discuss how we know the Universe is expanding or the relationship between expansion and the fate of the Universe. Postinstruction, students' responses shift toward greater degrees of completeness and correctness.

  2. Model evaluation methodology applicable to environmental assessment models

    International Nuclear Information System (INIS)

    Shaeffer, D.L.

    1979-08-01

    A model evaluation methodology is presented to provide a systematic framework within which the adequacy of environmental assessment models might be examined. The necessity for such a tool is motivated by the widespread use of models for predicting the environmental consequences of various human activities and by the reliance on these model predictions for deciding whether a particular activity requires the deployment of costly control measures. Consequently, the uncertainty associated with prediction must be established for the use of such models. The methodology presented here consists of six major tasks: model examination, algorithm examination, data evaluation, sensitivity analyses, validation studies, and code comparison. This methodology is presented in the form of a flowchart to show the logical interrelatedness of the various tasks. Emphasis has been placed on identifying those parameters which are most important in determining the predictive outputs of a model. Importance has been attached to the process of collecting quality data. A method has been developed for analyzing multiplicative chain models when the input parameters are statistically independent and lognormally distributed. Latin hypercube sampling has been offered as a promising candidate for doing sensitivity analyses. Several different ways of viewing the validity of a model have been presented. Criteria are presented for selecting models for environmental assessment purposes

  3. Nitrogen Fate in a Phreatic Fluviokarst Watershed: a Stable Isotope, Sediment Tracing, and Numerical Modeling Approach

    Science.gov (United States)

    Husic, A.; Fox, J.; Ford, W. I., III; Agouridis, C.; Currens, J. C.; Taylor, C. J.

    2017-12-01

    Sediment tracing tools provide an insight into provenance, fate, and transport of sediment and, when coupled to stable isotopes, can elucidate in-stream biogeochemical processes. Particulate nitrogen fate in fluviokarst systems is a relatively unexplored area of research partially due to the complex hydrodynamics at play in karst systems. Karst topography includes turbulent conduits that transport groundwater and contaminants at speeds more typical of open channel flows than laminar Darcian flows. While it is accepted that karst hydro-geomorphology represents a hybrid surface-subsurface system for fluid, further investigation is needed to determine whether, and to what extent, karst systems behave like surface agricultural streams or porous media aquifers with respect to their role in nitrogen cycling. Our objective is to gain an understanding of in-conduit nitrogen processes and their effect on net nitrogen-exports from karst springs to larger waterbodies. The authors apply water, sediment, carbon, and nitrogen tracing techniques to analyze water for nitrate, sediment carbon and nitrogen, and stable sediment nitrogen isotope (δ15N). Thereafter, a new numerical model is formulated that: simulates dissolved inorganic nitrogen and sediment nitrogen transformations in the phreatic karst conduit; couples carbon turnover and nitrogen transformations in the model structure; and simulates the nitrogen stable isotope mass balance for the dissolved and sediment phases. Nitrogen tracing data results show a significant increase in δ15N of sediment nitrogen at the spring outlet relative to karst inputs indicating the potential for isotope fractionation during dissolved N uptake by bed sediments in the conduit and during denitrification within bed sediments. The new numerical modeling structure is then used to reproduce the data results and provide an estimate of the relative dominance of N uptake and denitrification within the surficial sediments of the karst conduit system

  4. Environmental Chemistry Methods (ECM) Index - 0-9

    Science.gov (United States)

    Laboratories use testing methods to identify pesticides in water and soil. Environmental chemistry methods test soil and water samples to determine the fate of pesticides in the environment. Find methods for chemicals with a number as the first character.

  5. Transcriptional regulation of lineage commitment--a stochastic model of cell fate decisions.

    Directory of Open Access Journals (Sweden)

    Jose Teles

    Full Text Available Molecular mechanisms employed by individual multipotent cells at the point of lineage commitment remain largely uncharacterized. Current paradigms span from instructive to noise-driven mechanisms. Of considerable interest is also whether commitment involves a limited set of genes or the entire transcriptional program, and to what extent gene expression configures multiple trajectories into commitment. Importantly, the transient nature of the commitment transition confounds the experimental capture of committing cells. We develop a computational framework that simulates stochastic commitment events, and affords mechanistic exploration of the fate transition. We use a combined modeling approach guided by gene expression classifier methods that infers a time-series of stochastic commitment events from experimental growth characteristics and gene expression profiling of individual hematopoietic cells captured immediately before and after commitment. We define putative regulators of commitment and probabilistic rules of transition through machine learning methods, and employ clustering and correlation analyses to interrogate gene regulatory interactions in multipotent cells. Against this background, we develop a Monte Carlo time-series stochastic model of transcription where the parameters governing promoter status, mRNA production and mRNA decay in multipotent cells are fitted to experimental static gene expression distributions. Monte Carlo time is converted to physical time using cell culture kinetic data. Probability of commitment in time is a function of gene expression as defined by a logistic regression model obtained from experimental single-cell expression data. Our approach should be applicable to similar differentiating systems where single cell data is available. Within our system, we identify robust model solutions for the multipotent population within physiologically reasonable values and explore model predictions with regard to

  6. Multi-pathway exposure modelling of chemicals in cosmetics with application to shampoo

    DEFF Research Database (Denmark)

    Ernstoff, Alexi S.; Fantke, Peter; Csiszar, Susan A.

    2016-01-01

    We present a novel multi-pathway, mass balance based, fate and exposure model compatible with life cycle and high-throughput screening assessments of chemicals in cosmetic products. The exposures through product use as well as post-use emissions and environmental media were quantified based...

  7. An illusion of control modulates the reluctance to tempt fate

    Directory of Open Access Journals (Sweden)

    Chloe L. Swirsky

    2011-10-01

    Full Text Available The tempting fate effect is that the probability of a fateful outcome is deemed higher following an action that ``tempts'' the outcome than in the absence of such an action. In this paper we evaluate the hypothesis that the effect is due to an illusion of control induced by a causal framing of the situation. Causal frames require that the action make a difference to an outcome and that the action precedes the outcome. If an illusion of control modulates the reluctance to tempt fate, then actions that make a difference to well-being and that occur prior to the outcome should tempt fate most strongly. In Experiments 1--3 we varied whether the action makes a difference and the temporal order of action and outcome. In Experiment 4 we tested whether an action can tempt fate if all outcomes are negative. The results of all four experiments supported our hypothesis that the tempting fate effect depends on a causal construal that gives rise to a false sense of control.

  8. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    Science.gov (United States)

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  9. Concentrations and fate of decamethylcyclopentasiloxane (D(5)) in the atmosphere.

    Science.gov (United States)

    McLachlan, Michael S; Kierkegaard, Amelie; Hansen, Kaj M; van Egmond, Roger; Christensen, Jesper H; Skjøth, Carsten A

    2010-07-15

    Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden. The samples were collected with daily resolution between January and June 2009. The D(5) concentration ranged from 0.3 to 9 ng m(-3), which is 1-3 orders of magnitude lower than previous reports. The measured data were compared with D(5) concentrations predicted using an atmospheric circulation model that included both OH radical and D(5) chemistry. The model was parametrized using emissions estimates and physical chemical properties determined in laboratory experiments. There was good agreement between the measured and modeled D(5) concentrations. The results show that D(5) is clearly subject to long-range atmospheric transport, but that it is also effectively removed from the atmosphere via phototransformation. Atmospheric deposition has little influence on the atmospheric fate. The good agreement between the model predictions and the field observations indicates that there is a good understanding of the major factors governing D(5) concentrations in the atmosphere.

  10. Glioma cell fate decisions mediated by Dll1-Jag1-Fringe in Notch1 signaling pathway.

    Science.gov (United States)

    Shi, Xiaofei; Wang, Ruiqi

    2017-09-21

    The Notch family of proteins plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. It has been shown that Notch1 and its ligands, Dll1 and Jag1, are overexpressed in many glioma cell lines and primary human gliomas. The roles of Notch1 in some cancers have been firmly established, and recent data implicate that it plays important roles in glioma cell fate decisions. This paper focuses on devising a specific theoretical framework that incorporates Dll1, Jag1, and Fringe in Notch1 signaling pathway to explore their functional roles of these proteins in glioma cells in the tumorigenesis and progression of human gliomas, and to study how glioma cell fate decisions are modulated by both trans-activation and cis-inhibition. This paper presents a computational model for Notch1 signaling pathway in glioma cells. Based on the bifurcation analysis of the model, we show that how the glioma cell fate decisions are modulated by both trans-activation and cis-inhibition mediated by the Fringe protein, providing insight into the design and control principles of the Notch signaling system and the gliomas. This paper presents a computational model for Notch1 signaling pathway in glioma cells based on intertwined dynamics with cis-inhibition and trans-activation involving the proteins Notch1, Dll1, Jag1, and Fringe. The results show that how the glioma cell fate transitions are performed by the Notch1 signaling. Transition from grade III ∼ IV with significantly high Notch1 to grade I ∼ II with high Notch1, and then to normal cells by repressing the Fringe levels or decreasing the strength of enhancement induced by Fringe.

  11. Bud structure, position and fate generate various branching patterns along shoots of closely related Rosaceae species: a review

    Directory of Open Access Journals (Sweden)

    Evelyne eCostes

    2014-12-01

    Full Text Available Branching in temperate plants is closely linked to bud fates, either floral or vegetative. Here, we review how the fate of meristematic tissues contained in buds and their position along a shoot imprint specific branching patterns which differ among species. Through examples chosen in closely related species in different genera of the Rosaceae family, a panorama of patterns is apparent. Patterns depend on whether vegetative and floral buds are borne individually or together in mixed buds, develop as the shoot grows or after a rest period, and are located in axillary or terminal positions along the parent shoot. The resulting branching patterns are conserved among varieties in a given species but progressively change with the parent shoot length during plant ontogeny. They can also be modulated by agronomic and environmental conditions. The existence of various organizations in the topology and fate of meristematic tissues and their appendages in closely related species questions the between-species conservation of physiological and molecular mechanisms leading to bud outgrowth vs quiescence and to floral induction vs vegetative development.

  12. Bud structure, position and fate generate various branching patterns along shoots of closely related Rosaceae species: a review.

    Science.gov (United States)

    Costes, Evelyne; Crespel, Laurent; Denoyes, Béatrice; Morel, Philippe; Demene, Marie-Noëlle; Lauri, Pierre-Eric; Wenden, Bénédicte

    2014-01-01

    Branching in temperate plants is closely linked to bud fates, either floral or vegetative. Here, we review how the fate of meristematic tissues contained in buds and their position along a shoot imprint specific branching patterns which differ among species. Through examples chosen in closely related species in different genera of the Rosaceae family, a panorama of patterns is apparent. Patterns depend on whether vegetative and floral buds are borne individually or together in mixed buds, develop as the shoot grows or after a rest period, and are located in axillary or terminal positions along the parent shoot. The resulting branching patterns are conserved among varieties in a given species but progressively change with the parent shoot length during plant ontogeny. They can also be modulated by agronomic and environmental conditions. The existence of various organizations in the topology and fate of meristematic tissues and their appendages in closely related species questions the between-species conservation of physiological and molecular mechanisms leading to bud outgrowth vs. quiescence and to floral induction vs. vegetative development.

  13. Investigating undergraduate students’ ideas about the fate of the Universe

    Directory of Open Access Journals (Sweden)

    Mallory Conlon

    2017-11-01

    Full Text Available As astronomers further develop an understanding of the fate of the Universe, it is essential to study students’ ideas on the fate of the Universe so that instructors can communicate the field’s current status more effectively. In this study, we examine undergraduate students’ preinstruction ideas of the fate of the Universe in ten semester-long introductory astronomy course sections (ASTRO 101 at three institutions. We also examine students’ postinstruction ideas about the fate of the Universe in ASTRO 101 over five semester-long course sections at one institution. The data include precourse surveys given during the first week of instruction (N=264, postinstruction exam questions (N=59, and interviews. We find that, preinstruction, more than a quarter of ASTRO 101 students either do not respond or respond with “I don’t know” when asked what the long-term fate of the Universe is. We also find that, though the term was not necessarily used, students tend to describe a “big chill” scenario in the preinstruction surveys, among a wide variety of other scenarios. A fraction of students describe the fate of smaller-scale systems, possibly due to confusion of the hierarchical nature of structure in the Universe. Preinstruction, students mention the Universe’s expansion when describing how astronomers know the fate of the Universe but do not discuss how we know the Universe is expanding or the relationship between expansion and the fate of the Universe. Postinstruction, students’ responses shift toward greater degrees of completeness and correctness.

  14. Using x-ray microprobes for environmental research

    International Nuclear Information System (INIS)

    Cai, Z.; Jastrow, J.; Kemner, K. M.; Lai, B.; Lee, H.-R.; Legnini, D. G.; Miller, R. M.; Pratt, S. T.; Rodrigues, W.; Yun, W.

    1998-01-01

    Understanding the fate of environmental contaminants is of fundamental importance in the development and evaluation of effective remediation strategies. Among the factors influencing the transport of these contaminants are the chemical speciation of the sample and the chemical and physical attributes of the surrounding medium. Characterization of the spatial distribution and chemical speciation at micron and submicron resolution is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. Hard X-ray spectroscopy and imaging are powerful techniques for the element-specific investigation of complex environmental samples at the needed micron and submicron resolution. An important advantage of these techniques results from the large penetration depth of hard X-rays in water. This minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper discusses some current problems in environmental science that can be addressed by using synchrotron-based X-ray imaging and spectroscopy. These concepts are illustrated by the results of recent X-ray microscopy studies at the Advanced Photon Source

  15. Modelling the fate of oxidisable organic contaminants in groundwater

    DEFF Research Database (Denmark)

    Barry, D.A.; Prommer, H.; Miller, C.T.

    2002-01-01

    modelling framework is illustrated by pertinent examples, showing the degradation of dissolved organics by microbial activity limited by the availability of nutrients or electron acceptors (i.e., changing redox states), as well as concomitant secondary reactions. Two field-scale modelling examples......Subsurface contamination by organic chemicals is a pervasive environmental problem, susceptible to remediation by natural or enhanced attenuation approaches or more highly engineered methods such as pump-and-treat, amongst others. Such remediation approaches, along with risk assessment...... are discussed, the Vejen landfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by injection of a dissolved organic compound. A summary is provided of current and likely future challenges to modelling of oxidisable organics in the subsurface. (C) 2002 Elsevier Science...

  16. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology; Kautsky, Ulrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment.

  17. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    International Nuclear Information System (INIS)

    Kumblad, Linda

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment

  18. Environmental behavior of technetium-99 and iodine-129

    International Nuclear Information System (INIS)

    Garland, T.R.; Schreckhise, R.G.

    1982-01-01

    The environmental behavior of technetium-99 and iodine-129 was once thought to be similar, particularly with respect to their soil solubility and biological interactions. Over the past several years, the comparative behavior of these two anions has been studied with respect to their fate in natural environments (both aquatic and terrestrial). The mechanisms studied include physical, chemical and biological parameters that account for differences in soil behavior, cycling between soil and/or air to vegetation, adsorption and metabolism in plants, and their availability and fate following ingestion by animals

  19. An Comparative Study of Jane Eyre's Fate and Tess's Fate from Femi?nist Viewpoint

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing; HE Ling-jing

    2017-01-01

    In"Jane Eyre", Charlotte Bronte's masterpiece the heroine, Jane Eyre has fully reflected her self-esteem, equality, and pure personality, which are also reflected in her concept of love vividly. However, Thomas Hardy's Tess is poor and kind, but she does not have a complete love like Jane Eyre, and she is described by his criticism of the old moral character with good vir-tues in the traditional sense. She is a new image of modern feminism who suffered from the old moral sense and gradually has re-volt consciousness. From the feminism viewpoint, this paper attempts to analysis the causes of their different fate from different points and reveal the impact of social background on their fates.

  20. Capturing microbial sources distributed in a mixed-use watershed within an integrated environmental modeling workflow

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few provide loading rates on land surfaces and point sources to the waterbody network. This paper describes the underlying equations for microbial loading rates associated with 1) land-applied ...

