WorldWideScience

Sample records for environment mission operation

  1. Artificial intelligence in a mission operations and satellite test environment

    Science.gov (United States)

    Busse, Carl

    1988-01-01

    A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.

  2. Cost Analysis In A Multi-Mission Operations Environment

    Science.gov (United States)

    Newhouse, M.; Felton, L.; Bornas, N.; Botts, D.; Roth, K.; Ijames, G.; Montgomery, P.

    2014-01-01

    Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the

  3. NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration

    Science.gov (United States)

    Bell, Mary S.

    2014-01-01

    The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.

  4. Mission Analysis, Operations, and Navigation Toolkit Environment (Monte) Version 040

    Science.gov (United States)

    Sunseri, Richard F.; Wu, Hsi-Cheng; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.

    2012-01-01

    Monte is a software set designed for use in mission design and spacecraft navigation operations. The system can process measurement data, design optimal trajectories and maneuvers, and do orbit determination, all in one application. For the first time, a single software set can be used for mission design and navigation operations. This eliminates problems due to different models and fidelities used in legacy mission design and navigation software. The unique features of Monte 040 include a blowdown thruster model for GRAIL (Gravity Recovery and Interior Laboratory) with associated pressure models, as well as an updated, optimalsearch capability (COSMIC) that facilitated mission design for ARTEMIS. Existing legacy software lacked the capabilities necessary for these two missions. There is also a mean orbital element propagator and an osculating to mean element converter that allows long-term orbital stability analysis for the first time in compiled code. The optimized trajectory search tool COSMIC allows users to place constraints and controls on their searches without any restrictions. Constraints may be user-defined and depend on trajectory information either forward or backwards in time. In addition, a long-term orbit stability analysis tool (morbiter) existed previously as a set of scripts on top of Monte. Monte is becoming the primary tool for navigation operations, a core competency at JPL. The mission design capabilities in Monte are becoming mature enough for use in project proposals as well as post-phase A mission design. Monte has three distinct advantages over existing software. First, it is being developed in a modern paradigm: object- oriented C++ and Python. Second, the software has been developed as a toolkit, which allows users to customize their own applications and allows the development team to implement requirements quickly, efficiently, and with minimal bugs. Finally, the software is managed in accordance with the CMMI (Capability Maturity Model

  5. Mission operations management

    Science.gov (United States)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  6. Mission operations technology

    Science.gov (United States)

    Varsi, Giulio

    In the last decade, the operation of a spacecraft after launch has emerged as a major component of the total cost of the mission. This trend is sustained by the increasing complexity, flexibility, and data gathering capability of the space assets and by their greater reliability and consequent longevity. The trend can, however, be moderated by the progressive transfer of selected functions from the ground to the spacecraft and by application, on the ground, of new technology. Advances in ground operations derive from the introduction in the mission operations environment of advanced microprocessor-based workstations in the class of a few million instructions per second and from the selective application of artificial intelligence technology. In the last few years a number of these applications have been developed, tested in operational settings and successfully demonstrated to users. Some are now being integrated in mission operations facilities. An analysis of mission operations indicates that the key areas are: concurrent control of multiple missions; automated/interactive production of command sequences of high integrity at low cost; automated monitoring of spacecraft health and automated aides for fault diagnosis; automated allocation of resources; automated processing of science data; and high-fidelity, high-speed spacecraft simulation. Examples of major advances in selected areas are described.

  7. Digital Learning Network Education Events of NASA's Extreme Environments Mission Operations

    Science.gov (United States)

    Paul, Heather; Guillory, Erika

    2007-01-01

    NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and web casting. The DLN has created a series of live education videoconferences connecting NASA s Extreme Environment Missions Operations (NEEMO) team to students across the United States. The programs are also extended to students around the world live web casting. The primary focus of the events is the vision for space exploration. During the programs, NEEMO Crewmembers including NASA astronauts, engineers and scientists inform and inspire students about the importance of exploration and share the impact of the project as it correlates with plans to return to the moon and explore the planet Mars. These events highlight interactivity. Students talk live with the aquanauts in Aquarius, the National Oceanic and Atmospheric Administration s underwater laboratory. With this program, NASA continues the Agency s tradition of investing in the nation's education programs. It is directly tied to the Agency's major education goal of attracting and retaining students in science, technology, and engineering disciplines. Before connecting with the aquanauts, the students conduct experiments of their own designed to coincide with mission objectives. This paper describes the events that took place in September 2006.

  8. Multiplatform Mission Planning and Operations Simulation Environment for Adaptive Remote Sensors

    Science.gov (United States)

    Smith, G.; Ball, C.; O'Brien, A.; Johnson, J. T.

    2017-12-01

    We report on the design and development of mission simulator libraries to support the emerging field of adaptive remote sensors. We will outline the current state of the art in adaptive sensing, provide analysis of how the current approach to performing observing system simulation experiments (OSSEs) must be changed to enable adaptive sensors for remote sensing, and present an architecture to enable their inclusion in future OSSEs.The growing potential of sensors capable of real-time adaptation of their operational parameters calls for a new class of mission planning and simulation tools. Existing simulation tools used in OSSEs assume a fixed set of sensor parameters in terms of observation geometry, frequencies used, resolution, or observation time, which allows simplifications to be made in the simulation and allows sensor observation errors to be characterized a priori. Adaptive sensors may vary these parameters depending on the details of the scene observed, so that sensor performance is not simple to model without conducting OSSE simulations that include sensor adaptation in response to varying observational environment. Adaptive sensors are of significance to resource-constrained, small satellite platforms because they enable the management of power and data volumes while providing methods for multiple sensors to collaborate.The new class of OSSEs required to utilize adaptive sensors located on multiple platforms must answer the question: If the physical act of sensing has a cost, how does the system determine if the science value of a measurement is worth the cost and how should that cost be shared among the collaborating sensors?Here we propose to answer this question using an architecture structured around three modules: ADAPT, MANAGE and COLLABORATE. The ADAPT module is a set of routines to facilitate modeling of adaptive sensors, the MANAGE module will implement a set of routines to facilitate simulations of sensor resource management when power and data

  9. Optimal Mission Abort Policy for Systems Operating in a Random Environment.

    Science.gov (United States)

    Levitin, Gregory; Finkelstein, Maxim

    2018-04-01

    Many real-world critical systems, e.g., aircrafts, manned space flight systems, and submarines, utilize mission aborts to enhance their survivability. Specifically, a mission can be aborted when a certain malfunction condition is met and a rescue or recovery procedure is then initiated. For systems exposed to external impacts, the malfunctions are often caused by the consequences of these impacts. Traditional system reliability models typically cannot address a possibility of mission aborts. Therefore, in this article, we first develop the corresponding methodology for modeling and evaluation of the mission success probability and survivability of systems experiencing both internal failures and external shocks. We consider a policy when a mission is aborted and a rescue procedure is activated upon occurrence of the mth shock. We demonstrate the tradeoff between the system survivability and the mission success probability that should be balanced by the proper choice of the decision variable m. A detailed illustrative example of a mission performed by an unmanned aerial vehicle is presented. © 2017 Society for Risk Analysis.

  10. The Joint Space Operations Center Mission System and the Advanced Research, Collaboration, and Application Development Environment Status Update 2016

    Science.gov (United States)

    Murray-Krezan, Jeremy; Howard, Samantha; Sabol, Chris; Kim, Richard; Echeverry, Juan

    2016-05-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is a service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA) performed at the US-led JSpOC. The Advanced Research, Collaboration, and Application Development Environment (ARCADE) is a test-bed maintained and operated by the Air Force to (1) serve as a centralized test-bed for all research and development activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support JMS Program Office-led market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. In this paper we will share with the international remote sensing community some of the recent JMS and ARCADE developments that may contribute to greater SSA at the JSpOC in the future, and share technical areas still in great need.

  11. IRIS Mission Operations Director's Colloquium

    Science.gov (United States)

    Carvalho, Robert; Mazmanian, Edward A.

    2014-01-01

    Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRISs mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.

  12. Improving Integrated Operation in the Joint Integrated Mission Model (JIMM) and the Simulated Warfare Environment Data Transfer (SWEDAT) Protocol

    National Research Council Canada - National Science Library

    Mutschler, David W

    2005-01-01

    ...). It allows integrated operation of resources whereby the JIMM threat environment, stimulators virtual cockpits, systems under test, and other agents are combined within the same simulation exercise...

  13. Software Innovation in a Mission Critical Environment

    Science.gov (United States)

    Fredrickson, Steven

    2015-01-01

    Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.

  14. Flight Operations . [Zero Knowledge to Mission Complete

    Science.gov (United States)

    Forest, Greg; Apyan, Alex; Hillin, Andrew

    2016-01-01

    Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.

  15. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  16. Operation and evaluation of the Terminal Configured Vehicle Mission Simulator in an automated terminal area metering and spacing ATC environment

    Science.gov (United States)

    Houck, J. A.

    1980-01-01

    This paper describes the work being done at the National Aeronautics and Space Administration's Langley Research Center on the development of a mission simulator for use in the Terminal Configured Vehicle Program. A brief description of the goals and objectives of the Terminal Configured Vehicle Program is presented. A more detailed description of the Mission Simulator, in its present configuration, and its components is provided. Finally, a description of the first research study conducted in the Mission Simulator is presented along with a discussion of some preliminary results from this study.

  17. The Mission Operations Planning Assistant

    Science.gov (United States)

    Schuetzle, James G.

    1987-01-01

    The Mission Operations Planning Assistant (MOPA) is a knowledge-based system developed to support the planning and scheduling of instrument activities on the Upper Atmospheric Research Satellite (UARS). The MOPA system represents and maintains instrument plans at two levels of abstraction in order to keep plans comprehensible to both UARS Principal Investigators and Command Management personnel. The hierarchical representation of plans also allows MOPA to automatically create detailed instrument activity plans from which spacecraft command loads may be generated. The MOPA system was developed on a Symbolics 3640 computer using the ZetaLisp and ART languages. MOPA's features include a textual and graphical interface for plan inspection and modification, recognition of instrument operational constraint violations during the planning process, and consistency maintenance between the different planning levels. This paper describes the current MOPA system.

  18. Evolution of Training in NASA's Mission Operations Directorate

    Science.gov (United States)

    Hutt, Jason

    2012-01-01

    NASA s Mission Operations Directorate provides all the mission planning, training, and operations support for NASA's human spaceflight missions including the International Space Station (ISS) and its fleet of supporting vehicles. MOD also develops and maintains the facilities necessary to conduct training and operations for those missions including the Mission Control Center, Space Station Training Facility, Space Vehicle Mockup Facility, and Neutral Buoyancy Laboratory. MOD's overarching approach to human spaceflight training is to "train like you fly." This approach means not only trying to replicate the operational environment in training but also to approach training with the same mindset as real operations. When in training, this means using the same approach for executing operations, responding to off-nominal situations, and conducting yourself in the operations environment in the same manner as you would for the real vehicle.

  19. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    Science.gov (United States)

    Johnson, K.; Kim, R.; Echeverry, J.

    The Joint Space Operations Center (JSpOC) is a command and control center focused on executing the Space Control mission of the Joint Functional Component Command for Space (JFCC-SPACE) to ensure freedom of action of United States (US) space assets, while preventing adversary use of space against the US. To accomplish this, the JSpOC tasks a network of space surveillance sensors to collect Space Situational Awareness (SSA) data on resident space objects (RSOs) in near earth and deep space orbits. SSA involves the ingestion of data sources and use of algorithms and tools to build, maintain, and disseminate situational awareness of RSOs in space. On the heels of emergent and complex threats to space assets, the JSpOC's capabilities are limited by legacy systems and CONOPs. The JSpOC Mission System (JMS) aims to consolidate SSA efforts across US agencies, international partners, and commercial partners. The JMS program is intended to deliver a modern service-oriented architecture (SOA) based infrastructure with increased process automation and improved tools to remove the current barriers to JSpOC operations. JMS has been partitioned into several developmental increments. Increment 1, completed and operational in early 2013, and Increment 2, which is expected to be completed in 2016, will replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. In 2017 JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources. Most importantly, Increment 3 is uniquely postured to evolve the JSpOC into the centralized and authoritative source for all Space Control applications by using its SOA to aggregate information and capabilities from across the community. To achieve this goal, Scitor Corporation has supported the JMS Program Office as it has entered into a partnership with AFRL/RD (Directed

  20. Mission environments for the Isotope Brayton Flight System (preliminary)

    International Nuclear Information System (INIS)

    1975-01-01

    The mission environments for the Isotope Brayton Flight Systems (IBFS) are summarized. These are based on (1) those environments established for the MHW-RTG system in the LES 8/9 and Mariner J/S and (2) engineering projections of those likely to exit for the IBFS. The pre-launch environments address transportation, storage, handling and assembly (to spacecraft) and checkout, field transportation, and launch site operations. Launch environments address the Titan IIIC and Shuttle launch vehicles. Operational mission environments address normal space temperature and meteoroide environments. Special environments that may be applicable to DOD missions are not included. Accident environments address explosion and fire for the Titan IIIC and the Shuttle, reentry, earth impact and post impact

  1. Modeling and Simulation for Mission Operations Work System Design

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.

    2003-01-01

    Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.

  2. Autonomous Mission Operations for Sensor Webs

    Science.gov (United States)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC

  3. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  4. Mission Operations Planning and Scheduling System (MOPSS)

    Science.gov (United States)

    Wood, Terri; Hempel, Paul

    2011-01-01

    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  5. Orbital Express mission operations planning and resource management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-04-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  6. Autonomous Mission Design in Extreme Orbit Environments

    Science.gov (United States)

    Surovik, David Allen

    An algorithm for autonomous online mission design at asteroids, comets, and small moons is developed to meet the novel challenges of their complex non-Keplerian orbit environments, which render traditional methods inapplicable. The core concept of abstract reachability analysis, in which a set of impulsive maneuvering options is mapped onto a space of high-level mission outcomes, is applied to enable goal-oriented decision-making with robustness to uncertainty. These nuanced analyses are efficiently computed by utilizing a heuristic-based adaptive sampling scheme that either maximizes an objective function for autonomous planning or resolves details of interest for preliminary analysis and general study. Illustrative examples reveal the chaotic nature of small body systems through the structure of various families of reachable orbits, such as those that facilitate close-range observation of targeted surface locations or achieve soft impact upon them. In order to fulfill extensive sets of observation tasks, the single-maneuver design method is implemented in a receding-horizon framework such that a complete mission is constructed on-the-fly one piece at a time. Long-term performance and convergence are assured by augmenting the objective function with a prospect heuristic, which approximates the likelihood that a reachable end-state will benefit the subsequent planning horizon. When state and model uncertainty produce larger trajectory deviations than were anticipated, the next control horizon is advanced to allow for corrective action -- a low-frequency form of feedback control. Through Monte Carlo analysis, the planning algorithm is ultimately demonstrated to produce mission profiles that vary drastically in their physical paths but nonetheless consistently complete all goals, suggesting a high degree of flexibility. It is further shown that the objective function can be tuned to preferentially minimize fuel cost or mission duration, as well as to optimize

  7. JSpOC Mission System Application Development Environment

    Science.gov (United States)

    Luce, R.; Reele, P.; Sabol, C.; Zetocha, P.; Echeverry, J.; Kim, R.; Golf, B.

    2012-09-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is the program of record tasked with replacing the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities by the end of FY2015 as well as providing additional Space Situational Awareness (SSA) and Command and Control (C2) capabilities post-FY2015. To meet the legacy replacement goal, the JMS program is maturing a government Service Oriented Architecture (SOA) infrastructure that supports the integration of mission applications while acquiring mature industry and government mission applications. Future capabilities required by the JSpOC after 2015 will require development of new applications and procedures as well as the exploitation of new SSA data sources. To support the post FY2015 efforts, the JMS program is partnering with the Air Force Research Laboratory (AFRL) to build a JMS application development environment. The purpose of this environment is to: 1) empower the research & development community, through access to relevant tools and data, to accelerate technology development, 2) allow the JMS program to communicate user capability priorities and requirements to the developer community, 3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and 4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. The application development environment will consist of both unclassified and classified environments that can be accessed over common networks (including the Internet) to provide software developers, scientists, and engineers everything they need (e.g., building block JMS services, modeling and simulation tools, relevant test scenarios, documentation, data sources, user priorities/requirements, and SOA integration tools) to develop and test mission applications. The developed applications will be exercised in these

  8. An agent-oriented approach to automated mission operations

    Science.gov (United States)

    Truszkowski, Walt; Odubiyi, Jide

    1994-01-01

    As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there are many opportunities for the increased utilization of innovative knowledge-based technologies. The innovative technology discussed is an advanced use of agent-oriented approaches to the automation of mission operations. The paper presents an overview of this technology and discusses applied operational scenarios currently being investigated and prototyped. A major focus of the current work is the development of a simple user mechanism that would empower operations staff members to create, in real time, software agents to assist them in common, labor intensive operations tasks. These operational tasks would include: handling routine data and information management functions; amplifying the capabilities of a spacecraft analyst/operator to rapidly identify, analyze, and correct spacecraft anomalies by correlating complex data/information sets and filtering error messages; improving routine monitoring and trend analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes during critical maneuvers enhancing the system's capabilities to support nonroutine operational conditions with minimum additional staff. An agent-based testbed is under development. This testbed will allow us to: (1) more clearly understand the intricacies of applying agent-based technology in support of the advanced automation of mission operations and (2) access the full set of benefits that can be realized by the proper application of agent-oriented technology in a mission operations environment. The testbed under development addresses some of the data management and report generation functions for the Explorer Platform (EP)/Extreme UltraViolet Explorer (EUVE) Flight Operations Team (FOT). We present an overview of agent-oriented technology and a detailed report on the operation's concept for the testbed.

  9. Agent-Supported Mission Operations Teamwork

    Science.gov (United States)

    Malin, Jane T.

    2003-01-01

    This slide presentation reviews the development of software agents to support of mission operations teamwork. The goals of the work was to make automation by agents easy to use, supervise and direct, manage information and communication to decrease distraction, interruptions, workload and errors, reduce mission impact of off-nominal situations and increase morale and decrease turnover. The accomplishments or the project are: 1. Collaborative agents - mixed initiative and creation of instructions for mediating agent 2. Methods for prototyping, evaluating and evolving socio-technical systems 3. Technology infusion: teamwork tools in mISSIons 4. Demonstrations in simulation testbed An example of the use of agent is given, the use of an agent to monitor a N2 tank leak. An incomplete instruction to the agent is handled with mediating assistants, or Intelligent Briefing and Response Assistant (IBRA). The IBRA Engine also watches data stream for triggers and executes Act-Whenever actions. There is also a Briefing and Response Instruction (BRI) which is easy for a discipline specialist to create through a BRI editor.

