WorldWideScience

Sample records for environment simulator aries

  1. Aplikasi Animasi 3 Dimensi Mendem Ari-Ari Berbasis Android

    Directory of Open Access Journals (Sweden)

    I Gusti Agung Sagotri Mahadewi

    2016-04-01

    Full Text Available Mendem Ari-ari merupakan salah satu tradisi umat Hindu yang dilaksanakan saat bayi baru lahir. Banyak kaum muda khususnya pasangan muda belum mengetahui bagaimana prosesi dalam melakukan upacara Mendem Ari-ari. Seiring perkembangan teknologi, permasalahan tersebut dapat ditanggulangi dengan sebuah metode pembelajaran di bidang Teknologi Informasi yaitu dengan memanfaatkan teknologi smartphone berbasis Android sebagai media pembelajaran prosesi upacara Mendem Ari-ari yang diimplementasikan ke dalam sebuah aplikasi animasi 3 dimensi. Aplikasi Mendem Ari-ari yang dibuat dalam aplikasi berbasis Android menggunakan Autodesk Maya sebagai pemodelan dan animasi, sedangkan perancangan aplikasi Android menggunakan Unity. User memberikan input berupa sentuhan pada suatu tombol, aplikasi Mendem Ari-ari kemudian memproses dengan memberikan output sesuai tombol yang disentuh. Hasil dari aplikasi Mendem Ari-ari dapat menjelaskan informasi mengenai prosesi upacara Mendem Ari-ari yang menampilkan objek animasi 3 dimensi dan juga video secara real atau nyata. Kata kunci: Animasi, 3 Dimensi, Mendem Ari-ari, Android

  2. The ARIES-II and ARIES-IV second-stability tokamak reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Hasan, M.Z.; Mau, T.-K.; Sharafat, S.; Baxi, C.B.; Leuer, J.A.; McQuillan, B.W.; Puhn, F.A.; Schultz, K.R.; Wong, C.P.C.; Brooks, J.; Ehst, D.A.; Hassanein, A.; Hua, T.; Hull, A.; Mattis, R.; Picologlou, B.; Sze, D.-K.; Dolan, T.J.; Herring, J.S.; Bathke, C.G.; Krakowski, R.A.; Werley, K.A.; Bromberg, L.; Schultz, J.; Davis, F.; Holmes, J.A.; Lousteau, D.C.; Strickler, D.J.; Jardin, S.C.; Kessel, C.; Snead, L.; Steiner, D.; Valenti, M.; El-Guebaly, L.A.; Emmert, G.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.; Sviatoslavsky, I.N.; Cheng, E.T.

    1992-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. Four ARIES visions are currently planned for the ARIES program. The ARIES-I design is a DT-burning reactor based on modest extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. The ARIES-III study focuses on the potential of tokamaks to operate with D- 3 He fuel system as an alternative to deuterium and tritium. The ARIES-II and ARIES-IV designs have the same fusion plasma but different fusion-power-core designs. The ARIES-II reactor uses liquid lithium as the coolant and tritium breeder and vanadium alloy as the structural material in order to study the potential of low-activation metallic blankets. The ARIES-IV reactor uses helium as the coolant, a solid tritium-breeding material, and silicon carbide composite as the structural material in order to achieve the safety and environmental characteristic of fusion. In this paper the authors describe the trade-off leading to the optimum regime of operation for the ARIES-II and ARIES-IV second-stability reactors and review the engineering design of the fusion power cores

  3. Aris Angelis (1954-2003)

    CERN Multimedia

    2003-01-01

    The value of a person is recognized more by what he leaves behind. Aris Angelis has left a plethora of people: teachers, friends, colleagues, associates, acquaintances, all of whom were shocked and devastated by his untimely and "unjust" departure. Some thought of him as their "mentor" during their crucial and difficult first steps in science... Some others as the ever-giving friend, who put the "common good" in front of himself... Others feel an "unpaid debt" to him, who left so soon and so unexpected... Some feel an enormous loss and a huge vacuum left behind where he was... Others had looked forward to working with him in his new scientific environment... But, ALL of us shall remember Aris with love and joy for what he was and what he has given and left to us. Apostolos D. Panagiotou (Teacher, colleague & friend) Aris was very sensitive to the need for science communication. A CERN guide since 1999, he took part in all special events, such as open days and the Oracle de Delphi, always with the same ...

  4. ARIES: Further description of its Assessment Process

    Energy Technology Data Exchange (ETDEWEB)

    Rabago, I.; Sierra, I.; Vidania, R. de

    1993-07-01

    ARIES* is an integrated system designed in order to facilitate the effects assessment produced by accidental release of toxic chemicals. ARIES has been developed for inhalation exposures to estimate short term consequences over the exposed population. ARIES works with mathematical algorithms and is complemented with an additional system that executes the selection of relevant information, giving an additional support to the assessment. ARIES Methodology is based, on one side, in the development of a system of mathematical models joint sequentially in order to obtain a quick answer about the severity of the expected human effects as a function of the toxic concentration released to the environment (Quantitative process), and on the other side in the analysis and optimization of the contrasted existing information about chemicals toxicity (Qualitative process). Both processes are sequential and complementary. ARIES methodology is physically supported by an informatics system. ARIES works with relational databases and mathematical algorithms programmed in dbase/SQL language which let relate the above process, and furthermore add or incorporate progressively new models or complementary information. It has been developed a first prototype PC's of ARIES including several products of 82/505/EEC Directive. In a previous report we described the system as a whole, and specially, their qualitative step. This report is directed to describe the quantitative assessment process of the system, specifically those aspects included in the present version of the prototype. Developed parts of quantitative steps are designed for situations in which only basic data like TLV's, DL, etc., are available for the assessment. (Author) 8 refs.

  5. ARIES: Further description of its assessment process

    International Nuclear Information System (INIS)

    Rabago, I.; Sierra, I.; Vidania, R.

    1993-01-01

    ARIES is an integrated system designed in order to facilitate the effects assessment produced by accidental release of toxic chemicals. ARIES has been developed for inhalation exposures to estimate short term consequences over the exposed population. ARIES works with mathematical algorithms and is complemented with an additional system that executes the selection of relevant information, giving and additional support to the assessment. ARIES Methodology is based, on one side, in the development of a system of mathematical models joint sequentially in order to obtain a quick answer about the severity of the expected human effects as a function of the toxic concentration released to the environment (Quantitative process), and on the other side in the analysis and optimisation of the contrasted existing information about chemicals toxicity (Qualitative process). Both processes are sequential and complementary. ARIES methodology is physically supported by an informatic system. ARIES works with relational databases and mathematical algorithms programmed in dbase/sql language which let relate the above process, and furthermore add or incorporate progressively new models or complementary information. It has been developed a first prototype PC's of ARIES including several products of 82/505/EEC Directive. In a previous report we described the systems as a whole, and specially, their qualitative step. This report is directed to describe the quantitative assessment process of the system, specifically those aspects included in the present version of the prototype. Developed parts of quantitative steps are designed for situations in which only basic data like TLV's, DL, etc., are available for the assessment

  6. ARIES: Further description of its Assessment Process

    International Nuclear Information System (INIS)

    Rabago, I.; Sierra, I.; Vidania, R. de

    1993-01-01

    ARIES* is an integrated system designed in order to facilitate the effects assessment produced by accidental release of toxic chemicals. ARIES has been developed for inhalation exposures to estimate short term consequences over the exposed population. ARIES works with mathematical algorithms and is complemented with an additional system that executes the selection of relevant information, giving an additional support to the assessment. ARIES Methodology is based, on one side, in the development of a system of mathematical models joint sequentially in order to obtain a quick answer about the severity of the expected human effects as a function of the toxic concentration released to the environment (Quantitative process), and on the other side in the analysis and optimization of the contrasted existing information about chemicals toxicity (Qualitative process). Both processes are sequential and complementary. ARIES methodology is physically supported by an informatics system. ARIES works with relational databases and mathematical algorithms programmed in dbase/SQL language which let relate the above process, and furthermore add or incorporate progressively new models or complementary information. It has been developed a first prototype PC's of ARIES including several products of 82/505/EEC Directive. In a previous report we described the system as a whole, and specially, their qualitative step. This report is directed to describe the quantitative assessment process of the system, specifically those aspects included in the present version of the prototype. Developed parts of quantitative steps are designed for situations in which only basic data like TLV's, DL, etc., are available for the assessment. (Author) 8 refs

  7. Probing the central engine and environment of AGN using ARIES 1.3-m and 3.6-m telescopes

    Science.gov (United States)

    Chand, Hum; Rakshit, Suvendu; Jalan, Priyanka; Ojha, Vineet; Srianand, Raghunathan; Vivek, Mariappan; Mishra, Sapna; Omar, Amitesh; Kumar, Parveen; Joshi, Ravi; Gopal-Krishna; Kumar, Rathna

    2018-04-01

    We discuss three long term observational programmes to probe the central engine and environment of active galactic nuclei (AGN) using the recently installed ARIES 1.3-m and 3.6-m telescopes. The first programme is on the photometric reverberation mapping of low luminosity AGN by mainly using the ARIES 1.3-m telescope. The major impact of this programme other than to estimate the black hole mass will be to extend the broad line region (BLR) radius-luminosity (RBLR-LAGN) relation to the unexplored low luminosity regime, and to constrain the AGN broad line region geometry. The second programme is to use long slit spectroscopy on the ARIES 3.6-m telescope to discover new high redshift quasar pairs with angular separation less than 1-arcmin. Here, the background QSOs sight-line will be used to probe the environment of the foreground QSOs at kpc-Mpc scales. The major impact of this programme will be on the discovery of new pairs which have been missed in the SDSS survey due to fiber collision below 1-arcmin separation, and use them to understand about any excess overdensity around the QSO, any anisotropic emission of QSOs, and/or any episodic activity of QSOs. The third programme is related to spectral variability studies of the C IV broad absorption line (BAL) QSOs, based on low resolution spectroscopy using the ARIES 3.6-m telescope. Here, those most interesting cases will be monitored, where the BAL flow emerges afresh or disappears completely in the C IV trough of BAL QSOs sample as seen in SDSS multi-epoch observations. Continuous monitoring of such a sample will be important for our understanding of the nature and origin of the flow, along with their stability and dynamical evolution.

  8. Aries

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    (the Ram; abbrev. Ari, gen. Arietis; area 441 sq. deg.) A northern zodiacal constellation that lies between Taurus and Pisces, and culminates at midnight in late October. It represents the ram in Greek mythology whose golden fleece was the quest of Jason and the Argonauts. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest. In Ptolemy's day the Sun was in Aries at the v...

  9. Enhanced 2/3 four-ary modulation code using soft-decision Viterbi decoding for four-level holographic data storage systems

    Science.gov (United States)

    Kong, Gyuyeol; Choi, Sooyong

    2017-09-01

    An enhanced 2/3 four-ary modulation code using soft-decision Viterbi decoding is proposed for four-level holographic data storage systems. While the previous four-ary modulation codes focus on preventing maximum two-dimensional intersymbol interference patterns, the proposed four-ary modulation code aims at maximizing the coding gains for better bit error rate performances. For achieving significant coding gains from the four-ary modulation codes, we design a new 2/3 four-ary modulation code in order to enlarge the free distance on the trellis through extensive simulation. The free distance of the proposed four-ary modulation code is extended from 1.21 to 2.04 compared with that of the conventional four-ary modulation code. The simulation result shows that the proposed four-ary modulation code has more than 1 dB gains compared with the conventional four-ary modulation code.

  10. Virtual Array Receiver Options for 64-ary Pulse Position Modulation (PPM)

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-01-12

    NASA is developing technology for 64 64-ary PPM using relatively large PPM time slots (10 ns) an and relatively simple d electronic electronic-based receiver logic. In this paper we describe photonic photonics-based receiver options for the case of much higher data rates and inherently shorter decision times. The receivers take the form of virtual ( array or quadrant) arrays with associated comparison tests. Previously we explored this concept for 4-ary and 16-ary PPM at data rates of up to 10 Gb/s. The lessons learned are applied to the case of 64 64-ary PPM at 1.25 Gb/s s. Various receiver designs are compare, and t the optimum design, based on virtual array he arrays, is s, evaluated using numerical simulations.

  11. Directions for attractive tokamak reactors: The ARIES-II and ARIES-IV second-stability designs

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.

    1993-01-01

    ARIES is a research program to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The ARIES study has developed four visions for tokamaks. All four designs are steady-state, 1000-MWe (net) power reactors. The ARIES-II and ARIES-IV designs assume potential advances in plasma physics (such as second-stability operation) predicted by theory but not yet established experimentally. The two designs have the same fusion plasma but different fusion-power-core. There are only minor differences between the ARIES-II and ARIES-IV plasma parameters. ARIES-IV is a 1000-MWe reactor with an average neutron wall loading of 3 MW/m 2 , and a mass power density of about 120 kWe/tonne of fusion power core. The reactor major radius is 6.1 m, the plasma minor radius is 1.5 m and the plasma elongation is 2, and the plasma triangularity is 0.67. The plasma current is low (6.8 MA), B on-axis is 7.7 T (corresponding to a maximum field at the coil of 16T), and the toroidal beta is 3.4% (Troyon coefficient = 6). The operating regime is optimized such that most of the plasma current (∼ 90%) is provided by the bootstrap current. ARIES-II uses liquid lithium as the coolant and tritium breeder. V-5Cr-5Ti is used as the structural material so that the potential of low-activation metallic blankets can be studied. ARIES-IV uses helium as the coolant, a solid tritium-breeding material (Li 2 O), and silicon carbide composite as structural material. The waste produced by neutron activation in both designs is found to meet the criteria allowing shallow-land burial under U.S. regulations. The cost of electricity for the ARIES-II-IV class of reactors is estimated to be about 20% lower than comparable, steady-state first-stability reactors (e.g. ARIES-I). 25 refs, 2 figs, 1 tab

  12. The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D 3 He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions

  13. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  14. The ARIES tokamak fusion reactor study

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Beecraft, W.R.; Hogan, J.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Whitson, J.C.; Blanchard, J.P.; Emmert, G.A.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1989-01-01

    The ARIES study is a community effort to develop several visions of the tokamak as fusion power reactors. The aims are to determine their potential economics, safety, and environmental features and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak in 2nd stability regime and employs both potential advances in the physics and expected advances in technology and engineering; and ARIES-III is a conceptual D 3 He reactor. This paper focuses on the ARIES-I design. Parametric systems studies show that the optimum 1st stability tokamak has relatively low plasma current (∼ 12 MA), high plasma aspect ratio (∼ 4-6), and high magnetic field (∼ 24 T at the coil). ARIES-I is 1,000 MWe (net) reactor with a plasma major radius of 6.5 m, a minor radius of 1.4 m, a neutron wall loading of about 2.8 MW/m 2 , and a mass power density of about 90 kWe/ton. The ARIES-I reactor operates at steady state using ICRF fast waves to drive current in the plasma core and lower-hybrid waves for edge-plasma current drive. The current-drive system supplements a significant (∼ 57%) bootstrap current contribution. The impurity control system is based on high-recycling poloidal divertors. Because of the high field and large Lorentz forces in the toroidal-field magnets, innovative approaches with high-strength materials and support structures are used. 24 refs., 4 figs., 1 tab

  15. UCLA program in reactor studies: The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ''modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D- 3 He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs

  16. Neutronics assessment for the ARIES advanced reactor studies

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.

    1995-01-01

    The ARIES tokamak designs have incorporated environmental and safety constraints in the design from the beginning. Low activation materials such as SiC or SiC composites, vanadium alloy, and modified HT-9 ferritic steel were utilized as the main structures in ARIES-IV, II, and III, respectively. All designs employ D-T fuel cycles except ARIES-III which is D- 3 He fuelled. An overall tritium breeding ratio of 1.12 seems adequate for ARIES-II and IV. The Li 2 O breeder requires a beryllium multiplier to achieve T self-sufficiency in the ARIES-IV design while the lithium has the ability to breed sufficient T in ARIES-II without a multiplier. Radiation damage concerns for the structures are the burn-up of the SiC and SiC composites and the atomic displacement in the vanadium. The first wall and blanket require frequent replacement (every 3-4 years) during reactor operation. The end-of-life fluences are 16.5MW yearsm -2 and 13MW yearsm -2 based on the 200dpa and 3% burn-up limits for the V and SiC structures respectively. Because of the lower neutron production, the ARIES-III first wall and shield are permanent components and require no replacement over the plant lifetime. A variety of shield options was examined and the ability of various materials to protect the magnets was assessed. At least 1.2m and 1.4m of inboard blanket-shield are required for magnet protection in ARIES-II and ARIES-IV respectively. The lack of T breeding and the lower wall loading result in a much thinner shield (0.65m) for ARIES-III. (orig.)

  17. Comparative histology of the femur between mouflon (Ovis aries musimon and sheep (Ovis aries aries

    Directory of Open Access Journals (Sweden)

    Stefano Giua

    2014-12-01

    Full Text Available Mouflon (Ovis aries musimon and sheep (Ovis aries aries are considered as the wild and domestic subspecies of the same species. A comparative study on the microstructure of mouflon and sheep femoral bone diaphysis is here reported. Bone microstructure is described for the first time in the mouflon. More than 200 secondary osteons from both subspecies were analyzed and qualitative evaluation was followed by quantitative determination of perimeter, area, minimum and maximum diameters of secondary osteons and Haversian canals. The basic structural patterns observed in both subspecies can be classified as plexiform and irregular Haversian tissue, in accordance with what reported in the literature for most ruminants. The presence of many secondary osteons in the mouflon means that the bone also consists of dense Haversian bone tissue. Statistical analysis demonstrated that mouflon secondary osteons are larger than in the sheep and made of a greater number of lamellae. Since mouflon and sheep are taxonomically closely related and their body size is very similar, the qualitative and quantitative differences here reported could be primarily explained on account of their different lifestyle. Indeed, the habits of wildlife typical of mouflons may lead to the presence of wide areas of dense Haversian tissue in that subspecies, as mechanical stresses are known to be related to number and size of secondary osteons. Finally, this analysis could provide a useful tool to recognize bones from different species, in forensic exam and archaeozoological studies as well.

  18. Chaos M-ary modulation and demodulation method based on Hamilton oscillator and its application in communication.

    Science.gov (United States)

    Fu, Yongqing; Li, Xingyuan; Li, Yanan; Yang, Wei; Song, Hailiang

    2013-03-01

    Chaotic communication has aroused general interests in recent years, but its communication effect is not ideal with the restriction of chaos synchronization. In this paper a new chaos M-ary digital modulation and demodulation method is proposed. By using region controllable characteristics of spatiotemporal chaos Hamilton map in phase plane and chaos unique characteristic, which is sensitive to initial value, zone mapping method is proposed. It establishes the map relationship between M-ary digital information and the region of Hamilton map phase plane, thus the M-ary information chaos modulation is realized. In addition, zone partition demodulation method is proposed based on the structure characteristic of Hamilton modulated information, which separates M-ary information from phase trajectory of chaotic Hamilton map, and the theory analysis of zone partition demodulator's boundary range is given. Finally, the communication system based on the two methods is constructed on the personal computer. The simulation shows that in high speed transmission communications and with no chaos synchronization circumstance, the proposed chaotic M-ary modulation and demodulation method has outperformed some conventional M-ary modulation methods, such as quadrature phase shift keying and M-ary pulse amplitude modulation in bit error rate. Besides, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-noise performance, and the system complexity is low and chaos signal is easy to generate.

  19. Tritium Inventory in ARIES-AT

    International Nuclear Information System (INIS)

    Longhurst, Glen R.

    2001-01-01

    This report documents an investigation into the tritium inventory expected in the ARIES-AT fusion reactor. ARIES-AT features silicon carbide fibers in a silicon carbide matrix as its primary construction. It uses the same fusion power core as the previous ARIES-RS. Based on experimental results of several researchers, consideration was given to swelling, sputtering, film coatings, erosion, and implantation. Estimates were made of tritium inventory using the TMAP4 code. About 700 g of tritium may be expected in the machine, two thirds of which would reside in the first wall. Under assumed accident conditions that involve first wall temperatures up to 1000 C, evolution of retained tritium may be expected to vary from 0.8 to nearly 40 percent depending on the temperature of the first wall

  20. ARIES nondestructive assay system operation and performance

    International Nuclear Information System (INIS)

    Cremers, Teresa L.; Hansen, Walter J.; Herrera, Gary D.; Nelson, David C.; Sampson, Thomas E.; Scheer, Nancy L.

    2000-01-01

    The ARIES (Advanced Recovery and Integrated Extraction System) Project is an integrated system at the Los Alamos Plutonium Facility for the dismantlement of nuclear weapons. The plutonium produced by the ARIES process was measured by an integrated nondestructive assay (NDA) system. The performance of the NDA systems was monitored by a measurement control program which is a part of a nuclear material control and accountability system. In this paper we will report the results of the measurements of the measurement control standards as well as an overview of the measurement of the ARIES process materials

  1. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    This report contains an overview of the Aries-I tokamak reactor study. The following topics are discussed on this tokamak: Systems studies; equilibrium, stability, and transport; summary and conclusions; current drive; impurity control system; tritium systems; magnet engineering; fusion-power-core engineering; power conversion; Aries-I safety design and analysis; design layout and maintenance; and start-up and operations

  2. ARIES-I tritium system

    International Nuclear Information System (INIS)

    Sze, D.K.; Tam, S.W.; Billone, M.C.; Hassanein, A.M.; Martin, R.

    1990-09-01

    A key safety concern in a D-T fusion reactor is the tritium inventory. There are three components in a fusion reactor with potentially large inventories, i.e., the blanket, the fuel processing system and the plasma facing components. The ARIES team selected the material combinations, decided the operating conditions and refined the processing systems, with the aiming of minimizing the tritium inventories and leakage. The total tritium inventory for the ARIES-I reactor is only 700 g. This paper discussed the calculations and assumptions we made for the low tritium inventory. We also addressed the uncertainties about the tritium inventory. 13 refs., 2 figs., 3 tabs

  3. The design and research of anti-color-noise chaos M-ary communication system

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yongqing, E-mail: fuyongqing@hrbeu.edu.cn; Li, Xingyuan; Li, Yanan [College of information and Communication Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Lin [College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China)

    2016-03-15

    Previously a novel chaos M-ary digital communication method based on spatiotemporal chaos Hamilton oscillator has been proposed. Without chaos synchronization circumstance, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-white-noise performance compared with traditional communication method. In this paper, the channel noise influence on chaotic modulation signals and the construction problem of anti-color-noise chaotic M-ary communication system are studied. The formula of zone partition demodulator’s boundary in additive white Gaussian noise is derived, besides, the problem about how to determine the boundary of zone partition demodulator in additive color noise is deeply studied; Then an approach on constructing anti-color-noise chaos M-ary communication system is proposed, in which a pre-distortion filter is added after the chaos baseband modulator in the transmitter and whitening filter is added before zone partition demodulator in the receiver. Finally, the chaos M-ary communication system based on Hamilton oscillator is constructed and simulated in different channel noise. The result shows that the proposed method in this paper can improve the anti-color-noise performance of the whole communication system compared with the former system, and it has better anti-fading and resisting disturbance performance than Quadrature Phase Shift Keying system.

  4. The design and research of anti-color-noise chaos M-ary communication system

    International Nuclear Information System (INIS)

    Fu, Yongqing; Li, Xingyuan; Li, Yanan; Zhang, Lin

    2016-01-01

    Previously a novel chaos M-ary digital communication method based on spatiotemporal chaos Hamilton oscillator has been proposed. Without chaos synchronization circumstance, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-white-noise performance compared with traditional communication method. In this paper, the channel noise influence on chaotic modulation signals and the construction problem of anti-color-noise chaotic M-ary communication system are studied. The formula of zone partition demodulator’s boundary in additive white Gaussian noise is derived, besides, the problem about how to determine the boundary of zone partition demodulator in additive color noise is deeply studied; Then an approach on constructing anti-color-noise chaos M-ary communication system is proposed, in which a pre-distortion filter is added after the chaos baseband modulator in the transmitter and whitening filter is added before zone partition demodulator in the receiver. Finally, the chaos M-ary communication system based on Hamilton oscillator is constructed and simulated in different channel noise. The result shows that the proposed method in this paper can improve the anti-color-noise performance of the whole communication system compared with the former system, and it has better anti-fading and resisting disturbance performance than Quadrature Phase Shift Keying system.

  5. Blanket concepts for the ARIES commercial tokamak reactor study

    International Nuclear Information System (INIS)

    Grotz, S.P.; Ghoniem, N.M.; Hasan, M.Z.; Martin, R.C.; Najmabadi, F.; Sharafat, S.; Hua, T.; Sze, D.K.; Cheng, E.T.; Creedon, R.L.; Wong, C.P.C.; Herring, J.S.; Klein, A.; Snead, L.; Steiner, D.

    1989-01-01

    The ARIES study is a 3-year effort, started in 1988, exploring the potential of the tokamak to be an attractive and competitive commercial power reactor. Several different versions of the tokamak are being considered, combining different levels of extrapolations in physics and engineering databases. The first version studied in detail, ARIES-I, combines present-day physics (with minimal extrapolation) with aggressive engineering technology such as very high-field, superconducting magnets and low-activation silicon carbide composite materials. The ARIES-I version is designed to meet acceptable safety and environmental criteria. In particular, achieving a passively safe concept that meets Class-C waste disposal is one of the high leverage items in the design. This paper summarizes the scoping analysis and engineering design of the ARIES-I fusion-power-core subsystems. The ARIES-I design is a 1000 MW e power reactor, operating at steady state in the 1 st stability regime and uses a high magnetic field. Typical operating parameters of the ARIES-I strawman design are listed

  6. On The (honest) truth about dishonesty: How we lie to everyone: Especially ourselves by Dan Ariely

    OpenAIRE

    Hajdu, Csongor

    2016-01-01

    In this book Dan Ariely follows the topic he started to discuss in his prior book, the Predictably Irrational: stating that there is logic and consistency behind irrational human thinking and actions. Ariely goes into more details and leads the general topic of irrationality through a narrow-down approach to the topic of cheating, one of the fields we could observe to work irrationally in some cases, and even within that to cheating within organizational environment.

  7. WAZA-ARI. A dose assessment system for patients in CT scan

    International Nuclear Information System (INIS)

    Sato, Kaoru; Takahashi, Fumiaki; Endo, Akira; Ono, Koji; Ban, Nobuhiko; Hasegawa, Takayuki; Katsunuma, Yasushi; Yoshitake, Takayasu; Kai, Michiaki

    2015-01-01

    The Japan Atomic Energy Agency (JAEA) are now developing WAZA-ARI for improvement of management of exposure doses due to CT examination under the joint research with the Oita University of Nursing and Health Sciences. The trial version of WAZA-ARI has been released on 21 December 2012. In trial version, users can perform dose assessment by using organ dose database based on the average adult Japanese male (JM-103) and female (JF-103) voxel phantoms and a 4 years old female voxel phantom (UFF4). The homepage of WAZA-ARI has been accessed over 1000 times per month and 28421 times by the end of September 2014. We are developing WAZA-ARI version 2 as the extension version of dose calculation functions of WAZA-ARI. WAZA-ARI version 2 will be released by the end of March 2015. In WAZA-ARI version 2. Users can upload dose calculation results to WAZA-ARI version 2 server, and utilize improvement of the dose management of patients and the optimization of CT scan conditions. (author)

  8. The ARIES-III D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Bathke, C.G.; Werley, K.A.; Miller, R.L.; Krakowski, R.A.; Santarius, J.F.

    1992-01-01

    The multi-institutional ARIES study has generated a conceptual design of another tokamak fusion reactor in a series that varies the assumed advances in technology and physics. The ARIES-III design uses a D- 3 He fuel cycle and requires advances in technology and physics for economical attractiveness. The optimal design was characterized through systems analyses for eventual conceptual engineering design. In this paper, results from the systems analysis are summarized, and a comparison with the high-field, D-T fueled ARIES-I is included

  9. ARIES-AT safety design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Petti, D.A. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States)]. E-mail: David.Petti@inl.gov; Merrill, B.J. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Moore, R.L. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Longhurst, G.R. [Idaho National Engineering and Environmental Laboratory, Fusion Safety Program, P.O. Box 1625, Idaho Falls, ID 83415 (United States); El-Guebaly, L. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Mogahed, E. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Henderson, D. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Wilson, P. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States); Abdou, A. [Fusion Technology Institute, 1500 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2006-01-15

    ARIES-AT is a 1000 MWe conceptual fusion power plant design with a very low projected cost of electricity. The design contains many innovative features to improve both the physics and engineering performance of the system. From the safety and environmental perspective, there is greater depth to the overall analysis than in past ARIES studies. For ARIES-AT, the overall spectrum of off-normal events to be examined has been broadened. They include conventional loss of coolant and loss of flow events, an ex-vessel loss of coolant, and in-vessel off-normal events that mobilize in-vessel inventories (e.g., tritium and tokamak dust) and bypass primary confinement such as a loss of vacuum and an in-vessel loss of coolant with bypass. This broader examination of accidents improves the robustness of the design from the safety perspective and gives additional confidence that the facility can meet the no-evacuation requirement under average weather conditions. We also provide a systematic assessment of the design to address key safety functions such as confinement, decay heat removal, and chemical energy control. In the area of waste management, both the volume of the component and its hazard are used to classify the waste. In comparison to previous ARIES designs, the overall waste volume is less because of the compact design.

  10. Fusion power core engineering for the ARIES-ST power plant

    International Nuclear Information System (INIS)

    Tillack, M.S.; Wang, X.R.; Pulsifer, J.; Malang, S.; Sze, D.K.; Billone, M.; Sviatoslavsky, I.

    2003-01-01

    ARIES-ST is a 1000 MWe fusion power plant based on a low aspect ratio 'spherical torus' (ST) plasma. The ARIES-ST power core was designed to accommodate the unique features of an ST power plant, to meet the top-level requirements of an attractive fusion energy source, and to minimize extrapolation from the fusion technology database under development throughout the world. The result is an advanced helium-cooled ferritic steel blanket with flowing PbLi breeder and tungsten plasma-interactive components. Design improvements, such as the use of SiC inserts in the blanket to extend the outlet coolant temperature range were explored and the results are reported here. In the final design point, the power and particle loads found in ARIES-ST are relatively similar to other advanced tokamak power plants (e.g. ARIES-RS [Fusion Eng. Des. 38 (1997) 3; Fusion Eng. Des. 38 (1997) 87]) such that exotic technologies were not required in order to satisfy all of the design criteria. Najmabadi and the ARIES Team [Fusion Eng. Des. (this issue)] provide an overview of ARIES-ST design. In this article, the details of the power core design are presented together with analysis of the thermal-hydraulic, thermomechanical and materials behavior of in-vessel components. Detailed engineering analysis of ARIES-ST TF and PF systems, nuclear analysis, and safety are given in the companion papers

  11. Undergraduate Observations of Separation and Position Angle of Double Stars ARY 6 AD and ARY 6 AE at Manzanita Observatory

    Science.gov (United States)

    Hoffert, Michael J.; Weise, Eric; Clow, Jenna; Hirzel, Jacquelyn; Leeder, Brett; Molyneux, Scott; Scutti, Nicholas; Spartalis, Sarah; Tokuhara, Corey

    2014-05-01

    Six beginning astronomy students, part of an undergraduate stellar astronomy course, one advanced undergraduate student assistant, and a professor measured the position angles and separations of Washington Double Stars (WDS) 05460 + 2119 (also known as ARY 6 AD and ARY 6 AE). The measurements were made at the Manzanita Observatory (116° 20'42" W, 32° 44' 5" N) of the Tierra Astronomical Institute on 10 Blackwood Rd. in Boulevard, California (www.youtube.com/watch?v=BHVdcMGBGDU), at an elevation of 4,500 ft. A Celestron 11" HD Edge telescope was used to measure the position angles and separations of ARY 6 AD and ARY 6 AE. The averages of our measurements are as follows: separation AD: trial 1 124.1 arcseconds and trial 2 124.5 arcseconds. The average of separation for AE: trial 1 73.3 arcseconds and trial 2 73.8 arcseconds. The averages of position angle for AD: trial 1 159.9 degrees and trial 2 161.3 degrees. The averages of position angle for AE: trial 1 232.6 degrees and trial 2 233.7 degrees.

  12. The ARIES-AT advanced tokamak, Advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, Farrokh; Abdou, A.; Bromberg, L.

    2006-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant and to identifying physics and technology areas with the highest leverage for achieving attractive and competitive fusion power in order to guide fusion R and D. The 1000-MWe ARIES-AT design has a major radius of 5.2 m, a minor radius of 1.3 m, a toroidal β of 9.2% (β N = 5.4) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current-drive power is 35 MW. The ARIES-AT design uses the same physics basis as ARIES-RS, a reversed-shear plasma. A distinct difference between ARIES-RS and ARIES-AT plasmas is the higher plasma elongation of ARIES-AT (κ x = 2.2) which is the result of a 'thinner' blanket leading to a large increase in plasma β to 9.2% (compared to 5% for ARIES-RS) with only a slightly higher β N . ARIES-AT blanket is a simple, low-pressure design consisting of SiC composite boxes with a SiC insert for flow distribution that does not carry any structural load. The breeding coolant (Pb-17Li) enters the fusion core from the bottom, and cools the first wall while traveling in the poloidal direction to the top of the blanket module. The coolant then returns through the blanket channel at a low speed and is superheated to ∼1100 deg. C. As most of the fusion power is deposited directly into the breeding coolant, this method leads to a high coolant outlet temperature while keeping the temperature of the SiC structure as well as interface between SiC structure and Pb-17Li to about 1000 deg. C. This blanket is well matched to an advanced Brayton power cycle, leading to an overall thermal efficiency of ∼59%. The very low afterheat in SiC composites results in exceptional safety and waste disposal characteristics. All of the fusion core components qualify for shallow land burial under U.S. regulations (furthermore, ∼90% of components qualify as Class-A waste, the lowest level). The ARIES

  13. Receiver Architecture for 12.5 Gb/s 16-ary Pulse Position Modulation (PPM) Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Gagliardi, R M; Hernandez, V J; Bennett, C V

    2008-07-11

    PPM is a signaling scheme that enables the transmission of multiple bits per symbol [1]. It has found favor in the regime of free space optical communications ('FSO' or 'Lasercom'); however, PPM has yet to be widely applied to fiber optic-based communications. Its limitation in fiber results from the exceedingly high bandwidth requirements needed to electronically process a directly detected pulse, especially as the symbol rate increases and the pulse width correspondingly decreases. As a solution, we introduced the concept of a virtual quadrant receiver for receiving 1.25 Gb/s 4-ary PPM, where photonic processing reduced the number of required electronic components [2]. In this paper, we extend these photonic process techniques to a 16-ary, 12.5 Gb/s (10 Gb/s plus 8B/10B line coding) PPM communications system for fiber optic avionics, wherein much of the receiver processing is enabled by techniques based on planar lightwave circuits (PLCs). The architecture is applicable to higher input data rates and M-ary PPM. In the following, we present the PPM encoding and decoding architectures and numerically simulated results.

  14. Current drive studies for the ARIES steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Mau, T.K.; Ehst, D.A.; Mandrekas, J.

    1994-01-01

    Steady-state plasma operating scenarios are designed for three versions of the ARIES reactor, using non-inductive current drive techniques that have an established database. R.f. waves, including fast and lower hybrid waves, are the reference drivers for the D-T burning ARIES-I and ARIES-II/IV, while neutral beam injection is employed for ARIES-III which burns D- 3 He. Plasma equilibria with a high bootstrap-current component have been used, in order to minimize the recirculating power fraction and cost of electricity. To maintain plasma stability, the driven current profile has been aligned with that of equilibrium by proper choices of the plasma profiles and power launch parameters. Except for ARIES-III, the current-drive power requirements and the relevant technology developments are found to be quite reasonable. The wave-power spectrum and launch requirements are also considered achievable with a modest development effort. Issues such as an improved database for fast-wave current drive, lower-hybrid power coupling to the plasma edge, profile control in the plasma core, and access to the design point of operation remain to be addressed. ((orig.))

  15. The role of health education in promoting acceptance of an ARI control project.

    Science.gov (United States)

    Dhar, G M

    1993-01-01

    In India, acute respiratory infection (ARI) is responsible for 20% of all annual deaths of children under 5 years old (600,000-800,000 deaths). Children have from 3 to 5 ARI episodes a year. Thus, it is important to inform communities about ARI prevention and control. Health education activities of ARI control projects should convey knowledge, improve attitudes, and encourage health-inducing practices in such a way that a community should voluntarily assume responsibility to actively prevent and control ARI in children. These activities should empower communities to identify and report ARI in children, provide home care and supportive therapy, use the UIP cover to protect all infants, promote breast feeding, reduce indoor air pollution, and cooperate with health workers in ARI control as well as use oral rehydration therapy as soon as diarrhea starts. To design an effective health education program, planners need to interview a sample of the local population to learn the people's knowledge, attitudes, and practices toward ARI in children. Any ARI health education program should also include UIP, oral rehydration therapy, maternal and child health, and family welfare. The health educator can use 1 or more educational methods. Discussion is a 2-way process of exchanging ideas and should raise questions about ARI control, provide answers, and yield solutions. If an educator chooses the demonstration method, he or she should take the target audience to a health facility so the staff can demonstrate the clinical signs of a child with ARI, including the fast breathing, chest indrawing, cyanosis, wheezing, and stridor. The display method involves audiovisual aids, such as posters, puppet shows, and films. The health educator can use any of these methods when dealing with individuals, groups, or crowds. He or she must attune the approach and materials to the values of the community and present them so the individual can readily adapt the messages into his or her way of

  16. NPS ARIES Forward Look Sonar Integration

    National Research Council Canada - National Science Library

    Healey, A. J; Horner, D. P

    2004-01-01

    This work integrated an experimental Blazed Array Forward Looking Sonar (FLS) developed by the University of Washington, Applied Physics Laboratories into the ARIES autonomous underwater vehicle (AUV...

  17. Safety analyses of the ARIES tokamak reactor designs

    International Nuclear Information System (INIS)

    Herring, J.S.; McCarthy, K.A.; Dolan, T.J.

    1994-01-01

    The ARIES design has sought to maximize environmental and safety advantages of fusion through careful selection of materials and design. The ARIES-I tokamak reactor design consists of an SiC composite structure for the first wall and blanket, cooled by 10MPa helium. The breeder is Li 2 ZrO 3 . The divertor consists of SiC composite tubes coated with 2mm tungsten. Loss-of-cooling accident (LOCA) calculations indicate maximum temperatures will not cause damage if the plasma is promptly extinguished. The ARIES-II design includes liquid lithium and vanadium, both of which have low activation, multiple barriers between the lithium and air and an inert cover gas to prevent lithium-air reactions. The ARIES-II reactor is passively safe with a total 1km early dose of about 88rem (0.88Sv). ARIES-III was an extensive examination of the viability of a D- 3 He fueled tokamak power reactor. Because neutrons are produced only through side reactions (D+D→ 3 He+n, and D+D→T+p followed by D+T→ 4 He+n), the reactor has a reduced activation of the first wall and shield, low afterheat and class A or C low level waste disposal. Since no tritium is required for operation, no lithium-containing breeding blanket is necessary. We modeled a LOCA in which the organic coolant was burning in order to estimate the amount of radionuclides released from the first wall. Because the maximum temperature is low, below 600 C, release fractions are small. We analyzed the disposition of the 20g per day of tritium that is produced by D-D reactions and removed by vacuum pumps. The ARIES-IV coolant is helium and the breeder is lithium oxide. The structure is silicon carbide. Since the neutron multiplier, beryllium metal, is combustible, releasing about 60MJkg -1 , beryllium is the chief source of chemical energy. Less than 10% of the 24 Na inventory is likely to diffuse out of the SiC during a fire in which the beryllium is consumed. Therefore, the offsite dose would be less than 200rem. ((orig.))

  18. Physico-chemical and biological studies on water from Aries River (Romania).

    Science.gov (United States)

    Butiuc-Keul, A; Momeu, L; Craciunas, C; Dobrota, C; Cuna, S; Balas, G

    2012-03-01

    Our work was focused on physico-chemical and biological characteristics of Aries River, one of the largest rivers from Romania. Water samples were collected from 11 sites along Aries River course. We have measured de (18)O and D isotopic composition of Aries River water in these locations and correlated these data with the isotopic composition of aquatic plants and with the pollution degree. Some ions from Aries River water were also analyzed: NO(3)(-), NO(2)(-), PO(4)(3-) Cu(2+), Fe(3+). Analysis of diatom communities has been performed in order to quantify the level of water pollution of Aries River. All physico-chemical analyses revealed that the most polluted site is Abrud; the source of pollution is most probably the mining enterprise from Rosia Montana. Water isotope content increases from upstream to downstream of the locations analyzed. The structure of diatom communities is strongly influenced by the different pollution sources from this area: mine waters, industrial waters, waste products, land cleaning, tourism etc. The water eutrophication increases from upstream of Campeni to downstream of Campia Turzii. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics on the Aries-I Tokamak: Design description; systems studies and economics; reactor plasma physics; magnet engineering; fusion-power-ore engineering; and environmental and safety features

  20. ARIES-I Fusion-Power-Core Engineering

    International Nuclear Information System (INIS)

    Sharafat, S.; Najmabadi, F.; Wong, C.P.C.

    1991-01-01

    The ARIES research program is a multi-institutional project, the goal of which is to determine the economic, safety, and environmental potential of tokamak fusion reactors. The ARIES-I steady-state tokamak reactor is a conceptual, DT-burning, 1000 MWe reactor with a major radius of 6.75 m, a minor radius of 1.5 m, and an average neutron wall loading of 2.5 MW/m 2 . The ARIES-I plasma operates in the first MHD stability regime with a toroidal beta of 1.9%. The choice to operate in the first stability regime, with a high aspect ratio and with a low plasma current, leads to the need for high magnetic field to achieve adequate fusion power density (β 2 B 4 ). The toroidal field at the plasma center is 11 T and the maximum field at the coil is 21 T. Nonetheless, it is found that the maximum stress in the structural material of these magnets is ∝700 MPa and industrially available alloys can be used. The impurity-control and particle-exhaust system is based on a high recycling double-null divertor system. The low-activation silicon-carbide (SiC) composite is used as structural material. The breeder material, Li 2 ZrO 3 , and the multiplier material, Be, are both sphere-packed between poloidally nested SiC-composite shells. The divertor plates consist of SiC-composite tube shells protected with 2 mm-thick tungsten armor. The first wall, blanket, shield, and divertor are all helium cooled with an inlet coolant temperature of 350deg C at a pressure of 10 MPa. The high helium-outlet temperature of 650deg C ensures a relatively high gross thermal efficiency of 49%. The ARIES-I design has demonstrated that tokamak reactors have the potential to achieve a high level of safety coupled with a Class-C waste-disposal rating. (orig.)

  1. ARIES-III divertor engineering design

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.; Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S.; Herring, J.S.; Valenti, M.; Steiner, D.

    1992-01-01

    This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m 2 , a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m 2 . The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed

  2. ARIES-III divertor engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Schultz, K.R. [General Atomics, San Diego, CA (United States); Cheng, E.T. [TSI Research, Solana Beach, CA (United States); Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering; Brooks, J.N.; Ehst, D.A.; Sze, D.K. [Argonne National Lab., IL (United States); Herring, J.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Valenti, M.; Steiner, D. [Rensselaer Polytechnic Inst., Troy, NY (United States). Plasma Dynamics Lab.

    1992-01-01

    This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m{sup 2}, a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m{sup 2}. The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed.

  3. Micropropagation of caçari under different nutritive culture media ...

    African Journals Online (AJOL)

    The caçari (Myrciaria dubia) is a native fruit tree from Amazon with high concentrations of vitamin C. This study aimed to adjust a culture medium that meets the nutritional needs for the in vitro development of caçari, evaluating the effect of different concentrations and nutritive culture media, antioxidant, and levels of agar and ...

  4. Engineering design of the Aries-IV gaseous divertor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Najmabadi, F.; Sharafat, S.

    1994-01-01

    ARIES-IV is a conceptual, D-T burning, steady-state tokamak fusion reactor producing 1000 MWe net. It operates in the second plasma stability regime. The structural material is SiC composite and the primary coolant is helium at 10MPa base pressure. ARIES-IV uses double-null divertors for particle control. Total thermal power recovered from the divertors is 425MW, which is 16% of the total reactor thermal power. Among the desirable goals of divertor design were to avoid the use of tungsten and to use the same structural material and primary coolant as in the blanket design. In order to reduce peak heat flux, the innovative gaseous divertor has been used in ARIES-IV. A gaseous divertor reduces peak heat flux by increasing the surface area and by distributing particle and radiation energy more uniformly. Another benefit of gaseous divertor is the reduction of plasma temperature in the divertor chamber, so that material erosion due to sputtering, can be diminished. This makes the use of low-Z material possible in a gaseous divertor

  5. Superconducting poloidal field magnet engineering for the ARIES-ST

    International Nuclear Information System (INIS)

    Bromberg, Leslie; Pourrahimi, S.; Schultz, J.H.; Titus, P.; Jardin, S.; Kessel, C.; Reiersen, W.

    2003-01-01

    The critical issues of the poloidal systems for the ARIES-ST design have been presented in this paper. Because of the large plasma current and the need of highly shaped plasmas, the poloidal field (PF) coils should be located inside the toroidal field in order to reduce their current. Even then, the divertor coils carry large currents. The ARIES-ST PF coils are superconducting using the internally cooled cable-in-conduit conductor. The peak self field in the divertor coils is about 15 T and the highest field in the non-divertor coils is about 6 T. The PF magnets have built-in margins that are sufficient to survive disruptions without quenching. The costing study indicates that the specific cost of the PF system is $80/kg. Detailed design and trade-off studies of ARIES-ST are presented and remaining R and D issues are identified

  6. ARIES: System for Health effects Assessment in industrial risk

    Energy Technology Data Exchange (ETDEWEB)

    Rabago, I.; Vidania, R. de; Inmaculada, S.

    1992-07-01

    In this work we present a general description of ARIES*, a tool designed in order to support the assessment of expected health effects derived from an accidental release of toxic compounds. ARIES includes two sequential and complementary steps. The first one (a quantitative phase) is being developed. for inhalation exposures, using numerical models, empirical correlations, physiological parameters and toxicological index, to estimate short term consequences over the exposed population. Next it will be published a new report were It will be described with detail the procedure designed to the quantitative assessment of the exposure. The system starts the assessment process with values of external concentrations which are processed, together with different exposure values (existing for humans and scaled up irom animals), as inputs for different kinds of models. From these, and other physiological values ARIES calculates the inhaled equivalent doses and the expected associated effects as a function of the exposure limes. Once overcome this first step, ARIES is complemented with an additional system that executes the selection of relevant information from toxicological data bases (qualitative phase). The system works , applying a string of filters and searches that displays selected Information, giving an additional support to the assessment. Both steps, just referred, are integrated into a logical informatics support. The informatics code is developed in dbase language even for the design of the procedure as for the mathematical models linked to the system ( extrapolation, dose inhaled models, etc.) to execute the numerical analysis of the assessment. The system has been designed in order to include progressively new chemicals and the improvements obtained in the development of mathematical models related with dose-effect relationships. At this moment, is programmed a first prototype of ARIES that can be executed in PC's and it can run for several products

  7. ARIES: System for Health effects Assessment in industrial risk

    Energy Technology Data Exchange (ETDEWEB)

    Rabago, I; Vidania, R de; Inmaculada, S

    1992-07-01

    In this work we present a general description of ARIES*, a tool designed in order to support the assessment of expected health effects derived from an accidental release of toxic compounds. ARIES includes two sequential and complementary steps. The first one (a quantitative phase) is being developed. for inhalation exposures, using numerical models, empirical correlations, physiological parameters and toxicological index, to estimate short term consequences over the exposed population. Next it will be published a new report were It will be described with detail the procedure designed to the quantitative assessment of the exposure. The system starts the assessment process with values of external concentrations which are processed, together with different exposure values (existing for humans and scaled up irom animals), as inputs for different kinds of models. From these, and other physiological values ARIES calculates the inhaled equivalent doses and the expected associated effects as a function of the exposure limes. Once overcome this first step, ARIES is complemented with an additional system that executes the selection of relevant information from toxicological data bases (qualitative phase). The system works , applying a string of filters and searches that displays selected Information, giving an additional support to the assessment. Both steps, just referred, are integrated into a logical informatics support. The informatics code is developed in dbase language even for the design of the procedure as for the mathematical models linked to the system ( extrapolation, dose inhaled models, etc.) to execute the numerical analysis of the assessment. The system has been designed in order to include progressively new chemicals and the improvements obtained in the development of mathematical models related with dose-effect relationships. At this moment, is programmed a first prototype of ARIES that can be executed in PC's and it can run for several products

  8. ARIES: System for Health effects Assessment in industrial risk

    International Nuclear Information System (INIS)

    Rabago, I.; Vidania, R. de; Inmaculada, S.

    1992-01-01

    In this work we present a general description of ARIES*, a tool designed in order to support the assessment of expected health effects derived from an accidental release of toxic compounds. ARIES includes two sequential and complementary steps. The first one (a quantitative phase) is being developed. for inhalation exposures, using numerical models, empirical correlations, physiological parameters and toxicological index, to estimate short term consequences over the exposed population. Next it will be published a new report were It will be described with detail the procedure designed to the quantitative assessment of the exposure. The system starts the assessment process with values of external concentrations which are processed, together with different exposure values (existing for humans and scaled up irom animals), as inputs for different kinds of models. From these, and other physiological values ARIES calculates the inhaled equivalent doses and the expected associated effects as a function of the exposure limes. Once overcome this first step, ARIES is complemented with an additional system that executes the selection of relevant information from toxicological data bases (qualitative phase). The system works , applying a string of filters and searches that displays selected Information, giving an additional support to the assessment. Both steps, just referred, are integrated into a logical informatics support. The informatics code is developed in dbase language even for the design of the procedure as for the mathematical models linked to the system ( extrapolation, dose inhaled models, etc.) to execute the numerical analysis of the assessment. The system has been designed in order to include progressively new chemicals and the improvements obtained in the development of mathematical models related with dose-effect relationships. At this moment, is programmed a first prototype of ARIES that can be executed in PC's and it can run for several products

  9. Undergraduate Observations of Separation and Position Angle of Double Stars WDS J05460+2119AB (ARY 6AD and ARY 6 AE) at Manzanita Observatory (Abstract)

    Science.gov (United States)

    HOffert, M. J.; Weise, E.; Clow, J.; Hirzel, J.; Leeder, B.; Molyneux, S.; Scutti, N.; Spartalis, S.; Takuhara, C.

    2014-12-01

    (Abstract only) Six beginning astronomy students, part of an undergraduate stellar astronomy course, one advanced undergraduate student assistant, and a professor measured the position angles and separations of Washington Double Stars (WDS) J05460+2119 (= WDS J05460+2119AB; also known as ARY 6 AD and ARY 6 AE). The measurements were made at the Manzanita Observatory (116º 20' 42" W, 32º 44' 5" N) of the Tierra Astronomical Institute on 10 Blackwood Road in Boulevard, California (www.youtube.com/watch?v=BHVdeMGBGDU), at an elevation of 4,500 ft. A Celestron 11-inch HD Edge telescope was used to measure the position angles and separations of ARY 6 AD and ARY 6 AE. The averages of our measurements are as follows: separation AD: trial 1 124.1 arcseconds and trial 2 124.5 arcseconds; separation AE: trial 1 73.3 arcseconds and trial 2 73.8 arcseconds. The averages of positon angle for AD: trial 1 159.9 degrees and trial 2 161.3 degrees, for AE: trial 1 232.6 degrees and trial 2 233.7 degrees.

  10. Overview of the ARIES-RS reversed-shear tokamak power plant study

    International Nuclear Information System (INIS)

    Najmabadi, F.; Billone, M.C.

    1997-01-01

    The ARIES-RS tokamak is a conceptual, D-T-burning 1000 MWe power plant. As with earlier ARIES design studies, the final design of ARIES-RS was obtained in a self-consistent manner using the best available physics and engineering models. Detailed analyses of individual systems together with system interfaces and interactions were incorporated into the ARIES systems code in order to assure self-consistency and to optimize towards the lowest cost system. The ARIES-RS design operates with a reversed-shear plasma and employs a moderate aspect ratio (A=4.0). The plasma current is relatively low (I p =11.32 MA) and bootstrap current fraction is high (f BC =0.88). Consequently, the auxiliary power required for RF current drive is relatively low (∝80 MW). At the same time, the average toroidal beta is high (β=5%), providing power densities near practical engineering limits (the peak neutron wall loading is 5.7 MW m -2 ). The toroidal-field (TF) coil system is designed with relatively 'conventional' materials (Nb 3 Sn and NbTi conductor with 316SS structures), and is operated at a design limit of ∝16 T at the coil in order to optimize the design point. The ARIES-RS design uses a self-cooled lithium blanket with vanadium alloy as the structural material. The V-alloy has low activation, low afterheat, high temperature capability and can handle high heat flux. A self-cooled liquid lithium blanket is simple, and with the development of an insulating coating, has low operating pressure. Also, this blanket gives excellent neutronics performance. Detailed analysis has been performed to minimize the cost and maximize the performance of the blanket and shield. (orig.)