  1. A global framework to model spatial ecosystems exposure to home and personal care chemicals in Asia.

    Science.gov (United States)

    Wannaz, Cedric; Franco, Antonio; Kilgallon, John; Hodges, Juliet; Jolliet, Olivier

    2018-05-01

    This paper analyzes spatially ecosystem exposure to home and personal care (HPC) chemicals, accounting for market data and environmental processes in hydrological water networks, including multi-media fate and transport. We present a global modeling framework built on ScenAT (spatial scenarios of emission), SimpleTreat (sludge treatment plants), and Pangea (spatial multi-scale multimedia fate and transport of chemicals), that we apply across Asia to four chemicals selected to cover a variety of applications, volumes of production and emission, and physico-chemical and environmental fate properties: the anionic surfactant linear alkylbenzene sulphonate (LAS), the antimicrobial triclosan (TCS), the personal care preservative methyl paraben (MeP), and the emollient decamethylcyclopentasiloxane (D5). We present maps of predicted environmental concentrations (PECs) and compare them with monitored values. LAS emission levels and PECs are two to three orders of magnitude greater than for other substances, yet the literature about monitored levels of LAS in Asia is very limited. We observe a good agreement for TCS in freshwater (Pearson r=0.82, for 253 monitored values covering 12 streams), a moderate agreement in general, and a significant model underestimation for MeP in sediments. While most differences could be explained by uncertainty in both chemical/hydrological parameters (DT50 water , DT50 sediments , K oc , f oc , TSS) and monitoring sites (e.g. spatial/temporal design), the underestimation of MeP concentrations in sediments may involve potential natural sources. We illustrate the relevance of local evaluations for short-lived substances in fresh water (LAS, MeP), and their inadequacy for substances with longer half-lives (TCS, D5). This framework constitutes a milestone towards higher tier exposure modeling approaches for identifying areas of higher chemical concentration, and linking large-scale fate modeling with (sub) catchment-scale ecological scenarios; a

  2. A coupled reaction and transport model for assessing the injection, migration and fate of waste fluids

    International Nuclear Information System (INIS)

    Liu, X.; Ortoleva, P.

    1996-01-01

    The use of reaction-transport modeling for reservoir assessment and management in the context of deep well waste injection is evaluated. The study is based on CIRF.A (Chemical Interaction of Rock and Fluid), a fully coupled multiphase flow, contaminant transport, and fluid and mineral reaction model. Although SWIFT (Sandia Waste-Isolation Flow and Transport Model) is often the numerical model of choice, it can not account for chemical reactions involving rock, wastes, and formation fluids and their effects on contaminant transport, rock permeability and porosity, and the integrity of the reservoir and confining units. CIRF.A can simulate all these processes. Two field cases of waste injection were simulated by CIRF.A. Both observation data and simulation results show mineral precipitation in one case and rock dissolution in another case. Precipitation and dissolution change rock porosity and permeability, and hence the pattern of fluid migration. The model is shown to be invaluable in analyzing near borehole and reservoir-scale effects during waste injection and predicting the 10,000 year fate of the waste plume. The benefits of using underpressured compartments as waste repositories were also demonstrated by CIRF.A simulations

  3. Aquatic Exposure Predictions of Insecticide Field Concentrations Using a Multimedia Mass-Balance Model.

    Science.gov (United States)

    Knäbel, Anja; Scheringer, Martin; Stehle, Sebastian; Schulz, Ralf

    2016-04-05

    Highly complex process-driven mechanistic fate and transport models and multimedia mass balance models can be used for the exposure prediction of pesticides in different environmental compartments. Generally, both types of models differ in spatial and temporal resolution. Process-driven mechanistic fate models are very complex, and calculations are time-intensive. This type of model is currently used within the European regulatory pesticide registration (FOCUS). Multimedia mass-balance models require fewer input parameters to calculate concentration ranges and the partitioning between different environmental media. In this study, we used the fugacity-based small-region model (SRM) to calculate predicted environmental concentrations (PEC) for 466 cases of insecticide field concentrations measured in European surface waters. We were able to show that the PECs of the multimedia model are more protective in comparison to FOCUS. In addition, our results show that the multimedia model results have a higher predictive power to simulate varying field concentrations at a higher level of field relevance. The adaptation of the model scenario to actual field conditions suggests that the performance of the SRM increases when worst-case conditions are replaced by real field data. Therefore, this study shows that a less complex modeling approach than that used in the regulatory risk assessment exhibits a higher level of protectiveness and predictiveness and that there is a need to develop and evaluate new ecologically relevant scenarios in the context of pesticide exposure modeling.

  4. Using zone plates for X-ray microimaging and microspectroscopy in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K.M.; Yun, W.; Cai, Z. (and others)

    1999-01-01

    Understanding the transport and ultimate fate of environmental contaminants is of fundamental importance for developing effective remediation strategies and determining the risk associated with the contaminants. Focusing X-rays by using recently developed zone plates allows determination of the spatial distribution and chemical speciation of contaminants at the micron and submicron length scales. This ability is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. The following is an overview of some current problems in environmental science that are being addressed with synchrotron-based X-ray microimaging and microspectroscopy. (au) 7 refs.

  5. Using zone plates for X-ray microimaging and microspectroscopy in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K.M.; Yun, W.; Cai, Z. [and others

    1999-11-01

    Understanding the transport and ultimate fate of environmental contaminants is of fundamental importance for developing effective remediation strategies and determining the risk associated with the contaminants. Focusing X-rays by using recently developed zone plates allows determination of the spatial distribution and chemical speciation of contaminants at the micron and submicron length scales. This ability is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. The following is an overview of some current problems in environmental science that are being addressed with synchrotron-based X-ray microimaging and microspectroscopy. (au) 7 refs.

  6. Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models.

    Science.gov (United States)

    Oke, Tobi A; Hager, Heather A

    2017-01-01

    The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity.

  7. In situ fate and partitioning of waterborne perfluoroalkyl acids (PFAAs) in the Youngsan and Nakdong River Estuaries of South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seongjin [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Khim, Jong Seong, E-mail: jskocean@snu.ac.kr [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Park, Jinsoon [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Kim, Minhee; Kim, Woong-Ki; Jung, Jinho; Hyun, Seunghun; Kim, Jeong-Gyu [Division of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of); Lee, Hyojin; Choi, Heeseon J. [Department of Environmental Chemistry and Ecology, GeoSystem Research Corporation, Gunpo (Korea, Republic of); Codling, Garry [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Giesy, John P. [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Department of Zoology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR (China)

    2013-02-15

    Concentrations, distributions, fate, and partitioning of perfluoroalkyl acids (PFAAs) were investigated in surface water (n = 34) collected from the Youngsan and Nakdong River Estuaries of South Korea. Thirteen individual PFAAs in water and suspended solids (SS) were quantified by use of HPLC–MS/MS. PFAAs were detected in all samples, which indicated that they were widely distributed in the study area. Greater concentrations of PFAAs were found at some inland sites which seemed to be affected by direct input from point sources, such as wastewater treatment plants, and/or indirect diffusive sources, such as surface runoff. Spatial distributions of PFAAs in estuaries along transects toward the open sea demonstrated that these chemicals were transported to the outer region primarily by water discharged during the rainy season. Field-based partition coefficients (K{sub d}) for long-chain PFAAs (C ≥ 8) were significantly correlated with salinity (r{sup 2} = 0.48 to 0.73, p < 0.01); K{sub d} values increased exponentially as a function of salinity. Due to the ‘salting-out’ effect, PFAAs were largely scavenged by adsorption onto SS and/or sediments in estuarine environments. In addition, values for K{sub d} of those PFAAs were directly proportional to the number of carbon atoms in the PFAAs. Salting constants of selected PFAAs were notably greater than those of other environmental organic contaminants, which indicated that adsorption of PFAAs is largely associated with salinity. Overall, the results of the present study will provide better understanding of the fate and transport of PFAAs in the zone of salinity boundary that can be used for developing fate models of PFAAs in the coastal marine environment. - Highlights: ► In situ fate and partitioning of PFAAs were described along salinity gradients in estuaries. ► Salinity was found to be the key factor controlling adsorption of waterborne PFAAs. ► The K{sub d} for longer-chain PFAAs (C ≥ 8) increased as

  8. Effects of fertilizers, fungicides and herbicides on the fate of 14C-parathion and 14C-fonofos in soils and crops

    International Nuclear Information System (INIS)

    Lichtenstein, E.P.; Ferris, I.; Liang, T.T.; Koeppe, M.

    1983-01-01

    The fate of 14 C-parathion and 14 C-fonofos in soil is significantly affected by the presence of organic and inorganic fertilizers, fungicides and herbicides, possibly via the effect of soil microflora. Soil microorganisms are responsible for the oxidative as well as the reductive degradation of the insecticide. Using 14 carbon, the authors studied the effects of selected fungicides (benlate, captafol and manzate) herbicides (2,4-D parathion) and fertilizers ((NH 4 ) 6 SO 4 , KNO 3 , urea) on pesticides in Cromberry soils. Results of the study stress the importance of investigating the environmental fate of a particular pesticide in relation to the presence of the agricultural chemicals

  9. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  10. Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

    1989-09-01

    The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

  11. Modeling of geo-material durability and contaminant fate in recycling or disposal of industrial and radioactive waste

    International Nuclear Information System (INIS)

    De Windt, L.

    2011-01-01

    This report deals with the HYTEC model, coupling chemical and hydrodynamic processes, and its application to the recycling of inorganic wastes and the disposal of hazardous and radioactive wastes. A common feature is the assessment of geo-material durability while submitted to chemical disturbances by their industrial or natural environment and, reciprocally, the quantification of contaminant fate in soils and aquifers. Research papers in a first section numerically oriented, HYTEC is validated by means of an intercomparison exercise based on oxidative UO 2 dissolution and the subsequent migration of U species in subsurface environments. A numerical approach of leaching tests is also discussed. Several researches based on HYTEC follows. The evolution of the cement/clay interface is simulated in the framework of the multi-barrier system of radioactive waste disposal and the Tournemire engineering analog; discriminating between the physical and chemical key processes. The physico-chemical processes of cement biodegradation by fungi are investigated with a focus on acidic hydrolysis and complexation by biogenic carboxylic acids. Modeling of source-terms and ageing with respect to contaminant migration is discussed in the case of the chemical alteration of spent fuel pellets under disposal conditions by considering radiolytic dissolution, inhibiting effect and radioactive decay, and by analyzing the effect of fractures on the containment properties of subsurface disposal facilities of stabilized/solidified waste. Leaching lab experiments applied to steel slag and the chemical evolution of leachate from MSWI sub-bases of two pilot roads over 10 years are eventually modelled to better estimate the environmental impact of such recycling scenarios. On-going research In the straight lines of the modeling of radioactive waste disposal, a first perspective is to investigate the transient states driven by thermal gradient and water re-saturation of the near-field barriers and

  12. Proposing an Environmental Excellence Self-Assessment Model

    DEFF Research Database (Denmark)

    Meulengracht Jensen, Peter; Johansen, John; Wæhrens, Brian Vejrum

    2013-01-01

    that the EEA model can be used in global organizations to differentiate environmental efforts depending on the maturity stage of the individual sites. Furthermore, the model can be used to support the decision-making process regarding when organizations should embark on more complex environmental efforts......This paper presents an Environmental Excellence Self-Assessment (EEA) model based on the structure of the European Foundation of Quality Management Business Excellence Framework. Four theoretical scenarios for deploying the model are presented as well as managerial implications, suggesting...

  13. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  14. Fate of Pyrethroids in Farmland Ponds

    DEFF Research Database (Denmark)

    Mogensen, B. B.; Sørensen, P. B.; Stuer-Lauridsen, F.

    Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively. The measur......Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively...

  15. Fate of alkali and trace metals in biomass gasification

    International Nuclear Information System (INIS)

    Salo, K.; Mojtahedi, W.

    1998-01-01

    The fate of alkali metals (Na, K) and eleven toxic trace elements (Hg, Cd, Be, Se, Sb, As, Pb, Zn, Cr, Co, Ni) in biomass gasification have been extensively investigated in Finland in the past ten years. The former due to the gas turbine requirements and the latter to comply with environmental regulations. In this paper the results of several experimental studies to measure Na and K in the vapor phase after the gas cooler of a simplified (air-blown) Integrated Gasification Combined-Cycle (IGCC) system are reported. Also, trace element emissions from an IGCC plant using alfalfa as the feedstock are discussed and the concentration of a few toxic trace metals in the vapor phase in the gasifier product gas are reported. (author)

  16. Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate.

    Science.gov (United States)

    Ahrens, Lutz

    2011-01-01

    The occurrence and fate of polyfluoroalkyl compounds (PFCs) in the aquatic environment has been recognized as one of the emerging issues in environmental chemistry. PFCs comprise a diverse group of chemicals that are widely used as processing additives during fluoropolymer production and as surfactants in consumer applications for over 50 years. PFCs are known to be persistent, bioaccumulative and have possible adverse effects on humans and wildlife. As a result, perfluorooctane sulfonate (PFOS) has been added to the persistent organic pollutants (POPs) list of the Stockholm Convention in May 2009. However, their homologues, neutral precursor compounds and new PFCs classes continue to be produced. In general, several PFCs from different classes have been detected ubiquitously in the aqueous environment while the concentrations usually range between pg and ng per litre for individual compounds. Sources of PFCs into the aqueous environment are both point sources (e.g., wastewater treatment plant effluents) and nonpoint sources (e.g., surface runoff). The detected congener composition in environmental samples depends on their physicochemical characteristics and may provide information to their sources and transport pathways. However, the dominant transport pathways of individual PFCs to remote regions have not been conclusively characterised to date. The objective of this article is to give an overview on existing knowledge of the occurrence, fate and processes of PFCs in the aquatic environment. Finally, this article identifies knowledge gaps, presents conclusions and recommendations for future work.

  17. A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons

    Directory of Open Access Journals (Sweden)

    Vogt Weisenhorn Daniela M

    2010-12-01

    Full Text Available Abstract Background Lack of appropriate tools and techniques to study fate and functional integration of newly generated neurons has so far hindered understanding of neurogenesis' relevance under physiological and pathological conditions. Current analyses are either dependent on mitotic labeling, for example BrdU-incorporation or retroviral infection, or on the detection of transient immature neuronal markers. Here, we report a transgenic mouse model (DCX-CreERT2 for time-resolved fate analysis of newly generated neurons. This model is based on the expression of a tamoxifen-inducible Cre recombinase under the control of a doublecortin (DCX promoter, which is specific for immature neuronal cells in the CNS. Results In the DCX-CreERT2 transgenic mice, expression of CreERT2 was restricted to DCX+ cells. In the CNS of transgenic embryos and adult DCX-CreERT2 mice, tamoxifen administration caused the transient translocation of CreERT2 to the nucleus, allowing for the recombination of loxP-flanked sequences. In our system, tamoxifen administration at E14.5 resulted in reporter gene activation throughout the developing CNS of transgenic embryos. In the adult CNS, neurogenic regions were the primary sites of tamoxifen-induced reporter gene activation. In addition, reporter expression could also be detected outside of neurogenic regions in cells physiologically expressing DCX (e.g. piriform cortex, corpus callosum, hypothalamus. Four weeks after recombination, the vast majority of reporter-expressing cells were found to co-express NeuN, revealing the neuronal fate of DCX+ cells upon maturation. Conclusions This first validation demonstrates that our new DCX-CreERT2 transgenic mouse model constitutes a powerful tool to investigate neurogenesis, migration and their long-term fate of neuronal precursors. Moreover, it allows for a targeted activation or deletion of specific genes in neuronal precursors and will thereby contribute to unravel the molecular

  18. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  19. Application of TREECS Modeling System to Strontium-90 for Borschi Watershed near Chernobyl, Ukraine

    International Nuclear Information System (INIS)

    Johnson, Billy E.; Dortch, Mark S.