  10. Integrated payload and mission planning, phase 3. Volume 3: Ground real-time mission operations

    Science.gov (United States)

    White, W. J.

    1977-01-01

    The payloads tentatively planned to fly on the first two Spacelab missions were analyzed to examine the cost relationships of providing mission operations support from onboard vs the ground-based Payload Operations Control Center (POCC). The quantitative results indicate that use of a POCC, with data processing capability, to support real-time mission operations is the most cost effective case.

  11. TAMU: A New Space Mission Operations Paradigm

    Science.gov (United States)

    Meshkat, Leila; Ruszkowski, James; Haensly, Jean; Pennington, Granvil A.; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a model-centric System of System (SoS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically diverse locations, to develop the architecture and associated workflow processes for a broad range of mission operations. Further, TAMU FPP envisions the simulation, automatic execution and re-planning of orchestrated workflow processes as they become operational. This paper provides the vision for the TAMU FPP paradigm. This includes a complete, coherent technique, process and tool set that result in an infrastructure that can be used for full lifecycle design and decision making during any flight production process. A flight production process is the process of developing all products that are necessary for flight.

  12. NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles

    Science.gov (United States)

    Shull, Sarah A.; Peek, Kenneth E.

    2011-01-01

    With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better

  13. Discrete event simulation and the resultant data storage system response in the operational mission environment of Jupiter-Saturn /Voyager/ spacecraft

    Science.gov (United States)

    Mukhopadhyay, A. K.

    1978-01-01

    The Data Storage Subsystem Simulator (DSSSIM) simulating (by ground software) occurrence of discrete events in the Voyager mission is described. Functional requirements for Data Storage Subsystems (DSS) simulation are discussed, and discrete event simulation/DSSSIM processing is covered. Four types of outputs associated with a typical DSSSIM run are presented, and DSSSIM limitations and constraints are outlined.

  14. Mission Operations of the Mars Exploration Rovers

    Science.gov (United States)

    Bass, Deborah; Lauback, Sharon; Mishkin, Andrew; Limonadi, Daniel

    2007-01-01

    A document describes a system of processes involved in planning, commanding, and monitoring operations of the rovers Spirit and Opportunity of the Mars Exploration Rover mission. The system is designed to minimize command turnaround time, given that inherent uncertainties in terrain conditions and in successful completion of planned landed spacecraft motions preclude planning of some spacecraft activities until the results of prior activities are known by the ground-based operations team. The processes are partitioned into those (designated as tactical) that must be tied to the Martian clock and those (designated strategic) that can, without loss, be completed in a more leisurely fashion. The tactical processes include assessment of downlinked data, refinement and validation of activity plans, sequencing of commands, and integration and validation of sequences. Strategic processes include communications planning and generation of long-term activity plans. The primary benefit of this partition is to enable the tactical portion of the team to focus solely on tasks that contribute directly to meeting the deadlines for commanding the rover s each sol (1 sol = 1 Martian day) - achieving a turnaround time of 18 hours or less, while facilitating strategic team interactions with other organizations that do not work on a Mars time schedule.

  15. Calculation of Operations Efficiency Factors for Mars Surface Missions

    Science.gov (United States)

    Laubach, Sharon

    2014-01-01

    The duration of a mission--and subsequently, the minimum spacecraft lifetime--is a key component in designing the capabilities of a spacecraft during mission formulation. However, determining the duration is not simply a function of how long it will take the spacecraft to execute the activities needed to achieve mission objectives. Instead, the effects of the interaction between the spacecraft and ground operators must also be taken into account. This paper describes a method, using "operations efficiency factors", to account for these effects for Mars surface missions. Typically, this level of analysis has not been performed until much later in the mission development cycle, and has not been able to influence mission or spacecraft design. Further, the notion of moving to sustainable operations during Prime Mission--and the effect that change would have on operations productivity and mission objective choices--has not been encountered until the most recent rover missions (MSL, the (now-cancelled) joint NASA-ESA 2018 Mars rover, and the proposed rover for Mars 2020). Since MSL had a single control center and sun-synchronous relay assets (like MER), estimates of productivity derived from MER prime and extended missions were used. However, Mars 2018's anticipated complexity (there would have been control centers in California and Italy, and a non-sun-synchronous relay asset) required the development of an explicit model of operations efficiency that could handle these complexities. In the case of the proposed Mars 2018 mission, the model was employed to assess the mission return of competing operations concepts, and as an input to component lifetime requirements. In this paper we provide examples of how to calculate the operations efficiency factor for a given operational configuration, and how to apply the factors to surface mission scenarios. This model can be applied to future missions to enable early effective trades between operations design, science mission

  16. Towards a Multi-Mission, Airborne Science Data System Environment

    Science.gov (United States)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs

  17. Cyber Operations Virtual Environment

    Science.gov (United States)

    2010-09-01

    capability independent of the operator’s willingness to make target responses (See, Macmillan & Creelman , 1991; Parasuraman, Masalonis, & Hancock, 2000...Ma, K-L. (2004). Visualization for security. Computer Graphics, 38, 4-6. Macmillan, N. A., & Creelman , C. D. (1991). Detection theory: A user’s

  18. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  19. Cloud Computing for Mission Design and Operations

    Science.gov (United States)

    Arrieta, Juan; Attiyah, Amy; Beswick, Robert; Gerasimantos, Dimitrios

    2012-01-01

    The space mission design and operations community already recognizes the value of cloud computing and virtualization. However, natural and valid concerns, like security, privacy, up-time, and vendor lock-in, have prevented a more widespread and expedited adoption into official workflows. In the interest of alleviating these concerns, we propose a series of guidelines for internally deploying a resource-oriented hub of data and algorithms. These guidelines provide a roadmap for implementing an architecture inspired in the cloud computing model: associative, elastic, semantical, interconnected, and adaptive. The architecture can be summarized as exposing data and algorithms as resource-oriented Web services, coordinated via messaging, and running on virtual machines; it is simple, and based on widely adopted standards, protocols, and tools. The architecture may help reduce common sources of complexity intrinsic to data-driven, collaborative interactions and, most importantly, it may provide the means for teams and agencies to evaluate the cloud computing model in their specific context, with minimal infrastructure changes, and before committing to a specific cloud services provider.

  20. Management of information for mission operations using automated keyword referencing

    Science.gov (United States)

    Davidson, Roger A.; Curran, Patrick S.

    1993-01-01

    Although millions of dollars have helped to improve the operability and technology of ground data systems for mission operations, almost all mission documentation remains bound in printed volumes. This form of documentation is difficult and timeconsuming to use, may be out-of-date, and is usually not cross-referenced with other related volumes of mission documentation. A more effective, automated method of mission information access is needed. A new method of information management for mission operations using automated keyword referencing is proposed. We expound on the justification for and the objectives of this concept. The results of a prototype tool for mission information access that uses a hypertextlike user interface and existing mission documentation are shared. Finally, the future directions and benefits of our proposed work are described.

  1. The GMES Sentinel-5 mission for operational atmospheric monitoring: status and developments

    Science.gov (United States)

    Sierk, Bernd; Bezy, Jean-Loup; Caron, Jerôme; Meynard, Roland; Veihelmann, Ben; Ingmann, Paul

    2017-11-01

    Sentinel-5 is an atmospheric monitoring mission planned in the frame of the joint EU/ESA initiative Global Monitoring for Environment and Security (GMES). The objective of the mission, planned to be launched in 2020, is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications.

  2. Rapid Mission Design for Dynamically Complex Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — Designing trajectories in dynamically complex environments is very challenging and easily becomes an intractable problem. More complex planning implies potentially...

  3. Expert systems and advanced automation for space missions operations

    Science.gov (United States)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  4. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    Science.gov (United States)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  5. Middleware Evaluation and Benchmarking for Use in Mission Operations Centers

    Science.gov (United States)

    Antonucci, Rob; Waktola, Waka

    2005-01-01

    Middleware technologies have been promoted as timesaving, cost-cutting alternatives to the point-to-point communication used in traditional mission operations systems. However, missions have been slow to adopt the new technology. The lack of existing middleware-based missions has given rise to uncertainty about middleware's ability to perform in an operational setting. Most mission architects are also unfamiliar with the technology and do not know the benefits and detriments to architectural choices - or even what choices are available. We will present the findings of a study that evaluated several middleware options specifically for use in a mission operations system. We will address some common misconceptions regarding the applicability of middleware-based architectures, and we will identify the design decisions and tradeoffs that must be made when choosing a middleware solution. The Middleware Comparison and Benchmark Study was conducted at NASA Goddard Space Flight Center to comprehensively evaluate candidate middleware products, compare and contrast the performance of middleware solutions with the traditional point- to-point socket approach, and assess data delivery and reliability strategies. The study focused on requirements of the Global Precipitation Measurement (GPM) mission, validating the potential use of middleware in the GPM mission ground system. The study was jointly funded by GPM and the Goddard Mission Services Evolution Center (GMSEC), a virtual organization for providing mission enabling solutions and promoting the use of appropriate new technologies for mission support. The study was broken into two phases. To perform the generic middleware benchmarking and performance analysis, a network was created with data producers and consumers passing data between themselves. The benchmark monitored the delay, throughput, and reliability of the data as the characteristics were changed. Measurements were taken under a variety of topologies, data demands

  6. Ionizing radiation environment for the TOMS mission

    Science.gov (United States)

    Lauriente, M.; Maloy, J. O.; Vampola, A. L.

    1992-01-01

    The Total Ozone Mapping Spectrometer (TOMS) will fly on several different spacecraft, each having an orbit which is approximately polar and 800-980 km in altitude. A description is given of the computer-based tools used for characterizing the spacecraft interactions with the ionizing radiation environment in orbit and the susceptibility requirements for ionizing radiation compatibility. The peak flux from the model was used to derive the expected radiation-induced noise in the South Atlantic Anomaly for the new TOMS instruments intended to fly on Advanced Earth Observatory System and Earth Probe.

  7. Context-Sensitive Augmented Reality for Mission Operations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current NASA missions to the International Space Station (ISS) are heavily dependent upon ground controllers to assist crew members in performing routine operations...

  8. Context-sensitive Augmented Reality for Mission Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current NASA missions to the International Space Station are heavily dependent upon ground controllers to assist crew members in performing routine operations and...

  9. Improving the Operations of the Earth Observing One Mission via Automated Mission Planning

    Science.gov (United States)

    Chien, Steve A.; Tran, Daniel; Rabideau, Gregg; Schaffer, Steve; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We describe the modeling and reasoning about operations constraints in an automated mission planning system for an earth observing satellite - EO-1. We first discuss the large number of elements that can be naturally represented in an expressive planning and scheduling framework. We then describe a number of constraints that challenge the current state of the art in automated planning systems and discuss how we modeled these constraints as well as discuss tradeoffs in representation versus efficiency. Finally we describe the challenges in efficiently generating operations plans for this mission. These discussions involve lessons learned from an operations model that has been in use since Fall 2004 (called R4) as well as a newer more accurate operations model operational since June 2009 (called R5). We present analysis of the R5 software documenting a significant (greater than 50%) increase in the number of weekly observations scheduled by the EO-1 mission. We also show that the R5 mission planning system produces schedules within 15% of an upper bound on optimal schedules. This operational enhancement has created value of millions of dollars US over the projected remaining lifetime of the EO-1 mission.

  10. Maintaining Mission Critical Systems in a 247 Environment

    CERN Document Server

    Curtis, Peter M

    2011-01-01

    "This book is meant to offer Architects, Property Mangers, Facility Managers, Building Engineers, Information Technology Professionals, Data Center Personnel, Electrical & Mechanical Technicians and students in undergraduate, graduate, or continuing education programs relevant insight into the Mission Critical Environment with an emphasis on business resiliency, data center efficiency, and green power technology. Industry improvements, standards, and techniques have been incorporated into the text and address the latest issues prevalent in the Mission Critical Industry. An emphasis on green technologies and certifications is presented throughout the book. In addition, a description of the United States energy infrastructure's dependency on oil, in relation to energy security in the mission critical industry, is discussed. In conjunction with this, either a new chapter will be created on updated policies and regulations specifically related to the mission critical industry or updates to policies and regula...

  11. Command and Control of Joint Air Operations through Mission Command

    Science.gov (United States)

    2016-06-01

    and outlines the C2 architecture systems, processes, and philosophy of com- mand required to enable mission command effectively. Mission Command...General Dempsey highlights the fact that “trust is the moral sinew that binds the distributed Joint Force 2020 together” and observes that “unless...con- fident about how their subordinates will make decisions and adapt to the dynamic battlespace environment. Processes, Systems, and Philosophy of

  12. Virtualization in the Operations Environments

    Science.gov (United States)

    Pitts, Lee; Lankford, Kim; Felton, Larry; Pruitt, Robert

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  13. Management of Operational Support Requirements for Manned Flight Missions

    Science.gov (United States)

    1991-01-01

    This Instruction establishes responsibilities for managing the system whereby operational support requirements are levied for support of manned flight missions including associated payloads. This management system will ensure that support requirements are properly requested and responses are properly obtained to meet operational objectives.

  14. Implementing Distributed Operations: A Comparison of Two Deep Space Missions

    Science.gov (United States)

    Mishkin, Andrew; Larsen, Barbara

    2006-01-01

    Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption

  15. MAIUS-1- Vehicle, Subsystems Design and Mission Operations

    Science.gov (United States)

    Stamminger, A.; Ettl, J.; Grosse, J.; Horschgen-Eggers, M.; Jung, W.; Kallenbach, A.; Raith, G.; Saedtler, W.; Seidel, S. T.; Turner, J.; Wittkamp, M.

    2015-09-01

    In November 2015, the DLR Mobile Rocket Base will launch the MAIUS-1 rocket vehicle at Esrange, Northern Sweden. The MAIUS-A experiment is a pathfinder atom optics experiment. The scientific objective of the mission is the first creation of a BoseEinstein Condensate in space and performing atom interferometry on a sounding rocket [3]. MAIUS-1 comprises a two-stage unguided solid propellant VSB-30 rocket motor system. The vehicle consists of a Brazilian 53 1 motor as 1 st stage, a 530 motor as 2nd stage, a conical motor adapter, a despin module, a payload adapter, the MAIUS-A experiment consisting of five experiment modules, an attitude control system module, a newly developed conical service system, and a two-staged recovery system including a nosecone. In contrast to usual payloads on VSB-30 rockets, the payload has a diameter of 500 mm due to constraints of the scientific experiment. Because of this change in design, a blunted nosecone is necessary to guarantee the required static stability during the ascent phase of the flight. This paper will give an overview on the subsystems which have been built at DLR MORABA, especially the newly developed service system. Further, it will contain a description of the MAIUS-1 vehicle, the mission and the unique requirements on operations and attitude control, which is additionally required to achieve a required attitude with respect to the nadir vector. Additionally to a usual microgravity environment, the MAIUS-l payload requires attitude control to achieve a required attitude with respect to the nadir vector.

  16. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Science.gov (United States)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars

  17. Leveraging Existing Mission Tools in a Re-Usable, Component-Based Software Environment

    Science.gov (United States)

    Greene, Kevin; Grenander, Sven; Kurien, James; z,s (fshir. z[orttr); z,scer; O'Reilly, Taifun

    2006-01-01

    Emerging methods in component-based software development offer significant advantages but may seem incompatible with existing mission operations applications. In this paper we relate our positive experiences integrating existing mission applications into component-based tools we are delivering to three missions. In most operations environments, a number of software applications have been integrated together to form the mission operations software. In contrast, with component-based software development chunks of related functionality and data structures, referred to as components, can be individually delivered, integrated and re-used. With the advent of powerful tools for managing component-based development, complex software systems can potentially see significant benefits in ease of integration, testability and reusability from these techniques. These benefits motivate us to ask how component-based development techniques can be relevant in a mission operations environment, where there is significant investment in software tools that are not component-based and may not be written in languages for which component-based tools even exist. Trusted and complex software tools for sequencing, validation, navigation, and other vital functions cannot simply be re-written or abandoned in order to gain the advantages offered by emerging component-based software techniques. Thus some middle ground must be found. We have faced exactly this issue, and have found several solutions. Ensemble is an open platform for development, integration, and deployment of mission operations software that we are developing. Ensemble itself is an extension of an open source, component-based software development platform called Eclipse. Due to the advantages of component-based development, we have been able to vary rapidly develop mission operations tools for three surface missions by mixing and matching from a common set of mission operation components. We have also had to determine how to

  18. The Influence of Free Space Environment in the Mission Life Cycle: Material Selection

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; de Groh, Kim K.

    2014-01-01

    The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.

  19. Cognitive Performance in Operational Environments

    Science.gov (United States)

    Russo, Michael; McGhee, James; Friedler, Edna; Thomas, Maria

    2005-01-01

    Optimal cognition during complex and sustained operations is a critical component for success in current and future military operations. "Cognitive Performance, Judgment, and Decision-making" (CPJD) is a newly organized U.S. Army Medical Research and Materiel Command research program focused on sustaining operational effectiveness of Future Force Warriors by developing paradigms through which militarily-relevant, higher-order cognitive performance, judgment, and decision-making can be assessed and sustained in individuals, small teams, and leaders of network-centric fighting units. CPJD evaluates the impact of stressors intrinsic to military operational environments (e.g., sleep deprivation, workload, fatigue, temperature extremes, altitude, environmental/physiological disruption) on military performance, evaluates noninvasive automated methods for monitoring and predicting cognitive performance, and investigates pharmaceutical strategies (e.g., stimulant countermeasures, hypnotics) to mitigate performance decrements. This manuscript describes the CPJD program, discusses the metrics utilized to relate militarily applied research findings to academic research, and discusses how the simulated combat capabilities of a synthetic battle laboratory may facilitate future cognitive performance research.

  20. Mission operations concepts for Earth Observing System (EOS)

    Science.gov (United States)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  1. Study 2.6 operations analysis mission characterization

    Science.gov (United States)

    Wolfe, R. R.