  11. HpARI Protein Secreted by a Helminth Parasite Suppresses Interleukin-33.

    Science.gov (United States)

    Osbourn, Megan; Soares, Dinesh C; Vacca, Francesco; Cohen, E Suzanne; Scott, Ian C; Gregory, William F; Smyth, Danielle J; Toivakka, Matilda; Kemter, Andrea M; le Bihan, Thierry; Wear, Martin; Hoving, Dennis; Filbey, Kara J; Hewitson, James P; Henderson, Holly; Gonzàlez-Cìscar, Andrea; Errington, Claire; Vermeren, Sonja; Astier, Anne L; Wallace, William A; Schwarze, Jürgen; Ivens, Alasdair C; Maizels, Rick M; McSorley, Henry J

    2017-10-17

    Infection by helminth parasites is associated with amelioration of allergic reactivity, but mechanistic insights into this association are lacking. Products secreted by the mouse parasite Heligmosomoides polygyrus suppress type 2 (allergic) immune responses through interference in the interleukin-33 (IL-33) pathway. Here, we identified H. polygyrus Alarmin Release Inhibitor (HpARI), an IL-33-suppressive 26-kDa protein, containing three predicted complement control protein (CCP) modules. In vivo, recombinant HpARI abrogated IL-33, group 2 innate lymphoid cell (ILC2) and eosinophilic responses to Alternaria allergen administration, and diminished eosinophilic responses to Nippostrongylus brasiliensis, increasing parasite burden. HpARI bound directly to both mouse and human IL-33 (in the cytokine's activated state) and also to nuclear DNA via its N-terminal CCP module pair (CCP1/2), tethering active IL-33 within necrotic cells, preventing its release, and forestalling initiation of type 2 allergic responses. Thus, HpARI employs a novel molecular strategy to suppress type 2 immunity in both infection and allergy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Advanced Recovery and Integrated Extraction System (ARIES) program plan. Rev. 1

    International Nuclear Information System (INIS)

    Nelson, T.O.; Massey, P.W.; Cremers, T.L.

    1996-01-01

    The Advanced Recovery and Integrated Extraction System (ARIES) demonstration combines various technologies, some of which were/are being developed under previous/other Department of Energy (DOE) funded programs. ARIES is an overall processing system for the dismantlement of nuclear weapon primaries. The program will demonstrate dismantlement of nuclear weapons and retrieval of the plutonium into a form that is compatible with long term storage and that is inspectable in an unclassified form appropriate for the application of traditional international safeguards. The success of the ARIES demonstration would lead to the development of a transportable modular or other facility type systems for weapons dismantlement to be used at other DOE sites as well as in other countries

  13. Aries: system for health effects assessment in industrial Risk

    International Nuclear Information System (INIS)

    Rabago, I.; Vidania, R. de; Sierra, I.

    1992-01-01

    In this word we present a general description of ARIES*, a tool designed in order to support the assessment of expected heath derived from an accidental release of toxic compounds. ARIES includes two secuential and complementary steps. the first one (a quantitative phase) is being developed, for inhalation exposures, using numerical models, empirical correlations, physiological parameters and toxicological index, to estimate short term consequences over the exposed population. Next it will be published a new report were it will be described with detail the procedure designed for the quantitative published a new report were it will be described with detail the procedure designed for the quantitative assessment of the exposure. the system starts the assessment process with values of external concentrations which are processed, together with different exposure values (existing for humans and scaled up from animals), as inputs for different kinds of models. from these, and other physilogical values ARIES calculates the inhaled equivalent doses and the expected associated effects as a function of the exposure times. Once overcome this first step, ARIES is complemented with an additional system that executes the selection of relevant information from toxicological data bases (qualitative phase). The system works applying a string of filters and searches that displays selected information, giving and additional support to the assessment. Both steps, just refered, are integrated into a logical informatic support. The informatic code is developed in dbase languaje even for the design of the procedure as for the mathematical models linked to the system (extrapolation, dose inhaled models, etc) to execute the numerical analisys of the assessment. The system has been designed in order to include progressively new chemicals and the improvements obtained in the development of mathematical models related with dose-effect relationships. At this moment, is programmed a first

  14. ARIES-AT: An advanced tokamak, advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, F.; Jardin, S.C.; Tillack, M.; Waganer, L.M.

    2001-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several avenues were pursued in order to arrive at plasmas with a higher β and better bootstrap alignment compared to ARIES-RS that led to plasmas with higher β N and β. Advanced technologies that are examined in detail include: (1) Possible improvements to the overall system by using high-temperature superconductors, (2) Innovative SiC blankets that lead to a high thermal cycle efficiency of ∼60%; and (3) Advanced manufacturing techniques which aim at producing near-finished products directly from raw material, resulting in low-cost, and reliable components. The 1000-MWe ARIES-AT design has a major radius of 5.4 m, minor radius of 1.3 M, a toroidal β of 9.2% (β N =6.0) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current drive power is 24 MW. The ARIES-AT study shows that the combination of advanced tokamak modes and advanced technology leads to attractive fusion power plant with excellent safety and environmental characteristics and with a cost of electricity (5c/kWh), which is competitive with those projected for other sources of energy. (author)

  15. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  16. Engineering design of ARIES-III

    International Nuclear Information System (INIS)

    Sze, D.K.; Wong, C.; Cheng, E.

    1993-07-01

    An efficient organic cooled low activation ferritic steel first wall and shield has been designed for the D- 3 He power reactor ARIES-III. The design allows removal of the large surface heat load without exceeding temperature and stress design limits. The structure is expected to last for the whole reactor life. The major concerns regarding using the organic coolant in fusion reactors have been greatly alleviated

  17. Organic coolant for ARIES-III

    International Nuclear Information System (INIS)

    Sze, D.K.; Sviatoslavsky, I.; Sawan, M.; Gierszewski, P.; Hollies, R.; Sharafat, S.; Herring, S.

    1991-04-01

    ARIES-III is a D-He 3 reactor design study. It is found that the organic coolant is well suited for the D-He 3 reactor. This paper discusses the unique features of the D-He 3 reactor, and the reason that the organic coolant is compatible with those features. The problems associated with the organic coolant are also discussed. 8 refs., 2 figs., 6 tabs

  18. ARIES segmented gamma-ray scanner user manual

    International Nuclear Information System (INIS)

    Biddle, R.S.; Sheppard, G.A.; Schneider, C.M.

    1998-01-01

    The segmented gamma-ray scatter (SGS) designated as Win SGS at the Los Alamos Plutonium Facility has been installed and is intended for use in quantifying the radioisotope content of DOE-STD-3013-96 equivalent containers. The SGS features new software written in C and a new user interface that runs under Microsoft Windows trademark. The operation of the ARIES Segmented Gamma-ray Scanner is documented in this manual. It covers user instructions as well as hardware and software details. Additional information is found in the documentation for the commercially available components and modules that compose the SGS. The objective of the ARIES project is to demonstrate technology to dismantle plutonium pits from excess nuclear weapons, convert the plutonium to a metal ingot or an oxide powder, package the metal or oxide, and verify the contents of the package by nondestructive assay

  19. The ARIES-III D-3He tokamak reactor: Design-point determination and parametric studies

    International Nuclear Information System (INIS)

    Bathke, C.G.; Werley, K.A.; Miller, R.L.; Krakowski, R.A.; Santarius, J.F.

    1991-01-01

    The multi-institutional ARIES study has generated a conceptual design of another tokamak fusion reactor in a series that varies the assumed advances in technology and physics. The ARIES-3 design uses a D- 3 He fuel cycle and requires advances in technology and physics for economical attractiveness. The optimal design was characterized through systems analyses for eventual conceptual engineering design. Results from the systems analysis are summarized, and a comparison with the high-field, D-T fueled ARIES-1 is included. 11 refs., 5 figs

  20. Time-dependent Taylor–Aris dispersion of an initial point concentration

    DEFF Research Database (Denmark)

    Vedel, Søren; Hovad, Emil; Bruus, Henrik

    2014-01-01

    -specific theoretical results, and furthermore predict new phenomena. In particular, for the transient phase before the well-described steady Taylor–Aris limit is reached, we find anomalous diffusion with a dependence of the temporal scaling exponent on the initial release point, generalizing this finding in specific...... cases. During this transient we furthermore identify maxima in the values of the dispersion coefficient which exceed the Taylor–Aris value by amounts that depend on channel geometry, initial point release position, velocity profile and Péclet number. We show that these effects are caused by a difference...

  1. The ARIES-RS power core - recent development in Li/V designs

    International Nuclear Information System (INIS)

    Sze Dai-Kai; Billone, M.C.; Hua, T.Q.; Tillack, M.; Najmabadi, F.; Wang Xueren; Malang, S.; El-Guebaly, L.A.; Sviatoslavsky, I.N.; Blanchard, J.P.; Crowell, J.A.; Khater, H.Y.; Mogahed, E.A.; Waganer, L.M.; Lee, D.; Cole, D.

    1998-01-01

    The ARIES-RS fusion power plant design study is based on reversed-shear (RS) physics with a Li/V (lithium breeder and vanadium structure) blanket. The reversed-shear discharge has been documented in many large tokamak experiments. The plasma in the RS mode has a high beta, low current, and low current drive requirement. Therefore, it is an attractive physics regime for a fusion power plant. The blanket system based on Li/V has high temperature operating capability, good tritium breeding, excellent high heat flux removal capability, long structural life time, low activation, low after heat and good safety characteristics. For these reasons, the ARIES-RS reactor study selected Li/V as the reference blanket. The combination of attractive physics and attractive blanket engineering is expected to result in a superior power plant design. This paper summarizes the power core design of the ARIES-RS power plant study. (orig.)

  2. Advection and Taylor-Aris dispersion in rivulet flow

    Science.gov (United States)

    Al Mukahal, F. H. H.; Duffy, B. R.; Wilson, S. K.

    2017-11-01

    Motivated by the need for a better understanding of the transport of solutes in microfluidic flows with free surfaces, the advection and dispersion of a passive solute in steady unidirectional flow of a thin uniform rivulet on an inclined planar substrate driven by gravity and/or a uniform longitudinal surface shear stress are analysed. Firstly, we describe the short-time advection of both an initially semi-infinite and an initially finite slug of solute of uniform concentration. Secondly, we describe the long-time Taylor-Aris dispersion of an initially finite slug of solute. In particular, we obtain the general expression for the effective diffusivity for Taylor-Aris dispersion in such a rivulet, and discuss in detail its different interpretations in the special case of a rivulet on a vertical substrate.

  3. Calibration of ARI QC ionisation chambers using the Australian secondary standards for activity

    International Nuclear Information System (INIS)

    Mo, L.; Van Der Gaast, H.A.; Alexiev, D.; Butcher, K.S.A.; Davies, J.

    1999-01-01

    The Secondary Standard Activity Laboratory (SSAL) in ANSTO routinely provides standardised radioactive sources, traceable activity measurements and custom source preparation services to customers. The most important activity carried out is the calibration of ionisation chambers located in the Quality Control (QC) section of Australian Radioisotopes (ARI). This ensures that their activity measurements are traceable to the Australian primary methods of standardisation. ARI QC ionisation chambers are calibrated for 99m Tc, 67 Ga, 131 I, 201 Tl and 153 Sm. The SSAL has a TPA ionisation chamber, which has been directly calibrated against a primary standard for a variety of radioactive nuclides. Calibration factors for this chamber were determined specifically for the actual volumes (5ml for 99m Tc, 131 I, 2ml for 67 Ga, 201 Tl and 3 ml for 153 Sm) and types of vial (Wheaton) which are routinely used at ARI. These calibration factors can be used to accurately measure the activity of samples prepared by ARI. The samples can subsequently be used to calibrate the QC ionisation chambers. QC ionisation chambers are re-calibrated biannually

  4. The ARIES-I high-field-tokamak reactor: Design-point determination and parametric studies

    International Nuclear Information System (INIS)

    Miller, R.L.

    1989-01-01

    The multi-institutional ARIES study has examined the physics, technology, safety, and economic issues associated with the conceptual design of a tokamak magnetic-fusion reactor. The ARIES-I variant envisions a DT-fueled device based on advanced superconducting coil, blanket, and power-conversion technologies and a modest extrapolation of existing tokamak physics. A comprehensive systems and trade study has been conducted as an integral and ongoing part of the reactor assessment in order to identify an acceptable design point to be subjected to detailed analysis and integration as well as to characterize the ARIES-I operating space. Results of parametric studies leading to the identification of such a design point are presented. 15 refs., 6 figs., 2 tabs

  5. Neutronics design aspects of reference ARIES-I fusion blanket

    International Nuclear Information System (INIS)

    Cheng, E.T.

    1990-12-01

    A SiC composite blanket concept was recently conceived for a deuterium-tritium burning, 1000 MW(e) tokamak fusion reactor design, ARIES-I. SiC composite structural material was chosen due to its very low activation features. High blanket nuclear performance and thermal efficiency, adequate tritium breeding, and a low level of activation are important design requirements for the ARIES-I reactor. The major approaches, other than using SiC as structural material, in meeting these design requirements, are to employ beryllium, the only low activation neutron multiplying material, and isotopically tailored Li 2 ZrO 3 , a tritium breeding material stable at high temperature, as blanket materials. 5 refs., 4 figs., 2 tabs

  6. FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology

    International Nuclear Information System (INIS)

    Meade, Dale M.

    2004-01-01

    The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains ∼10, self-driven currents of ∼80%, fusion power ∼150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm -3 and neutron wall loading from 2-4 MWm -2 which are at the levels expected from the ARIES-RS/AT design studies

  7. Radiologic analysis of hindfoot alignment: Comparison of Méary, long axial, and hindfoot alignment views.

    Science.gov (United States)

    Neri, T; Barthelemy, R; Tourné, Y

    2017-12-01

    Among radiographic views available for assessing hindfoot alignment, the antero-posterior weight-bearing view with metal cerclage of the hindfoot (Méary view) is the most widely used in France. Internationally, the long axial view (LAV) and hindfoot alignment view (HAV) are used also. The objective of this study was to compare the reliability of these three views. The Méary view with cerclage of the hindfoot is as reliable as the LAV and HAV for assessing hindfoot alignment. All three views were obtained in each of 22 prospectively included patients. Intra-observer and inter-observer reliabilities were assessed by having two observers collect the radiographic measurements then computing the intra-class correlation coefficients (ICCs). The intra-observer and inter-observer ICCs were 0.956 and 0.988 with the Méary view, 0.990 and 0.765 with the HAV, and 0.997 and 0.991 with the LAV, respectively. Correlations were far stronger between the LAV and HAV than between each of these and the Méary view. Compared to the LAV and HAV, the Méary view indicated a greater degree of hindfoot valgus. Intra-observer reliability was excellent with both the LAV and HAV, whereas inter-observer reliability was better with the LAV. Excellent reliability was also obtained with the Méary view. Combining the Méary view to obtain a radiographic image of the clinical deformity with the LAV to measure the angular deviation of the hindfoot axis may be useful when assessing hindfoot malalignment. A comparison of the three views in a larger population is needed before clinical recommendations can be made. II, prospective study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. ARIES-IV Nested Shell Blanket Design

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Redler, K.; Reis, E.E.; Will, R.; Cheng, E.; Hasan, C.M.; Sharafat, S.

    1993-11-01

    The ARIES-IV Nested Shell Blanket (NSB) Design is an alternate blanket concept of the ARIES-IV low activation helium-cooled reactor design. The reference design has the coolant routed in the poloidal direction and the inlet and outlet plena are located at the top and bottom of the torus. The NSB design has the high velocity coolant routed in the toroidal direction and the plena are located behind the blanket. This is of significance since the selected structural material is SiC-composite. The NSB is designed to have key high performance components with characteristic dimensions of no larger than 2 m. These components can be brazed to form the blanket module. For the diverter design, we eliminated the use of W as the divertor coating material by relying on the successful development of the gaseous divertor concept. The neutronics and thermal-hydraulic performance of both blanket concepts are similar. The selected blanket and divertor configurations can also meet all the projected structural, neutronics and thermal-hydraulics design limits and requirements. With the selected blanket and divertor materials, the design has a level of safety assurance rate of I (LSA-1), which indicates an inherently safe design

  9. Weightless environment simulation test; Mujuryo simulation shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K.; Yamamoto, T.; Kato, F. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1997-07-20

    Kawasaki Heavy Industries, Ltd., delivered a Weightless Environment Test System (WETS) to National Space Development Agency of Japan in 1994. This system creates a weightless environment similar to that in space by balancing gravity and buoyancy in the water, and is constituted of a large water tank, facilities to supply air and cooling water to space suits worn in the water, etc. In this report, a weightless environment simulation test and the facilities to supply air and cooling water are described. In the weightless environment simulation test, the astronaut to undergo tests and training wears a space suit quite similar to the suit worn on the orbit, and performs EVA/IVA (extravehicular activities/intravehicular activities) around a JEM (Japanese Experimental Module) mockup installed in the water verifying JEM design specifications, preparing manuals for operations on the orbit, or receives basic space-related drill and training. An EVA weightless environment simulation test No. 3 was accomplished with success in January, 1997, when the supply of breathing water and cooling water to the space suit, etc., were carried out with safety and reliability. 2 refs., 8 figs., 2 tabs.

  10. ARI-EL: een case-controle onderzoek naar Acute Respiratoire Infecties in de Eerste lijn. Tussenrapportage over okt. 2000 t/m sept. 2001

    NARCIS (Netherlands)

    van den Brandhof WE; Bartelds AIM; Peeters MF; Wilbrink B; Heijnen MLA; CIE; NIVEL; Streeklaboratorium voor de Volksgezondheid Tilburg; LIS

    2002-01-01

    Vanaf oktober 2000 is de Nederlandse influenza-surveillance tijdelijk uitgebreid tot een case-controle studie naar acute respiratoire infecties (ARI) bij huisartspatienten: de ARI-EL studie. Doel is inzicht verkrijgen in de incidentie en etiologie van ARI, risicofactoren voor ARI en in de zorgvraag

  11. ARIES Oxide Production Program Annual Report - FY14

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Evelyn A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dinehart, Steven Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-01

    A summary of the major accomplishments (September), milestones, financial summary, project performance and issues facing the ARIES Oxide Production Program at the close of FY14 is presented in this Executive Summary. Annual accomplishments are summarized in the body of the report.

  12. ARIS: Acid Rain Information System. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, P.; Musante, L.

    1982-04-20

    ARIS is to provide the technical, government, and business communities with abstracted information from the world's significant technical and business literature. The subject areas covered by this acid rain data base includes (1) the mechanism of the formation of acid rain; (2) its transport phenomena; (3) its effects on materials; (4) its effects on plants; (5) the health effects of acid rain; and (6) monitoring and analysis of acid rain. Data in ARIS comes from several government and commercial data base producers, and these include EDB DOE Energy Database, Environmental Science Index, Air Pollution Abstracts, National Technical Service (NTIS), and articles of regional interests from various newspapers. The types of publication source documents are: technical journals, conference proceedings, selected monographs, government reports, special studies, and newspapers. The file data is proposed to be updated quarterly and will cover selected references from 1970 with major focus on material after 1976.

  13. Safety in the ARIES Tokamak Design Study

    International Nuclear Information System (INIS)

    Herring, J.S.; Wong, C.P.-C.; Cheng, E.T.; Grotz, S.

    1989-01-01

    Safety is one of the primary goals of the ARIES Tokamak Design Study. Public safety goals are the achievement passive safety which is demonstrable in tests that could precede operation and the assurance that releases from accidents be passively limited such that no evacuation plan in necessary. Strategies for safety of the plant investment are factory fabrication, short construction times and a design such that no off-normal operational transient results in damage which could not be repaired in routine maintenance. ARIES-I, the first of three 'visions' of potential tokamak reactors, will use He at 5 MPa as a blanket coolant and SiC/composite ceramic for the first wall and blanket materials. Both the coolant and the structural material were chosen for their low activation, both in the short term after accidents and for long term waste management. The breeder, Li 4 SiO 4 , was also chosen for low activation. Contemporary plasma physics and aggressive technology are used in ARIES-I, which results in very high toroidal fields (24 T maximum at the coil). The stored TF energy will be about 130 GJ. A central concern is the safe discharge of this stored energy under electrical fault conditions and prevention of a failure in the magnet set from propagating into systems containing radioactive inventories. The TF coil system consists of 16 coils, each containing two separate windings powered by two independent power supplies. Arcs and shorts between the two power supply systems and across individual windings have been modeled. In addition, delay or failure in circuit breaker opening has been modeled. The safety impacts of LOCA, LOFA and disruptive events have also been evaluated. 8 refs., 4 figs., 7 tabs

  14. Non-dirt house floor and the stimulant of environmental health decreased the risk Acute Respiratory Infection (ARI

    Directory of Open Access Journals (Sweden)

    Putu Suriyasa

    2006-03-01

    Full Text Available The risk factors related to acute respiratory infection (ARI, among others, is house floor. The aim of this research was to identify the influence of the Family Health and Nutrition program (FHN and other risk factors related to ARI. Data was obtained from a survey conducted in 5 provinces in Indonesia, which received the project of Family Health and Nutrition (FHN in 2003. The number of subjects was 1,500 families, selected by stratified random sampling method. The questionnaire completion and the observation were done on the spot in the subject’s house by special trained interviewers. The use of non-dirt house floor built prior to the project of FHN decreased the risk of ARI cases of 51% than the use of dirt house floor [Odds Ratio (OR = 0.49; 95% Confidence Interval (CI = 0.25-0.96]. The risk of ARI decreased of 52% among those who received than those which never received the stimulant of environmental health Family Health and Nutrition program (OR = 0.48; 95% CI =0.33-0.70. To decrease the risks of ARI cases, the program of environmental health is necessarily continued. (Med J Indones 2006; 15:60-5Keywords: ARI, non-dirt house floor, and stimulant of environmental health

  15. ARIES pit disassembly-safeguards issues for transparency

    International Nuclear Information System (INIS)

    Fearey, B.L.; Cremers, T.L.

    1995-01-01

    Historic changes are now occurring in U.S. nonproliferation and arms control policy. The quantity of nuclear weapons required to provide a deterrence has decreased (especially with the end of the Cold War). Further, various bilateral and multilateral treaties now require the removal of numerous nuclear weapons from the U.S. stockpile. Although the removal of such weapons appears straightforward, the final disposition of the surplus weapons-grade nuclear material must be carefully considered. Domestically, several plutonium disposition plans are now under consideration concerning long-term safety, materials accounting, environmental impact, accessibility, and long-term containment. The Automated Retirement and Integrated Extraction System (ARIES) currently under development at Los Alamos National Laboratory is one such disposition method for the disassembly of plutonium weapons components (pits). The ARIES system integrates and automates several features: disassembly of pits, consolidation of the plutonium material, on-line measurement of final products, waste streams, and long-term packaging. Clearly, in any plutonium disposition plan, the safeguards aspects of materials control and accounting and the security aspects must be carefully considered and evaluated

  16. Being Irrationally Funny as a Cognitive Psychologist: Interview With Dan Ariely.

    Science.gov (United States)

    Ariely, Dan; Popescu, Beatrice

    2015-11-01

    The idea of interviewing Dan Ariely was somehow latent on my mind since I started being interested in cognitive psychology and cognitive behavior psychotherapy, but actually got more ardent ever since irrationality became a research topic for his team at Duke University. I picked him as an interviewee thinking not only at his exceptional skills as a researcher and as Kahnemann 'disciple', but mainly for his fantastic wit, true modesty and utmost interest in making people's lives easier and more comfortable, by creating awareness on a lot of topics otherwise neglected. Dan Ariely's very agreeable personality and humor would not let you think of him as a burnt casualty who, in his youth struggled to survive a personal drama, so well-documented in his paper "Painful lessons" posted on the MIT website (http://web.mit.edu/ariely/www/MIT/Papers/mypain.pdf). I think reading his paper and also this transcribed interview with him would be also comforting for people who found out about Bucharest fire incident that rocked our society and also for people who are personally related to this tragedy.

  17. Risk factors of Acute Respiratory Infection (ARI in under-fives in a rural hospital of Central India

    Directory of Open Access Journals (Sweden)

    Amar M. Taksande

    2015-11-01

    Full Text Available Introduction: Acute Respiratory Infection (ARI is a major cause of morbidity and mortality in developing countries in children especially in under-fives. Every year in the world, about 13 million under-5 children dies, 95% from developing countries; one third of total deaths are due to ARI. The aim of this study was to identify the significant risk factors for ARI in children less than five years of age living in rural areas of Central India.Methods: A hospital based case control study was undertaken to determine risk factors associated with respiratory tract infections in children. Children less than 5 years admitted in a pediatric ward with diagnosis of ARI were enrolled in the study as cases (n = 300 while the same number of controls (n = 300 were selected from neighborhood and were matched for age, sex and religion. Details of risk factors in cases and controls were recorded in pre-designed proforma. Results: A significant association was found between ARI and lack of breastfeeding, nutritional status, immunization status, delayed weaning, prelactal feeding, living in overcrowded conditions, mothers’ literacy status, low birth weight and prematurity. Among the environmental variables, inadequate ventilation, improper housing condition, exposure to indoor air pollution in form of combustion from fuel used for cooking were found as significant risk factors for ARI in under-fives.Conclusions: ARIs are affected by socio-demographic and socio-cultural risk factors, which can be modified with simple interventions. The various risk factors identified in this study were lack of breastfeeding, undernutrition, delayed weaning, overcrowding and prelactal feeding.

  18. Observations of TT Ari requested in support of MOST observations

    Science.gov (United States)

    Waagen, Elizabeth O.

    2012-08-01

    Dr. Nikolaus Vogt (Universidad de Valparaiso, Chile) requested simultaneous photometry and spectroscopy of the novalike (VY Scl subtype) cataclysmic variable TT Ari in support of upcoming observations with the Canadian Microvariability and Oscillations of Stars (MOST) satellite 2012 September 13 through October 20. The Departamento de Fisica y Astronomia of the Valparaiso University will carry out photometry with small telescopes in central Chile but the assistance of other observers, particularly in other latitudes and longitudes, is requested. The observations are being carried out to study superhump behavior, which is still not well understood despite the amount of research done in all classes of cataclysmic variables. TT Ari exibits superhumps - both positive (the superhump period is longer than the orbital period) and negative (the superhump period is shorter than the orbital period). While positive superhumps are thought probably to be the result of an eccentric configuration in the accretion disk, the mechanism for negative superhumps is not yet understood except that it may be related to the disk's being warped out of the orbital plane, leading to complex torque phenomena. TT Ari, one of the brightest cataclysmic variables, exhibits occasional fadings of several magnitudes, from its usual high-state (maximum) magnitude of ~10.5V to a low-state magnitude as faint as 16V. These fadings occur every 20-25 years, and last between 500 and 1000 days. According to observations in the AAVSO International Database, TT Ari is currently magnitude 10.5V. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details, particularly regarding goals of the campaign, and observing instructions.

  19. Transient Taylor-Aris dispersion for time-dependent flows in straight channels

    DEFF Research Database (Denmark)

    Vedel, Søren; Bruus, Henrik

    2012-01-01

    Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow direction of the solvent, has been studied intensely in the past half century for the case of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of moments with Dirac’s bra–ket forma......Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow direction of the solvent, has been studied intensely in the past half century for the case of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of moments with Dirac’s bra...

  20. Research Facilities for Solar Astronomy at ARIES P. Pant

    Indian Academy of Sciences (India)

    Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak,. Nainital 263 129 .... station-20 computer, a GPS clock for accurate timing, etc. The various CCD ... circulation unit is used for cooling the camera head up to −25.

  1. On δ-derivations of n-ary algebras

    International Nuclear Information System (INIS)

    Kaygorodov, Ivan B

    2012-01-01

    We give a description of δ-derivations of (n+1)-dimensional n-ary Filippov algebras and, as a consequence, of simple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero. We also give new examples of non-trivial δ-derivations of Filippov algebras and show that there are no non-trivial δ-derivations of the simple ternary Mal'tsev algebra M 8 .

  2. Error Probability of Binary and -ary Signals with Spatial Diversity in Nakagami- (Hoyt Fading Channels

    Directory of Open Access Journals (Sweden)

    Duong Trung Q

    2007-01-01

    Full Text Available We analyze the exact average symbol error probability (SEP of binary and -ary signals with spatial diversity in Nakagami- (Hoyt fading channels. The maximal-ratio combining and orthogonal space-time block coding are considered as diversity techniques for single-input multiple-output and multiple-input multiple-output systems, respectively. We obtain the average SEP in terms of the Lauricella multivariate hypergeometric function . The analysis is verified by comparing with Monte Carlo simulations and we further show that our general SEP expressions particularize to the previously known results for Rayleigh ( = 1 and single-input single-output (SISO Nakagami- cases.

  3. n-ary algebras: a review with applications

    International Nuclear Information System (INIS)

    De Azcarraga, J A; Izquierdo, J M

    2010-01-01

    This paper reviews the properties and applications of certain n-ary generalizations of Lie algebras in a self-contained and unified way. These generalizations are algebraic structures in which the two-entry Lie bracket has been replaced by a bracket with n entries. Each type of n-ary bracket satisfies a specific characteristic identity which plays the role of the Jacobi identity for Lie algebras. Particular attention will be paid to generalized Lie algebras, which are defined by even multibrackets obtained by antisymmetrizing the associative products of its n components and that satisfy the generalized Jacobi identity, and to Filippov (or n-Lie) algebras, which are defined by fully antisymmetric n-brackets that satisfy the Filippov identity. 3-Lie algebras have surfaced recently in multi-brane theory in the context of the Bagger-Lambert-Gustavsson model. As a result, Filippov algebras will be discussed at length, including the cohomology complexes that govern their central extensions and their deformations (it turns out that Whitehead's lemma extends to all semisimple n-Lie algebras). When the skewsymmetry of the Lie or n-Lie algebra bracket is relaxed, one is led to a more general type of n-algebras, the n-Leibniz algebras. These will be discussed as well, since they underlie the cohomological properties of n-Lie algebras. The standard Poisson structure may also be extended to the n-ary case. We shall review here the even generalized Poisson structures, whose generalized Jacobi identity reproduces the pattern of the generalized Lie algebras, and the Nambu-Poisson structures, which satisfy the Filippov identity and determine Filippov algebras. Finally, the recent work of Bagger-Lambert and Gustavsson on superconformal Chern-Simons theory will be briefly discussed. Emphasis will be made on the appearance of the 3-Lie algebra structure and on why the A 4 model may be formulated in terms of an ordinary Lie algebra, and on its Nambu bracket generalization. (topical

  4. ARIES: A mobile robot inspector

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is a mobile robot inspection system being developed for the Department of Energy (DOE) to survey and inspect drums containing mixed and low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an autonomous inspection operation, typically performed by a human operator. It will make real-time decisions about the condition of the drums, maintain a database of pertinent information about each drum, and generate reports

  5. On the Symbol Error Rate of M-ary MPSK over Generalized Fading Channels with Additive Laplacian Noise

    KAUST Repository

    Soury, Hamza

    2015-01-07

    This work considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox’s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations [1].

  6. On the Symbol Error Rate of M-ary MPSK over Generalized Fading Channels with Additive Laplacian Noise

    KAUST Repository

    Soury, Hamza; Alouini, Mohamed-Slim

    2015-01-01

    This work considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox’s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations [1].

  7. Normal forms for characteristic functions on n-ary relations

    NARCIS (Netherlands)

    D.J.N. van Eijck (Jan)

    2004-01-01

    textabstractFunctions of type (n) are characteristic functions on n-ary relations. Keenan established their importance for natural language semantics, by showing that natural language has many examples of irreducible type (n) functions, i.e., functions of type (n) that cannot be represented as

  8. The Performance of a Mobile Phone Respiratory Rate Counter Compared to the WHO ARI Timer

    Directory of Open Access Journals (Sweden)

    Heng Gan

    2015-01-01

    Full Text Available OBJECTIVE: To compare the accuracy and efficiency of the respiratory rate (RR RRate mobile application to the WHO ARI Timer. METHODS: Volunteers used both devices to measure RR from reference videos of infants and children. Measurements were compared using correlation, Bland-Altman analysis, error metrics and time taken. RESULTS: Measurements with either device were highly correlated to the reference (r = 0.991 and r = 0.982, and to each other (r = 0.973. RRate had a larger bias than the ARI Timer (0.6 vs. 0.04 br/min, but tighter limits of agreement (−4.5 to 3.3 br/min vs. −5.5 to 5.5 br/min. RRate was more accurate than the ARI Timer (percentage error 10.6% vs. 14.8%, root mean square error 2.1 vs. 2.8 br/min and normalized root mean square error 5.6% vs. 7.5%. RRate measurements were 52.7 seconds (95% CI 50.4 s to 54.9 s faster. CONCLUSION: During video observations, RRate measured RR quicker with a similar accuracy compared to the ARI Timer.

  9. A systems analysis of the ARIES tokamak reactors

    International Nuclear Information System (INIS)

    Bathke, C.G.

    1992-01-01

    The multi-institutional ARIES study has completed a series of cost-of-electricity optimized conceptual designs of commercial tokamak fusion reactors that vary the assumed advances in technology and physics. A comparison of these designs indicates the cost benefit of various design options. A parametric systems analysis suggests a possible means to obtain a marginally competitive fusion reactor

  10. ARI3SG: Aerosol retention in the secondary side of a steam generator. Part II: Model validation and uncertainty analysis

    International Nuclear Information System (INIS)

    Lopez, Claudia; Herranz, Luis E.

    2012-01-01

    Highlights: ► Validation of a model (ARI3SG) for the aerosol retention in the break stage of a steam generator under SGTR conditions. ► Interpretation of the experimental SGTR and CAAT data by using the ARI3SG model. ► Assessment of the epistemic and stochastic uncertainties effect on the ARI3SG results. - Abstract: A large body of data has been gathered in the last decade through the EU-SGTR, ARTIST and ARTIST 2 projects for aerosol retention in the steam generator during SGTR severe accident sequences. At the same time the attempt to extend the analytical capability has resulted in models that need to be validated. The ARI3SG is one of such developments and it has been built to estimate the aerosol retention in the break stage of a “dry” steam generator. This paper assesses the ARI3SG predictability by comparing its estimates to open data and by analyzing the effect of associated uncertainties. Datamodel comparison has been shown to be satisfactory and highlight the potential use of an ARI3SG-like formulation in system codes.

  11. On the symbol error rate of M-ary MPSK over generalized fading channels with additive Laplacian noise

    KAUST Repository

    Soury, Hamza

    2014-06-01

    This paper considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox\\'s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations. © 2014 IEEE.

  12. On the symbol error rate of M-ary MPSK over generalized fading channels with additive Laplacian noise

    KAUST Repository

    Soury, Hamza; Alouini, Mohamed-Slim

    2014-01-01

    This paper considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox's H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations. © 2014 IEEE.

  13. Closed Form Aliasing Probability For Q-ary Symmetric Errors

    Directory of Open Access Journals (Sweden)

    Geetani Edirisooriya

    1996-01-01

    Full Text Available In Built-In Self-Test (BIST techniques, test data reduction can be achieved using Linear Feedback Shift Registers (LFSRs. A faulty circuit may escape detection due to loss of information inherent to data compaction schemes. This is referred to as aliasing. The probability of aliasing in Multiple-Input Shift-Registers (MISRs has been studied under various bit error models. By modeling the signature analyzer as a Markov process we show that the closed form expression derived for aliasing probability previously, for MISRs with primitive polynomials under q-ary symmetric error model holds for all MISRs irrespective of their feedback polynomials and for group cellular automata signature analyzers as well. If the erroneous behaviour of a circuit can be modelled with q-ary symmetric errors, then the test circuit complexity and propagation delay associated with the signature analyzer can be minimized by using a set of m single bit LFSRs without increasing the probability of aliasing.

  14. ARIES-ST STUDIES REPORT FOR THE PERIOD JANUARY 1, 1998 THROUGH DECEMBER 31, 1998

    International Nuclear Information System (INIS)

    V.S. CHAN; L.L. LAO; Y.R. LIN-LIU; R.L. MILLER; T.W. PETRIE; P.A. POLITZER; R. PRATER; M.J. SCHAFFER; G.M. STAEBLER; R.D. STAMBAUGH; A.D. TURNBULL; W.P.WEST

    1999-01-01

    During 1998, the General Atomics (GA) ARIES-Spherical Torus (ST) team examined several critical issues related to the physics performance of the ARIES-ST design, and a number of suggestions were made concerning possible improvements in performance. These included specification of a reference plasma equilibrium, optimization about the reference equilibrium to achieve higher beta limits, examination of three possible schemes for plasma initiation, development of a detailed scenario for ramp-up of the plasma current and pressure to its full, final operating values, an assessment of the requirement for electron confinement, and several suggestions for divertor heat flux reduction. The reference equilibrium was generated using the TOQ code, with the specification of a 100%, self-consistent bootstrap current. The equilibrium has β = 51%, 10% below the stability limit (a margin specified by the ARIES-ST study). In addition, a series of intermediate equilibria were defined, corresponding to the ramp-up scenario discussed. A study of the influence of shaping on ARIES-ST performance indicates that significant improvement in both kink and ballooning stability can be obtained by modest changes in the squareness of the plasma. In test equilibria the ballooning beta limit is increased from 58% to 67%. Also the maximum allowable plasma-wall separation for kink stability can be increased by 30%. Three schemes were examined for noninductive plasma initiation. These are helicity injection (HICD), electron cyclotron heating (ECH)-assisted startup, and inductive startup using only the external equilibrium coils. HICD startup experiments have been done on the HIT and CDX devices. ECH-assisted startup has been demonstrated on CDX-U and DIII-D. External coil initiation is based on calculations for a proposed DIII-D experiment. In all cases, plasma initiation and preparation of an approximately 0.3 MA plasma for ARIES-ST appears entirely feasible

  15. ARIES NDA Robot operators' manual

    International Nuclear Information System (INIS)

    Scheer, N.L.; Nelson, D.C.

    1998-05-01

    The ARIES NDA Robot is an automation device for servicing the material movements for a suite of Non-destructive assay (NDA) instruments. This suite of instruments includes a calorimeter, a gamma isotopic system, a segmented gamma scanner (SGS), and a neutron coincidence counter (NCC). Objects moved by the robot include sample cans, standard cans, and instrument plugs. The robot computer has an RS-232 connection with the NDA Host computer, which coordinates robot movements and instrument measurements. The instruments are expected to perform measurements under the direction of the Host without operator intervention. This user's manual describes system startup, using the main menu, manual operation, and error recovery

  16. Evaluating methamphetamine use and risks of injection initiation among street youth: the ARYS study

    Directory of Open Access Journals (Sweden)

    Montaner Julio SG

    2006-05-01

    Full Text Available Abstract Many Canadian cities are experiencing ongoing infectious disease and overdose epidemics among injection drug users (IDU. These health concerns have recently been exacerbated by the increasing availability and use of methamphetamine. The challenges of reducing health-related harms among IDU have led to an increased recognition that strategies to prevent initiation into injection drug use must receive renewed focus. In an effort to better explore the factors that may protect against or facilitate entry into injection drug use, the At Risk Youth Study (ARYS has recently been initiated in Vancouver, Canada. The local setting is unique due to the significant infrastructure that has been put in place to reduce HIV transmission among active IDU. The ARYS study will seek to examine the impact of these programs, if any, on non-injection drug users. In addition, Vancouver has been the site of widespread use of methamphetamine in general and has seen a substantial increase in the use of crystal methamphetamine among street youth. Hence, the ARYS cohort is well positioned to examine the harms associated with methamphetamine use, including its potential role in facilitating initiation into injection drug use. This paper provides some background on the epidemiology of illicit drug use among street youth in North America and outlines the methodology of ARYS, a prospective cohort study of street youth in Vancouver, Canada.

  17. Virtual environments simulation in research reactor

    Science.gov (United States)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  18. Reactor Configuration Development for ARIES-CS

    International Nuclear Information System (INIS)

    Ku LP

    2005-01-01

    New compact, quasi-axially symmetric stellarator configurations have been developed as part of the ARIES-CS reactor studies. These new configurations have good plasma confinement and transport properties, including low losses of α particles and good integrity of flux surfaces at high β. We summarize the recent progress by showcasing two attractive classes of configurations--configurations with judiciously chosen rotational transforms to avoid undesirable effects of low order resonances on the flux surface integrity and configurations with very small aspect ratios (∼2.5) that have excellent quasi-axisymmetry and low field ripples

  19. Exploration of Compact Stellarators as Power Plants: Initial Results from ARIES-CS Study

    International Nuclear Information System (INIS)

    Najmabadi, Farrokh

    2005-01-01

    A detailed and integrated study of compact stellarators as power plants, ARIES-CS, was initiated recently to advance our understanding of attractive compact stellarator configurations and to define key R and D areas. We have completed phase 1 of ARIES-CS study - our results are described in this paper. We have identified several promising stellarator configurations. High α particle loss of these configurations is a critical issue. It appears that devices with an overall size similar to those envisioned for tokamak power plants are possible. A novel approach was developed in ARIES-CS in which the blanket at the critical areas of minimum stand-off is replaced by a highly efficient WC-based shield. In this manner, we have been able to reduce the minimum stand-off by ∼20%-30% compared to a uniform radial build which was assumed in previous studies. Our examination of engineering options indicates that overall assembly and maintenance procedure plays a critical role in identifying acceptable engineering design and has a major impact on the optimization of a plasma/coil configuration

  20. ARIES-RS safety design and analysis

    International Nuclear Information System (INIS)

    Steiner, D.; El-Guebaly, L.; Herring, S.; Khater, H.; Mogahed, E.; Thayer, R.; Tillack, M.S.

    1997-01-01

    The ARIES-RS safety design and analysis focused on achieving two objectives: (1) The avoidance of sheltering or evacuation in the event of an accident; and (2) the generation of only low-level waste, no greater than Class C. The ARIES-RS baseline design employs V-4Cr-4Ti as the blanket structural material and a low activation ferritic steel in the reflector and shield. In the event of a LOCA, the baseline design first wall maximum temperature falls in the range of 1100-1200 C. For this temperature range, the hazard assessment indicates that the dose at the site boundary will be less than 1 rem per year. Thus, no sheltering or evacuation would be required in the event of a LOCA. Although the baseline design satisfies the first safety objective noted above, a first wall maximum temperature of ∝1100-1200 C would likely compromise the integrity of the vanadium blanket structure and would require blanket replacement following such a temperature excursion. To avoid this situation, a modified blanket design incorporating supplemental heat removal is also proposed. Preliminary analysis of this modified design suggests that the first wall maximum temperature can be kept below the temperature range of concern, ∝1000-1100 C, in the event of a LOCA. When the ferritic steel used in the reflector and shield is one reduced in Ir and Ag impurities, all in-vessel components qualify for near-surface shallow land burial as Class C low-level waste. (orig.)

  1. Simplified Soft-output Demapper Based on a Linear Transformation Technique for M-ary PSK

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2014-10-01

    Full Text Available Combining channel coding with high-order modulation schemes, namely coded modulation (CM, is an efficient digital transmission technology. CM requires the demapper to provide a soft decision bit metric as a part of the inputs to the decoder. This paper proposes an efficient soft- output demapper for M-ary PSK. This novel demodulation algorithm continues to evolve the conventional MAX-Log-MAP algorithm and summarizes the final derivation into a form of matrix multiplication. The Computational complexity for getting one bit soft value of a signal by employing the proposed algorithm remains a constant with the increase of modulation order. Meanwhile, the theoretical analysis and simulation results prove that the novel simplified soft-output demapper can obtain the same performance as MAX-Log-MAP.

  2. Summary of the PULSAR and ARIES studies

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.

    1994-01-01

    The PULSAR research program is a multi-institutional effort to investigate the feasibility and potential features of fusion power plants based on pulsed, inductively driven tokamak operation. In order to provide a sensible assessment of pulsed tokamak operation, a comparison with the ARIES steady-state power plant designs has been made. Two PULSAR designs have been considered: PULSAR-I uses He coolant, a solid tritium-breeding material, and SiC composite structure; PULSAR-II uses liquid Li as the coolant and tritium breeder, and a V-alloy structure material. This paper focuses on the PULSAR design and the comparison with steady-state ARIES designs. The 1000-MWe PULSAR design has an aspect ratio of 4, a plasma major radius of 8.6m, a plasma minor radius of 2.2m, and a neutron wall loading of l.3MW/m 2 . The toroidal field on axis is 7T, plasma β is 2.8%, plasma current is 14MA, and the bootstrap fraction is 37%. Because of cyclic fatigue, the allowable stress in the TF coils is lower, and, therefore, for the same magnet technology, the maximum toroidal field on the coil is 12T in the PULSAR design (corresponding to 16T in a steady-state device). This decrease in the toroidal-field strength more than offsets the gains in plasma β values for a pulsed device, resulting in a lower fusion-power density and a larger tokamak relative to a steady-state design

  3. Generic Simulator Environment for Realistic Simulation - Autonomous Entity Proof and Emotion in Decision Making

    Directory of Open Access Journals (Sweden)

    Mickaël Camus

    2004-10-01

    Full Text Available Simulation is usually used as an evaluation and testing system. Many sectors are concerned such as EUROPEAN SPACE AGENCY or the EUROPEAN DEFENCE. It is important to make sure that the project is error-free in order to continue it. The difficulty is to develop a realistic environment for the simulation and the execution of a scenario. This paper presents PALOMA, a Generic Simulator Environment. This project is based essantially on the Chaos Theory and Complex Systems to create and direct an environment for a simulation. An important point is the generic aspect. PALOMA will be able to create an environment for different sectors (Aero-space, Biology, Mathematic, .... PALOMA includes six components : the Simulation Engine, the Direction Module, the Environment Generator, the Natural Behavior Restriction, the Communication API and the User API. Three languages are used to develop this simulator. SCHEME for the Direction language, C/C++ for the development of modules and OZ/MOZART for the heart of PALOMA.

  4. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel

    Science.gov (United States)

    Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua

    2018-06-01

    The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.

  5. CAPS Simulation Environment Development

    Science.gov (United States)

    Murphy, Douglas G.; Hoffman, James A.

    2005-01-01

    The final design for an effective Comet/Asteroid Protection System (CAPS) will likely come after a number of competing designs have been simulated and evaluated. Because of the large number of design parameters involved in a system capable of detecting an object, accurately determining its orbit, and diverting the impact threat, a comprehensive simulation environment will be an extremely valuable tool for the CAPS designers. A successful simulation/design tool will aid the user in identifying the critical parameters in the system and eventually allow for automatic optimization of the design once the relationships of the key parameters are understood. A CAPS configuration will consist of space-based detectors whose purpose is to scan the celestial sphere in search of objects likely to make a close approach to Earth and to determine with the greatest possible accuracy the orbits of those objects. Other components of a CAPS configuration may include systems for modifying the orbits of approaching objects, either for the purpose of preventing a collision or for positioning the object into an orbit where it can be studied or used as a mineral resource. The Synergistic Engineering Environment (SEE) is a space-systems design, evaluation, and visualization software tool being leveraged to simulate these aspects of the CAPS study. The long-term goal of the SEE is to provide capabilities to allow the user to build and compare various CAPS designs by running end-to-end simulations that encompass the scanning phase, the orbit determination phase, and the orbit modification phase of a given scenario. Herein, a brief description of the expected simulation phases is provided, the current status and available features of the SEE software system is reported, and examples are shown of how the system is used to build and evaluate a CAPS detection design. Conclusions and the roadmap for future development of the SEE are also presented.

  6. Health effects assessment of chemical exposures: ARIES methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, L; Montero, M.; Rabago, I.; Vidania, R.

    1995-07-01

    In this work, we present ARIES* update: a system designed in order to facilitate the human health effects assessment produced by accidental release of toxic chemicals. The first version of ARIES was developed in relation to 82/501/EEC Directive about mayor accidents in the chemical industry. So, the first aim was the support of the effects assessment derived for the chemicals included into this directive. From this establishment, it was considered acute exposures for high concentrations. In this report, we present the actual methodology for considering other type of exposures, such as environmental and occupational. Likewise other versions, the methodology comprises two approaches: quantitative and qualitative assessments. Quantitative assessment incorporates the mathematical algorithms useful to evaluate the effects produced by the most important routes of exposure: inhalation, ingestion, eye contact and skin absorption, in a short, medium and long term. It has been included models that realizes an accurate quantification of doses, effects,... and so on, such as simple approaches when the available information is not enough. Qualitative assessment, designed in order to complement or replace the previous one, is incorporated into an informatics system, developed in Clipper. It executes and displays outstanding and important toxicological information of about 100 chemicals. This information comes from ECDIN (Environmental Chemicals Data and Information Network) database through a collaboration with JRC-ISPRA working group. (Author) 24 refs.

  7. Health effects assessment of chemical exposures: ARIES methodology

    International Nuclear Information System (INIS)

    Sierra, L; Montero, M.; Rabago, I.; Vidania, R.

    1995-01-01

    In this work, we present ARIES* update: a system designed in order to facilitate the human health effects assessment produced by accidental release of toxic chemicals. The first version of ARIES was developed in relation to 82/501/EEC Directive about mayor accidents in the chemical industry. So, the first aim was the support of the effects assessment derived for the chemicals included into this directive. From this establishment, it was considered acute exposures for high concentrations. In this report, we present the actual methodology for considering other type of exposures, such as environmental and occupational. Likewise other versions, the methodology comprises two approaches: quantitative and qualitative assessments. Quantitative assessment incorporates the mathematical algorithms useful to evaluate the effects produced by the most important routes of exposure: inhalation, ingestion, eye contact and skin absorption, in a short, medium and long term. It has been included models that realizes an accurate quantification of doses, effects,... and so on, such as simple approaches when the available information is not enough. Qualitative assessment, designed in order to complement or replace the previous one, is incorporated into an informatics system, developed in Clipper. It executes and displays outstanding and important toxicological information of about 100 chemicals. This information comes from ECDIN (Environmental Chemicals Data and Information Network) database through a collaboration with JRC-ISPRA working group. (Author) 24 refs

  8. Electromagnetic Environments Simulator (EMES)

    International Nuclear Information System (INIS)

    Varnado, G.B.

    1975-11-01

    A multipurpose electromagnetic environments simulator has been designed to provide a capability for performing EMR, EMP, and lightning near stroke testing of systems, subsystems and components in a single facility. This report describes the final facility design and presents the analytical and experimental verification of the design

  9. Configuration and engineering design of the ARIES-RS tokamak power plant

    International Nuclear Information System (INIS)

    Tillack, M.S.; Malang, S.; Waganer, L.; Wang, X.R.; Sze, D.K.; El-Guebaly, L.; Wong, C.P.C.; Crowell, J.A.; Mau, T.K.; Bromberg, L.

    1997-01-01

    ARIES-RS is a conceptual design study which has examined the potential of an advanced tokamak-based power plant to compete with future energy sources and play a significant role in the future energy market. The design is a 1000 MWe, DT-burning fusion power plant based on the reversed-shear tokamak mode of plasma operation, and using moderately advanced engineering concepts such as lithium-cooled vanadium-alloy plasma-facing components. A steady-state reversed shear tokamak currently appears to offer the best combination of good economic performance and physics credibility for a tokamak-based power plant. The ARIES-RS engineering design process emphasized the attainment of the top-level mission requirements developed in the early part of the study in a collaborative effort between the ARIES Team and representatives from U.S. electric utilities and industry. Major efforts were devoted to develop a credible configuration that allows rapid removal of full sectors followed by disassembly in the hot cells during plant operation. This was adopted as the only practical means to meet availability goals. Use of an electrically insulating coating for the self-cooled blanket and divertor provides a wide design window and simplified design. Optimization of the shield, which is one of the larger cost items, significantly reduced the power core cost by using ferritic steel where the power density and radiation levels are low. An additional saving is made by radial segmentation of the blanket, such that large segments can be reused. The overall tokamak configuration is described here, together with each of the major fusion power core components: the first-wall, blanket and shield; divertor; heating, current drive and fueling systems; and magnet systems. (orig.)

  10. An intelligent dynamic simulation environment: An object-oriented approach

    International Nuclear Information System (INIS)

    Robinson, J.T.; Kisner, R.A.

    1988-01-01

    This paper presents a prototype simulation environment for nuclear power plants which illustrates the application of object-oriented programming to process simulation. Systems are modeled using this technique as a collection of objects which communicate via message passing. The environment allows users to build simulation models by selecting iconic representations of plant components from a menu and connecting them with the aid of a mouse. Models can be modified graphically at any time, even as the simulation is running, and the results observed immediately via real-time graphics. This prototype illustrates the use of object-oriented programming to create a highly interactive and automated simulation environment. 9 refs., 4 figs

  11. An intelligent simulation environment for control system design

    International Nuclear Information System (INIS)

    Robinson, J.T.