    2014-01-01

    The Training Range Environmental Evaluation and Characterization System (TREECS™) ( (http://el.erdc.usace.army.mil/treecs/)) is being developed by the U.S. Army Engineer Research and Development Center (ERDC) for the U.S. Army to forecast the fate of munitions constituents (MC) (such as high explosives (HE) and metals) found on firing/training ranges, as well as those subsequently transported to surface water and groundwater. The overall purpose of TREECS™ is to provide environmental specialists with tools to assess the potential for MC migration into surface water and groundwater systems and to assess range management strategies to ensure protection of human health and the environment. The multimedia fate/transport models within TREECS™ are mathematical models of reduced form (e.g., reduced dimensionality) that allow rapid application with less input data requirements compared with more complicated models. Although TREECS™ was developed for the fate of MC from military ranges, it has general applicability to many other situations requiring prediction of contaminant (including radionuclide) fate in multi-media environmental systems. TREECS™ was applied to the Borschi watershed near the Chernobyl Nuclear Power Plant, Ukraine. At this site, TREECS™ demonstrated its use as a modeling tool to predict the fate of strontium 90 ( 90 Sr). The most sensitive and uncertain input for this application was the soil-water partitioning distribution coefficient (K d ) for 90 Sr. The TREECS™ soil model provided reasonable estimates of the surface water export flux of 90 Sr from the Borschi watershed when using a K d for 90 Sr of 200 L/kg. The computed export for the year 2000 was 0.18% of the watershed inventory of 90 Sr compared to the estimated export flux of 0.14% based on field data collected during 1999–2001. The model indicated that assumptions regarding the form of the inventory, whether dissolved or in solid phase form, did not appreciably affect export

  20. The Multimedia Environmental Pollutant Assessment System (MEPAS)reg-sign: Atmospheric pathway formulations. Revision

    International Nuclear Information System (INIS)

    Droppo, J.G.; Buck, J.W.

    1996-03-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) is an integrated software implementation of physics-based fate and transport models for health and environmental risk assessments of both radioactive and hazardous pollutants. This atmospheric component report is one of a series of formulation reports that document the MEPAS mathematical models. MEPAS is a multimedia model; pollutant transport is modeled within, through, and between multiple media (air, soil, groundwater, and surface water). The estimated concentrations in the various media are used to compute exposures and impacts to the environment, to maximum individuals, and to populations. The MEPAS atmospheric component for the air media documented in this report includes models for emission from a source to the air, initial plume rise and dispersion, airborne pollutant transport and dispersion, and deposition to soils and crops. The material in this report is documentation for MEPAS Versions 3.0 and 3.1 and the MEPAS version used in the Remedial Action Assessment System (RAAS) Version 1.0

  1. Towards policy relevant environmental modeling: contextual validity and pragmatic models

    Science.gov (United States)

    Miles, Scott B.

    2000-01-01

    "What makes for a good model?" In various forms, this question is a question that, undoubtedly, many people, businesses, and institutions ponder with regards to their particular domain of modeling. One particular domain that is wrestling with this question is the multidisciplinary field of environmental modeling. Examples of environmental models range from models of contaminated ground water flow to the economic impact of natural disasters, such as earthquakes. One of the distinguishing claims of the field is the relevancy of environmental modeling to policy and environment-related decision-making in general. A pervasive view by both scientists and decision-makers is that a "good" model is one that is an accurate predictor. Thus, determining whether a model is "accurate" or "correct" is done by comparing model output to empirical observations. The expected outcome of this process, usually referred to as "validation" or "ground truthing," is a stamp on the model in question of "valid" or "not valid" that serves to indicate whether or not the model will be reliable before it is put into service in a decision-making context. In this paper, I begin by elaborating on the prevailing view of model validation and why this view must change. Drawing from concepts coming out of the studies of science and technology, I go on to propose a contextual view of validity that can overcome the problems associated with "ground truthing" models as an indicator of model goodness. The problem of how we talk about and determine model validity has much to do about how we perceive the utility of environmental models. In the remainder of the paper, I argue that we should adopt ideas of pragmatism in judging what makes for a good model and, in turn, developing good models. From such a perspective of model goodness, good environmental models should facilitate communication, convey—not bury or "eliminate"—uncertainties, and, thus, afford the active building of consensus decisions, instead

  2. Stochastic Cell Fate Progression in Embryonic Stem Cells

    Science.gov (United States)

    Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad

    2013-03-01

    Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund

  3. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field.

    Science.gov (United States)

    Wilkinson, John; Hooda, Peter S; Barker, James; Barton, Stephen; Swinden, Julian

    2017-12-01

    Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved. This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components. An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta

  4. Modeling the transport and fate of radioactive noble gases in very dry desert alluvium: Realistic scenarios

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1992-01-01

    US DOE Order 5820.2A (1988) requires that a performance assessment of all new and existing low-level radioactive waste management sites be made. An integral part of every performance assessment is the mathematical modeling of the transport and fate of noble gas radionuclides in the gas phase. Current in depth site characterization of the high desert alluvium in Area 5 of the Nevada Test Site (NTS) is showing that the alluvium is very very dry all the way to the water table (240 meters below land surface). The potential for radioactive noble gas (e.g. Rn-220 and Rn-222) transport to the atmosphere from shallow land burial of Thorium and Uranium waste is very high. Objectives of this modeling effort include: Construct a physics based sits specific noble gas transport model; Include induced advection due to barometric pressure changes at the atmospheric boundary layer (thin) - dry desert alluvium interface; User selected option for use of NOAA barometric pressure or a ''home brewed'' barometric pressure wave made up of up to 15 sinusoids and cosinusoids; Use the model to help make engineering decisions on the design of the burial pits and associated closure caps

  5. Predictions of models for environmental radiological assessment

    International Nuclear Information System (INIS)

    Peres, Sueli da Silva; Lauria, Dejanira da Costa; Mahler, Claudio Fernando

    2011-01-01

    In the field of environmental impact assessment, models are used for estimating source term, environmental dispersion and transfer of radionuclides, exposure pathway, radiation dose and the risk for human beings Although it is recognized that the specific information of local data are important to improve the quality of the dose assessment results, in fact obtaining it can be very difficult and expensive. Sources of uncertainties are numerous, among which we can cite: the subjectivity of modelers, exposure scenarios and pathways, used codes and general parameters. The various models available utilize different mathematical approaches with different complexities that can result in different predictions. Thus, for the same inputs different models can produce very different outputs. This paper presents briefly the main advances in the field of environmental radiological assessment that aim to improve the reliability of the models used in the assessment of environmental radiological impact. The intercomparison exercise of model supplied incompatible results for 137 Cs and 60 Co, enhancing the need for developing reference methodologies for environmental radiological assessment that allow to confront dose estimations in a common comparison base. The results of the intercomparison exercise are present briefly. (author)

  6. Environmental fate and transport of nitroglycerin from propellant residues at firing positions in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Bellavance-Godin, A. [Institut National de la Recherche Scientifique, Quebec, PQ (Canada). Eau, Terre et Environnement; Martel, R. [Institut National de la Recherche Scientifique, Varennes, PQ (Canada). Eau, Terre et Environnement, Earth Sciences

    2008-07-01

    In response to environmental concerns, the Canadian Forces Base (CFB) have initiated studies to better evaluate the impact of various military activities. This paper presented the results of a study in which the fate of propellant residues on large soil columns was investigated. The sites selected for the study were the antitank ranges at Garrison Valcartier, Quebec and those at the CFB Petawawa, Ontario. The shoulder rockets fired on those ranges were propelled by solid propellants based on a nitrocellulose matrix in which nitroglycerine and ammonium perchlorate were dispersed as oxidizer and energetic materials. Propellant residues accumulated in the surface soils because the combustion processes in the rockets was incomplete. This study evaluated the contaminants transport through the unsaturated zone. Sampling was conducted in 2 steps. The first involved collecting uncontaminated soil samples representative of the geological formations of the 2 sites. The second step involved collecting soils containing high levels of propellant residues behind antitank firing positions, which was later spread across the surface of the uncontaminated soil columns and which were representative of the contaminated zone. The soils were watered in the laboratory following the precipitation patterns of the respective regions and interstitial water output of the columns was also sampled. The compounds of interest were nitroglycerine and its degradation metabolites, dinitroglycerine, mononitroglycerine and nitrates as well as perchlorate and bromides. Results presented high concentrations of nitrites, nitrates and perchlorates. Both the NG and its degradation products were monitored using a newly developed analytical method that provides for a better understanding of NG degradation pathways in anaerobic conditions. 12 refs., 3 tabs., 12 figs.

  7. Investigating Undergraduate Students' Ideas about the Fate of the Universe

    Science.gov (United States)

    Conlon, Mallory; Coble, Kim; Bailey, Janelle M.; Cominsky, Lynn R.

    2017-01-01

    As astronomers further develop an understanding of the fate of the Universe, it is essential to study students' ideas on the fate of the Universe so that instructors can communicate the field's current status more effectively. In this study, we examine undergraduate students' preinstruction ideas of the fate of the Universe in ten semester-long…

  8. Redox Regulation of Endothelial Cell Fate

    Science.gov (United States)

    Song, Ping; Zou, Ming-Hui

    2014-01-01

    Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions. PMID:24633153

  9. Environmental assessment of contaminated site remediation in a life cycle perspective

    DEFF Research Database (Denmark)

    Lemming, Gitte

    is an environmental assessment tool that compiles a very wide array of environmental exchanges (emissions to air, water, and soil, and resource consumption) associated with the life cycle of a product or service .and translates them to impacts (global warming, acidification, human toxicity, ecotoxicity, etc...... fate and transport models. This made it possible to account for important processes, such as the formation of chlorinated degradation products and to include the site-specific exposure of humans via ingestion of groundwater used for drinking water. The inclusion of primary impacts in the environmental......-cleaning and industries. Chloroethenes are dense non-aqueous phase liquids (DNAPLs) with high density and viscosity and low solubility in water. These characteristics allow a spill to migrate deep into the subsurface, where it can act as long-term source of dissolved-phase groundwater contamination. Due to the longevity...

  10. Application of nuclear techniques on environmental pollution problems

    International Nuclear Information System (INIS)

    Sumatra, Made

    1998-01-01

    Radioanalysis and tracer techniques that can be used on environmental pollution problems. Neutron activation analysis (NAA) and X-ray fluorescence (XRF) spectrometry are the two methods that are used frequently on such problems. These methods are used for metal analysis. Tracer technique with radioactive labeled compounds are used to study the fate of the pollution substances in environmental systems. It is very important to validate every new developed analysis method, due to the environmental pollution problem closely related to the low enforcement. (author)

  11. Fate, behaviour and weathering of priority HNS in the marine environment: An online tool.

    Science.gov (United States)

    Cunha, Isabel; Oliveira, Helena; Neuparth, Teresa; Torres, Tiago; Santos, Miguel Machado

    2016-10-15

    Literature data and data obtained with modelling tools were compiled to derive the physicochemical behaviour of 24 priority Hazardous and Noxious Substances (HNS), as a proxy to improve environmental, public health and political issues in relation to HNS spills. Parameters that rule the HNS behaviour in water and those that determine their distribution and persistence in the environment, such as fugacity, physicochemical degradation, biodegradation, bioaccumulation/biotransformation and aquatic toxicity, were selected. Data systematized and produced in the frame of the Arcopol Platform project was made available through a public database (http://www.ciimar.up.pt/hns/substances.php). This tool is expected to assist stakeholders involved in HNS spills preparedness and response, policy makers and legislators, as well as to contribute to a current picture of the scientific knowledge on the fate, behaviour, weathering and toxicity of priority HNS, being essential to support future improvements in maritime safety and coastal pollution response before, during and after spill incidents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank

    2008-11-01

    Fate and exposure modeling has not thus far been explicitly used in the risk profile documents prepared to evaluate significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include: (1) Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk. (2) Directly estimating the exposure of the environment, biota and humans to provide information to complement measurements, or where measurements are not available or are limited. (3) To identify the key processes and chemical and/or environmental parameters that determine the exposure; thereby allowing the effective prioritization of research or measurements to improve the risk profile. (4) Predicting future time trends including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and whether the assumptions and input data are relevant in the context of the application

  13. A Review on the Environmental Behavior of the Polyoxyethylene Type Nonionic Surfactants Adjuvants in Pesticides

    Directory of Open Access Journals (Sweden)

    KONG Xiang-ji

    2017-05-01

    Full Text Available Polyoxyethylene type nonionic surfactants such as alkylphenol ethoxylates(APEOs, alcohol ethoxylates(AEOs and alkylamine ethoxylates(ANEOs are typical pesticide adjuvants. Their unique environmental behavior characteristic is reflected in the parameters describing the fate e.g.distribution coefficient, adsorption to soil, degradation and effects of these substances. The major environmental problem related to these compounds is their part metabolites' relatively higher environmental risk. In views of their chemical structure, this paper outlined present knowledge on occurrence, fate and environment effect of the three adjuvants:AEOs, ANEOs and APEOs. The adsorption behaviour of ANEOs in contrast to AEOs was particularly variable and matrix dependent due to the ability of the compound to ionise at environmentally relevant pH. Probably because the compounds exceeded high soil adsorption and were easily degradable which were reflected in the low environmental concentrations generally found in monitoring studies.

  14. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    Directory of Open Access Journals (Sweden)

    C. F. Castro-Bolinaga

    2015-03-01

    Full Text Available This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  15. Reconstructing the regulatory circuit of cell fate determination in yeast mating response.

    Science.gov (United States)

    Shao, Bin; Yuan, Haiyu; Zhang, Rongfei; Wang, Xuan; Zhang, Shuwen; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2017-07-01

    Massive technological advances enabled high-throughput measurements of proteomic changes in biological processes. However, retrieving biological insights from large-scale protein dynamics data remains a challenging task. Here we used the mating differentiation in yeast Saccharomyces cerevisiae as a model and developed integrated experimental and computational approaches to analyze the proteomic dynamics during the process of cell fate determination. When exposed to a high dose of mating pheromone, the yeast cell undergoes growth arrest and forms a shmoo-like morphology; however, at intermediate doses, chemotropic elongated growth is initialized. To understand the gene regulatory networks that control this differentiation switch, we employed a high-throughput microfluidic imaging system that allows real-time and simultaneous measurements of cell growth and protein expression. Using kinetic modeling of protein dynamics, we classified the stimulus-dependent changes in protein abundance into two sources: global changes due to physiological alterations and gene-specific changes. A quantitative framework was proposed to decouple gene-specific regulatory modes from the growth-dependent global modulation of protein abundance. Based on the temporal patterns of gene-specific regulation, we established the network architectures underlying distinct cell fates using a reverse engineering method and uncovered the dose-dependent rewiring of gene regulatory network during mating differentiation. Furthermore, our results suggested a potential crosstalk between the pheromone response pathway and the target of rapamycin (TOR)-regulated ribosomal biogenesis pathway, which might underlie a cell differentiation switch in yeast mating response. In summary, our modeling approach addresses the distinct impacts of the global and gene-specific regulation on the control of protein dynamics and provides new insights into the mechanisms of cell fate determination. We anticipate that our

  16. Specifying pancreatic endocrine cell fates.

    Science.gov (United States)

    Collombat, Patrick; Hecksher-Sørensen, Jacob; Serup, Palle; Mansouri, Ahmed

    2006-07-01

    Cell replacement therapy could represent an attractive alternative to insulin injections for the treatment of diabetes. However, this approach requires a thorough understanding of the molecular switches controlling the specification of the different pancreatic cell-types in vivo. These are derived from an apparently identical pool of cells originating from the early gut endoderm, which are successively specified towards the pancreatic, endocrine, and hormone-expressing cell lineages. Numerous studies have outlined the crucial roles exerted by transcription factors in promoting the cell destiny, defining the cell identity and maintaining a particular cell fate. This review focuses on the mechanisms regulating the morphogenesis of the pancreas with particular emphasis on recent findings concerning the transcription factor hierarchy orchestrating endocrine cell fate allocation.

  17. Natural resource damage assessment models for Great Lakes, coastal, and marine environments

    International Nuclear Information System (INIS)

    French, D.P.; Reed, M.

    1993-01-01

    A computer model of the physical fates, biological effects, and economic damages resulting from releases of oil and other hazardous materials has been developed by Applied Science Associates to be used in Type A natural resource damage assessments under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Natural resource damage assessment models for great lakes environments and for coastal and marine environments will become available. A coupled geographical information system allows gridded representation of complex coastal boundaries, variable bathymetry, shoreline types, and multiple biological habitats. The physical and biological models are three dimensional. Direct mortality from toxic concentrations and oiling, impacts of habitat loss, and food web losses are included in the model. Estimation of natural resource damages is based both on the lost value of injured resources and on the costs of restoring or replacing those resources. The models are implemented on a personal computer, with a VGA graphical user interface. Following public review, the models will become a formal part of the US regulatory framework. The models are programmed in a modular and generic fashion, to facilitate transportability and application to new areas. The model has several major components. Physical fates and biological effects submodels estimate impacts or injury resulting from a spill. The hydrodynamic submodel calculates currents that transport contaminant(s) or organisms. The compensable value submodel values injuries to help assess damages. The restoration submodel determines what restoration actions will most cost-effectively reduce injuries as measured by compensable values. Injury and restoration costs are assessed for each of a series of habitats (environments) affected by the spill. Environmental, chemical, and biological databases supply required information to the model for computing fates and effects (injury)

  18. The use of Tritium measurements for environmental monitoring

    International Nuclear Information System (INIS)

    Camus, H.; Carrere, D; Simeon, C.