    1973-01-01

    An analysis of the current operations concepts of NASA and DoD is presented to determine if alternatives exist which may improve the utilization of resources. The final product is intended to show how sensitive these ground rules and design approaches are relative to the total cost of doing business. The results are comparative in nature, and assess one concept against another as opposed to establishing an absolute cost value for program requirements. An assessment of the mission characteristics is explained to clarify the intent, scope, and direction of this effort to improve the understanding of what is to be accomplished. The characterization of missions is oriented toward grouping missions which may offer potential economic benefits by reducing overall program costs. Program costs include design, development, testing, and engineering, recurring unit costs for logistic vehicles, payload costs. and direct operating costs.

  2. Modelling ship operational reliability over a mission under regular inspections

    NARCIS (Netherlands)

    Christer, A.H.; Lee, S.K.

    1997-01-01

    A ship is required to operate for a fixed mission period. Should a critical item of equipment fail at sea, the ship is subject to a costly event with potentially high risk to ship and crew. Given warning of a pending defect, the ship can try to return to port under its own power and thus attempt to

  3. Lean Mission Operations Systems Design - Using Agile and Lean Development Principles for Mission Operations Design and Development

    Science.gov (United States)

    Trimble, Jay Phillip

    2014-01-01

    The Resource Prospector Mission seeks to rove the lunar surface with an in-situ resource utilization payload in search of volatiles at a polar region. The mission operations system (MOS) will need to perform the short-duration mission while taking advantage of the near real time control that the short one-way light time to the Moon provides. To maximize our use of limited resources for the design and development of the MOS we are utilizing agile and lean methods derived from our previous experience with applying these methods to software. By using methods such as "say it then sim it" we will spend less time in meetings and more time focused on the one outcome that counts - the effective utilization of our assets on the Moon to meet mission objectives.

  4. Space Mission Operations Ground Systems Integration Customer Service

    Science.gov (United States)

    Roth, Karl

    2014-01-01

    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security

  5. Calculation of Operations Efficiency Factors for Mars Surface Missions

    Science.gov (United States)

    Layback, Sharon L.

    2014-01-01

    For planning of Mars surface missions, to be operated on a sol-by-sol basis by a team on Earth (where a "sol" is a Martian day), activities are described in terms of "sol types" that are strung together to build a surface mission scenario. Some sol types require ground decisions based on a previous sol's results to feed into the activity planning ("ground in the loop"), while others do not. Due to the differences in duration between Earth days and Mars sols, for a given Mars local solar time, the corresponding Earth time "walks" relative to the corresponding times on the prior sol/day. In particular, even if a communication window has a fixed Mars local solar time, the Earth time for that window will be approximately 40 minutes later each succeeding day. Further complexity is added for non-Mars synchronous communication relay assets, and when there are multiple control centers in different Earth time zones. The solution is the development of "ops efficiency factors" that reflect the efficiency of a given operations configuration (how many and location of control centers, types of communication windows, synchronous or non-synchronous nature of relay assets, sol types, more-or-less sustainable operations schedule choices) against a theoretical "optimal" operations configuration for the mission being studied. These factors are then incorporated into scenario models in order to determine the surface duration (and therefore minimum spacecraft surface lifetime) required to fulfill scenario objectives. The resulting model is used to perform "what-if" analyses for variations in scenario objectives. The ops efficiency factor is the ratio of the figure of merit for a given operations factor to the figure of merit for the theoretical optimal configuration. The current implementation is a pair of models in Excel. The first represents a ground operations schedule for 500 sols in each operations configuration for the mission being studied (500 sols was chosen as being a long

  6. Cyber Threat Assessment of Uplink and Commanding System for Mission Operation

    Science.gov (United States)

    Ko, Adans Y.; Tan, Kymie M. C.; Cilloniz-Bicchi, Ferner; Faris, Grant

    2014-01-01

    Most of today's Mission Operations Systems (MOS) rely on Ground Data System (GDS) segment to mitigate cyber security risks. Unfortunately, IT security design is done separately from the design of GDS' mission operational capabilities. This incoherent practice leaves many security vulnerabilities in the system without any notice. This paper describes a new way to system engineering MOS, to include cyber threat risk assessments throughout the MOS development cycle, without this, it is impossible to design a dependable and reliable MOS to meet today's rapid changing cyber threat environment.

  7. Constellation Mission Operation Working Group: ESMO Maneuver Planning Process Review

    Science.gov (United States)

    Moyer, Eric

    2015-01-01

    The Earth Science Mission Operation (ESMO) Project created an Independent Review Board to review our Conjunction Risk evaluation process and Maneuver Planning Process to identify improvements that safely manages mission conjunction risks, maintains ground track science requirements, and minimizes overall hours expended on High Interest Events (HIE). The Review Board is evaluating the current maneuver process which requires support by multiple groups. In the past year, there have been several changes to the processes although many prior and new concerns exist. This presentation will discuss maneuver process reviews and Board comments, ESMO assessment and path foward, ESMO future plans, recent changes and concerns.

  8. Cross support overview and operations concept for future space missions

    Science.gov (United States)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  9. Mission operations update for the restructured Earth Observing System (EOS) mission

    Science.gov (United States)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  10. Enabling Autonomous Space Mission Operations with Artificial Intelligence

    Science.gov (United States)

    Frank, Jeremy

    2017-01-01

    For over 50 years, NASA's crewed missions have been confined to the Earth-Moon system, where speed-of-light communications delays between crew and ground are practically nonexistent. This ground-centered mode of operations, with a large, ground-based support team, is not sustainable for NASAs future human exploration missions to Mars. Future astronauts will need smarter tools employing Artificial Intelligence (AI) techniques make decisions without inefficient communication back and forth with ground-based mission control. In this talk we will describe several demonstrations of astronaut decision support tools using AI techniques as a foundation. These demonstrations show that astronauts tasks ranging from living and working to piloting can benefit from AI technology development.

  11. Phobos Environment Model and Regolith Simulant for MMX Mission

    Science.gov (United States)

    Miyamoto, H.; Niihara, T.; Wada, K.; Ogawa, K.; Baresi, N.; Abell, Paul A.; Asphaug, E.; Britt, D.; Dodbiba, G.; Fujita, T.; hide

    2018-01-01

    Phobos and Deimos, the two moons of Mars, are considered to be scientifically important and potential human mission's target. Martian Moons eXplorer (MMX) is the JAXA's mission to explore Phobos (and/or Deimos), which is scheduled to be launched in 2024. The main spacecraft of MMX will perform in-situ observations of both Phobos and Deimos, land on one of them (most likely, Phobos), and bring samples back to Earth. Small landing modules may be included in the mission as for the Hayabusa-2 mission. The designs of both the landing and sampling devices depend largely on the surface conditions of the target body and on how this surface reacts to an external action in the low gravity conditions of the target. Thus, the Landing Operation Working Team (LOWT) of MMX, which is composed of both scientists and engineers, is studying Phobos' surface based on previous observations and theoretical/experimental considerations. Though engineering motivation initiated this activity, the results will be extremely useful for scientific purposes.

  12. IAEA Leads Operational Safety Mission to Muehleberg Nuclear Power Plant

    International Nuclear Information System (INIS)

    2012-01-01

    practices of the plant. These good practices will be shared with the nuclear industry world-wide for consideration. Examples include: - The plant has developed a comprehensive strategy to manage the core shroud cracking issue (detected in 1990 and monitored ever since) and allow long term operation; - Preserving and transferring corporate knowledge and know-how has been implemented by the plant as part of succession planning; - The plant has developed and implemented a comprehensive Accident Management Program including Severe Accident Management Guidance for shut-down conditions. Muehleberg NPP management expressed determination to address all the areas identified for improvement and requested that the IAEA schedule a follow-up mission in approximately 18 months. The team handed over a draft of their recommendations, suggestions and good practices to the plant management in the form of ''Technical Notes'' for factual comments. The technical notes will be reviewed at the IAEA headquarters including any comments from Muehleberg NPP and the Swiss Federal Nuclear Safety Inspectorate. The final report will be submitted to the Government of Switzerland within three months. This was the 170th mission of the OSART programme, which began in 1982. OSART missions were performed in Switzerland in 1994 at Leibstadt NPP, in 1995 at Beznau NPP, in 1999 at Goesgen NPP and in 2000 at Muehleberg NPP. General information about OSART missions can be found on the IAEA Website: OSART Missions. Background: The IAEA Nuclear Safety Action Plan defines a programme of work to strengthen the nuclear safety framework worldwide in the light of the Fukushima Daiichi Nuclear Power Plant accident. The plan was unanimously endorsed by IAEA Member States during the Agency's 55th General Conference in September 2011. The Action Plan recommended: ''Each Member State with nuclear power plants to voluntarily host at least one IAEA Operational Safety Review Team (OSART) mission during the coming three years

  13. Mission Operations Planning with Preferences: An Empirical Study

    Science.gov (United States)

    Bresina, John L.; Khatib, Lina; McGann, Conor

    2006-01-01

    This paper presents an empirical study of some nonexhaustive approaches to optimizing preferences within the context of constraint-based, mixed-initiative planning for mission operations. This work is motivated by the experience of deploying and operating the MAPGEN (Mixed-initiative Activity Plan GENerator) system for the Mars Exploration Rover Mission. Responsiveness to the user is one of the important requirements for MAPGEN, hence, the additional computation time needed to optimize preferences must be kept within reasonabble bounds. This was the primary motivation for studying non-exhaustive optimization approaches. The specific goals of rhe empirical study are to assess the impact on solution quality of two greedy heuristics used in MAPGEN and to assess the improvement gained by applying a linear programming optimization technique to the final solution.

  14. The lunar atmosphere and dust environment explorer mission (LADEE)

    CERN Document Server

    Russell, Christopher

    2015-01-01

    This volume contains five articles describing the mission and its instruments.  The first paper, by the project scientist Richard C. Elphic and his colleagues, describes the mission objectives, the launch vehicle, spacecraft and the mission itself.  This is followed by a description of LADEE’s Neutral Mass Spectrometer by Paul Mahaffy and company.  This paper describes the investigation that directly targets the lunar exosphere, which can also be explored optically in the ultraviolet.  In the following article Anthony Colaprete describes LADEE’s Ultraviolet and Visible Spectrometer that operated from 230 nm to 810 nm scanning the atmosphere just above the surface.  Not only is there atmosphere but there is also dust that putatively can be levitated above the surface, possibly by electric fields on the Moon’s surface.  Mihaly Horanyi leads this investigation, called the Lunar Dust Experiment, aimed at understanding the purported observations of levitated dust.  This experiment was also very succes...

  15. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    Science.gov (United States)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  16. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta,Lealem; Myers, Jerry G.; Lewandowski, Beth; Platts, Steven H.

    2011-01-01

    Mars and NEO missions will expose astronaut to extended durations of reduced reduced gravity, isolation and higher radiation. These new operation conditions pose health risks that are not well understood and perhaps unanticipated. Advanced computational simulation environments can beneficially augment research to predict, assess and mitigate potential hazards to astronaut health. The NASA Digital Astronaut Project (DAP), within the NASA Human Research Program, strives to achieve this goal.

  17. Multiagent Modeling and Simulation in Human-Robot Mission Operations Work System Design

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; Sims, Michael H.; Shafto, Michael (Technical Monitor)

    2001-01-01

    This paper describes a collaborative multiagent modeling and simulation approach for designing work systems. The Brahms environment is used to model mission operations for a semi-autonomous robot mission to the Moon at the work practice level. It shows the impact of human-decision making on the activities and energy consumption of a robot. A collaborative work systems design methodology is described that allows informal models, created with users and stakeholders, to be used as input to the development of formal computational models.

  18. Organizational environment and operator culture

    International Nuclear Information System (INIS)

    Morisseau, D.S.; Schoenfeld, I.E.

    1988-01-01

    The Nuclear Regulatory Commission has historically reviewed corporate and plant level management and organization against the criteria of NUREG-0800, The Standard Review Plan. These criteria address the organizational structure, management control, lines of authority and communication, the range and level of experience, and the availability of manpower to effectively and safely operate the facility. Now that most nuclear power plants have received their operating licenses, the emphasis for review has shifted to the day-to-day operation of the facilities. Along with this has come greater recognition that hardware and engineering systems, through vitally important, are not the only components needed for safe operation of power plants. The people who run and operate these plants are a vitally important component and are an integral part of the entire system, i.e., machinery does not operate in isolation

  19. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    Science.gov (United States)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  20. Operating Environment of the Future

    National Research Council Canada - National Science Library

    Hanson, Matthew

    1997-01-01

    ...), the Smart Surgical System (SSS), and the Intelligent Virtual Patient Environment (IVPE). The project is one of several targeting reduction in mortality and morbidity of the wounded soldier through improved far-forward combat casualty care...

  1. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  2. Operational computer graphics in the flight dynamics environment

    Science.gov (United States)

    Jeletic, James F.

    1989-01-01

    Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed.

  3. IAEA Leads Operational Safety Mission to Armenian Nuclear Power Plant

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: An international team of nuclear installation safety experts, led by the International Atomic Energy Agency (IAEA), has reviewed the Armenian Nuclear Power Plant (ANPP) near Metsamor for its safety practices and has noted a series of good practices, as well as recommendations to reinforce them. The IAEA assembled an international team of experts at the request of the Government of the Republic of Armenia to conduct an Operational Safety Review (OSART) of the NPP. Under the leadership of the IAEA's Division of Nuclear Installation Safety, the OSART team performed an in-depth operational safety review from 16 May to 2 June 2011. The team was made up of experts from Finland, France, Lithuania, Hungary, Netherlands, Slovakia, UK, USA, EC and the IAEA. An OSART mission is designed as a review of programmes and activities essential to operational safety. It is not a regulatory inspection, nor is it a design review or a substitute for an exhaustive assessment of the plant's overall safety status. Experts participating in the IAEA's June 2010 International Conference on Operational Safety of Nuclear Power Plants (NPP) reviewed the experience of the OSART programme and concluded: In OSART missions NPPs are assessed against IAEA safety standards which reflect the current international consensus on what constitutes a high level of safety; and OSART recommendations and suggestions are of utmost importance for operational safety improvement of NPPs. Armenia is commended for openness to the international nuclear community and for actively inviting IAEA safety review missions to submit their activities to international scrutiny. Examples of IAEA safety reviews include: Design Safety Review in 2003; Review of Probabilistic Safety Assessment in 2007; and Assessment of Seismic Safety Re-Evaluation in 2009. The team at ANPP conducted an in-depth review of the aspects essential to the safe operation of the plant, which is largely under the control of the site management

  4. Developing and operating a remotely operated work system in hostile and emergency environments

    International Nuclear Information System (INIS)

    Thorne, P.M.

    1987-01-01

    The author presents an overview of the factors that a project manager considering the use of remote work systems must keep in mind during the planning and execution of operations in hostile environments. Interfacing of the remote work system to the task and understanding mission parameters is emphasized. The author's thesis is based on many years of technical operations and project management roles using remote work systems in the subsea oil industry, military and, most recently, space and nuclear applications

  5. Dynamic Sampling of Trace Contaminants During the Mission Operations Test of the Deep Space Habitat

    Science.gov (United States)

    Monje, Oscar; Valling, Simo; Cornish, Jim

    2013-01-01

    The atmospheric composition inside spacecraft during long duration space missions is dynamic due to changes in the living and working environment of crew members, crew metabolism and payload operations. A portable FTIR gas analyzer was used to monitor the atmospheric composition within the Deep Space Habitat (DSH) during the Mission Operations Test (MOT) conducted at the Johnson Space Center (JSC). The FTIR monitored up to 20 gases in near- real time. The procedures developed for operating the FTIR were successful and data was collected with the FTIR at 5 minute intervals. Not all the 20 gases sampled were detected in all the modules and it was possible to measure dynamic changes in trace contaminant concentrations that were related to crew activities involving exercise and meal preparation.

  6. The ESA Scientific Exploitation of Operational Missions element

    Science.gov (United States)

    Desnos, Yves-Louis; Regner, Peter; Delwart, Steven; Benveniste, Jerome; Engdahl, Marcus; Zehner, Claus; Mathieu, Pierre-Philippe; Bojkov, Bojan; Gascon, Ferran; Donlon, Craig; Davidson, Malcolm; Goryl, Philippe; Pinnock, Simon

    2015-04-01

    SEOM is a program element within the fourth period (2013-2017) of ESA's Earth Observation Envelope Programme (http://seom.esa.int/). The prime objective is to federate, support and expand the international research community that the ERS,ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM will enable the science community to address new scientific research that are opened by free and open access to data from operational EO missions. Based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings, a work plan has been established and is approved every year by ESA Members States. The 2015 SEOM work plan is covering the organisation of three Science users consultation workshops for Sentinel1/3/5P , the launch of new R&D studies for scientific exploitation of the Sentinels, the development of open-source multi-mission scientific toolboxes, the organisation of advanced international training courses, summer schools and educational materials, as well as activities for promoting the scientific use of EO data. The first SEOM projects have been tendered since 2013 including the development of Sentinel toolboxes, advanced INSAR algorithms for Sentinel-1 TOPS data exploitation, Improved Atmospheric Spectroscopic data-base (IAS), as well as grouped studies for Sentinel-1, -2, and -3 land and ocean applications and studies for exploiting the synergy between the Sentinels. The status and first results from these SEOM projects will be presented and an outlook for upcoming SEOM studies will be given.

  7. Artificial intelligence for multi-mission planetary operations

    Science.gov (United States)

    Atkinson, David J.; Lawson, Denise L.; James, Mark L.

    1990-01-01

    A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.

  8. Radiation Hardened High Speed Integrated Circuits SERDES I/O for Extreme Operating Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Manned and robotic space missions require high-performance electronic control systems capable of operating for extended periods in harsh environments subject to...

  9. Safety and Mission Assurance Knowledge Management Retention: Managing Knowledge for Successful Mission Operations

    Science.gov (United States)

    Johnson, Teresa A.

    2006-01-01

    Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.