    1989-01-01

    The Oak Ridge National Laboratory is currently assisting in the development of advanced control systems for the next generation of nuclear power plants. This paper presents a prototype interactive and intelligent simulation environment being developed to support this effort. The environment combines tools from the field of Artificial Intelligence; in particular object-oriented programming, a LISP programming environment, and a direct manipulation user interface; with traditional numerical methods for simulating combined continuous/discrete processes. The resulting environment is highly interactive and easy to use. Models may be created and modified quickly through a window oriented direct manipulation interface. Models may be modified at any time, even as the simulation is running, and the results observed immediately via real-time graphics. 8 refs., 3 figs

  12. Tunne Kelam - kolleeg ja sõber / Christopher Beazley, Elmar Bork, Ari Vatanen ...[jt.

    Index Scriptorium Estoniae

    2009-01-01

    Euroopa Parlamendi väliskomisjoni liikmed Christopher Beazley, Elmar Bork, Ari Vatanen, Leedu Vabariigi president Valdas Adamkus, Euroopa Parlamendi asepresident Alejo Vidal-Quadras ja Euroopa Parlamendi president Hans-Gert Pöttering Tunne Kelamist

  13. The ARIES-ST study: Assessment of the spherical tokamak concept as fusion power plants

    International Nuclear Information System (INIS)

    Najmabadi, F.; Tillack, M.; Miller, R.; Mau, T.K.; Jardin, S.; Stambaugh, R.; Steiner, D.; Waganer, L.

    2001-01-01

    Recent experimental achievements and theoretical studies have generated substantial interest in the spherical tokamak concept. The ARIES-ST study was undertaken as a national U.S. effort to investigate the potential of the spherical tokamak concept as a fusion power plant and as a vehicle for fusion development. The 1000-MWe ARIES-ST power plant has an aspect ratio of 1.6, a major radius of 3.2 m, a plasma elongation (at 95% flux surface) of 3.4 and triangularity of 0.64. This configuration attains a β of 54% (which is 90% of the maximum theoretical β). While the plasma current is 31 MA, the almost perfect alignment of bootstrap and equilibrium current density profiles results in a current-drive power of only 31 MW. The on-axis toroidal field is 2.1 T and the peak field at the TF coil is 7.6 T, which leads to 288 MW of Joule losses in the normal-conducting TF system. The ARIES-ST study has highlighted many areas where tradeoffs among physics and engineering systems are critical in determining the optimum regime of operation for spherical tokamaks. Many critical issues also have been identified which must be resolved in R and D programs. (author)

  14. Transmitter and Translating Receiver Design For 64-ary Pulse Position Modulation (PPM)

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2010-01-20

    This paper explores the architecture and design of an optically-implemented 64-ary PPM transmitter and direct-translating receiver that effectively translates incoming electrically-generated bit streams into optical PPM symbols (and vice-versa) at > 1 Gb/s data rates. The PPM transmitter is a cascade of optical switches operating at the frame rate. A corresponding receiver design is more difficult to architect and implement, since increasing data rates lead to correspondingly shorter decision times (slot times and frame times). We describe a solution in the form of a time-to-space mapping arrayed receiver that performs a translating algorithm represented as a code map. The technique for generating the code map is described, and the implementation of the receiver as a planar lightwave circuit is given. The techniques for implementing the transmitter and receiver can be generalized for any case of M-ary PPM.

  15. Evidence for a Common Origin of Blacksmiths and Cultivators in the Ethiopian Ari within the Last 4500 Years: Lessons for Clustering-Based Inference.

    Directory of Open Access Journals (Sweden)

    Lucy van Dorp

    2015-08-01

    Full Text Available The Ari peoples of Ethiopia are comprised of different occupational groups that can be distinguished genetically, with Ari Cultivators and the socially marginalised Ari Blacksmiths recently shown to have a similar level of genetic differentiation between them (FST ≈ 0.023 - 0.04 as that observed among multiple ethnic groups sampled throughout Ethiopia. Anthropologists have proposed two competing theories to explain the origins of the Ari Blacksmiths as (i remnants of a population that inhabited Ethiopia prior to the arrival of agriculturists (e.g. Cultivators, or (ii relatively recently related to the Cultivators but presently marginalized in the community due to their trade. Two recent studies by different groups analysed genome-wide DNA from samples of Ari Blacksmiths and Cultivators and suggested that genetic patterns between the two groups were more consistent with model (i and subsequent assimilation of the indigenous peoples into the expanding agriculturalist community. We analysed the same samples using approaches designed to attenuate signals of genetic differentiation that are attributable to allelic drift within a population. By doing so, we provide evidence that the genetic differences between Ari Blacksmiths and Cultivators can be entirely explained by bottleneck effects consistent with hypothesis (ii. This finding serves as both a cautionary tale about interpreting results from unsupervised clustering algorithms, and suggests that social constructions are contributing directly to genetic differentiation over a relatively short time period among previously genetically similar groups.

  16. Whale shark economics: a valuation of wildlife tourism in South Ari Atoll, Maldives

    KAUST Repository

    Cagua, Edgar F.; Collins, Neal; Hancock, James; Rees, Richard

    2014-01-01

    Whale sharks attract large numbers of tourists, divers and snorkelers each year to South Ari Atoll in the Republic of Maldives. Yet without information regarding the use and economic extent of the attraction, it is difficult to prioritize

  17. Studies on Aries River (Apuseni Mountains pollution using factorial analyses (in Romanian

    Directory of Open Access Journals (Sweden)

    Forray Ferenc La̒za̒r

    2001-04-01

    Full Text Available In the present study we try to use factor analysis in the characterisation of river water chemistry between the municipalities of Cheia and Muncel along a 54-km stretch of the Aries River (NW Romania. The results show that 4 factors can explain 88% of the water chemistry. The first factor explains 39% of the total data variance, and represents the water-rock interactions. This high percent indicates the importance of water rock interactions in defining the chemistry of surface waters. The second factor explains 23% of the data variation and represents the influence of mining effluents. The influence of the mine tailings on water chemistry is represented by the third factor. The sum of the second and the third factor can explain 40% of the total data variance, which confirms that the Arieş River is highly polluted by the mining industry. The last factor, which explains 8% of data variation represents the influence of the agricultural and domestic effluents.

  18. A simulation and training environment for robotic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Schlaefer, Alexander [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany); Stanford University, Department of Radiation Oncology, Stanford, CA (United States); Gill, Jakub; Schweikard, Achim [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany)

    2008-09-15

    To provide a software environment for simulation of robotic radiosurgery, particularly to study the effective robot workspace with respect to the treatment plan quality, and to illustrate the concepts of robotic radiosurgery. A simulation environment for a robotic radiosurgery system was developed using Java and Java3D. The kinematics and the beam characteristics were modeled and linked to a treatment planning module. Simulations of different robot workspace parameters for two example radiosurgical patient cases were performed using the novel software tool. The first case was an intracranial lesion near the left inner ear, the second case was a spinal lesion. The planning parameters for both cases were visualized with the novel simulation environment. An incremental extension of the robot workspace had limited effect for the intracranial case, where the original workspace already covered the left side of the patient. For the spinal case, a larger workspace resulted in a noticeable improvement in plan quality and a large portion of the beams being delivered from the extended workspace. The new software environment is useful to simulate and analyze parameters and configurations for robotic radiosurgery. An enlarged robot workspace may result in improved plan quality depending on the location of the target region. (orig.)

  19. A simulation and training environment for robotic radiosurgery

    International Nuclear Information System (INIS)

    Schlaefer, Alexander; Gill, Jakub; Schweikard, Achim

    2008-01-01

    To provide a software environment for simulation of robotic radiosurgery, particularly to study the effective robot workspace with respect to the treatment plan quality, and to illustrate the concepts of robotic radiosurgery. A simulation environment for a robotic radiosurgery system was developed using Java and Java3D. The kinematics and the beam characteristics were modeled and linked to a treatment planning module. Simulations of different robot workspace parameters for two example radiosurgical patient cases were performed using the novel software tool. The first case was an intracranial lesion near the left inner ear, the second case was a spinal lesion. The planning parameters for both cases were visualized with the novel simulation environment. An incremental extension of the robot workspace had limited effect for the intracranial case, where the original workspace already covered the left side of the patient. For the spinal case, a larger workspace resulted in a noticeable improvement in plan quality and a large portion of the beams being delivered from the extended workspace. The new software environment is useful to simulate and analyze parameters and configurations for robotic radiosurgery. An enlarged robot workspace may result in improved plan quality depending on the location of the target region. (orig.)

  20. A Simulated Learning Environment for Teaching Medicine Dispensing Skills.

    Science.gov (United States)

    McDowell, Jenny; Styles, Kim; Sewell, Keith; Trinder, Peta; Marriott, Jennifer; Maher, Sheryl; Naidu, Som

    2016-02-25

    To develop an authentic simulation of the professional practice dispensary context for students to develop their dispensing skills in a risk-free environment. A development team used an Agile software development method to create MyDispense, a web-based simulation. Modeled on virtual learning environments elements, the software employed widely available standards-based technologies to create a virtual community pharmacy environment. Assessment. First-year pharmacy students who used the software in their tutorials, were, at the end of the second semester, surveyed on their prior dispensing experience and their perceptions of MyDispense as a tool to learn dispensing skills. The dispensary simulation is an effective tool for helping students develop dispensing competency and knowledge in a safe environment.

  1. Liquid metal cooled divertor for ARIES

    International Nuclear Information System (INIS)

    Muraviev, E.

    1995-01-01

    A liquid metal, Ga-cooled divertor design was completed for the double null ARIES-II divertor design. The design analysis indicated a surface heat flux removal capability of up to 15 MW/m 2 , and its relative easy maintenance. Design issues of configuration, thermal hydraulics, thermal stresses, liquid metal loop and safety effects were evaluated. For coolant flow control, it was found that it is necessary to use some part of the blanket cooling ducts for the draining of liquid metal from the top divertor. In order to minimize the inventory of Ga, it was recommended that the liquid metal loop equipment should be located as close to the torus as possible. More detailed analysis of transient conditions especially under accident conditions was identified as an issue that will need to be addressed

  2. New q-ary quantum MDS codes with distances bigger than q/2

    Science.gov (United States)

    He, Xianmang; Xu, Liqing; Chen, Hao

    2016-07-01

    The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474-1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS [[n,n-2d+2,d

  3. In live interaction, does familiarity promote attraction or contempt? Reply to Norton, Frost, and Ariely (2011).

    Science.gov (United States)

    Reis, Harry T; Maniaci, Michael R; Caprariello, Peter A; Eastwick, Paul W; Finkel, Eli J

    2011-09-01

    In this reply, we address and refute each of Norton, Frost, and Ariely's (see record 2011-18560-001) specific objections to the conclusion that, ceteris paribus, familiarity breeds liking in live interaction. In particular, we reiterate the importance of studying live interaction rather than decontextualized processes. These rebuttals notwithstanding, we concur with Norton et al.'s call for an integrative model that encompasses both Norton, Frost, and Ariely's (see record 2006-23056-008) results and ours (see record 2011-04644-001), and we point readers toward a description of a possible model presented in our original article. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  4. Virtual Environments for Advanced Trainers and Simulators

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1993-01-01

    Virtual environment technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems.

  5. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.; Schuchardt, Karen L.; Guillen, Zoe C.; Sivaramakrishnan, Chandrika; Gorton, Ian

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations and a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.

  6. Does Measles Vaccination Reduce the Risk of Acute Respiratory Infection (ARI and Diarrhea in Children: A Multi-Country Study?

    Directory of Open Access Journals (Sweden)

    Rahul Bawankule

    Full Text Available Pneumonia and diarrhea occur either as complications or secondary infections in measles affected children. So, the integrated Global Action Plan for Pneumonia and Diarrhea (GAPPD by WHO and UNICEF includes measles vaccination as preventive measure in children. The objective of the study is to examine the effect of measles vaccination on Acute Respiratory Infection (ARI and diarrhea in children in the Democratic Republic of Congo, Ethiopia, India, Nigeria, and Pakistan.We analyzed data from the most recent rounds of Demographic and Health Surveys (DHS in the selected countries. We included children age 12-59 months in the analysis. We used multivariable binary logistic regression to examine the effect of measles vaccination on ARI and diarrhea in children. We also estimated Vaccination Effectiveness (VE.More than 60 percent of the children age 12-59 months were given measles vaccine before the survey in the Democratic Republic of Congo, Ethiopia, India and Pakistan. Children who were given the measles vaccine were less likely to suffer from ARI than unvaccinated children in India and Pakistan. Children who were given the measles vaccine had a lower risk of diarrhea than those who did not receive it in all the selected countries except Ethiopia. Measles vaccination was associated with reduction in ARI cases by 15-30 percent in India and Pakistan, and diarrhea cases by 12-22 percent in the Democratic Republic of Congo, India, Nigeria and Pakistan.The receipt of the measles vaccine was associated with decrease in ARI and diarrhea in children. The immunization program must ensure that each child gets the recommended doses of measles vaccine at the appropriate age. The measles vaccination should be given more attention as a preventive intervention under the Global Action Plan for Pneumonia and Diarrhea (GAPPD in all low and middle-income countries.

  7. Does Measles Vaccination Reduce the Risk of Acute Respiratory Infection (ARI) and Diarrhea in Children: A Multi-Country Study?

    Science.gov (United States)

    Bawankule, Rahul; Singh, Abhishek; Kumar, Kaushalendra; Shetye, Sadanand

    2017-01-01

    Pneumonia and diarrhea occur either as complications or secondary infections in measles affected children. So, the integrated Global Action Plan for Pneumonia and Diarrhea (GAPPD) by WHO and UNICEF includes measles vaccination as preventive measure in children. The objective of the study is to examine the effect of measles vaccination on Acute Respiratory Infection (ARI) and diarrhea in children in the Democratic Republic of Congo, Ethiopia, India, Nigeria, and Pakistan. We analyzed data from the most recent rounds of Demographic and Health Surveys (DHS) in the selected countries. We included children age 12-59 months in the analysis. We used multivariable binary logistic regression to examine the effect of measles vaccination on ARI and diarrhea in children. We also estimated Vaccination Effectiveness (VE). More than 60 percent of the children age 12-59 months were given measles vaccine before the survey in the Democratic Republic of Congo, Ethiopia, India and Pakistan. Children who were given the measles vaccine were less likely to suffer from ARI than unvaccinated children in India and Pakistan. Children who were given the measles vaccine had a lower risk of diarrhea than those who did not receive it in all the selected countries except Ethiopia. Measles vaccination was associated with reduction in ARI cases by 15-30 percent in India and Pakistan, and diarrhea cases by 12-22 percent in the Democratic Republic of Congo, India, Nigeria and Pakistan. The receipt of the measles vaccine was associated with decrease in ARI and diarrhea in children. The immunization program must ensure that each child gets the recommended doses of measles vaccine at the appropriate age. The measles vaccination should be given more attention as a preventive intervention under the Global Action Plan for Pneumonia and Diarrhea (GAPPD) in all low and middle-income countries.

  8. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  9. Status Report of Simulated Space Radiation Environment Facility

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  10. Application of SADT and ARIS methodologies for modeling and management of business processes of information systems

    Directory of Open Access Journals (Sweden)

    O. V. Fedorova

    2018-01-01

    Full Text Available The article is devoted to application of SADT and ARIS methodologies for modeling and management of business processes of information systems. The relevance of this article is beyond doubt, because the design of the architecture of information systems, based on a thorough system analysis of the subject area, is of paramount importance for the development of information systems in general. The authors conducted a serious work on the analysis of the application of SADT and ARIS methodologies for modeling and managing business processes of information systems. The analysis was carried out both in terms of modeling business processes (notation and applying the CASE-tool, and in terms of business process management. The first point of view reflects the interaction of the business analyst and the programmer in the development of the information system. The second point of view is the interaction of the business analyst and the customer. The basis of many modern methodologies for modeling business processes is the SADT methodology. Using the methodology of the IDEF family, it is possible to efficiently display and analyze the activity models of a wide range of complex information systems in various aspects. CASE-tool ARIS is a complex of tools for analysis and modeling of the organization's activities. The methodical basis of ARIS is a set of different modeling methods that reflect different views on the system under study. The authors' conclusions are fully justified. The results of the work can be useful for specialists in the field of modeling business processes of information systems. In addition, the article has an oriented character when working on the constituent elements of curricula for students specializing in information specialties and management, provides an update of the content and structure of disciplines on modeling the architecture of information systems and organization management, using models.

  11. Updating ARI Educational Benefits Usage Data Bases for Army Regular, Reserve, and Guard: 2005 - 2006

    National Research Council Canada - National Science Library

    Young, Winnie

    2007-01-01

    This report describes the updating of ARI's educational benefits usage database with Montgomery GI Bill and Army College Fund data for Army Regular, Reserve, and Guard components over the 2005 and 2006 period...

  12. A comparison of steady-state ARIES and pulsed PULSAR tokamak power plants

    International Nuclear Information System (INIS)

    Bathke, C.G.

    1994-01-01

    The multi-institutional ARIES study has completed a series of three steady-state and two pulsed cost-optimized conceptual designs of commercial tokamak fusion power plants that vary the level of assumed advances in technology and physics. The cost benefits of various design options are compared quantitatively. Possible means to improve the economic competitiveness of fusion are suggested

  13. Vegetation map and plant checklist of Ol Ari Nyiro ranch and the ...

    African Journals Online (AJOL)

    Ol Ari Nyiro is a 360 km2 ranch of the Laikipia Plateau, in a semi-arid part of Kenya. The vegetation of the ranch and nearby Mukutan Gorge was mapped, and a preliminary check-list of fungi and vascular plants compiled. The vegetation was classified in 16 different types. A total of 708 species and subspecies were ...

  14. Simulation based virtual learning environment in medical genetics counseling

    DEFF Research Database (Denmark)

    Makransky, Guido; Bonde, Mads T.; Wulff, Julie S. G.

    2016-01-01

    BACKGROUND: Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based...... the perceived relevance of medical educational activities. The results suggest that simulations can help future generations of doctors transfer new understanding of disease mechanisms gained in virtual laboratory settings into everyday clinical practice....... learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. METHODS: An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major...

  15. ABSI (A Body Shape Index) and ARI (Anthropometric Risk Indicator) in Bariatric Surgery. First Application on a Bariatric Cohort and Possible Clinical Use.

    Science.gov (United States)

    Consalvo, Vincenzo; Krakauer, Jesse C; Krakauer, Nir Y; Canero, Antonio; Romano, Mafalda; Salsano, Vincenzo

    2018-01-29

    BMI (body mass index) is used to identify candidates for bariatric surgery, with a criterion of BMI ≥ 40. For lesser degrees of obesity, BMI 35-39.9, comorbidities are also considered. A Body Shape Index (ABSI) was derived to correct WC (waist circumference) for BMI and height. ABSI has been shown to be a linear predictor of long-term mortality across the range of BMI. Anthropometric risk indicator (ARI) combines the complementary contributions of BMI and ABSI and further improves mortality hazard prediction. We report for the first time ABSI and ARI for a bariatric surgical cohort at baseline and with 3-year follow-up. ABSI and BMI were calculated for 101 subjects from our bariatric surgery center database at baseline and after 3 years of follow-up. Raw values for BMI and ABSI were converted to Z scores and ARI values based on sex- and age-specific normals and risk associations from the National Health and Nutrition Examination Survey (NHANES) III sample of the US general population. Baseline scores for the anthropometric variables BMI and ABSI and the corresponding ARI were all higher than for the NHANES population sample. At 3-year post surgery, all three measures decreased significantly. While baseline BMI did not predict the change in mortality risk by ARI, baseline ABSI did (r = - 0.73), as did baseline ARI (r = - 0.94). Sleeve gastrectomy lowers ABSI and the associated mortality risk estimated from population studies after 3 years of follow-up. Considering our results, bariatric surgical candidates with BMI in the range of 35 to 39.9 with an increased ABSI-related mortality risk may have considerable survival benefit from bariatric surgery, even in the absence of qualifying comorbidities. 2814.

  16. A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement

    International Nuclear Information System (INIS)

    Li, Sangang; Wang, Lei; Cheng, Yi; Tuo, Xianguo; Liu, Mingzhe; Yao, Fuliang; Leng, Fengqing; Cheng, Yuanyuan; Cai, Ting; Zhou, Yan

    2016-01-01

    This study proposes a novel natural environment background model by modeling brief environment conditions. It uses Geant4 program to simulate decays of "2"3"8U, "2"3"2Th, and "4"0K in soil and obtains compositions of different-energy gamma rays in the natural environment background. The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. The model is used in the simulation of anticoincidence measurement, indicating that the natural environment background can be decreased by approximately 88%, and the Compton attenuation factor is 2.22. The simulation of anticoincidence measurement can improve the minimum detectable activity (MDA) of the detection system. - Highlights: • This study proposes a novel natural environment background model by simulating decays of "2"3"8U, "2"3"2Th, and "4"0K in soil. • The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. • The proposed environment background model is applied to study the properties of anticoincidence detector.

  17. Simulation Environment Synchronizing Real Equipment for Manufacturing Cell

    Science.gov (United States)

    Inukai, Toshihiro; Hibino, Hironori; Fukuda, Yoshiro

    Recently, manufacturing industries face various problems such as shorter product life cycle, more diversified customer needs. In this situation, it is very important to reduce lead-time of manufacturing system constructions. At the manufacturing system implementation stage, it is important to make and evaluate facility control programs for a manufacturing cell, such as ladder programs for programmable logical controllers (PLCs) rapidly. However, before the manufacturing systems are implemented, methods to evaluate the facility control programs for the equipment while mixing and synchronizing real equipment and virtual factory models on the computers have not been developed. This difficulty is caused by the complexity of the manufacturing system composed of a great variety of equipment, and stopped precise and rapid support of a manufacturing engineering process. In this paper, a manufacturing engineering environment (MEE) to support manufacturing engineering processes using simulation technologies is proposed. MEE consists of a manufacturing cell simulation environment (MCSE) and a distributed simulation environment (DSE). MCSE, which consists of a manufacturing cell simulator and a soft-wiring system, is emphatically proposed in detail. MCSE realizes making and evaluating facility control programs by using virtual factory models on computers before manufacturing systems are implemented.

  18. Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology.

    Science.gov (United States)

    Brewin, James; Tang, Jessica; Dasgupta, Prokar; Khan, Muhammad S; Ahmed, Kamran; Bello, Fernando; Kneebone, Roger; Jaye, Peter

    2015-07-01

    To evaluate the face, content and construct validity of the distributed simulation (DS) environment for technical and non-technical skills training in endourology. To evaluate the educational impact of DS for urology training. DS offers a portable, low-cost simulated operating room environment that can be set up in any open space. A prospective mixed methods design using established validation methodology was conducted in this simulated environment with 10 experienced and 10 trainee urologists. All participants performed a simulated prostate resection in the DS environment. Outcome measures included surveys to evaluate the DS, as well as comparative analyses of experienced and trainee urologist's performance using real-time and 'blinded' video analysis and validated performance metrics. Non-parametric statistical methods were used to compare differences between groups. The DS environment demonstrated face, content and construct validity for both non-technical and technical skills. Kirkpatrick level 1 evidence for the educational impact of the DS environment was shown. Further studies are needed to evaluate the effect of simulated operating room training on real operating room performance. This study has shown the validity of the DS environment for non-technical, as well as technical skills training. DS-based simulation appears to be a valuable addition to traditional classroom-based simulation training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  19. Major integration issues in evolving the configuration design space for the Aries-Cs compact stellarator power plant

    International Nuclear Information System (INIS)

    Raffray, A.R.; Malang, S.; El-Guebaly, L.; Ihli, T.; Najmabadi, F.; Wang, X.

    2006-01-01

    The Aries-Cs study has been launched with the goal of developing through physics and engineering optimization an attractive power plant concept based on a compact stellarator configuration. The first phase of the study involved scoping out different physics configurations including two and three field period options. The engineering effort during that phase aimed at scoping out maintenance schemes and power core designs best suited to a compact stellarator configuration. This led to a down selection of the most attractive blanket configurations and maintenance schemes for more detailed studies during the second phase of the study. This paper summarizes early results from the second phase of the Aries-Cs study with a particular emphasis on the engineering effort

  20. Fatigue cracking of alloy 600 in simulated steam generator crevice environment

    International Nuclear Information System (INIS)

    Ogundele, G.; Lepik, O.

    1998-01-01

    Investigations were carried out to generate fatigue life (S-N) and near-threshold fatigue crack propagation (da/dN) data to determine the environmental influence on fatigue behavior for Alloy 600 in air, deionized water and in simulated Bruce Nuclear Generating Station 'A' crevice environments under appropriate loading conditions. In the low cycle fatigue regime, the simulated crevice environment did not affect the fatigue life of Alloy 600 under the applied loading conditions. The near-threshold fatigue crack growth rates of Alloy 600 in the simulated crevice environment were significantly lower compared to either pure water or air environments and is believed to be the result of higher crack closure in the crevice environment. (author)

  1. notebooks, looking for a very specific di- ary entry that he had made ...

    African Journals Online (AJOL)

    notebooks, looking for a very specific di- ary entry that he had made some years before. As he searches, the audience (or in this case, the reader) is shown glimpses from Fugard's actual diary entries since there is a significant overlap between dramatist and character. As Fugard (and. Fourie) confirms in the foreword to the.

  2. Evaluation of disposal, recycling and clearance scenarios for managing ARIES radwaste after plant decommissioning

    International Nuclear Information System (INIS)

    El-Guebaly, L.

    2007-01-01

    The wealth of experience accumulated over the past 30-40 years of fusion power plant studies must be forged into a new strategy to reshape all aspects of handling the continual stream of radioactive materials during operation and after power plant decommissioning. With tighter environmental controls and the political difficulty of building new repositories worldwide, the disposal option could be replaced with more environmentally attractive scenarios, such as recycling and clearance. We applied the three scenarios to the most recent ARIES compact stellarator power plant. All ARIES-CS components qualify as Class A or C low-level waste, according to the US guidelines, and can potentially be recycled using conventional and advanced remote handling equipment. Approximately 80% of the total waste can be cleared for reuse within the nuclear industry or, preferably, released to the commercial market. This paper documents the recent developments in radwaste management of nuclear facilities and highlights the benefits and challenges of disposal, recycling and clearance

  3. Experiences with a simulated learning environment - the SimuScape©: Virtual environments in medical education

    Directory of Open Access Journals (Sweden)

    Anna-Lena Thies

    2014-03-01

    Full Text Available INTRODUCTION: Simulation as a tool for medical education has gained considerable importance in the past years. Various studies have shown that the mastering of basic skills happens best if taught in a realistic and workplace-based context. It is necessary that simulation itself takes place in the realistic background of a genuine clinical or in an accordingly simulated learning environment. METHODS: A panoramic projection system that allows the simulation of different scenarios has been created at the medical school of the Westphalian Wilhelms-University  Muenster/Germany. The SimuScape© is a circular training room of six meters in diameter and has the capacity to generate pictures or moving images as well as the corresponding background noises for medical students, who are then able to interact with simulated patients inside a realistic environment. RESULTS: About 1,000 students have been instructed using the SimuScape© in the courses of emergency medicine, family medicine and anesthesia. The SimuScape©, with its 270°-panoramic projection, gives the students the impression “of being right in the center of action”.  It is a flexible learning environment that can be easily integrated into curricular teaching and which is in full operation for 10 days per semester. CONCLUSION: The SimuScape© allows the establishment of new medical areas outside the hospital and surgery for simulation and it is an extremely adaptable and cost-effective utilization of a lecture room. In this simulated environment it is possible to teach objectives like self-protection and patient care during disturbing environmental influences in practice.

  4. Whale shark economics: a valuation of wildlife tourism in South Ari Atoll, Maldives

    KAUST Repository

    Cagua, Edgar F.

    2014-08-12

    Whale sharks attract large numbers of tourists, divers and snorkelers each year to South Ari Atoll in the Republic of Maldives. Yet without information regarding the use and economic extent of the attraction, it is difficult to prioritize conservation or implement effective management plans. We used empirical recreational data and generalized mixed statistical models to conduct the first economic valuation (with direct spend as the primary proxy) of whale shark tourism in Maldives. We estimated that direct expenditures for whale shark focused tourism in the South Ari Marine Protected Area for 2012 and 2013 accounted for US$7.6 and $9.4 million respectively. These expenditures are based on an estimate of 72,000-78,000 tourists who are involved in whale shark excursions annually. That substantial amount of income to resort owners and operators, and tourism businesses in a relatively small area highlights the need to implement regulations and management that safeguard the sustainability of the industry through ensuring guest satisfaction and whale shark conservation. © 2014 Cagua et al.

  5. Applying virtual environments to training and simulation (abstract)

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1993-01-01

    Virtual environment (VE) technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human-senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems.

  6. Design of the Advanced Rare Isotope Separator ARIS at FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, M., E-mail: hausmann@frib.msu.edu [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Aaron, A.M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Amthor, A.M. [Dept. of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Avilov, M.; Bandura, L.; Bennett, R.; Bollen, G.; Borden, T. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Burgess, T.W. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chouhan, S.S. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Graves, V.B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mittig, W. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Morrissey, D.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Pellemoine, F.; Portillo, M.; Ronningen, R.M.; Schein, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Sherrill, B.M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Zeller, A. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States)

    2013-12-15

    The Facility for Rare Isotopes Beams (FRIB) at Michigan State University will use projectile fragmentation and induced in-flight fission of heavy-ion primary beams at energies of 200 MeV/u and higher and at a beam power of 400 kW to generate rare isotope beams for experiments in nuclear physics, nuclear astrophysics, and fundamental symmetries, as well as for societal needs. The Advanced Rare Isotope Separator (ARIS) has been designed as a three-stage fragment separator for the efficient collection and purification of the rare isotope beams of interest. A vertically bending preseparator (first stage) with production target and beam dump is fully integrated into a production target facility hot cell with remote handling. The new separator compresses the accepted momentum width of up to ±5% of the beam by a factor of three in the standard operational mode. Provisions for alternate operational modes for specific cases are included in the design. This preseparator is followed by two, horizontally-bending separator stages (second and third stages) utilizing the magnets from the existing A1900 fragment separator at the National Superconducting Cyclotron Laboratory (NSCL). These stages can alternatively be coupled to a single high-resolution separator stage, resulting in the flexibility to optimize the operation for different experiments, including momentum tagging and in-flight particle identification of rare isotope beams. The design of ARIS will be presented with an emphasis on beam physics characteristics, and anticipated operational modes will be described.

  7. WinGraphics: An optimized windowing environment for interactive real-time simulations

    International Nuclear Information System (INIS)

    Verboncoeur, J.P.; Vahedi, V.

    1989-01-01

    We have developed a customized windowing environment, Win Graphics, which provides particle simulation codes with an interactive user interface. The environment supports real-time animation of the simulation, displaying multiple diagnostics as they evolve in time. In addition, keyboard and printer (PostScript and dot matrix) support is provided. This paper describes this environment

  8. Lithium-ion Battery Electrothermal Model, Parameter Estimation, and Simulation Environment

    Directory of Open Access Journals (Sweden)

    Simone Orcioni

    2017-03-01

    Full Text Available The market for lithium-ion batteries is growing exponentially. The performance of battery cells is growing due to improving production technology, but market request is growing even more rapidly. Modeling and characterization of single cells and an efficient simulation environment is fundamental for the development of an efficient battery management system. The present work is devoted to defining a novel lumped electrothermal circuit of a single battery cell, the extraction procedure of the parameters of the single cell from experiments, and a simulation environment in SystemC-WMS for the simulation of a battery pack. The electrothermal model of the cell was validated against experimental measurements obtained in a climatic chamber. The model is then used to simulate a 48-cell battery, allowing statistical variations among parameters. The different behaviors of the cells in terms of state of charge, current, voltage, or heat flow rate can be observed in the results of the simulation environment.

  9. A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement.

    Science.gov (United States)

    Li, Sangang; Wang, Lei; Cheng, Yi; Tuo, Xianguo; Liu, Mingzhe; Yao, Fuliang; Leng, Fengqing; Cheng, Yuanyuan; Cai, Ting; Zhou, Yan

    2016-02-01

    This study proposes a novel natural environment background model by modeling brief environment conditions. It uses Geant4 program to simulate decays of (238)U, (232)Th, and (40)K in soil and obtains compositions of different-energy gamma rays in the natural environment background. The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. The model is used in the simulation of anticoincidence measurement, indicating that the natural environment background can be decreased by approximately 88%, and the Compton attenuation factor is 2.22. The simulation of anticoincidence measurement can improve the minimum detectable activity (MDA) of the detection system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Using IMPRINT to Guide Experimental Design with Simulated Task Environments

    Science.gov (United States)

    2015-06-18

    USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN OF SIMULATED TASK ENVIRONMENTS THESIS Gregory...ENG-MS-15-J-052 USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN WITH SIMULATED TASK ENVIRONMENTS THESIS Presented to the Faculty Department...Civilian, USAF June 2015 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-J-052 USING IMPRINT

  11. Environments for online maritime simulators with cloud computing capabilities

    Science.gov (United States)

    Raicu, Gabriel; Raicu, Alexandra

    2016-12-01

    This paper presents the cloud computing environments, network principles and methods for graphical development in realistic naval simulation, naval robotics and virtual interactions. The aim of this approach is to achieve a good simulation quality in large networked environments using open source solutions designed for educational purposes. Realistic rendering of maritime environments requires near real-time frameworks with enhanced computing capabilities during distance interactions. E-Navigation concepts coupled with the last achievements in virtual and augmented reality will enhance the overall experience leading to new developments and innovations. We have to deal with a multiprocessing situation using advanced technologies and distributed applications using remote ship scenario and automation of ship operations.

  12. Pendidikan Karakter Menurut K.H. Hasyim Asy'ari Dalam Kitab Adâb Al-‘Âlim Wa Al-Muta‘Allim

    OpenAIRE

    Sholikah, Sholikah

    2015-01-01

    The article deals with K.H. Hasyim Asy'ari's thought of character education. The result of the study indicates that according to K.H. Hasyim Asy'ari the characters of teachers and students in his work Adab al-‘Âlim wa al-Muta'allim can be classified into three parts, are mentality or character, which should be possessed by teachers and learners: attempts to be done in order to become characterized teachers and learners, and: teaching strategies employed by educators and learning strategies us...

  13. Safety and environmental aspects of the HYLIFE-II and ARIES fusion reactor designs

    International Nuclear Information System (INIS)

    Dolan, T.J.; Longhurst, G.R.; Herring, J.S.

    1993-01-01

    The HYLIFE-II inertial confinement fusion reactor design uses jets of Flibe molten salt to protect the blast chamber walls and to breed tritium. It has a low tritium inventory and effective tritium removal. The issue with this design is not one of safety but of economics. The ARIES reactor designs have safety concerns associated with fires. These reactors designs are described

  14. The Aries Program with emphasis on the International Magnetospherics Studies /IMS/-Porcupine Project

    Science.gov (United States)

    Honecker, H. J.

    1976-01-01

    This paper will discuss the present state of the development of the Aries Sounding Rocket System with particular emphasis on the configuration and subsystems required to support the IMS Program. A brief history of the development program will be presented. The results of the first five flights, three successes and two failures, will be presented and the observed performance compared to theoretical performance.

  15. A virtual environment for simulation of radiological accidents

    International Nuclear Information System (INIS)

    Silva, Tadeu Augusto de Almeida; Farias, Oscar Luiz Monteiro de

    2013-01-01

    A virtual environment is a computer environment, representative of a subset of the real world, and where models of the real world entities, process and events are included in a virtual (three-dimensional) space. Virtual environments are ideal tools for simulation of certain critical processes, such as radiological accidents, where human beings or properties can suffer irreversible or long term damages. Radiological accidents are characterized by the significant exposure to radiation of specialized workers and general public. The early detection of a radiological accident and the determination of its possible extension are essential factors for the planning of prompt answers and emergency actions. This paper proposes the integration of georeferenced representation of the three-dimensional space and agent-based models, with the objective to construct virtual environments that have the capacity to simulate radiological accidents. The three-dimensional georeferenced representations of space candidates are: 1) the spatial representation of traditional geographical information systems (GIS); 2) the representation adopted by Google Maps®. Adding agents to these spatial representations allow us to simulate radiological accidents, quantify the doses received by members of the public, obtain a possible spatial distribution of people contaminated, estimate the number of contaminated individuals, estimate the impact on the health-network, estimate environmental impacts, generate exclusion zones, build alternative scenarios and train staff to deal with radiological accidents. (author)

  16. A virtual environment for simulation of radiological accidents

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tadeu Augusto de Almeida, E-mail: tedsilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Farias, Oscar Luiz Monteiro de, E-mail: fariasol@eng.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    A virtual environment is a computer environment, representative of a subset of the real world, and where models of the real world entities, process and events are included in a virtual (three-dimensional) space. Virtual environments are ideal tools for simulation of certain critical processes, such as radiological accidents, where human beings or properties can suffer irreversible or long term damages. Radiological accidents are characterized by the significant exposure to radiation of specialized workers and general public. The early detection of a radiological accident and the determination of its possible extension are essential factors for the planning of prompt answers and emergency actions. This paper proposes the integration of georeferenced representation of the three-dimensional space and agent-based models, with the objective to construct virtual environments that have the capacity to simulate radiological accidents. The three-dimensional georeferenced representations of space candidates are: 1) the spatial representation of traditional geographical information systems (GIS); 2) the representation adopted by Google Maps®. Adding agents to these spatial representations allow us to simulate radiological accidents, quantify the doses received by members of the public, obtain a possible spatial distribution of people contaminated, estimate the number of contaminated individuals, estimate the impact on the health-network, estimate environmental impacts, generate exclusion zones, build alternative scenarios and train staff to deal with radiological accidents. (author)

  17. A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies

    Directory of Open Access Journals (Sweden)

    Yan-chun Yang

    2008-11-01

    Full Text Available Lunar rover development involves a large amount of validation works in realistic operational conditions, including its mechanical subsystem and on-board software. Real tests require equipped rover platform and a realistic terrain. It is very time consuming and high cost. To improve the development efficiency, a rover simulation environment called RSVE that affords real time capabilities with high fidelity has been developed. It uses fractional Brown motion (fBm technique and statistical properties to generate lunar surface. Thus, various terrain models for simulation can be generated through changing several parameters. To simulate lunar rover evolving on natural and unstructured surface with high realism, the whole dynamics of the multi-body systems and complex interactions with soft ground is integrated in this environment. An example for path planning algorithm and controlling algorithm testing in this environment is tested. This simulation environment runs on PC or Silicon Graphics.

  18. A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies

    Directory of Open Access Journals (Sweden)

    Yan-chun Yang

    2008-06-01

    Full Text Available Lunar rover development involves a large amount of validation works in realistic operational conditions, including its mechanical subsystem and on-board software. Real tests require equipped rover platform and a realistic terrain. It is very time consuming and high cost. To improve the development efficiency, a rover simulation environment called RSVE that affords real time capabilities with high fidelity has been developed. It uses fractional Brown motion (fBm technique and statistical properties to generate lunar surface. Thus, various terrain models for simulation can be generated through changing several parameters. To simulate lunar rover evolving on natural and unstructured surface with high realism, the whole dynamics of the multi-body systems and complex interactions with soft ground is integrated in this environment. An example for path planning algorithm and controlling algorithm testing in this environment is tested. This simulation environment runs on PC or Silicon Graphics.

  19. Integrated Simulation Environment for Unmanned Autonomous Systems—Towards a Conceptual Framework

    Directory of Open Access Journals (Sweden)

    M. G. Perhinschi

    2010-01-01

    Full Text Available The paper initiates a comprehensive conceptual framework for an integrated simulation environment for unmanned autonomous systems (UAS that is capable of supporting the design, analysis, testing, and evaluation from a “system of systems” perspective. The paper also investigates the current state of the art of modeling and performance assessment of UAS and their components and identifies directions for future developments. All the components of a comprehensive simulation environment focused on the testing and evaluation of UAS are identified and defined through detailed analysis of current and future required capabilities and performance. The generality and completeness of the simulation environment is ensured by including all operational domains, types of agents, external systems, missions, and interactions between components. The conceptual framework for the simulation environment is formulated with flexibility, modularity, generality, and portability as key objectives. The development of the conceptual framework for the UAS simulation reveals important aspects related to the mechanisms and interactions that determine specific UAS characteristics including complexity, adaptability, synergy, and high impact of artificial and human intelligence on system performance and effectiveness.

  20. Retrieved Products from Simulated Hyperspectral Observations of a Hurricane

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2015-01-01

    Demonstrate via Observing System Simulation Experiments (OSSEs) the potential utility of flying high spatial resolution AIRS class IR sounders on future LEO and GEO missions.The study simulates and analyzes radiances for 3 sounders with AIRS spectral and radiometric properties on different orbits with different spatial resolutions: 1) Control run 13 kilometers AIRS spatial resolution at nadir on LEO in Aqua orbit; 2) 2 kilometer spatial resolution LEO sounder at nadir ARIES; 3) 5 kilometers spatial resolution sounder on a GEO orbit, radiances simulated every 72 minutes.

  1. Analysis of different sub-carrier allocation of M-ary QAM-OFDM downlink in RoF system

    Science.gov (United States)

    Shao, Yu-feng; Chen, Luo; Wang, An-rong; Zhao, Yun-jie; Long, Ying; Ji, Xing-ping

    2018-01-01

    In this paper, the performance of a 60 GHz radio over fiber (RoF) system with 4/16/64 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) downstream signals is studied. Delivery of 10 Gbit/s M-ary QAM (MQAM) OFDM signals through the 20-km-long single-mode fiber (SMF) is complicated in terms of intensity modulation and direct detection (IM/DD). Using self-homodyne method, the beating of two independent light waves generating the millimeter-wave at the photodetector can be down-converted to baseband in the electrical domain. Meanwhile, three kinds of sub-carrier arrangement schemes are compared and discussed, and the simulation results show that lower peak-to-average power ratio ( PAPR) can be obtained adopting the adjacent scheme. At bit error rate ( BER) of 10-3, the receiver sensitivity using 4QAM-OFDM sub-carrier signal is almost enhanced by 4 dB and 9 dB compared with those of 16QAM-OFDM signal and 64QAM-OFDM signal.

  2. Simulating The Dynamical Evolution Of Galaxies In Group And Cluster Environments

    Science.gov (United States)

    Vijayaraghavan, Rukmani

    2015-07-01

    Galaxy clusters are harsh environments for their constituent galaxies. A variety of physical processes effective in these dense environments transform gas-rich, spiral, star-forming galaxies to elliptical or spheroidal galaxies with very little gas and therefore minimal star formation. The consequences of these processes are well understood observationally. Galaxies in progressively denser environments have systematically declining star formation rates and gas content. However, a theoretical understanding of of where, when, and how these processes act, and the interplay between the various galaxy transformation mechanisms in clusters remains elusive. In this dissertation, I use numerical simulations of cluster mergers as well as galaxies evolving in quiescent environments to develop a theoretical framework to understand some of the physics of galaxy transformation in cluster environments. Galaxies can be transformed in smaller groups before they are accreted by their eventual massive cluster environments, an effect termed `pre-processing'. Galaxy cluster mergers themselves can accelerate many galaxy transformation mechanisms, including tidal and ram pressure stripping of galaxies and galaxy-galaxy collisions and mergers that result in reassemblies of galaxies' stars and gas. Observationally, cluster mergers have distinct velocity and phase-space signatures depending on the observer's line of sight with respect to the merger direction. Using dark matter only as well as hydrodynamic simulations of cluster mergers with random ensembles of particles tagged with galaxy models, I quantify the effects of cluster mergers on galaxy evolution before, during, and after the mergers. Based on my theoretical predictions of the dynamical signatures of these mergers in combination with galaxy transformation signatures, one can observationally identify remnants of mergers and quantify the effect of the environment on galaxies in dense group and cluster environments. The presence of

  3. A comparison of the accuracy of intraoral scanners using an intraoral environment simulator.

    Science.gov (United States)

    Park, Hye-Nan; Lim, Young-Jun; Yi, Won-Jin; Han, Jung-Suk; Lee, Seung-Pyo

    2018-02-01

    The aim of this study was to design an intraoral environment simulator and to assess the accuracy of two intraoral scanners using the simulator. A box-shaped intraoral environment simulator was designed to simulate two specific intraoral environments. The cast was scanned 10 times by Identica Blue (MEDIT, Seoul, South Korea), TRIOS (3Shape, Copenhagen, Denmark), and CS3500 (Carestream Dental, Georgia, USA) scanners in the two simulated groups. The distances between the left and right canines (D3), first molars (D6), second molars (D7), and the left canine and left second molar (D37) were measured. The distance data were analyzed by the Kruskal-Wallis test. The differences in intraoral environments were not statistically significant ( P >.05). Between intraoral scanners, statistically significant differences ( P Kruskal-Wallis test with regard to D3 and D6. No difference due to the intraoral environment was revealed. The simulator will contribute to the higher accuracy of intraoral scanners in the future.

  4. SPEEDES - A multiple-synchronization environment for parallel discrete-event simulation

    Science.gov (United States)

    Steinman, Jeff S.

    1992-01-01

    Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) is a unified parallel simulation environment. It supports multiple-synchronization protocols without requiring users to recompile their code. When a SPEEDES simulation runs on one node, all the extra parallel overhead is removed automatically at run time. When the same executable runs in parallel, the user preselects the synchronization algorithm from a list of options. SPEEDES currently runs on UNIX networks and on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. SPEEDES also supports interactive simulations. Featured in the SPEEDES environment is a new parallel synchronization approach called Breathing Time Buckets. This algorithm uses some of the conservative techniques found in Time Bucket synchronization, along with the optimism that characterizes the Time Warp approach. A mathematical model derived from first principles predicts the performance of Breathing Time Buckets. Along with the Breathing Time Buckets algorithm, this paper discusses the rules for processing events in SPEEDES, describes the implementation of various other synchronization protocols supported by SPEEDES, describes some new ones for the future, discusses interactive simulations, and then gives some performance results.

  5. A novel approach to simulate gene-environment interactions in complex diseases

    Directory of Open Access Journals (Sweden)

    Nicodemi Mario

    2010-01-01

    Full Text Available Abstract Background Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.. Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS, a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte

  6. Assessment of contamination and origin of metals in mining affected river sediments: A case study of the Aries catchment, Romania

    Directory of Open Access Journals (Sweden)

    Levei Erika

    2014-01-01

    Full Text Available The study presents the current status of contamination with metals (Cu, Cr, Cd, Pb, Ni, Zn, As and their anthropogenic or natural origin in the sediments of the Aries river basin, Romania, affected by mining activities. The results indicated an enrichment of metals in sediments. Different contamination levels were identified on the Aries river and its tributaries. According to sediment quality guidelines and contamination indices, sediments from the Aries river were found to be highly contaminated with Cd, Cu, As, considerably with Zn and moderately with Pb and Ni. The right-bank tributaries were found to be more contaminated than the left-bank affluents, where only a contamination with As of geogenic origin was identified. The Principal Component Analysis allowed to identify five latent factors (86 % total variability reflecting the anthropogenic and natural origins of metals. Arsenic, Cd and partially Pb were found to have a common anthropogenic origin, different from that of Cu. The statistical approach indicated also the geogenic origin of Pb due to its association with Ca, K, Na, Sr. Chromium and Ni were attributed to natural source following their association with Mn, Fe, Al and Mg, respectively.

  7. IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.

    Science.gov (United States)

    Ha, Vi Q; Lykotrafitis, George

    2016-12-08

    We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Construction material processed using lunar simulant in various environments

    Science.gov (United States)

    Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry

    1995-01-01

    The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.

  9. The Implementation of Acute Respiratory Infection (ARI Controlling Programme and the Coverage of Pneumonia among Under-Five Children

    Directory of Open Access Journals (Sweden)

    Ni'mal Baroya

    2018-01-01

    Full Text Available Abstract Pneumonia is an acute infection of lung tissue (alveoli. Pneumonia is one of the main focus ARI preventing and controlling program.  One of the ARI preventing and controlling program indicators was pneumonia coverage among under five years old. The coverage of pneumonia finding among under five years old in Banyuwangi Regency since 2014-2016 years have not reached the national target. Pneumonia toddler coverage in 2014 and 2015 shows 33,7% and 71,1%, while in 2016 shows 41,99%. This research aims to analyze the association between officer characteristics, logistics availability and ARI control activities with pneumonia toddler coverage in Banyuwangi Regency. The research uses cross sectional analytic desain with 31 respondents. The result of this research has significant relationship is age, work length and capacity buailding. Nevertheless, gender, education, knowladge, availability of diagnostic tools, guideline, KIE media, recording and reporting media, advocation and socialisation, pneumonia find and management, supervision, recording and reporting, partnership and network, monitoring and evaluation has not significant relationship. Banyuwangi Health Office is hoped to do conduct periodic training every year to ARI program officer on ARI control management, management of pneumonia toddler and promotion of pneumonia control in under fives to increase human resources capacity in primary health facility.                 Abstrak Pneumonia merupakan salah satu fokus utama Program Pencegahan dan Pengendalian ISPA. Salah satu indikator program P2 ISPA adalah cakupan penemuan pneumonia balita. Cakupan pneumonia pada balita di Kabupaten Banyuwangi dari tahun 2014-2016 belum mencapai target nasional. Pada tahun 2014 dan 2015 cakupan pneumonia pada balita sebesar 33,7% dan 71,1% sedangkan tahun 2016 sebesar 41,99%. Penelitian ini bertujuan menganalisis hubungan antara karakteristik petugas, ketersediaan  logistik dan kegiatan

  10. Simulation-based computation of dose to humans in radiological environments

    International Nuclear Information System (INIS)

    Breazeal, N.L.; Davis, K.R.; Watson, R.A.; Vickers, D.S.; Ford, M.S.

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface

  11. Simulation-based computation of dose to humans in radiological environments

    Energy Technology Data Exchange (ETDEWEB)

    Breazeal, N.L. [Sandia National Labs., Livermore, CA (United States); Davis, K.R.; Watson, R.A. [Sandia National Labs., Albuquerque, NM (United States); Vickers, D.S. [Brigham Young Univ., Provo, UT (United States). Dept. of Electrical and Computer Engineering; Ford, M.S. [Battelle Pantex, Amarillo, TX (United States). Dept. of Radiation Safety

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface.

  12. Limiter discriminator detection of M-ary FSK signals

    Science.gov (United States)

    Fonseka, John P.

    1990-10-01

    The performance of limiter discriminator detection of M-ary FSK signals is analyzed at arbitrary modulation indices. It is shown that the error rate performance of limiter discriminator detection can be significantly improved by increasing the modulation index above 1/M. The optimum modulation index that minimizes the overall error probability is determined for the cases M = 2, 4 and 8. The analysis is carried out for wideband and bandlimited channels with Gaussian and second-order Butterworth filters. It is shown that the optimum modulation index depends on the signal/noise ratio (SNR), in a wideband channel, and on both SNR and time-bandwidth product in a bandlimited channel. Finally, it is shown that the optimum sampling instance in presence of a nonzero phase IF filter can be approximately determined by using only the worst case symbol pattern.

  13. Comparative study of the effectiveness of three learning environments: Hyper-realistic virtual simulations, traditional schematic simulations and traditional laboratory

    Directory of Open Access Journals (Sweden)

    Maria Isabel Suero

    2011-10-01

    Full Text Available This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output. This new virtual environment concept, which we call hyper-realistic, transcends basic schematic simulation; it provides the user with a more realistic perception of a physical phenomenon being simulated. We compared the learning achievements of three equivalent, homogeneous groups of undergraduates—an experimental group who used only the hyper-realistic virtual laboratory, a first control group who used a schematic simulation, and a second control group who used the traditional laboratory. The three groups received the same theoretical preparation and carried out equivalent practicals in their respective learning environments. The topic chosen for the experiment was optical aberrations. An analysis of variance applied to the data of the study demonstrated a statistically significant difference (p value <0.05 between the three groups. The learning achievements attained by the group using the hyper-realistic virtual environment were 6.1 percentage points higher than those for the group using the traditional schematic simulations and 9.5 percentage points higher than those for the group using the traditional laboratory.

  14. Wild and semi-wild leafy vegetables used by the Maale and Ari ethnic communities in southern Ethiopia

    NARCIS (Netherlands)

    Kidane, Berhane; Maesen, van der L.J.G.; Asfaw, Zemede; Sosef, M.S.M.; Andel, van Tinde

    2015-01-01

    We studied wild and semi-wild leafy vegetables used by the Maale and Ari ethnic communities in southern Ethiopia. Quantitative and qualitative ethnobotanical methods, including individual and focus group (n = 18) discussions, field observations, and individual interviews (n = 144), were used in

  15. Conducting Simulation Studies in the R Programming Environment.

    Science.gov (United States)

    Hallgren, Kevin A

    2013-10-12

    Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.

  16. Virtual Collaborative Simulation Environment for Integrated Product and Process Development

    Science.gov (United States)

    Gulli, Michael A.

    1997-01-01

    Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.