    1987-05-01

    Impact studies, compulsory for large installations and land use, require an environmental monitoring program throughout the plant operation. Therefore, and in appliance with the specific regulations concerning them, industrial plants of the nuclear fuel cycle must ensure environmental monitoring including measurements both on the air and water vectors and on the receiving compartments, i.e. food chains and consumers. The development of fine methods in order to assess the limiting capacity of the environment and evaluate the fate of the releases requires to have sensitive bioindicators. For radioactive releases, this is the case of tritium: following the fate of hydrogen, it combines with the vegetal or animal organic molecule, and therefore presents a biological half-life longer than in the elemental water on which measurements were carried out systematically up to now. The interest of measuring organically bound tritium in food chains is presented, and the corresponding technique is described [fr

  19. Energy and externality environmental regional model

    International Nuclear Information System (INIS)

    Baldi, L.; Bianchi, A.; Peri, M.

    2000-01-01

    The use of environmental externalities in both territorial management and the direction of energy and environment, faces the difficulties arising from their calculation. The so-called MACBET regional model, which has been constructed for Lombardy, is a first brand new attempt to overcome them. MACBET is a calculation model to assess environmental and employment externalities connected to energy use [it

  20. Development of a comprehensive source term model for the Subsurface Disposal Area at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    1997-01-01

    The first detailed comprehensive simulation study to evaluate fate and transport of wastes disposed in the Subsurface Disposal Area (SDA), at the Radioactive Waste Management Complex (RWMC), Idaho National Engineering and Environmental Laboratory (INEEL) has recently been conducted. One of the most crucial parts of this modeling was the source term or release model. The current study used information collected over the last five years defining contaminant specific information including: the amount disposed, the waste form (physical and chemical properties) and the type of container used for each contaminant disposed. This information was used to simulate the release of contaminants disposed in the shallow subsurface at the SDA. The DUST-MS model was used to simulate the release. Modifications were made to allow the yearly disposal information to be incorporated. The modeling includes unique container and release rate information for each of the 42 years of disposal. The results from this simulation effort are used for both a groundwater and a biotic uptake evaluation. As part of this modeling exercise, inadequacies in the available data relating to the release of contaminants have been identified. The results from this modeling study have been used to guide additional data collection activities at the SDA for purposes of increasing confidence in the appropriateness of model predictions

  1. Communication models in environmental health.

    Science.gov (United States)

    Guidotti, Tee L

    2013-01-01

    Communication models common in environmental health are not well represented in the literature on health communication. Risk communication is a systematic approach to conveying essential information about a specific environmental issue and a framework for thinking about community risk and the alternatives for dealing with it. Crisis communication is intended to provide essential information to people facing an emergency in order to mitigate its effects and to enable them to make appropriate decisions, and it is primarily used in emergency management. Corporate communication is intended to achieve a change in attitude or perception of an organization, and its role in environmental health is usually public relations or to rehabilitate a damaged reputation. Environmental health education is a more didactic approach to science education with respect to health and the environment. Social marketing uses conventional marketing methods to achieve a socially desirable purpose but is more heavily used in health promotion generally. Communication models and styles in environmental health are specialized to serve the needs of the field in communicating with the community. They are highly structured and executed in different ways but have in common a relative lack of emphasis on changing personal or lifestyle behavior compared with health promotion and public health in general and a tendency to emphasize content on specific environmental issues and decision frameworks for protecting oneself or the community through collective action.

  2. Global fate of POPs: Current and future research directions

    International Nuclear Information System (INIS)

    Lohmann, Rainer; Breivik, Knut; Dachs, Jordi; Muir, Derek

    2007-01-01

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks

  3. Effect of composting on the fate of steroids in beef cattle manure

    Science.gov (United States)

    In this study, the fate of steroid hormones in beef cattle manure composting is evaluated. The fate of 16 steroids and metabolites was evaluated in composted manure from beef cattle administered growth promotants and from beef cattle with no steroid hormone implants. The fate of estrogens (primary...

  4. Sediment transport modelling in the Gulf of Lion with the perspective of studying the fate of radionuclides originated by the Rhone River

    International Nuclear Information System (INIS)

    Dufois, Francois

    2008-01-01

    Among the various contaminants introduced in the environment, artificial radionuclides appear particularly important to consider because of their chemical toxicity and / or of their radio-toxicity. Some radionuclides present a high affinity with particles so that the study of the sediment dynamics is a useful preliminary to the study of their dispersion on the open sea. This thesis is focused on the fate of sediments in the Gulf of Lion (NW Mediterranean sea) and in particular on the impact of the Rhone River, which is the main source of particulate matter in the Gulf of Lion. In order to study the sediment transport mechanisms on various space and time scales, this thesis is based on mathematical modelling. The hydro-sedimentary model set up in the Gulf of Lion, which takes into account the gathered effect of waves and currents, was supported by recent hydro-sedimentary data analyses. CARMA (winter 2006/2007) and SCOPE (winter 2007/2008) experiments were used to better understand the physical processes which control the sediment transport on the Rhone pro-delta and to validate the model. The period of the centennial Rhone River flood of December 2003 was also simulated in order to determine the impact of such extreme events on the fate of sediments. Both observations and simulations of the studied periods highlight the high capacity of erosion and transport induced by south-eastern storms on the pro-delta

  5. Differential local tissue permissiveness influences the final fate of GPR17-expressing oligodendrocyte precursors in two distinct models of demyelination.

    Science.gov (United States)

    Coppolino, Giusy T; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide; Abbracchio, Maria P

    2018-05-01

    Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreER T2 xCAG-eGFP mice) allowing to follow the final fate of GPR17 + cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP + cells at damaged areas. However, only in the cuprizone model reacting GFP + cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP + cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor-1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti-inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. © 2018 The Authors GLIA Published by Wiley Periodicals, Inc.

  6. Assessing the environmental availability of sulfamethoxazole and its acetylated metabolite in agricultural soils amended with compost and manure: an experimental and modeling study

    Science.gov (United States)

    Goulas, Anaïs; Sertillange, Nicolas; Garnier, Patricia; Dumény, Valérie; Bergheaud, Valérie; Benoit, Pierre; Haudin, Claire-Sophie

    2017-04-01

    The recycling of sludge compost and farmyard manure in agriculture can lead to the introduction of sulfonamide antibiotics and their acetylated metabolites into soils. The quality and the biodegradability of the exogenous organic matter (EOM) containing antibiotic residues is determinant for their environmental availability and fate in soils (Goulas et al., 2016). This study combined experimental and modeling approaches in order to: 1) assess the fraction of sulfamethoxazole (SMX) and N-acetyl-sulfamethoxazole (AcSMX) available in EOM-amended soils by using soft extractions (CaCl2, EDTA or cyclodextrin solutions) during a 28-day incubation; and 2) better understand the dynamics of sulfonamide residues in amended soils in connection with their availability and the mineralization of EOM organic matter thanks to the COP-Soil model (Geng et al. 2015). This model proposes several options to couple the biotransformation of organic pollutants (OP) with the decomposition of EOM in soil. The microbial degradation can be simulated by co-metabolism and specific-metabolism. The model also accounts for the formation of non-extractable residues (NER) via both physicochemical and microbial routes. The available fraction in both soil/EOM mixtures decreased from 56-96% and 31-63% initial 14C-activity for AcSMX and SMX, respectively, to reach 7-33% after 28 days. This high decrease in the first seven days was mainly due to the formation of NER that were more abundant in soil/manure mixtures than in the soil/compost ones. The three aqueous solutions differently extracted the available 14C-residues according to the incubation time, the EOM and the molecule. The mineralized fractions for both 14C-molecules were only 2-3% with a little more mineralization in the soil/manure mixtures than in the soil/compost. By using the COP-Soil model, the dynamics of EOM and OP were well described using parameter values specific to the organic matter mineralization, and this for the three soft

  7. Modelling environmental change in Europe: towards a model inventory (SEIS/Forward)

    DEFF Research Database (Denmark)

    Jaeger, Annekathrin; Henrichs, Thomas

    This technical report provides a non-exhaustive overview of modelling tools currently available to simulate future environmental change at a European scale. Modelling tools have become an important cornerstone of environmental assessments, and play an important role in providing the data......, many of which have been used by the European Environment Agency in its recent environmental assessments and reports, a limited number of which are described in more detail. This review identifies gaps in the availability, accessibility and applicability of current modelling tools, and stresses the need...

  8. Some recommendations for testing oil spill computer models

    International Nuclear Information System (INIS)

    Garcia-Martinez, R.

    1998-01-01

    According to a recent state-of-the-art review of modelling transport and fate of spills, more than 50 oil spill models have been developed in the last 30 years. Even though some of these models are used for spill response actions during accidents, environmental impact assessment, contingency planning and response training, there are no standard methodologies to evaluate their quality. This article presents some ideas that may contribute to design a set of standard benchmarks that would allow users and developers to assess models on a rational basis. (author)

  9. Fate of challenge schistosomula in the murine anti-schistosome vaccine model

    International Nuclear Information System (INIS)

    Von Lichtenberg, F.; Correa-Oliveira, R.; Sher, A.

    1985-01-01

    Mice exposed to irradiated cercariae of Schistosoma mansoni develop a partial resistance to subsequent parasite challenge. In this study the authors utilized histopathologic methods to investigate the fate of both the immunizing and challenge cercariae in C57BL/6J mice. After immunization by percutaneous infection, a large number of the 50 Kr irradiated organisms could be detected in tissue sections of lung. However, as early as 2 weeks after immunization, the majority of these schistosomula apparently had died, leaving residual inflammatory foci. The numbers of these foci then gradually declined during the next 4 weeks of examination. Cercarial challenge of mice vaccinated 4 weeks previously provoked an intense eosinophil-enriched inflammatory response in percutaneously exposed ear pinnae. Despite these pronounced tissue reactions, no evidence of significant parasite damage or attrition was detected in this migration site. In contrast, schistosomula arriving in the lungs of vaccinated mice produced a greater number of residual inflammatory foci than did larvae appearing in the lungs of normal mice. In addition, challenge schistosomula were cleared from the lungs of vaccinated mice at a slower rate than they were from the lungs of control mice. These observations suggest that the lung is a major site of parasite attrition for both immunizing and challenge infections in the mouse irradiated vaccine model

  10. Comparison of predicted pesticide concentrations in groundwater from SCI-GROW and PRZM-GW models with historical monitoring data.

    Science.gov (United States)

    Estes, Tammara L; Pai, Naresh; Winchell, Michael F

    2016-06-01

    A key factor in the human health risk assessment process for the registration of pesticides by the US Environmental Protection Agency (EPA) is an estimate of pesticide concentrations in groundwater used for drinking water. From 1997 to 2011, these estimates were obtained from the EPA empirical model SCI-GROW. Since 2012, these estimates have been obtained from the EPA deterministic model PRZM-GW, which has resulted in a significant increase in estimated groundwater concentrations for many pesticides. Historical groundwater monitoring data from the National Ambient Water Quality Assessment (NAWQA) Program (1991-2014) were compared with predicted groundwater concentrations from both SCI-GROW (v.2.3) and PRZM-GW (v.1.07) for 66 different pesticides of varying environmental fate properties. The pesticide environmental fate parameters associated with over- and underprediction of groundwater concentrations by the two models were evaluated. In general, SCI-GROW2.3 predicted groundwater concentrations were close to maximum historically observed groundwater concentrations. However, for pesticides with soil organic carbon content values below 1000 L kg(-1) and no simulated hydrolysis, PRZM-GW overpredicted, often by greater than 100 ppb. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Cell fate regulation in the shoot meristem.

    Science.gov (United States)

    Laux, T; Mayer, K F

    1998-04-01

    The shoot meristem is a proliferative centre containing pluripotent stem cells that are the ultimate source of all cells and organs continuously added to the growing shoot. The progeny of the stem cells have two developmental options, either to renew the stem cell population or to leave the meristem and to differentiate, possibly according to signals from more mature tissue. The destiny of each cell depends on its position within the dynamic shoot meristem. Genetic data suggest a simple model in which graded positional information is provided by antagonistic gene functions and is interpreted by genes which regulate cell fate.

  12. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  13. Fate of accreting white dwarfs: Type I supernovae vs collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi.

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs

  14. Fate of polybrominated diphenyl ethers during cooking of fish in a new model cooking apparatus and a household microwave.

    Science.gov (United States)

    Bendig, Paul; Hägele, Florian; Blumenstein, Marina; Schmidt, Jasmin; Vetter, Walter

    2013-07-10

    Fish is a major source of human exposure to polybrominated diphenyl ethers (PBDEs). Because fish is mainly consumed after cooking, this measure may alter the pattern and amounts of PBDEs that are finally consumed. To investigate this issue, we developed a model cooking apparatus consisting of a small glass bowl and a beaker glass with an exhaust fitted with a polyurethane foam filter connected to a water jet pump. In this model cooking apparatus, fish (1 g) and/or sunflower oil (0.2/0.4 g) spiked with three PBDE congeners was cooked for 30 min. Small amounts of the semi-volatile PBDEs were evaporated from the fish (BDE-47 cooking apparatus proved to be well-suited to study the fate of polyhalogenated compounds in fish during cooking.

  15. Fate of 7,12-dimethylbenz(a)anthracene in rainbow trout, Salmo gairdneri

    International Nuclear Information System (INIS)

    Schnitz, A.R.; Squibb, K.S.; O'Connor, J.M.

    1987-01-01

    Polycyclic aromatic hydrocarbons (PAH) are contaminants of surface waters and sediments, especially near urban centers. Although aquatic biota accumulate PAHs from environmental sources, metabolism may be rapid, and biota sampled from contaminated areas often have concentrations lower than might be estimated from bioconcentration factors. In some cases PAH metabolism by aquatic biota may create reactive intermediates, some of which have been related to chronic effects in fishes. This report describes the fate and distribution of 7,12-dimethylbenz(a)anthracene (DMBA) after oral administration to rainbows trout (Salmo gairdneri). Emphasis has been placed on the disposition of DMBA among tissues and on DMBA transformation in the hepatobiliary system

  16. Predicting People's Environmental Behaviour: Theory of Planned Behaviour and Model of Responsible Environmental Behaviour

    Science.gov (United States)

    Chao, Yu-Long

    2012-01-01

    Using different measures of self-reported and other-reported environmental behaviour (EB), two important theoretical models explaining EB--Hines, Hungerford and Tomera's model of responsible environmental behaviour (REB) and Ajzen's theory of planned behaviour (TPB)--were compared regarding the fit between model and data, predictive ability,…

  17. Global fate of POPs: Current and future research directions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Rainer [Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197 (United States)], E-mail: lohmann@gso.uri.edu; Breivik, Knut [Norwegian Institute for Air Research, PO Box 100, NO-2027 Kjeller (Norway); University of Oslo, Department of Chemistry, PO Box 1033, NO-0315 Oslo (Norway); Dachs, Jordi [Department of Environmental Chemistry, Institute of Chemical and Environmental Research (IIQAB-CSIC), Jordi Girona 18-26, Barcelona 08034 (Spain); Muir, Derek [Aquatic Ecosystem Protection Research Division, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R4A6 (Canada)

    2007-11-15

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks.

  18. Prioritising chemicals used in personal care products in China for environmental risk assessment: Application of the RAIDAR model

    International Nuclear Information System (INIS)

    Gouin, Todd; Egmond, Roger van; Price, Oliver R.; Hodges, Juliet E.N.

    2012-01-01

    China represents a significant market for the sale of personal care products (PCPs). Given the continuous emission of hundreds of chemicals used in PCPs to waste water and the aquatic environment after regular use, methods for prioritising the environmental risk assessment for China are needed. In an effort to assess the prioritisation of chemicals used in PCPs in China, we have identified the chemical ingredients used in 2500 PCPs released to the Chinese market in 2009, and estimated the annual emission of these chemicals. The physical-chemical property data for these substances have been estimated and used as model inputs in the RAIDAR model. In general, the RAIDAR model provides an overall assessment of the multimedia fate of chemicals, and provides a holistic approach for prioritising chemical ingredients. The prioritisation exercise conducted in this study is shown to be strongly influenced by loss processes, such as the removal efficiencies of WWT plants and biotransformation. - Highlights: ► Chemicals used in PCPs in China are prioritised using the RAIDAR model. ► Chemicals used in PCPs are estimated to have Risk assessment factors <<1. ► Loss processes strongly influence how chemicals are prioritised. - The application of the Risk IDentification And Ranking (RAIDAR) model is shown to be a potentially effective tool for prioritising chemicals used in personal care products in China.