  10. IAEA Leads Operational Safety Mission to Smolensk Nuclear Power Plant

    International Nuclear Information System (INIS)

    2011-01-01

    training facilities for radiation, fire and industrial safety; A set of handbooks for self-study are available to staff, providing them with an overview of events at plants in Russia and other countries; and There is comprehensive and fast-acting information system on the reactor status, including a detailed assessment of the neutron field in axial and radial directions. The team has also made recommendations and suggestions related to areas where operational safety of Smolensk NPP could be improved. The most significant proposals include the following: To ensure that a plant specific equipment qualification programme is developed and implemented, thus ensuring the capability of the equipment to perform its functions under postulated service conditions, including those arising from accidents; To improve the condition of cables trays and the routing of cables to ensure that the condition of cables is maintained at a high standard; To ensure that the surveillance programme for systems and equipment validates their required safety performance more effectively; and To improve the measurement methodology for the confinement system in order to ensure that the equivalent leak cross section is determined with sufficient accuracy. Smolensk NPP management expressed a determination to address all the areas identified for improvement and requested the IAEA to schedule a follow-up mission in approximately 18 months. The team handed over a draft of their recommendations, suggestions and good practices to the plant management in the form of ''Technical Notes'' for factual comments. The technical notes will be reviewed at the IAEA headquarters including any comments from Smolensk NPP and the Nuclear Regulatory Authority of the Russian Federation. The final report will be submitted to the Government of the Russian Federation within three months. This was the 165th mission of the OSART programme, which began in 1982. OSART missions were performed in the Russian Federation at Balakovo NPP in

  11. Decision Making Training in the Mission Operations Directorate

    Science.gov (United States)

    O'Keefe, William S.

    2013-01-01

    At JSC, we train our new flight controllers on a set of team skills that we call Space Flight Resource Management (SFRM). SFRM is akin to Crew Resource Management for the airlines and trains flight controllers to work as an effective team to reduce errors and improve safety. We have developed this training over the years with the assistance of Ames Research Center, Wyle Labs and University of Central Florida. One of the skills we teach is decision making/ problem solving (DM/PS). We teach DM/PS first in several classroom sessions, reinforce it in several part task training environments, and finally practice it in full-mission, full-team simulations. What I am proposing to talk about is this training flow: its content and how we teach it.

  12. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    Science.gov (United States)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects

  13. Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; hide

    2014-01-01

    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field

  14. Orbital Express Mission Operations Planning and Resource Management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Danny

    2008-01-01

    The Orbital Express satellite servicing demonstrator program is a DARPA program aimed at developing "a safe and cost-effective approach to autonomously service satellites in orbit". The system consists of: a) the Autonomous Space Transport Robotic Operations (ASTRO) vehicle, under development by Boeing Integrated Defense Systems, and b) a prototype modular next-generation serviceable satellite, NEXTSat, being developed by Ball Aerospace. Flexibility of ASPEN: a) Accommodate changes to procedures; b) Accommodate changes to daily losses and gains; c) Responsive re-planning; and d) Critical to success of mission planning Auto-Generation of activity models: a) Created plans quickly; b) Repetition/Re-use of models each day; and c) Guarantees the AML syntax. One SRP per day vs. Tactical team

  15. Operation of the Radio Occultation Mission in KOMPSAT-5

    Directory of Open Access Journals (Sweden)

    Mansoo Choi

    2010-12-01

    Full Text Available Korea multi-purpose satellite-5 (KOMPSAT-5 is a low earth orbit (LEO satellite scheduled to be launched in 2010. To satisfy the precision orbit determination (POD requirement for a high resolution synthetic aperture radar image of KOMPSAT-5, KOMPSAT-5 has atmosphere occultation POD (AOPOD system which consists of a space-borne dual frequency global positioning system (GPS receiver and a laser retro reflector array. A space-borne dual frequency GPS receiver on a LEO satellite provides position data for the POD and radio occultation data for scientific applications. This paper describes an overview of AOPOD system and operation concepts of the radio occultation mission in KOMPSAT-5. We showed AOPOD system satisfies the requirements of KOMPSAT-5 in performance and stability.

  16. Potential of future operational missions sentinel 4 and 5 for atmospheric monitoring and science (CAMELOT).

    Science.gov (United States)

    Levelt, P. F.; Veefkind, J. P.

    2010-05-01

    Dedicated atmospheric chemistry observations from space have been made for over 30 years now, starting with the SBUV and TOMS measurements of the ozone layer. Since then huge progress has been made, improving the accuracy of the measurements, extending the amount of constituents, and by sensing not only the stratosphere, but the last five to ten years also the troposphere. The potential to operational monitor the atmosphere, following the meteorological community, came within reach. At the same time, the importance for society of regular operational environmental measurements, related to the ozone layer, air quality and climate change, became apparent, amongst others resulting in the EU initiative Global Monitoring for Environment and Security (GMES) In order to prepare the operational missions in the context of the GMES, ESA took the initiative to further study the user requirements for the Sentinel 4 and 5 (precursor) missions. The Sentinel 4 and 5 (precursor) missions are dedicated operational missions to monitor the atmospheric composition in the 2013-2020 timeframe and onward. The user requirements for the sentinel missions focus on monitoring the atmosphere from an environmental point of view (ozone layer, air quality and climate). ESA's CAMELOT (Composition of the Atmospheric Mission concEpts and SentineL Observation Techniques) study is the follow-on study to ESA's CAPACITY study finished in 2005. The general objective of the CAMELOT study is to further contribute to the definition of the air quality and climate protocol monitoring parts of the GMES Sentinel 4 and 5 missions. CAMELOT consists of a large European consortium formed by 9 European institutes (KNMI (lead), RAL, U.Leicester, SRON, FMI, BIRA-IASB, CNR-IFAC,NOVELTIS and RIU-U.Koeln). In the presentation an overview will give a short overview of the CAMELOT study, including some specific results for combined retrievals, cloud statistics for different orbit geometries and retrievals for several orbit

  17. Virtualized Multi-Mission Operations Center (vMMOC) and its Cloud Services

    Science.gov (United States)

    Ido, Haisam Kassim

    2017-01-01

    His presentation will cover, the current and future, technical and organizational opportunities and challenges with virtualizing a multi-mission operations center. The full deployment of Goddard Space Flight Centers (GSFC) Virtualized Multi-Mission Operations Center (vMMOC) is nearly complete. The Space Science Mission Operations (SSMO) organizations spacecraft ACE, Fermi, LRO, MMS(4), OSIRIS-REx, SDO, SOHO, Swift, and Wind are in the process of being fully migrated to the vMMOC. The benefits of the vMMOC will be the normalization and the standardization of IT services, mission operations, maintenance, and development as well as ancillary services and policies such as collaboration tools, change management systems, and IT Security. The vMMOC will also provide operational efficiencies regarding hardware, IT domain expertise, training, maintenance and support.The presentation will also cover SSMO's secure Situational Awareness Dashboard in an integrated, fleet centric, cloud based web services fashion. Additionally the SSMO Telemetry as a Service (TaaS) will be covered, which allows authorized users and processes to access telemetry for the entire SSMO fleet, and for the entirety of each spacecrafts history. Both services leverage cloud services in a secure FISMA High and FedRamp environment, and also leverage distributed object stores in order to house and provide the telemetry. The services are also in the process of leveraging the cloud computing services elasticity and horizontal scalability. In the design phase is the Navigation as a Service (NaaS) which will provide a standardized, efficient, and normalized service for the fleet's space flight dynamics operations. Additional future services that may be considered are Ground Segment as a Service (GSaaS), Telemetry and Command as a Service (TCaaS), Flight Software Simulation as a Service, etc.

  18. Linking Knowledge and Skills to Mission Essential Competency-Based Syllabus Development for Distributed Mission Operations

    National Research Council Canada - National Science Library

    Symons, Steve; France, Michael; Bell, Jeffrey; Bennett, Jr, Winston

    2006-01-01

    ... of Mission Essential Competencies (MECs). MECs are defined as the higher order individual, team, and inter-team competencies that a fully prepared pilot, crew, or flight requires for successful mission completion under adverse conditions...

  19. The ESA Scientific Exploitation of Operational Missions element, first results

    Science.gov (United States)

    Desnos, Yves-Louis; Regner, Peter; Delwart, Steven; Benveniste, Jerome; Engdahl, Marcus; Mathieu, Pierre-Philippe; Gascon, Ferran; Donlon, Craig; Davidson, Malcolm; Pinnock, Simon; Foumelis, Michael; Ramoino, Fabrizio

    2016-04-01

    SEOM is a program element within the fourth period (2013-2017) of ESA's Earth Observation Envelope Programme (http://seom.esa.int/). The prime objective is to federate, support and expand the international research community that the ERS, ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM will enable the science community to address new scientific research that are opened by free and open access to data from operational EO missions. Based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings, a work plan is established and is approved every year by ESA Members States. During 2015 SEOM, Science users consultation workshops have been organized for Sentinel1/3/5P ( Fringe, S3 Symposium and Atmospheric science respectively) , new R&D studies for scientific exploitation of the Sentinels have been launched ( S3 for Science SAR Altimetry and Ocean Color , S2 for Science,) , open-source multi-mission scientific toolboxes have been launched (in particular the SNAP/S1-2-3 Toolbox). In addition two advanced international training courses have been organized in Europe to exploit the new S1-A and S2-A data for Land and Ocean remote sensing (over 120 participants from 25 countries) as well as activities for promoting the first scientific results ( e.g. Chili Earthquake) . In addition the First EO Open Science 2.0 was organised at ESA in October 2015 with 225 participants from 31 countries bringing together young EO scientists and data scientists. During the conference precursor activities in EO Open Science and Innovation were presented, while developing a Roadmap preparing for future ESA scientific exploitation activities. Within the conference, the first

  20. Chemistry of complexing molecules and environment. Report of the working group of the Cea ''mission environment''

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-01-01

    The Working group 'Chemistry of Complexing Molecules and Environment' of the Mission Environment (AG/ENV) identified themes for an original positioning of CEA on important issues of environmental research if a sufficiently strong demand appears. The research of CEA on the environment should be complementary to actions undertaken by other partners (official institutions, research organizations and industrial firms). The themes suggested are: the synthesis of new chelating molecules and new materials having specific properties, with the support of theoretical chemistry and modeling, analytical physical chemistry and speciation of species in relation to their eco-toxicity and their biogeochemical mobility in the natural environment. These themes, illustrated by examples of actions in progress at CEA or likely to be launched quickly, draw largely from recognized competences of the teams, generally developed for finalized nuclear applications: experimental, theoretical and instrumental competences. (author)

  1. OSART mission highlights 1991-1992. Operational safety practices in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report continues the practice of providing summaries of the OSART missions but the format is the first of its kind. Summaries of missions in the period 1983-1990 have covered missions to operational plants, missions to plants under construction or approaching commissioning and a compilation of good practices identified in OSART missions as separate publications. The format of this report includes all such aspects in one document.

  2. OSART mission highlights 1991-1992. Operational safety practices in nuclear power plants

    International Nuclear Information System (INIS)

    1995-05-01

    This report continues the practice of providing summaries of the OSART missions but the format is the first of its kind. Summaries of missions in the period 1983-1990 have covered missions to operational plants, missions to plants under construction or approaching commissioning and a compilation of good practices identified in OSART missions as separate publications. The format of this report includes all such aspects in one document

  3. Constraint and Flight Rule Management for Space Mission Operations

    Science.gov (United States)

    Barreiro, J.; Chachere, J.; Frank, J.; Bertels, C.; Crocker, A.

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et al, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et al., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et al, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on some of the latest research results as well as the latest challenges still facing the field.

  4. Mission operations for unmanned nuclear electric propulsion outer planet exploration with a thermionic reactor spacecraft.

    Science.gov (United States)

    Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.

    1971-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.

  5. Utilization of Virtual Server Technology in Mission Operations

    Science.gov (United States)

    Felton, Larry; Lankford, Kimberly; Pitts, R. Lee; Pruitt, Robert W.

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  6. THE REALITY OF OPERATIONAL ENVIRONMENT IN MILITARY OPERATIONS

    Directory of Open Access Journals (Sweden)

    Milan PODHOREC

    2012-01-01

    Full Text Available The strategic and operational environment affecting national security is complex, multifaceted and variable. Even in the long term, it will be characterized by high dynamics of changes, the growing diversity of players and increasingly complex interdependence of security trends and factors. Threats, risks and their sources are often difficult to localize and nowadays have mostly non-state and transnational character. Many of the specific threats and their impacts are difficult to predict. It all adds up to a further blurring of distinctions between internal and external national security. The operating environment consists of a set of factors arising from the nature of an area where the operation is carried out or will be. Operating environment is also formed by the character of a potential enemy, possibilities of effecting technological and informational areas and further by terrain, climatic conditions and level of own forces and coalition forces.

  7. ESA CAMELOT study: Challenges in future operational missions for GMES atmospheric monitoring, sentinel 4 and 5

    Science.gov (United States)

    Levelt, P.; Veefkind, P.

    2009-04-01

    Dedicated atmospheric chemistry observations from space have been made for over 30 years now, starting with the SBUV and TOMS measurements of the ozone layer. Since then huge progress has been made, improving the accuracy of the measurements, extending the amount of constituents, and by sensing not only the stratosphere, but the last five to ten years also the troposphere. The potential to operational monitor the atmosphere, following the meteorological community, came within reach. At the same time, the importance for society of regular operational environmental measurements, related to the ozone layer, air quality and climate change, became apparent, amongst others resulting in the EU initiative Global Monitoring for Environment and Security (GMES) In order to prepare the operational missions in the context of the GMES, ESA took the initiative to further study the user requirements for the Sentinel 4 and 5 (precursor) missions. The Sentinel 4 and 5 (precursor) missions are dedicated operational missions to monitor the atmospheric composition in the 2013-2020 timeframe and onward. The user requirements for the sentinel missions focus on monitoring the atmosphere from an environmental point of view (ozone layer, air quality and climate). ESA's CAMELOT (Composition of the Atmospheric Mission concEpts and SentineL Observation Techniques) study is the follow-on study to ESA's CAPACITY study finished in 2005. The general objective of the CAMELOT study is to further contribute to the definition of the air quality and climate protocol monitoring parts of the GMES Sentinel 4 and 5 missions. Key issues in the CAMELOT study are: • trade-offs between different observation strategies (spectral ranges, polarisation, direction etc) for aerosols and several trace gases • a quantitative assessment of the requirements for spatio-temporal sampling taking into account the contamination of nadir-viewing observations by cloud • optimising several orbit scenario's (leo, inclined

  8. Candidate functions for advanced technology implementation in the Columbus mission planning environment

    Science.gov (United States)

    Loomis, Audrey; Kellner, Albrecht

    1988-01-01

    The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.

  9. Evaluation of full and degraded mission reliability and mission dependability for intermittently operated, multi-functional systems

    International Nuclear Information System (INIS)

    Sols, Alberto; Ramirez-Marquez, Jose E.; Verma, Dinesh; Vitoriano, Begona

    2007-01-01

    Availability is one of the metrics often used in the evaluation of system effectiveness. Its use as an effectiveness metric is often dictated by the nature of the system under consideration. While some systems operate continuously, many others operate on an intermittent basis where each operational period may often involve a different set of missions. This is the most likely scenario for complex multi-functional systems, where each specific system mission may require the availability of a different combination of system elements. Similarly, for these systems, not only is it important to know whether a mission can be initiated, it is just as important to know whether the system is capable of completing such a mission. Thus, for these systems, additional measures become relevant to provide a more holistic assessment of system effectiveness. This paper presents techniques for the evaluation of both full and degraded mission reliability and mission dependability for coherent, intermittently operated multi-functional systems. These metrics complement previously developed availability and degraded availability measures of multi-functional systems, in the comprehensive assessment of system effectiveness

  10. TAMU: Blueprint for A New Space Mission Operations System Paradigm

    Science.gov (United States)

    Ruszkowski, James T.; Meshkat, Leila; Haensly, Jean; Pennington, Al; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a System of System (SOS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically disperse locations, to develop the architecture and associated workflow processes of products for a broad range of flight projects. Further, TAMU FPP provides for the automatic execution and re-planning of the workflow processes as they become operational. This paper provides the blueprint for the TAMU FPP paradigm. This blueprint presents a complete, coherent technique, process and tool set that results in an infrastructure that can be used for full lifecycle design and decision making during the flight production process. Based on the many years of experience with the Space Shuttle Program (SSP) and the International Space Station (ISS), the currently cancelled Constellation Program which aimed on returning humans to the moon as a starting point, has been building a modern model-based Systems Engineering infrastructure to Re-engineer the FPP. This infrastructure uses a structured modeling and architecture development approach to optimize the system design thereby reducing the sustaining costs and increasing system efficiency, reliability, robustness and maintainability metrics. With the advent of the new vision for human space exploration, it is now necessary to further generalize this framework to take into consideration a broad range of missions and the participation of multiple organizations outside of the MOD; hence the Transferable, Adaptable, Modular and Upgradeable (TAMU) concept.

  11. MEDA, The New Instrument for Mars Environment Analysis for the Mars 2020 Mission

    Science.gov (United States)

    Moreno-Alvarez, Jose F.; Pena-Godino, Antonio; Rodriguez-Manfredi, Jose Antonio; Cordoba, Elizabeth; MEDA Team

    2016-08-01

    The Mars 2020 rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Designed to advance high-priority science goals for Mars exploration, the mission will address key questions about the potential for life on Mars. The mission will also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.The Mars Environmental Dynamics Analyzer (MEDA) is an integrated full suite of sensors designed to address the Mars 2020 mission objectives of characterization of dust size and morphology and surface weather measurements.MEDA system consists of one control unit and 10 separated sensor enclosures distributed in different positions along the Mars 2020 rover. MEDA is composed of an ARM-based control computer with its flight software application, two wind sensors including mixed ASICs inside, five air temperature sensors, one sky pointing camera complemented with 16 photo- detectors looking up and around, one thermal infrared sensor using five measurement bands, one relative humidity sensor, one pressure sensor and the harness that interconnects all of them. It is a complex system intended to operate in one of the harshest environments possible, the Mars surface, for many years to come.This will become a short term reality thanks to the combination of a strong international science team driving the science and system requirements working together with a powerful industrial organization to design and build the instrument. The instrument is being built right now, with its Critical Design Review at the end of 2016, and the flight model to be provided in 2018.This paper summarizes the main scientific objective of the MEDA instrument, the links between the Mission and the MEDA science objectives, and the challenging environmental Mars requirements. It will then focus on the engineered definition of the instrument, showing the overall

  12. The ESA Scientific Exploitation of Operational Missions element

    Science.gov (United States)

    Desnos, Yves-Louis; Regner, Peter; Zehner, Claus; Engdahl, Marcus; Benveniste, Jerome; Delwart, Steven; Gascon, Ferran; Mathieu, Pierre-Philippe; Bojkov, Bojan; Koetz, Benjamin; Arino, Olivier; Donlon, Craig; Davidson, Malcolm; Goryl, Philippe; Foumelis, Michael

    2014-05-01

    The objectives of the ESA Scientific Exploitation of Operational Missions (SEOM) programme element are • to federate, support and expand the research community • to strengthen the leadership of European EO research community • to enable the science community to address new scientific research As a preparation for the SEOM element a series of international science users consultation has been organized by ESA in 2012 and 2013 In particular the ESA Living Planet Symposium was successfully organized in Edinburgh September 2013 and involving 1700 participants from 60 countries. The science users recommendations have been gathered and form the basis for the 2014 SEOM work plan approved by ESA member states. The SEOM element is organized along the following action lines: 1. Developing open-source, multi-mission, scientific toolboxes : the new toolboxes for Sentinel 1/2/3 and 5P will be introduced 2. Research and development studies: the first SEOM studies are being launched such as the INSARAP studies for Sentinel 1 interferometry in orbit demonstration , the IAS study to generate an improved spectroscopic database of the trace gas species CH4, H2O, and CO in the 2.3 μm region and SO2 in the UV region for Sentinel 5 P. In addition larger Sentinels for science call will be tendered in 2014 covering grouped studies for Sentinel 1 Land , Sentinel 1 Ocean , Sentinel 2 Land, Sentinel 3 SAR Altimetry ,Sentinel 3 Ocean color, Sentinel 3 Land and Sentinels Synergy . 3. Science users consultation : the Sentinel 2 for Science workshop is planned from 20 to 22 may 2014 at ESRIN to prepare for scientific exploitation of the Sentinel-2 mission (http://seom.esa.int/S2forScience2014 ) . In addition the FRINGE workshop focusing on scientific explotation of Sentinel1 using SAR interferometry is planned to be held at ESA ESRIN in Q2 2015 4. Training the next generation of European EO scientists on the scientific exploitation of Sentinels data: the Advanced Training course Land

  13. Setup of a testing environment for mission planning in mining

    NARCIS (Netherlands)

    Groenen, J.P.J.; Steinbuch, M.