  17. Internal living environment and respiratory disease in children: findings from the Growing Up in New Zealand longitudinal child cohort study.

    Science.gov (United States)

    Tin Tin, Sandar; Woodward, Alistair; Saraf, Rajneeta; Berry, Sarah; Atatoa Carr, Polly; Morton, Susan M B; Grant, Cameron C

    2016-12-08

    The incidence of early childhood acute respiratory infections (ARIs) has been associated with aspects of the indoor environment. In recent years, public awareness about some of these environmental issues has increased, including new laws and subsequent changes in occupant behaviours. This New Zealand study investigated current exposures to specific risk factors in the home during the first five years of life and provided updated evidence on the links between the home environment and childhood ARI hospitalisation. Pregnant women (n = 6822) were recruited in 2009 and 2010, and their 6853 children created a child cohort that was representative of New Zealand births from 2007-10. Longitudinal data were collected through face-to-face interviews and linkage to routinely collected national datasets. Incidence rates with Poisson distribution confidence intervals were computed and Cox regression modelling for repeated events was performed. Living in a rented dwelling (48%), household crowding (22%) or dampness (20%); and, in the child's room, heavy condensation (20%) or mould or mildew on walls or ceilings (13%) were prevalent. In 14% of the households, the mother smoked cigarettes and in 30%, other household members smoked. Electric heaters were commonly used, followed by wood, flued gas and unflued portable gas heaters. The incidence of ARI hospitalisation before age five years was 33/1000 person-years. The risk of ARI hospitalisation was higher for children living in households where there was a gas heater in the child's bedroom: hazard ratio for flued gas heater 1.69 (95% CI: 1.21-2.36); and for unflued gas heater 1.68 (95% CI: 1.12-2.53); and where a gas heater was the sole type of household heating (hazard ratio: 1.64 (95% CI: 1.29-2.09)). The risk was reduced in households that used electric heaters (Hazard ratio: 0.74 (95% CI: 0.61-0.89)) or wood burners (hazard ratio: 0.79 (95% CI: 0.66-0.93)) as a form of household heating. The associations with other risk

  18. Simulation of potential standalone liquid desiccant cooling cycles

    International Nuclear Information System (INIS)

    Das, Rajat Subhra; Jain, Sanjeev

    2015-01-01

    LDCS (Liquid desiccant cooling systems), capable of achieving dehumidification and cooling with low-grade heat input, can be effectively used for treating fresh air in hot and humid regions. These can also be operated using non-concentrating solar collectors. The present study is concerned with the evaluation of various potential liquid desiccant cycles for tropical climatic conditions. Six potential standalone liquid desiccant cycles are identified and analyzed to select the best configuration for achieving thermal comfort. A computer simulation model is developed in EES (Equation Solver) software platform to evaluate the performance of all the cycles at various operating conditions. Aqueous solution of LiCl (lithium chloride) is used as desiccant. Mass and energy balance equations of all the components along with their effectiveness and LiCl property correlation equations are solved simultaneously for given ambient conditions. As the desiccant circuit is a closed loop, no assumptions are made about its concentration and temperature in the algorithm. Supply air conditions, cooling capacity, COP (capacity and coefficient of performance) and CR (circulation rate) per unit cooling capacity and hot water temperature requirement are used as a measure for analyzing the performance of the different cycles. The effect of hot water temperature on the performance of the cycles is evaluated at ARI conditions. The performances of the cycles are also evaluated for cities selected from each of the climatic zone of India that represent typical tropical climates. Although all the cycles are feasible at ARI and hot and dry conditions, only two cycles can achieve the selected indoor conditions in the peak humid conditions. The results would be useful for selecting suitable liquid desiccant cycle for a given climate. - Highlights: • Six potential standalone liquid desiccant cycles identified and analyzed to select best configuration. • A computer simulation model is developed in

  19. Analysis of the effects of simulated synergistic LEO environment on solar panels

    Science.gov (United States)

    Allegri, G.; Corradi, S.; Marchetti, M.; Scaglione, S.

    2007-02-01

    The effects due to the LEO environment exposure of a solar array primary structure are here presented and discussed in detail. The synergistic damaging components featuring LEO environment are high vacuum, thermal cycling, neutral gas, ultraviolet (UV) radiation and cold plasma. The synergistic effects due to these environmental elements are simulated by "on ground" tests, performed in the Space Environment Simulator (SAS) at the University of Rome "La Sapienza"; numerical simulations are performed by the Space Environment Information System (SPENVIS), developed by the European Space Agency (ESA). A "safe life" design for a solar array primary structure is developed, taking into consideration the combined damaging action of the LEO environment components; therefore results from both numerical and experimental simulations are coupled within the framework of a standard finite element method (FEM) based design. The expected durability of the solar array primary structure, made of laminated sandwich composite, is evaluated assuming that the loads exerted on the structure itself are essentially dependent on thermo-elastic stresses. The optical degradation of surface materials and the stiffness and strength degradation of structural elements are taken into account to assess the global structural durability of the solar array under characteristic operative conditions in LEO environment.

  20. Conducting Simulation Studies in the R Programming Environment

    Directory of Open Access Journals (Sweden)

    Kevin A. Hallgren

    2013-10-01

    Full Text Available Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtainingaccurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted toresearchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulationstudies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a the use of simulations to answer a novel question about statistical analysis, (b the use of simulations to estimate statistical power, and (c the use of simulations to obtain confidence intervals of parameter estimates throughbootstrapping. Results and fully annotated syntax from these examples are provided.

  1. A cartography and GIS consultancy mission to the Agricultural Research Institute (ARI) in Mlingano, Tanzania, september 1999

    NARCIS (Netherlands)

    Schuiling, C.

    2000-01-01

    The Agricultural Research Institute (ARI) in Mlingano, Tanzania made a start with GIS activities at the end of 1998. After purchasing GIS hardware and software and basic training courses, Alterra was invited to carry out a consultancy mission to solvepractical problems with map projection, map

  2. Comparative Study of the Effectiveness of Three Learning Environments: Hyper-Realistic Virtual Simulations, Traditional Schematic Simulations and Traditional Laboratory

    Science.gov (United States)

    Martinez, Guadalupe; Naranjo, Francisco L.; Perez, Angel L.; Suero, Maria Isabel; Pardo, Pedro J.

    2011-01-01

    This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output.…

  3. Reliability Verification of DBE Environment Simulation Test Facility by using Statistics Method

    International Nuclear Information System (INIS)

    Jang, Kyung Nam; Kim, Jong Soeg; Jeong, Sun Chul; Kyung Heum

    2011-01-01

    In the nuclear power plant, all the safety-related equipment including cables under the harsh environment should perform the equipment qualification (EQ) according to the IEEE std 323. There are three types of qualification methods including type testing, operating experience and analysis. In order to environmentally qualify the safety-related equipment using type testing method, not analysis or operation experience method, the representative sample of equipment, including interfaces, should be subjected to a series of tests. Among these tests, Design Basis Events (DBE) environment simulating test is the most important test. DBE simulation test is performed in DBE simulation test chamber according to the postulated DBE conditions including specified high-energy line break (HELB), loss of coolant accident (LOCA), main steam line break (MSLB) and etc, after thermal and radiation aging. Because most DBE conditions have 100% humidity condition, in order to trace temperature and pressure of DBE condition, high temperature steam should be used. During DBE simulation test, if high temperature steam under high pressure inject to the DBE test chamber, the temperature and pressure in test chamber rapidly increase over the target temperature. Therefore, the temperature and pressure in test chamber continue fluctuating during the DBE simulation test to meet target temperature and pressure. We should ensure fairness and accuracy of test result by confirming the performance of DBE environment simulation test facility. In this paper, in order to verify reliability of DBE environment simulation test facility, statistics method is used

  4. NECTAR: Simulation and Visualization in a 3D Collaborative Environment

    NARCIS (Netherlands)

    Law, Y.W.; Chan, K.Y.

    For simulation and visualization in a 3D collaborative environment, an architecture called the Nanyang Experimental CollaboraTive ARchitecture (NECTAR) has been developed. The objective is to support multi-user collaboration in a virtual environment with an emphasis on cost-effectiveness and

  5. Experiencing nature: The recognition of the symbolic environment within research and management of visitor flows

    NARCIS (Netherlands)

    Marwijk, van R.; Elands, B.H.M.; Lengkeek, J.

    2007-01-01

    Insight in and understanding of visitor use, including temporal and spatial distributions, is necess­ary for sustainable recreational use and effective park management. A visitor uses the physical environment of e.g. a National Park, however, his behaviour is not only a result of the objective or

  6. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    Science.gov (United States)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  7. Virtual X-ray imaging techniques in an immersive casting simulation environment

    International Nuclear Information System (INIS)

    Li, Ning; Kim, Sung-Hee; Suh, Ji-Hyun; Cho, Sang-Hyun; Choi, Jung-Gil; Kim, Myoung-Hee

    2007-01-01

    A computer code was developed to simulate radiograph of complex casting products in a CAVE TM -like environment. The simulation is based on the deterministic algorithms and ray tracing techniques. The aim of this study is to examine CAD/CAE/CAM models at the design stage, to optimize the design and inspect predicted defective regions with fast speed, good accuracy and small numerical expense. The present work discusses the algorithms for the radiography simulation of CAD/CAM model and proposes algorithmic solutions adapted from ray-box intersection algorithm and octree data structure specifically for radiographic simulation of CAE model. The stereoscopic visualization of full-size of product in the immersive casting simulation environment as well as the virtual X-ray images of castings provides an effective tool for design and evaluation of foundry processes by engineers and metallurgists

  8. Classroom Simulation for Trainee Teachers Using 3D Virtual Environments and Simulated Smartbot Student Behaviours

    OpenAIRE

    Alotaibi, Fahad Mazaed

    2014-01-01

    his thesis consists of an analysis of a classroom simulation using a Second Life (SL) experiment that aims to investigate the teaching impact on smartbots (virtual students) from trainee teacher avatars with respect to interaction, simulated behaviour, and observed teaching roles. The classroom-based SL experiments’ motivation is to enable the trainee teacher to acquire the necessary skills and experience to manage a real classroom environment through simulations of a real classroom. This ty...

  9. Open Source Power Plant Simulator Development Under Matlab Environment

    International Nuclear Information System (INIS)

    Ratemi, W.M.; Fadilah, S.M.; Abonoor, N

    2008-01-01

    In this paper an open source programming approach is targeted for the development of power plant simulator under Matlab environment. With this approach many individuals can contribute to the development of the simulator by developing different orders of complexities of the power plant components. Such modules can be modeled based on physical principles, or using neural networks or other methods. All of these modules are categorized in Matlab library, of which the user can select and build up his simulator. Many international companies developed its own authoring tool for the development of its simulators, and hence it became its own property available for high costs. Matlab is a general software developed by mathworks that can be used with its toolkits as the authoring tool for the development of components by different individuals, and through the appropriate coordination, different plant simulators, nuclear, traditional , or even research reactors can be computerly assembled. In this paper, power plant components such as a pressurizer, a reactor, a steam generator, a turbine, a condenser, a feedwater heater, a valve, a pump are modeled based on physical principles. Also a prototype modeling of a reactor ( a scram case) based on neural networks is developed. These modules are inserted in two different Matlab libraries one called physical and the other is called neural. Furthermore, during the simulation one can pause and shuffle the modules selected from the two libraries and then proceed the simulation. Also, under the Matlab environment a PID controller is developed for multi-loop plant which can be integrated for the control of the appropriate developed simulator. This paper is an attempt to base the open source approach for the development of power plant simulators or even research reactor simulators. It then requires the coordination among interested individuals or institutions to set it to professionalism. (author)

  10. Unique features in the ARIES glovebox line

    International Nuclear Information System (INIS)

    Martinez, H.E.; Brown, W.G.; Flamm, B.; James, C.A.; Laskie, R.; Nelson, T.O.; Wedman, D.E.

    1998-01-01

    A series of unique features have been incorporated into the Advanced Recovery and Integrated Extraction System (ARIES) at the Los Alamos National Laboratory, TA-55 Plutonium Facility. The features enhance the material handling in the process of the dismantlement of nuclear weapon primaries in the glovebox line. Incorporated into these features are the various plutonium process module's different ventilation zone requirements that the material handling systems must meet. These features include a conveyor system that consists of a remotely controlled cart that transverses the length of the conveyor glovebox, can be operated from a remote location and can deliver process components to the entrance of any selected module glovebox. Within the modules there exists linear motion material handling systems with lifting hoist, which are controlled via an Allen Bradley control panel or local control panels. To remove the packaged products from the hot process line, the package is processed through an air lock/electrolytic decontamination process that removes the radioactive contamination from the outside of the package container and allows the package to be removed from the process line

  11. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  12. Virtual environment simulation as a tool to support evacuation planning

    International Nuclear Information System (INIS)

    Mol, Antonio C.; Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Carvalho, Paulo V.R.; Jorge, Carlos A.F.; Sales, Douglas S.; Couto, Pedro M.; Botelho, Felipe M.; Bastos, Felipe R.

    2007-01-01

    This work is a preliminary study of the use of a free game-engine as a tool to build and to navigate in virtual environments, with a good degree of realism, for virtual simulations of evacuation from building and risk zones. To achieve this goal, some adjustments in the game engine have been implemented. A real building with four floors, consisting of some rooms with furniture and people, has been virtually implemented. Simulations of simple different evacuation scenarios have been performed, measuring the total time spent in each case. The measured times have been compared with their corresponding real evacuation times, measured in the real building. The first results have demonstrated that the virtual environment building with the free game engine is capable to reproduce the real situation with a satisfactory level. However, it is important to emphasize that such virtual simulations serve only as an aid in the planning of real evacuation simulations, and as such must never substitute the later. (author)

  13. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    Science.gov (United States)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  14. The Development and Evaluation of a Computer-Simulated Science Inquiry Environment Using Gamified Elements

    Science.gov (United States)

    Tsai, Fu-Hsing

    2018-01-01

    This study developed a computer-simulated science inquiry environment, called the Science Detective Squad, to engage students in investigating an electricity problem that may happen in daily life. The environment combined the simulation of scientific instruments and a virtual environment, including gamified elements, such as points and a story for…

  15. Creating pedestrian crash scenarios in a driving simulator environment.

    Science.gov (United States)

    Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W

    2015-01-01

    In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to

  16. Generation of large scale urban environments to support advanced sensor and seeker simulation

    Science.gov (United States)

    Giuliani, Joseph; Hershey, Daniel; McKeown, David, Jr.; Willis, Carla; Van, Tan

    2009-05-01

    One of the key aspects for the design of a next generation weapon system is the need to operate in cluttered and complex urban environments. Simulation systems rely on accurate representation of these environments and require automated software tools to construct the underlying 3D geometry and associated spectral and material properties that are then formatted for various objective seeker simulation systems. Under an Air Force Small Business Innovative Research (SBIR) contract, we have developed an automated process to generate 3D urban environments with user defined properties. These environments can be composed from a wide variety of source materials, including vector source data, pre-existing 3D models, and digital elevation models, and rapidly organized into a geo-specific visual simulation database. This intermediate representation can be easily inspected in the visible spectrum for content and organization and interactively queried for accuracy. Once the database contains the required contents, it can then be exported into specific synthetic scene generation runtime formats, preserving the relationship between geometry and material properties. To date an exporter for the Irma simulation system developed and maintained by AFRL/Eglin has been created and a second exporter to Real Time Composite Hardbody and Missile Plume (CHAMP) simulation system for real-time use is currently being developed. This process supports significantly more complex target environments than previous approaches to database generation. In this paper we describe the capabilities for content creation for advanced seeker processing algorithms simulation and sensor stimulation, including the overall database compilation process and sample databases produced and exported for the Irma runtime system. We also discuss the addition of object dynamics and viewer dynamics within the visual simulation into the Irma runtime environment.

  17. MARS: An Educational Environment for Multiagent Robot Simulations

    Directory of Open Access Journals (Sweden)

    Marco Casini

    2016-01-01

    Full Text Available Undergraduate robotics students often find it difficult to design and validate control algorithms for teams of mobile robots. This is mainly due to two reasons. First, very rarely, educational laboratories are equipped with large teams of robots, which are usually expensive, bulky, and difficult to manage and maintain. Second, robotics simulators often require students to spend much time to learn their use and functionalities. For this purpose, a simulator of multiagent mobile robots named MARS has been developed within the Matlab environment, with the aim of helping students to simulate a wide variety of control algorithms in an easy way and without spending time for understanding a new language. Through this facility, the user is able to simulate multirobot teams performing different tasks, from cooperative to competitive ones, by using both centralized and distributed controllers. Virtual sensors are provided to simulate real devices. A graphical user interface allows students to monitor the robots behaviour through an online animation.

  18. Hardware in the loop radar environment simulation on wideband DRFM platforms

    CSIR Research Space (South Africa)

    Strydom, JJ

    2012-10-01

    Full Text Available @csir.co.za, dnaiker@csir.co.za, kolivier@csir.co.za Keywords: DRFM, ECM, Complex Targets, Clutter, HIL, radar environment, simulation. Abstract This paper describes the development and testing of a digital radio frequency memory (DRFM) kernel, as well... as follows: Section 2 describes the design of a high performance DRFM kernel. Section 3 describes the integration of this kernel into a radar environment simulator system. Sections 4, 5 and 6 then present the generation of realistic targets, ECM...

  19. Prediction and evaluation method of wind environment in the early design stage using BIM-based CFD simulation

    International Nuclear Information System (INIS)

    Lee, Sumi; Song, Doosam

    2010-01-01

    Drastic urbanization and manhattanization are causing various problems in wind environment. This study suggests a CFD simulation method to evaluate wind environment in the early design stage of high-rise buildings. The CFD simulation of this study is not a traditional in-depth simulation, but a method to immediately evaluate wind environment for each design alternative and provide guidelines for design modification. Thus, the CFD simulation of this study to evaluate wind environments uses BIM-based CFD tools to utilize building models in the design stage. This study examined previous criteria to evaluate wind environment for pedestrians around buildings and selected evaluation criteria applicable to the CFD simulation method of this study. Furthermore, proper mesh generation method and CPU time were reviewed to find a meaningful CFD simulation result for determining optimal design alternative from the perspective of wind environment in the design stage. In addition, this study is to suggest a wind environment evaluation method through a BIM-based CFD simulation.

  20. Virtual environment display for a 3D audio room simulation

    Science.gov (United States)

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  1. Low-sampling-rate M-ary multiple access UWB communications in multipath channels

    KAUST Repository

    Alkhodary, Mohammad T.

    2015-08-31

    The desirable characteristics of ultra-wideband (UWB) technology are challenged by formidable sampling frequency, performance degradation in the presence of multi-user interference, and complexity of the receiver due to the channel estimation process. In this paper, a low-rate-sampling technique is used to implement M-ary multiple access UWB communications, in both the detection and channel estimation stages. A novel approach is used for multiple-access-interference (MAI) cancelation for the purpose of channel estimation. Results show reasonable performance of the proposed receiver for different number of users operating many times below Nyquist rate.

  2. Low-sampling-rate M-ary multiple access UWB communications in multipath channels

    KAUST Repository

    Alkhodary, Mohammad T.; Ballal, Tarig; Al-Naffouri, Tareq Y.; Muqaibel, Ali H.

    2015-01-01

    The desirable characteristics of ultra-wideband (UWB) technology are challenged by formidable sampling frequency, performance degradation in the presence of multi-user interference, and complexity of the receiver due to the channel estimation process. In this paper, a low-rate-sampling technique is used to implement M-ary multiple access UWB communications, in both the detection and channel estimation stages. A novel approach is used for multiple-access-interference (MAI) cancelation for the purpose of channel estimation. Results show reasonable performance of the proposed receiver for different number of users operating many times below Nyquist rate.

  3. Simulated Space Environment Effects on a Candidate Solar Sail Material

    Science.gov (United States)

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.

  4. Visual simulation study of equipment maintenance in dangerous environment

    International Nuclear Information System (INIS)

    Zhu Bo; Yang Yanhua; Li Shiting

    2010-01-01

    The maintenance characteristics in dangerous environments are analyzed, and the application characteristics of visualized maintenance technology are introduced. The interactive method to implement maintenance simulation is presented using EON simulation platform. Then an interacted Virtual Maintenance Training System (VMTS) is further developed, and the composition and function are described in details. The VMTS can be used in extensive array of application scopes, and it is well compatible to the hardware of virtual reality. (author)

  5. A Multiagent Modeling Environment for Simulating Work Practice in Organizations

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron

    2004-01-01

    In this paper we position Brahms as a tool for simulating organizational processes. Brahms is a modeling and simulation environment for analyzing human work practice, and for using such models to develop intelligent software agents to support the work practice in organizations. Brahms is the result of more than ten years of research at the Institute for Research on Learning (IRL), NYNEX Science & Technology (the former R&D institute of the Baby Bell telephone company in New York, now Verizon), and for the last six years at NASA Ames Research Center, in the Work Systems Design and Evaluation group, part of the Computational Sciences Division (Code IC). Brahms has been used on more than ten modeling and simulation research projects, and recently has been used as a distributed multiagent development environment for developing work practice support tools for human in-situ science exploration on planetary surfaces, in particular a human mission to Mars. Brahms was originally conceived of as a business process modeling and simulation tool that incorporates the social systems of work, by illuminating how formal process flow descriptions relate to people s actual located activities in the workplace. Our research started in the early nineties as a reaction to experiences with work process modeling and simulation . Although an effective tool for convincing management of the potential cost-savings of the newly designed work processes, the modeling and simulation environment was only able to describe work as a normative workflow. However, the social systems, uncovered in work practices studied by the design team played a significant role in how work actually got done-actual lived work. Multi- tasking, informal assistance and circumstantial work interactions could not easily be represented in a tool with a strict workflow modeling paradigm. In response, we began to develop a tool that would have the benefits of work process modeling and simulation, but be distinctively able to

  6. Sketsa Karya Ari Nur Utami: Arsitektur Urban dalam Perspektif Ekokritisisme

    Directory of Open Access Journals (Sweden)

    Usma Nur Dian Rosyidah

    2013-12-01

    Full Text Available Kota adalah ruang kompleks bagi siapa pun yang berada di dalamnya. Saat ini, penghuni ruang kota terancam oleh menurunnya kualitas ekologis kota akibat pembangunan gedung, berbagai fasilitas. dan infrastruktur kota yang masif. Salah satu novel yang memotret eksploitasi ekologi kota tersebut adalah Sketsa karya Ari Nur Utami. Sebagai novel berlatar belakang arsitektur, Sketsa menceritakan pembangunan gedung di Jakarta oleh pengembang bernama PT Semesta Sentosa. Menggunakan teori ekokritisisme, fokus diskusi dalam artikel ini adalah cara penulis memasukkan nilai dan asumsi ekokritik dalam arsitektur urban di novel Sketsa. Tulisan ini bertujuan untuk menguraikan dominasi pandangan antroposentris individu terhadap alam. Melalui metode kualitatif­deskriptif dengan melakukan close­reading, hasil pembahasan menunjukkan bahwa pembangunan di Jakarta dengan berbagai proyek arsitektur urbannya masih mengabaikan kelestarian lingkungan. Ketidakpedulian terhadap lingkungan ini dapat dilihat dari orientasi etis dan linguistik antroposentris yang dipilih demi mendapatkan keuntungan besar dalam bisnis properti di Jakarta. Abstract: City is a space that contains complexities for anyone being part of it. Nowadays, people are threatened by the ecologically degrading city as the result of the massive development of buildings and other city’s facilities and infrastructures. A novel portraying the issues of ecological exploitation is Ari Nur Utami’s Sketsa. Being claimed as an architectural background novel, Sketsa portrays the development of buildings in Jakarta by a property developer named PT Semesta Sentosa. By applying ecocriticism theory, one point discussed in this article is how the author imputes certain ecocritical values and assumptions in presenting the urban architecture in Sketsa. The objective of this research is to elaborate the domination of anthropocentric perspective over nature. Through the qualitative­descriptive method, it is found that

  7. PESANTREN DAN POLITIK (Sinergi Pendidikan Pesantren dan Kepemimpinan dalam Pandangan KH. M. Hasyim Asy’ari

    Directory of Open Access Journals (Sweden)

    Zaini Tamin Abd Rohim

    2015-11-01

    Full Text Available Pesantren and politics are two different terms which may have a synergy in a social reality and a history of archipelago. This study refers to the thought of Hasyim Asy’ari about Islamic education, pesantren, and its role in a national life. Historically, the existence of pesantren aims to preserve Islamic values especially on education and to educate students to be well-knowledged people who are capable of using their knowledge in society and have a noble character. Some studies by Hasyim Asy’ari explain that the goal of Islamic education does not merely bring out education outcome on the cognitive level, but also on the practice level where students can make use of knowledge they have learned or so-called useful knowledge (‘ilm na>fi’. These aforesaid goal becomes the pesantren’s priority which combines intellectual, emotional, and spiritual skills to build a students’ character. Character is a prominent factor in leadership, an ability to step out of the existing culture and make an evolutionary change which is far adaptive. Hence, since Pesantren is valued as a hub of character education, it plays a role to build students’ character either intellectual and social abilities or leadership skills.

  8. ARIES API/industry communication network now spans the U.S

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The ATM Research and Industrial Enterprise Study (ARIES) is a joint development project of API member companies. It involves the cooperation of the vendor community, several DOE labs and NASA's Advanced Communications Technology Satellite (ACTS) Program to explore the ability of Asynchronous Transfer Mode (ATM) networking technology to revolutionize the process of energy exploration and production. One of the goals of this partnership is to implement real-time seismic exploration by providing high-data-rate communications from ships to data processing centers on land, all integrally coupled with interactive analysis by expert geoscientists. This paper reviews a demonstration project of this system transmitting seismic data from a ship in the Gulf of Mexico to the Houston offices of Amoco, Shell and the Institute of Biosciences and Technology in the Texas Medical Center

  9. The Use of Computer Simulation to Compare Student performance in Traditional versus Distance Learning Environments

    Directory of Open Access Journals (Sweden)

    Retta Guy

    2015-06-01

    Full Text Available Simulations have been shown to be an effective tool in traditional learning environments; however, as distance learning grows in popularity, the need to examine simulation effectiveness in this environment has become paramount. A casual-comparative design was chosen for this study to determine whether students using a computer-based instructional simulation in hybrid and fully online environments learned better than traditional classroom learners. The study spans a period of 6 years beginning fall 2008 through spring 2014. The population studied was 281 undergraduate business students self-enrolled in a 200-level microcomputer application course. The overall results support previous studies in that computer simulations are most effective when used as a supplement to face-to-face lectures and in hybrid environments.

  10. Comments concerning the real risk of sexual adverse events secondary to the use of 5-ARIs

    Directory of Open Access Journals (Sweden)

    Furio Pirozzi Farina

    2016-01-01

    Full Text Available Treatment-induced sexual dysfunctions (SD are a recurrent and controversial topic in recent literature on the adverse events related to the use of 5-alpha-reductase inhibitors (5ARIs (1, 2. In order to deal adequately with the various aspects of this topic, it is necessary to first cover some of the steps that allow a better definition and understanding of the subject.

  11. Sarmatian Attributes in Archaeological Complexes of Catacombs Burials in Arys Culture of Southern Kazakhstan (1st Century B.C. - 3rd Century A.D.

    Directory of Open Access Journals (Sweden)

    Podushkin Aleksandr Nikolaevich

    2015-12-01

    Full Text Available The publication is devoted to archaeological research of monuments of the catacomb of Arys culture of Southern Kazakhstan (1st Century B.C. - 3rd Century A.D.. Now scientists have a complete understanding of the range and typology, periodization and chronology of monuments of this culture. There are three stages: Karaultobe (4th century B.C. - 1st century A.D.; Karatobe (1st Century B.C. - 4th century A.D.; Altintobe (4th-6th centuries A.D.. These stages are characterized by specific clusters of signs in the form of artifacts. The author also carried out the ethnic attribution of the Arys culture in association with the ancient state Kangiuj. As a result of this work, the ethnicity of the state Kangiuj was revealed: in particular, late Saka’s, Sarmatian, Huns and Kangiuj ethnic components which are relevant to archaeological complexes, were identified. In the Arys monuments of culture the author discovered complexes of findings which associated with the Sarmatian world of Eurasia by their ethno-cultural parameters. They include typical for the Sarmatians list of ritual action and the funerary equipment, including weapons, bronze mirrors, ritual and religious objects, signs-tamgas, jewelry (including Egyptian faience, articles in “animal”, gold-turquoise and polychrome style. The characteristics of the burial complexes of catacombs of the Arys culture discussed in the publication and corresponding to chronological calculations and ethno-cultural interpretations, allow to speak about presence in the territory of South Kazakhstan of the Asian Sarmatians or any local branch of the Union of the Sarmatian tribes in the 1st century B.C. - 3rd century A.D.

  12. Simulation based virtual learning environment in medical genetics counseling

    DEFF Research Database (Denmark)

    Makransky, Guido; Bonde, Mads T; Wulff, Julie S G

    2016-01-01

    learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. METHODS: An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major...... in medicine, received a 2-h training session in a simulation based learning environment. The main outcomes were pre- to post- changes in knowledge, intrinsic motivation, and self-efficacy, together with post-intervention evaluation of the effect of the simulation on student understanding of everyday clinical...... practice were demonstrated. RESULTS: Knowledge (Cohen's d = 0.73), intrinsic motivation (d = 0.24), and self-efficacy (d = 0.46) significantly increased from the pre- to post-test. Low knowledge students showed the greatest increases in knowledge (d = 3.35) and self-efficacy (d = 0.61), but a non...

  13. A Data Stream Model For Runoff Simulation In A Changing Environment

    Science.gov (United States)

    Yang, Q.; Shao, J.; Zhang, H.; Wang, G.

    2017-12-01

    Runoff simulation is of great significance for water engineering design, water disaster control, water resources planning and management in a catchment or region. A large number of methods including concept-based process-driven models and statistic-based data-driven models, have been proposed and widely used in worldwide during past decades. Most existing models assume that the relationship among runoff and its impacting factors is stationary. However, in the changing environment (e.g., climate change, human disturbance), their relationship usually evolves over time. In this study, we propose a data stream model for runoff simulation in a changing environment. Specifically, the proposed model works in three steps: learning a rule set, expansion of a rule, and simulation. The first step is to initialize a rule set. When a new observation arrives, the model will check which rule covers it and then use the rule for simulation. Meanwhile, Page-Hinckley (PH) change detection test is used to monitor the online simulation error of each rule. If a change is detected, the corresponding rule is removed from the rule set. In the second step, for each rule, if it covers more than a given number of instance, the rule is expected to expand. In the third step, a simulation model of each leaf node is learnt with a perceptron without activation function, and is updated with adding a newly incoming observation. Taking Fuxi River catchment as a case study, we applied the model to simulate the monthly runoff in the catchment. Results show that abrupt change is detected in the year of 1997 by using the Page-Hinckley change detection test method, which is consistent with the historic record of flooding. In addition, the model achieves good simulation results with the RMSE of 13.326, and outperforms many established methods. The findings demonstrated that the proposed data stream model provides a promising way to simulate runoff in a changing environment.

  14. High Fidelity Simulation of Littoral Environments: Applications and Coupling of Participating Models

    National Research Council Canada - National Science Library

    Allard, Richard

    2003-01-01

    The High Fidelity Simulation of Littoral Environments (HFSoLE) Challenge Project (C75) encompasses a suite of seven oceanographic models capable of exchanging information in a physically meaningful sense across the littoral environment...

  15. A SIMULATION ENVIRONMENT FOR AUTOMATIC NIGHT DRIVING AND VISUAL CONTROL

    OpenAIRE

    Arroyo Rubio, Fernando

    2012-01-01

    This project consists on developing an automatic night driving system in a simulation environment. The simulator I have used is TORCS. TORCS is an Open Source car racing simulator written in C++. It is used as an ordinary car racing game, as a IA racing game and as a research platform. The goal of this thesis is to implement an automatic driving system to control the car under night conditions using computer vision. A camera is implemented inside the vehicle and it will detect the reflective ...

  16. Aircraft Reply and Interference Environment Simulator (ARIES) Hardward Principles of Operation. Volume 1

    Science.gov (United States)

    1989-10-01

    flip-flop to its CYCLE mode via control signal END- ABORTO and selects the idle frames through multiplexer M2 by removing the control signal ABORTO ...F-d LL 0 * H z 209 6.8.2.2.3 Message Block Assembler. The ABORTO , IDLEO, and SKIPO pulses from the receiving logic, as well as EMPTYO signal from the

  17. Cell survival in a simulated Mars environment

    Science.gov (United States)

    Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David

    2016-07-01

    The most ancient life forms on earth date back comfortably to the time when liquid water was believed to be abundant on Mars. These ancient life forms include cyanobacteria, contemporary autotrophic earth organisms believed to have descended from ancestors present as long as 3.5 billion years ago. Contemporary cyanobacteria have adapted to the earth environment's harshest conditions (long-term drying, high and low temperature), and, being autotrophic, they are among the most likely life forms to withstand space travel and the Mars environment. However, it is unlikely that humans would unwittingly contaminate a planetary spacecraft with these microbes. One the other hand, heterotrophic microbes that co-habit with humans are more likely spacecraft contaminants, as history attests. Indeed, soil samples from the Atacama desert have yielded colony-forming organisms resembling enteric bacteria. There is a need to understand the survivability of cyanobacteria (likely survivors, unlikely contaminants) and heterotrophic eubacteria (unlikely survivors, likely contaminants) under simulated planetary conditions. A 35-day test was performed in a commercial planetary simulation system (Techshot, Inc., Greenville, IN) in which the minimum night-time temperature was -80 C, the maximum daytime temperature was +26 C, the simulated day-night light cycle in earth hours was 12-on and 12-off, and the total pressure of the pure CO _{2} atmosphere was maintained below 11 mbar. Any water present was allowed to equilibrate with the changing temperature and pressure. The gas phase was sampled into a CR1-A low-pressure hygrometer (Buck Technologies, Boulder, CO), and dew/frost point was measured once every hour and recorded on a data logger, along with the varying temperature in the chamber, from which the partial pressure of water was calculated. According to measurements there was no liquid water present throughout the test except during the initial pump-down period when aqueous specimens

  18. SpiCAD: Integrated environment for circuitry simulation with SPICE code

    Energy Technology Data Exchange (ETDEWEB)

    D' Amore, D; Padovini, G; Santomauro, M [Politecnico di Milano (Italy). Dip. di Elettronica

    1991-11-01

    SPICE is one of the most commonly used programs for the simulation of the behaviour of electronic circuits. This article describes in detail the key design characteristics and capabilities of a computer environment called SpiCAD which integrates all the different phases of SPICE based circuitry simulation on a personal computer, i.e., the tracing of the electronics scheme, simulation and visualization of the results so as to help define semiconductor device models, determine input signals, construct macro-models and convert design sketches into formats acceptable to graphic systems.

  19. A web-based, collaborative modeling, simulation, and parallel computing environment for electromechanical systems

    Directory of Open Access Journals (Sweden)

    Xiaoliang Yin

    2015-03-01

    Full Text Available Complex electromechanical system is usually composed of multiple components from different domains, including mechanical, electronic, hydraulic, control, and so on. Modeling and simulation for electromechanical system on a unified platform is one of the research hotspots in system engineering at present. It is also the development trend of the design for complex electromechanical system. The unified modeling techniques and tools based on Modelica language provide a satisfactory solution. To meet with the requirements of collaborative modeling, simulation, and parallel computing for complex electromechanical systems based on Modelica, a general web-based modeling and simulation prototype environment, namely, WebMWorks, is designed and implemented. Based on the rich Internet application technologies, an interactive graphic user interface for modeling and post-processing on web browser was implemented; with the collaborative design module, the environment supports top-down, concurrent modeling and team cooperation; additionally, service-oriented architecture–based architecture was applied to supply compiling and solving services which run on cloud-like servers, so the environment can manage and dispatch large-scale simulation tasks in parallel on multiple computing servers simultaneously. An engineering application about pure electric vehicle is tested on WebMWorks. The results of simulation and parametric experiment demonstrate that the tested web-based environment can effectively shorten the design cycle of the complex electromechanical system.

  20. Fuzzy control of optical PPM CDMA with M-ary orthogonal signaling

    Science.gov (United States)

    Cui, K.; Leeson, M. S.; Hines, E. L.

    2008-06-01

    This paper introduces an incorporated spectral-amplitude coding (SAC) optical code-division multiple-access (OCDMA) scheme. One novel class of optical signature codes based on combinatorial designs is employed with M-ary pulse-position modulation (PPM) signaling to improve the system performance beyond the interference limit. A union upper bound on the bit error rate (BER) is derived and the performance characteristics are then discussed with a variety of system parameters. Furthermore, fuzzy logic (FL) control is proposed to provide tolerance of different degrees of reliability in multirate transmission and to achieve distinct service differentiation for multimedia applications. It is shown that the proposed system can effectively suppress noise effects and offer improved adaptation capabilities for multi-quality network requirements in comparison with systems without optimization.

  1. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Merrill, B.

    2014-01-01

    Highlights: • With the use of a system code, tritium burn-up fraction (f burn ) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f burn of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW fusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively

  2. ARIES Oxide Production Program Assessment of Risk to Long-term Sustainable Production Rate

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lloyd, Jane Alexandria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Majors, Harry W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-04

    This report describes an assessment of risks and the development of a risk watch list for the ARIES Oxide Production Program conducted in the Plutonium Facility at LANL. The watch list is an active list of potential risks and opportunities that the management team periodically considers to maximize the likelihood of program success. The initial assessments were made in FY 16. The initial watch list was reviewed in September 2016. The initial report was not issued. Revision 1 has been developed based on management review of the original watch list and includes changes that occurred during FY-16.

  3. Electrochemistry of lead in simulated ground water environments

    International Nuclear Information System (INIS)

    Joerg, E.A.; Devereux, O.F.

    1996-01-01

    Lead and lead alloys are used commonly as moisture barriers for underground cables. Lead exhibits excellent corrosion resistance in a variety of environments, but areas of localized attack have been found. These can result in able failures. The susceptibility of lead to pitting in several simulated ground water (SGW) environments was assessed using cyclic potentiodynamic pitting scans (PPS) and microscopy. Although general corrosion was observed, PPS demonstrated pitting did not occur in the same sense as in alloys known to be susceptible to pitting (i.e., very localized pit formation without general corrosion). However, areas of nonuniform general attack did occur, resulting in pitted surface morphologies

  4. First wall/blanket/shield design and power conversion for the ARIES-IV tokamak fusion reactor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Conn, R.W.; Najmabadi, F.

    1994-01-01

    ARIES-IV is a conceptual, D-T burning, steady-state tokamak fusion reactor producing 1000 MWe net. It operates in the second plasma stability regime. The structural material is SiC composite and the primary coolant is helium at 10 MPa base pressure. The coolant flows poloidally in two loops, one inboard and one outboard. The coolant channels are circular tubes that form shells and are placed between two purge plates; the space between two adjacent tubes and the plate is purge gas flow area. The solid breeder is Li 2 O, and Be is used as neutron multiplier to ensure adequate TBR. Beryllium and Li 2 O are placed in between the adjacent tube shells. A computer code was developed to perform and optimize thermal-hydraulic design. Minimization of blanket thickness and the amount of Be, and the maximization of breeder zone thickness were done by iteration with neutronics. The gross thermal efficiency is 49%. The cost of electricity is 68 mills/kWh. The use of low activation SiC composite as the structural material, Li 2 O as the solid breeder, and avoidance of tungsten in the divertor has resulted in a good safety performance, and LSA rating of 1. Overall, SiC/He/Li 2 O ARIES-IV design is expected to have attractive economic and safety advantages

  5. The Impact of Combination Therapy with a-Blockers and 5ARIs on the Progression of BPH.

    Science.gov (United States)

    Sountoulides, Petros; Gravas, Stavros

    2015-01-01

    Benign prostatic hyperplasia (BPH) can be a progressive disease for some men with significant impact on their quality of life due to worsening of symptoms, risk of acute urinary retention (AUR) and surgery. Certain clinical parameters such as age, prostate volume and PSA are able to predict those patients with BPH-associated LUTS that are at risk of disease progression. These patients will likely benefit most from medical therapy that provides symptom relief while at the same time may prevent disease progression. Studies have shown that a-blockers, although able to rapidly alleviate symptoms, have no effect on prostate volume, risk for AUR and BPH-related surgery. On the other hand 5ARIs have proven their efficacy in reducing prostate size, the risk of AUR and prostate surgery. Therefore combination therapy with an a-blocker and a 5ARI can be the mainstay of treatment for those patients at risk of BPH progression. Patients' perspective and their needs and expectations from treatment are other crucial parameters to consider in order selecting the optimal management of BPH. Therefore physicians should take into consideration the drug properties and also the patients' preferences before deciding on the optimal pharmacological treatment for BPH-associated LUTS.

  6. Evaluation and development the routing protocol of a fully functional simulation environment for VANETs

    Science.gov (United States)

    Ali, Azhar Tareq; Warip, Mohd Nazri Mohd; Yaakob, Naimah; Abduljabbar, Waleed Khalid; Atta, Abdu Mohammed Ali

    2017-11-01

    Vehicular Ad-hoc Networks (VANETs) is an area of wireless technologies that is attracting a great deal of interest. There are still several areas of VANETS, such as security and routing protocols, medium access control, that lack large amounts of research. There is also a lack of freely available simulators that can quickly and accurately simulate VANETs. The main goal of this paper is to develop a freely available VANETS simulator and to evaluate popular mobile ad-hoc network routing protocols in several VANETS scenarios. The VANETS simulator consisted of a network simulator, traffic (mobility simulator) and used a client-server application to keep the two simulators in sync. The VANETS simulator also models buildings to create a more realistic wireless network environment. Ad-Hoc Distance Vector routing (AODV), Dynamic Source Routing (DSR) and Dynamic MANET On-demand (DYMO) were initially simulated in a city, country, and highway environment to provide an overall evaluation.

  7. Physics-based statistical model and simulation method of RF propagation in urban environments

    Science.gov (United States)

    Pao, Hsueh-Yuan; Dvorak, Steven L.

    2010-09-14

    A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.

  8. A simulation environment for ITER PCS development

    International Nuclear Information System (INIS)

    Walker, M.L.; Ambrosino, G.; De Tommasi, G.; Humphreys, D.A.; Mattei, M.; Neu, G.; Raupp, G.; Treutterer, W.; Winter, A.

    2014-01-01

    Highlights: • Describes task to develop simulation tool to aid development/testing of ITER PCS. • Requirements and use cases and preliminary architecture have been delivered. • Detailed design is now being developed. • Provides overview of use cases and requirements. • Provides overview of architecture and status of development. - Abstract: A simulation environment known as the Plasma Control System Simulation Platform (PCSSP), specifically designed to support development of the ITER Plasma Control System (PCS), is currently under construction by an international team encompassing a cross-section of expertise in simulation and exception handling for plasma control. The proposed design addresses the challenging requirements of supporting the PCS design. This paper provides an overview of the PCSSP project and a discussion of some of the major features of its design. Plasma control for the ITER tokamak will be significantly more challenging than for existing fusion devices. An order of magnitude greater performance (e.g. [1,2]) is needed for some types of control, which together with limited actuator authority, implies that optimized individual controllers and nonlinear saturation logic are required. At the same time, consequences of control failure are significantly more severe, which implies a conflicting requirement for robust control. It also implies a requirement for comprehensive and robust exception handling. Coordinated control of multiple competing objectives with significant interactions, together with many shared uses of actuators to control multiple variables, implies that highly integrated control logic and shared actuator management will be required. It remains a challenge for the integrated technologies to simultaneously address these multiple and often competing requirements to be demonstrated on existing fusion devices and adapted for ITER in time to support its operational schedule. We describe ways in which the PCSSP will help address

  9. Expanding the modeling capabilities of the cognitive environment simulation

    International Nuclear Information System (INIS)

    Roth, E.M.; Mumaw, R.J.; Pople, H.E. Jr.

    1991-01-01

    The Nuclear Regulatory Commission has been conducting a research program to develop more effective tools to model the cognitive activities that underlie intention formation during nuclear power plant (NPP) emergencies. Under this program an artificial intelligence (AI) computer simulation called Cognitive Environment Simulation (CES) has been developed. CES simulates the cognitive activities involved in responding to a NPP accident situation. It is intended to provide an analytic tool for predicting likely human responses, and the kinds of errors that can plausibly arise under different accident conditions to support human reliability analysis. Recently CES was extended to handle a class of interfacing loss of coolant accidents (ISLOCAs). This paper summarizes the results of these exercises and describes follow-on work currently underway

  10. Time-Domain Simulations of Transient Species in Experimentally Relevant Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ueltschi, Tyler W.; Fischer, Sean A.; Apra, Edoardo; Tarnovsky, Alexander N.; Govind, Niranjan; El-Khoury, Patrick Z.; Hess, Wayne P.

    2016-02-04

    Simulating the spectroscopic properties of short-lived thermal and photochemical reaction intermediates and products is a challenging task, as these species often feature atypical molecular and electronic structures. The complex environments in which such species typically reside in practice add further complexity to the problem. Herein, we tackle this problem in silico using ab initio molecular dynamics (AIMD) simulations, employing iso-CHBr3, namely H(Br)C-Br-Br, as a prototypical system. This species was chosen because it features both a non-conventional C-Br-Br bonding pattern, as well as a strong dependence of its spectral features on the local environment in which it resides, as illustrated in recent experimental reports. The spectroscopic properties of iso-CHBr3 were measured by several groups that captured this transient intermediate in the photochemistry of CHBr3 in the gas phase, in rare gas matrices at 5K, and in solution under ambient laboratory conditions. We simulate the UV-Vis and IR spectra of iso-CHBr3 in all three media, including a Ne cluster (64 atoms) and a methylcyclohexane cage (14 solvent molecules) representative of the matrix isolated and solvated species. We exclusively perform fully quantum mechanical static and dynamic simulations. By comparing our condensed phase simulations to their experimental analogues, we stress the importance of (i) conformational sampling, even at cryogenic temperatures, and (ii) using a fully quantum mechanical description of both solute and bath to properly account for the experimental observables.

  11. Specification of requirements for the virtual environment for reactor applications simulation environment

    International Nuclear Information System (INIS)

    Hess, S. M.; Pytel, M.

    2012-01-01

    In 2010, the United States Dept. of Energy initiated a research and development effort to develop modern modeling and simulation methods that could utilize high performance computing capabilities to address issues important to nuclear power plant operation, safety and sustainability. To respond to this need, a consortium of national laboratories, academic institutions and industry partners (the Consortium for Advanced Simulation of Light Water Reactors - CASL) was formed to develop an integrated Virtual Environment for Reactor Applications (VERA) modeling and simulation capability. A critical element for the success of the CASL research and development effort was the development of an integrated set of overarching requirements that provides guidance in the planning, development, and management of the VERA modeling and simulation software. These requirements also provide a mechanism from which the needs of a broad array of external CASL stakeholders (e.g. reactor / fuel vendors, plant owner / operators, regulatory personnel, etc.) can be identified and integrated into the VERA development plans. This paper presents an overview of the initial set of requirements contained within the VERA Requirements Document (VRD) that currently is being used to govern development of the VERA software within the CASL program. The complex interdisciplinary nature of these requirements together with a multi-physics coupling approach to realize a core simulator capability pose a challenge to how the VRD should be derived and subsequently revised to accommodate the needs of different stakeholders. Thus, the VRD is viewed as an evolving document that will be updated periodically to reflect the changing needs of identified CASL stakeholders and lessons learned during the progress of the CASL modeling and simulation program. (authors)

  12. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  13. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.

    Science.gov (United States)

    Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-06-23

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  14. ARIES: Enabling Visual Exploration and Organization of Art Image Collections.

    Science.gov (United States)

    Crissaff, Lhaylla; Wood Ruby, Louisa; Deutch, Samantha; DuBois, R Luke; Fekete, Jean-Daniel; Freire, Juliana; Silva, Claudio

    2018-01-01

    Art historians have traditionally used physical light boxes to prepare exhibits or curate collections. On a light box, they can place slides or printed images, move the images around at will, group them as desired, and visual-ly compare them. The transition to digital images has rendered this workflow obsolete. Now, art historians lack well-designed, unified interactive software tools that effectively support the operations they perform with physi-cal light boxes. To address this problem, we designed ARIES (ARt Image Exploration Space), an interactive image manipulation system that enables the exploration and organization of fine digital art. The system allows images to be compared in multiple ways, offering dynamic overlays analogous to a physical light box, and sup-porting advanced image comparisons and feature-matching functions, available through computational image processing. We demonstrate the effectiveness of our system to support art historians tasks through real use cases.

  15. Improved climate risk simulations for rice in arid environments.

    Directory of Open Access Journals (Sweden)

    Pepijn A J van Oort

    Full Text Available We integrated recent research on cardinal temperatures for phenology and early leaf growth, spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-induced sterility into an existing to crop growth model ORYZA2000. We compared for an arid environment observed potential yields with yields simulated with default ORYZA2000, with modified subversions of ORYZA2000 and with ORYZA_S, a model developed for the region of interest in the 1990s. Rice variety 'IR64' was sown monthly 15-times in a row in two locations in Senegal. The Senegal River Valley is located in the Sahel, near the Sahara desert with extreme temperatures during day and night. The existing subroutines underestimated cold stress and overestimated heat stress. Forcing the model to use observed spikelet number and phenology and replacing the existing heat and cold subroutines improved accuracy of yield simulation from EF = -0.32 to EF =0.70 (EF is modelling efficiency. The main causes of improved accuracy were that the new model subversions take into account transpirational cooling (which is high in arid environments and early morning flowering for heat sterility, and minimum rather than average temperature for cold sterility. Simulations were less accurate when also spikelet number and phenology were simulated. Model efficiency was 0.14 with new heat and cold routines and improved to 0.48 when using new cardinal temperatures for phenology and early leaf growth. The new adapted subversion of ORYZA2000 offers a powerful analytic tool for climate change impact assessment and cropping calendar optimisation in arid regions.

  16. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C., E-mail: wongc@fusion.gat.com [General Atomics, San Diego, CA (United States); Merrill, B. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-10-15

    Highlights: • With the use of a system code, tritium burn-up fraction (f{sub burn}) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f{sub burn} of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW{sub fusion} class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.

  17. Augmenting Sand Simulation Environments through Subdivision and Particle Refinement

    Science.gov (United States)

    Clothier, M.; Bailey, M.

    2012-12-01

    Recent advances in computer graphics and parallel processing hardware have provided disciplines with new methods to evaluate and visualize data. These advances have proven useful for earth and planetary scientists as many researchers are using this hardware to process large amounts of data for analysis. As such, this has provided opportunities for collaboration between computer graphics and the earth sciences. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs, we are investigating techniques for simulating the behavior of sand. We are also collaborating with the Jet Propulsion Laboratory's (JPL) DARTS Lab to exchange ideas and gain feedback on our research. The DARTS Lab specializes in simulation of planetary vehicles, such as the Mars rovers. Their simulations utilize a virtual "sand box" to test how a planetary vehicle responds to different environments. Our research builds upon this idea to create a sand simulation framework so that planetary environments, such as the harsh, sandy regions on Mars, are more fully realized. More specifically, we are focusing our research on the interaction between a planetary vehicle, such as a rover, and the sand beneath it, providing further insight into its performance. Unfortunately, this can be a computationally complex problem, especially if trying to represent the enormous quantities of sand particles interacting with each other. However, through the use of high-performance computing, we have developed a technique to subdivide areas of actively participating sand regions across a large landscape. Similar to a Level of Detail (LOD) technique, we only subdivide regions of a landscape where sand particles are actively participating with another object. While the sand is within this subdivision window and moves closer to the surface of the interacting object, the sand region subdivides into smaller regions until individual sand particles are left at the surface. As an example, let's say

  18. Qualified operator training in the simulated control room environment

    International Nuclear Information System (INIS)

    Ionescu, Teodor; Studineanu, Emil; Radulescu, Catalina; Bolocan, Gabriel

    2005-01-01

    Full text: Mainly designed for the training of the Cernavoda NPP Unit 2 operators, the virtual simulated environment allows the training of the already qualified operators for Cernavoda NPP Unit 1, adding to the already trained knowledge, the differences which has occurred in the Unit 2 design. Using state-of-the-art computers and displays and qualified software, the virtual simulated panels could offer a viable alternative to classic hardware-based training. This approach allows quick training of the new procedures required by the new configuration of the re-designed operator panels in the main control room of Cernavoda NPP Unit 2. (authors)

  19. Qualified operator training in the simulated control room environment

    International Nuclear Information System (INIS)

    Ionescu, Teodor; Studineanu, Emil; Radulescu, Catalina; Bolocan, Gabriel

    2005-01-01

    Mainly designed for the training of the Cernavoda NPP Unit 2 operators, the virtual simulated environment allows the training of the already qualified operators for Cernavoda NPP Unit 1, adding to the already trained knowledge, the differences which have occurred in the Unit 2 design. Using state-of-the-art computers and displays and qualified software, the virtual simulated panels could offer a viable alternative to classic hardware-based training. This approach allows quick training of the new procedures required by the new configuration of the re-designed operator panels in the main control room of Cernavoda NPP Unit 2. (authors)

  20. MathModelica - An Extensible Modeling and Simulation Environment with Integrated Graphics and Literate Programming

    OpenAIRE

    Fritzson, Peter; Gunnarsson, Johan; Jirstrand, Mats

    2002-01-01

    MathModelica is an integrated interactive development environment for advanced system modeling and simulation. The environment integrates Modelica-based modeling and simulation with graphic design, advanced scripting facilities, integration of program code, test cases, graphics, documentation, mathematical type setting, and symbolic formula manipulation provided via Mathematica. The user interface consists of a graphical Model Editor and Notebooks. The Model Editor is a graphical user interfa...