  19. Aquatic Environmental Contamination: The fate of Asejire Lake in ...

    African Journals Online (AJOL)

    titi_aladesanmi

    In Nigeria major cities face serious water pollution crises, in which lack of environmental control of ... stocks are at the upper end of the food chains and are vital food supplies to local ... massive fish kills and loss of aquatic life and habitats in.

  20. Individual fates of mesenchymal stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Drasdo Dirk

    2010-05-01

    Full Text Available Abstract Background In vitro cultivated stem cell populations are in general heterogeneous with respect to their expression of differentiation markers. In hematopoietic progenitor populations, this heterogeneity has been shown to regenerate within days from isolated subpopulations defined by high or low marker expression. This kind of plasticity has been suggested to be a fundamental feature of mesenchymal stem cells (MSCs as well. Here, we study MSC plasticity on the level of individual cells applying a multi-scale computer model that is based on the concept of noise-driven stem cell differentiation. Results By simulation studies, we provide detailed insight into the kinetics of MSC organisation. Monitoring the fates of individual cells in high and low oxygen culture, we calculated the average transition times of individual cells into stem cell and differentiated states. We predict that at low oxygen the heterogeneity of a MSC population with respect to differentiation regenerates from any selected subpopulation in about two days. At high oxygen, regeneration becomes substantially slowed down. Simulation results on the composition of the functional stem cell pool of MSC populations suggest that most of the cells that constitute this pool originate from more differentiated cells. Conclusions Individual cell-based models are well-suited to provide quantitative predictions on essential features of the spatio-temporal organisation of MSC in vitro. Our predictions on MSC plasticity and its dependence on the environment motivate a number of in vitro experiments for validation. They may contribute to a better understanding of MSC organisation in vitro, including features of clonal expansion, environmental adaptation and stem cell ageing.

  1. Modelling the Fate of Ionizable Trace Organic Chemicals from Consumption to Food Crops

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    In this study, we developed and applied a simulation tool to comprehensively predict the fate of three ionizable trace chemicals (triclosan—TCS, furosemide—FUR, ciprofloxacin—CIP) from human consumption/excretion up to the accumulation in wheat, following application of sewage sludge or irrigation...... with river water. Highest translocation to wheat (4.3 μg kgDW-1 in grain) was calculated for FUR, being more significant with irrigation (>45% of emission to soil) than with sludge application (

  2. Fate of dispersants associated with the deepwater horizon oil spill.

    Science.gov (United States)

    Kujawinski, Elizabeth B; Kido Soule, Melissa C; Valentine, David L; Boysen, Angela K; Longnecker, Krista; Redmond, Molly C

    2011-02-15

    Response actions to the Deepwater Horizon oil spill included the injection of ∼771,000 gallons (2,900,000 L) of chemical dispersant into the flow of oil near the seafloor. Prior to this incident, no deepwater applications of dispersant had been conducted, and thus no data exist on the environmental fate of dispersants in deepwater. We used ultrahigh resolution mass spectrometry and liquid chromatography with tandem mass spectrometry (LC/MS/MS) to identify and quantify one key ingredient of the dispersant, the anionic surfactant DOSS (dioctyl sodium sulfosuccinate), in the Gulf of Mexico deepwater during active flow and again after flow had ceased. Here we show that DOSS was sequestered in deepwater hydrocarbon plumes at 1000-1200 m water depth and did not intermingle with surface dispersant applications. Further, its concentration distribution was consistent with conservative transport and dilution at depth and it persisted up to 300 km from the well, 64 days after deepwater dispersant applications ceased. We conclude that DOSS was selectively associated with the oil and gas phases in the deepwater plume, yet underwent negligible, or slow, rates of biodegradation in the affected waters. These results provide important constraints on accurate modeling of the deepwater plume and critical geochemical contexts for future toxicological studies.

  3. Modelling environmental dynamics. Advances in goematic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Paegelow, Martin [Toulouse-2 Univ., 31 (France). GEODE UMR 5602 CNRS; Camacho Olmedo, Maria Teresa (eds.) [Granada Univ (Spain). Dpto. de Analisis Geografico Regional y Geografia Fisica

    2008-07-01

    Modelling environmental dynamics is critical to understanding and predicting the evolution of the environment in response to the large number of influences including urbanisation, climate change and deforestation. Simulation and modelling provide support for decision making in environmental management. The first chapter introduces terminology and provides an overview of methodological modelling approaches which may be applied to environmental and complex dynamics. Based on this introduction this book illustrates various models applied to a large variety of themes: deforestation in tropical regions, fire risk, natural reforestation in European mountains, agriculture, biodiversity, urbanism, climate change and land management for decision support, etc. These case studies, provided by a large international spectrum of researchers and presented in a uniform structure, focus particularly on methods and model validation so that this book is not only aimed at researchers and graduates but also at professionals. (orig.)

  4. A software engineering perspective on environmental modeling framework design: The object modeling system

    Science.gov (United States)

    The environmental modeling community has historically been concerned with the proliferation of models and the effort associated with collective model development tasks (e.g., code generation, data provisioning and transformation, etc.). Environmental modeling frameworks (EMFs) have been developed to...

  5. Differential local tissue permissiveness influences the final fate of GPR17‐expressing oligodendrocyte precursors in two distinct models of demyelination

    Science.gov (United States)

    Coppolino, Giusy T.; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide

    2018-01-01

    Abstract Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17‐iCreERT2xCAG‐eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen‐induced GFP‐labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor‐1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti‐inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. PMID:29424466

  6. Production, use, and fate of all plastics ever made.

    Science.gov (United States)

    Geyer, Roland; Jambeck, Jenna R; Law, Kara Lavender

    2017-07-01

    Plastics have outgrown most man-made materials and have long been under environmental scrutiny. However, robust global information, particularly about their end-of-life fate, is lacking. By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, we present the first global analysis of all mass-produced plastics ever manufactured. We estimate that 8300 million metric tons (Mt) as of virgin plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated, around 9% of which had been recycled, 12% was incinerated, and 79% was accumulated in landfills or the natural environment. If current production and waste management trends continue, roughly 12,000 Mt of plastic waste will be in landfills or in the natural environment by 2050.

  7. Modeling exposure to persistent chemicals in hazard and risk assessment.

    Science.gov (United States)

    Cowan-Ellsberry, Christina E; McLachlan, Michael S; Arnot, Jon A; Macleod, Matthew; McKone, Thomas E; Wania, Frank

    2009-10-01

    Fate and exposure modeling has not, thus far, been explicitly used in the risk profile documents prepared for evaluating the significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of persistent organic pollutants (POP) and persistent, bioaccumulative, and toxic (PBT) chemicals in the environment. The goal of this publication is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include 1) benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk; 2) directly estimating the exposure of the environment, biota, and humans to provide information to complement measurements or where measurements are not available or are limited; 3) to identify the key processes and chemical or environmental parameters that determine the exposure, thereby allowing the effective prioritization of research or measurements to improve the risk profile; and 4) forecasting future time trends, including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and

  8. Arginine and Polyamines Fate in Leishmania Infection

    Science.gov (United States)

    Muxel, Sandra M.; Aoki, Juliana I.; Fernandes, Juliane C. R.; Laranjeira-Silva, Maria F.; Zampieri, Ricardo A.; Acuña, Stephanie M.; Müller, Karl E.; Vanderlinde, Rubia H.; Floeter-Winter, Lucile M.

    2018-01-01

    Leishmania is a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, in cell Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with Leishmania amazonensis wild type (La-WT) or arginase knockout (La-arg-). These models are being used to elucidate physiological roles of arginine and polyamines pathways and the importance of arginase for the establishment of the infection. In this review, we will describe the main aspects of Leishmania-host interaction, focusing on the arginine and polyamines pathways and pointing to possible targets to be used for prognosis and/or in the control of the infection. The parasite enzymes, arginase and nitric oxide synthase-like, have essential roles in the parasite survival and in the maintenance of infection. On the other hand, in mammalian macrophages, defense mechanisms are activated inducing alterations in the mRNA, miRNA and enzymatic profiles that lead to the control of infection. Furthermore, the genetic background of both parasite and host are also important to define the fate of infection. PMID:29379478

  9. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    Science.gov (United States)

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  10. Chiral Analysis of Pesticides and Drugs of Environmental Concern: Biodegradation and Enantiomeric Fraction

    Directory of Open Access Journals (Sweden)

    Alexandra S. Maia

    2017-09-01

    Full Text Available The importance of stereochemistry for medicinal chemistry and pharmacology is well recognized and the dissimilar behavior of enantiomers is fully documented. Regarding the environment, the significance is equivalent since enantiomers of chiral organic pollutants can also differ in biodegradation processes and fate, as well as in ecotoxicity. This review comprises designed biodegradation studies of several chiral drugs and pesticides followed by enantioselective analytical methodologies to accurately measure the enantiomeric fraction (EF. The enantioselective monitoring of microcosms and laboratory-scale experiments with different environmental matrices is herein reported. Thus, this review focuses on the importance of evaluating the EF variation during biodegradation studies of chiral pharmaceuticals, drugs of abuse, and agrochemicals and has implications for the understanding of the environmental fate of chiral pollutants.

  11. Modeling the fate of organic micropollutants during river bank filtration (Berlin, Germany).

    Science.gov (United States)

    Henzler, Aline F; Greskowiak, Janek; Massmann, Gudrun

    2014-01-01

    Emerging organic contaminants (EOCs) are frequently detected in urban surface water and the adjacent groundwater and are therefore an increasing problem for potable water quality. River bank filtration (RBF) is a beneficial pretreatment step to improve surface water quality for potable use. Removal is mainly caused by microbial degradation of micropollutants, while sorption retards the transport. The quantification of biodegradation and adsorption parameters for EOCs at field scale is still scarce. In this study, the fate and behavior of a range of organic compounds during RBF were investigated using a two dimensional numerical flow- and transport model. The data base used emanated from a project conducted in Berlin, Germany (NASRI: Natural and Artificial Systems for Recharge and Infiltration). Oxygen isotope signatures and hydraulic head data were used for model calibration. Afterwards, twelve organic micropollutants were simulated with a reactive transport model. Three compounds (primidone, EDTA, and AMDOPH) showed conservative behavior (no biodegradation or sorption). For the nine remaining compounds (1.5 NDSA, AOX, AOI, MTBE, carbamazepine, clindamycin, phenazone, diclofenac and sulfamethoxazole), degradation and/or sorption was observed. 1.5 NDSA and AOX were not sorbed, but slightly degraded with model results for λ=2.25e(-3) 1/d and 2.4e(-3) 1/d. For AOI a λ=0.0106 1/d and R=1 were identified. MTBE could be characterized well assuming R=1 and a low 1st order degradation rate constant (λ=0.0085 1/d). Carbamazepine degraded with a half life time of about 66 days after a threshold value of 0.2-0.3 μg/L was exceeded and retarded slightly (R=1.7). Breakthrough curves of clindamycin, phenazone, diclofenac and sulfamethoxazole could be fitted less well, probably due to the dependency of degradation on temperature and redox conditions, which are highly transient at the RBF site. Conditions range from oxic to anoxic (up to iron-reducing), with the oxic and

  12. A Knowledge-Based Representation Scheme for Environmental Science Models

    Science.gov (United States)

    Keller, Richard M.; Dungan, Jennifer L.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    One of the primary methods available for studying environmental phenomena is the construction and analysis of computational models. We have been studying how artificial intelligence techniques can be applied to assist in the development and use of environmental science models within the context of NASA-sponsored activities. We have identified several high-utility areas as potential targets for research and development: model development; data visualization, analysis, and interpretation; model publishing and reuse, training and education; and framing, posing, and answering questions. Central to progress on any of the above areas is a representation for environmental models that contains a great deal more information than is present in a traditional software implementation. In particular, a traditional software implementation is devoid of any semantic information that connects the code with the environmental context that forms the background for the modeling activity. Before we can build AI systems to assist in model development and usage, we must develop a representation for environmental models that adequately describes a model's semantics and explicitly represents the relationship between the code and the modeling task at hand. We have developed one such representation in conjunction with our work on the SIGMA (Scientists' Intelligent Graphical Modeling Assistant) environment. The key feature of the representation is that it provides a semantic grounding for the symbols in a set of modeling equations by linking those symbols to an explicit representation of the underlying environmental scenario.

  13. [The tragic fate of physicians].

    Science.gov (United States)

    Ohry, Avi

    2013-10-01

    Physicians and surgeons were always involved in revolutions, wars and political activities, as well as in various medical humanities. Tragic fate met these doctors, whether in the Russian prisons gulags, German labor or concentration camps, pogroms or at the hands of the Inquisition.

  14. Knowledge-Based Environmental Context Modeling

    Science.gov (United States)

    Pukite, P. R.; Challou, D. J.

    2017-12-01

    As we move from the oil-age to an energy infrastructure based on renewables, the need arises for new educational tools to support the analysis of geophysical phenomena and their behavior and properties. Our objective is to present models of these phenomena to make them amenable for incorporation into more comprehensive analysis contexts. Starting at the level of a college-level computer science course, the intent is to keep the models tractable and therefore practical for student use. Based on research performed via an open-source investigation managed by DARPA and funded by the Department of Interior [1], we have adapted a variety of physics-based environmental models for a computer-science curriculum. The original research described a semantic web architecture based on patterns and logical archetypal building-blocks (see figure) well suited for a comprehensive environmental modeling framework. The patterns span a range of features that cover specific land, atmospheric and aquatic domains intended for engineering modeling within a virtual environment. The modeling engine contained within the server relied on knowledge-based inferencing capable of supporting formal terminology (through NASA JPL's Semantic Web for Earth and Environmental Technology (SWEET) ontology and a domain-specific language) and levels of abstraction via integrated reasoning modules. One of the key goals of the research was to simplify models that were ordinarily computationally intensive to keep them lightweight enough for interactive or virtual environment contexts. The breadth of the elements incorporated is well-suited for learning as the trend toward ontologies and applying semantic information is vital for advancing an open knowledge infrastructure. As examples of modeling, we have covered such geophysics topics as fossil-fuel depletion, wind statistics, tidal analysis, and terrain modeling, among others. Techniques from the world of computer science will be necessary to promote efficient

  15. Evaluation of terrestrial microcosms for assessing the fate and effects of genetically engineered microorganisms on ecological processes

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, J.K.; Bentjen, S.A.; Bolton, H. Jr.; Li, S.W.; Ligotke, M.W.; McFadden, K.M.; Van Voris, P.

    1989-04-01

    This project evaluates and modifies the existing US Environmental Protection Agency's Office of Pesticides and Toxic Substances (EPA/OPTS) terrestrial microcosm test system and test protocols such that they can be used to determine the environmental fate and ecological hazards of genetically engineered microorganisms (GEMs). The intact soil-core microcosm represents terrestrial ecosystems, and when coupled with appropriate test protocols, such microcosms may be appropriate to define and limit risks associated with the intentional release of GEMs. The terrestrial microcosm test system was used to investigate the survival and transport of two model GEMs (Azospirillum lipoferum and Pseudomonas sp. Tn5 mutants) to various trophic levels and niches and through intact soil cores. Subsequent effects on nutrient cycling and displacement of indigenous microorganisms were evaluated. The model organisms were a diazotrophic root-colonizing bacterium (A. lipoferum) and a wheat root growth-inhibiting rhizobacterium (Pseudomonas sp.). The transposable element Tn5 was used as a genetic marker for both microorganisms in two separate experiments. The organisms were subjected to transposon mutagenesis using a broad host-range-mobilizable suicide plasmid. The transposon Tn5 conferred levels of kanamycin resistance up to 500 ..mu..g/ml (Pseudomonas sp.), which allowed for selection of the bacteria from environmental samples. The presence of Tn5 DNA in the genome of the model GEMs also allowed the use of Tn5 gene probes to confirm and enumerate the microorganisms in different samples from the microcosms. Two types of root growth-inhibiting Pseudomonas sp. Tn5 mutants were obtained and used in microcosm studies: those that lacked the ability to inhibit either wheat root growth or the growth of other microorganisms in vitro (tox/sup /minus//) and those which retained these properties (tox/sup +/). 53 refs., 7 figs., 6 tabs.