    2013-01-01

    Mission planning algorithms for surface mining applications are difficult to test as a result of the large scale tasks. To validate these algorithms, a scaled setup is created where the mining excavator is mimicked by an industrial robot. This report discusses the development of a software

  14. Mission reliability of semi-Markov systems under generalized operational time requirements

    International Nuclear Information System (INIS)

    Wu, Xiaoyue; Hillston, Jane

    2015-01-01

    Mission reliability of a system depends on specific criteria for mission success. To evaluate the mission reliability of some mission systems that do not need to work normally for the whole mission time, two types of mission reliability for such systems are studied. The first type corresponds to the mission requirement that the system must remain operational continuously for a minimum time within the given mission time interval, while the second corresponds to the mission requirement that the total operational time of the system within the mission time window must be greater than a given value. Based on Markov renewal properties, matrix integral equations are derived for semi-Markov systems. Numerical algorithms and a simulation procedure are provided for both types of mission reliability. Two examples are used for illustration purposes. One is a one-unit repairable Markov system, and the other is a cold standby semi-Markov system consisting of two components. By the proposed approaches, the mission reliability of systems with time redundancy can be more precisely estimated to avoid possible unnecessary redundancy of system resources. - Highlights: • Two types of mission reliability under generalized requirements are defined. • Equations for both types of reliability are derived for semi-Markov systems. • Numerical methods are given for solving both types of reliability. • Simulation procedure is given for estimating both types of reliability. • Verification of the numerical methods is given by the results of simulation

  15. The national operational environment model (NOEM)

    Science.gov (United States)

    Salerno, John J.; Romano, Brian; Geiler, Warren

    2011-06-01

    The National Operational Environment Model (NOEM) is a strategic analysis/assessment tool that provides insight into the complex state space (as a system) that is today's modern operational environment. The NOEM supports baseline forecasts by generating plausible futures based on the current state. It supports what-if analysis by forecasting ramifications of potential "Blue" actions on the environment. The NOEM also supports sensitivity analysis by identifying possible pressure (leverage) points in support of the Commander that resolves forecasted instabilities, and by ranking sensitivities in a list for each leverage point and response. The NOEM can be used to assist Decision Makers, Analysts and Researchers with understanding the inter-workings of a region or nation state, the consequences of implementing specific policies, and the ability to plug in new operational environment theories/models as they mature. The NOEM is built upon an open-source, license-free set of capabilities, and aims to provide support for pluggable modules that make up a given model. The NOEM currently has an extensive number of modules (e.g. economic, security & social well-being pieces such as critical infrastructure) completed along with a number of tools to exercise them. The focus this year is on modeling the social and behavioral aspects of a populace within their environment, primarily the formation of various interest groups, their beliefs, their requirements, their grievances, their affinities, and the likelihood of a wide range of their actions, depending on their perceived level of security and happiness. As such, several research efforts are currently underway to model human behavior from a group perspective, in the pursuit of eventual integration and balance of populace needs/demands within their respective operational environment and the capacity to meet those demands. In this paper we will provide an overview of the NOEM, the need for and a description of its main components

  16. Advances in Distributed Operations and Mission Activity Planning for Mars Surface Exploration

    Science.gov (United States)

    Fox, Jason M.; Norris, Jeffrey S.; Powell, Mark W.; Rabe, Kenneth J.; Shams, Khawaja

    2006-01-01

    A centralized mission activity planning system for any long-term mission, such as the Mars Exploration Rover Mission (MER), is completely infeasible due to budget and geographic constraints. A distributed operations system is key to addressing these constraints; therefore, future system and software engineers must focus on the problem of how to provide a secure, reliable, and distributed mission activity planning system. We will explain how Maestro, the next generation mission activity planning system, with its heavy emphasis on portability and distributed operations has been able to meet these design challenges. MER has been an excellent proving ground for Maestro's new approach to distributed operations. The backend that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  17. OCO-2 (Orbiting Carbon Observatory-2) mission operations planning and initial operations experiences

    Science.gov (United States)

    Basilio, Ralph R.; Pollock, H. Randy; Hunyadi-Lay, Sarah L.

    2014-10-01

    OCO-2 (Orbiting Carbon Observatory-2) is the first NASA (National Aeronautics and Space Administration) mission dedicated to studying atmospheric carbon dioxide, specifically to identify sources (emitters) and sinks (absorbers) on a regional (1000 km x 1000 km) scale. The mission is designed to meet a science imperative by providing critical and urgent measurements needed to improve understanding of the carbon cycle and global climate change processes. The single instrument consisting of three grating spectrometers was built at the Jet Propulsion Laboratory, but is based on the design co-developed with Hamilton Sundstrand Corporation for the original OCO mission. The instrument underwent an extensive ground test program. This was generally made possible through the use of a thermal vacuum chamber with a window/port that allowed optical ground support equipment to stimulate the instrument. The instrument was later delivered to Orbital Sciences Corporation for integration and test with the LEOStar-2 spacecraft. During the overall ground test campaign, proper function and performance in simulated launch, ascent, and space environments were verified. The observatory was launched into space on 02 July 2014. Initial indications are that the instrument is meeting functional and performance specifications, and there is every expectation that the spatially-order, geo-located, calibrated spectra of reflected sunlight and the science retrievals will meet the Level 1 science requirements.

  18. Surveillance mission planning for UAVs in GPS-denied urban environment

    Science.gov (United States)

    Pengfei, Wang

    In this thesis, the issues involved in the mission planning of UAVs for city surveillance have been studied. In this thesis, the research includes two major parts. Firstly, a mission planning system is developed that generates mission plans for a group of fixed-wing UAVs with on-board gimballed cameras to provide continuous surveillance over an urban area. Secondly, the problem of perching location selection (as part of perch-and-stare surveillance mission) for rotary-wing UAVs in a GPS-denied environment is studied. In this kind of mission, a UAV is dispatched to perch on a roof of a building to keep surveillance on a given target. The proposed algorithms to UAV surveillance mission planning (fixed-wing and rotary-wing) have been implemented and tested. It represents an important step towards achieving autonomous planning in UAV surveillance missions.

  19. Onboard Autonomy and Ground Operations Automation for the Intelligent Payload Experiment (IPEX) CubeSat Mission

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Tran, Daniel; Bellardo, John; Williams, Austin; Piug-Suari, Jordi; Crum, Gary; Flatley, Thomas

    2012-01-01

    The Intelligent Payload Experiment (IPEX) is a cubesat manifested for launch in October 2013 that will flight validate autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module (IPM) of the Hyperspectral Infra-red Imager (HyspIRI) mission concept. We first describe the ground and flight operations concept for HyspIRI IPM operations. We then describe the ground and flight operations concept for the IPEX mission and how that will validate HyspIRI IPM operations. We then detail the current status of the mission and outline the schedule for future development.

  20. Network Operations Support Plan for the Spot 2 mission (revision 1)

    Science.gov (United States)

    Werbitzky, Victor

    1989-01-01

    The purpose of this Network Operations Support Plan (NOSP) is to indicate operational procedures and ground equipment configurations for the SPOT 2 mission. The provisions in this document take precedence over procedures or configurations in other documents.

  1. Distributed Mission Operations: Training Today’s Warfighters for Tomorrow’s Conflicts

    Science.gov (United States)

    2016-02-01

    systems or include dissimilar weapons systems to rehearse more complex mission sets. In addition to networking geographically separated simulators...over the past decade. Today, distributed mission operations can facilitate the rehearsal of theater wide operations, integrating all the anticipated...effective that many aviators earn their basic aircraft qualification before their first flight in the airplane.11 Computer memory was once a

  2. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    Science.gov (United States)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  3. A visual assistance environment for cyclotron operation

    International Nuclear Information System (INIS)

    Okamura, Tetsuya; Murakami, Tohru; Agematsu, Takashi; Okumura, Susumu; Arakawa, Kazuo.

    1993-01-01

    A computer-based operation system for a cyclotron which assists inexperienced operators has been developed. Cyclotron start-up operations require dozens of adjustable parameters to be finely tuned to maximize extracted beam current. The human interfaces of the system provide a visual environment designed to enhance beam parameter adjustments. First, the mental model of operators is analyzed. It is supposed to be composed of five partial mental models: beam behavior model, feasible setting regions model, parameter sensitivity model, parameter mutual relation model, and status map model. Next, based on these models, three visual interfaces are developed, i.e., (1) Beam trajectory is rapidly calculated and graphically displayed whenever the operators change the cyclotron parameters. (2) Feasible setting regions (FSR) of the parameters that satisfy the cyclotron's beam acceptance criteria are indicated. (3) Search traces, being a historical visual map of beam current values, are superimposed on the FSRs. Finally, to evaluate system effectiveness, the search time required to reach maximum beam current conditions was measured. In addition, system operability was evaluated using written questionnaires. Results of the experiment showed that the search time to reach specific beam conditions was reduced by approximately 65% using these interfaces. The written questionnaires survey showed the operators highly evaluate system operability. (author)

  4. A Scenario-Based Process for Requirements Development: Application to Mission Operations Systems

    Science.gov (United States)

    Bindschadler, Duane L.; Boyles, Carole A.

    2008-01-01

    The notion of using operational scenarios as part of requirements development during mission formulation (Phases A & B) is widely accepted as good system engineering practice. In the context of developing a Mission Operations System (MOS), there are numerous practical challenges to translating that notion into the cost-effective development of a useful set of requirements. These challenges can include such issues as a lack of Project-level focus on operations issues, insufficient or improper flowdown of requirements, flowdown of immature or poor-quality requirements from Project level, and MOS resource constraints (personnel expertise and/or dollars). System engineering theory must be translated into a practice that provides enough structure and standards to serve as guidance, but that retains sufficient flexibility to be tailored to the needs and constraints of a particular MOS or Project. We describe a detailed, scenario-based process for requirements development. Identifying a set of attributes for high quality requirements, we show how the portions of the process address many of those attributes. We also find that the basic process steps are robust, and can be effective even in challenging Project environments.

  5. The Future of the Brigade Combat Team: Air-Ground Integration and the Operating Environment

    Science.gov (United States)

    2017-06-09

    coordinate, and control joint and multinational aircraft during CAS situations in combat and training. The current system which the CAS mission falls...current system , experiences from Vietnam, Operation Desert Storm, Afghanistan and Iraq help to identify future challenges to the operating environment ...multinational partners. 15. SUBJECT TERMS Air Ground Integration, Theater Air Ground System , Theater Air Control System , Army Air Ground System , Joint

  6. Hierarchthis: An Interactive Interface for Identifying Mission-Relevant Components of the Advanced Multi-Mission Operations System

    Science.gov (United States)

    Litomisky, Krystof

    2012-01-01

    Even though NASA's space missions are many and varied, there are some tasks that are common to all of them. For example, all spacecraft need to communicate with other entities, and all spacecraft need to know where they are. These tasks use tools and services that can be inherited and reused between missions, reducing systems engineering effort and therefore reducing cost.The Advanced Multi-Mission Operations System, or AMMOS, is a collection of multimission tools and services, whose development and maintenance are funded by NASA. I created HierarchThis, a plugin designed to provide an interactive interface to help customers identify mission-relevant tools and services. HierarchThis automatically creates diagrams of the AMMOS database, and then allows users to show/hide specific details through a graphical interface. Once customers identify tools and services they want for a specific mission, HierarchThis can automatically generate a contract between the Multimission Ground Systems and Services Office, which manages AMMOS, and the customer. The document contains the selected AMMOS components, along with their capabilities and satisfied requirements. HierarchThis reduces the time needed for the process from service selections to having a mission-specific contract from the order of days to the order of minutes.

  7. Integrated Visualization Environment for Science Mission Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will provide NASA with an integrated visualization environment providing greater insight and a more intuitive representation of large technical...

  8. Spatial Thinking: Precept for Understanding Operational Environments

    Science.gov (United States)

    2016-06-10

    A Computer Movie Simulating Urban Growth in the Detroit Region,” 236. 29 U.S. National Research Council, Learning to Think Spatially: GIS as a... children and spatial language, the article focuses on the use of geospatial information systems (GIS) as a support mechanism for learning to think...Thinking, Cognition, Learning , Geospatial, Operating Environment, Space Perception 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  9. Chipping operations and efficiency in different operational environments

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, D.; Mola-Yudego, B.; Prinz, R.; Emer, B.; Sikanen, L., e-mail: dominik.roser@metla.fi

    2012-11-01

    This research analyses the productivity of energy wood chipping operations at several sites in Austria and Finland. The aim of the work is to examine the differences in productivity and the effects of the operational environment for the chipping of bioenergy at the roadside. Furthermore, the study quantifies the effects of different variables such as forest energy assortments, tree species, sieve size and machines on the overall productivity of chipping. The results revealed that there are significant differences in the chipping productivity in Austria and Finland which are largely based on the use of different sieve sizes. Furthermore, the different operational environments in both countries, as well as the characteristics of the raw material also seem to have an effect on productivity. In order to improve the chipping productivity, particularly in Central European conditions, all relevant stakeholders need to work jointly to find solutions that will allow a greater variation of chip size. Furthermore, in the future more consideration has to be given to the close interlinkage between the chipper, crane and grapple. As a result, investments costs can be optimized and operational costs and stress on the machines reduced. (orig.)

  10. Tour operators, environment and sustainable development

    International Nuclear Information System (INIS)

    Andriola, L.; Chirico, R.; Declich, P.

    2001-01-01

    The purpose of this work is to characterize the role of the tour operators in achieving sustainable development meaning a process of development which leaves at least the same amount of capital, natural and man-made, to future generations as current generations have access to. Tourism is one of the largest and fastest growing global industries, creating significant employment and economic development, particularly in many developing countries. Tourism can also have negative environmental and social impact resulting from resource consumption, pollution, generation of wastes and from the compromise of local culture while introducing new activities. Most tour operators has started to recognised that a clean environment is critical to their success, but few tour operators have the management tools or experience to design and conduct tours that minimize their negative environmental and social impacts. A group of tour operators from different parts of the world have joined forces to create the Tour Operators' Initiative for Sustainable Tourism Development. With this initiatives, tour operators are moving towards sustainable tourism by committing themselves to address the environmental, social, and cultural aspects of sustainable development within the tourism sector [it

  11. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    Science.gov (United States)

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  12. IAEA Leads Operational Safety Mission to Rajasthan Atomic Power Station 3 and 4

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency (IAEA) today completed a review of safety practices at Units 3 and 4 of the Rajasthan Atomic Power Station in Rawatbhata. The team noted a series of good practices and made recommendations and suggestions to reinforce safety practices. The IAEA assembled the Operational Safety Review Team (OSART) at the request of the Government of India. Led by the IAEA's Division of Nuclear Installation Safety, the team performed an in-depth operational safety review from 29 October to 14 November 2012. The team was comprised of experts from Canada, Belgium, Finland, Germany, Romania, Slovakia, Slovenia, Sweden and the IAEA. The team conducted an in-depth review of the aspects essential to the safe operation of the Power Plant. The conclusions of the review are based on the IAEA's Safety Standards and good international practices. The review covered the areas of Management, Organization and Administration; Training; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry; Emergency Planning and Preparedness; and Severe Accident Management. The OSART team identified a number of good practices of the plant. These will be shared in due course by the IAEA with the global nuclear industry for consideration. Examples include the following: - The Power Plant's safety culture cultivates a constructive work environment and a sense of accountability among the Power Plant personnel, and gives its staff the opportunity to expand skills and training; - The Power Plant's Public Awareness Programme provides educational opportunities to the local community about nuclear and radiation safety; - The Power Plant has a Management of Training and Authorization system for effective management of training activities; and - The Power Plant uses testing facilities and mockups to improve the quality of maintenance work and to reduce radiation doses. The OSART

  13. Operational environments for electrical power wiring on NASA space systems

    Science.gov (United States)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  14. Distributed Operations for the Cassini/Huygens Mission

    Science.gov (United States)

    Lock, P.; Sarrel, M.

    1998-01-01

    The cassini project employs a concept known as distributed operations which allows independent instrument operations from diverse locations, provides full empowerment of all participants and maximizes use of limited resources.

  15. Environment-friendly drilling operation technology

    Science.gov (United States)

    Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun

    2017-01-01

    Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.