  1. Human Performance in Simulated Reduced Gravity Environments

    Science.gov (United States)

    Cowley, Matthew; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. Our current understanding of human performance in reduced gravity in a planetary environment (the moon or Mars) is limited to lunar observations, studies from the Apollo program, and recent suit tests conducted at JSC using reduced gravity simulators. This study will look at our most recent reduced gravity simulations performed on the new Active Response Gravity Offload System (ARGOS) compared to the C-9 reduced gravity plane. Methods: Subjects ambulated in reduced gravity analogs to obtain a baseline for human performance. Subjects were tested in lunar gravity (1.6 m/sq s) and Earth gravity (9.8 m/sq s) in shirt-sleeves. Subjects ambulated over ground at prescribed speeds on the ARGOS, but ambulated at a self-selected speed on the C-9 due to time limitations. Subjects on the ARGOS were given over 3 minutes to acclimate to the different conditions before data was collected. Nine healthy subjects were tested in the ARGOS (6 males, 3 females, 79.5 +/- 15.7 kg), while six subjects were tested on the C-9 (6 males, 78.8 +/- 11.2 kg). Data was collected with an optical motion capture system (Vicon, Oxford, UK) and was analyzed using customized analysis scripts in BodyBuilder (Vicon, Oxford, UK) and MATLAB (MathWorks, Natick, MA, USA). Results: In all offloaded conditions, variation between subjects increased compared to 1-g. Kinematics in the ARGOS at lunar gravity resembled earth gravity ambulation more closely than the C-9 ambulation. Toe-off occurred 10% earlier in both reduced gravity environments compared to earth gravity, shortening the stance phase. Likewise, ankle, knee, and hip angles remained consistently flexed and had reduced peaks compared to earth gravity. Ground reaction forces in lunar gravity (normalized to Earth body weight) were 0.4 +/- 0.2 on

  2. Mechanical deployment system on aries an autonomous mobile robot

    International Nuclear Information System (INIS)

    Rocheleau, D.N.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is under development for the Department of Energy (DOE) to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. This paper focuses on the mechanical deployment system-referred to as the camera positioning system (CPS)-used in the project. The CPS is used for positioning four identical but separate camera packages consisting of vision cameras and other required sensors such as bar-code readers and light stripe projectors. The CPS is attached to the top of a mobile robot and consists of two mechanisms. The first is a lift mechanism composed of 5 interlocking rail-elements which starts from a retracted position and extends upward to simultaneously position 3 separate camera packages to inspect the top three drums of a column of four drums. The second is a parallelogram special case Grashof four-bar mechanism which is used for positioning a camera package on drums on the floor. Both mechanisms are the subject of this paper, where the lift mechanism is discussed in detail

  3. Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-01-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES ampersand H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power

  4. Lessons learned from the Tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-01-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety and health (ES ampersand H) characteristics of projected tokamak power plants. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances relative to present understanding in physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advanced tokamak plasmas configured in the second-stability regime that achieve both high β and bootstrap fractions near unity through strong profile control offer high promise in this regard

  5. TACOP : A cognitive agent for a naval training simulation environment

    NARCIS (Netherlands)

    Doesburg, W.A. van; Heuvelink, A.; Broek, E.L. van den

    2005-01-01

    This paper describes how cognitive modeling can be exploited in the design of software agents that support naval training sessions. The architecture, specifications, and embedding of the cognitive agent in a simulation environment are described. Subsequently, the agent's functioning was evaluated in

  6. Computer-Based Simulations for Maintenance Training: Current ARI Research. Technical Report 544.

    Science.gov (United States)

    Knerr, Bruce W.; And Others

    Three research efforts that used computer-based simulations for maintenance training were in progress when this report was written: Game-Based Learning, which investigated the use of computer-based games to train electronics diagnostic skills; Human Performance in Fault Diagnosis Tasks, which evaluated the use of context-free tasks to train…

  7. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  8. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  9. Construction of 3.6m ARIES telescope enclosure with eccentric pier at Devasthal, Nainital

    Science.gov (United States)

    Bangia, Tarun

    Space optimized enclosure with eccentric pier for 3.6m ARIES telescope presents construction challenges at the unique observing site of Devasthal, Nainital, India. Enclosure comprises of about 16.5m diameter and 14m high insulated steel framed cylindrical dome rotating on a 14m high stationery dome supporting structure and a 24m × 12m extension structure building for accommodating aluminizing plant and ventilation system etc. Great deal of manual and mechanical excavation was carried out at the rocky site using rock breaking and JCB machines. Foundation bolts for columns of dome supporting structure and extension structure building were grouted after alignment with total station. A 7m diameter hollow cylindrical pier isolated from other structures and 1.85m eccentric with dome center designed due to space limitation at site is being casted for mounting 150 MT mass of the largest 3.6m telescope in the country. A 7m diameter template was fabricated for 3.6m pier top. Most of enclosure components are manufactured and tested in works before assembly/erection at site. Dome drive was tested with dummy loads using VVVF drive with 6 drive and 12 idler wheel assemblies at works to simulate dome weight and smooth operation before erection at site. A 4.2m wide motorized windscreen is being manufactured with a special grade synthetic fabric to withstand wind speed up to 15m/s.

  10. Experimental system to measure excitation cross-sections by electron impact. Measurements for ArI and ArII

    International Nuclear Information System (INIS)

    Blanco, F.; Sanchez, J.A.; Aguilera, J.A.; Campos, J.

    1989-01-01

    An experimental set-up to measure excitation cross-section of atomic and molecular levels by electron impact based on the optical method is reported. We also present some measurements on the excitation cross-section for ArI 5p'(1/2)0 level, and for simultaneous ionization and excitation of Ar leading to ArII levels belonging to the 3p 4 4p and 3p 4 4d configurations. (Author)

  11. Conversion of a mainframe simulation for maintenance performance to a PC environment

    International Nuclear Information System (INIS)

    Gertman, D.I.

    1991-01-01

    A computer-based simulation capable of generating human error probabilities (HEPs) for maintenance activities is presented. The HEPs are suitable for use in probabilistic risk assessments (PRAs) and are an important source of information for data management systems such as NUCLARR- the Nuclear Computerized Library for Assessing Reactor Reliability. (1) The basic computer model MAPPS--the maintenance personnel performance simulation has been developed and validated by the US NRC in order to improve maintenance practices and procedures at nuclear power plants. This model validated previously, has now been implemented and improved, in a PC environment, and renamed MicroMAPPS. The model is stochastically based, able to simulate the performance of 2 to 15 person crews for a variety of maintenance conditions. These conditions include aspects of crew actions as potentially influenced by the task, the environment, or characteristics of the personnel involved. The nature of the software code makes it particularly appropriate for determining changes in HEP rates due to fluctuations in important task, environment,. or personnel parameters. The presentation presents a brief review of the mainframe version of the code and presents a summarization of the enhancements which dramatically change the nature of the human computer interaction

  12. Antimicrobial susceptibility of Eschericia coli isolates from Arieş river (Romania

    Directory of Open Access Journals (Sweden)

    Andreea BODOCZI FLOREA

    2011-05-01

    Full Text Available We studied the prevalence of antimicrobial resistance (AR and multiple antimicrobial resistances (MAR among the faecal bacteria found in the Arieş river (Romania affected by strong anthropogenic pressures. Isolation and identification of E. coli were done by using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing by the disk diffusion method was conducted for 12 antimicrobial agents: ciprofloxacin, gentamicin, streptomycin, ceftazidin, ofloxacin, sulfamethoxazole, ticarcycline, ampicillin, nalidixic acid, nitrofurantoin, erythromycin, and norfloxacin. The data of the antimicrobial susceptibility reviled that all the studied E. coli strains were resistant to most of the tested antibiotics. The analysis of antibiotic resistance frequencies has showed an incidence of 46.66% strains resistant to more than 4 different antibiotics. Moreover, a high incidence of multiple antibiotic resistances was detected in each of the studied samples.

  13. High fidelity medical simulation in the difficult environment of a helicopter: feasibility, self-efficacy and cost

    Directory of Open Access Journals (Sweden)

    Holland Carolyn

    2006-10-01

    Full Text Available Abstract Background This study assessed the feasibility, self-efficacy and cost of providing a high fidelity medical simulation experience in the difficult environment of an air ambulance helicopter. Methods Seven of 12 EM residents in their first postgraduate year participated in an EMS flight simulation as the flight physician. The simulation used the Laerdal SimMan™ to present a cardiac and a trauma case in an EMS helicopter while running at flight idle. Before and after the simulation, subjects completed visual analog scales and a semi-structured interview to measure their self-efficacy, i.e. comfort with their ability to treat patients in the helicopter, and recognition of obstacles to care in the helicopter environment. After all 12 residents had completed their first non-simulated flight as the flight physician; they were surveyed about self-assessed comfort and perceived value of the simulation. Continuous data were compared between pre- and post-simulation using a paired samples t-test, and between residents participating in the simulation and those who did not using an independent samples t-test. Categorical data were compared using Fisher's exact test. Cost data for the simulation experience were estimated by the investigators. Results The simulations functioned correctly 5 out of 7 times; suggesting some refinement is necessary. Cost data indicated a monetary cost of $440 and a time cost of 22 hours of skilled instructor time. The simulation and non-simulation groups were similar in their demographics and pre-hospital experiences. The simulation did not improve residents' self-assessed comfort prior to their first flight (p > 0.234, but did improve understanding of the obstacles to patient care in the helicopter (p = 0.029. Every resident undertaking the simulation agreed it was educational and it should be included in their training. Qualitative data suggested residents would benefit from high fidelity simulation in other

  14. ESSE: Engineering Super Simulation Emulation for Virtual Reality Systems Environment

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Yeon, Choul W.

    2008-01-01

    The trademark 4 + D Technology TM based Engineering Super Simulation Emulation (ESSE) is introduced. ESSE resorting to three-dimensional (3D) Virtual Reality (VR) technology pledges to provide with an interactive real-time motion, sound and tactile and other forms of feedback in the man machine systems environment. In particular, the 3D Virtual Engineering Neo cybernetic Unit Soft Power (VENUS) adds a physics engine to the VR platform so as to materialize a physical atmosphere. A close cooperation system and prompt information share are crucial, thereby increasing the necessity of centralized information system and electronic cooperation system. VENUS is further deemed to contribute towards public acceptance of nuclear power in general, and safety in particular. For instance, visualization of nuclear systems can familiarize the public in answering their questions and alleviating misunderstandings on nuclear power plants answering their questions and alleviating misunderstandings on nuclear power plants (NPPs) in general, and performance, security and safety in particular. An in-house flagship project Systemic Three-dimensional Engine Platform Prototype Engineering (STEPPE) endeavors to develop the Systemic Three-dimensional Engine Platform (STEP) for a variety of VR applications. STEP is home to a level system providing the whole visible scene of virtual engineering of man machine system environment. The system is linked with video monitoring that provides a 3D Computer Graphics (CG) visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators easy access to visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators to access the virtual systems by using their virtual characters. Virtually Engineered NPP Informative systems by using their virtual characters. Virtually Engineered NPP Informative

  15. An Open-Source Simulation Environment for Model-Based Engineering, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work is a new spacecraft simulation environment for model-based engineering of flight algorithms and software. The goal is to provide a much faster way...

  16. A Versatile Simulation Environment of FTC Architectures for Large Transport Aircraft

    OpenAIRE

    Ossmann, Daniel; Varga, Andreas; Simon, Hecker

    2010-01-01

    We present a simulation environment with 3-D stereo visualization facilities destined for an easy setup and versatile assessment of fault detection and diagnosis based fault tolerant control systems. This environment has been primarily developed as a technology demonstrator of advanced reconfigurable flight control systems and is based on a realistic six degree of freedom flexible aircraft model. The aircraft control system architecture includes a flexible fault detection and diagnosis syste...

  17. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    Science.gov (United States)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  18. Temperature field simulation of complex structures in fire environment

    International Nuclear Information System (INIS)

    Li Weifen; Hao Zhiming; Li Minghai

    2010-01-01

    In this paper, the typical model of the system of dangerous goods - steel - wood composite structure including components of explosives is used as the research object. Using MARC program, the temperature field of the structure in the fire environment is simulated. Radiation, conduction and convection heat transfer within the gap of the structure are taken into account, contact heat transfer is also considered. The phenomenon of thermal decomposition of wood in high temperature is deal with by equivalent method. The results show that the temperature of the explosives is not high in the fire environment. The timber inside the composite structure has played a very good insulation effect of explosives.

  19. Intelligent manufacturing through participation : a participative simulation environment for integral manufacturing enterprise renewal

    NARCIS (Netherlands)

    Eijnatten, F.M. van

    2002-01-01

    This book deals with a 'Participative Simulation environment for Intelligent Manufacturing' (PSIM). PSIM is a software environment for use in assembly operations and it is developed and pilot-demonstrated in five companies: Volvo (Sweden), Finland Post, Fiat (Italy), Yamatake (Japan), Ford (USA).

  20. The Potential of Simulated Environments in Teacher Education: Current and Future Possibilities

    Science.gov (United States)

    Dieker, Lisa A.; Rodriguez, Jacqueline A.; Lignugaris/Kraft, Benjamin; Hynes, Michael C.; Hughes, Charles E.

    2014-01-01

    The future of virtual environments is evident in many fields but is just emerging in the field of teacher education. In this article, the authors provide a summary of the evolution of simulation in the field of teacher education and three factors that need to be considered as these environments further develop. The authors provide a specific…

  1. Novel 3D/VR interactive environment for MD simulations, visualization and analysis.

    Science.gov (United States)

    Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P

    2014-12-18

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.

  2. Optical monitoring of Active Galactic Nuclei from ARIES

    Science.gov (United States)

    Gopal-Krishna; Wiita, Paul Joseph

    2018-04-01

    This overview provides a historical perspective highlighting the pioneering role which the fairly modest observational facilities of ARIES have played since the 1990s in systematically characterizing the optical variability on hour-like time scale (intra-night optical variability, or INOV) of several major types of high-luminosity Active Galactic Nuclei (AGN). Such information was previously available only for blazars. Similar studies have since been initiated in at least a dozen countries, giving a boost to AGN variability research. Our work has, in particular, provided strong indication that mild INOV occurs in radio-quiet QSOs (amplitude up to 3 – 5 % and duty cycle 10%) and, moreover, has demonstrated that similarly mild INOV is exhibited even by the vast majority of radio-loud quasars which possess powerful relativistic jets (even including many that are beamed towards us). The solitary outliers are blazars, the tiny strongly polarized subset of powerful AGN, which frequently exhibit a pronounced INOV. Among the blazars, BL Lac objects often show a bluer-when-brighter chromatic behavior, while the flat spectrum radio quasars seem not to. Quantifying any differences of INOV among the major subclasses of non-blazar type AGNs will require dedicated monitoring programs using 2 - 3 metre class telescopes.

  3. pCloud: A Cloud-based Power Market Simulation Environment

    Energy Technology Data Exchange (ETDEWEB)

    Rudkevich, Aleksandr; Goldis, Evgeniy

    2012-12-02

    This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnerships and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs

  4. TACOP: A Cognitive Agent for a Naval Training Simulation Environment

    NARCIS (Netherlands)

    van Doesburg, W.A.; Verbeeck, K.; Heuvelink, A.; Tuyls, K.; Nowé, A.; van den Broek, Egon; Manderick, B.; Kuijpers, B.

    2005-01-01

    The full version of this paper appeared in: Doesburg, W. A. van, Heuvelink, A., and Broek, E. L. van den (2005). TACOP: A cognitive agent for a naval training simulation environment. In M. Pechoucek, D. Steiner, and S. Thompson (Eds.), Proceedings of the Industry Track of the Fourth International

  5. Optical intensity scintillation in the simulated atmospherical environment

    Science.gov (United States)

    Hajek, Lukas; Latal, Jan; Vanderka, Ales; Vitasek, Jan; Bojko, Marian; Bednarek, Lukas; Vasinek, Vladimir

    2016-09-01

    There are several parameters of the atmospheric environment which have an effect on the optical wireless connection. Effects like fog, snow or rain are ones of the effects which appears tendentiously and which are bound by season, geographic location, etc. One of the effects that appear with various intensity for the whole time is airflow. The airflow changes the local refractive index of the air and areas with lower or higher refractive index form. The light going through these areas refracts and due to the optical intensity scintillates on the detector of the receiver. The airflow forms on the basis of two effects in the atmosphere. The first is wind cut and flowing over barriers. The other is thermal flow when warm air rises to the higher layers of the atmosphere. The heart of this article is creation such an environment that will form airflow and the refractive index will scintillate. For the experiment, we used special laboratory box with high-speed ventilators and heating units to simulate atmospheric turbulence. We monitor the impact of ventilator arrangement and air temperature on the scintillation of the gas laser with wavelength 633 nm/15 mW. In the experiment, there is watched the difference in behavior between real measurement and flow simulation with the same peripheral conditions of the airflow in the area of 500 x 500 cm.

  6. Trusses Of Tensegrity Type In A Concept Of Train Station Renovation In Żary

    Directory of Open Access Journals (Sweden)

    Lechocka Paulina

    2015-09-01

    Full Text Available The first railway station in Żary was built in 1843 in Germany. After the Second World War and years of socialism in Poland the meaning of railway decreased and its technical condition deteriorated. Now the building needs renovation and change of function. Tensegrity structures may be useful in renovation of platforms shelter. They are strut and tie construction, in which there is self-stabilization between compressed and tensioned elements. Conception of new platform shelter is based on exemplary tensegrity module consist of three struts and nine cables (called „Simplex”. Tensegrity would make railway station more modern, but not cover its original elevation.

  7. Simulating Nonmodel-Fitting Responses in a CAT Environment. ACT Research Report Series 98-10.

    Science.gov (United States)

    Yi, Qing; Nering, Michael L.

    This study developed a model to simulate nonmodel-fitting responses in a computerized adaptive testing (CAT) environment, and to examine the effectiveness of the model. The underlying idea was to simulate examinees' test behaviors realistically. This study simulated a situation in which examinees are exposed to or are coached on test items before…

  8. Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data

    Science.gov (United States)

    Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.

    2017-12-01

    As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.

  9. Simulated learning environment experience in nursing students for paediatric practice.

    Science.gov (United States)

    Mendoza-Maldonado, Yessy; Barría-Pailaquilén, René Mauricio

    The training of health professionals requires the acquisition of clinical skills in a safe and efficient manner, which is facilitated by a simulated learning environment (SLE). It is also an efficient alternative when there are limitations for clinical practice in certain areas. This paper shows the work undertaken in a Chilean university in implementing paediatric practice using SLE. Over eight days, the care experience of a hospitalized infant was studied applying the nursing process. The participation of a paediatrician, resident physician, nursing technician, and simulated user was included in addition to the use of a simulation mannequin and equipment. Simulation of care was integral and covered interaction with the child and family and was developed in groups of six students by a teacher. The different phases of the simulation methodology were developed from a pedagogical point of view. The possibility of implementing paediatric clinical practice in an efficient and safe way was confirmed. The experience in SLE was highly valued by the students, allowing them to develop different skills and abilities required for paediatric nursing through simulation. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  10. Low cycle corrosion fatigue properties of F316Ti in simulated LWR primary environment

    International Nuclear Information System (INIS)

    Xu Xuelian; Ding Yaping; Katada, Y.; Sato, S.

    1998-11-01

    Environment effect on fatigue performance of materials used for Pressurized boundary, including fatigue life and crack growth rate, are of importance to nuclear safety. To predict the fatigue life of nuclear materials and to improve the design of nuclear materials, it is necessary to investigated the material fatigue performances in corrosive environment and to get the fatigue data under its environment to be used in. Low cycle corrosion fatigue (CF) performance investigation of domestic F316Ti in simulated BWR and PWR primary environment was carried out. The result shows that the high temperature water environment is one of the most important factors on CF properties. For the same material, the low cycle fatigue life in high temperature air is longer than that in simulated BWR and PWR primary environments. In high temperature water, domestic F316Ti has almost the same low cycle corrosion fatigue performance as F316 (made in Japan). All of the fatigue data are scattered within ASME best-fit curve and ASME design fatigue curve. In high strain range, there is no significant difference of the CF performance for F316Ti in both of BWR and PWR primary environments. With the decrease of strain amplitude, the difference appears gradually. The data is located at the short life side of the fatigue data in simulated BWR primary environment. Titanium is distributed uniformly in F316Ti manufactured in Fushun Steel Factory. Ni, Cr, Mo in this material are located at the high side of the alloy chemical composition range. So, F316Ti has a better CF property in high temperature water

  11. Optimal control of building storage systems using both ice storage and thermal mass – Part I: Simulation environment

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.

  12. Simulation of worst-case operating conditions for integrated circuits operating in a total dose environment

    International Nuclear Information System (INIS)

    Bhuva, B.L.

    1987-01-01

    Degradations in the circuit performance created by the radiation exposure of integrated circuits are so unique and abnormal that thorough simulation and testing of VLSI circuits is almost impossible, and new ways to estimate the operating performance in a radiation environment must be developed. The principal goal of this work was the development of simulation techniques for radiation effects on semiconductor devices. The mixed-mode simulation approach proved to be the most promising. The switch-level approach is used to identify the failure mechanisms and critical subcircuits responsible for operational failure along with worst-case operating conditions during and after irradiation. For precise simulations of critical subcircuits, SPICE is used. The identification of failure mechanisms enables the circuit designer to improve the circuit's performance and failure-exposure level. Identification of worst-case operating conditions during and after irradiation reduces the complexity of testing VLSI circuits for radiation environments. The results of test circuits for failure simulations using a conventional simulator and the new simulator showed significant time savings using the new simulator. The savings in simulation time proved to be circuit topology-dependent. However, for large circuits, the simulation time proved to be orders of magnitude smaller than simulation time for conventional simulators

  13. The atomic simulation environment-a Python library for working with atoms.

    Science.gov (United States)

    Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob; Castelli, Ivano E; Christensen, Rune; Dułak, Marcin; Friis, Jesper; Groves, Michael N; Hammer, Bjørk; Hargus, Cory; Hermes, Eric D; Jennings, Paul C; Bjerre Jensen, Peter; Kermode, James; Kitchin, John R; Leonhard Kolsbjerg, Esben; Kubal, Joseph; Kaasbjerg, Kristen; Lysgaard, Steen; Bergmann Maronsson, Jón; Maxson, Tristan; Olsen, Thomas; Pastewka, Lars; Peterson, Andrew; Rostgaard, Carsten; Schiøtz, Jakob; Schütt, Ole; Strange, Mikkel; Thygesen, Kristian S; Vegge, Tejs; Vilhelmsen, Lasse; Walter, Michael; Zeng, Zhenhua; Jacobsen, Karsten W

    2017-07-12

    The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple 'for-loop' construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.

  14. Learner-Centered Instruction (LCI): Volume IV, The Simulated Maintenance Task Environment (SMTE): A Job Specific Simulator.

    Science.gov (United States)

    Rifkin, Kenneth I.; And Others

    The purpose of the simulated maintenance task environment is to provide a means for training and job performance testing of the flight line weapon control systems mechanic/technician for the F-111A aircraft. It provides practice in flight line equipment checkout, troubleshooting, and removal and replacement of line replaceable units in the…

  15. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    Science.gov (United States)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  16. Electrophysiological measurement of interest during walking in a simulated environment.

    Science.gov (United States)

    Takeda, Yuji; Okuma, Takashi; Kimura, Motohiro; Kurata, Takeshi; Takenaka, Takeshi; Iwaki, Sunao

    2014-09-01

    A reliable neuroscientific technique for objectively estimating the degree of interest in a real environment is currently required in the research fields of neuroergonomics and neuroeconomics. Toward the development of such a technique, the present study explored electrophysiological measures that reflect an observer's interest in a nearly-real visual environment. Participants were asked to walk through a simulated shopping mall and the attractiveness of the shopping mall was manipulated by opening and closing the shutters of stores. During the walking task, participants were exposed to task-irrelevant auditory probes (two-stimulus oddball sequence). The results showed a smaller P2/early P3a component of task-irrelevant auditory event-related potentials and a larger lambda response of eye-fixation-related potentials in an interesting environment (i.e., open-shutter condition) than in a boring environment (i.e., closed-shutter condition); these findings can be reasonably explained by supposing that participants allocated more attentional resources to visual information in an interesting environment than in a boring environment, and thus residual attentional resources that could be allocated to task-irrelevant auditory probes were reduced. The P2/early P3a component and the lambda response may be useful measures of interest in a real visual environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Simulation Environment Based on the Universal Verification Methodology

    CERN Document Server

    AUTHOR|(SzGeCERN)697338

    2017-01-01

    Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification (CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with an structured plan. Those goals are targeted further by a developed testbench, which generates legal stimuli and sends them to a device under test (DUT). The progress is measured by coverage monitors added to the simulation environment. In this way, the non-exercised functionality can be identified. Moreover, the additional scoreboards indicate undesired DUT behaviour. Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow: (1) the CLICpix2 65 nm CMOS hybrid pixel readout ASIC desi...

  18. PENDIDIKAN KARAKTER MENURUT K.H. HASYIM ASY’ARI DALAM KITAB ADÂB AL-‘ÂLIM WA AL-MUTA‘ALLIM

    Directory of Open Access Journals (Sweden)

    Sholikah Sholikah

    2015-09-01

    Full Text Available The article deals with K.H. Hasyim Asy’ari’s thought of character education. The result of the study indicates that according to K.H. Hasyim Asy’ari the characters of teachers and students in his work Adab al-‘Âlim wa al-Muta’allim can be classified into three parts, are mentality or character, which should be possessed by teachers and learners: attempts to be done in order to become characterized teachers and learners, and: teaching strategies employed by educators and learning strategies used by learners. These three parts have compatible indicators with the competence of educators stated in UU Sisdiknas (The Legislation of National Educational System year 2003 along with 18 values of character promulgated by Pusat Kurikulum Pengembangan dan Pendidikan Budaya dan Karakter Bangsa. Moreover, according to K.H. Hasyim Asy’ari, the relevance of character education with the context of character education in Indonesia consists of a number of character education elements, namely the meaning and goal of character education, the values of character for both teachers and students, the rationale of character education, the method of character education, the media of character education, and the evaluation of character education

  19. Using numeric simulation in an online e-learning environment to teach functional physiological contexts.

    Science.gov (United States)

    Christ, Andreas; Thews, Oliver

    2016-04-01

    Mathematical models are suitable to simulate complex biological processes by a set of non-linear differential equations. These simulation models can be used as an e-learning tool in medical education. However, in many cases these mathematical systems have to be treated numerically which is computationally intensive. The aim of the study was to develop a system for numerical simulation to be used in an online e-learning environment. In the software system the simulation is located on the server as a CGI application. The user (student) selects the boundary conditions for the simulation (e.g., properties of a simulated patient) on the browser. With these parameters the simulation on the server is started and the simulation result is re-transferred to the browser. With this system two examples of e-learning units were realized. The first one uses a multi-compartment model of the glucose-insulin control loop for the simulation of the plasma glucose level after a simulated meal or during diabetes (including treatment by subcutaneous insulin application). The second one simulates the ion transport leading to the resting and action potential in nerves. The student can vary parameters systematically to explore the biological behavior of the system. The described system is able to simulate complex biological processes and offers the possibility to use these models in an online e-learning environment. As far as the underlying principles can be described mathematically, this type of system can be applied to a broad spectrum of biomedical or natural scientific topics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Modelling of an industrial environment, part 1.: Monte Carlo simulations of photon transport

    International Nuclear Information System (INIS)

    Kis, Z.; Eged, K.; Meckbach, R.; Voigt, G.

    2002-01-01

    After a nuclear accident releasing radioactive material into the environment the external exposures may contribute significantly to the radiation exposure of the population (UNSCEAR 1988, 2000). For urban populations the external gamma exposure from radionuclides deposited on the surfaces of the urban-industrial environments yields the dominant contributions to the total dose to the public (Kelly 1987; Jacob and Meckbach 1990). The radiation field is naturally influenced by the environment around the sources. For calculations of the shielding effect of the structures in complex and realistic urban environments Monte Carlo methods turned out to be useful tools (Jacob and Meckbach 1987; Meckbach et al. 1988). Using these methods a complex environment can be set up in which the photon transport can be solved on a reliable way. The accuracy of the methods is in principle limited only by the knowledge of the atomic cross sections and the computational time. Several papers using Monte Carlo results for calculating doses from the external gamma exposures were published (Jacob and Meckbach 1987, 1990; Meckbach et al. 1988; Rochedo et al. 1996). In these papers the Monte Carlo simulations were run in urban environments and for different photon energies. The industrial environment can be defined as such an area where productive and/or commercial activity is carried out. A good example can be a factory or a supermarket. An industrial environment can rather be different from the urban ones as for the types and structures of the buildings and their dimensions. These variations will affect the radiation field of this environment. Hence there is a need to run new Monte Carlo simulations designed specially for the industrial environments

  1. Application of numerical environment system to regional atmospheric radioactivity transport simulations

    International Nuclear Information System (INIS)

    Yamazawa, H.; Ohkura, T.; Iida, T.; Chino, M.; Nagai, H.

    2003-01-01

    Main functions of the Numerical Environment System (NES), as a part of the Information Technology Based Laboratory (ITBL) project implemented by Japan Atomic Energy Research Institute, became available for test use purposes although the development of the system is still underway. This system consists of numerical models of meteorology and atmospheric dispersion, database necessary for model simulations, post- and pre-processors such as data conversion and visualization, and a suite of system software which provide the users with system functions through a web page access. The system utilizes calculation servers such as vector- and scalar-parallel processors for numerical model execution, a EWS which serves as a hub of the system. This system provides users in the field of nuclear emergency preparedness and atmospheric environment with easy-to-use functions of atmospheric dispersion simulations including input meteorological data preparation and visualization of simulation results. The performance of numerical models in the system was examined with observation data of long-range transported radon-222. The models in the system reproduced quite well temporal variations in the observed radon-222 concentrations in air which were caused by changes in the meteorological field in the synoptic scale. By applying the NES models in combination with the idea of backward-in-time atmospheric dispersion simulation, seasonal shift of source areas of radon-222 in the eastern Asian regions affecting the concentrations in Japan was quantitatively illustrated. (authors)

  2. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    International Nuclear Information System (INIS)

    Cupini, E.

    1999-01-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed [it

  3. Simulation experience enhances physical therapist student confidence in managing a patient in the critical care environment.

    Science.gov (United States)

    Ohtake, Patricia J; Lazarus, Marcilene; Schillo, Rebecca; Rosen, Michael

    2013-02-01

    Rehabilitation of patients in critical care environments improves functional outcomes. This finding has led to increased implementation of intensive care unit (ICU) rehabilitation programs, including early mobility, and an associated increased demand for physical therapists practicing in ICUs. Unfortunately, many physical therapists report being inadequately prepared to work in this high-risk environment. Simulation provides focused, deliberate practice in safe, controlled learning environments and may be a method to initiate academic preparation of physical therapists for ICU practice. The purpose of this study was to examine the effect of participation in simulation-based management of a patient with critical illness in an ICU setting on levels of confidence and satisfaction in physical therapist students. A one-group, pretest-posttest, quasi-experimental design was used. Physical therapist students (N=43) participated in a critical care simulation experience requiring technical (assessing bed mobility and pulmonary status), behavioral (patient and interprofessional communication), and cognitive (recognizing a patient status change and initiating appropriate responses) skill performance. Student confidence and satisfaction were surveyed before and after the simulation experience. Students' confidence in their technical, behavioral, and cognitive skill performance increased from "somewhat confident" to "confident" following the critical care simulation experience. Student satisfaction was highly positive, with strong agreement the simulation experience was valuable, reinforced course content, and was a useful educational tool. Limitations of the study were the small sample from one university and a control group was not included. Incorporating a simulated, interprofessional critical care experience into a required clinical course improved physical therapist student confidence in technical, behavioral, and cognitive performance measures and was associated with high

  4. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

    2004-12-22

    In this report is described the work effort to develop and demonstrate a software framework to support advanced process simulations to evaluate the performance of advanced power systems. Integrated into the framework are a broad range of models, analysis tools, and visualization methods that can be used for the plant evaluation. The framework provides a tightly integrated problem-solving environment, with plug-and-play functionality, and includes a hierarchy of models, ranging from fast running process models to detailed reacting CFD models. The framework places no inherent limitations on the type of physics that can be modeled, numerical techniques, or programming languages used to implement the equipment models, or the type or amount of data that can be exchanged between models. Tools are provided to analyze simulation results at multiple levels of detail, ranging from simple tabular outputs to advanced solution visualization methods. All models and tools communicate in a seamless manner. The framework can be coupled to other software frameworks that provide different modeling capabilities. Three software frameworks were developed during the course of the project. The first framework focused on simulating the performance of the DOE Low Emissions Boiler System Proof of Concept facility, an advanced pulverized-coal combustion-based power plant. The second framework targeted simulating the performance of an Integrated coal Gasification Combined Cycle - Fuel Cell Turbine (IGCC-FCT) plant configuration. The coal gasifier models included both CFD and process models for the commercially dominant systems. Interfacing models to the framework was performed using VES-Open, and tests were performed to demonstrate interfacing CAPE-Open compliant models to the framework. The IGCC-FCT framework was subsequently extended to support Virtual Engineering concepts in which plant configurations can be constructed and interrogated in a three-dimensional, user-centered, interactive

  5. Gaining insight into the physics of dynamic atomic force microscopy in complex environments using the VEDA simulator

    Science.gov (United States)

    Kiracofe, Daniel; Melcher, John; Raman, Arvind

    2012-01-01

    Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.

  6. Simulation of UMTS Capacity and Quality of Coverage in Urban Macro- and Microcellular Environment

    Directory of Open Access Journals (Sweden)

    P. Pechac

    2005-12-01

    Full Text Available This paper deals with simulations of a radio interface of thirdgeneration (3G mobile systems operating in the WCDMA FDD modeincluding propagation predictions in macro and microcells. In the radionetwork planning of 3G mobile systems, the quality of coverage and thesystem capacity present a common problem. Both macro and microcellularconcepts are very important for implementing wireless communicationsystems, such as Universal Mobile Telecommunication Systems (UMTS indense urban areas. The aim of this paper is to introduce differentimpacts - selected bit rate, uplink (UL loading, allocation and numberof Nodes B, selected propagation prediction models, macro andmicrocellular environment - on system capacity and quality of coveragein UMTS networks. Both separated and composite simulation scenarios ofmacro and microcellular environments are presented. The necessity of aniteration-based simulation approach and site-specific propagationmodeling in microcells is proven.

  7. A spacecraft's own ambient environment: The role of simulation-based research

    Energy Technology Data Exchange (ETDEWEB)

    Ketsdever, Andrew D. [University of Colorado Colorado Springs, Department of Mechanical and Aerospace Engineering, Colorado Springs, CO (United States); Gimelshein, Sergey [University of Southern California, Department of Astronautical Engineering, Los Angeles, CA (United States)

    2014-12-09

    Spacecraft contamination has long been a subject of study in the rarefied gas dynamics community. Professor Mikhail Ivanov coined the term a spacecraft's 'own ambient environment' to describe the effects of natural and satellite driven processes on the conditions encountered by a spacecraft in orbit. Outgassing, thruster firings, and gas and liquid dumps all contribute to the spacecraft's contamination environment. Rarefied gas dynamic modeling techniques, such as Direct Simulation Monte Carlo, are well suited to investigate these spacebased environments. However, many advances were necessary to fully characterize the extent of this problem. A better understanding of modeling flows over large pressure ranges, for example hybrid continuum and rarefied numerical schemes, were required. Two-phase flow modeling under rarefied conditions was necessary. And the ability to model plasma flows for a new era of propulsion systems was also required. Through the work of Professor Ivanov and his team, we now have a better understanding of processes that create a spacecraft's own ambient environment and are able to better characterize these environments. Advances in numerical simulation have also spurred on the development of experimental facilities to study these effects. The relationship between numerical results and experimental advances will be explored in this manuscript.

  8. Influence of anatomic landmarks in the virtual environment on simulated angled laparoscope navigation

    Science.gov (United States)

    Christie, Lorna S.; Goossens, Richard H. M.; de Ridder, Huib; Jakimowicz, Jack J.

    2010-01-01

    Background The aim of this study is to investigate the influence of the presence of anatomic landmarks on the performance of angled laparoscope navigation on the SimSurgery SEP simulator. Methods Twenty-eight experienced laparoscopic surgeons (familiar with 30° angled laparoscope, >100 basic laparoscopic procedures, >5 advanced laparoscopic procedures) and 23 novices (no laparoscopy experience) performed the Camera Navigation task in an abstract virtual environment (CN-box) and in a virtual representation of the lower abdomen (CN-abdomen). They also rated the realism and added value of the virtual environments on seven-point scales. Results Within both groups, the CN-box task was accomplished in less time and with shorter tip trajectory than the CN-abdomen task (Wilcoxon test, p  0.05). In both groups, the CN tasks were perceived as hard work and more challenging than anticipated. Conclusions Performance of the angled laparoscope navigation task is influenced by the virtual environment surrounding the exercise. The task was performed better in an abstract environment than in a virtual environment with anatomic landmarks. More insight is required into the influence and function of different types of intrinsic and extrinsic feedback on the effectiveness of preclinical simulator training. PMID:20419318

  9. Three-dimensional simulation and auto-stereoscopic 3D display of the battlefield environment based on the particle system algorithm

    Science.gov (United States)

    Ning, Jiwei; Sang, Xinzhu; Xing, Shujun; Cui, Huilong; Yan, Binbin; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    The army's combat training is very important now, and the simulation of the real battlefield environment is of great significance. Two-dimensional information has been unable to meet the demand at present. With the development of virtual reality technology, three-dimensional (3D) simulation of the battlefield environment is possible. In the simulation of 3D battlefield environment, in addition to the terrain, combat personnel and the combat tool ,the simulation of explosions, fire, smoke and other effects is also very important, since these effects can enhance senses of realism and immersion of the 3D scene. However, these special effects are irregular objects, which make it difficult to simulate with the general geometry. Therefore, the simulation of irregular objects is always a hot and difficult research topic in computer graphics. Here, the particle system algorithm is used for simulating irregular objects. We design the simulation of the explosion, fire, smoke based on the particle system and applied it to the battlefield 3D scene. Besides, the battlefield 3D scene simulation with the glasses-free 3D display is carried out with an algorithm based on GPU 4K super-multiview 3D video real-time transformation method. At the same time, with the human-computer interaction function, we ultimately realized glasses-free 3D display of the simulated more realistic and immersed 3D battlefield environment.

  10. Improving the Adaptability of Simulated Evolutionary Swarm Robots in Dynamically Changing Environments

    Science.gov (United States)

    Yao, Yao; Marchal, Kathleen; Van de Peer, Yves

    2014-01-01

    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store ‘good behaviour’ and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485

  11. Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments.

    Directory of Open Access Journals (Sweden)

    Yao Yao

    Full Text Available One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN. An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment.

  12. Behavior of HfB2-SiC Materials in Simulated Re-Entry Environments

    Science.gov (United States)

    Ellerby, Don; Beckman, Sarah; Irby, Edward; Johnson, Sylvia M.; Gunsman, Michael; Gasch, Matthew; Ridge, Jerry; Martinez, Ed; Squire, Tom; Olejniczak, Joe

    2003-01-01

    The objectives of this research are to: 1) Investigate the oxidation/ablation behavior of HfB2/SiC materials in simulated re-entry environments; 2) Use the arc jet test results to define appropriate use environments for these materials for use in vehicle design. The parameters to be investigated include: surface temperature, stagnation pressure, duration, number of cycles, and thermal stresses.

  13. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment

    Science.gov (United States)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam

    2017-09-01

    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  14. Training and learning for crisis management using a virtual simulation/gaming environment

    NARCIS (Netherlands)

    Walker, W.E.; Giddings, J.; Armstrong, S.

    2011-01-01

    Recent advances in computers, networking, and telecommunications offer new opportunities for using simulation and gaming as methodological tools for improving crisis management. It has become easy to develop virtual environments to support games, to have players at distributed workstations

  15. Utiliza????o do mapa pedol??gico na caracteriza????o geot??cnica da Aris Mestre D`Armas em Planaltina ??? DF

    OpenAIRE

    Paranhos, Haroldo; Farias, Rideci; Silva, Joyce Maria Lucas; Pereira, Paulo Sergio

    2016-01-01

    O presente trabalho apresenta os resultados dos estudos geot??cnicos realizados na ARIS Metre D???Armas em Planaltina ??? DF, com vistas ?? caracteriza????o geot??cnica dos solos e risco geot??cnico, por meio de levantamento de campo, sondagens SPT, sondagens com penetr??metro de anel e sondagens ?? trado, com coleta de amostras, ensaios de permeabilidade em furos de sondagens e ensaios de caracteriza????o dos solos em laborat??rio. Como ferramenta auxiliar na espacializa????o e defi...

  16. A Cost Effective Solution for Development Environment for Data Acquisition, Monitoring and Simulation of PLC Controlled Applications

    Directory of Open Access Journals (Sweden)

    O. Bjelica

    2014-06-01

    Full Text Available It is very important to test and monitor the operation of Programmable Logic Controller (PLC in real time (online. Nowadays, conventional, but expensive monitoring systems for PLCs, such as Supervisory Control and Data Acquisition (SCADA systems, software and hardware simulators (or debuggers, are widely used. This paper proposes a user friendly and cost-effective development environment for monitoring, data acquisition and online simulation of applications with PLC. The purpose of this solution is to simulate the process which is controlled by the PLC. The performances of the proposed development environment are presented on the examples of washing machine and dishwasher simulators.

  17. Response of Human Prostate Cancer Cells to Mitoxantrone Treatment in Simulated Microgravity Environment

    Science.gov (United States)

    Zhang, Ye; Wu, Honglu

    2012-07-01

    RESPONSE OF HUMAN PROSTATE CANCER CELLS TO MITOXANTRONE TREATMENT IN SIMULATED MICROGRAVITY ENVIRONMENT Ye Zhang1,2, Christopher Edwards3, and Honglu Wu1 1 NASA-Johnson Space Center, Houston, TX 2 Wyle Integrated Science and Engineering Group, Houston, TX 3 Oregon State University, Corvallis, OR This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on

  18. A method to solve the aircraft magnetic field model basing on geomagnetic environment simulation

    International Nuclear Information System (INIS)

    Lin, Chunsheng; Zhou, Jian-jun; Yang, Zhen-yu

    2015-01-01

    In aeromagnetic survey, it is difficult to solve the aircraft magnetic field model by flying for some unman controlled or disposable aircrafts. So a model solving method on the ground is proposed. The method simulates the geomagnetic environment where the aircraft is flying and creates the background magnetic field samples which is the same as the magnetic field arose by aircraft’s maneuvering. Then the aircraft magnetic field model can be solved by collecting the magnetic field samples. The method to simulate the magnetic environment and the method to control the errors are presented as well. Finally, an experiment is done for verification. The result shows that the model solving precision and stability by the method is well. The calculated model parameters by the method in one district can be used in worldwide districts as well. - Highlights: • A method to solve the aircraft magnetic field model on the ground is proposed. • The method solves the model by simulating dynamic geomagnetic environment as in the real flying. • The way to control the error of the method was analyzed. • An experiment is done for verification

  19. Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview

    NARCIS (Netherlands)

    Blocken, B.J.E.; Stathopoulos, T.; Carmeliet, J.; Hensen, J.L.M.

    2011-01-01

    This paper provides an overview of the application of CFD in building performance simulation for the outdoor environment, focused on four topics: (1) pedestrian wind environment around buildings, (2) wind-driven rain on building facades, (3) convective heat transfer coefficients at exterior building

  20. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment.

    Science.gov (United States)

    Korayem, Moharam Habibnejad; Hoshiar, Ali Kafash; Ghofrani, Maedeh

    2017-08-01

    With the expansion of nanotechnology, robots based on atomic force microscope (AFM) have been widely used as effective tools for displacing nanoparticles and constructing nanostructures. One of the most limiting factors in AFM-based manipulation procedures is the inability of simultaneously observing the controlled pushing and displacing of nanoparticles while performing the operation. To deal with this limitation, a virtual reality environment has been used in this paper for observing the manipulation operation. In the simulations performed in this paper, first, the images acquired by the atomic force microscope have been processed and the positions and dimensions of nanoparticles have been determined. Then, by dynamically modelling the transfer of nanoparticles and simulating the critical force-time diagrams, a controlled displacement of nanoparticles has been accomplished. The simulations have been further developed for the use of rectangular, V-shape and dagger-shape cantilevers. The established virtual reality environment has made it possible to simulate the manipulation of biological particles in a liquid medium. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A Language and Environment for Analysis of Dynamics by SimulaTiOn

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; van der Meij, L.; Treur, J.

    2007-01-01

    This article presents the language and software environment LEADSTO that has been developed to model and simulate dynamic processes in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with quantitative notions like

  2. DIGITAL SIMULATIONS FOR IMPROVING EDUCATION: Learning Through Artificial Teaching Environments

    OpenAIRE

    Reviewed by Özlem OZAN

    2009-01-01

    DIGITAL SIMULATIONS FOR IMPROVING EDUCATION:Learning Through Artificial Teaching EnvironmentsGibson, David, Ed.D.; Information Science Reference, Hershey, PA,SBN-10: 1605663239, ISBN-13: 9781605663234, p.514 Jan 2009Reviewed byÖzlem OZANFaculty of Education, Eskişehir Osmangazi University,Eskisehir-TURKEYSimulations in education, both for children and adults,become popular with the development of computer technology, because they are fun and engaging and allow learners to internalize knowledg...

  3. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality.

    Science.gov (United States)

    Higuera-Trujillo, Juan Luis; López-Tarruella Maldonado, Juan; Llinares Millán, Carmen

    2017-11-01

    Psychological research into human factors frequently uses simulations to study the relationship between human behaviour and the environment. Their validity depends on their similarity with the physical environments. This paper aims to validate three environmental-simulation display formats: photographs, 360° panoramas, and virtual reality. To do this we compared the psychological and physiological responses evoked by simulated environments set-ups to those from a physical environment setup; we also assessed the users' sense of presence. Analysis show that 360° panoramas offer the closest to reality results according to the participants' psychological responses, and virtual reality according to the physiological responses. Correlations between the feeling of presence and physiological and other psychological responses were also observed. These results may be of interest to researchers using environmental-simulation technologies currently available in order to replicate the experience of physical environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mitigation of environmental impacts: a study of the companies that compose the Camaçari Industrial Center (PIC

    Directory of Open Access Journals (Sweden)

    Sonia Maria da Silva Gomes

    2016-09-01

    Full Text Available The purpose of this research was to map the environmental impacts of mitigation actions demonstrated in the sustainability reporting and financial statements of companies that compose the Camaçari Industrial Center (PIC from 2007 to 2013. Data from the Industrial Development Committee of Camaçari was used to survey the companies. The final sample consisted of 14 companies. Content analysis was used to identify the information contained in these reports, based on the model proposed by Nossa (2002 for measuring environmental impacts. The results showed that the subcategory most mentioned in the sustainability reports was wastefulness. It was found in 430 instances, followed by Recycling (157, CO² (129, Contamination and Land Restoration (122, and Conservation of Natural Resources (108. The wastefulness subcategory was also more present in the financial statements, with 77 instances, followed by Contamination and Land Restoration (49 and Recycling (29. There was also a growing trend of disclosure of environmental liabilities. The evidence indicates that the companies are concerned primarily with the treatment and disposal of their waste (solid, liquid and gaseous. The results are restricted to the period and sample investigated. Further research is suggested to broaden the sample and investigate the relationship between disclosure of environmental mitigation actions related to environmental impacts and the financial performance of companies. Additionally, studies could investigate which factors influence the adoption and dissemination of these actions, in the perception of managers of Brazilian companies.

  5. Target activation and radiological response of ARIES-IFE dry wall chamber

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.; Henderson, D.L.; Wilson, P.P.H.; Abdou, A.E.

    2002-01-01

    The choice of target coating and hohlraum wall materials is among the most critical decisions to be made for inertial fusion energy (IFE) designs. Gold and gold/gadolinium have long been considered to be the coating and hohlraum wall materials of choice for direct drive (DD) and indirect drive (ID) targets, respectively, offering high target performance and low beam energy losses. More recently, a variety of other materials have been considered, including W, Pb, Pt, Pd, and Ag for the DD target coating and Au, W, Pb, Hg, Ta, Cs, and Hf for the hohlraum wall of the ID target. The choice of the coating/hohlraum material is a tradeoff between the target design elements such as safety, target physics, economics, etc. We identified the key safety issues and have investigated the neutron-induced irradiation effects of the candidate coating/hohlraum materials using the radiation chamber conditions of the ARIES-IFE dry wall concept. The safety requirements have specific impacts in terms of the coating/hohlraum materials choice

  6. Instructional environments for simulations.

    NARCIS (Netherlands)

    van Berkum, J.J.A.; de Jong, T.

    1991-01-01

    The use of computer simulations in education and training can have substantial advantages over other approaches. In comparison with alternatives such as textbooks, lectures, and tutorial courseware, a simulation-based approach offers the opportunity to learn in a relatively realistic problem-solving

  7. Instructional environments for simulations

    NARCIS (Netherlands)

    van Berkum, Jos J.A.; de Jong, Anthonius J.M.

    1991-01-01

    The use of computer simulations in education and training can have substantial advantages over other approaches. In comparison with alternatives such as textbooks, lectures, and tutorial courseware, a simulation-based approach offers the opportunity to learn in a relatively realistic problem-solving

  8. Agent model for the simulation of pedestrian behavior in a shopping environment

    NARCIS (Netherlands)

    Dijkstra, J.; Timmermans, H.J.P.; Vries, de B.

    2008-01-01

    Simulation of human behavior in the built environment is of particular interest and receives a lot of attention, especially in precarious situations like evacuation and fire alarm. Also, walking behavior in streets, railway stations and airports is subject of research for gaining a clear

  9. D-VASim: An Interactive Virtual Laboratory Environment for the Simulation and Analysis of Genetic Circuits

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    2016-01-01

    runtime. The runtime interaction gives the user a feeling of being in the lab performing a real world experiment. In this work, we present a user-friendly software tool named D-VASim (Dynamic Virtual Analyzer and Simulator), which provides a virtual laboratory environment to simulate and analyze...

  10. Performance of an alpha-vane and pitot tube in simulated heavy rain environment

    Science.gov (United States)

    Luers, J. K.; Fiscus, I. B.

    1985-01-01

    Experimental tests were conducted in the UDRI Environmental Wind/Rain Tunnel to establish the performance of an alpha-vane, that measures angle of attack, in a simulated heavy rain environment. The tests consisted of emersing the alpha-vane in an airstream with a concurrent water spray penetrating vertically through the airstream. The direction of the spray was varied to make an angle of 5.8 to 18 deg with the airstream direction in order to simulate the conditions that occur when an aircraft lands in a heavy rain environment. Rainrates simulated varied from 1000 to 1200 mm/hr which are the most severe ever expected to be encountered by an aircraft over even a 30 second period. Tunnel airspeeds ranged from 85 to 125 miles per hour. The results showed that even the most severe rainrates produced a misalignment in the alpha-vane of only 1 deg away from the airstream direction. Thus for normal rain conditions experienced by landing aircraft no significant deterioration in alpha-vane performance is expected.

  11. Simulating extreme environments: Ergonomic evaluation of Chinese pilot performance and heat stress tolerance.

    Science.gov (United States)

    Li, Jing; Tian, Yinsheng; Ding, Li; Zou, Huijuan; Ren, Zhaosheng; Shi, Liyong; Feathers, David; Wang, Ning

    2015-06-05

    High-temperatures in the cockpit environment can adversely influence pilot behavior and performance. To investigate the impact of high thermal environments on Chinese pilot performance in a simulated cockpit environment. Ten subjects volunteered to participate in the tests under 40°C and 45°C high-temperature simulations in an environmentally controlled chamber. Measures such as grip strength, perception, dexterity, somatic sense reaction, and analytical reasoning were taken. The results were compared to the Combined Index of Heat Stress (CIHS). CIHS exceeded the heat stress safety limit after 45 min under 40°C, grip strength decreased by 12% and somatic perception became 2.89 times larger than the initial value. In the case of 45°C, CIHS exceeded the safety limit after only 20 min, while the grip strength decreased just by 3.2% and somatic perception increased to 4.36 times larger than the initial value. Reaction and finger dexterity were not statistically different from baseline measurements, but the error rate of analytical reasoning test rose remarkably. Somatic perception was the most sensitive index to high-temperature, followed by grip strength. Results of this paper may help to improve environmental control design of new fighter cockpit and for pilot physiology and cockpit environment ergonomics research for Chinese pilots.