  16. Organoarsenicals in poultry litter: detection, fate, and toxicity.

    Science.gov (United States)

    P Mangalgiri, Kiranmayi; Adak, Asok; Blaney, Lee

    2015-02-01

    Arsenic contamination in groundwater has endangered the health and safety of millions of people around the world. One less studied mechanism for arsenic introduction into the environment is the use of organoarsenicals in animal feed. Four organoarsenicals are commonly employed as feed additives: arsanilic acid, carbarsone, nitarsone, and roxarsone. Organoarsenicals are composed of a phenylarsonic acid molecule with substituted functional groups. This review documents the use of organoarsenicals in the poultry industry, reports analytical methods available for quantifying organic arsenic, discusses the fate and transport of organoarsenicals in environmental systems, and identifies toxicological concerns associated with these chemicals. In reviewing the literature on organoarsenicals, several research needs were highlighted: advanced analytical instrumentation that allows for identification and quantification of organoarsenical degradation products; a greater research emphasis on arsanilic acid, carbarsone, and nitarsone; identification of degradation pathways, products, and kinetics; and testing/development of agricultural wastewater and solid treatment technologies for organoarsenical-laden waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Charles W., E-mail: charles.knapp@strath.ac.u [David Livingstone Centre for Sustainability, Department of Civil Engineering, University of Strathclyde, 50 Richmond Street, Glasgow, G1 1XN (United Kingdom); School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Zhang, Wen; Sturm, Belinda S.M. [Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States); Graham, David W. [School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States)

    2010-05-15

    The attenuation and fate of erythromycin-resistance-methylase (erm) and extended-spectrum beta-lactamse (bla) genes were quantified over time in aquatic systems by adding 20-L swine waste to 11,300-L outdoor mesocosms that simulated receiving water conditions below intensive agricultural operations. The units were prepared with two different light-exposure scenarios and included artificial substrates to assess gene movement into biofilms. Of eleven genes tested, only erm(B), erm(F), bla{sub SHV} and bla{sub TEM} were found in sufficient quantity for monitoring. The genes disappeared rapidly from the water column and first-order water-column disappearance coefficients were calculated. However, detected gene levels became elevated in the biofilms within 2 days, but then disappeared over time. Differences were observed between sunlight and dark treatments and among individual genes, suggesting that ecological and gene-specific factors play roles in the fate of these genes after release into the environment. Ultimately, this information will aid in generating better predictive models for gene fate. - The disappearance and fate of erythromycin-resistance-methylase and beta-lactamase genes were monitored in outdoor mesocosms under different light conditions.

  18. Evaluate and characterize mechanisms controlling transport, fate and effects of army smokes in an aerosol wind tunnel: Transport, transformations, fate and terrestrial ecological effects of fog oil obscurant smokes: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Van Voris, P.; Ligotke, M.W.; Fellows, R.J.; McVeety, B.D.; Li, Shu-mei W.; Bolton, H. Jr.; Fredrickson, J.K.

    1989-01-01

    The terrestrial transport, chemical fate, and ecological effects of fog oil (FO) smoke obscurants were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on an exposure scenario, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of fog oil smoke/obscurants is establishing the importance of environmental parameters, such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and three soil types. 29 refs., 35 figs., 32 tabs.

  19. Organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China: Assessment of mass loading, input source and environmental fate

    International Nuclear Information System (INIS)

    Guan Yufeng; Wang Jizhong; Ni Honggang; Zeng, Eddy Y.

    2009-01-01

    A large-scale sampling program was conducted to simultaneously collect water samples at the eight major riverine runoff outlets of the Pearl River Delta (PRD), South China to assess the importance of riverine runoff in transporting anthropogenic pollutants from terrestrial sources to the coastal ocean. The concentrations of Σ 21 OCPs (sum of 21 OCP components) and Σ 20 PCBs (sum of 20 PCB congeners) were 2.57-41.2 and 0.12-1.47 ng/L, respectively. Compositional distributions of DDTs suggested the possibility of new input sources in the study area, but contributions from dicofol seemed considerably low. The annual inputs of Σ 21 OCPs and Σ 20 PCBs were 3090 and 215 kg, with those of total HCHs and DDTs being 1110 and 1020 kg, respectively. A mass balance consideration indicated that riverine runoff is the major mode carrying OCPs from the PRD to the coastal ocean, and the majority of OCPs is further dissipated to open seas. - Mass loadings, input sources and environmental fate of organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China are assessed

  20. CAirTOX: A compartment model for assessing the fate of and human exposure to toxic-chemical emissions to air

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.

    1993-10-01

    CAirTOX has been developed as a spreadsheet model to assist in making a risk assessment of toxic air emissions. With CAirTOX, one can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The multimedia transport and transformation model is a steady-state, but non-equilibrium model that can be used to assess concentrations of contaminants released continuously to air. In Part 1, the authors describe the multimedia transport and transformation model used to determine the fate of air emissions. In Part 2, they describe inputs and data needs for CAirTOX and the development of a set of landscape factors, which can be used to represent regional air basin/water-shed systems in California. In Part 3, they describe the multiple-pathway exposure scenarios and exposure algorithms. In Part 4, they compare the HRA approach and results and the CAirTOX exposure equations. In Part 5, they consider model sensitivity and uncertainty to determine how variability and uncertainty in model inputs affects the precision, accuracy, and credibility of the model output.

  1. Investigation of the Factors Influencing Volatile Chemical Fate During Steady-state Accretion on Wet-growing Hail

    Science.gov (United States)

    Michael, R. A.; Stuart, A. L.

    2007-12-01

    Phase partitioning during freezing affects the transport and distribution of volatile chemical species in convective clouds. This consequently can have impacts on tropospheric chemistry, air quality, pollutant deposition, and climate change. Here, we discuss the development, evaluation, and application of a mechanistic model for the study and prediction of volatile chemical partitioning during steady-state hailstone growth. The model estimates the fraction of a chemical species retained in a two-phase freezing hailstone. It is based upon mass rate balances over water and solute for accretion under wet-growth conditions. Expressions for the calculation of model components, including the rates of super-cooled drop collection, shedding, evaporation, and hail growth were developed and implemented based on available cloud microphysics literature. Solute fate calculations assume equilibrium partitioning at air-liquid and liquid-ice interfaces. Currently, we are testing the model by performing mass balance calculations, sensitivity analyses, and comparison to available experimental data. Application of the model will improve understanding of the effects of cloud conditions and chemical properties on the fate of dissolved chemical species during hail growth.

  2. Implications of the Fukushima Nuclear Disaster: Man-Made Hazards, Vulnerability Factors, and Risk to Environmental Health.

    Science.gov (United States)

    Eddy, Christopher; Sase, Eriko

    2015-01-01

    The objective of this article was to examine the environmental health implications of the 2011 Fukushima nuclear disaster from an all-hazards perspective. The authors performed a literature review that included Japanese and international nuclear guidance and policy, scientific papers, and reports on the Chernobyl and Three Mile Island disasters while also considering all-hazards preparedness rubrics in the U.S. The examination of the literature resulted in the following: a) the authors' "All-Hazards Planning Reference Model" that distinguishes three planning categories-Disaster Trigger Event, Man-Made Hazards, and Vulnerability Factors; b) the generalization of their model to other countries; and c) advocacy for environmental health end fate to be considered in planning phases to minimize risk to environmental health. This article discusses inconsistencies in disaster planning and nomenclature existing in the studied materials and international guidance and proposes new opportunity for developing predisaster risk assessment, risk communication, and prevention capacity building.

  3. Application of a predictive Bayesian model to environmental accounting.

    Science.gov (United States)

    Anex, R P; Englehardt, J D

    2001-03-30

    Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.

  4. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    Science.gov (United States)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    More than 3.5 million people die each year from a water related diseases in this world. Every 20 seconds, a child dies from a water-related illness. Even in a developed country like the United States, there have been at least 1870 outbreaks associated with drinking water during the period of 1920 to 2002, causing 883,806 illnesses. Most of these outbreaks are resulted due to the presence of microbial pathogens in drinking water. Rotavirus infection has been recognized as the most common cause of diarrhea in young children throughout the world. Laboratory experiments conducted at the University of Illinois have demonstrated that recovery of rotavirus has been significantly affected by climatic and soil-surface conditions like slope, soil types, and ground cover. The objective of this study is to simulate the fate and transport of Rotavirus in overland and near-surface flow using a process-based model. In order to capture the dynamics of sediment-bound pathogens, the Water Erosion Prediction Project (WEPP) is coupled with the pathogen transport model. Transport of pathogens in overland flow can be simulated mathematically by including terms for the concentration of the pathogens in the liquid phase (in suspension or free-floating) and the solid phase (adsorbed to the fine solid particles like clay and silt). Advection, adsorption, and decay processes are considered. The mass balance equations are solved using numerical technique to predict spatial and temporal changes in pathogen concentrations in two phases. Outputs from WEPP simulations (flow velocity, depth, saturated conductivity and the soil particle fraction exiting in flow) are transferred as input for the pathogen transport model. Three soil types and three different surface cover conditions have been used in the experimental investigations. Results from these conditions have been used in calibrating and validating the simulation results. Bare surface conditions have produced very good agreement between

  5. MODELLING DICLOFENAC AND IBUPROFEN RESIDUES IN MAJOR ESTONIAN SEASIDE CITIES

    Directory of Open Access Journals (Sweden)

    Erki Lember

    2016-06-01

    Full Text Available A theoretical model was developed to model the fate of two common pharmaceutical residues: diclofenac and ibuprofen in eight Estonian seaside cities that discharge their wastewaters directly into the Baltic Sea. The consumption rates of the active ingredients of diclofenac and ibuprofen from 2006-2014 were analysed. A decrease of 19.9% for diclofenac consumption and an increase of 14.1% for ibuprofen were found. The fate of diclofenac and ibuprofen were modelled by considering the human metabolism removal rate for pharmaceuticals, the removal rate of diclofenac and ibuprofen in activated sludge wastewater treatment plants (WWTP and annual flow rates. An average decrease from 1 to 0.8 µg/l (decrease of 20% for diclofenac and an increase from 11.4 to 13.4 µg/l (increase of 14.9% for ibuprofen for the concentration in the effluents of the WWTP were modelled. The model gives us a good overview about the theoretical concentrations of pharmaceutical residues in the environment and is helpful for evaluating environmental impacts.

  6. Fate of dissolved organic nitrogen in two stage trickling filter process.

    Science.gov (United States)

    Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak

    2012-10-15

    Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Prostaglandin E2 Regulates Liver versus Pancreas Cell Fate Decisions and Endodermal Outgrowth

    Science.gov (United States)

    Nissim, Sahar; Sherwood, Richard I.; Wucherpfennig, Julia; Saunders, Diane; Harris, James M.; Esain, Virginie; Carroll, Kelli J.; Frechette, Gregory M.; Kim, Andrew J.; Hwang, Katie L.; Cutting, Claire C.; Elledge, Susanna; North, Trista E.; Goessling, Wolfram

    2014-01-01

    SUMMARY The liver and pancreas arise from common endodermal progenitors. How these distinct cell fates are specified is poorly understood. Here, we describe prostaglandin E2 (PGE2) as a regulator of endodermal fate specification during development. Modulating PGE2 activity has opposing effects on liver-versus-pancreas specification in zebrafish embryos as well as mouse endodermal progenitors. The PGE2 synthetic enzyme cox2a and receptor ep2a are patterned such that cells closest to PGE2 synthesis acquire a liver fate whereas more distant cells acquire a pancreas fate. PGE2 interacts with the bmp2b pathway to regulate fate specification. At later stages of development, PGE2 acting via the ep4a receptor promotes outgrowth of both the liver and pancreas. PGE2 remains important for adult organ growth, as it modulates liver regeneration. This work provides in vivo evidence that PGE2 may act as a morphogen to regulate cell fate decisions and outgrowth of the embryonic endodermal anlagen. PMID:24530296

  8. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    Science.gov (United States)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2015-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  9. Environmental indicators and international models for making decision

    International Nuclear Information System (INIS)

    Polanco, Camilo

    2006-01-01

    The last international features proposed by the Organization for Economic Cooperation Development (OECD) and United Nations (UN) are analyzed in the use of the environmental indicators, in typology, selection criteria, and models, for organizing the information for management, environmental performance, and decision making. The advantages and disadvantages of each model are analyzed, as well as their environmental index characteristics. The analyzed models are Pressure - State - Response (PSR) and its conceptual developments: Driving Force - State Response (DSR), Driving Force - Pressure - State - Impact - Response (DPSIR), Model- Flow-Quality (MFQ), Pressure - State - Impact - Effect - Response (PSIER), and, finally, Pressure-State - Impact - Effect - Response - Management (PSIERM). The use of one or another model will depend on the quality of the available information, as well as on the proposed objectives

  10. Understanding the fate of merging supermassive black holes

    International Nuclear Information System (INIS)

    Campanelli, Manuela

    2005-01-01

    Understanding the fate of merging supermassive black holes in galactic mergers, and the gravitational wave emission from this process, are important LISA science goals. To this end, we present results from numerical relativity simulations of binary black hole mergers using the so-called Lazarus approach to model gravitational radiation from these events. In particular, we focus here on some recent calculations of the final spin and recoil velocity of the remnant hole formed at the end of a binary black hole merger process, which may constrain the growth history of massive black holes at the core of galaxies and globular clusters

  11. Flexing the PECs: Predicting environmental concentrations of veterinary drugs in Canadian agricultural soils.

    Science.gov (United States)

    Kullik, Sigrun A; Belknap, Andrew M

    2017-03-01

    Veterinary drugs administered to food animals primarily enter ecosystems through the application of livestock waste to agricultural land. Although veterinary drugs are essential for protecting animal health, their entry into the environment may pose a risk for nontarget organisms. A means to predict environmental concentrations of new veterinary drug ingredients in soil is required to assess their environmental fate, distribution, and potential effects. The Canadian predicted environmental concentrations in soil (PECsoil) for new veterinary drug ingredients for use in intensively reared animals is based on the approach currently used by the European Medicines Agency for VICH Phase I environmental assessments. The calculation for the European Medicines Agency PECsoil can be adapted to account for regional animal husbandry and land use practices. Canadian agricultural practices for intensively reared cattle, pigs, and poultry differ substantially from those in the European Union. The development of PECsoil default values and livestock categories representative of typical Canadian animal production methods and nutrient management practices culminates several years of research and an extensive survey and analysis of the scientific literature, Canadian agricultural statistics, national and provincial management recommendations, veterinary product databases, and producers. A PECsoil can be used to rapidly identify new veterinary drugs intended for intensive livestock production that should undergo targeted ecotoxicity and fate testing. The Canadian PECsoil model is readily available, transparent, and requires minimal inputs to generate a screening level environmental assessment for veterinary drugs that can be refined if additional data are available. PECsoil values for a hypothetical veterinary drug dosage regimen are presented and discussed in an international context. Integr Environ Assess Manag 2017;13:331-341. © 2016 Her Majesty the Queen in Right of Canada

  12. Environmental Monitoring of Agro-Ecosystem Using Environmental Isotope Tracer Technology

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Cho, Jae Young

    2004-10-01

    This report has provided the counterparts the knowledge and skills on the use of environmental isotope tracer technology for obtaining valuable information on agricultural non-point pollution source in agro-ecosystem. The contamination from agricultural watersheds has been brought into attention as a potential contaminant of streams and tributaries, since majority of them caused water quality degradation, eutrophication of reservoir and negative effect on agro-environment. To prevent the contamination from these watersheds, it is necessary to find out the source of the contamination. However, accurate contaminants outflows from various types of non-point sources have not yet been elucidated due to the fact that the extent of non-point source contaminants related to uncontrollable climatic events and irrigation conditions may differ greatly from place to place and year to year. The dominant use of isotopes in environmental ecosystem research in the last few decades has been to trace sources of waters and solutes. The environmental isotope tracer technology using stable isotopes such as oxygen, hydrogen, carbon, nitrogen, and sulfur has extensively been used for tracing the fate of environmental pollutants and for identification of environmental pollutants sources in agro-ecosystems

  13. Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: Application to tire and road wear particles.