  16. Risk analysis for autonomous underwater vehicle operations in extreme environments.

    Science.gov (United States)

    Brito, Mario Paulo; Griffiths, Gwyn; Challenor, Peter

    2010-12-01

    Autonomous underwater vehicles (AUVs) are used increasingly to explore hazardous marine environments. Risk assessment for such complex systems is based on subjective judgment and expert knowledge as much as on hard statistics. Here, we describe the use of a risk management process tailored to AUV operations, the implementation of which requires the elicitation of expert judgment. We conducted a formal judgment elicitation process where eight world experts in AUV design and operation were asked to assign a probability of AUV loss given the emergence of each fault or incident from the vehicle's life history of 63 faults and incidents. After discussing methods of aggregation and analysis, we show how the aggregated risk estimates obtained from the expert judgments were used to create a risk model. To estimate AUV survival with mission distance, we adopted a statistical survival function based on the nonparametric Kaplan-Meier estimator. We present theoretical formulations for the estimator, its variance, and confidence limits. We also present a numerical example where the approach is applied to estimate the probability that the Autosub3 AUV would survive a set of missions under Pine Island Glacier, Antarctica in January-March 2009. © 2010 Society for Risk Analysis.

  17. Radiation Hardened High Speed Integrated Circuits Double Data Rate I/O for Extreme Operating Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Manned and robotic space missions require high-performance electronic control systems capable of operating for extended periods in harsh environments that are...

  18. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    Science.gov (United States)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  19. Investigation of tenuous plasma environment using Active Spacecraft Potential Control (ASPOC) on Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard

    2015-04-01

    The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.

  20. A virtual reality environment for telescope operation

    Science.gov (United States)

    Martínez, Luis A.; Villarreal, José L.; Ángeles, Fernando; Bernal, Abel

    2010-07-01

    Astronomical observatories and telescopes are becoming increasingly large and complex systems, demanding to any potential user the acquirement of great amount of information previous to access them. At present, the most common way to overcome that information is through the implementation of larger graphical user interfaces and computer monitors to increase the display area. Tonantzintla Observatory has a 1-m telescope with a remote observing system. As a step forward in the improvement of the telescope software, we have designed a Virtual Reality (VR) environment that works as an extension of the remote system and allows us to operate the telescope. In this work we explore this alternative technology that is being suggested here as a software platform for the operation of the 1-m telescope.

  1. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    Science.gov (United States)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; hide

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  2. JPL Space Telecommunications Radio System Operating Environment

    Science.gov (United States)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  3. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    Energy Technology Data Exchange (ETDEWEB)

    Chew, S.P.; Dunnett, S.J. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom); Andrews, J.D. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom)], E-mail: j.d.andrews@lboro.ac.uk

    2008-07-15

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically.

  4. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    International Nuclear Information System (INIS)

    Chew, S.P.; Dunnett, S.J.; Andrews, J.D.

    2008-01-01

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically

  5. Long term operation of nuclear power plants – IAEA SALTO missions observations and trends

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, Robert, E-mail: r.krivanek@iaea.org [Operational Safety Section, Department of Nuclear Safety and Security, International Atomic Energy Agency (IAEA), Vienna 1400 (Austria); Havel, Radim, E-mail: Radim.Havel@gmail.com [RESCO, Nitranska 894/8, 10100 Praha 10 (Czech Republic)

    2016-08-15

    Highlights: • During the period 2005–mid 2015, 22 SALTO peer review missions and 2 LTO modules of OSART missions were conducted. • Analysis of these mission results and main trends observed are gathered in this paper. • The main task of the assessment performed was to evaluate and give a weight to the evaluation. • Results of SALTO follow-up missions as well as OSART follow-up missions with LTO module are summarized. • The SALTO peer review service is strongly recommended for NPPs prior to entering LTO period. - Abstract: This paper builds on paper “Long term operation of nuclear power plants – IAEA SALTO peer review service and its results”, NED8070, presented in Nuclear Engineering and Design in September 2014. This paper presents the analysis of SALTO mission results and main trends observed so that all the most important results of SALTO missions are gathered in one paper. The paper also includes the results of LTO module reviews performed in the frame of OSART missions where applicable as well as follow-up missions. This paper is divided in three main Sections. Section 1 provides brief introduction to SALTO peer review service. Section 2 provides overview of performed SALTO missions and LTO modules of OSART missions performed between 2005 and mid-2015. Section 3 summarizes the most significant observations and trends resulting from the missions between 2005 and mid-2015. Section 4 summarizes the results of SALTO follow-up missions as well as OSART follow-up missions.

  6. The Mission Partner Environment: Challenges To Multinational Information Sharing

    Science.gov (United States)

    2016-02-15

    four regional commands (Africa Command, Central Command, European Command, and Pacific Command). On behalf of their powerful 4-star combatant...nations, and the U.S. DoD’s Assistant Secretary of Defense ( ASD ) for Networks and Information Integration (NII).12 While this arrangement attempted to...leadership to seek a more coherent and enduring approach to information sharing. As ISAF expanded operations throughout the country, it added more

  7. Astronaut John Young during final suiting operations for Apollo 10 mission

    Science.gov (United States)

    1969-01-01

    A technician attaches hose from test stand to spacesuit of Astronaut John W. Young, Apollo 10 command module pilot, during final suiting operations for the Apollo 10 lunar orbit mission. Another technician makes adjustment behind Young.

  8. CCSDS SM and C Mission Operations Interoperability Prototype

    Science.gov (United States)

    Lucord, Steven A.

    2010-01-01

    This slide presentation reviews the prototype of the Spacecraft Monitor and Control (SM&C) Operations for interoperability among other space agencies. This particular prototype uses the German Space Agency (DLR) to test the ideas for interagency coordination.

  9. Microhematuria Associated with a Special Operations Craft Mission

    National Research Council Canada - National Science Library

    Hodgdon, James A; Walsh, Brandon J; Hackney, Anthony C

    2004-01-01

    .... In order to determine whether or not a similar hematuria accompanies mechanical shock exposure associated with small boat operations in the open ocean, urinary variables were measured in two boat crews (total N = 12...

  10. Probabilistic Verification of Multi-Robot Missions in Uncertain Environments

    Science.gov (United States)

    2015-11-01

    has been used to measure the environment, including any dynamic obstacles. However, no matter how the model originates, this approach is based on...modeled as bivariate Gaussian distributions and estimated by calibration measurements . The Robot process model is described in prior work [13...sn〉 (pR,pE)(obR) = In〈pR〉〈p〉 ; In〈pE〉〈e〉 ; ( Gtr〈 d(p,e), sr〉〈p1〉 ; Out〈obR,p1〉 | Lte 〈 d(p,e), sr〉〈p2〉 ; Out〈obR, sn+p2 〉 ) ; Sensors

  11. Integrating Mission Type Orders into Operational Level Intelligence Collection

    Science.gov (United States)

    2011-05-27

    Techniques, and Procedures U.S. United States UAS Unmanned Aircraft System UAV Unmanned Aerial Vehicle UNICORN Unified Collection Operation Reporting...MTOs. If these suggestions result in doctrinal changes, that will help grow the amount of existing literature pertaining to this topic. Existing...SIUs), Air Force ISR liaison officers (ISRLOs), and operational collection managers began maturing processes and growing techniques for employing MTOs.2

  12. The Preparation for and Execution of Engineering Operations for the Mars Curiosity Rover Mission

    Science.gov (United States)

    Samuels, Jessica A.

    2013-01-01

    The Mars Science Laboratory Curiosity Rover mission is the most complex and scientifically packed rover that has ever been operated on the surface of Mars. The preparation leading up to the surface mission involved various tests, contingency planning and integration of plans between various teams and scientists for determining how operation of the spacecraft (s/c) would be facilitated. In addition, a focused set of initial set of health checks needed to be defined and created in order to ensure successful operation of rover subsystems before embarking on a two year science journey. This paper will define the role and responsibilities of the Engineering Operations team, the process involved in preparing the team for rover surface operations, the predefined engineering activities performed during the early portion of the mission, and the evaluation process used for initial and day to day spacecraft operational assessment.

  13. Balancing burn-in and mission times in environments with catastrophic and repairable failures

    International Nuclear Information System (INIS)

    Bebbington, Mark; Lai, C.-D.; Zitikis, Ricardas

    2009-01-01

    In a system subject to both repairable and catastrophic (i.e., nonrepairable) failures, 'mission success' can be defined as operating for a specified time without a catastrophic failure. We examine the effect of a burn-in process of duration τ on the mission time x, and also on the probability of mission success, by introducing several functions and surfaces on the (τ,x)-plane whose extrema represent suitable choices for the best burn-in time, and the best burn-in time for a desired mission time. The corresponding curvature functions and surfaces provide information about probabilities and expectations related to these burn-in and mission times. Theoretical considerations are illustrated with both parametric and, separating the failures by failure mode, nonparametric analyses of a data set, and graphical visualization of results.

  14. Cost management in a nuclear operating environment

    International Nuclear Information System (INIS)

    Steckel, J.K.; Gruber, C.O.

    1985-01-01

    This paper presents an integrated philosophy and program for managing costs in a nuclear operating environment. The ideas presented here are being used by Pennsyvania Power and Light Company (PPandL) at the Susquehanna Steam Electric Station. Three basic ideas necessary to successful cost management are listed and include: recognize the framework that is needed to ''manage'': treat cost as part of an integrated plan; and apply different techniques to different types of work activities. It is the author's opinion that the technical framework of a successful cost management system must include all work activities but recognize types. Project activities should be managed to a defined scope and authorized cost using a well communicated estimating program, aggressive trending and forecasting, and a change identification process

  15. Opals: Mission System Operations Architecture for an Optical Communications Demonstration on the ISS

    Science.gov (United States)

    Abrahamson, Matthew J.; Sindiy, Oleg V.; Oaida, Bogdan V.; Fregoso, Santos; Bowles-Martinez, Jessica N.; Kokorowski, Michael; Wilkerson, Marcus W.; Konyha, Alexander L.

    2014-01-01

    In April of 2014, the Optical PAyload for Lasercomm Science (OPALS) Flight System (FS) launched to the International Space Station (ISS) to demonstrate space-to-ground optical communications. During a planned 90-day baseline mission, the OPALS FS will downlink high quality, short duration videos to the Optical Communications Telescope Laboratory (OCTL) ground station in Wrightwood, California. Interfaces to the ISS payload operations infrastructure have been established to facilitate activity planning, hazardous laser operations, commanding, and telemetry transmission. In addition, internal processes, such as pointing prediction and data processing, satisfy the technical requirements of the mission. The OPALS operations team participates in Operational Readiness Tests (ORTs) with external partners to exercise coordination processes and train for the overall mission. The ORTs have provided valuable insight into operational considerations for the instrument on the ISS.

  16. Carrington-L5: The UK/US Space Weather Operational Mission.

    Science.gov (United States)

    Bisi, M. M.; Trichas, M.

    2015-12-01

    Airbus Defence and Space (UK) have carried out a study for an operational L5 space weather mission, in collaboration with RAL, the UK Met Office, UCL and Imperial College London. The study looked at the user requirements for an operational mission, a model instrument payload, and a mission/spacecraft concept. A particular focus is cost effectiveness and timelineness of the data, suitable for operational forecasting needs. The study focussed on a mission at L5 assuming that a US mission to L1 will already occur, on the basis that L5 offers the greatest benefit for SWE predictions. The baseline payload has been selected to address all MOSWOC/SWPC priorities using UK/US instruments, consisting of: a heliospheric imager, coronagraph, EUV imager, magnetograph, magnetometer, solar wind analyser and radiation monitor. The platform is based on extensive re-use from Airbus' past missions to minimize the cost and a Falcon-9 launcher has been selected on the same basis. A schedule analysis shows that the earliest launch could occur in 2020, assuming Phase A KO in 2015. The study team have selected the name "Carrington" for the mission, reflecting the UK's proud history in this domain.

  17. Pakistan Earthquake Relief Operations: Leveraging Humanitarian Missions for Strategic Success

    Science.gov (United States)

    2010-12-01

    PRISM 2, no. 1 leSSoNS leaRNed | 131 On Christmas morning 2005, at Saint Patrick’s Catholic Church in Auckland , New Zealand, a priest stepped up to... economically difficult to sustain. However, the HA/DR cam- paign in Pakistan, Operation Lifeline, provides a useful model of how humanitarian...35 The two field hospitals became symbols of the American-Pakistani military partnership and an asymmetric advantage for the United States as

  18. EOS Aqua: Mission Status at the Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) Meeting at the Kennedy Space Center (KSC)

    Science.gov (United States)

    Guit, Bill

    2017-01-01

    This presentation at the Earth Science Constellation Mission Operations Working Group meeting at KSC in December 2017 to discuss EOS (Earth Observing System) Aqua Earth Science Constellation status. Reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  19. Cost and Operational Effectiveness Analysis of Aiternative Force Structures for Fulfillment of the United States Marine Corps Operational Support Airlift and Search and Rescue Missions

    National Research Council Canada - National Science Library

    Chase, Eric

    2000-01-01

    This thesis provides a preliminary cost and operational effectiveness analysis of alternative force structures for the United States Marine Corps operational support airlift and search and rescue missions...

  20. An operating environment for control systems on transputer networks

    NARCIS (Netherlands)

    Tillema, H.G.; Schoute, Albert L.; Wijbrans, K.C.J.; Wijbrans, K.C.J.

    1991-01-01

    The article describes an operating environment for control systems. The environment contains the basic layers of a distributed operating system. The design of this operating environment is based on the requirements demanded by controllers which can be found in complex control systems. Due to the

  1. Evaluation of Crew-Centric Onboard Mission Operations Planning and Execution Tool: Year 2

    Science.gov (United States)

    Hillenius, S.; Marquez, J.; Korth, D.; Rosenbaum, M.; Deliz, Ivy; Kanefsky, Bob; Zheng, Jimin

    2018-01-01

    Currently, mission planning for the International Space Station (ISS) is largely affected by ground operators in mission control. The task of creating a week-long mission plan for ISS crew takes dozens of people multiple days to complete, and is often created far in advance of its execution. As such, re-planning or adapting to changing real-time constraints or emergent issues is similarly taxing. As we design for future mission operations concepts to other planets or areas with limited connectivity to Earth, more of these ground-based tasks will need to be handled autonomously by the crew onboard.There is a need for a highly usable (including low training time) tool that enables efficient self-scheduling and execution within a single package. The ISS Program has identified Playbook as a potential option. It already has high crew acceptance as a plan viewer from previous analogs and can now support a crew self-scheduling assessment on ISS or on another mission. The goals of this work, a collaboration between the Human Research Program and the ISS Program, are to inform the design of systems for more autonomous crew operations and provide a platform for research on crew autonomy for future deep space missions. Our second year of the research effort have included new insights on the crew self-scheduling sessions performed by the crew through use on the HERA (Human Exploration Research Analog) and NEEMO (NASA Extreme Environment Mission Operations) analogs. Use on the NEEMO analog involved two self-scheduling strategies where the crew planned and executed two days of EVAs (Extra-Vehicular Activities). On HERA year two represented the first HERA campaign where we were able to perform research tasks. This involved selected flexible activities that the crew could schedule, mock timelines where the crew completed more complex planning exercises, usability evaluation of the crew self-scheduling features, and more insights into the limit of plan complexity that the crew

  2. OSART mission highlights 2001-2003. Operational safety practices in nuclear power plants

    International Nuclear Information System (INIS)

    2005-05-01

    The IAEA Operational Safety Review Team (OSART) programme provides advice and assistance to Member States in enhancing the operational safety of nuclear power plants (NPPs). Careful design and high quality of construction are prerequisites for a safe nuclear power plant. However, a plant's safety depends ultimately on the ability and conscientiousness of the operating personnel and on the plant programmes, processes and working methods. An OSART mission compares a facility's operational performance with IAEA Safety Standards and proven good international practices. The OSART reviews are available to all countries with nuclear power plants in operation, but also approaching operation, commissioning or in earlier stages of construction (Pre-OSART). Most countries have participated in the programme by hosting one or more OSART missions or by making experts available to participate in missions. Operational safety missions can also be part of the design review missions of nuclear power plants and are known as Safety Review Missions (SRMs). Teams that review only a few specific areas or a specific issue are called Expert missions. Follow-up visits are a standard part of the OSART programme and are conducted between 12 to 18 months following the OSART mission. This report continues the practice of summarizing mission results so that all the aspects of OSART missions, Pre-OSART missions and OSART good practices are to be found in one document. It also includes the results of follow-up visits. Attempts have been made in this report to highlight the most significant findings while retaining as much of the vital background information as possible. This report is in three parts: Part I summarizes the most significant observations made during the missions and follow-up visits between 2001 and 2003; Part II, in chronological order, reviews the major strengths and opportunities for improvement identified during each OSART mission and summarizes the follow-up visits performed

  3. IUS/TUG orbital operations and mission support study. Volume 4: Project planning data

    Science.gov (United States)

    1975-01-01

    Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.

  4. Joint Space Operations Center (JSpOC) Mission System (JMS)

    Science.gov (United States)

    Morton, M.; Roberts, T.

    2011-09-01

    US space capabilities benefit the economy, national security, international relationships, scientific discovery, and our quality of life. Realizing these space responsibilities is challenging not only because the space domain is increasingly congested, contested, and competitive but is further complicated by the legacy space situational awareness (SSA) systems approaching end of life and inability to provide the breadth of SSA and command and control (C2) of space forces in this challenging domain. JMS will provide the capabilities to effectively employ space forces in this challenging domain. Requirements for JMS were developed based on regular, on-going engagement with the warfighter. The use of DoD Architecture Framework (DoDAF) products facilitated requirements scoping and understanding and transferred directly to defining and documenting the requirements in the approved Capability Development Document (CDD). As part of the risk reduction efforts, the Electronic System Center (ESC) JMS System Program Office (SPO) fielded JMS Capability Package (CP) 0 which includes an initial service oriented architecture (SOA) and user defined operational picture (UDOP) along with force status, sensor management, and analysis tools. Development efforts are planned to leverage and integrate prototypes and other research projects from Defense Advanced Research Projects Agency, Air Force Research Laboratories, Space Innovation and Development Center, and Massachusetts Institute of Technology/Lincoln Laboratories. JMS provides a number of benefits to the space community: a reduction in operational “transaction time” to accomplish key activities and processes; ability to process the increased volume of metric observations from new sensors (e.g., SBSS, SST, Space Fence), as well as owner/operator ephemerides thus enhancing the high accuracy near-real-time catalog, and greater automation of SSA data sharing supporting collaboration with government, civil, commercial, and foreign

  5. Crisis assistance to nuclear operators: the manufacturer missions and methods

    International Nuclear Information System (INIS)

    Touati, J.