  12. Proyecto de mejora y acondicionamiento como apeadero multimodal de la parcela ARI-T03 y de varios viales en el municipio de San Fernando (Cádiz)

    OpenAIRE

    Díaz Ramos, Jesús

    2014-01-01

    El objeto del presente Proyecto es definir las obras necesarias para la correcta ejecución de las obras de mejora y acondicionamiento como apeadero multimodal de la parcela ARI-T03 y de varios viales, en el municipio de San Fernando (Cádiz).

  13. The path from ITER to a power plant - initial results from the ARIES ''Pathways'' program

    International Nuclear Information System (INIS)

    Najmabadi, F.

    2007-01-01

    The US national power plant studies program, ARIES, has initiated a 3-year integrated study, called the ''Pathways Program'' to investigate what the fusion program needs to do, in addition to successful operation of the ITER, in order to transform fusion into a commercial reality. The US power industry and regulatory agencies view the demonstration power plant, DEMO, as a device which is build and operated by industry, possibly with government participation, to demonstrate the commercial readiness of fusion power. As such, the ''Pathways'' programs will investigate what is needed, in addition to successful operation of ITER, to convince industry to move forward with a fusion DEMO. While many reports exists that provide a strategic view of the needs for fusion development; in the ITER era, a much more detailed view is needed to provide the necessary information for program planning. By comparing the anticipated results from ITER and existing facilities with the requirements for a power plant in the first phase of the Pathways study, we will develop a comprehensive list of remaining R and D items for developing fusion, will identify metrics for distributing resources among R and D issues, and will identify which of those items can/should be done in existing or simulation facilities. In the second phase of the study, we will develop potential embodiments for the fusion test facility (ies) and explore their cost/performance parametrically. An important by-product of this study is the identification of key R and D issues that can be performed and resolved in existing facilities to make the fusion facility cheaper and/or a higher performance device. This paper summarizes the results from the first phase of our study. We have adopted a ''holistic'' or integrated approach with the focus on the needs of the customer. In such an approach, the remaining R and D should generate all of the information needed by industry to move forward with the DEMO, i.e., data needed to

  14. A simple interface to computational fluid dynamics programs for building environment simulations

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, III, C R; Chen, Q [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2000-07-01

    It is becoming a popular practice for architects and HVAC engineers to simulate airflow in and around buildings by computational fluid dynamics (CFD) methods in order to predict indoor and outdoor environment. However, many CFD programs are crippled by a historically poor and inefficient user interface system, particularly for users with little training in numerical simulation. This investigation endeavors to create a simplified CFD interface (SCI) that allows architects and buildings engineers to use CFD without excessive training. The SCI can be easily integrated into new CFD programs. (author)

  15. Acoustic emission from fuel pellets in a simulated reactor environment

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Kennedy, C.R.; Reimann, K.J.

    1977-01-01

    Thermal-shock damage of nuclear reactor fuel pellets in a simulated reactor environment has been correlated with acoustic-emission data obtained from sensors placed on extensions of the electrical feedthroughs. Ringdown counts, rms output data, and event-location data has been acquired for experiments carried out with single pellets as well as multiple pellet stacks. These tests have shown that acoustic-emission monitoring can provide information indicating the onset and the extent of cracking

  16. Multiuser Diversity with Adaptive Modulation in Non-Identically Distributed Nakagami Fading Environments

    KAUST Repository

    Rao, Anlei

    2012-09-08

    In this paper, we analyze the performance of adaptive modulation with single-cell multiuser scheduling over independent but not identical distributed (i.n.i.d.) Nakagami fading channels. Closed-form expressions are derived for the average channel capacity, spectral efficiency, and bit-error-rate (BER) for both constant-power variable-rate and variable-power variable-rate uncoded/coded M-ary quadrature amplitude modulation (M-QAM) schemes. We also study the impact of time delay on the average BER of adaptive M-QAM. Selected numerical results show that the multiuser diversity brings a considerably better performance even over i.n.i.d. fading environments.

  17. USB HW/SW Co-Simulation Environment with Custom Test Tool Integration

    Directory of Open Access Journals (Sweden)

    Grigor Y. Zargaryan

    2014-06-01

    Full Text Available This paper describes a new verification environment for USB 2.0 controller. New methodology is presented, where a co-simulation environment is used as one of the starting points for the embedded hardware/software development and as an accelerator of the overall design process. The verification environment is based on the device emulation/virtualization technique, using USB controller’s real register transfer level (RTL instead of models. This approach is functionally very close to the corresponding real-world devices and allows wider opportunities for hardware debugging. The new software utilities for USB host and device functionality testing are also presented. This tool allows generating custom tests by including various transfer types and modifying parameters such as data payload, interval, number of pipes, etc. It can be used for both hardware (HW and software (SW limitations characterization, as well as debugging.

  18. Clinical Survival of Rebonded Brackets with Different ARI Scores

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Ahangar Atashi

    2016-01-01

    Full Text Available Introduction: Bracket debonding is one of the most common events in orthodontics. The aim of the present study was to quantitatively compare clinical survival of rebonded brackets with different ARI scores with new brackets rebonding. Materials and Methods: The subjects in the present study consisted of 74 patients with 76 debonded brackets on maxillary first and second premolars. After refreshing the bracket base of the debonded brackets, they were assigned in two groups: group A with 27 brackets of ARI≥4 and group B with 28 brackets of ARI≤2. In 21 cases, new brackets were used (group C. The frequency of the debonding in each rebonded group during treatment was calculated in intervals of 6,12,18 mounths after onset of bracket rebonding . Chi-squared test was used to compare the frequency of debonded brackets. Results: The frequency of debonded brackets was significantly higher in group B (ARI≤2 than those of groups A (ARI≥4 and C (new brackets. The number of debonded brackets were not significantly different between groups A (ARI≥4 and C (new brackets. Conclusion: Rebonding strength of debonded brackets in those that the failure is presented between adhesive and enamel (ARI≥4 could be clinically acceptable with no need to use new brackets.    Key words: dental bonding; orthodontic brackets; prevalence

  19. Construction of the quantitative analysis environment using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Shirakawa, Seiji; Ushiroda, Tomoya; Hashimoto, Hiroshi; Tadokoro, Masanori; Uno, Masaki; Tsujimoto, Masakazu; Ishiguro, Masanobu; Toyama, Hiroshi

    2013-01-01

    The thoracic phantom image was acquisitioned of the axial section to construct maps of the source and density with Monte Carlo (MC) simulation. The phantom was Heart/Liver Type HL (Kyoto Kagaku Co., Ltd.) single photon emission CT (SPECT)/CT machine was Symbia T6 (Siemence) with the collimator LMEGP (low-medium energy general purpose). Maps were constructed from CT images with an in-house software using Visual studio C Sharp (Microsoft). The code simulation of imaging nuclear detectors (SIMIND) was used for MC simulation, Prominence processor (Nihon Medi-Physics) for filter processing and image reconstruction, and the environment DELL Precision T7400 for all image processes. For the actual experiment, the phantom was given 15 MBq of 99m Tc assuming the uptake 2% at the dose of 740 MBq in its myocardial portion and SPECT image was acquisitioned and reconstructed with Butter-worth filter and filter back projection method. CT images were similarly obtained in 0.3 mm thick slices, which were filed in one formatted with digital imaging and communication in medicine (DICOM), and then processed for application to SIMIND for mapping the source and density. Physical and mensuration factors were examined in ideal images by sequential exclusion and simulation of those factors as attenuation, scattering, spatial resolution deterioration and statistical fluctuation. Gamma energy spectrum, SPECT projection and reconstructed images given by the simulation were found to well agree with the actual data, and the precision of MC simulation was confirmed. Physical and mensuration factors were found to be evaluable individually, suggesting the usefulness of the simulation for assessing the precision of their correction. (T.T.)

  20. Using Blackboard Wiki Pages as a Shared Space for Simulating the Professional Translation Work Environment

    Science.gov (United States)

    Vine, Juliet

    2015-01-01

    The Work-Integrated Simulation for Translators module is part of a three year undergraduate degree in translation. The semester long module aims to simulate several aspects of the translation process using the Blackboard virtual learning environment's Wikis as the interface for completing translation tasks. For each translation task, one of the…

  1. GOOSE Version 1.4: A powerful object-oriented simulation environment for developing reactor models

    International Nuclear Information System (INIS)

    Nypaver, D.J.; March-Leuba, C.; Abdalla, M.A.; Guimaraes, L.

    1992-01-01

    A prototype software package for a fully interactive Generalized Object-Oriented Simulation Environment (GOOSE) is being developed at Oak Ridge National Laboratory. Dynamic models are easily constructed and tested; fully interactive capabilities allow the user to alter model parameters and complexity without recompilation. This environment provides assess to powerful tools such as numerical integration packages, graphical displays, and online help. In GOOSE, portability has been achieved by creating the environment in Objective-C 1 , which is supported by a variety of platforms including UNIX and DOS. GOOSE Version 1.4 introduces new enhancements like the capability of creating ''initial,'' ''dynamic,'' and ''digital'' methods. The object-oriented approach to simulation used in GOOSE combines the concept of modularity with the additional features of allowing precompilation, optimization, testing, and validation of individual modules. Once a library of classes has been defined and compiled, models can be built and modified without recompilation. GOOSE Version 1.4 is primarily command-line driven

  2. Thermal and fluid simulation of the environment under the dashboard, compared with measurement data

    Science.gov (United States)

    Popescu, C. S.; Sirbu, G. M.; Nita, I. C.

    2017-10-01

    The development of vehicles during the last decade is related to the evolution of electronic systems added in order to increase the safety and the number of services available on board, such as advanced driver-assistance systems (ADAS). Cars already have a complex computer network, with electronic control units (ECUs) connected to each other and receiving information from many sensors. The ECUs transfer an important heat power to the environment, while proper operating conditions need to be provided to ensure their reliability at high and low temperature, vibration and humidity. In a car cabin, electronic devices are usually placed in the compartment under the dashboard, an enclosed space designed for functional purposes. In the early stages of the vehicle design it has become necessary to analyse the environment under dashboard, by the use of Computational Fluid Dynamics (CFD) simulations and measurements. This paper presents the cooling of heat sinks by natural convection, a thermal and fluid simulation of the environment under the dashboard compared with test data.

  3. How to avoid simulation sickness in virtual environments during user displacement

    Science.gov (United States)

    Kemeny, A.; Colombet, F.; Denoual, T.

    2015-03-01

    Driving simulation (DS) and Virtual Reality (VR) share the same technologies for visualization and 3D vision and may use the same technics for head movement tracking. They experience also similar difficulties when rendering the displacements of the observer in virtual environments, especially when these displacements are carried out using driver commands, including steering wheels, joysticks and nomad devices. High values for transport delay, the time lag between the action and the corresponding rendering cues and/or visual-vestibular conflict, due to the discrepancies perceived by the human visual and vestibular systems when driving or displacing using a control device, induces the so-called simulation sickness. While the visual transport delay can be efficiently reduced using high frequency frame rate, the visual-vestibular conflict is inherent to VR, when not using motion platforms. In order to study the impact of displacements on simulation sickness, we have tested various driving scenarios in Renault's 5-sided ultra-high resolution CAVE. First results indicate that low speed displacements with longitudinal and lateral accelerations under a given perception thresholds are well accepted by a large number of users and relatively high values are only accepted by experienced users and induce VR induced symptoms and effects (VRISE) for novice users, with a worst case scenario corresponding to rotational displacements. These results will be used for optimization technics at Arts et Métiers ParisTech for motion sickness reduction in virtual environments for industrial, research, educational or gaming applications.

  4. A PC/workstation cluster computing environment for reservoir engineering simulation applications

    International Nuclear Information System (INIS)

    Hermes, C.E.; Koo, J.

    1995-01-01

    Like the rest of the petroleum industry, Texaco has been transferring its applications and databases from mainframes to PC's and workstations. This transition has been very positive because it provides an environment for integrating applications, increases end-user productivity, and in general reduces overall computing costs. On the down side, the transition typically results in a dramatic increase in workstation purchases and raises concerns regarding the cost and effective management of computing resources in this new environment. The workstation transition also places the user in a Unix computing environment which, to say the least, can be quite frustrating to learn and to use. This paper describes the approach, philosophy, architecture, and current status of the new reservoir engineering/simulation computing environment developed at Texaco's E and P Technology Dept. (EPTD) in Houston. The environment is representative of those under development at several other large oil companies and is based on a cluster of IBM and Silicon Graphics Intl. (SGI) workstations connected by a fiber-optics communications network and engineering PC's connected to local area networks, or Ethernets. Because computing resources and software licenses are shared among a group of users, the new environment enables the company to get more out of its investments in workstation hardware and software

  5. Multispectral simulation environment for modeling low-light-level sensor systems

    Science.gov (United States)

    Ientilucci, Emmett J.; Brown, Scott D.; Schott, John R.; Raqueno, Rolando V.

    1998-11-01

    Image intensifying cameras have been found to be extremely useful in low-light-level (LLL) scenarios including military night vision and civilian rescue operations. These sensors utilize the available visible region photons and an amplification process to produce high contrast imagery. It has been demonstrated that processing techniques can further enhance the quality of this imagery. For example, fusion with matching thermal IR imagery can improve image content when very little visible region contrast is available. To aid in the improvement of current algorithms and the development of new ones, a high fidelity simulation environment capable of producing radiometrically correct multi-band imagery for low- light-level conditions is desired. This paper describes a modeling environment attempting to meet these criteria by addressing the task as two individual components: (1) prediction of a low-light-level radiance field from an arbitrary scene, and (2) simulation of the output from a low- light-level sensor for a given radiance field. The radiance prediction engine utilized in this environment is the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model which is a first principles based multi-spectral synthetic image generation model capable of producing an arbitrary number of bands in the 0.28 to 20 micrometer region. The DIRSIG model is utilized to produce high spatial and spectral resolution radiance field images. These images are then processed by a user configurable multi-stage low-light-level sensor model that applies the appropriate noise and modulation transfer function (MTF) at each stage in the image processing chain. This includes the ability to reproduce common intensifying sensor artifacts such as saturation and 'blooming.' Additionally, co-registered imagery in other spectral bands may be simultaneously generated for testing fusion and exploitation algorithms. This paper discusses specific aspects of the DIRSIG radiance prediction for low

  6. Melhor isso do que nada! Participação e responsabilização na gestão dos riscos do Pólo Petroquímico de Camaçari (BA Better this than nothing! Participation and accountability on risk management of Camaçari Petrochemical Complex, in Bahia State

    Directory of Open Access Journals (Sweden)

    Ana Licks Almeida Silva

    2009-12-01

    Full Text Available O objetivo da pesquisa foi analisar o modelo adotado na construção dos conselhos comunitários consultivos. O recorte empírico trata do Conselho Comunitário de Camaçari (BA, primeiro no país e referência para a implantação de outros. Observação participante e dezessete entrevistas foram as principais fontes de dados. O conselho se constitui num sofisticado mecanismo de docilização e responsabilização pela disseminação de uma ideologia organizacional hegemônica e de modos de governança neoliberais.This research intends to analyze the model adopted in the construction of community advisory committees. The empirical object is the Community Advisory Committee of Camaçari Complex (BA, the first one to be set up in the country and that has been used as a reference for the implementation of others. Participant observation and seventeen interviews were the main sources of data. The advisory committee constitutes itself in a sophisticated mechanism of docilization and responsabilization for the spread of an organizational hegemonic ideology and neoliberal modes of governance.

  7. LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation.

    Science.gov (United States)

    Djordjevic, Ivan B

    2007-08-06

    We describe a coded power-efficient transmission scheme based on repetition MIMO principle suitable for communication over the atmospheric turbulence channel, and determine its channel capacity. The proposed scheme employs the Q-ary pulse-position modulation. We further study how to approach the channel capacity limits using low-density parity-check (LDPC) codes. Component LDPC codes are designed using the concept of pairwise-balanced designs. Contrary to the several recent publications, bit-error rates and channel capacities are reported assuming non-ideal photodetection. The atmospheric turbulence channel is modeled using the Gamma-Gamma distribution function due to Al-Habash et al. Excellent bit-error rate performance improvement, over uncoded case, is found.

  8. A coarse-grained model for the simulations of biomolecular interactions in cellular environments

    International Nuclear Information System (INIS)

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2014-01-01

    The interactions of bio-molecules constitute the key steps of cellular functions. However, in vivo binding properties differ significantly from their in vitro measurements due to the heterogeneity of cellular environments. Here we introduce a coarse-grained model based on rigid-body representation to study how factors such as cellular crowding and membrane confinement affect molecular binding. The macroscopic parameters such as the equilibrium constant and the kinetic rate constant are calibrated by adjusting the microscopic coefficients used in the numerical simulations. By changing these model parameters that are experimentally approachable, we are able to study the kinetic and thermodynamic properties of molecular binding, as well as the effects caused by specific cellular environments. We investigate the volumetric effects of crowded intracellular space on bio-molecular diffusion and diffusion-limited reactions. Furthermore, the binding constants of membrane proteins are currently difficult to measure. We provide quantitative estimations about how the binding of membrane proteins deviates from soluble proteins under different degrees of membrane confinements. The simulation results provide biological insights to the functions of membrane receptors on cell surfaces. Overall, our studies establish a connection between the details of molecular interactions and the heterogeneity of cellular environments

  9. Strategic Management of People in Organizations of Petrochemical Camaçari – Bahia: Reflections on its Strategies for Attracting, Retaining and Professional Development

    Directory of Open Access Journals (Sweden)

    Nildes Pitombo Leite

    2012-12-01

    Full Text Available The investigation object of this research, the primary objectives was to identify and analyze what changes made in people management by the petrochemical organizations, from the trajectory of diversification in the Industrial Complex of Camaçari and their reflections into strategies for attraction, retention and professional development, much in line with the justifications, as with the question asked. The subjects involved were directors, managers and / or coordinators HR, minimum 10 and maximum of 32 years, two respondents per organization, totaling twenty-one organizations. This investigation was answered in each category and gradually increased at the junction of them all. The results show that the changes made in managing people in the petrochemical investigated are not, necessarily, computed from the trajectory of diversification: Petrochemical Pole / Industrial Complex of Camaçari. These results suggest that mergers are among the main responsible. However, there is the record that this change in context was beneficial to these organizations promote the output of the comfort zone that were since deploying Pole. It reinforces the premise that such an investigation ends innovative and contributory aspect for: the area of people management, petrochemical industry and the country.

  10. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    Science.gov (United States)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  11. Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows

    Science.gov (United States)

    Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.

    2014-12-01

    The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.

  12. Designing EvoRoom: An Immersive Simulation Environment for Collective Inquiry in Secondary Science

    Science.gov (United States)

    Lui, Michelle Mei Yee

    This dissertation investigates the design of complex inquiry for co-located students to work as a knowledge community within a mixed-reality learning environment. It presents the design of an immersive simulation called EvoRoom and corresponding collective inquiry activities that allow students to explore concepts around topics of evolution and biodiversity in a Grade 11 Biology course. EvoRoom is a room-sized simulation of a rainforest, modeled after Borneo in Southeast Asia, where several projected displays are stitched together to form a large, animated simulation on each opposing wall of the room. This serves to create an immersive environment in which students work collaboratively as individuals, in small groups and a collective community to investigate science topics using the simulations as an evidentiary base. Researchers and a secondary science teacher co-designed a multi-week curriculum that prepared students with preliminary ideas and expertise, then provided them with guided activities within EvoRoom, supported by tablet-based software as well as larger visualizations of their collective progress. Designs encompassed the broader curriculum, as well as all EvoRoom materials (e.g., projected displays, student tablet interfaces, collective visualizations) and activity sequences. This thesis describes a series of three designs that were developed and enacted iteratively over two and a half years, presenting key features that enhanced students' experiences within the immersive environment, their interactions with peers, and their inquiry outcomes. Primary research questions are concerned with the nature of effective design for such activities and environments, and the kinds of interactions that are seen at the individual, collaborative and whole-class levels. The findings fall under one of three themes: 1) the physicality of the room, 2) the pedagogical script for student observation and reflection and collaboration, and 3) ways of including collective

  13. The effects of the aircraft cabin environment on passengers during simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter

    2007-01-01

    enables subjective assessments of the symptoms commonly experienced by passengers and crew during flights. Six investigations with subject exposure have subsequently been carried out in the aircraft cabin facility covering four environmental areas of study, i.e. humidity, air purification techniques...... but intensified complaints of headache, dizziness and claustrophobia, suggesting that air pollutants rather than low humidity cause the distress reported by airline passengers. Three investigations studying the efficacy of various air purification technologies showed that a gas phase adsorption purification unit......A 3-row, 21-seat section of a simulated Boeing 767 aircraft cabin has been built in a climate chamber, simulating the cabin environment not only in terms of materials and geometry, but also in terms of cabin air and wall temperatures and ventilation with very dry air. This realistic simulation...

  14. Learning environment simulator: a tool for local decision makers and first responders

    Energy Technology Data Exchange (ETDEWEB)

    Leclaire, Rene J [Los Alamos National Laboratory; Hirsch, Gary B [CLE, INCORPORATED

    2009-01-01

    The National Infrastructure Simulation and Analysis Center (NISAC) has developed a prototype learning environment simulator (LES) based on the Critical Infrastructure Protection Decision Support System (CIPDSS) infrastructure and scenario models. The LES is designed to engage decision makers at the grass-roots level (local/city/state) to deepen their understanding of an evolving crisis, enhance their intuition and allow them to test their own strategies for events before they occur. An initial version is being developed, centered on a pandemic influenza outbreak and has been successfully tested with a group of hospital administrators and first responders. LES is not a predictive tool but rather a simulated environment allowing the user to experience the complexities of a crisis before it happens. Users can contrast various approaches to the crisis, competing with alternative strategies of their own or other participants. LES is designed to assist decision makers in making informed choices by functionally representing relevant scenarios before they occur, including impacts to critical infrastructures with their interdependencies, and estimating human health & safety and economic impacts. In this paper a brief overview of the underlying models are given followed by a description of the LES, its interface and usage and an overview of the experience testing LES with a group of hospital administrators and first responders. The paper concludes with a brief discussion of the work remaining to make LES operational.

  15. Simulation of the space debris environment in LEO using a simplified approach

    Science.gov (United States)

    Kebschull, Christopher; Scheidemann, Philipp; Hesselbach, Sebastian; Radtke, Jonas; Braun, Vitali; Krag, H.; Stoll, Enrico

    2017-01-01

    Several numerical approaches exist to simulate the evolution of the space debris environment. These simulations usually rely on the propagation of a large population of objects in order to determine the collision probability for each object. Explosion and collision events are triggered randomly using a Monte-Carlo (MC) approach. So in many different scenarios different objects are fragmented and contribute to a different version of the space debris environment. The results of the single Monte-Carlo runs therefore represent the whole spectrum of possible evolutions of the space debris environment. For the comparison of different scenarios, in general the average of all MC runs together with its standard deviation is used. This method is computationally very expensive due to the propagation of thousands of objects over long timeframes and the application of the MC method. At the Institute of Space Systems (IRAS) a model capable of describing the evolution of the space debris environment has been developed and implemented. The model is based on source and sink mechanisms, where yearly launches as well as collisions and explosions are considered as sources. The natural decay and post mission disposal measures are the only sink mechanisms. This method reduces the computational costs tremendously. In order to achieve this benefit a few simplifications have been applied. The approach of the model partitions the Low Earth Orbit (LEO) region into altitude shells. Only two kinds of objects are considered, intact bodies and fragments, which are also divided into diameter bins. As an extension to a previously presented model the eccentricity has additionally been taken into account with 67 eccentricity bins. While a set of differential equations has been implemented in a generic manner, the Euler method was chosen to integrate the equations for a given time span. For this paper parameters have been derived so that the model is able to reflect the results of the numerical MC

  16. "ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"

    Energy Technology Data Exchange (ETDEWEB)

    SANTHI, NANDAKISHORE [Los Alamos National Laboratory

    2007-01-22

    We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relative error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.

  17. TSKT-ORAM: A Two-Server k-ary Tree Oblivious RAM without Homomorphic Encryption

    Directory of Open Access Journals (Sweden)

    Jinsheng Zhang

    2017-09-01

    Full Text Available This paper proposes TSKT-oblivious RAM (ORAM, an efficient multi-server ORAM construction, to protect a client’s access pattern to outsourced data. TSKT-ORAM organizes each of the server storages as a k-ary tree and adopts XOR-based private information retrieval (PIR and a novel delayed eviction technique to optimize both the data query and data eviction process. TSKT-ORAM is proven to protect the data access pattern privacy with a failure probability of 2 - 80 when system parameter k ≥ 128 . Meanwhile, given a constant-size local storage, when N (i.e., the total number of outsourced data blocks ranges from 2 16 – 2 34 , the communication cost of TSKT-ORAM is only 22–46 data blocks. Asymptotic analysis and practical comparisons are conducted to show that TSKT-ORAM incurs lower communication cost, storage cost and access delay in practical scenarios than the compared state-of-the-art ORAM schemes.

  18. Market Garden: a Simulation Environment for Research and User Experience in Smart Grids

    NARCIS (Netherlands)

    B.J. Liefers (Bart); F.N. Claessen (Felix); E.J. Pauwels (Eric); P.A.N. Bosman (Peter); J.A. La Poutré (Han)

    2014-01-01

    htmlabstractMarket Garden is a scalable research environment and demonstration tool, in which market mechanisms for smart energy systems and the interaction between end users, traders, system operators, and markets can be simulated. Users can create scenarios in a user-friendly editor in which a

  19. LEADSTO: a Language and Environment for Analysis of Dynamics by SimulaTiOn

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; van der Meij, L.; Treur, J.

    2005-01-01

    This paper presents the language and software environment LEADSTO that has been developed to model and simulate the dynamics of Multi-Agent Systems (MAS) in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with

  20. Simulation of GNSS reflected signals and estimation of position accuracy in GNSS-challenged environment

    DEFF Research Database (Denmark)

    Jakobsen, Jakob; Jensen, Anna B. O.; Nielsen, Allan Aasbjerg

    2015-01-01

    non-line-of-sight satellites. The signal reflections are implemented using the extended geometric path length of the signal path caused by reflections from the surrounding buildings. Based on real GPS satellite positions, simulated Galileo satellite positions, models of atmospheric effect...... on the satellite signals, designs of representative environments e.g. urban and rural scenarios, and a method to simulate reflection of satellite signals within the environment we are able to estimate the position accuracy given several prerequisites as described in the paper. The result is a modelling...... of the signal path from satellite to receiver, the satellite availability, the extended pseudoranges caused by signal reflection, and an estimate of the position accuracy based on a least squares adjustment of the extended pseudoranges. The paper describes the models and algorithms used and a verification test...

  1. GASNet-EX Performance Improvements Due to Specialization for the Cray Aries Network

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, Paul H.; Bonachea, Dan

    2018-03-27

    This document is a deliverable for milestone STPM17-6 of the Exascale Computing Project, delivered by WBS 2.3.1.14. It reports on the improvements in performance observed on Cray XC-series systems due to enhancements made to the GASNet-EX software. These enhancements, known as “specializations”, primarily consist of replacing network-independent implementations of several recently added features with implementations tailored to the Cray Aries network. Performance gains from specialization include (1) Negotiated-Payload Active Messages improve bandwidth of a ping-pong test by up to 14%, (2) Immediate Operations reduce running time of a synthetic benchmark by up to 93%, (3) non-bulk RMA Put bandwidth is increased by up to 32%, (4) Remote Atomic performance is 70% faster than the reference on a point-to-point test and allows a hot-spot test to scale robustly, and (5) non-contiguous RMA interfaces see up to 8.6x speedups for an intra-node benchmark and 26% for inter-node. These improvements are available in the GASNet-EX 2018.3.0 release.

  2. Comparison of discrete event simulation tools in an academic environment

    Directory of Open Access Journals (Sweden)

    Mario Jadrić

    2014-12-01

    Full Text Available A new research model for simulation software evaluation is proposed consisting of three main categories of criteria: modeling and simulation capabilities of the explored tools, and tools’ input/output analysis possibilities, all with respective sub-criteria. Using the presented model, two discrete event simulation tools are evaluated in detail using the task-centred scenario. Both tools (Arena and ExtendSim were used for teaching discrete event simulation in preceding academic years. With the aim to inspect their effectiveness and to help us determine which tool is more suitable for students i.e. academic purposes, we used a simple simulation model of entities competing for limited resources. The main goal was to measure subjective (primarily attitude and objective indicators while using the tools when the same simulation scenario is given. The subjects were first year students of Master studies in Information Management at the Faculty of Economics in Split taking a course in Business Process Simulations (BPS. In a controlled environment – in a computer lab, two groups of students were given detailed, step-by-step instructions for building models using both tools - first using ExtendSim then Arena or vice versa. Subjective indicators (students’ attitudes were collected using an online survey completed immediately upon building each model. Subjective indicators primarily include students’ personal estimations of Arena and ExtendSim capabilities/features for model building, model simulation and result analysis. Objective indicators were measured using specialised software that logs information on user's behavior while performing a particular task on their computer such as distance crossed by mouse during model building, the number of mouse clicks, usage of the mouse wheel and speed achieved. The results indicate that ExtendSim is well preferred comparing to Arena with regards to subjective indicators while the objective indicators are

  3. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems

    OpenAIRE

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collecti...

  4. PENDIDIKAN KARAKTER MENURUT K.H. HASYIM ASY’ARI DALAM KITAB ADÂB AL-‘ÂLIM WA AL-MUTA‘ALLIM

    OpenAIRE

    Sholikah Sholikah

    2015-01-01

    The article deals with K.H. Hasyim Asy’ari’s thought of character education. The result of the study indicates that according to K.H. Hasyim Asy’ari the characters of teachers and students in his work Adab al-‘Âlim wa al-Muta’allim can be classified into three parts, are mentality or character, which should be possessed by teachers and learners: attempts to be done in order to become characterized teachers and learners, and: teaching strategies employed by educators and learning strategies us...

  5. Numerical Simulation of Blast Action on Civil Structures in Urban Environment

    Science.gov (United States)

    Valger, Svetlana A.; Fedorova, Natalya N.; Fedorov, Alexander V.

    2017-10-01

    Nowadays, a lot of industrial accidents accompanied by explosions are happening throughout the world. Also, increase in the number of terrorist acts committed by means of explosions is observed. For improving safety of buildings and structures it is necessary to raise their resistance to explosive effects, as well as to be able to predict degree of potential damage upon explosive loads of various intensities. One of the principal goals in designing the structure resistant to explosive effects is to determine the dynamic response of structures to the impact of the blast wave. To this end, the transient pressure loads on the walls of the civil engineering structures are to be determined. The simulation of explosion is highly complicated, involving an explosion causing the shock wave propagation in air and then interaction with a structure. The engineering-level techniques permit one to estimate an explosive shock impact only for isolated buildings. The complexity of the building, the presence of nearby structures and the surrounding environment cannot be taken into account. Advanced computer aid engineering (CAE) software techniques combined with the latest methods of discrete three-dimensional city modelling permits one to simulate and analyse the effects of explosions in urban areas with a precision which previously was not possible. In the paper, the simulation results are presented of shock wave forming due to a spherical explosive charge and its propagation in the vicinity of geometrical configuration imitating an urban environment. The numerical simulation of a flow in the vicinity of prisms of different cross-sections and heights located on a flat plate was performed. The calculations are carried out in a three-dimensional non-viscous formulation using ANSYS software. On a basis of simulation results, a complex wave structures were analysed, and all the peculiarities of flows and pressure history records on building walls were described and explained. The

  6. Flight Simulation of ARES in the Mars Environment

    Science.gov (United States)

    Kenney, P. Sean; Croom, Mark A.

    2011-01-01

    A report discusses using the Aerial Regional- scale Environmental Survey (ARES) light airplane as an observation platform on Mars in order to gather data. It would have to survive insertion into the atmosphere, fly long enough to meet science objectives, and provide a stable platform. The feasibility of such a platform was tested using the Langley Standard Real- Time Simulation in C++. The unique features of LaSRS++ are: full, six-degrees- of-freedom flight simulation that can be used to evaluate the performance of the aircraft in the Martian environment; capability of flight analysis from start to finish; support of Monte Carlo analysis of aircraft performance; and accepting initial conditions from POST results for the entry and deployment of the entry body. Starting with a general aviation model, the design was tweaked to maintain a stable aircraft under expected Martian conditions. Outer mold lines were adjusted based on experience with the Martian atmosphere. Flight control was modified from a vertical acceleration control law to an angle-of-attack control law. Navigation was modified from a vertical acceleration control system to an alpha control system. In general, a pattern of starting with simple models with well-understood behaviors was selected and modified during testing.

  7. An expert system for automatic mesh generation for Sn particle transport simulation in parallel environment

    International Nuclear Information System (INIS)

    Apisit, Patchimpattapong; Alireza, Haghighat; Shedlock, D.

    2003-01-01

    An expert system for generating an effective mesh distribution for the SN particle transport simulation has been developed. This expert system consists of two main parts: 1) an algorithm for generating an effective mesh distribution in a serial environment, and 2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. For the first part, the algorithm prepares an effective mesh distribution considering problem physics and the spatial differencing scheme. For the second part, the algorithm determines a parallel-performance-index (PPI), which is defined as the ratio of the granularity to the degree-of-coupling. The parallel-performance-index provides expected performance of an algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems. (authors)

  8. An expert system for automatic mesh generation for Sn particle transport simulation in parallel environment

    Energy Technology Data Exchange (ETDEWEB)

    Apisit, Patchimpattapong [Electricity Generating Authority of Thailand, Office of Corporate Planning, Bangkruai, Nonthaburi (Thailand); Alireza, Haghighat; Shedlock, D. [Florida Univ., Department of Nuclear and Radiological Engineering, Gainesville, FL (United States)

    2003-07-01

    An expert system for generating an effective mesh distribution for the SN particle transport simulation has been developed. This expert system consists of two main parts: 1) an algorithm for generating an effective mesh distribution in a serial environment, and 2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. For the first part, the algorithm prepares an effective mesh distribution considering problem physics and the spatial differencing scheme. For the second part, the algorithm determines a parallel-performance-index (PPI), which is defined as the ratio of the granularity to the degree-of-coupling. The parallel-performance-index provides expected performance of an algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems. (authors)

  9. Simulating cloud environment for HIS backup using secret sharing.

    Science.gov (United States)

    Kuroda, Tomohiro; Kimura, Eizen; Matsumura, Yasushi; Yamashita, Yoshinori; Hiramatsu, Haruhiko; Kume, Naoto

    2013-01-01

    In the face of a disaster hospitals are expected to be able to continue providing efficient and high-quality care to patients. It is therefore crucial for hospitals to develop business continuity plans (BCPs) that identify their vulnerabilities, and prepare procedures to overcome them. A key aspect of most hospitals' BCPs is creating the backup of the hospital information system (HIS) data at multiple remote sites. However, the need to keep the data confidential dramatically increases the costs of making such backups. Secret sharing is a method to split an original secret message so that individual pieces are meaningless, but putting sufficient number of pieces together reveals the original message. It allows creation of pseudo-redundant arrays of independent disks for privacy-sensitive data over the Internet. We developed a secret sharing environment for StarBED, a large-scale network experiment environment, and evaluated its potential and performance during disaster recovery. Simulation results showed that the entire main HIS database of Kyoto University Hospital could be retrieved within three days even if one of the distributed storage systems crashed during a disaster.

  10. Simulation environment based on the Universal Verification Methodology

    International Nuclear Information System (INIS)

    Fiergolski, A.

    2017-01-01

    Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification (CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with an structured plan. Those goals are targeted further by a developed testbench, which generates legal stimuli and sends them to a device under test (DUT). The progress is measured by coverage monitors added to the simulation environment. In this way, the non-exercised functionality can be identified. Moreover, the additional scoreboards indicate undesired DUT behaviour. Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow: (1) the CLICpix2 65 nm CMOS hybrid pixel readout ASIC design; (2) the C3PD 180 nm HV-CMOS active sensor ASIC design; (3) the FPGA-based DAQ system of the CLICpix chip. This paper, based on the experience from the above projects, introduces briefly UVM and presents a set of tips and advices applicable at different stages of the verification process-cycle.

  11. Simulation of machine-maintenance training in virtual environment

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Tezuka, Tetsuo; Kashiwa, Ken-ichiro; Ishii, Hirotake

    1997-01-01

    The periodical inspection of nuclear power plants needs a lot of workforces with a high degree of technical skill for the maintenance of various sorts of machines. Therefore, a new type of maintenance training system is required, where trainees can get training safely, easily and effectively. In this study we developed a training simulation system for disassembling a check valve in virtual environment (VE). The features of this system are as follows: Firstly, the trainees can execute tasks even in wrong order, and can experience the resultant conditions. In order to realize this environment, we developed a new Petri-net model for representing the objects' states in VE. This Petri-net model has several original characteristics, which make it easier to manage the change of the objects' states. Furthermore, we made a support system for constructing the Petri-net model of machine-disassembling training, because the Petri-net model is apt to become of large size. The effectiveness of this support system is shown through the system development. Secondly, this system can perform appropriate tasks to be done next in VE whenever the trainee wants even after some mistakes have been made. The effectiveness of this function has also been confirmed by experiments. (author)

  12. Drawing-Based Simulation for Primary School Science Education: An Experimental Study of the GearSketch Learning Environment

    NARCIS (Netherlands)

    Leenaars, Frank; van Joolingen, Wouter; Gijlers, Aaltje H.; Bollen, Lars

    2012-01-01

    Touch screen computers are rapidly becoming available to millions of students. These devices make the implementation of drawing-based simulation environments like Gear Sketch possible. This study shows that primary school students who received simulation-based support in a drawing-based learning

  13. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment

    Science.gov (United States)

    Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang

    2018-06-01

    The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.

  14. A Novel CPU/GPU Simulation Environment for Large-Scale Biologically-Realistic Neural Modeling

    Directory of Open Access Journals (Sweden)

    Roger V Hoang

    2013-10-01

    Full Text Available Computational Neuroscience is an emerging field that provides unique opportunities to studycomplex brain structures through realistic neural simulations. However, as biological details are added tomodels, the execution time for the simulation becomes longer. Graphics Processing Units (GPUs are now being utilized to accelerate simulations due to their ability to perform computations in parallel. As such, they haveshown significant improvement in execution time compared to Central Processing Units (CPUs. Most neural simulators utilize either multiple CPUs or a single GPU for better performance, but still show limitations in execution time when biological details are not sacrificed. Therefore, we present a novel CPU/GPU simulation environment for large-scale biological networks,the NeoCortical Simulator version 6 (NCS6. NCS6 is a free, open-source, parallelizable, and scalable simula-tor, designed to run on clusters of multiple machines, potentially with high performance computing devicesin each of them. It has built-in leaky-integrate-and-fire (LIF and Izhikevich (IZH neuron models, but usersalso have the capability to design their own plug-in interface for different neuron types as desired. NCS6is currently able to simulate one million cells and 100 million synapses in quasi real time by distributing dataacross these heterogeneous clusters of CPUs and GPUs.

  15. Influence of a controlled environment simulating an in-flight airplane cabin on dry eye disease.

    Science.gov (United States)

    Tesón, Marisa; González-García, María J; López-Miguel, Alberto; Enríquez-de-Salamanca, Amalia; Martín-Montañez, Vicente; Benito, María Jesús; Mateo, María Eugenia; Stern, Michael E; Calonge, Margarita

    2013-03-01

    To evaluate symptoms, signs, and the levels of 16 tears inflammatory mediators of dry eye (DE) patients exposed to an environment simulating an in-flight air cabin in an environmental chamber. Twenty DE patients were exposed to controlled environment simulating an in-flight airplane cabin (simulated in-flight condition [SIC]) of 23°C, 5% relative humidity, localized air flow, and 750 millibars (mb) of barometric pressure. As controls, 15 DE patients were subjected to a simulated standard condition (SSC) of 23°C, 45% relative humidity, and 930 mb. A DE symptoms questionnaire, diagnostic tests, and determination of 16 tear molecules by multiplex bead array were performed before and 2 hours after exposure. After SIC exposure, DE patients became more symptomatic, suffered a significant (P ≤ 0.05) decrease in tear stability (tear break up time) (from 2.18 ± 0.28 to 1.53 ± 0.20), and tear volume (phenol red thread test), and a significant (P ≤ 0.05) increase in corneal staining, both globally (0.50 ± 0.14 before and 1.25 ± 0.19 after) and in each area (Baylor scale). After SSC, DE patients only showed a mild, but significant (P ≤ 0.05), increase in central and inferior corneal staining. Consistently, tear levels of IL-6 and matrix metalloproteinase (MMP)-9 significantly increased and tear epidermal growth factor (EGF) significantly decreased (P ≤ 0.05) only after SIC. The controlled adverse environment conditions in this environmental chamber can simulate the conditions in which DE patients might be exposed during flight. As this clearly impaired their lacrimal functional unit, it would be advisable that DE patients use therapeutic strategies capable of ameliorating these adverse episodes.

  16. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    Directory of Open Access Journals (Sweden)

    Kuan Peng

    2010-01-01

    Full Text Available As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SPn, and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  17. Study on photon transport problem based on the platform of molecular optical simulation environment.

    Science.gov (United States)

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SP(n)), and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  18. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    Science.gov (United States)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by

  19. Modeling and Simulation of Renewable Hybrid Power System using Matlab Simulink Environment

    Directory of Open Access Journals (Sweden)

    Cristian Dragoş Dumitru

    2010-12-01

    Full Text Available The paper presents the modeling of a solar-wind-hydroelectric hybrid system in Matlab/Simulink environment. The application is useful for analysis and simulation of a real hybrid solar-wind-hydroelectric system connected to a public grid. Application is built on modular architecture to facilitate easy study of each component module influence. Blocks like wind model, solar model, hydroelectric model, energy conversion and load are implemented and the results of simulation are also presented. As an example, one of the most important studies is the behavior of hybrid system which allows employing renewable and variable in time energy sources while providing a continuous supply. Application represents a useful tool in research activity and also in teaching

  20. Flexible Environments for Grand-Challenge Simulation in Climate Science

    Science.gov (United States)

    Pierrehumbert, R.; Tobis, M.; Lin, J.; Dieterich, C.; Caballero, R.

    2004-12-01

    Current climate models are monolithic codes, generally in Fortran, aimed at high-performance simulation of the modern climate. Though they adequately serve their designated purpose, they present major barriers to application in other problems. Tailoring them to paleoclimate of planetary simulations, for instance, takes months of work. Theoretical studies, where one may want to remove selected processes or break feedback loops, are similarly hindered. Further, current climate models are of little value in education, since the implementation of textbook concepts and equations in the code is obscured by technical detail. The Climate Systems Center at the University of Chicago seeks to overcome these limitations by bringing modern object-oriented design into the business of climate modeling. Our ultimate goal is to produce an end-to-end modeling environment capable of configuring anything from a simple single-column radiative-convective model to a full 3-D coupled climate model using a uniform, flexible interface. Technically, the modeling environment is implemented as a Python-based software component toolkit: key number-crunching procedures are implemented as discrete, compiled-language components 'glued' together and co-ordinated by Python, combining the high performance of compiled languages and the flexibility and extensibility of Python. We are incrementally working towards this final objective following a series of distinct, complementary lines. We will present an overview of these activities, including PyOM, a Python-based finite-difference ocean model allowing run-time selection of different Arakawa grids and physical parameterizations; CliMT, an atmospheric modeling toolkit providing a library of 'legacy' radiative, convective and dynamical modules which can be knitted into dynamical models, and PyCCSM, a version of NCAR's Community Climate System Model in which the coupler and run-control architecture are re-implemented in Python, augmenting its flexibility

  1. The Effects of Exercising in Different Natural Environments on Psycho-Physiological Outcomes in Post-Menopausal Women: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Mathew P. White

    2015-09-01

    Full Text Available The current study examined potential psycho-physiological benefits from exercising in simulated natural environments among a sample of post-menopausal women using a laboratory based protocol. Participants cycled on a stationary exercise bike for 15 min while facing either a blank wall (Control or while watching one of three videos: Urban (Grey, Countryside (Green, Coast (Blue. Blood pressure, heart rate and affective responses were measured pre-post. Heart rate, affect, perceived exertion and time perception were also measured at 5, 10 and 15 min during exercise. Experience evaluation was measured at the end. Replicating most earlier findings, affective, but not physiological, outcomes were more positive for exercise in the simulated Green and, for the first time, Blue environment, compared to Control. Moreover, only the simulated Blue environment was associated with shorter perceived exercise duration than Control and participants were most willing to repeat exercise in the Blue setting. The current research extended earlier work by exploring the effects of “blue exercise” and by using a demographic with relatively low average levels of physical activity. That this sample of postmenopausal women were most willing to repeat a bout of exercise in a simulated Blue environment may be important for physical activity promotion in this cohort.

  2. The Effects of Exercising in Different Natural Environments on Psycho-Physiological Outcomes in Post-Menopausal Women: A Simulation Study

    Science.gov (United States)

    White, Mathew P.; Pahl, Sabine; Ashbullby, Katherine J.; Burton, Francesca; Depledge, Michael H.

    2015-01-01

    The current study examined potential psycho-physiological benefits from exercising in simulated natural environments among a sample of post-menopausal women using a laboratory based protocol. Participants cycled on a stationary exercise bike for 15 min while facing either a blank wall (Control) or while watching one of three videos: Urban (Grey), Countryside (Green), Coast (Blue). Blood pressure, heart rate and affective responses were measured pre-post. Heart rate, affect, perceived exertion and time perception were also measured at 5, 10 and 15 min during exercise. Experience evaluation was measured at the end. Replicating most earlier findings, affective, but not physiological, outcomes were more positive for exercise in the simulated Green and, for the first time, Blue environment, compared to Control. Moreover, only the simulated Blue environment was associated with shorter perceived exercise duration than Control and participants were most willing to repeat exercise in the Blue setting. The current research extended earlier work by exploring the effects of “blue exercise” and by using a demographic with relatively low average levels of physical activity. That this sample of postmenopausal women were most willing to repeat a bout of exercise in a simulated Blue environment may be important for physical activity promotion in this cohort. PMID:26404351

  3. Interaction of a 238Pu fueled-sphere assembly with a simulated terrestrial environment

    International Nuclear Information System (INIS)

    Steinkruger, F.J.; Patterson, J.H.; Herrera, B.; Nelson, G.B.; Matlack, G.M.; Waterbury, G.R.; Pavone, D.

    1981-02-01

    A 238 Pu fueled sphere assembly (FSA) was exposed to a simulated humid environment on sandy soil for 3 y. After a 70-week exposure, plutonium was first detected in measurable quantities in rain and condensate samples. A core sample taken in the ninety-third week contained 302 ng of plutonium. Examination of the FSA after exposure revealed a hole in the bottom of the graphite impact shell (GIS) and a leaking weld on the vent assembly of the postimpact containment shell (PICS). These two openings may be the pathways for plutonium entry into the environment from the FSA

  4. Safety in the ARIES-III D-3He tokamak reactor design

    International Nuclear Information System (INIS)

    Herring, J.S.; Dolan, T.J.

    1992-01-01

    This paper reports on the ARIES-III reactor study, an extensive examination of the viability of a D- 3 He-fueled commercial tokamak powder reactor. Because neutrons are produced only through side reactions (D+D- 3 HE+N; and D+D-T+p followed by D+T- 4 He+n), the reactor has the significant advantages of reduced activation of the first wall and shield, low afterheat and Class A or C low level waste disposal. Since no tritium is required for operation, no lithium-containing breeding blanket is necessary. A ferritic steel shield behind the first wall protects the magnets from gamma and neutron heating and from radiation damage. The authors explored the potential for isotopically tailoring the 4 mm tungsten layer on the divertor in order to reduce the offsite doses should a tungsten aerosol be released from the reactor after an accident. The authors also modeled a loss-of-cooling accident (LOCA) in which the organic coolant was burning in order to estimate the amount of radionuclides released from the first wall. Because the maximum temperature is low, degree C, release fractions are small. The authors analyzed the disposition of the 20 g/day of tritium that is produced by D-D reactions and removed by the vacuum pumps

  5. Evaluation of materials for bipolar plates in simulated PEM fuel-cell cathodic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, S.V.; Belmonte, M.R.; Moron, L.E.; Torres, J.; Orozco, G. [Centro de Investigacion y Desarrollo Technologico en Electroquimica S.C. Parcque Sanfandila, Queretaro (Mexico); Perez-Quiroz, J.T. [Mexican Transport Inst., Queretaro (Mexico); Cortes, M. A. [Mexican Petroleum Inst., Mexico City (Mexico)

    2008-04-15

    The bipolar plates in proton exchange membrane fuel cells (PEMFC) are exposed to an oxidizing environment on the cathodic side, and therefore are susceptible to corrosion. Corrosion resistant materials are needed for the bipolar plates in order to improve the lifespan of fuel cells. This article described a study in which a molybdenum (Mo) coating was deposited over austenitic stainless steel 316 and carbon steel as substrates in order to evaluate the resulting surfaces with respect to their corrosion resistance in simulated anodic and cathodic PEMFC environments. The molybdenum oxide films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The article presented the experiment and discussed the results of the corrosion behaviour of coated stainless steel. In general, the electrochemical characterization of bare materials and coated steel consisted of slow potentiodynamic polarization curves followed by a constant potential polarization test. The test medium was 0.5M sulfuric acid with additional introduction of oxygen to simulate the cathodic environment. All tests were performed at ambient temperature and at 50 degrees Celsius. The potentiostat used was a Gamry instrument. It was concluded that it is possible to deposit Mo-oxides on steel without using another alloying metal. The preferred substrate for corrosion prevention was found to be an alloy with high chromium content. 24 refs., 4 figs.

  6. Interpretation of Simulations in Interactive VR Environments: Depth Perception in Cave and Panorama

    DEFF Research Database (Denmark)

    Mullins, Michael

    2006-01-01

     Virtual reality (VR) applications are transforming the way architecture is conceived and produced. By introducing an open and inclusive approach, they encourage a creative dialogue with the users of residential schemes and other buildings and allow competition juries a more thorough understanding...... of architectural concepts. Architects need to heed the dynamics set in motion by these technologies and especially of how laypersons interpret building forms and their simulations in interactive VR environments. The article presents a study which compares aspects of spatial perception in a physical environment...... contextual experience of the viewer, and that spatial ability is an important contributing factor. Results in the two virtual environments tested show consistent differences in how depth and shape are perceived, indicating that VR context is a significant variable in spatial representation. It is asserted...

  7. Building interactive virtual environments for simulated training in medicine using VRML and Java/JavaScript.

    Science.gov (United States)

    Korocsec, D; Holobar, A; Divjak, M; Zazula, D

    2005-12-01

    Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.

  8. The limits of extremophilic life expanded under extraterrestrial environment-simulated experiments

    Science.gov (United States)

    Lage, C.; Dalmaso, G.; Teixeira, L.; Bendia, A.; Rosado, A.

    2012-09-01

    Astrobiology is a brand new area of science that seeks to understand the origin and dynamics of life in the universe. Several hypotheses to explain life in the cosmic context have been developed throughout human history, but only now technology has allowed many of them to be tested. Laboratory experiments have been able to show how chemical elements essential to life, carbon, nitrogen, oxygen and hydrogen combine in biologically important compounds. Interestingly, these compounds are found universally. As these compounds were combined to the point of originating cells and complex organisms is still a challenge to be unveiled by science. However, our 4.5 billion years-old solar system was born within a 10-billion years-old universe. Thus, simple cells like microorganisms may have had time to form in planets older than ours or other suitable molecular places in the universe. One hypothesis to explain the origin of life on Earth is called panspermia, which predicts that microbial life could have been formed in the universe billions of years ago, traveling between planets, and inseminating units of life that could have become more complex in habitable planets like ours. A project designed to test the viability of extremophile microorganisms exposed to simulated extraterrestrial environments is ongoing at the Carlos Chagas Filho Institute of Biophysics to test whether microbial life could withstand those inhospitable environments. Ultra-resistant (known or novel ones) microorganisms collected from terrestrial extreme environments, extremophiles, have been exposed to intense radiation sources simulating solar radiation (at synchrotron accelerators), capable of emitting in a few hours radiation equivalent of million years accumulated doses. The results obtained in these experiments reveal the interesting possibility of the existence of microbial life beyond Earth.