    Science.gov (United States)

    Unice, Kenneth M; Bare, Jennifer L; Kreider, Marisa L; Panko, Julie M

    2015-11-15

    Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f(C)), tire wear (f(W)), terrestrial weathering (f(S)), leaching from TRWP (f(L)), and environmental availability from TRWP (f(A)) by liquid chromatography-tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F(T)) and release to water (FR) were calculated for the tire chemicals and 13 transformation products. F(T) for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5×10(-4) (6-PPD) to 0.06 (CBS) was observed for F(R) at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p<0.05) in the weathering factor, f(S), were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f(L), and environmental availability factor, f(A), was also observed when chemicals were categorized by log K(ow). Our methodology should be useful for lifecycle analysis of other functional polymer chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. BTG interacts with retinoblastoma to control cell fate in Dictyostelium.

    Directory of Open Access Journals (Sweden)

    Daniele Conte

    Full Text Available BACKGROUND: In the genesis of many tissues, a phase of cell proliferation is followed by cell cycle exit and terminal differentiation. The latter two processes overlap: genes involved in the cessation of growth may also be important in triggering differentiation. Though conceptually distinct, they are often causally related and functional interactions between the cell cycle machinery and cell fate control networks are fundamental to coordinate growth and differentiation. A switch from proliferation to differentiation may also be important in the life cycle of single-celled organisms, and genes which arose as regulators of microbial differentiation may be conserved in higher organisms. Studies in microorganisms may thus contribute to understanding the molecular links between cell cycle machinery and the determination of cell fate choice networks. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that in the amoebozoan D. discoideum, an ortholog of the metazoan antiproliferative gene btg controls cell fate, and that this function is dependent on the presence of a second tumor suppressor ortholog, the retinoblastoma-like gene product. Specifically, we find that btg-overexpressing cells preferentially adopt a stalk cell (and, more particularly, an Anterior-Like Cell fate. No btg-dependent preference for ALC fate is observed in cells in which the retinoblastoma-like gene has been genetically inactivated. Dictyostelium btg is the only example of non-metazoan member of the BTG family characterized so far, suggesting that a genetic interaction between btg and Rb predated the divergence between dictyostelids and metazoa. CONCLUSIONS/SIGNIFICANCE: While the requirement for retinoblastoma function for BTG antiproliferative activity in metazoans is known, an interaction of these genes in the control of cell fate has not been previously documented. Involvement of a single pathway in the control of mutually exclusive processes may have relevant implication in the

  15. Prediction of the Fate of Organic Compounds in the Environment From Their Molecular Properties: A Review.

    Science.gov (United States)

    Mamy, Laure; Patureau, Dominique; Barriuso, Enrique; Bedos, Carole; Bessac, Fabienne; Louchart, Xavier; Martin-Laurent, Fabrice; Miege, Cecile; Benoit, Pierre

    2015-06-18

    A comprehensive review of quantitative structure-activity relationships (QSAR) allowing the prediction of the fate of organic compounds in the environment from their molecular properties was done. The considered processes were water dissolution, dissociation, volatilization, retention on soils and sediments (mainly adsorption and desorption), degradation (biotic and abiotic), and absorption by plants. A total of 790 equations involving 686 structural molecular descriptors are reported to estimate 90 environmental parameters related to these processes. A significant number of equations was found for dissociation process (pK a ), water dissolution or hydrophobic behavior (especially through the K OW parameter), adsorption to soils and biodegradation. A lack of QSAR was observed to estimate desorption or potential of transfer to water. Among the 686 molecular descriptors, five were found to be dominant in the 790 collected equations and the most generic ones: four quantum-chemical descriptors, the energy of the highest occupied molecular orbital (E HOMO ) and the energy of the lowest unoccupied molecular orbital (E LUMO ), polarizability (α) and dipole moment (μ), and one constitutional descriptor, the molecular weight. Keeping in mind that the combination of descriptors belonging to different categories (constitutional, topological, quantum-chemical) led to improve QSAR performances, these descriptors should be considered for the development of new QSAR, for further predictions of environmental parameters. This review also allows finding of the relevant QSAR equations to predict the fate of a wide diversity of compounds in the environment.

  16. Development of an integrated system for evaluation of environmental radiologic impact during emergency situations

    International Nuclear Information System (INIS)

    Conti, Luiz Fernando de Carvalho

    2002-03-01

    An integrated system for performing environmental dose assessment after nuclear or radiological emergencies has been developed, as a tool for decision making process. The system includes databases such as those describing radionuclide decay, dose conversion factors for several environmental geometries and radionuclides with emitted radiation and energies. It includes several models for predicting environmental behaviour at the short,medium and long terms, for both rural and urban environments and is flexible enough for simulating the exposure of members of the public due to small accidents involving individual sources up to large scale nuclear accidents with complex source terms to the environment. The model has been built in a way that can perform assessment of actual exposures or make forecasts for future exposure based on dynamic simulation of the fate of radionuclides in environmental and potential exposure pathways to members of the public, taking into account he kind of contaminated environment and the age groups of exposed persons. Input data may come from a predicted source term or information on environmental concentration based on dispersion models or on environmental measurements, including on line monitoring systems, environmental surveys, direct measurements by in situ gamma spectrometry or analysis of environmental samples. Outputs of the model are dose estimates to members of the public as a function of the exposure pathway, time after the contamination and age group, for different groups of members of the public and kind of use of the environment. Time dependent kerma rates in air and concentrations in environmental compartments such as soil and foodstuff are also available, including the simulation of the effect of protective measures, to support the decision making process. (author)

  17. A review of mathematical models in economic environmental problems

    DEFF Research Database (Denmark)

    Nahorski, Z.; Ravn, H.F.

    2000-01-01

    The paper presents a review of mathematical models used,in economic analysis of environmental problems. This area of research combines macroeconomic models of growth, as dependent on capital, labour, resources, etc., with environmental models describing such phenomena like natural resources...... exhaustion or pollution accumulation and degradation. In simpler cases the models can be treated analytically and the utility function can be optimized using, e.g., such tools as the maximum principle. In more complicated cases calculation of the optimal environmental policies requires a computer solution....

  18. Conducting model ecosystem studies in tropical climate zones: Lessons learned from Thailand and way forward

    Energy Technology Data Exchange (ETDEWEB)

    Daam, Michiel A., E-mail: mdaam@isa.utl.pt [Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon (Portugal); Van den Brink, Paul J., E-mail: Paul.vandenbrink@wur.nl [Alterra, Wageningen University and Research centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Wageningen University, Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-04-15

    Little research has been done so far into the environmental fate and side effects of pesticides in the tropics. In addition, those studies conducted in tropical regions have focused almost exclusively on single species laboratory tests. Hence, fate and effects of pesticides on higher-tier levels have barely been studied under tropical conditions. To address this lack of knowledge, four outdoor aquatic model ecosystem experiments using two different test systems were conducted in Thailand evaluating the insecticide chlorpyrifos, the herbicide linuron and the fungicide carbendazim. Results of these experiments and comparisons of recorded fate and effects with temperate studies have been published previously. The present paper discusses the pros and cons of the methodologies applied and provides indications for i) possible improvements; ii) important aspects that should be considered when performing model ecosystem experiments in the tropics; iii) future research. - Research highlights: > Methodologies used overall seemed adequate to evaluate pesticide stress. > Identification and sampling of tropical macroinvertebrates should be improved. > Additional studies needed for different compounds and greater geographical scale. > Different exposure regimes and ecosystem types should be simulated. > Trophic interrelationship and recovery potential need to be evaluated. - Methodologies for conducting model ecosystem studies in the tropics.

  19. Fate of the antiretroviral drug tenofovir in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)

    2010-10-15

    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  20. Modelling of uranium inputs and its fate in soil; Modellierung von Uraneintraegen aus Duengern und ihr Verbleib im Boden

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, M. [Bundesamt fuer Strahlenschutz, Berlin (Germany); Urso, L. [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany)

    2016-07-01

    87 % of mineral phosphate fertilizers are produced of sedimentary rock phosphate, which generally contains heavy metals, like uranium. The solution and migration behavior of uranium is apart from its redox ratio, determined by its pH conditions as well as its ligand quality and quantity. A further important role in sorption is played by soil components like clay minerals, pedogenic oxides and soil organic matter. To provide a preferably detailed speciation model of U in soil several physical and chemical components have to be included to be able to state distribution coefficients (k{sub D}) and sorption processes. The model of Hormann and Fischer served as the basis of modelling uranium mobility in soil by using the program PhreeqC. The usage of real soil and soil water measurements may contribute to identify factors and processes influencing the mobility of uranium under preferably realistic conditions. Additionally, the assessment of further predictions towards uranium migration in soil can be made based on a modelling with PhreeqC. The modelling of uranium inputs and its fate in soil can help to elucidate the human caused occurrence or geogenic origin of uranium in soil.

  1. Environmental fate of fungicides and other current-use pesticides in a central California estuary

    Science.gov (United States)

    Smalling, Kelly L.; Kuivila, Kathryn; Orlando, James L.; Phillips, Bryn M.; Anderson, Brian S.; Siegler, Katie; Hunt, John W.; Hamilton, Mary

    2013-01-01

    The current study documents the fate of current-use pesticides in an agriculturally-dominated central California coastal estuary by focusing on the occurrence in water, sediment and tissue of resident aquatic organisms. Three fungicides (azoxystrobin, boscalid, and pyraclostrobin), one herbicide (propyzamide) and two organophosphate insecticides (chlorpyrifos and diazinon) were detected frequently. Dissolved pesticide concentrations in the estuary corresponded to the timing of application while bed sediment pesticide concentrations correlated with the distance from potential sources. Fungicides and insecticides were detected frequently in fish and invertebrates collected near the mouth of the estuary and the contaminant profiles differed from the sediment and water collected. This is the first study to document the occurrence of many current-use pesticides, including fungicides, in tissue. Limited information is available on the uptake, accumulation and effects of current-use pesticides on non-target organisms. Additional data are needed to understand the impacts of pesticides, especially in small agriculturally-dominated estuaries.

  2. ALM-FATES: Using dynamic vegetation and demography to capture changes in forest carbon cycling and competition at the global scale

    Science.gov (United States)

    Holm, J. A.; Knox, R. G.; Koven, C.; Riley, W. J.; Bisht, G.; Fisher, R.; Christoffersen, B. O.; Dietze, M.; Chambers, J. Q.

    2017-12-01

    The inclusion of dynamic vegetation demography in Earth System Models (ESMs) has been identified as a critical step in moving ESMs towards more realistic representations of plant ecology and the processes that govern climatically important fluxes of carbon, energy, and water. Successful application of dynamic vegetation models, and process-based approaches to simulate plant demography, succession, and response to disturbances without climate envelopes at the global scale is a challenging endeavor. We integrated demographic processes using the Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) in the newly developed ACME Land Model (ALM). We then use an ALM-FATES globally gridded simulation for the first time to investigate plant functional type (PFT) distributions and dynamic turnover rates. Initial global simulations successfully include six interacting and competing PFTs (ranging from tropical to boreal, evergreen, deciduous, needleleaf and broadleaf); including more PFTs is planned. Global maps of net primary productivity, leaf area index, and total vegetation biomass by ALM-FATES matched patterns and values when compared to CLM4.5-BGC and MODIS estimates. We also present techniques for PFT parameterization based on the Predictive Ecosystem Analyzer (PEcAn), field based turnover rates, improved PFT groupings based on trait-tradeoffs, and improved representation of multiple canopy positions. Finally, we applied the improved ALM-FATES model at a central Amazon tropical and western U.S. temperate sites and demonstrate improvements in predicted PFT size- and age-structure and regional distribution. Results from the Amazon tropical site investigate the ability and magnitude of a tropical forest to act as a carbon sink by 2100 with a doubling of CO2, while results from the temperate sites investigate the response of forest mortality with increasing droughts.

  3. Pesticide Environmental Fate Research for the 21st Century: Building Bridges Between Laboratory and Field Studies at Varying Scales

    Science.gov (United States)

    Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ...

  4. Selection of distribution coefficients for contaminant fate and transport calculations: Strontium as a case study

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Krupka, K.M.; Serne, R.J.

    1997-01-01

    As part of an ongoing project funded by a cooperative effort involving the Office of Radiation and Indoor Air (ORIA) of the U.S. Environmental Protection Agency (EPA), the Office of Environmental Restoration (EM-40) of the Department of Energy (DOE), and the Nuclear Regulatory Agency (NRC), distribution coefficient (K d ) values are being compiled from the literature to develop provisional tables for cadmium, cesium, chromium, lead, plutonium, strontium, thorium, and uranium. The tables are organized according to important aqueous- and solid-phase parameters affecting the sorption of these contaminants. These parameters, which vary with contaminant, include pH and redox conditions; cation exchange capacity (CEC); presence of iron-oxide, aluminum-oxide, clay, and mica minerals; organic matter content; and solution concentrations of contaminants, competing ions, and complexing ligands. Sorption information compiled for strontium is used to illustrate our approach. The strontium data show how selected geochemical parameters (i.e., CEC, pH, and clay content) affect Strontium K d values and the selection of open-quote default close-quote K d values needed for modeling contaminant transport and risks at sites for which site specific data are lacking. Results of our evaluation may be used by site management and technical staff to assess contaminant fate, migration, and risk calculations in support of site remediation and waste management decisions

  5. A resource oriented webs service for environmental modeling

    Science.gov (United States)

    Ferencik, Ioan

    2013-04-01

    Environmental modeling is a largely adopted practice in the study of natural phenomena. Environmental models can be difficult to build and use and thus sharing them within the community is an important aspect. The most common approach to share a model is to expose it as a web service. In practice the interaction with this web service is cumbersome due to lack of standardized contract and the complexity of the model being exposed. In this work we investigate the use of a resource oriented approach in exposing environmental models as web services. We view a model as a layered resource build atop the object concept from Object Oriented Programming, augmented with persistence capabilities provided by an embedded object database to keep track of its state and implementing the four basic principles of resource oriented architectures: addressability, statelessness, representation and uniform interface. For implementation we use exclusively open source software: Django framework, dyBase object oriented database and Python programming language. We developed a generic framework of resources structured into a hierarchy of types and consequently extended this typology with recurses specific to the domain of environmental modeling. To test our web service we used cURL, a robust command-line based web client.

  6. DOE Chair of Excellence Professorship in Environmental Disciplines

    Energy Technology Data Exchange (ETDEWEB)

    Shoou-Yuh Chang

    2013-01-31

    The United States (US) nuclear weapons program during the Cold War left a legacy of radioactive, hazardous, chemical wastes and facilities that may seriously harm the environment and people even today. Widespread public concern about the environmental pollution has created an extraordinary demand for the treatment and disposal of wastes in a manner to protect the public health and safety. The pollution abatement and environmental protection require an understanding of technical, regulatory, economic, permitting, institutional, and public policy issues. Scientists and engineers have a major role in this national effort to clean our environment, especially in developing alternative solutions and evaluation criteria and designing the necessary facilities to implement the solutions. The objective of the DOE Chair of Excellence project is to develop a high quality educational and research program in environmental engineering at North Carolina A&T State University (A&T). This project aims to increase the number of graduate and undergraduate students trained in environmental areas while developing a faculty concentrated in environmental education and research. Although A&T had a well developed environmental program prior to the Massie Chair grant, A&T's goal is to become a model of excellence in environmental engineering through the program's support. The program will provide a catalyst to enhance collaboration of faculty and students among various engineering departments to work together in a focus research area. The collaboration will be expanded to other programs at A&T. The past research focus areas include: hazardous and radioactive waste treatment and disposal fate and transport of hazardous chemicals in the environment innovative technologies for hazardous waste site remediation pollution prevention Starting from 2005, the new research focus was in the improvement of accuracy for radioactive contaminant transport models by ensemble based data assimilation

  7. Monitoring fate and behaviour of Nanoceria under relevant environmental conditions

    CSIR Research Space (South Africa)

    Tancu, Y

    2014-11-01

    Full Text Available ). The results revealed significant tendency of nCeO¬2 to undergo aggregation, agglomeration and certain degree of deagglomeration processes under different environmental conditions. Moreover, the findings suggested that both electrostatic and steric interactions...