    1995-01-01

    Since 1985, the Framatome Company has provided to Electricite de France (EDF) a technical assistance in the case of major accident on a nuclear power plant. During the accident crisis, Framatome establishes a diagnosis and a forecast about the installation state and proposes the safest solutions to the operator for a limitation of accident consequences. Different tools have been developed by Framatome to identify the consequences of electric power outages or to control the state of coolant circuits using expert systems and a data base about reactor component characteristics. A thermo-hydraulic analysis of the accident is performed by the system, using data transmitted to the crisis center, and hypotheses about the origin of the accident are proposed by the expert. After validation, a classification of risks is established and the best strategy to follow is determined by the system, in particular when non-conventional means are required. (J.S.). 1 fig

  6. Generic procedure for designing and implementing plan management systems for space science missions operations

    Science.gov (United States)

    Chaizy, P. A.; Dimbylow, T. G.; Allan, P. M.; Hapgood, M. A.

    2011-09-01

    This paper is one of the components of a larger framework of activities whose purpose is to improve the performance and productivity of space mission systems, i.e. to increase both what can be achieved and the cost effectiveness of this achievement. Some of these activities introduced the concept of Functional Architecture Module (FAM); FAMs are basic blocks used to build the functional architecture of Plan Management Systems (PMS). They also highlighted the need to involve Science Operations Planning Expertise (SOPE) during the Mission Design Phase (MDP) in order to design and implement efficiently operation planning systems. We define SOPE as the expertise held by people who have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Using ESA's methodology for studying and selecting science missions we also define the MDP as the combination of the Mission Assessment and Mission Definition Phases. However, there is no generic procedure on how to use FAMs efficiently and systematically, for each new mission, in order to analyse the cost and feasibility of new missions as well as to optimise the functional design of new PMS; the purpose of such a procedure is to build more rapidly and cheaply such PMS as well as to make the latter more reliable and cheaper to run. This is why the purpose of this paper is to provide an embryo of such a generic procedure and to show that the latter needs to be applied by people with SOPE during the MDP. The procedure described here proposes some initial guidelines to identify both the various possible high level functional scenarii, for a given set of possible requirements, and the information that needs to be associated with each scenario. It also introduces the concept of catalogue of generic functional scenarii of PMS for space science missions. The information associated with each catalogued scenarii will have been identified by the above procedure and

  7. Radiological risks in an operational environment

    International Nuclear Information System (INIS)

    Castagnet, X.; Lafferrerie, C.; Amabile, J.C.; Cazoulat, A.; Laroche, P.

    2010-01-01

    A radiological hazard (e. g. a detonating dirty bomb or accidental radionuclide dispersion) leading to a large number of contaminated or irradiated people needing immediate medical assistance is one of the main threats our troops deployed in an operational environment are facing. Immediate first aid anyway shall take precedence over decontamination but the unique nature of these injuries necessitates specific medical knowledge and training. A contaminated victim needs a rapid -clinical physical and biological- medical evaluation which will determine the amount of required medical support. A person with external contamination needs to be rapidly cleansed to limit spreading surface burns as well as limiting the possible contamination internally spreading into the body. A person with internal contamination requires rapid decontamination at the wound point and antidotes to internally cleanse the body. In France, the Military Health Service has developed a centre of expertise at the Percy military hospital near Paris which is geared up to deal with the victims of radiological attacks. It also has a mobile laboratory equipped with full radio toxicology equipment and body dosimeters to enable rapid and effective results when required. (authors)

  8. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    International Nuclear Information System (INIS)

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A.; Normand, Eugene

    2006-01-01

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided

  9. IAEA Leads Operational Safety Mission To Gravelines Nuclear Power Plant, France

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An IAEA-led international team of experts today began an in-depth operational safety review of the Gravelines Nuclear Power Plant in France. The review, conducted at the invitation of the French government, focuses on programmes and activities essential to the safe operation of the nuclear power plant. The three-week review will cover the areas of Management, Organization and Administration; Training and Qualification; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry; Emergency Planning and Preparedness; and Severe Accident Management. The conclusions of the review will be based on the IAEA Safety Standards and on well-established international good practices. The mission is not a regulatory inspection, a design review or a substitute for an exhaustive assessment of the plant's overall safety status. The team, led by the IAEA's Division of Nuclear Installation Safety, comprises experts from Bulgaria, China, Germany, Hungary, Japan, Romania, Slovakia, South Africa, Spain and Ukraine. The Gravelines mission is the 173rd conducted as part of the IAEA's Operational Safety Review Team programme, which began in 1982. France participates actively in the programme and the Gravelines mission is the 24th hosted by the country. General information about OSART missions can be found on the IAEA Website: OSART Missions. (IAEA)

  10. Carrington-L5: The UK/US Operational Space Weather Monitoring Mission

    Science.gov (United States)

    Trichas, Markos; Gibbs, Mark; Harrison, Richard; Green, Lucie; Eastwood, Jonathan; Bentley, Bob; Bisi, Mario; Bogdanova, Yulia; Davies, Jackie; D'Arrigo, Paolo; Eyles, Chris; Fazakerley, Andrew; Hapgood, Mike; Jackson, David; Kataria, Dhiren; Monchieri, Emanuele; Windred, Phil

    2015-06-01

    Airbus Defence and Space (UK) has carried out a study to investigate the possibilities for an operational space weather mission, in collaboration with the Met Office, RAL, MSSL and Imperial College London. The study looked at the user requirements for an operational mission, a model instrument payload, and a mission/spacecraft concept. A particular focus is cost effectiveness and timelineness of the data, suitable for 24/7 operational forecasting needs. We have focussed on a mission at L5 assuming that a mission to L1 will already occur, on the basis that L5 (Earth trailing) offers the greatest benefit for the earliest possible warning on hazardous SWE events and the most accurate SWE predictions. The baseline payload has been selected to cover all UK Met Office/NOAA's users priorities for L5 using instruments with extensive UK/US heritage, consisting of: heliospheric imager, coronograph, magnetograph, magnetometer, solar wind analyser and radiation monitor. The platform and subsystems are based on extensive re-use from past Airbus Defence and Space spacecraft to minimize the development cost and a Falcon-9 launcher has been selected on the same basis. A schedule analysis shows that the earliest launch could be achieved by 2020, assuming Phase A kick-off in 2015-2016. The study team have selected the name "Carrington" for the mission, reflecting the UK's proud history in this domain.

  11. Statistics of AUV's Missions for Operational Ocean Observation at the South Brazilian Bight.

    Science.gov (United States)

    dos Santos, F. A.; São Tiago, P. M.; Oliveira, A. L. S. C.; Barmak, R. B.; Miranda, T. C.; Guerra, L. A. A.

    2016-02-01

    The high costs and logistics limitations of ship-based data collection represent an obstacle for a persistent in-situ data collection. Satellite-operated Autonomous Underwater Vehicles (AUV's) or gliders (as these AUV's are generally known by the scientific community) are presented as an inexpensive and reliable alternative to perform long-term and real-time ocean monitoring of important parameters such as temperature, salinity, water-quality and acoustics. This work is focused on the performance statistics and the reliability for continuous operation of a fleet of seven gliders navigating in Santos Basin - Brazil, since March 2013. The gliders performance were evaluated by the number of standby days versus the number of operating days, the number of interrupted missions due to (1) equipment failure, (2) weather, (3) accident versus the number of successful missions and the amount and quality of data collected. From the start of the operations in March 2013 to the preparation of this work (July 2015), a total of 16 glider missions were accomplished, operating during 728 of the 729 days passed since then. From this total, 11 missions were successful, 3 missions were interrupted due to equipment failure and 2 gliders were lost. Most of the identified issues were observed in the communication with the glider (when recovery was necessary) or the optode sensors (when remote settings solved the problem). The average duration of a successful mission was 103 days while interrupted ones ended on average in 7 days. The longest mission lasted for 139 days, performing 859 continuous profiles and covering a distance of 2734 Km. The 2 projects performed together 6856 dives, providing an average of 9,5 profiles per day or one profile every 2,5 hours each day during 2 consecutive years.

  12. Concepts of Operations for Asteroid Rendezvous Missions Focused on Resources Utilization

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Sanders, Gerald B.; Jones, Christopher A.

    2014-01-01

    Several asteroids are the targets of international robotic space missions currently manifested or in the planning stage. This global interest reflects a need to study these celestial bodies for the scientific information they provide about our solar system, and to better understand how to mitigate the collision threats some of them pose to Earth. Another important objective of these missions is providing assessments of the potential resources that asteroids could provide to future space architectures. In this paper, we examine a series of possible mission operations focused on advancing both our knowledge of the types of asteroids suited for different forms of resource extraction, and the capabilities required to extract those resources for mission enhancing and enabling uses such as radiation protection, propulsion, life support, shelter and manufacturing. An evolutionary development and demonstration approach is recommended within the framework of a larger campaign that prepares for the first landings of humans on Mars. As is the case for terrestrial mining, the development and demonstration approach progresses from resource prospecting (understanding the resource, and mapping the 'ore body'), mining/extraction feasibility and product assessment, pilot operations, to full in-situ resource utilization (ISRU). Opportunities to gather specific knowledge for ISRU via resource prospecting during science missions to asteroids are also examined to maximize the pace of development of needed ISRU capabilities and technologies for deep space missions.

  13. Cryosat: ESA's ice Explorer Mission. 7 years in operations: status and future outlook

    Science.gov (United States)

    Parrinello, Tommaso

    2017-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. Since its launch, CryoSat data has been used by different scientific communities on a number of Earth Science topics also beyond its prime mission objectives, cryosphere. Scope of this paper is to describe the current mission status and provide programmatic highlights and information on the next development of the mission in its extended period of operations (2017-2019).

  14. Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Lim, Darlene; Deans, Matthew; Cook, Amanda; Roush, Ted; Skok, J. R.; Button, Nicole E.; Karunatillake, S.; Stoker, Carol; Marquez, Jessica J.; Shirley, Mark; Kobayashi, Linda; Lees, David; Bresina, John; Hunt, Rusty

    2016-08-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal of producing critical knowledge for conducting robotic exploration of the Moon. Specifically, MVP focuses on studying a lunar mission analog to characterize the form and distribution of lunar volatiles. Although lunar volatiles are known to be present near the poles of the Moon, the three dimensional distribution and physical characteristics of lunar polar volatiles are largely unknown. A landed mission with the ability to traverse the lunar surface is thus required to characterize the spatial distribution of lunar polar volatiles. NASA's Resource Prospector (RP) mission is a lunar polar rover mission that will operate primarily in sunlit regions near a lunar pole with near-real time operations to characterize the vertical and horizontal distribution of volatiles. The MVP project was conducted as a field campaign relevant to the RP lunar mission to provide science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. To achieve these goals, the MVP project conducted a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural environment with an unknown volatile distribution within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon.

  15. AUTONOMOUS UNMANNED HELICOPTER SYSTEM FOR REMOTE SENSING MISSIONS IN UNKNOWN ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    T. Merz

    2012-09-01

    Full Text Available This paper presents the design of an autonomous unmanned helicopter system for low-altitude remote sensing. The proposed concepts and methods are generic and not limited to a specific helicopter. The development was driven by the need for a dependable, modular, and affordable system with sufficient payload capacity suitable for both research and real-world deployment. The helicopter can be safely operated without a backup pilot in a contained area beyond visual range. This enables data collection in inaccessible or dangerous areas. Thanks to its terrain following and obstacle avoidance capability, the system does not require a priori information about terrain elevation and obstacles. Missions are specified in state diagrams and flight plans. We present performance characteristics of our system and show results of its deployment in real-world scenarios. We have successfully completed several dozen infrastructure inspection missions and crop monitoring missions facilitating plant phenomics studies.

  16. Operational Risk Management: Increasing Mission Effectiveness Through Improved Planning and Execution of Joint Operations

    National Research Council Canada - National Science Library

    Beckvonpeccoz, Stephen

    1997-01-01

    .... This deficiency should be remedied with the adoption of Operational Risk Management (ORM), an existing process which would provide operational commanders a tool for making smarter risk decisions...

  17. Advanced software development workstation: Object-oriented methodologies and applications for flight planning and mission operations

    Science.gov (United States)

    Izygon, Michel

    1993-01-01

    The work accomplished during the past nine months in order to help three different organizations involved in Flight Planning and in Mission Operations systems, to transition to Object-Oriented Technology, by adopting one of the currently most widely used Object-Oriented analysis and Design Methodology is summarized.

  18. SSRPT (SSR Pointer Trackeer) for Cassini Mission Operations - A Ground Data Analysis Tool

    Science.gov (United States)

    Kan, E.

    1998-01-01

    Tracking the resources of the two redundant Solid State Recorders (SSR) is a necessary routine for Cassini spacecraft mission operations. Instead of relying on a full-fledged spacecraft hardware/software simulator to track and predict the SSR recording and playback pointer positions, a stand-alone SSR Pointer Tracker tool was developed as part of JPL's Multimission Spacecraft Analysis system.

  19. Desert Rats 2011 Mission Simulation: Effects of Microgravity Operational Modes on Fields Geology Capabilities

    Science.gov (United States)

    Bleacher, Jacob E.; Hurtado, J. M., Jr.; Meyer, J. A.

    2012-01-01

    Desert Research and Technology Studies (DRATS) is a multi-year series of NASA tests that deploy planetary surface hardware and exercise mission and science operations in difficult conditions to advance human and robotic exploration capabilities. DRATS 2011 (Aug. 30-Sept. 9, 2011) tested strategies for human exploration of microgravity targets such as near-Earth asteroids (NEAs). Here we report the crew perspective on the impact of simulated microgravity operations on our capability to conduct field geology.

  20. Guidance system operations plan for manned CM earth orbital missions using program SKYLARK 1. Section 4: Operational modes

    Science.gov (United States)

    Dunbar, J. C.

    1972-01-01

    The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.

  1. Design, qualification and operation of nuclear rockets for safe Mars missions

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.W.; Olson, T.S.; Redd, L.R.

    1993-01-01

    Nuclear thermal propulsion modules planned for use on crew missions to Mars improve mission reliability and overall safety of the mission. This, as well as all other systems, are greatly enhanced if the system specifications take into account safety from design initiation, and operational considerations are well thought through and applied. For instance, the use of multiple engines in the propulsion module can lead to very high system safety and reliability. Operational safety enhancements may include: the use of multiple perigee burns, thus allowing time to ensure that all systems are functioning properly prior to departure from Earth orbit; the ability to perform all other parts of the mission in a degraded mode with little or no degradation of the mission; and the safe disposal of the nuclear propulsion module in a heliocentric orbit out of the ecliptic plane. The standards used to qualify nuclear rockets are one of the main cost drivers of the program. Concepts and systems that minimize cost and risk will rely on use of the element and component levels to demonstrate technology readiness and validation. Subsystem or systems testing then is only needed for verification of performance. Also, these will be the safest concepts because they will be more thoroughly understood and the safety margins will be well established and confirmed by tests

  2. The flyby of Rosetta at asteroid Šteins - mission and science operations

    Science.gov (United States)

    Accomazzo, Andrea; Wirth, Kristin R.; Lodiot, Sylvain; Küppers, Michael; Schwehm, Gerhard

    2010-07-01

    The international Rosetta mission, a cornerstone mission of the european space agency scientific Programme, was launched on 2nd March 2004 on its 10 years journey towards a rendezvous with comet Churyumov-Gerasimenko ( Gardini et al., 1999). During its interplanetary flight towards its target Rosetta crosses the asteroid belt twice with the opportunity to observe at close quarters two asteroids: (2867)-Šteins in 2008 and (21)-Lutetia in 2010. The spacecraft design was such that these opportunities could be fully exploited to deliver valuable data to the scientific community. The mission trajectory was controlled such that Rosetta would fly next to asteroid Šteins on the 5th of September 2008 with a relative speed of 8.6 km/s at a minimum distance of 800 km. Mission operations have been carefully planned to achieve the best possible flyby scenario and scientific outcome. The flyby scenario, the optical navigation campaign, and the planning of the scientific observations had to be adapted by the Mission and the Science Operations Centres to the demanding requirements expressed by the scientific community. The flyby was conducted as planned with a large number of successful observations.

  3. Communications During Critical Mission Operations: Preparing for InSight's Landing on Mars

    Science.gov (United States)

    Asmar, Sami; Oudrhiri, Kamal; Kurtik, Susan; Weinstein-Weiss, Stacy

    2014-01-01

    Radio communications with deep space missions are often taken for granted due to the impressively successful records since, for decades, the technology and infrastructure have been developed for ground and flight systems to optimize telemetry and commanding. During mission-critical events such as the entry, descent, and landing of a spacecraft on the surface of Mars, the signal's level and frequency dynamics vary significantly and typically exceed the threshold of the budgeted links. The challenge is increased when spacecraft shed antennas with heat shields and other hardware during those risky few minutes. We have in the past successfully received signals on Earth during critical events even ones not intended for ground reception. These included the UHF signal transmitted by Curiosity to Marsorbiting assets. Since NASA's Deep Space Network does not operate in the UHF band, large radio telescopes around the world are utilized. The Australian CSIRO Parkes Radio Telescope supported the Curiosity UHF signal reception and DSN receivers, tools, and expertise were used in the process. In preparation for the InSight mission's landing on Mars in 2016, preparations are underway to support the UHF communications. This paper presents communication scenarios with radio telescopes, and the DSN receiver and tools. It also discusses the usefulness of the real-time information content for better response time by the mission team towards successful mission operations.

  4. Revitalizing Nuclear Operations in the Joint Environment

    Science.gov (United States)

    2014-02-01

    height of the Cold War, US schol - ars and joint operational planners were working simultaneously on weapons development and operational art to employ...leadership’s large-target- category withholds thought necessary to maintain stability in a strategic crisis. The inclusion of nuclear effects and...escalation. The inclusion of these points in tomorrow’s doctrine as well as an intellec- tual discussion on the topic will inform Joint Staff planners

  5. OSART mission highlights 1989-1990: Operational safety practices in nuclear power plants

    International Nuclear Information System (INIS)

    1992-12-01

    The IAEA Operational Safety Review Team (OSART) programme provides advice and assistance to Member States in enhancing the operational safety of nuclear power plants. OSART reviews are available to all countries with nuclear power plants in operation or approaching operation. Most of these countries have participated in the programme, by hosting one or more OSART missions or by making experts available to participate in missions. Careful design and high quality of construction are prerequisites for a safe nuclear power plant. However, a plant's safety depends ultimately on the ability and conscientiousness of the operating personnel and on their tools and work methods. OSART missions assess a facility's operational practices in comparison with those used successfully in other countries, and exchange, at the working level, ideas for promoting safety. Both the plants reviewed and the organizations providing experts have benefited from the programme. The observations of the OSART members are documented in technical notes which are then used as source material for the official OSART Report submitted to the government of the host country. The technical notes contain recommendations for improvements and descriptions of recommendable good practices. The same notes have been used to compile the present summary report which is intended for wide distribution to all organizations constructing, operating or regulating nuclear power plants. This report is the fourth in a series following IAEA-TECDOC-458, IAEA-TECDOC-497 and IAEA-TECDOC-570 and covers the period June 1989 to December 1990. Reference is also made to a summary report of Pre-OSART missions, which is in preparation. In addition, a report presenting OSART Good Practices has been published (IAEA-TECDOC-605)

  6. Operational security in a grid environment

    CERN Document Server

    CERN. Geneva

    2008-01-01

    This talk presents the main goals of computer security in a grid environment, by using a FAQ approach. It details the evolution of the risks in the recent years, likely objectives for attackers and the progress made by the malware toolkits and frameworks. Finally, recommendations to deal with these threats are proposed.