  9. Semantic and Virtual Reality-Enhanced Configuration of Domestic Environments: The Smart Home Simulator

    Directory of Open Access Journals (Sweden)

    Daniele Spoladore

    2017-01-01

    Full Text Available This paper introduces the Smart Home Simulator, one of the main outcomes of the D4All project. This application takes into account the variety of issues involved in the development of Ambient Assisted Living (AAL solutions, such as the peculiarity of each end-users, appliances, and technologies with their deployment and data-sharing issues. The Smart Home Simulator—a mixed reality application able to support the configuration and customization of domestic environments in AAL systems—leverages on integration capabilities of Semantic Web technologies and the possibility to model relevant knowledge (about both the dwellers and the domestic environment into formal models. It also exploits Virtual Reality technologies as an efficient means to simplify the configuration of customized AAL environments. The application and the underlying framework will be validated through two different use cases, each one foreseeing the customized configuration of a domestic environment for specific segments of users.

  10. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    Science.gov (United States)

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (S P n), and physical measurement to verify the performance of our study method on both accuracy and efficiency. PMID:20445737

  11. Grazing by sheep Ovis aries reduces island populations of water voles Arvicola amphibius

    Directory of Open Access Journals (Sweden)

    Karl Frafjord

    2014-12-01

    Full Text Available The population of water voles Arvicola amphibius was surveyed on 21 islands in the Solvær archipelago, northern Norway, in August 2012; 11 islands with semi-wild domestic sheep Ovis aries and 10 islands without sheep. Signs from water voles are very easy to detect and were used as a measure of the population (on a scale 0-10, and the numbers of sheep were counted. The ranking of signs on islands with and without sheep was compared, and a significant difference was found. Islands with sheep had, with one exception, only very small and fragmented populations of water voles, the one exception being a fairly large Carex swamp that was not grazed by the sheep and where a moderate-sized population of voles was found. Islands without sheep had much larger populations of water voles, giving a ranking about four times higher. One reason for the devastating effect of sheep on water voles is probably the fact that the sheep are living year-round on these islands with no supplemental food.

  12. Use of Heuristics to Facilitate Scientific Discovery Learning in a Simulation Learning Environment in a Physics Domain

    Science.gov (United States)

    Veermans, Koen; van Joolingen, Wouter; de Jong, Ton

    2006-01-01

    This article describes a study into the role of heuristic support in facilitating discovery learning through simulation-based learning. The study compares the use of two such learning environments in the physics domain of collisions. In one learning environment (implicit heuristics) heuristics are only used to provide the learner with guidance…

  13. A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment

    Directory of Open Access Journals (Sweden)

    Alborz Geramifard

    2005-06-01

    Full Text Available This paper presents a new architecture called FAIS for implementing intelligent agents cooperating in a special Multi Agent environment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.

  14. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta,Lealem; Myers, Jerry G.; Lewandowski, Beth; Platts, Steven H.

    2011-01-01

    Mars and NEO missions will expose astronaut to extended durations of reduced reduced gravity, isolation and higher radiation. These new operation conditions pose health risks that are not well understood and perhaps unanticipated. Advanced computational simulation environments can beneficially augment research to predict, assess and mitigate potential hazards to astronaut health. The NASA Digital Astronaut Project (DAP), within the NASA Human Research Program, strives to achieve this goal.

  15. Benefit Analysis of Implementation of Alternative SO2 Quality Standards on Acute Respiratory Syndrome (ARI Incidence Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Muhamad Nizar

    2014-12-01

    Full Text Available Indonesia Quality Standard (QS for ambient SO2 for 1 hour time average i.e. 900 μg/m3(equivalent to 360μg/m3in24 hour time average regulated in the Government Regulation No. 41 of 1999 is the most loose compared to the ambient SO2 standards of other countries in the world including WHO QS guideline. This QS is not expected to guarantee the protection of public health in Indonesia. Therefore more stringent QS alternative for ambient SO2 is required. This research examines benefit values in public health aspect if Indonesia tightens its ambient SO2 QS. Two alternative QS for SO2 are used i.e196 μg/m3(equivalent to 78μg/m3in24 hour time average referring to U.S. EPA and 750μg/m3(equivalent to 360μg/m3in24 hour time average referring to PUSARPEDAL. First step is to map distribution of SO2 ambient concentrations in Indonesia. The result indicates that Provinces of Jakarta and Banten have exceeded both alternative QS while Provinces of Yogyakarta, West Java, Central Java, East Java, Bali, and North Sumatra only exceed the alternative QS of 196μg/m3. From the public health aspect, by attaining to the alternative QS of 750μg/m3, Jakarta and Banten will reduce incidence of ARI by 95% and 98%. By attaining to the alternative QS of 196μg/m3, East Java, Bali and North Sumatra will reduce the incidence of ARI by 59%, 51%, and 5%.

  16. A simulation study of gene-by-environment interactions in GWAS implies ample hidden effects

    Science.gov (United States)

    Marigorta, Urko M.; Gibson, Greg

    2014-01-01

    The switch to a modern lifestyle in recent decades has coincided with a rapid increase in prevalence of obesity and other diseases. These shifts in prevalence could be explained by the release of genetic susceptibility for disease in the form of gene-by-environment (GxE) interactions. Yet, the detection of interaction effects requires large sample sizes, little replication has been reported, and a few studies have demonstrated environmental effects only after summing the risk of GWAS alleles into genetic risk scores (GRSxE). We performed extensive simulations of a quantitative trait controlled by 2500 causal variants to inspect the feasibility to detect gene-by-environment interactions in the context of GWAS. The simulated individuals were assigned either to an ancestral or a modern setting that alters the phenotype by increasing the effect size by 1.05–2-fold at a varying fraction of perturbed SNPs (from 1 to 20%). We report two main results. First, for a wide range of realistic scenarios, highly significant GRSxE is detected despite the absence of individual genotype GxE evidence at the contributing loci. Second, an increase in phenotypic variance after environmental perturbation reduces the power to discover susceptibility variants by GWAS in mixed cohorts with individuals from both ancestral and modern environments. We conclude that a pervasive presence of gene-by-environment effects can remain hidden even though it contributes to the genetic architecture of complex traits. PMID:25101110

  17. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Science.gov (United States)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  18. Study of Propagation Mechanisms in Dynamical Railway Environment to Reduce Computation Time of 3D Ray Tracing Simulator

    Directory of Open Access Journals (Sweden)

    Siham Hairoud

    2013-01-01

    Full Text Available In order to better assess the behaviours of the propagation channel in a confined environment such as a railway tunnel for subway application, we present an optimization method for a deterministic channel simulator based on 3D ray tracing associated to the geometrical optics laws and the uniform theory of diffraction. This tool requires a detailed description of the environment. Thus, the complexity of this model is directly bound to the complexity of the environment and specifically to the number of facets that compose it. In this paper, we propose an algorithm to identify facets that have no significant impact on the wave propagation. This allows us to simplify the description of the geometry of the modelled environment by removing them and by this way, to reduce the complexity of our model and therefore its computation time. A comparative study between full and simplified environment is led and shows the impact of this proposed method on the characteristic parameters of the propagation channel. Thus computation time obtained from the simplified environment is 6 times lower than the one of the full model without significant degradation of simulation accuracy.

  19. A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment

    Directory of Open Access Journals (Sweden)

    Alborz Geramifard

    2008-11-01

    Full Text Available This paper presents a new architecture called FAIS for imple- menting intelligent agents cooperating in a special Multi Agent environ- ment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.

  20. Multiplatform Mission Planning and Operations Simulation Environment for Adaptive Remote Sensors

    Science.gov (United States)

    Smith, G.; Ball, C.; O'Brien, A.; Johnson, J. T.

    2017-12-01

    We report on the design and development of mission simulator libraries to support the emerging field of adaptive remote sensors. We will outline the current state of the art in adaptive sensing, provide analysis of how the current approach to performing observing system simulation experiments (OSSEs) must be changed to enable adaptive sensors for remote sensing, and present an architecture to enable their inclusion in future OSSEs.The growing potential of sensors capable of real-time adaptation of their operational parameters calls for a new class of mission planning and simulation tools. Existing simulation tools used in OSSEs assume a fixed set of sensor parameters in terms of observation geometry, frequencies used, resolution, or observation time, which allows simplifications to be made in the simulation and allows sensor observation errors to be characterized a priori. Adaptive sensors may vary these parameters depending on the details of the scene observed, so that sensor performance is not simple to model without conducting OSSE simulations that include sensor adaptation in response to varying observational environment. Adaptive sensors are of significance to resource-constrained, small satellite platforms because they enable the management of power and data volumes while providing methods for multiple sensors to collaborate.The new class of OSSEs required to utilize adaptive sensors located on multiple platforms must answer the question: If the physical act of sensing has a cost, how does the system determine if the science value of a measurement is worth the cost and how should that cost be shared among the collaborating sensors?Here we propose to answer this question using an architecture structured around three modules: ADAPT, MANAGE and COLLABORATE. The ADAPT module is a set of routines to facilitate modeling of adaptive sensors, the MANAGE module will implement a set of routines to facilitate simulations of sensor resource management when power and data

  1. Experimental simulation: using generative modelling and palaeoecological data to understand human-environment interactions

    Directory of Open Access Journals (Sweden)

    George Perry

    2016-10-01

    Full Text Available The amount of palaeoecological information available continues to grow rapidly, providing improved descriptions of the dynamics of past ecosystems and enabling them to be seen from new perspectives. At the same time, there has been concern over whether palaeoecological enquiry needs to move beyond descriptive inference to a more hypothesis-focussed or experimental approach; however, the extent to which conventional hypothesis-driven scientific frameworks can be applied to historical contexts (i.e., the past is the subject of ongoing debate. In other disciplines concerned with human-environment interactions, including physical geography and archaeology, there has been growing use of generative simulation models, typified by agent-based approaches. Generative modelling encourages counter-factual questioning (what if…?, a mode of argument that is particularly important in systems and time-periods, such as the Holocene and now the Anthropocene, where the effects of humans and other biophysical processes are deeply intertwined. However, palaeoecologically focused simulation of the dynamics of the ecosystems of the past either seems to be conducted to assess the applicability of some model to the future or treats humans simplistically as external forcing factors. In this review we consider how generative simulation-modelling approaches could contribute to our understanding of past human-environment interactions. We consider two key issues: the need for null models for understanding past dynamics and the need to be able learn more from pattern-based analysis. In this light, we argue that there is considerable scope for palaeocology to benefit from developments in generative models and their evaluation. We discuss the view that simulation is a form of experiment and, by using case studies, consider how the many patterns available to palaeoecologists can support model evaluation in a way that moves beyond simplistic pattern-matching and how such models

  2. Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging.

    Science.gov (United States)

    Liu, Peng-Cheng; Liu, Kuan; Liu, Jun-Feng; Xia, Kuo; Chen, Li-Yang; Wu, Xing

    2016-09-27

    The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.

  3. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  4. Implementation and Analysis of the Chromakey Augmented Virtual Environment (ChrAVE) Version 3.0 and Virtual Environment Helicopter (VEHELO) Version 2.0 in Simulated Helicopter Training

    National Research Council Canada - National Science Library

    Hahn, M. E

    2005-01-01

    The Chromakey Augmented Virtual Environment (ChrAVE) 3.0 System is a training system created to augment initial, refresher, and proficiency training in helicopter aviation using accurate simulation...

  5. Simulation of fusion first-wall environment in a fission reactor

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Kulcinski, G.L.; Longhurst, G.R.

    1982-01-01

    A novel concept to produce a realistic simulation of a fusion first-wall test environment has been proposed recently. This concept takes advantage of the (/eta/, α) reaction in 59 Ni to produce a high internal helium content in the metal while using the 3 He (/eta/, /rho/)T reaction in the gas surrounding the specimen to produce an external heat and particle flux. Models to calculate heat flux, erosion rate, implantation, and damage rate to the walls of the test module are presented. Preliminary results show that a number of important fusion technology issues could be tested experimentally in a fission reactor such as the Engineering Test Reactor

  6. Virtual Property Manager: Providing a Simulated Learning Environment in a New University Program of Study

    Directory of Open Access Journals (Sweden)

    Andrew Carswell

    2007-08-01

    Full Text Available This paper relates the experience that students have while accessing Virtual Property Manager (VPM, a Web-based simulation learning tool designed to introduce students to a new discipline being offered at the university – Residential Property Management. The VPM simulation was designed in part to develop student interest in the new program. Results indicate that this simple simulation device did make a notable impact on student interest. Additionally, student acceptance and self-reported impact differed significantly based upon the delivery context. Adding a competitive reward element to the simulation experience improved student's evaluation of the software and self-reported interest in the field. Results indicate that educational simulation evaluation, acceptance, and performance may often be substantially influenced by the delivery context, rather than simply the program itself. Developers may do well to focus "outside the box" of program content to promote audience-specific delivery environments.

  7. Conversion of a mainframe simulation for maintenance performance to a PC environment

    International Nuclear Information System (INIS)

    Gertman, D.I.

    1990-01-01

    The computer model MAPPS, the Maintenance Personnel Performance Simulation, has been developed and validated by the US NRC [Nuclear Regulatory Commission] in order to improve maintenance practices and procedures at nuclear power plants. This model has now been implemented and improved, in a PC [personal computer] environment and renamed MICROMAPPS. The model is stochastically based and users are able to simulate the performance of 2- to 8-person crews for a variety of maintenance tasks under a variety of conditions. These conditions include aspects of crew actions as potentially influenced by the task, the environment, or the personnel involved. For example, the influence of the following factors is currently modeled within the MAPPS computer code: (1) personnel characteristics include but are not limited to intellectual and perceptual motor ability levels, the effect of fatigue and conversely, of rest breaks on performance, stress, communication, supervisor acceptance, motivation, organizational climate, time since the tasks was last performed and the staffing level available; (2) task variables include but are not limited to time allowed, occurrence of shift change, intellectual requirements, perceptual motor requirements, procedures quality, necessity for protective clothing and essentiality of a procedures quality, necessity for protective clothing and essentiality of a subtask; and (3) environment variables include temperature of the workplace, radiation level, and noise levels. The output describing maintainer performance includes subtask and task identification, success proportion, work and wait durations, time spent repeating various subtasks and outcome in terms of errors detected by the crew, false alarms, undetected errors, duration, and the probability of success. The model is comprehensive and allows for the modeling of decision making, trouble-shooting and branching of tasks

  8. LEADSTO: a Language and Environment for Analysis of Dynamics by SimulaTiOn (extended abstract)

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; van der Meij, L.; Treur, J.

    2005-01-01

    This paper presents the language and software environment LEADSTO that has been developed to model and simulate dynamic processes in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with quantitative means. Dynamic

  9. Flexible Simulation E-Learning Environment for Studying Digital Circuits and Possibilities for It Deployment as Semantic Web Service

    Science.gov (United States)

    Radoyska, P.; Ivanova, T.; Spasova, N.

    2011-01-01

    In this article we present a partially realized project for building a distributed learning environment for studying digital circuits Test and Diagnostics at TU-Sofia. We describe the main requirements for this environment, substantiate the developer platform choice, and present our simulation and circuit parameter calculation tools.…

  10. Comparison Of The I-Gel Supraglottic And King Laryngotracheal Airways In A Simulated Tactical Environment.

    Science.gov (United States)

    March, Juan A; Tassey, Theresa E; Resurreccion, Noel B; Portela, Roberto C; Taylor, Stephen E

    2018-01-01

    When working in a tactical environment there are several different airway management options that exist. One published manuscript suggests that when compared to endotracheal intubation, the King LT laryngotracheal airway (KA) device minimizes time to successful tube placement and minimizes exposure in a tactical environment. However, comparison of two different blind insertion supraglottic airway devices in a tactical environment has not been performed. This study compared the I-Gel airway (IGA) to the KA in a simulated tactical environment, to determine if one device is superior in minimizing exposure and minimizing time to successful tube placement. This prospective randomized cross over trial was performed using the same methods and tactical environment employed in a previously published study, which compared endotracheal intubation versus the KA in a tactical environment. The tactical environment was simulated with a one-foot vertical barrier. The participants were paramedic students who wore an Advanced Combat Helmet (ACH) and a ballistic vest (IIIA) during the study. Participants were then randomized to perform tactical airway management on an airway manikin with either the KA or the IGA, and then again using the alternate device. The participants performed a low military type crawl and remained in this low position during each tube placement. We evaluated the time to successful tube placement between the IGA and KA. During attempts, participants were videotaped to monitor their height exposure above the barrier. Following completion, participants were asked which airway device they preferred. Data was analyzed using Student's t-test across the groups for time to ventilation and height of exposure. In total 19 paramedic students who were already at the basic EMT level participated. Time to successful placement for the KA was 39.7 seconds (95%CI: 32.7-46.7) versus 14.4 seconds (95%CI: 12.0-16.9) for the IGA, p tactical environment placement of the IGA for

  11. Modelling and Simulating of Risk Behaviours in Virtual Environments Based on Multi-Agent and Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Linqin Cai

    2013-11-01

    Full Text Available Due to safety and ethical issues, traditional experimental approaches to modelling underground risk behaviours can be costly, dangerous and even impossible to realize. Based on multi-agent technology, a virtual coalmine platform for risk behaviour simulation is presented to model and simulate the human-machine-environment related risk factors in underground coalmines. To reveal mine workers' risk behaviours, a fuzzy emotional behaviour model is proposed to simulate underground miners' responding behaviours to potential hazardous events based on cognitive appraisal theories and fuzzy logic techniques. The proposed emotion model can generate more believable behaviours for virtual miners according to personalized emotion states, internal motivation needs and behaviour selection thresholds. Finally, typical accident cases of underground hazard spotting and locomotive transport were implemented. The behaviour believability of virtual miners was evaluated with a user assessment method. Experimental results show that the proposed models can create more realistic and reasonable behaviours in virtual coalmine environments, which can improve miners' risk awareness and further train miners' emergent decision-making ability when facing unexpected underground situations.

  12. Numerical Simulation of the Effects of Water Surface in Building Environment

    Science.gov (United States)

    Li, Guangyao; Pan, Yuqing; Yang, Li

    2018-03-01

    Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.

  13. Home automation and simulation of presence in empty environments

    Directory of Open Access Journals (Sweden)

    Marques Israel

    2017-01-01

    Full Text Available Since their humble beginnings at the dawn of the 20th Century until contemporary age, automation and control systems have grown exponentially in both complexity and importance. Its relevance on human activities, be they mundane tasks or crucial processes, is self-evident. Among its many utilities, automated systems acquire a noble mission when put in service to protect life and property from aggressors of any kind. This paper discusses how home automation components can be utilized to implement an alternative domestic security strategy that consists in simulating the presence of an individual in an empty environment in the absence of its owner in order dissuade potential trespassing criminals, once they would feel highly discouraged to carry the criminal act should they believe the property is occupied.

  14. Development of SPEEDI-MP. A simulation system for contaminant, water, and energy circulation in a multiple environment

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2010-01-01

    A numerical simulation system named SPEEDI-MP for environmental studies has been developed by the Japan Atomic Energy Agency. In this development, the national emergency response system SPEEDI, which predicts atmospheric dispersion and environmental impacts of radionuclides from nuclear facilities after an accident, is extended to be able to deal with various environments from atmospheric to terrestrial and oceanic environments. In SPEEDI-MP, this kind of complex simulation was realized by introducing a model coupler. Calculations of component models are carried out by different processors of parallel computers and the coupler controls these processes and handles data exchange among component models. Performance of the coupled model has been demonstrated in simulations of the storm surge caused by Hurricane Katrina in August 2005 and flash floods after heavy rainfall in Saudi Arabia. The development toward inclusion of substances of environmental concern into the model system is currently under way. As the first step of this development, the incorporation of tritium as a hazardous material worked well. (author)

  15. Survival of bighorn sheep (Ovis canadensis) commingled with domestic sheep (Ovis aries) in the absence of Mycoplasma ovipneumoniae.

    Science.gov (United States)

    Besser, Thomas E; Cassirer, E Frances; Yamada, Catherine; Potter, Kathleen A; Herndon, Caroline; Foreyt, William J; Knowles, Donald P; Srikumaran, Subramaniam

    2012-01-01

    To test the hypothesis that Mycoplasma ovipneumoniae is an important agent of the bighorn sheep (Ovis canadensis) pneumonia that has previously inevitably followed experimental commingling with domestic sheep (Ovis aries), we commingled M. ovipneumoniae-free domestic and bighorn sheep (n=4 each). One bighorn sheep died with acute pneumonia 90 days after commingling, but the other three remained healthy for >100 days. This unprecedented survival rate is significantly different (P=0.002) from that of previous bighorn-domestic sheep contact studies but similar to (P>0.05) bighorn sheep survival following commingling with other ungulates. The absence of epizootic respiratory disease in this experiment supports the hypothesized role of M. ovipneumoniae as a key pathogen of epizootic pneumonia in bighorn sheep commingled with domestic sheep.

  16. Health Effects of Airline Cabin Environments in Simulated 8-Hour Flights.

    Science.gov (United States)

    2017-07-01

    Commercial air travel is usually without health incidents. However, there is a view that cabin environments may be detrimental to health, especially flights of 8 h or more. Concerns have been raised about deep vein thrombosis, upper respiratory tract infections, altitude sickness, and toxins from the engines. Passenger cabin simulators were used to achieve a comparative observational study with 8-h flights at pressures equivalent to terrestrial altitudes of ground, 4000, 6000, and 8000 ft. Biomarkers of thrombosis (D-Dimer), inflammation (interleukin-6), and respiratory dysfunction (FEV1) and oxygen saturation (Spo2) were measured, as well as pulse and blood pressure. The wellbeing of the passengers was also monitored. During 36 flights, 1260 healthy subjects [626 women (F) and 634 men (M) (mean age = 43, SD = 16)] were assessed. Additionally, 72 subjects with chronic obstructive pulmonary disease (F = 32, M = 40, mean age = 48, SD = 17) and 74 with heart failure (F = 50, M = 24, mean age = 54, SD = 14) contributed to 11 flights. Additionally, 76 normal controls were observed while engaged in a usual day's work (F = 38, M = 38, mean age = 39, SD = 15). There were no health-significant changes in D-Dimer, interleukin-6, or FEV1. Spo2 varied as expected, with lowest values at 8000 ft and in patients with cardiopulmonary disease. The only differences from the controls were the loss of the normal diurnal variations in interleukin-6 and D-Dimer. This very large, comparative, controlled study provides much reassurance for the traveling public, who use airline flights of up to 8 h. We did not show evidence of the development of venous thrombosis, inflammation, respiratory embarrassment, nor passenger distress. No significant symptoms or adverse effects were reported.Ideal Cabin Environment (ICE) Research Consortium of the European Community 6th Framework Programme. Health effects of airline cabin environments in simulated 8-hour flights. Aerosp Med Hum Perform. 2017; 88(7):651-656.

  17. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    Science.gov (United States)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  18. Design and performance of axes controller for the 50/80 cm ARIES Schmidt telescope

    Science.gov (United States)

    Kumar, T. S.; Banwar, R. N.

    We describe here the details of R.A. and Dec axes controller for the 50/80 cm Schmidt telescope at Aryabhatta Research Institute of observational sciencES (ARIES). Each axis is driven by a set of two motors for backlash-free motion and is coupled to on-shaft encoder for absolute position measurements. Additional incremental encoders are provided though a backlash-free reduction for velocity feedback. A pulse width modulation (PWM) based proportional and integral (PI) controller is designed to drive the twin-motor drive of each axis. The overall telescope control architecture features a distributed network of simple low cost PIC microcontrollers interfaced via CAN bus and RS232 ports. Using this controller it has been observed that the rms velocity errors at slew, set, guide, fine and tracking speeds are negligible. Excessive preload on the gearbox bearings results in a highly nonlinear behavior at fine speeds owing to dynamics of friction. We found that the peak errors in the tracking performance and fine speeds can be improved by properly adjusting the preloads on the gearbox bearings.

  19. Behavior of ceramics at 1200 C in a simulated gas turbine environment

    Science.gov (United States)

    Sanders, W. A.; Probst, H. B.

    1974-01-01

    This report summarizes programs at the NASA Lewis Research Center evaluating several classes of commercial ceramics, in a high gas velocity burner rig simulating a gas turbine engine environment. Testing of 23 ceramics in rod geometry identified SiC and Si3N4 as outstanding in resistance to oxidation and thermal stress and identified the failure modes of other ceramics. Further testing of a group of 15 types of SiC and Si3N4 in simulated vane shape geometry has identified a hot pressed SiC, a reaction sintered SiC, and hot pressed Si3N4 as the best of that group. SiC and Si3N4 test specimens were compared on the basis of weight change, dimensional reductions, metallography, fluorescent penetrant inspection, X-ray diffraction analyses, and failure mode.

  20. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  1. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  2. Use and management of traditional medicinal plants by Maale and Ari ethnic communities in southern Ethiopia

    Science.gov (United States)

    2014-01-01

    Background Around 80% of the people of Ethiopia are estimated to be relying on medicinal plants for the treatment of different types of human health problems. The purpose of this study was to describe and analyse the use and management of medicinal plants used for the treatment of human health problems by the Maale and Ari communities in southern Ethiopia. Methods Quantitative and qualitative ethnobotanical field inquiries and analytical methods including individual and focus group discussions (18), observations, individual interviews (n = 74), preference ranking and paired comparison were used. Data were collected in three study sites and from two markets; the latter surveyed every 15 days from February 2011 to February 2012. Results A total of 128 medicinal plant species, belonging to 111 genera and 49 families, used as herbal medicine by Maale and Ari communities were documented. Predominantly harvested plant parts were leaves, which are known to have relatively low impact on medicinal plant resources. Species with high familiarity indices included Solanum dasyphyllum, Indigofera spicata, Ruta chalepensis, Plumbago zeylanica and Meyna tetraphylla. Low Jaccards similarity indices (≤ 0.33) indicated little correspondence in medicinal plant use among sites and between ethnic communities. The dominant ways of medicinal plant knowledge acquisition and transfer is vertical: from parents to children through oral means. Gender and site significantly influenced the number of human medicinal plants known currently in the study sites. Age was only a factor of significance in Maale. Marketing of medicinal plants harvested from wild and semi-wild stands is not common. Expansion of agricultural land and lack of cultivation efforts by local communities are mentioned by locals to affect the availability of medicinal plant resources. Conclusion S. dasyphyllum, I. spicata, P. zeylanica, M. tetraphylla, and Oxalis radicosa need to be considered for phytochemical and

  3. Simulation of creep test on 316FR stainless steel in sodium environment at 550degC

    International Nuclear Information System (INIS)

    Satmoko, A.; Asayama, Tai

    1999-04-01

    In sodium environment, material 316FR stainless steel risks to suffer from carburization. In this study, an analysis using a Fortran program is conducted to evaluate the carbon influence on the creep behavior of 316FR based on experimental results from uni-axial creep test that had been performed at temperature 550degC in sodium environment simulating Fast Breeder Reactor condition. As performed in experiments, two parts are distinguished. At first, elastic-plastic behavior is used to simulate the fact that just before the beginning of creep test, specimen suffers from load or stress much higher than initial yield stress. In second part, creep condition occurs in which the applied load is kept constant. The plastic component should be included, since stresses increase due to section area reduction. For this reason, elastic-plastic-creep behavior is considered. Through time carbon penetration occurs and its concentration is evaluated empirically. This carburization phenomena are assumed to affect in increasing yield stress, decreasing creep strain rate, and increasing creep rupture strength of material. The model is capable of simulating creep test in sodium environment. Material near from surface risks to be carburized. Its material properties change leading to non-uniform distribution of stresses. Those layers of material suffer from stress concentration, and are subject to damage. By introducing a damage criteria, crack initialization can thus be predicted. And even, crack growth can be evaluated. For high stress levels, tensile strength criterion is more important than creep damage criterion. But in low stress levels, the latter gives more influence in fracture. Under high stress, time to rupture of a specimen in sodium environment is shorter than in air. But for stresses lower than 26 kgf/mm 2 , the time to rupture of creep in sodium environment is the same or little longer than in air. Quantitatively, the carburization effect at 550degC is not important. This

  4. ENVIRONMENT: a computational platform to stochastically simulate reacting and self-reproducing lipid compartments

    Science.gov (United States)

    Mavelli, Fabio; Ruiz-Mirazo, Kepa

    2010-09-01

    'ENVIRONMENT' is a computational platform that has been developed in the last few years with the aim to simulate stochastically the dynamics and stability of chemically reacting protocellular systems. Here we present and describe some of its main features, showing how the stochastic kinetics approach can be applied to study the time evolution of reaction networks in heterogeneous conditions, particularly when supramolecular lipid structures (micelles, vesicles, etc) coexist with aqueous domains. These conditions are of special relevance to understand the origins of cellular, self-reproducing compartments, in the context of prebiotic chemistry and evolution. We contrast our simulation results with real lab experiments, with the aim to bring together theoretical and experimental research on protocell and minimal artificial cell systems.

  5. MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler

    Science.gov (United States)

    Huang, Ye; Brocco, Amos; Courant, Michele; Hirsbrunner, Beat; Kuonen, Pierre

    This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate’s design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance is able to deal with dynamic scheduling conditions, with continuously arriving grid jobs. Received jobs are either allocated on local resources, or delegated to other MaGates for remote execution. The proposed MaGate simulator is based on GridSim toolkit and Alea simulator, and abstracts the features and behaviors of complex fundamental grid elements, such as grid jobs, grid resources, and grid users. Simulation of scheduling tasks is supported by a grid network overlay simulator executing distributed ant-based swarm intelligence algorithms to provide services such as group communication and resource discovery. For evaluation, a comparison of behaviors of different collaborative policies among a community of MaGates is provided. Results support the use of the proposed approach as a functional ready grid scheduler simulator.

  6. CHAVIR: A virtual site simulation environment

    International Nuclear Information System (INIS)

    Leservot, Arnauld; Chodorge, Laurent

    2006-01-01

    In nuclear field, any companies involved in the management and/or the design and performance of an intervention aim at preparing it, by finding the most appropriate scenario(s) under several needs: - Technical requirements: feasibility, kind of means to engage, operating modes, tasks scheduling; - economical requirements: global mission cost minimization; - Environmental requirements: take into account the individual and collective dose rate received by the human operators involved in the intervention(s), according to the ALARA principle. Today, they also must answer complex questions to design their interventions with increasing reactivity and always lowering costs. Besides, they must be brought to answer unexpected situations during the effective realization of their nuclear interventions, and naturally to consolidate their experience feedback of the missions. An interesting way to help them in these different needs consists in taking advantage of simulation. The paper has the following contents: - Introduction; - CHAVIR project; - Goal; - Simulation and virtual reality; - Strategy; - Interactive dose evaluation; - Requirements; - Physical algorithm; - Objects representation; - Calculation optimization; - Interactive mechanical simulation; - First study cases; - Conclusion - prospects. To summarize, the authors succeeded in developing a software simulation tool, helping the users from nuclear field to prepare their interventions. CHAVIR allows interactive evaluation of dose rate, when taking into account real industrial models coming from CAD world. One can also perform mechanical simulations, to address accessibilities issues and design scenario involving either manual tasks of robotic interventions. CHAVIR is already entered the industrialization process. It aims at becoming shortly a commercial software tool for dismantling site simulation, adapted to the professional needs in order to respect the ALARA principle. It should efficiently contribute to optimize

  7. Bringing Reality into Calculus Classrooms: Mathematizing a Real-life Problem Simulated in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    Olga V. Shipulina

    2013-01-01

    Full Text Available The study explores how students, who had completed the AP calculus course, mathematized the optimal navigation real-life problem simulated in the Second Life Virtual Environment. The particular research interest was to investigate whether/how students’ empirical activity in VE influences the way of their mathematizing.

  8. Aerosol transport simulations in indoor and outdoor environments using computational fluid dynamics (CFD)

    Science.gov (United States)

    Landazuri, Andrea C.

    This dissertation focuses on aerosol transport modeling in occupational environments and mining sites in Arizona using computational fluid dynamics (CFD). The impacts of human exposure in both environments are explored with the emphasis on turbulence, wind speed, wind direction and particle sizes. Final emissions simulations involved the digitalization process of available elevation contour plots of one of the mining sites to account for realistic topographical features. The digital elevation map (DEM) of one of the sites was imported to COMSOL MULTIPHYSICSRTM for subsequent turbulence and particle simulations. Simulation results that include realistic topography show considerable deviations of wind direction. Inter-element correlation results using metal and metalloid size resolved concentration data using a Micro-Orifice Uniform Deposit Impactor (MOUDI) under given wind speeds and directions provided guidance on groups of metals that coexist throughout mining activities. Groups between Fe-Mg, Cr-Fe, Al-Sc, Sc-Fe, and Mg-Al are strongly correlated for unrestricted wind directions and speeds, suggesting that the source may be of soil origin (e.g. ore and tailings); also, groups of elements where Cu is present, in the coarse fraction range, may come from mechanical action mining activities and saltation phenomenon. Besides, MOUDI data under low wind speeds (Computational Fluid Dynamics can be used as a source apportionment tool to identify areas that have an effect over specific sampling points and susceptible regions under certain meteorological conditions, and these conclusions can be supported with inter-element correlation matrices and lead isotope analysis, especially since there is limited access to the mining sites. Additional results concluded that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail, provides higher number of locations with monotonic convergence than the

  9. On the Efficient Simulation of Outage Probability in a Log-normal Fading Environment

    KAUST Repository

    Rached, Nadhir B.

    2017-02-15

    The outage probability (OP) of the signal-to-interference-plus-noise ratio (SINR) is an important metric that is used to evaluate the performance of wireless systems. One difficulty toward assessing the OP is that, in realistic scenarios, closed-form expressions cannot be derived. This is for instance the case of the Log-normal environment, in which evaluating the OP of the SINR amounts to computing the probability that a sum of correlated Log-normal variates exceeds a given threshold. Since such a probability does not admit a closed-form expression, it has thus far been evaluated by several approximation techniques, the accuracies of which are not guaranteed in the region of small OPs. For these regions, simulation techniques based on variance reduction algorithms is a good alternative, being quick and highly accurate for estimating rare event probabilities. This constitutes the major motivation behind our work. More specifically, we propose a generalized hybrid importance sampling scheme, based on a combination of a mean shifting and a covariance matrix scaling, to evaluate the OP of the SINR in a Log-normal environment. We further our analysis by providing a detailed study of two particular cases. Finally, the performance of these techniques is performed both theoretically and through various simulation results.

  10. On the Efficient Simulation of Outage Probability in a Log-normal Fading Environment

    KAUST Repository

    Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2017-01-01

    The outage probability (OP) of the signal-to-interference-plus-noise ratio (SINR) is an important metric that is used to evaluate the performance of wireless systems. One difficulty toward assessing the OP is that, in realistic scenarios, closed-form expressions cannot be derived. This is for instance the case of the Log-normal environment, in which evaluating the OP of the SINR amounts to computing the probability that a sum of correlated Log-normal variates exceeds a given threshold. Since such a probability does not admit a closed-form expression, it has thus far been evaluated by several approximation techniques, the accuracies of which are not guaranteed in the region of small OPs. For these regions, simulation techniques based on variance reduction algorithms is a good alternative, being quick and highly accurate for estimating rare event probabilities. This constitutes the major motivation behind our work. More specifically, we propose a generalized hybrid importance sampling scheme, based on a combination of a mean shifting and a covariance matrix scaling, to evaluate the OP of the SINR in a Log-normal environment. We further our analysis by providing a detailed study of two particular cases. Finally, the performance of these techniques is performed both theoretically and through various simulation results.

  11. Assessment of susceptibility of Type 304 stainless steel to intergranular stress corrosion cracking in simulated Savannah River Reactor environments

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Caskey, C.R. Jr.

    1989-01-01

    Intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel rate tests (CERT) of specimens machined was evaluated by constant extension from Savannah River Plant (SRP) decontaminated process water piping. Results from 12 preliminary CERT tests verified that IGSCC occurred over a wide range of simulated SRP envirorments. 73 specimens were tested in two statistical experimental designs of the central composite class. In one design, testing was done in environments containing hydrogen peroxide; in the other design, hydrogen peroxide was omitted but oxygen was added to the environment. Prediction equations relating IGSCC to temperature and environmental variables were formulated. Temperature was the most important independent variable. IGSCC was severe at 100 to 120C and a threshold temperature between 40C and 55C was identified below which IGSCC did not occur. In environments containing hydrogen peroxide, as in SRP operation, a reduction in chloride concentration from 30 to 2 ppB also significantly reduced IGSCC. Reduction in sulfate concentration from 50 to 7 ppB was effective in reducing IGSCC provided the chloride concentration was 30 ppB or less and temperature was 95C or higher. Presence of hydrogen peroxide in the environment increased IGSCC except when chloride concentration was 11 ppB or less. Actual concentrations of hydrogen peroxide, oxygen and carbon dioxide did not affect IGSCC. Large positive ECP values (+450 to +750 mV Standard Hydrogen Electrode (SHE)) in simulated SRP environments containing hydrogen peroxide and were good agreement with ECP measurements made in SRP reactors, indicating that the simulated environments are representative of SRP reactor environments. Overall CERT results suggest that the most effective method to reduce IGSCC is to reduce chloride and sulfate concentrations

  12. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    DEFF Research Database (Denmark)

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...... gravity field, Earth magnetic field and eclipse. The structure and facilities within the toolbox are described and exemplified using a student satellite case (AAUSAT-II). The validity of developed models is confirmed by comparing the simulation results with the realistic data obtained from the Danish...

  13. A comparative study of ketone body metabolism between the camel (Camelus dromedarius) and the sheep (Ovis aries).

    Science.gov (United States)

    Chandrasena, L G; Emmanuel, B; Hamar, D W; Howard, B R

    1979-01-01

    1. Plasma levels of beta-hydroxybutyrate (BHB), and acetoacetate (AcAc) have been measured in camels (Camelus dromedarius) and sheep (Ovis aries). The activity of beta-hydroxybutyrate dehydrogenase (BHB-deH2) (E.C. 1.1.1.30) was studied in the rumen epithelium and the liver of these animals. 2. Concentrations of plasma BHB and AcAc in the camel were in respective order 33 and 4 times lower than that of the sheep. The ratios of BHB to AcAc were 0.61 and 4.8 for the camel and sheep, respectively. 3. The activity of BHB-deH2 in the rumen epithelium of the camel and sheep were 7.15 and 66 mumol/hr/g wet wt tissue, respectively. The activity in both species was higher in the rumen epithelium than in the liver.

  14. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  15. Influence of anatomic landmarks in the virtual environment on simulated angled laparoscope navigation

    OpenAIRE

    Buzink, S.N.; Christie, L.S.; Goossens, R.H.M.; De Ridder, H.; Jakimowicz, J.J.

    2010-01-01

    Background - The aim of this study is to investigate the influence of the presence of anatomic landmarks on the performance of angled laparoscope navigation on the SimSurgery SEP simulator. Methods - Twenty-eight experienced laparoscopic surgeons (familiar with 30º angled laparoscope, >100 basic laparoscopic procedures, >5 advanced laparoscopic procedures) and 23 novices (no laparoscopy experience) performed the Camera Navigation task in an abstract virtual environment (CN-box) and in a virtu...

  16. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    Energy Technology Data Exchange (ETDEWEB)

    S.C. Jardin; C.E. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M.S. Chu; R. LaHaye; L.L. Lao; T.W. Petrie; P. Politzer; H.E. St. John; P. Snyder; G.M. Staebler; A.D. Turnbull; W.P. West

    2003-10-07

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.

  17. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Mau, T.K.; Miller, R.L.; Najmabadi, F.; Chan, V.S.; Chu, M.S.; LaHaye, R.; Lao, L.L.; Petrie, T.W.; Politzer, P.; John, St. H.E.; Snyder, P.; Staebler, G.M.; Turnbull, A.D.; West, W.P.

    2003-01-01

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented

  18. Temperature, salinity, pressure, and other data from current meter and CTD casts in the NE Atlantic Ocean as part of the Subduction Accelerated Research Initiative (ARI) project, from 1991-05-18 to 1993-06-14 (NODC Accession 9700245)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The overall objective of the Subduction Accelerated Research Initiative (ARI) was to bring together several techniques to address the formation and evolution of...

  19. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment

    International Nuclear Information System (INIS)

    Kwan, W.H.; Cheah, C.B.; Ramli, M.; Chang, K.Y.

    2018-01-01

    The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability. [es

  20. Florística em um hectare de cerrado stricto sensu na ARIE - cerrado Pé-de-Gigante, Santa Rita do Passa Quatro, SP

    OpenAIRE

    Weiser, Veridiana de Lara; Godoy, Silvana Aparecida Pires de

    2001-01-01

    Foi realizado um levantamento florístico em um ha de cerrado stricto sensu, na parte norte da ARIE - Cerrado Pé-de-Gigante, Santa Rita do Passa Quatro, São Paulo. Foram coletados 428 espécimes em fase reprodutiva, em vinte e cinco excursões de coleta, durante o período de novembro de 1996 a abril de 1998. A listagem florística obtida apresenta 141 espécies, distribuídas em 109 gêneros e 49 famílias. As famílias mais representativas foram: Leguminosae, Asteraceae, Malpighiaceae e Myrtaceae. A ...

  1. Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency. A Reservoir Simulation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Okwen, Roland [University of Illinois, Champaign, IL (United States); Frailey, Scott [University of Illinois, Champaign, IL (United States); Leetaru, Hannes [University of Illinois, Champaign, IL (United States); Moulton, Sandy [Illinois State Geological Survey, Champaign, IL (United States)

    2014-09-30

    The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef, fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to

  2. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology

    Directory of Open Access Journals (Sweden)

    Gerber Susanne

    2011-04-01

    Full Text Available Abstract Background Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. Results The Spatio-Temporal Simulation Environment (STSE is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images. STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts

  3. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology.

    Science.gov (United States)

    Stoma, Szymon; Fröhlich, Martina; Gerber, Susanne; Klipp, Edda

    2011-04-28

    Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. The Spatio-Temporal Simulation Environment (STSE) is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI) tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images). STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS) and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts of the STSE design and workflow. We

  4. Teachers' Conceptions and Their Approaches to Teaching in Virtual Reality and Simulation-Based Learning Environments

    Science.gov (United States)

    Keskitalo, Tuulikki

    2011-01-01

    This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…

  5. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Feilong [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); China Building Material Test & Certification Group Co. Ltd., Beijing 100024 (China); Ren, Shuai [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); Li, Zhong [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G6 (Canada); Liu, Zhiyong, E-mail: liuzhiyong7804@ustb.edu.cn [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); Li, Xiaogang; Du, Cuiwei [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China)

    2017-02-08

    The stress corrosion cracking (SCC) behavior of X70 steel in simulated shallow and deep sea environments was studied using potentiodynamic polarization measurement, a slow strain rate tensile (SSRT) test and scanning electron microscopy (SEM). The results indicate that the predominant cathodic reaction changes from an oxygen reduction reaction to the hydrogen evolution reaction as the dissolved oxygen (DO) content decreases. In the simulated deep sea environment, the SCC susceptibility of X70 steel decreased first, reached its lowest point at 15 MPa and then increased as the simulated sea hydrostatic pressure (HP) further increased. This is consistent with the regularity for the change of the cathodic hydrogen evolution reaction current density i{sub H} at E{sub corr}, which indicates that the HP may influence the SCC susceptibility of X70 steel by changing the permeated hydrogen concentration.

  6. CoaSim: A Flexible Environment for Simulating Genetic Data under Coalescent Models

    DEFF Research Database (Denmark)

    Mailund; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2005-01-01

    get insight into these. Results We have created the CoaSim application as a flexible environment for Monte various types of genetic data under equilibrium and non-equilibrium coalescent variety of applications. Interaction with the tool is through the Guile version scripting language. Scheme scripts......Background Coalescent simulations are playing a large role in interpreting large scale intra- polymorphism surveys and for planning and evaluating association studies. Coalescent of data sets under different models can be compared to the actual data to test different evolutionary factors and thus...

  7. Tree-crown-resolving large-eddy simulation for evaluating greenery effects on urban heat environments

    Science.gov (United States)

    Matsuda, K.; Onishi, R.; Takahashi, K.

    2017-12-01

    Urban high temperatures due to the combined influence of global warming and urban heat islands increase the risk of heat stroke. Greenery is one of possible countermeasures for mitigating the heat environments since the transpiration and shading effect of trees can reduce the air temperature and the radiative heat flux. In order to formulate effective measures, it is important to estimate the influence of the greenery on the heat stroke risk. In this study, we have developed a tree-crown-resolving large-eddy simulation (LES) model that is coupled with three-dimensional radiative transfer (3DRT) model. The Multi-Scale Simulator for the Geoenvironment (MSSG) is used for performing building- and tree-crown-resolving LES. The 3DRT model is implemented in the MSSG so that the 3DRT is calculated repeatedly during the time integration of the LES. We have confirmed that the computational time for the 3DRT model is negligibly small compared with that for the LES and the accuracy of the 3DRT model is sufficiently high to evaluate the radiative heat flux at the pedestrian level. The present model is applied to the analysis of the heat environment in an actual urban area around the Tokyo Bay area, covering 8 km × 8 km with 5-m grid mesh, in order to confirm its feasibility. The results show that the wet-bulb globe temperature (WBGT), which is an indicator of the heat stroke risk, is predicted in a sufficiently high accuracy to evaluate the influence of tree crowns on the heat environment. In addition, by comparing with a case without the greenery in the Tokyo Bay area, we have confirmed that the greenery increases the low WBGT areas in major pedestrian spaces by a factor of 3.4. This indicates that the present model can predict the greenery effect on the urban heat environment quantitatively.

  8. Monte Carlo simulations of the radiation environment for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mallows, S., E-mail: sophie.mallows@cern.ch [KIT, Karlsruhe (Germany); Azhgirey, I.; Bayshev, I. [IHEP, Protvino (Russian Federation); Bergstrom, I.; Cooijmans, T.; Dabrowski, A.; Glöggler, L.; Guthoff, M. [CERN, Geneva (Switzerland); Kurochkin, I. [IHEP, Protvino (Russian Federation); Vincke, H.; Tajeda, S. [CERN, Geneva (Switzerland)

    2016-07-11

    Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton–proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarized, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.

  9. Monte Carlo simulations of the radiation environment for the CMS Experiment

    CERN Document Server

    AUTHOR|(CDS)2068566; Bayshev, I.; Bergstrom, I.; Cooijmans, T.; Dabrowski, A.; Glöggler, L.; Guthoff, M.; Kurochkin, I.; Vincke, H.; Tajeda, S.

    2016-01-01

    Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton-proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarised, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.

  10. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States

    Science.gov (United States)

    Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.

    2017-11-01

    Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.

  11. Molecular simulations in electrochemistry : Electron and proton transfer reactions mediated by flavins in different molecular environments

    NARCIS (Netherlands)

    Kılıç, M.

    2014-01-01

    The aim of this thesis is to address specific questions about the role of solvent reorganization on electron transfer in different environments and about the calculation of acidity constant, as well. Particularly, we focus on molecular simulation of flavin in water and different protein (BLUF and

  12. Experimental measurement of a shipboard fire environment with simulated radioactive materials packages

    International Nuclear Information System (INIS)

    Koski, J.A.; Wix, S.D.

    1996-01-01

    Results from a series of eight test fires ranging in size from 2.2 to 18.8 MW conducted aboard the Coast Guard fire test ship Mayo Lykes at Mobile, Alabama are presented and discussed. Tests aboard the break-bulk type cargo ship consisted of heptane spray fires simulating engine room and galley fires, wood crib fires simulating cargo hold fires, and pool fires staged for comparison to land-based regulatory fire results. Primary instrumentation for the tests consisted of two pipe calorimeters that simulated a typical package shape for radioactive materials packages. The calorimeters were both located adjacent to the fires and on the opposite side of the cargo hold bulkhead nearest the fire. The calorimeters were constructed from 1.5 m length sections of nominal 2 foot diameter schedule 60 steel pipe. Type K thermocouples were attached at 12 locations on the circumference and ends of the calorimeter. Fire heat fluxes to the calorimeter surfaces were estimated with the use of the Sandia SODDIT inverse heat conduction code. Experimental results from all types of tests are discussed, and some comparisons are made between the environments found on the ship and those found in land-based pool fire tests

  13. Corrosion Behavior of Low-C Medium-Mn Steel in Simulated Marine Immersion and Splash Zone Environment

    Science.gov (United States)

    Zhang, Dazheng; Gao, Xiuhua; Su, Guanqiao; Du, Linxiu; Liu, Zhenguang; Hu, Jun

    2017-05-01

    The corrosion behavior of low-C medium-Mn steel in simulated marine immersion and splash zone environment was studied by static immersion corrosion experiment and wet-dry cyclic corrosion experiment, respectively. Corrosion rate, corrosion products, surface morphology, cross-sectional morphology, elemental distribution, potentiodynamic polarization curves and electrochemical impedance spectra were used to elucidate the corrosion behavior of low-C medium-Mn steel. The results show that corrosion rate in immersion zone is much less than that in splash zone owing to its relatively mild environment. Manganese compounds are detected in the corrosion products and only appeared in splash zone environment, which can deteriorate the protective effect of rust layer. With the extension of exposure time, corrosion products are gradually transformed into dense and thick corrosion rust from the loose and porous one in these two environments. But in splash zone environment, alloying elements of Mn appear significant enrichment in the rust layer, which decrease the corrosion resistance of the steel.

  14. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  15. Aerospace Toolbox---a flight vehicle design, analysis, simulation ,and software development environment: I. An introduction and tutorial

    Science.gov (United States)

    Christian, Paul M.; Wells, Randy

    2001-09-01

    This paper presents a demonstrated approach to significantly reduce the cost and schedule of non real-time modeling and simulation, real-time HWIL simulation, and embedded code development. The tool and the methodology presented capitalize on a paradigm that has become a standard operating procedure in the automotive industry. The tool described is known as the Aerospace Toolbox, and it is based on the MathWorks Matlab/Simulink framework, which is a COTS application. Extrapolation of automotive industry data and initial applications in the aerospace industry show that the use of the Aerospace Toolbox can make significant contributions in the quest by NASA and other government agencies to meet aggressive cost reduction goals in development programs. The part I of this paper provides a detailed description of the GUI based Aerospace Toolbox and how it is used in every step of a development program; from quick prototyping of concept developments that leverage built-in point of departure simulations through to detailed design, analysis, and testing. Some of the attributes addressed include its versatility in modeling 3 to 6 degrees of freedom, its library of flight test validated library of models (including physics, environments, hardware, and error sources), and its built-in Monte Carlo capability. Other topics to be covered in this part include flight vehicle models and algorithms, and the covariance analysis package, Navigation System Covariance Analysis Tools (NavSCAT). Part II of this paper, to be published at a later date, will conclude with a description of how the Aerospace Toolbox is an integral part of developing embedded code directly from the simulation models by using the Mathworks Real Time Workshop and optimization tools. It will also address how the Toolbox can be used as a design hub for Internet based collaborative engineering tools such as NASA's Intelligent Synthesis Environment (ISE) and Lockheed Martin's Interactive Missile Design Environment

  16. FEMME, a flexible environment for mathematically modelling the environment

    NARCIS (Netherlands)

    Soetaert, K.E.R.; DeClippele, V.; Herman, P.M.J.

    2002-01-01

    A new, FORTRAN-based, simulation environment called FEMME (Flexible Environment for Mathematically Modelling the Environment), designed for implementing, solving and analysing mathematical models in ecology is presented. Three separate phases in ecological modelling are distinguished: (1) the model

  17. Eye Movement Patterns during Locomotion in Real-World and Simulated Environments

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2012-05-01

    Full Text Available Eye movements in a search-and-count walking task were compared between a simulated (SE and real-world environment (RE. Eye movements were recorded using the mobile WearCam in either RE or the StroMoHab locomotion simulator, a treadmill-based system for gait mobility rehabilitation. For Experiment 1, a RE was prepared with objects (coloured balls and occluding barriers placed along a 38 m long corridor. A video was captured from a walker's viewpoint at 1.3 km/hr. Fifteen subjects per environment reported the total object count after completing a walk while viewing the video in the SE (at 0, 1.3, or 2.5 km/h and RE (at 1.3 km/h. Examining the number of eye transitions (TotET between objects in relation to walking speed in SE, revealed significant increases between 0 and 2.5 km/h (F3, 56 =20.62, p = .02 and 1.3 and 2.5 km/h (F3, 56 =20.62, p = .039, despite no change in video speed; no significant difference was found between 0 and 1.3 km/h. In Experiment 2, 15 subjects viewed a static checkered screen and were instructed to ‘view the screen’ while walking. TotET decreased significantly, between 1.3 km/h and 5.2 km/h (F2, 27 =3.437, p = .014; no significant differences were observed between 2.6 km/h and either 1.3 km/h or 5.2 km/h. In real-world conditions, walking faster increases the difficulty of search tasks, with a likely correlated increase in eye movements. Apparently, the expectation of increased difficulty carries over to SE, even if the visual task is not more difficult. The findings point to physiological and perceptual correlations between locomotion and eye movements.

  18. Experiences of simulated tracer dispersal studies using effluent discharges at Tarapur aquatic environment

    International Nuclear Information System (INIS)

    Sudheendran, V.; Baburajan, A.; Sawane, Pratibha; Rao, D.D.; Hegde, A.G.