  8. Environmental Sampling FY03 Annual Report - Understanding the Movement of Mercury on the INEEL

    International Nuclear Information System (INIS)

    Michael L. Abbott

    2003-01-01

    Environmental mercury measurements were started in Fy-01 at the Idaho National Engineering Laboratory (INEEL) to monitor downwind impacts from on-going waste treatment operations at the Idaho Nuclear Technology and Engineering Center (INTEC) and to improve our scientific understanding of mercury fate and transport in this region. This document provides a summary of the sampling done in FY04. Continuous total gaseous mercury (TGM) measurements were made using a Tekran Model 2537A mercury vapor analyzer during October 2002 and from February through July 2003. The equipment was deployed in a self-contained field trailer at the Experimental Field Station (EFS) four kilometers downwind (northeast) of INTEC. Mercury surface-to-air flux measurements were made in October 2002 and from February through May 2003 to better understand the fate of the estimated 1500 kg of mercury emitted from 36 years of calciner operations at INTEC and to improve our scientific understanding of mercury environmental cycling in this region. Flux was measured using an INEEL-designed dynamic flux chamber system with a Tekran automated dual sampling (TADS) unit. Diel flux was positively correlated with solar radiation (r = 0.65), air temperature (r = 0.64), and wind speed (r = 0.38), and a general linear model for flux prediction at the INEEL was developed. Reactive gaseous mercury (RGM) was measured at EFS in July using a Tekran Model 1130 mercury speciation unit. Based on comparisons with other published data around the U.S., mercury air concentrations and surface flux rates directly downwind from INTEC were not distinguishable from remote area (non-industrial) background levels during the monitoring period

  9. Nutrient Loading Impacts on Culturable E. coli and other Heterotrophic Bacteria Fate in Simulated Stream Mesocosms

    Science.gov (United States)

    Understanding fecal indicator bacteria persistence in aquatic environments is important when making management decisions to improve instream water quality. Routinely, bacteria fate and transport models that rely on published kinetic decay constants are used to inform such decision making. The object...

  10. A subset of osteoblasts expressing high endogenous levels of PPARgamma switches fate to adipocytes in the rat calvaria cell culture model.

    Directory of Open Access Journals (Sweden)

    Yuji Yoshiko

    2010-07-01

    Full Text Available Understanding fate choice and fate switching between the osteoblast lineage (ObL and adipocyte lineage (AdL is important to understand both the developmental inter-relationships between osteoblasts and adipocytes and the impact of changes in fate allocation between the two lineages in normal aging and certain diseases. The goal of this study was to determine when during lineage progression ObL cells are susceptible to an AdL fate switch by activation of endogenous peroxisome proliferator-activated receptor (PPARgamma.Multiple rat calvaria cells within the ObL developmental hierarchy were isolated by either fractionation on the basis of expression of alkaline phosphatase or retrospective identification of single cell-derived colonies, and treated with BRL-49653 (BRL, a synthetic ligand for PPARgamma. About 30% of the total single cell-derived colonies expressed adipogenic potential (defined cytochemically when BRL was present. Profiling of ObL and AdL markers by qRT-PCR on amplified cRNA from over 160 colonies revealed that BRL-dependent adipogenic potential correlated with endogenous PPARgamma mRNA levels. Unexpectedly, a significant subset of relatively mature ObL cells exhibited osteo-adipogenic bipotentiality. Western blotting and immunocytochemistry confirmed that ObL cells co-expressed multiple mesenchymal lineage determinants (runt-related transcription factor 2 (Runx2, PPARgamma, Sox9 and MyoD which localized in the cytoplasm initially, and only Runx2 translocated to the nucleus during ObL progression. Notably, however, some cells exhibited both PPARgamma and Runx2 nuclear labeling with concomitant upregulation of expression of their target genes with BRL treatment.We conclude that not only immature but a subset of relatively mature ObL cells characterized by relatively high levels of endogenous PPARgamma expression can be switched to the AdL. The fact that some ObL cells maintain capacity for adipogenic fate selection even at relatively

  11. Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians.

    Science.gov (United States)

    Kodama, Hitoshi; Miyata, Yoshimasa; Kuwajima, Mami; Izuchi, Ryoichi; Kobayashi, Ayumi; Gyoja, Fuki; Onuma, Takeshi A; Kumano, Gaku; Nishida, Hiroki

    2016-08-01

    During embryonic induction, the responding cells invoke an induced developmental program, whereas in the absence of an inducing signal, they assume a default uninduced cell fate. Suppression of the default fate during the inductive event is crucial for choice of the binary cell fate. In contrast to the mechanisms that promote an induced cell fate, those that suppress the default fate have been overlooked. Upon induction, intracellular signal transduction results in activation of genes encoding key transcription factors for induced tissue differentiation. It is elusive whether an induced key transcription factor has dual functions involving suppression of the default fates and promotion of the induced fate, or whether suppression of the default fate is independently regulated by other factors that are also downstream of the signaling cascade. We show that during ascidian embryonic induction, default fates were suppressed by multifold redundant mechanisms. The key transcription factor, Twist-related.a, which is required for mesenchyme differentiation, and another independent transcription factor, Lhx3, which is dispensable for mesenchyme differentiation, sequentially and redundantly suppress the default muscle fate in induced mesenchyme cells. Similarly in notochord induction, Brachyury, which is required for notochord differentiation, and other factors, Lhx3 and Mnx, are likely to suppress the default nerve cord fate redundantly. Lhx3 commonly suppresses the default fates in two kinds of induction. Mis-activation of the autonomously executed default program in induced cells is detrimental to choice of the binary cell fate. Multifold redundant mechanisms would be required for suppression of the default fate to be secure. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Environmental risk management for pharmaceutical compounds

    Energy Technology Data Exchange (ETDEWEB)

    Voulvoulis, N [Imperial College London (United Kingdom)

    2004-09-15

    Pharmaceuticals are a highly variable group of organic compounds with the potential to cause harm to aquatic ecosystems and human health. Thousands of tones of pharmacologically active substances are used annually but surprisingly little is known about their ultimate fate in the environment. The data collected to date, rarely provide information on the processes that determine their environmental fate and although they receive considerable pharmacological and clinical testing during development, knowledge of their ecotoxicity is poor. One major concern is that antibiotics found in sewage effluent may cause increased resistance amongst natural bacterial populations. The debate over risks associated with chemicals in the environment represents more than just another disagreement in the scientific community. It has opened the door to a new way of thinking about the onset of uninherited diseases, the nature of scientific investigation, and the role of scientific knowledge in the policymaking process. For example, research evidence on endocrine disruption collected over the last few years has changed dramatically the way we think about chemical risks. In part, this change has also been attributed to the precautionary principle, as a new approach to environmental policy forged in Europe. The term ''precautionary approach'' declares an obligation to control the dangerous substances even before a definitive causal link had been established between the chemicals and health or environmental effects, and represents a radical departure from traditional approaches to risk assessment and particularly risk management, which includes an integration of the assessment, communication and mitigation of risks.

  13. A multimedia fate and chemical transport modeling system for pesticides: II. Model evaluation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Trevor Scholtz, M

    2011-01-01

    Pesticides have adverse health effects and can be transported over long distances to contaminate sensitive ecosystems. To address problems caused by environmental pesticides we developed a multimedia multi-pollutant modeling system, and here we present an evaluation of the model by comparing modeled results against measurements. The modeled toxaphene air concentrations for two sites, in Louisiana (LA) and Michigan (MI), are in good agreement with measurements (average concentrations agree to within a factor of 2). Because the residue inventory showed no soil residues at these two sites, resulting in no emissions, the concentrations must be caused by transport; the good agreement between the modeled and measured concentrations suggests that the model simulates atmospheric transport accurately. Compared to the LA and MI sites, the measured air concentrations at two other sites having toxaphene soil residues leading to emissions, in Indiana and Arkansas, showed more pronounced seasonal variability (higher in warmer months); this pattern was also captured by the model. The model-predicted toxaphene concentration fraction on particles (0.5-5%) agrees well with measurement-based estimates (3% or 6%). There is also good agreement between modeled and measured dry (1:1) and wet (within a factor of less than 2) depositions in Lake Ontario. Additionally this study identified erroneous soil residue data around a site in Texas in a published US toxaphene residue inventory, which led to very low modeled air concentrations at this site. Except for the erroneous soil residue data around this site, the good agreement between the modeled and observed results implies that both the US and Mexican toxaphene soil residue inventories are reasonably good. This agreement also suggests that the modeling system is capable of simulating the important physical and chemical processes in the multimedia compartments.

  14. Contaminant fate and transport in the Venice Lagoon: results from a multi-segment multimedia model.

    Science.gov (United States)

    Sommerfreund, J K; Gandhi, N; Diamond, M L; Mugnai, C; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L G; Giuliani, S

    2010-03-01

    Contaminant loadings to the Venice Lagoon peaked from 1950s-1980s and although they have since declined, contaminant concentrations remain elevated in sediment and seafood. In order to identify the relative importance of contaminant sources, inter-media exchange and removal pathways, a modified 10-segment fugacity/aquivalence-based model was developed for octachlorodibenzodioxin/furan (OCDD/F), PCB-180, Pb and Cu in the Venice Lagoon. Results showed that in-place pollution nearby the industrial area, current industrial discharges, and tributary loadings were the main sources of contaminants to the lagoon, with negligible contributions from the atmosphere. The fate of these contaminants was governed by sediment-water exchange with simultaneous advective transport by water circulation. Contaminants circulated amongst the northern and central basins with a small fraction reaching the far southern basin and the Chioggia inlet. As a consequence, we estimated limited contaminant transfer to the Adriatic Sea, trapping the majority of contaminants in the sediment in this "average" circulation scenario which does not account for periodic flooding events. (c) 2009 Elsevier Inc. All rights reserved.

  15. Environmental Parametric Cost Model in Oil and Gas EPC Contracts

    Directory of Open Access Journals (Sweden)

    Madjid Abbaspour

    2018-01-01

    Full Text Available This study aims at identifying the parameters that govern the environmental costs in oil and gas projects. An initial conceptual model was proposed. Next, the costs of environmental management work packages were estimated, separately and were applied in project control tools (WBS/CBS. Then, an environmental parametric cost model was designed to determine the environmental costs and relevant weighting factors. The suggested model can be considered as an innovative approach to designate the environmental indicators in oil and gas projects. The validity of variables was investigated based on Delphi method. The results indicated that the project environmental management’s weighting factor is 0.87% of total project’s weighting factor.

  16. Modelling the geochemical fate and transport of wastewater-derived phosphorus in contrasting groundwater systems

    Science.gov (United States)

    Spiteri, Claudette; Slomp, Caroline P.; Regnier, Pierre; Meile, Christof; Van Cappellen, Philippe

    2007-06-01

    A 1D reactive transport model (RTM) is used to obtain a mechanistic understanding of the fate of phosphorus (P) in the saturated zone of two contrasting aquifer systems. We use the field data from two oxic, electron donor-poor, wastewater-impacted, sandy Canadian aquifers, (Cambridge and Muskoka sites) as an example of a calcareous and non-calcareous groundwater system, respectively, to validate our reaction network. After approximately 10 years of wastewater infiltration, P is effectively attenuated within the first 10 m downgradient of the source mainly through fast sorption onto calcite and Fe oxides. Slow, kinetic sorption contributes further to P removal, while precipitation of phosphate minerals (strengite, hydroxyapatite) is quantitatively unimportant in the saturated zone. Nitrogen (N) dynamics are also considered, but nitrate behaves essentially as a conservative tracer in both systems. The model-predicted advancement of the P plume upon continued wastewater discharge at the calcareous site is in line with field observations. Model results suggest that, upon removal of the wastewater source, the P plume at both sites will persist for at least 20 years, owing to desorption of P from aquifer solids and the slow rate of P mineral precipitation. Sensitivity analyses for the non-calcareous scenario (Muskoka) illustrate the importance of the sorption capacity of the aquifer solids for P in modulating groundwater N:P ratios in oxic groundwater. The model simulations predict the breakthrough of groundwater with high P concentrations and low N:P ratios after 17 years at 20 m from the source for an aquifer with low sorption capacity (< 0.02% w/w Fe(OH) 3). In this type of system, denitrification plays a minor role in lowering the N:P ratios because it is limited by the availability of labile dissolved organic matter.

  17. Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate.

    Directory of Open Access Journals (Sweden)

    Jatin Narula

    2010-05-01

    Full Text Available Combinatorial regulation of gene expression is ubiquitous in eukaryotes with multiple inputs converging on regulatory control elements. The dynamic properties of these elements determine the functionality of genetic networks regulating differentiation and development. Here we propose a method to quantitatively characterize the regulatory output of distant enhancers with a biophysical approach that recursively determines free energies of protein-protein and protein-DNA interactions from experimental analysis of transcriptional reporter libraries. We apply this method to model the Scl-Gata2-Fli1 triad-a network module important for cell fate specification of hematopoietic stem cells. We show that this triad module is inherently bistable with irreversible transitions in response to physiologically relevant signals such as Notch, Bmp4 and Gata1 and we use the model to predict the sensitivity of the network to mutations. We also show that the triad acts as a low-pass filter by switching between steady states only in response to signals that persist for longer than a minimum duration threshold. We have found that the auto-regulation loops connecting the slow-degrading Scl to Gata2 and Fli1 are crucial for this low-pass filtering property. Taken together our analysis not only reveals new insights into hematopoietic stem cell regulatory network functionality but also provides a novel and widely applicable strategy to incorporate experimental measurements into dynamical network models.

  18. Radionuclide fate and effects

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The studies reported here deal with the full range of contaminant behavior and fate, from the initial physicochemical factors that govern radionuclide availability in terrestrial and aquatic environments to studies of contaminant transport by biological means. By design, we focus more on the biologically and chemically mediated transport processes and food-chain pathways than on the purely physical forms of contaminant transport, such as transport by wind and water

  19. A goal programming model for environmental policy analysis: Application to Spain

    International Nuclear Information System (INIS)

    San Cristóbal, José Ramón

    2012-01-01

    Sustainable development has become an important part of international and national approaches to integrate economic, environmental, social and ethical considerations so that a good quality of life can be enjoyed by current and future generations for as long as possible. However, nowadays sustainable development is threatened by industrial pollution emissions which cause serious environmental problems. Due to a lack of adequate quantitative models for environmental policy analysis, there is a strong need for analytical models in order to know the effects of environmental policies. In the present paper, a goal programming model, based on an environmental/input–output linear programming model, is developed and applied to the Spanish economy. The model combines relations between economic, energy, social and environmental effects, providing valuable information for policy-makers in order to define and examine the different goals that must be implemented to reach sustainability. - Highlights: ► In this paper a goal programming model is developed. ► The model considers environmental, energy, social and economic goals. ► The model shows the effects of a reduction in greenhouse gasses emission and energy requirements. ► The model is applied to the Spanish economy.

  20. Environmental Management Model for Road Maintenance Operation Involving Community Participation

    Science.gov (United States)

    Triyono, A. R. H.; Setyawan, A.; Sobriyah; Setiono, P.

    2017-07-01

    Public expectations of Central Java, which is very high on demand fulfillment, especially road infrastructure as outlined in the number of complaints and community expectations tweeter, Short Mail Massage (SMS), e-mail and public reports from various media, Highways Department of Central Java province requires development model of environmental management in the implementation of a routine way by involving the community in order to fulfill the conditions of a representative, may serve road users safely and comfortably. This study used survey method with SEM analysis and SWOT with Latent Independent Variable (X), namely; Public Participation in the regulation, development, construction and supervision of road (PSM); Public behavior in the utilization of the road (PMJ) Provincial Road Service (PJP); Safety in the Provincial Road (KJP); Integrated Management System (SMT) and latent dependent variable (Y) routine maintenance of the provincial road that is integrated with the environmental management system and involve the participation of the community (MML). The result showed the implementation of routine maintenance of road conditions in Central Java province has yet to implement an environmental management by involving the community; Therefore developed environmental management model with the results of H1: Community Participation (PSM) has positive influence on the Model of Environmental Management (MML); H2: Behavior Society in Jalan Utilization (PMJ) positive effect on Model Environmental Management (MML); H3: Provincial Road Service (PJP) positive effect on Model Environmental Management (MML); H4: Safety in the Provincial Road (KJP) positive effect on Model Environmental Management (MML); H5: Integrated Management System (SMT) has positive influence on the Model of Environmental Management (MML). From the analysis obtained formulation model describing the relationship / influence of the independent variables PSM, PMJ, PJP, KJP, and SMT on the dependent variable