    2007-01-01

    The nuclear complex in Tarapur, Maharashtra is a multi facility nuclear site comprising of power reactors and research facilities. Each facility has independent liquid effluent discharge line to Arabian Sea. Experimental studies were conducted to evaluate dilution factors in the aquatic environment using liquid effluent releases as tracer from one of the facilities. 3 H and 137 Cs radioisotopes present in the routine releases were used as simulated tracer nuclides. The dilution factors(D.F) observed for tritium were in the range of 20-20000 in a distance range of 10 m to 1500 m respectively and for 137 Cs the D.F. were in the range of 50 to 900 over a distance range of 10-200 m. The paper describes the analytical methodology and sampling scenarios and the results of dilution factors obtained for Tarapur aquatic environment. (author)

  19. A case study of environmental assisted cracking in a low alloy steel under simulated environment of pressurized water reactor

    International Nuclear Information System (INIS)

    Shahzad, M.; Qureshi, A.H.; Waqas, H.; Hussain, N.

    2011-01-01

    Highlights: → We study environmental assisted cracking (EAC) in simulated PWR environment. → The corrosion rate in simulated coolant is low but increases with B conc. → A516 steel shows EAC in simulated coolant particularly at high oxygen levels. → Fracture occurs when the surface cracks join the subsurface cracks. → Corrosion of MnS inclusions and ferrite provide crack nucleation sites. -- Abstract: The electromechanical behavior of a pressure vessel grade steel A516 has been investigated using potentiodynamic polarization curves and slow strain rate test (SSRT) in simulated environment of pressurized water reactor. The anodic polarization behavior shows that the steel remains active in the solution till localized attack (pitting) starts. The cracks initiated at the surface propagate in a trans-granular mode. These cracks are initiated at the inclusion (MnS) sites and at the interfaces between local anode (ferrite) and local cathode (pearlite). It seems that the ultimate fracture occurs when the propagating surface cracks join the subsurface hydrogen induced cracks. The addition of oxygen in the testing chamber to supersaturation levels shifts the corrosion potential to anodic side and significantly lowers the strength and ductility. Compared to the room temperature properties, the UTS and tensile elongation in various simulated conditions are reduced by 10-25% and 25-75%, respectively.

  20. Acute respiratory infection in children from developing nations: a multi-level study.

    Science.gov (United States)

    Pinzón-Rondón, Ángela María; Aguilera-Otalvaro, Paula; Zárate-Ardila, Carol; Hoyos-Martínez, Alfonso

    2016-05-01

    Worldwide, acute respiratory infections (ARI) are the leading cause of death of children under 5 years of age. To assess the accomplishment of the Millennium Development Goal on under-5 mortality particularly related to ARI in developing countries, and to explore the associations between country characteristics and ARI in children under 5 taking into account child, mother and household attributes. The study included a representative sample of 354,633 children under 5 years from 40 developing nations. A multilevel analysis of data from the Demographic and Health Surveys and the World Bank was conducted. The prevalence of ARI was 13%. Country inequalities were associated with the disease - GINI index (95% CI 1.01-1.04). The country's per capita gross domestic product (GDP) (95% CI 1.00-1.01) and health expenditure (95% CI 1.01-1.01) affected the relationship between immunization and ARI, while inequalities influenced the relationship between household wealth (95% CI 0.99-0.99) and the disease. Other factors positively associated with ARI were male gender, low birthweight, working mothers and a high-risk indoor environment. Factors associated with ARI reduction were older children, immunization, breastfeeding for more than 6 months, older maternal age, maternal education and planned pregnancy. In developing countries, public health campaigns to target ARI should consider the country's macro characteristics. At country level, inequalities but not health expenditure or GDP were associated with the disease and were independent of child, family and household characteristics. The effect of immunization on reducing ARI is greater in countries with a higher GDP and health expenditure. The effect of household wealth on ARI is less in countries with fewer inequalities. Reduction of inequalities is an important measure to decrease ARI in developing countries.

  1. SIMULATIONS IN TECHNOLOGICAL ENVIRONMENTS AS A TOOL FOR TRAINING IN TRANSVERSAL COMPETENCES FOR UNIVERSITY STUDENTS

    Directory of Open Access Journals (Sweden)

    Mercè Gisbert Cervera

    2010-02-01

    Full Text Available This paper consists of a reflection on how the technological environments can play a key role in the current Higher Education scene. This reflection observes the structural configuration and the key agents of the educational process. The content is developed firstly locating the student in the University of the 21st century; the methodological renovation is analyzed from two perspectives: the development of the technologies and the new role of teacher and student in this new scene; finally the simulations in technological environments are proposed as a valuable strategy to give response to the formative needs of the student in the current society.

  2. Effect of oxygen in the simulated LOCA environments of the degradation of cable insulating materials

    International Nuclear Information System (INIS)

    Kusuma, Y.; Okada, S.; Itoh, M.; Yagi, T.; Yoshikawa, M.; Yoshida, K.; Machi, S.; Tamura, N.; Kawakami, W.

    1990-01-01

    Five kinds of insulating and jacketing materials for the cables used in nuclear power plants were exposed to various LOCA environments of both simultaneous and sequential methods using SEAMATE-II. Experimental conditions of the simultaneous LOCA tests were done at different radiation dose rate, steam temperature and amount of air added to the LOCA environments. The sequential tests consist of two stages, that is, pre-irradiation and subsequent steam/spray exposure. Pre-irradiation conditions and subsequent steam/spray exposure conditions of the sequential LOCA tests are systematically changed in order to find appropriate conditions which can bring about the degradation of same degree to those obtained for various simultaneous LOCA simulations. Tensile properties, insulating resistance and water sorption of the insulating materials exposed to various LOCA environments are measured and discussed. (author). 11 refs, 19 figs, 3 tabs

  3. Simulation based virtual learning environment in medical genetics counseling: an example of bridging the gap between theory and practice in medical education.

    Science.gov (United States)

    Makransky, Guido; Bonde, Mads T; Wulff, Julie S G; Wandall, Jakob; Hood, Michelle; Creed, Peter A; Bache, Iben; Silahtaroglu, Asli; Nørremølle, Anne

    2016-03-25

    Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major in medicine, received a 2-h training session in a simulation based learning environment. The main outcomes were pre- to post- changes in knowledge, intrinsic motivation, and self-efficacy, together with post-intervention evaluation of the effect of the simulation on student understanding of everyday clinical practice were demonstrated. Knowledge (Cohen's d = 0.73), intrinsic motivation (d = 0.24), and self-efficacy (d = 0.46) significantly increased from the pre- to post-test. Low knowledge students showed the greatest increases in knowledge (d = 3.35) and self-efficacy (d = 0.61), but a non-significant increase in intrinsic motivation (d = 0.22). The medium and high knowledge students showed significant increases in knowledge (d = 1.45 and 0.36, respectively), motivation (d = 0.22 and 0.31), and self-efficacy (d = 0.36 and 0.52, respectively). Additionally, 90 % of students reported a greater understanding of medical genetics, 82 % thought that medical genetics was more interesting, 93 % indicated that they were more interested and motivated, and had gained confidence by having experienced working on a case story that resembled the real working situation of a doctor, and 78 % indicated that they would feel more confident counseling a patient after the simulation. The simulation based learning environment increased students' learning, intrinsic motivation, and

  4. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Science.gov (United States)

    Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang

    2017-11-01

    A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  5. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Directory of Open Access Journals (Sweden)

    Jin Tea-Hwan

    2017-01-01

    Full Text Available A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  6. Improving Integrated Operation in the Joint Integrated Mission Model (JIMM) and the Simulated Warfare Environment Data Transfer (SWEDAT) Protocol

    National Research Council Canada - National Science Library

    Mutschler, David W

    2005-01-01

    ...). It allows integrated operation of resources whereby the JIMM threat environment, stimulators virtual cockpits, systems under test, and other agents are combined within the same simulation exercise...

  7. Nuclear plant's virtual simulation for on-line radioactive environment monitoring and dose assessment for personnel

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos A.; Jorge, Carlos Alexandre F.; Lapa, Celso Marcelo F.

    2009-01-01

    This paper reports the use of nuclear plant's simulation for online dose rate monitoring and dose assessment for personnel, using virtual reality technology. The platform used for virtual simulation was adapted from a low cost game engine, taking advantage of all its image rendering capabilities, as well as the physics for movement and collision, and networking capabilities for multi-user interactive navigation. A real nuclear plant was virtually modeled and simulated, so that a number of users can navigate simultaneously in this virtual environment in first or third person view, each one receiving visual information about both the radiation dose rate in each actual position, and the radiation dose received. Currently, this research and development activity has been extended to consider also on-line measurements collected from radiation monitors installed in the real plant that feed the simulation platform with dose rate data, through a TCP/IP network. Results are shown and commented, and other improvements are discussed, as the execution of a more detailed dose rate mapping campaign.

  8. Simulation-Based Learning Environments to Teach Complexity: The Missing Link in Teaching Sustainable Public Management

    Directory of Open Access Journals (Sweden)

    Michael Deegan

    2014-05-01

    Full Text Available While public-sector management problems are steeped in positivistic and socially constructed complexity, public management education in the management of complexity lags behind that of business schools, particularly in the application of simulation-based learning. This paper describes a Simulation-Based Learning Environment for public management education that includes a coupled case study and System Dynamics simulation surrounding flood protection, a domain where stewardship decisions regarding public infrastructure and investment have direct and indirect effects on businesses and the public. The Pointe Claire case and CoastalProtectSIM simulation provide a platform for policy experimentation under conditions of exogenous uncertainty (weather and climate change as well as endogenous effects generated by structure. We discuss the model in some detail, and present teaching materials developed to date to support the use of our work in public administration curricula. Our experience with this case demonstrates the potential of this approach to motivate sustainable learning about complexity in public management settings and enhance learners’ competency to deal with complex dynamic problems.

  9. Measuring sense of presence and user characteristics to predict effective training in an online simulated virtual environment.

    Science.gov (United States)

    De Leo, Gianluca; Diggs, Leigh A; Radici, Elena; Mastaglio, Thomas W

    2014-02-01

    Virtual-reality solutions have successfully been used to train distributed teams. This study aimed to investigate the correlation between user characteristics and sense of presence in an online virtual-reality environment where distributed teams are trained. A greater sense of presence has the potential to make training in the virtual environment more effective, leading to the formation of teams that perform better in a real environment. Being able to identify, before starting online training, those user characteristics that are predictors of a greater sense of presence can lead to the selection of trainees who would benefit most from the online simulated training. This is an observational study with a retrospective postsurvey of participants' user characteristics and degree of sense of presence. Twenty-nine members from 3 Air Force National Guard Medical Service expeditionary medical support teams participated in an online virtual environment training exercise and completed the Independent Television Commission-Sense of Presence Inventory survey, which measures sense of presence and user characteristics. Nonparametric statistics were applied to determine the statistical significance of user characteristics to sense of presence. Comparing user characteristics to the 4 scales of the Independent Television Commission-Sense of Presence Inventory using Kendall τ test gave the following results: the user characteristics "how often you play video games" (τ(26)=-0.458, Pvirtual environment experience such as dizziness, nausea, headache, and eyestrain. The user characteristic "knowledge of virtual reality" was significantly related to engagement (τ(26)=0.463, Pvirtual environments and experience with gaming environments report a higher sense of presence that indicates that they will likely benefit more from online virtual training. Future research studies could include a larger population of expeditionary medical support, and the results obtained could be used to create

  10. Medical Simulation as a Vital Adjunct to Identifying Clinical Life-Threatening Gaps in Austere Environments.

    Science.gov (United States)

    Chima, Adaora M; Koka, Rahul; Lee, Benjamin; Tran, Tina; Ogbuagu, Onyebuchi U; Nelson-Williams, Howard; Rosen, Michael; Koroma, Michael; Sampson, John B

    2018-04-01

    Maternal mortality and morbidity are major causes of death in low-resource countries, especially those in Sub-Saharan Africa. Healthcare workforce scarcities present in these locations result in poor perioperative care access and quality. These scarcities also limit the capacity for progressive development and enhancement of workforce training, and skills through continuing medical education. Newly available low-cost, in-situ simulation systems make it possible for a small cadre of trainers to use simulation to identify areas needing improvement and to rehearse best practice approaches, relevant to the context of target environments. Nurse anesthetists were recruited throughout Sierra Leone to participate in simulation-based obstetric anesthesia scenarios at the country's national referral maternity hospital. All subjects participated in a detailed computer assisted training program to familiarize themselves with the Universal Anesthesia Machine (UAM). An expert panel rated the morbidity/mortality risk of pre-identified critical incidents within the scenario via the Delphi process. Participant responses to critical incidents were observed during these scenarios. Participants had an obstetric anesthesia pretest and post-test as well as debrief sessions focused on reviewing the significance of critical incident responses observed during the scenario. 21 nurse anesthetists, (20% of anesthesia providers nationally) participated. Median age was 41 years and median experience practicing anesthesia was 3.5 years. Most participants (57.1%) were female, two-thirds (66.7%) performed obstetrics anesthesia daily but 57.1% had no experience using the UAM. During the simulation, participants were observed and assessed on critical incident responses for case preparation with a median score of 7 out of 13 points, anesthesia management with a median score of 10 out of 20 points and rapid sequence intubation with a median score of 3 out of 10 points. This study identified

  11. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation

    Science.gov (United States)

    Goodrich, Kenneth H.

    1993-01-01

    A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.

  12. Knowledge-enhanced network simulation modeling of the nuclear power plant operator

    International Nuclear Information System (INIS)

    Schryver, J.C.; Palko, L.E.

    1988-01-01

    Simulation models of the human operator of advanced control systems must provide an adequate account of the cognitive processes required to control these systems. The Integrated Reactor Operator/System (INTEROPS) prototype model was developed at Oak Ridge National Laboratory (ORNL) to demonstrate the feasibility of dynamically integrating a cognitive operator model and a continuous plant process model (ARIES-P) to provide predictions of the total response of a nuclear power plant during upset/emergency conditions. The model consists of a SAINT network of cognitive tasks enhanced with expertise provided by a knowledge-based fault diagnosis model. The INTEROPS prototype has been implemented in both closed and open loop modes. The prototype model is shown to be cognitively relevant by accounting for cognitive tunneling, confirmation bias, evidence chunking, intentional error, and forgetting

  13. Hypobaric chamber for the study of oral health problems in a simulated spacecraft environment

    Science.gov (United States)

    Brown, L. R.

    1974-01-01

    A hypobaric chamber was constructed to house two marmo-sets simultaneously in a space-simulated environment for periods of 14, 28 and 56 days which coincided with the anticipated Skylab missions. This report details the fabrication, operation, and performance of the chamber and very briefly reviews the scientific data from nine chamber trials involving 18 animals. The possible application of this model system to studies unrelated to oral health or space missions is discussed.

  14. Comparison of the education effect in simulated environment with educational film on acquiring midwifery students\\' episiotomy skill

    Directory of Open Access Journals (Sweden)

    Z Kalani

    2016-07-01

    Full Text Available Introduction: In clinical education, it is essential to prevent patients from injuries  by using the new educational approaches. Therefore, the students must be ready before involving in any procedures. This study aimed to determine the effect of education in simulated environment and instructional videos on the skills of the episiotomy among midwifery students. Methods: In this interventional study, at the beginning of the sixth term, all of the midwifery students, 30 students, were divided randomly into 3 groups. The education was taken place in simulated environment and using educational films without intervention. The training was performed on training mannequin. The film was prepared from this training and presented to each of the students in film group. A practical test done and the results recorded in check list. The data were analyzed by SPSS software. Results: The mean scores of students in performing an episiotomy based on all of the cases in 3 groups was statistically significant difference (p<0.001. But in comparing 3 groups of two, it was not found any statistically significant difference in all cases between the educational groups in simulated environment and educational film (p=0.975. Overall skill level of students on the basis of all the cases in the group without interference was lower than the other two groups. Conclusion: The educational film, which was designed, based on the scientific principles can be effective in gaining skills as a self-taught. Therefore, using the mentioned methods is recommended in clinical education planning.

  15. Simulation as a planning tool for job-shop production environment

    Science.gov (United States)

    Maram, Venkataramana; Nawawi, Mohd Kamal Bin Mohd; Rahman, Syariza Abdul; Sultan, Sultan Juma

    2015-12-01

    In this paper, we made an attempt to use discrete event simulation software ARENA® as a planning tool for job shop production environment. We considered job shop produces three types of Jigs with different sequence of operations to study and improve shop floor performance. The sole purpose of the study is to identifying options to improve machines utilization, reducing job waiting times at bottleneck machines. First, the performance of the existing system was evaluated by using ARENA®. Then identified improvement opportunities by analyzing base system results. Second, updated the model with most economical options. The proposed new system outperforms with that of the current base system by 816% improvement in delay times at paint shop by increase 2 to 3 and Jig cycle time reduces by Jig1 92%, Jig2 65% and Jig3 41% and hence new proposal was recommended.

  16. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment.

    Science.gov (United States)

    Lamothe, Sophie; Azimy, Naheed; Bazinet, Laurent; Couillard, Charles; Britten, Michel

    2014-10-01

    The consumption of polyphenols in green tea has been associated with beneficial health effects. Although polyphenols are unstable in the intestinal environment, they may be protected by interactions with dairy proteins during digestion. The objectives of this study were to evaluate the effect of a green tea extract on the digestibility of different dairy matrices and to monitor the antioxidant activity of these matrices with or without the green tea extract during digestion in a simulated gastrointestinal environment. Milk, yogurt and cheese with similar fat-to-protein ratios were subjected to simulated digestion. Matrix degradation, protein and fat hydrolysis, polyphenol concentration and radical scavenging activity were analyzed during gastric and intestinal digestion phases. Cheese was the matrix most resistant to protein and fat digestion. The addition of the green tea extract significantly decreased proteolysis in the gastric phase but had no effect in the intestinal phase. The kinetics of fatty acid release was reduced by the presence of the green tea extract. Transition from the gastric phase to the intestinal phase induced a 50% decrease in the antioxidant activity of the control (tea extract dispersed in water) due to the degradation of polyphenols. The presence of dairy matrices significantly improved polyphenol stability in the intestinal phase and increased the antioxidant activity by 29% (cheese) to 42% (milk) compared to the control. These results suggest that simultaneous consumption of green tea and dairy products helps to maintain the integrity and antioxidant activity of polyphenols during digestion.

  17. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    International Nuclear Information System (INIS)

    Telander, M.R.; Westerman, R.E.

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N 2 , CO 2 , H 2 S, and H 2 . Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H 2 on an equimolar basis with Fe reacted. Presence of CO 2 caused the initial reaction to proceed more rapidly, but CO 2 -induced passivation stopped the reaction if the CO 2 were present in sufficient quantities. Addition of H 2 S to a CO 2 -passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H 2 S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO 2 to an H 2 S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N 2 , CO 2 , and H 2 S except for the rapid and complete reaction between Cu-base materials and H 2 S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO 2 or H 2 S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures

  18. Analysis of exposure to electromagnetic fields in a healthcare environment: simulation and experimental study.

    Science.gov (United States)

    de Miguel-Bilbao, Silvia; Martín, Miguel Angel; Del Pozo, Alejandro; Febles, Victor; Hernández, José A; de Aldecoa, José C Fernández; Ramos, Victoria

    2013-11-01

    Recent advances in wireless technologies have lead to an increase in wireless instrumentation present in healthcare centers. This paper presents an analytical method for characterizing electric field (E-field) exposure within these environments. The E-field levels of the different wireless communications systems have been measured in two floors of the Canary University Hospital Consortium (CUHC). The electromagnetic (EM) conditions detected with the experimental measures have been estimated using the software EFC-400-Telecommunications (Narda Safety Test Solutions, Sandwiesenstrasse 7, 72793 Pfullingen, Germany). The experimental and simulated results are represented through 2D contour maps, and have been compared with the recommended safety and exposure thresholds. The maximum value obtained is much lower than the 3 V m(-1) that is established in the International Electrotechnical Commission Standard of Electromedical Devices. Results show a high correlation in terms of E-field cumulative distribution function (CDF) between the experimental and simulation results. In general, the CDFs of each pair of experimental and simulated samples follow a lognormal distribution with the same mean.

  19. Polymethylmethacrylate combustion in a narrow channel apparatus simulating a microgravity environment

    Science.gov (United States)

    Bornand, Garrett Randall

    Fire safety is an important part of engineering when human lives are at stake. From everyday homes to spacecraft that can cost hundreds of millions of dollars. The research in this thesis attempts to provide scientific evidence that the apparatus in question successfully simulates microgravity and can possibly replace NASA's current test method for spacecraft fire safety. Flame spread tests were conducted with thermally thick and thermally thin polymethylmethacrylate (PMMA) samples to study flame spread behavior in response to environmental changes. The tests were conducted using the San Diego State University Narrow Channel Apparatus (SDSU NCA) as well as within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS). The SDSU NCA can suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression attained in the NCA allows tests to be conducted in a simulated microgravity environment-a characteristic that NASA's Test 1 lacks since flames present in Test 1 are driven by buoyant flows. The SDSU NCA allows for tests to be conducted at various opposed flow oxidizer velocities, oxygen percent by volume, and total pressure to mimic various spacecraft and habitat atmospheres. Tests were conducted at 1 atm pressure, thin fuel thickness of 50 and 75 microns, thick fuel thickness ranging from 3 mm to 5.6 mm, opposed oxidizer velocity ranging from 10 to 25 cm/s, and oxygen concentration by volume at 21, 30, and 50 percent. The simulated microgravity flame spread results were then compared to true microgravity experiments including; testing conducted on the International Space Station (ISS) under the Burning and Suppression of Solids (BASS) research, NASA's 5.2 second Drop Tower, and Micro-Gravity Laboratory's (MGLAB) 4.5 second Drop Tower. Data was also

  20. Prototype heater test of the environment around a simulated waste package

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Buscheck, T.A.; Carlson, R.; Daily, W.; Latorre, V.R.; Lee, K; Lin, Wunan; Mao, Nai-hsien; Towse, D.; Ueng, Tzou-Shin; Watwood, D.

    1991-01-01

    This paper presents selected results obtained during the 301 day duration of the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT) planned for the Exploratory Shaft Facility in Yucca Mountain. The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures and gas-phase humidity in the heater borehole

  1. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment.

    Science.gov (United States)

    Yao, Yao; Storme, Veronique; Marchal, Kathleen; Van de Peer, Yves

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population.

  2. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment

    Science.gov (United States)

    Yao, Yao; Storme, Veronique; Marchal, Kathleen

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population. PMID:28028477

  3. ROSE: A realtime object oriented software environment for high fidelity replica simulation

    International Nuclear Information System (INIS)

    Abramovitch, A.

    1994-01-01

    An object oriented software environment used for the production testing and documentation of real time models for high fidelity training simulators encompasses a wide variety of software constructs including code generators for various classes of physical systems, model executive control programs, a high resolution graphics editor, as well as databases and associated access routines used to store and control information transfer among the various software entities. CAE Electronics' newly developed ROSE allows for the generation and integrated test of thermalhydraulic, analog control, digital control and electrical system models. Based on an iconical/standard subroutine representation of standard plant components along with an admittance matrix solution governed by the topology of the system under consideration, the ROSE blends together network solution algorithms and standard component models, both previously time tested via manual implementation into a single integrated automated software environment. The methodology employed to construct the ROSE, along with a synopsis of the various CASE tools integrated together to form a complete graphics based system for high fidelity real time code generation and validation is described in the presentation. (1 fig.)

  4. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment

    Directory of Open Access Journals (Sweden)

    Yao Yao

    2016-12-01

    Full Text Available We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population.

  5. PROFILE SOCIAL CLASS OF INDIVIDUALS ASSISTED IN A SOCIAL ORGANIZATION IN THE CAMAÇARI-BA CITY

    Directory of Open Access Journals (Sweden)

    Milene de Andrade Carvalho

    2012-04-01

    Full Text Available The city of Camaçari-Ba in the Bahia is considered the biggest territory of the region metropolitan area of Salvador-B. This population has presented considerable growth in the Human Development Index (HDI, with magnifying of the life expectancy and industrial cycle. The biggest social organization situated in the city and considered satate reference of social inclusion are develops entailed diverse actions to the participation of the city departments, except on actions to the healt secretariat. This study one is about a research of transverse whose objective was to identify the profile of 227 individuals assisted by social organization Prof. Raimundo Pinheiro, located in the mentioned city. The results had indicated the presence of a predominant age range next to 60 years, the relation between income and scholarity, the high frequency of chronic pain and relation enters the chronic use of drugs, activities of daily life and occupational activities. It is necessary that the activities of the social organization contemplate the logic of the intersectoral and include secretariat of health in its organizational politics.

  6. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Model Simulations for Tropical and Continental Summertime Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Wu, D.

    2016-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm is used to retrieve estimates of cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (or GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. The strength of the algorithm relies in part on the representativeness of the simulations; more realistic simulations provide a stronger link between the observables and simulated heating profiles. The current "TRMM" version of the CSH algorithm relies on 2D GCE simulations using an improved version of the Goddard 3-class ice scheme (3ICE), a moderate-sized domain, and 1-km horizontal resolution. Updating the LUTs, which are suitable for tropical and continental summertime environments requires new, more realistic GCE simulations. New simulations are performed using a new, improved 4-class ice scheme, which has been shown to outperform the 3ICE scheme, especially for intense convection. Additional grid configurations are also tested and evaluated to find the best overall setup to for re-deriving and updating the CSH tropical/summertime LUTs.

  7. Energy Consumption and Indoor Environment Predicted by a Combination of Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2003-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...

  8. Equalizer Complexity for 6-LP Mode 112 Gbit/s m-ary DP-QAM Space Division Multiplexed Transmission in Strongly Coupled Few-Mode-Fibers

    DEFF Research Database (Denmark)

    Asif, Rameez; Ye, Feihong; Morioka, Toshio

    2015-01-01

    12×12 multiple-input multiple-output (MIMO) adaptive digital signal processing (DSP). Time domain equalization (TDE) is realized to implement the linear adaptive MIMO module that is implemented in blind mode using conventional constant-modulusalgorithm (CMA) for finite impulse response (FIR) adaptive......We have quantified equalizer complexity for transmitting dual-polarized 6-LP modes (LP01, LP11a, LP11b, LP21a, LP21b and LP02) of 112 Gbit/s m-ary QAM (m=4, 16, 32, 64, 256) single carrier signals over 20 km step-index few-mode fiber. The transmitted signals are strongly coupled and recovered using...

  9. High Performance Electrical Modeling and Simulation Software Normal Environment Verification and Validation Plan, Version 1.0; TOPICAL

    International Nuclear Information System (INIS)

    WIX, STEVEN D.; BOGDAN, CAROLYN W.; MARCHIONDO JR., JULIO P.; DEVENEY, MICHAEL F.; NUNEZ, ALBERT V.

    2002-01-01

    The requirements in modeling and simulation are driven by two fundamental changes in the nuclear weapons landscape: (1) The Comprehensive Test Ban Treaty and (2) The Stockpile Life Extension Program which extends weapon lifetimes well beyond their originally anticipated field lifetimes. The move from confidence based on nuclear testing to confidence based on predictive simulation forces a profound change in the performance asked of codes. The scope of this document is to improve the confidence in the computational results by demonstration and documentation of the predictive capability of electrical circuit codes and the underlying conceptual, mathematical and numerical models as applied to a specific stockpile driver. This document describes the High Performance Electrical Modeling and Simulation software normal environment Verification and Validation Plan

  10. Calculation and simulation of atmospheric refraction effects in maritime environments

    Science.gov (United States)

    Dion, Denis, Jr.; Gardenal, Lionel; Lahaie, P.; Forand, J. Luc

    2001-01-01

    Near the sea surface, atmospheric refraction and turbulence affect both IR transmission and image quality. This produces an impact on both the detection and classification/identification of targets. With the financial participation of the U.S. Office of Naval Research (ONR), Canada's Defence Research Establishment Valcartier (DREV) is developing PRIME (Propagation Resources In the Maritime Environment), a computer model aimed at describing the overall atmospheric effects on IR imagery systems in the marine surface layer. PRIME can be used as a complement to MODTRAN to compute the effective transmittance in the marine surface layer, taking into account the lens effects caused by refraction. It also provides information on image degradation caused by both refraction and turbulence. This paper reviews the refraction phenomena that take place in the surface layer and discusses their effects on target detection and identification. We then show how PRIME can benefit detection studies and image degradation simulations.

  11. Analysis of insulation material deterioration under the LOCA simulated environment on the basis of reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Sohei; Kusama, Yasuo; Ito, Masayuki; Yagi, Toshiaki; Yoshikawa, Masato (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment)

    1982-12-01

    In the type test of the electric cables installed in reactor containment vessels, it is considerably difficult to perform the testing over a year once in a while to simulate the accidental environment containing radiation and high temperature steam. Two requirements which seem to be more realistic as compared with the above mentioned testing method are inconsistent with each other. To solve this problem, a general rule of deterioration or the expression by an equation is necessary, which enables the extrapolation to show that a short term testing stands on the safety side. The authors have tried to numerically analyze the change of mechanical characteristics of ethylene-propylene rubber (EPR) and Hypalon which are, important as the materials for PH cables (fire-retardant, EP rubber-insulated, chlorosulfonated polyethylene-sheathed cable), in a complex environment of radiation, steam and chemical spray simulating PWR LOCA conditions. In this report, a method is proposed to analyze and estimate the properties by the regression analysis technique on the basis of reaction kinetics, and the analyzed results are described in the order of experiment, analysis method and the results and consideration. The deterioration of the elongation P = e/esub(o) of EPR and Hypalon in the above described complex environment can be represented by the equation - dP/dt = KPsup(n). The exponent n varied in the cases when air is contained or not in that environment, suggesting that the different reactions are dominant in both conditions, respectively. For EPR, n was close to 2 if air was not contained and close to 1 if air was contained in the system.

  12. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William S. [Los Alamos National Laboratory; Bull, Jeffrey S. [Los Alamos National Laboratory; Wilcox, Trevor [Los Alamos National Laboratory; Bos, Randall J. [Los Alamos National Laboratory; Shao, Xuan-Min [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory; Costigan, Keeley R. [Los Alamos National Laboratory

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

  13. The Relationship Between Technical And Nontechnical Skills Within A Simulation-Based Ureteroscopy Training Environment.

    Science.gov (United States)

    Brunckhorst, Oliver; Shahid, Shahab; Aydin, Abdullatif; Khan, Shahid; McIlhenny, Craig; Brewin, James; Sahai, Arun; Bello, Fernando; Kneebone, Roger; Shamim Khan, Muhammad; Dasgupta, Prokar; Ahmed, Kamran

    2015-01-01

    Little integration of technical and nontechnical skills (e.g., situational awareness, communication, decision making, teamwork, and leadership) teaching exists within surgery. We therefore aimed to (1) evaluate the relationship between these 2 skill sets within a simulation-based environment and (2) assess if certain nontechnical skill components are of particular relevance to technical performance. A prospective analysis of data acquired from a comparative study of simulation vs nonsimulation training was conducted. Half of the participants underwent training of technical and nontechnical skills within ureteroscopy, with the remaining half undergoing no training. All were assessed within a full immersion environment against both technical (time to completion, Objective Structured Assessment of Technical Skills, and task-specific checklist scores) and nontechnical parameters (Nontechnical Skills for Surgeons [NOTSS] rating scale). The data of whole and individual cohorts were analyzed using Pearson correlation coefficient. The trial took place within the Simulation and Interactive Learning Centre at Guy's Hospital, London, UK. In total, 32 novice participants with no prior practical ureteroscopy experience were included within the data analysis. A correlation was found within all outcome measures analyzed. For the whole cohort, a strong negative correlation was found between time to completion and NOTSS scores (r = -0.75, p Technical Skills (r = 0.89, p technical skill parameters, regardless of training. A strong correlation between technical and nontechnical performance exists, which was demonstrated to be irrespective of training received. This may suggest an inherent link between skill sets. Furthermore, all nontechnical skill sets are important in technical performance. This supports the notion that both of these skills should be trained and assessed together within 1 curriculum. Copyright © 2015 Association of Program Directors in Surgery. Published by

  14. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments

    International Nuclear Information System (INIS)

    Szoke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-01-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation’s lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers. IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry. This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors. (paper)

  15. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    Science.gov (United States)

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.

  16. Novel surgical performance evaluation approximates Standardized Incidence Ratio with high accuracy at simple means.

    Science.gov (United States)

    Gabbay, Itay E; Gabbay, Uri

    2013-01-01

    Excess adverse events may be attributable to poor surgical performance but also to case-mix, which is controlled through the Standardized Incidence Ratio (SIR). SIR calculations can be complicated, resource consuming, and unfeasible in some settings. This article suggests a novel method for SIR approximation. In order to evaluate a potential SIR surrogate measure we predefined acceptance criteria. We developed a new measure - Approximate Risk Index (ARI). "Number Needed for Event" (NNE) is the theoretical number of patients needed "to produce" one adverse event. ARI is defined as the quotient of the group of patients needed for no observed events Ge by total patients treated Ga. Our evaluation compared 2500 surgical units and over 3 million heterogeneous risk surgical patients that were induced through a computerized simulation. Surgical unit's data were computed for SIR and ARI to evaluate compliance with the predefined criteria. Approximation was evaluated by correlation analysis and performance prediction capability by Receiver Operating Characteristics (ROC) analysis. ARI strongly correlates with SIR (r(2) = 0.87, p 0.9) 87% sensitivity and 91% specificity. ARI provides good approximation of SIR and excellent prediction capability. ARI is simple and cost-effective as it requires thorough risk evaluation of only the adverse events patients. ARI can provide a crucial screening and performance evaluation quality control tool. The ARI method may suit other clinical and epidemiological settings where relatively small fraction of the entire population is affected. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    Science.gov (United States)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  18. Simulation of Electrical Grid with Omnet++ Open Source Discrete Event System Simulator

    Directory of Open Access Journals (Sweden)

    Sőrés Milán

    2016-12-01

    Full Text Available The simulation of electrical networks is very important before development and servicing of electrical networks and grids can occur. There are software that can simulate the behaviour of electrical grids under different operating conditions, but these simulation environments cannot be used in a single cloud-based project, because they are not GNU-licensed software products. In this paper, an integrated framework was proposed that models and simulates communication networks. The design and operation of the simulation environment are investigated and a model of electrical components is proposed. After simulation, the simulation results were compared to manual computed results.

  19. The benefits and risks of bacille Calmette-Guérin vaccination among infants at high risk for both tuberculosis and severe combined immunodeficiency: assessment by Markov model

    Directory of Open Access Journals (Sweden)

    Cameron D William

    2006-03-01

    Full Text Available Abstract Background Bacille Calmette-Guérin (BCG vaccine is given to Canadian Aboriginal neonates in selected communities. Severe reactions and deaths associated with BCG have been reported among infants born with immunodeficiency syndromes. The main objective of this study was to estimate threshold values for severe combined immunodeficiency (SCID incidence, above which BCG is associated with greater risk than benefit. Methods A Markov model was developed to simulate the natural histories of tuberculosis (TB and SCID in children from birth to 14 years. The annual risk of tuberculous infection (ARI and SCID incidence were varied in analyses. The model compared a scenario of no vaccination to intervention with BCG. Appropriate variability and uncertainty analyses were conducted. Outcomes included TB incidence and quality-adjusted life years (QALYs. Results In sensitivity analyses, QALYs were lower among vaccinated infants if the ARI was 0.1% and the rate of SCID was higher than 4.2 per 100,000. Assuming an ARI of 1%, this threshold increased to 41 per 100,000. In uncertainty analyses (Monte Carlo simulations which assumed an ARI of 0.1%, QALYs were not significantly increased by BCG unless SCID incidence is 0. With this ARI, QALYs were significantly decreased among vaccinated children if SCID incidence exceeds 23 per 100,000. BCG is associated with a significant increase in QALYs if the ARI is 1%, and SCID incidence is below 5 per 100,000. Conclusion The possibility that Canadian Aboriginal children are at increased risk for SCID has serious implications for continued BCG use in this population. In this context, enhanced TB Control – including early detection and treatment of infection – may be a safer, more effective alternative.

  20. OST: analysis tool for real time software by simulation of material and software environments

    International Nuclear Information System (INIS)

    Boulc'h; Le Meur; Lapassat; Salichon; Segalard

    1988-07-01

    The utilization of microprocessors systems in a nuclear installation control oblige a great operation safety in the installation operation and in the environment protection. For the safety analysis of these installations the Institute of Protection and Nuclear Safety (IPSN) will dispose tools which permit to make controls during all the life of the software. The simulation and test tool (OST) which have been created is completely made by softwares. It is used on VAX calculators and can be easily transportable on other calculators [fr

  1. Passive transfer in domestic and bighorn lambs Total IgG in ewe sera and colostrum and serum IgG kinetics in lambs following colostrum ingestion are similar in domestic sheep and bighorn sheep (ovis aries and ovis canadensis)

    Science.gov (United States)

    Pneumonia is a population-limiting disease of bighorn sheep (BHS; Ovis canadensis) and a recognized disease entity in domestic sheep (DS; Ovis aries) worldwide. Respiratory disease in BHS lambs can persist for years after all-age outbreaks, resulting in suppressed lamb recruitment. It has been sugge...

  2. Effect of air on speed of insulating material deterioration under simulated LOCA environment. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kusama, Yasuo; Yagi, Toshiaki; Ito, Masayuki; Okada, Sohei; Yoshikawa, Masato (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment)

    1982-12-01

    To examine the quality approval testing method for the electric cables used for nuclear reactors, various covering insulating materials employed for the cables have been investigated from all angles. The factors which are considered to affect the deterioration of cable materials in a simulated LOCA (loss of coolant accident) environmental test are numerous. This paper reports on the result of investigation on the effect of air on the rate of deterioration of various organic materials usually used as the insulating and covering materials for the cables. Five kinds of polymer sheets (1 mm thick) used for reactor cables were employed as samples. The samples of both standard compounding ratio and the compounding ratio for practical reactor use were tested. As the deterioration prior to LOCA simulation, the thermal deterioration corresponding to 40 years aging (at 121 deg C for 7 days) was given, and subsequently, 50 Mrad gamma -irradiation at 1 Mrad/h was performed in the air. After that, the samples were subject to LOCA simulated environment. Since the results were different according to the kinds of samples, those are described separately for Hypalon, ethylene propylene rubber, cross-linked polyethylene, chloroprene and silicone rubber. The existence of air under LOCA environment accelerated the deterioration of insulation materials except silicone rubber, though its influence differed to the polymers. These materials swelled in the presence of air, and the degree of swelling increased with the temperature, having the close relation to oxidation deterioration. Polyethylene was more susceptible to the effect of air, and silicone rubber was rather stable. The samples of fire-retardant compounding ratio more swelled by water absorption than those of standard compounding ratio.

  3. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Telander, M.R.; Westerman, R.E. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  4. Constant extension rate testing of Type 304L stainless steel in simulated waste tank environments

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1992-01-01

    New tanks for storage of low level radioactive wastes will be constructed at the Savannah River Site (SRS) of AISI Type 304L stainless steel (304L). The presence of chlorides and fluorides in the wastes may induce Stress Corrosion Cracking (SCC) in 304L. Constant Extension Rate Tests (CERT) were performed to determine the susceptibility of 304L to SCC in simulated wastes. In five of the six tests conducted thus far 304L was not susceptible to SCC in the simulated waste environments. Conflicting results were obtained in the final test and will be resolved by further tests. For comparison purposes the CERT tests were also performed with A537 carbon steel, a material similar to that utilized for the existing nuclear waste storage tanks at SRS

  5. Simulating Shopper Behavior using Fuzzy Logic in Shopping Center Simulation

    Directory of Open Access Journals (Sweden)

    Jason Christian

    2016-12-01

    Full Text Available To simulate real-world phenomena, a computer tool can be used to run a simulation and provide a detailed report. By using a computer-aided simulation tool, we can retrieve information relevant to the simulated subject in a relatively short time. This study is an extended and complete version of an initial research done by Christian and Hansun and presents a prototype of a multi-agent shopping center simulation tool along with a fuzzy logic algorithm implemented in the system. Shopping centers and all their components are represented in a simulated 3D environment. The simulation tool was created using the Unity3D engine to build the 3D environment and to run the simulation. To model and simulate the behavior of agents inside the simulation, a fuzzy logic algorithm that uses the agents’ basic knowledge as input was built to determine the agents’ behavior inside the system and to simulate human behaviors as realistically as possible.

  6. Skylab fluid mechanics simulations: Oscillation, rotation, collision and coalescence of water droplets under low-gravity environment

    Science.gov (United States)

    Vaughan, O. H., Jr.; Hung, R. J.

    1975-01-01

    Skylab 4 crew members performed a series of demonstrations showing the oscillations, rotations, as well as collision coalescence of water droplets which simulate various physical models of fluids under low gravity environment. The results from Skylab demonstrations provide information and illustrate the potential of an orbiting space-oriented research laboratory for the study of more sophisticated fluid mechanic experiments. Experiments and results are discussed.

  7. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems.

    Science.gov (United States)

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  8. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems

    Directory of Open Access Journals (Sweden)

    Danish Shehzad

    2016-01-01

    Full Text Available Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  9. Pressurized water reactor simulation in the training environment

    International Nuclear Information System (INIS)

    Wills, A.G.

    1990-01-01

    The paper gives a brief history of PWR Simulation within the DNST and an outline of the training courses leading to the requirement for the Display Array Simulation System. Focus is then placed upon the flexible use of real time simulation in the teaching of plant dynamics by the use of model generated data. The use of interactive consoles and a large scale colour graphic display has led to the success of the Display Array Simulation System within the DNST. Realisation of the potential of the system has led to many other proposed uses for the installed system and the paper concludes by discussing some of these. (orig./DG)

  10. A Comparison of Students' Conceptual Understanding of Electric Circuits in Simulation Only and Simulation-Laboratory Contexts

    Science.gov (United States)

    Jaakkola, Tomi; Nurmi, Sami; Veermans, Koen

    2011-01-01

    The aim of this experimental study was to compare learning outcomes of students using a simulation alone (simulation environment) with outcomes of those using a simulation in parallel with real circuits (combination environment) in the domain of electricity, and to explore how learning outcomes in these environments are mediated by implicit (only…

  11. The cognitive environment simulation as a tool for modeling human performance and reliability

    International Nuclear Information System (INIS)

    Woods, D.D.; Pople, H. Jr.; Roth, E.M.

    1990-01-01

    The US Nuclear Regulatory Commission is sponsoring a research program to develop improved methods to model the cognitive behavior of nuclear power plant (NPP) personnel. Under this program, a tool for simulating how people form intentions to act in NPP emergency situations was developed using artificial intelligence (AI) techniques. This tool is called Cognitive Environment Simulation (CES). The Cognitive Reliability Assessment Technique (or CREATE) was also developed to specify how CBS can be used to enhance the measurement of the human contribution to risk in probabilistic risk assessment (PRA) studies. The next step in the research program was to evaluate the modeling tool and the method for using the tool for Human Reliability Analysis (HRA) in PRAs. Three evaluation activities were conducted. First, a panel of highly distinguished experts in cognitive modeling, AI, PRA and HRA provided a technical review of the simulation development work. Second, based on panel recommendations, CES was exercised on a family of steam generator tube rupture incidents where empirical data on operator performance already existed. Third, a workshop with HRA practitioners was held to analyze a worked example of the CREATE method to evaluate the role of CES/CREATE in HRA. The results of all three evaluations indicate that CES/CREATE represents a promising approach to modeling operator intention formation during emergency operations

  12. Plasma profile and shape optimization for the advanced tokamak power plant, ARIES-AT

    International Nuclear Information System (INIS)

    Kessel, C.E.; Mau, T.K.; Jardin, S.C.; Najmabadi, F.

    2006-01-01

    An advanced tokamak plasma configuration is developed based on equilibrium, ideal MHD stability, bootstrap current analysis, vertical stability and control, and poloidal field coil analysis. The plasma boundaries used in the analysis are forced to coincide with the 99% flux surface from the free-boundary equilibrium. Using an accurate bootstrap current model and external current drive profiles from ray tracing calculations in combination with optimized pressure profiles, β N values above 7.0 have been obtained. The minimum current drive requirement is found to lie at a lower β N of 6.0. The external kink mode is stabilized by a tungsten shell located at 0.33 times the minor radius and a feedback system. Plasma shape optimization has led to an elongation of 2.2 and triangularity of 0.9 at the separatrix. Vertical stability could be achieved by a combination of tungsten shells located at 0.33 times the minor radius and feedback control coils located behind the shield. The poloidal field coils were optimized in location and current, providing a maximum coil current of 8.6 MA. These developments have led to a simultaneous reduction in the power plant major radius and toroidal field from those found in a previous study [S.C. Jardin, C.E. Kessel, C.G. Bathke, D.A. Ehst, T.K. Mau, F. Najmabadi, T.W. Petrie, the ARIES Team, Physics basis for a reversed shear tokamak power plant, Fusion Eng. Design 38 (1997) 27

  13. Design of a Realistic Test Simulator For a Built-In Self Test Environment

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2010-12-01

    Full Text Available This paper presents a realistic test approach suitable to Design For Testability (DFT and Built- In Self Test (BIST environments. The approach is culminated in the form of a test simulator which is capable of providing a required goal of test for the System Under Test (SUT. The simulator uses the approach of fault diagnostics with fault grading procedure to provide the tests. The tool is developed on a common PC platform and hence no special software is required. Thereby, it is a low cost tool and hence economical. The tool is very much suitable for determining realistic test sequences for a targeted goal of testing for any SUT. The developed tool incorporates a flexible Graphical User Interface (GUI procedure and can be operated without any special programming skill. The tool is debugged and tested with the results of many bench mark circuits. Further, this developed tool can be utilized for educational purposes for many courses such as fault-tolerant computing, fault diagnosis, digital electronics, and safe - reliable - testable digital logic designs.

  14. Profile control simulations and experiments on TCV : A controller test environment and results using a model-based predictive controller

    NARCIS (Netherlands)

    Maljaars, E.; Felici, F.; Blanken, T.C.; Galperti, C.; Sauter, O.; de Baar, M.R.; Carpanese, F.; Goodman, T.P.; Kim, D.; Kim, S.H.; Kong, M.G.; Mavkov, B.; Merle, A.; Moret, J.M.; Nouailletas, R.; Scheffer, M.; Teplukhina, A.A.; Vu, N.M.T.

    2017-01-01

    The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety

  15. Profile control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller

    NARCIS (Netherlands)

    Maljaars, B.; Felici, F.; Blanken, T. C.; Galperti, C.; Sauter, O.; de Baar, M. R.; Carpanese, F.; Goodman, T. P.; Kim, D.; Kim, S. H.; Kong, M.; Mavkov, B.; Merle, A.; Moret, J.; Nouailletas, R.; Scheffer, M.; Teplukhina, A.; Vu, T.

    2017-01-01

    The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety

  16. The Virtual Environment for Rapid Prototyping of the Intelligent Environment.

    Science.gov (United States)

    Francillette, Yannick; Boucher, Eric; Bouzouane, Abdenour; Gaboury, Sébastien

    2017-11-07

    Advances in domains such as sensor networks and electronic and ambient intelligence have allowed us to create intelligent environments (IEs). However, research in IE is being held back by the fact that researchers face major difficulties, such as a lack of resources for their experiments. Indeed, they cannot easily build IEs to evaluate their approaches. This is mainly because of economic and logistical issues. In this paper, we propose a simulator to build virtual IEs. Simulators are a good alternative to physical IEs because they are inexpensive, and experiments can be conducted easily. Our simulator is open source and it provides users with a set of virtual sensors that simulates the behavior of real sensors. This simulator gives the user the capacity to build their own environment, providing a model to edit inhabitants' behavior and an interactive mode. In this mode, the user can directly act upon IE objects. This simulator gathers data generated by the interactions in order to produce datasets. These datasets can be used by scientists to evaluate several approaches in IEs.

  17. Using simulation for intervention design in radiating environment: first evaluation of NARVEOS

    Energy Technology Data Exchange (ETDEWEB)

    Thevenon, Jean-Bernard; Lopez, Loic [Euriware, 1 place des Freres Montgolfier, 78044 Guyancourt Cedex (France); Chabal, Caroline; Idasiak, Jean-Marc [CEA-DEN, Dismantling and Operations Support Department, CEA Valrho, BP 17171, 30207 Bagnols-sur-Ceze (France); Chodorge, Laurent [CEA-LIST, Virtual Reality Cognitic and Interface Service, CEA-FAR, Bat 38, 92265 Fontenay-aux-Roses (France); Desbats, Philippe [CEA-LIST, Intelligent Systems and Technologies Department, CEA-Saclay, Bat 476, 91191 Gif-sur-Yvette (France)

    2009-06-15

    Interventions design in radiating environment must bring answers to technical and economical constraint on one hand and, on the other hand, to radiation protection principles and rules. Simulation is a key point for a good understanding of the scene and for testing hypothesis. The paper presents how a simulation tool (called NARVEOS), based on Virtual Reality technology and on fast coupling between geometries descriptions and a solver, can provide significant support to engineers in charge of scenario design. Besides feasibility study scenario design for one-shot project such as dismantling operations, such a tool is well adapted also for dose projection reduction on regular operations such as maintenance and outage. The technologies used to interactively and simultaneously compute the dose estimate within a CAD model are presented. By using CAD model and available radiological data (source term description), the software allows simulating the evolution of the different features of the digital mock-up (virtual human workers, robots, sources, biological protections, etc.) and evaluating the accessibility issues using interactivity with the end-user. Thanks to this software, users can virtually test the operation feasibility, optimise the costs and estimate the dose rate according to ALARA principle. This tool offers new perspectives for studies, costs and deadlines management of decommissioning projects, as well as for communication between project teams, providers and safety authority about integrated dose optimisation. The first results of NARVEOS will be reported through several applications carried out within on-going decommissioning projects in several nuclear sites. Some evaluation tests are also presented and discussed. (authors)

  18. Accelerating Dust Storm Simulation by Balancing Task Allocation in Parallel Computing Environment

    Science.gov (United States)

    Gui, Z.; Yang, C.; XIA, J.; Huang, Q.; YU, M.

    2013-12-01

    Dust storm has serious negative impacts on environment, human health, and assets. The continuing global climate change has increased the frequency and intensity of dust storm in the past decades. To better understand and predict the distribution, intensity and structure of dust storm, a series of dust storm models have been developed, such as Dust Regional Atmospheric Model (DREAM), the NMM meteorological module (NMM-dust) and Chinese Unified Atmospheric Chemistry Environment for Dust (CUACE/Dust). The developments and applications of these models have contributed significantly to both scientific research and our daily life. However, dust storm simulation is a data and computing intensive process. Normally, a simulation for a single dust storm event may take several days or hours to run. It seriously impacts the timeliness of prediction and potential applications. To speed up the process, high performance computing is widely adopted. By partitioning a large study area into small subdomains according to their geographic location and executing them on different computing nodes in a parallel fashion, the computing performance can be significantly improved. Since spatiotemporal correlations exist in the geophysical process of dust storm simulation, each subdomain allocated to a node need to communicate with other geographically adjacent subdomains to exchange data. Inappropriate allocations may introduce imbalance task loads and unnecessary communications among computing nodes. Therefore, task allocation method is the key factor, which may impact the feasibility of the paralleling. The allocation algorithm needs to carefully leverage the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire system. This presentation introduces two algorithms for such allocation and compares them with evenly distributed allocation method. Specifically, 1) In order to get optimized solutions, a

  19. Atmospheric Corrosion Behavior and Mechanism of a Ni-Advanced Weathering Steel in Simulated Tropical Marine Environment

    Science.gov (United States)

    Wu, Wei; Zeng, Zhongping; Cheng, Xuequn; Li, Xiaogang; Liu, Bo

    2017-12-01

    Corrosion behavior of Ni-advanced weathering steel, as well as carbon steel and conventional weathering steel, in a simulated tropical marine atmosphere was studied by field exposure and indoor simulation tests. Meanwhile, morphology and composition of corrosion products formed on the exposed steels were surveyed through scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction. Results indicated that the additive Ni in weathering steel played an important role during the corrosion process, which took part in the formation of corrosion products, enriched in the inner rust layer and promoted the transformation from loose γ-FeOOH to dense α-FeOOH. As a result, the main aggressive ion, i.e., Cl-, was effectively separated in the outer rust layer which leads to the lowest corrosion rate among these tested steels. Thus, the resistance of Ni-advanced weathering steel to atmospheric corrosion was significantly improved in a simulated tropical marine environment.

  20. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E. [ENEA, Centro Ricerche Ezio Clementel, Bologna, (Italy). Dipt. Innovazione

    1999-07-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed. [Italian] Nel presente rapporto vengono descritte le principali caratteristiche del codice di calcolo PREMAR-2, che esegue la simulazione Montecarlo del trasporto della radiazione elettromagnetica nell'atmosfera, nell'intervallo di frequenza che va dall'infrarosso all'ultravioletto. Rispetto al codice PREMAR precedentemente sviluppato, il codice