  7. Operational Risk Defined Through a Complex Operating Environment

    Science.gov (United States)

    2015-02-26

    analysis . But the report noted that “CJTF-HOA’s presence in Africa offers benefits such as its ability to respond to contingencies, provide forces for...18 Analysis ...Development JOPP Joint Operations Planning Process NGO Non-Governmental Organization PRC Profitable Risk Control SWOT Strengths, Weaknesses

  8. Understanding cost growth during operations of planetary missions: An explanation of changes

    Science.gov (United States)

    McNeill, J. F.; Chapman, E. L.; Sklar, M. E.

    In the development of project cost estimates for interplanetary missions, considerable focus is generally given to the development of cost estimates for the development of ground, flight, and launch systems, i.e., Phases B, C, and D. Depending on the project team, efforts expended to develop cost estimates for operations (Phase E) may be relatively less rigorous than that devoted to estimates for ground and flight systems development. Furthermore, the project team may be challenged to develop a solid estimate of operations cost in the early stages of mission development, e.g., Concept Study Report or Systems Requirement Review (CSR/SRR), Preliminary Design Review (PDR), as mission specific peculiarities that impact cost may not be well understood. In addition, a methodology generally used to develop Phase E cost is engineering build-up, also known as “ grass roots” . Phase E can include cost and schedule risks that are not anticipated at the time of the major milestone reviews prior to launch. If not incorporated into the engineering build-up cost method for Phase E, this may translate into an estimation of the complexity of operations and overall cost estimates that are not mature and at worse, insufficient. As a result, projects may find themselves with thin reserves during cruise and on-orbit operations or project overruns prior to the end of mission. This paper examines a set of interplanetary missions in an effort to better understand the reasons for cost and staffing growth in Phase E. The method used in the study is discussed as well as the major findings summarized as the Phase E Explanation of Change (EoC). Research for the study entailed the review of project materials, including Estimates at Completion (EAC) for Phase E and staffing profiles, major project milestone reviews, e.g., CSR, PDR, Critical Design Review (CDR), the interviewing of select project and mission management, and review of Phase E replan materials. From this work, a detai- ed

  9. Visual operations control in administrative environments

    Energy Technology Data Exchange (ETDEWEB)

    Carson, M.L.; Levine, L.O.

    1995-03-01

    When asked what comes to mind when they think of ``controlling work`` in the office, people may respond with ``overbearing boss,`` ``no autonomy,`` or ``Theory X management.`` The idea of controlling work in white collar or administrative environments can have a negative connotation. However, office life is often chaotic and miserable precisely because the work processes are out of control, and managers must spend their time looking over people`s shoulders and fighting fires. While management styles and structures vary, the need for control of work processes does not. Workers in many environments are being reorganized into self-managed work teams. These teams are expected to manage their own work through increased autonomy and empowerment. However, even empowered work teams must manage their work processes because of process variation. The amount of incoming jobs vary with both expected (seasonal) and unexpected demand. The mixture of job types vary over time, changing the need for certain skills or knowledge. And illness and turnover affect the availability of workers with needed skills and knowledge. Clearly, there is still a need to control work, whether the authority for controlling work is vested in one person or many. Visual control concepts provide simple, inexpensive, and flexible mechanisms for managing processes in work teams and continuous improvement administrative environments.

  10. A new systems engineering approach to streamlined science and mission operations for the Far Ultraviolet Spectroscopic Explorer (FUSE)

    Science.gov (United States)

    Butler, Madeline J.; Sonneborn, George; Perkins, Dorothy C.

    1994-01-01

    The Mission Operations and Data Systems Directorate (MO&DSD, Code 500), the Space Sciences Directorate (Code 600), and the Flight Projects Directorate (Code 400) have developed a new approach to combine the science and mission operations for the FUSE mission. FUSE, the last of the Delta-class Explorer missions, will obtain high resolution far ultraviolet spectra (910 - 1220 A) of stellar and extragalactic sources to study the evolution of galaxies and conditions in the early universe. FUSE will be launched in 2000 into a 24-hour highly eccentric orbit. Science operations will be conducted in real time for 16-18 hours per day, in a manner similar to the operations performed today for the International Ultraviolet Explorer. In a radical departure from previous missions, the operations concept combines spacecraft and science operations and data processing functions in a single facility to be housed in the Laboratory for Astronomy and Solar Physics (Code 680). A small missions operations team will provide the spacecraft control, telescope operations and data handling functions in a facility designated as the Science and Mission Operations Center (SMOC). This approach will utilize the Transportable Payload Operations Control Center (TPOCC) architecture for both spacecraft and instrument commanding. Other concepts of integrated operations being developed by the Code 500 Renaissance Project will also be employed for the FUSE SMOC. The primary objective of this approach is to reduce development and mission operations costs. The operations concept, integration of mission and science operations, and extensive use of existing hardware and software tools will decrease both development and operations costs extensively. This paper describes the FUSE operations concept, discusses the systems engineering approach used for its development, and the software, hardware and management tools that will make its implementation feasible.

  11. EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans

    Science.gov (United States)

    Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben

    2012-01-01

    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.

  12. A Peer Sharing Approach to Mission Planning and Development in US Army Tactical Environments

    National Research Council Canada - National Science Library

    Lundy, Jacques

    2002-01-01

    This thesis analyzes the technical and information management environment that United States Army heavy combat tactical units operate in and provides a solution for how the Army's software development...

  13. The Isis operation: working in nuclear environment

    International Nuclear Information System (INIS)

    Hilmoine, R.

    1987-01-01

    After describing the upper internal support structures of the Chinon A3 reactor, difficulties of ISIS operation are presented. The different phases to sort out the problem are: in-core topography, conforming the full-scale mock-up to the repair area, learning on this mock-up and in-core reparation. Robots have a telescopic mast 11 m long, 0.22 m in diameter, completed by jointed arms reaching a radius of 2.7 m. The load carrying capacity is then 70 daN and the repeatability is 0.1 mm. Several tool heads are handled by the robot: telemeter and reconstruction, scouring, welding, screwing. A high level computerized control system is organized around central unit monitoring several local units. It allows automatic or semi-automatic working modes. Our experience in operation and possible improvements are described [fr

  14. Prediction of software operational reliability using testing environment factors

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Seong, Poong Hyun

    1995-01-01

    For many years, many researches have focused on the quantification of software reliability and there are many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. The experiences show that the operational reliability is higher than the test reliability User's interest is on the operational reliability rather than on the test reliability, however. With the assumption that the difference in reliability results from the change of environment, testing environment factors comprising the aging factor and the coverage factor are defined in this study to predict the ultimate operational reliability with the failure data. It is by incorporating test environments applied beyond the operational profile into testing environment factors. The application results are close to the actual data

  15. Real-time data system: Incorporating new technology in mission critical environments

    Science.gov (United States)

    Muratore, John F.; Heindel, Troy A.

    1990-01-01

    If the Space Station Freedom is to remain viable over its 30-year life span, it must be able to incorporate new information systems technologies. These technologies are necessary to enhance mission effectiveness and to enable new NASA missions, such as supporting the Lunar-Mars Initiative. Hi-definition television (HDTV), neural nets, model-based reasoning, advanced languages, CPU designs, and computer networking standards are areas which have been forecasted to make major strides in the next 30 years. A major challenge to NASA is to bring these technologies online without compromising mission safety. In past programs, NASA managers have been understandably reluctant to rely on new technologies for mission critical activities until they are proven in noncritical areas. NASA must develop strategies to allow inflight confidence building and migration of technologies into the trusted tool base. NASA has successfully met this challenge and developed a winning strategy in the Space Shuttle Mission Control Center. This facility, which is clearly among NASA's most critical, is based on 1970's mainframe architecture. Changes to the mainframe are very expensive due to the extensive testing required to prove that changes do not have unanticipated impact on critical processes. Systematic improvement efforts in this facility have been delayed due to this 'risk to change.' In the real-time data system (RTDS) we have introduced a network of engineering computer workstations which run in parallel to the mainframe system. These workstations are located next to flight controller operating positions in mission control and, in some cases, the display units are mounted in the traditional mainframe consoles. This system incorporates several major improvements over the mainframe consoles including automated fault detection by real-time expert systems and color graphic animated schematics of subsystems driven by real-time telemetry. The workstations have the capability of recording

  16. Cryosat: ESA'S Ice Explorer Mission, 6 years in operations: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Maestroni, Elia; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Davidson, Malcolm; Fornari, Marco; Scagliola, Michele

    2016-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 6th years of operational life in April 2016. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and its main scientific achievements. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  17. Cryosat: ESA'S Ice Explorer Mission. Five years in operations: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Mardle, Nicola; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Fornari, Marco; Scagliola, Michele

    2015-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 5th years of operational life in April 2015. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  18. CryoSat: ESA's ice explorer mission. 4 years in operations: status and achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Ortega, B.; Bouffard, J.; Badessi, S.; Frommknecht, B.; Davidson, M.

    2014-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 4th years of operational life in April 2014. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  19. Maritime Interdiction Operations in Logistically Barren Environments

    Science.gov (United States)

    2008-06-01

    risk will be considered here. The risk to the personnel charged with operating the system of systems and the risk that a given system will not be...ionized using Ni63 or Am241.11 The ions are then gated into a drift tube. An electric field in the drift tube causes the ions to drift towards a...5% to 95% non-condensing.15 Other limitations include the need for a clean swab for every sample. There is also the limitation of the battery

  20. Operating systems in the air transportation environment.

    Science.gov (United States)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  1. The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission

    Science.gov (United States)

    Mahaffy, Paul R.; Hodges, R. Richard; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.; hide

    2014-01-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.

  2. The Mercury Thermal Environment As A Design Driver and A Scientific Objective of The Bepicolombo Mission

    Science.gov (United States)

    Perotto, V.; Malosti, T.; Martino, R.; Briccarello, M.; Anselmi, A.

    The thermal environment of Mercury is extremely severe and a strong design driver for any mission to the planet. The main factors are the large amount of energy both di- rectly received from the sun and reflected/re-emitted from the planet, and the variation of such energy with time. The total thermal flux received by an object in orbit or on the surface of Mercury is a combination of the above-mentioned contributions, weighted according to the orbit characteristics, or the morphology of the surface. For a lander mission, the problems are compounded by the uncertainty in the a-priori knowledge of the surface properties and morphology. The thermal design of the orbiting and land- ing elements of the BepiColombo mission has a major role in the Definition Study being carried out under ESA contract by a team led by Alenia Spazio. The project en- compasses a spacecraft in low, near-circular, polar orbit (Mercury Planetary Orbiter, MPO), a spacecraft in high-eccentricity, polar orbit (Mercury Magnetospheric Orbiter, MMO, provided by ISAS, Japan) and a lander (Mercury Surface Element, MSE). The approach to a feasible mission design must rely on several provisions. For the orbiting elements, the orientation of the orbit plane with respect to the line of apsides of the or- bit of Mercury is found to have a major effect on the achievable orbiter temperatures. The spacecraft configuration, and its attitude with respect to the planet and the sun, drive the accommodation of the scientific instruments. Once the optimal orientation, attitude and configuration are determined, specific thermal control solutions must be elaborated, to maintain all components including the instruments in the required tem- perature range. The objective is maximizing the scientific return under constraints such as the available on-board resources and the project budget. A major outcome of the study so far has been the specification of requirements for improved thermal con- trol technologies, which are

  3. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing, and Future Work

    Science.gov (United States)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve

    2016-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from

  4. Perceptions of University Mission Statement and Person-Environment Fit by Osteopathic Medical School Faculty and Staff

    Science.gov (United States)

    Poppre, Beth Anne Edwards

    2017-01-01

    Understanding how university medical school faculty and staff perceive the institution's mission statement, in conjunction with their person-environment fit, can provide administration with useful insight into: employee's match to the institution's mission statement, employee level of organizational commitment, and reasons for retention. This…

  5. Mission Operations Directorate - Success Legacy of the Space Shuttle Program (Overview of the Evolution and Success Stories from MOD During the Space Shuttle program)

    Science.gov (United States)

    Azbell, Jim A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  6. Payload operations management of a planned European SL-Mission employing establishments of ESA and national agencies

    Science.gov (United States)

    Joensson, Rolf; Mueller, Karl L.

    1994-01-01

    Spacelab (SL)-missions with Payload Operations (P/L OPS) from Europe involve numerous space agencies, various ground infrastructure systems and national user organizations. An effective management structure must bring together different entities, facilities and people, but at the same time keep interfaces, costs and schedule under strict control. This paper outlines the management concept for P/L OPS of a planned European SL-mission. The proposal draws on the relevant experience in Europe, which was acquired via the ESA/NASA mission SL-1, by the execution of two German SL-missions and by the involvement in, or the support of, several NASA-missions.

  7. Data Management Coordinators Monitor STS-78 Mission at the Huntsville Operations Support Center

    Science.gov (United States)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  8. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    Science.gov (United States)

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  9. Leadership Challenges in ISS Operations: Lessons Learned from Junior and Senior Mission Control Personnel

    Science.gov (United States)

    Clement, James L.; Ritsher, Jennifer Boyd; Saylor, Stephanie A.; Kanas, Nick

    2006-01-01

    The International Space Station (ISS) is operated by a multi-national, multi-organizational team that is dispersed across multiple locations, time zones, and work schedules. At NASA, both junior and senior mission control personnel have had to find ways to address the leadership challenges inherent in such work, but neither have had systematic training in how to do so. The goals of this study were to examine the major leadership challenges faced by ISS mission control personnel and to highlight the approaches that they have found most effective to surmount them. We pay particular attention to the approaches successfully employed by the senior personnel and to the training needs identified by the junior personnel. We also evaluate the extent to which responses are consistent across the junior and senior samples. Further, we compare the issues identified by our interview survey to those identified by a standardized questionnaire survey of mission control personnel and a contrasting group of space station crewmembers. We studied a sample of 14 senior ISS flight controllers and a contrasting sample of 12 more junior ISS controllers. Data were collected using a semi-structured qualitative interview and content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. To further explore the meaning of the interview findings, we also conducted new analyses of data from a previous questionnaire study of 13 American astronauts, 17 Russian cosmonauts, and 150 U.S. and 36 Russian mission control personnel supporting the ISS or Mir space stations. The interview data showed that the survey respondents had substantial consensus on several leadership challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Interview data from the junior respondents will be presented for the first time at the meeting. The questionnaire data showed that the US mission

  10. Stardust Entry: Landing and Population Hazards in Mission Planning and Operations

    Science.gov (United States)

    Desai, P.; Wawrzyniak, G.

    2006-01-01

    The 385 kg Stardust mission was launched on Feb 7, 1999 on a mission to collect samples from the tail of comet Wild 2 and from interplanetary space. Stardust returned to Earth in the early morning of January 15, 2006. The sample return capsule landed in the Utah Test and Training Range (UTTR) southwest of Salt Lake City. Because Stardust was landing on Earth, hazard analysis was required by the National Aeronautics and Space Administration, UTTR, and the Stardust Project to ensure the safe return of the landing capsule along with the safety of people, ground assets, and aircraft. This paper focuses on the requirements affecting safe return of the capsule and safety of people on the ground by investigating parameters such as probability of impacting on UTTR, casualty expectation, and probability of casualty. This paper introduces the methods for the calculation of these requirements and shows how they affected mission planning, site selection, and mission operations. By analyzing these requirements before and during entry it allowed for the selection of a robust landing point that met all of the requirements during the actual landing event.

  11. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    Directory of Open Access Journals (Sweden)

    Sangwook Park

    2009-12-01

    Full Text Available This paper describes the Flight Dynamics Automation (FDA system for COMS Flight Dynamics System (FDS and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  12. Multiple operating system rotation environment moving target defense

    Science.gov (United States)

    Evans, Nathaniel; Thompson, Michael

    2016-03-22

    Systems and methods for providing a multiple operating system rotation environment ("MORE") moving target defense ("MTD") computing system are described. The MORE-MTD system provides enhanced computer system security through a rotation of multiple operating systems. The MORE-MTD system increases attacker uncertainty, increases the cost of attacking the system, reduces the likelihood of an attacker locating a vulnerability, and reduces the exposure time of any located vulnerability. The MORE-MTD environment is effectuated by rotation of the operating systems at a given interval. The rotating operating systems create a consistently changing attack surface for remote attackers.

  13. Missile Defense in the 21st Century Acquisition Environment: Exploring a BMD-Capable LCS Mission Package

    Science.gov (United States)

    2013-09-01

    BDA ) to the operator REQ.1.2.3 The system shall provide post mission data at the end of mission REQ.1.2.4 The system shall has the capability...sheet 6 — The beaufort scale. Retrieved from National Meteorological Library and Archive: http://www.metoffice.gov.uk/ media /pdf/b/7/Fact_sheet_No._6

  14. Evaluating non-technical skills and mission essential competencies of pilots in military aviation environments.

    Science.gov (United States)

    Tsifetakis, Emmanuel; Kontogiannis, Tom

    2017-05-25

    To develop and validate a classification of non-technical skills (NTS) in military aviation, a study was conducted, using data from real operations of F16 aircraft formations. Phase 1 developed a NTS classification based on the literature review (e.g. NOTECHS) and a workshop with pilots. The Non-TEChnical-MILitary-Skills (NOTEMILS) scheme was tested in Phase 2 in a series of Principal Component Analysis with data from After-Action-Review sessions (i.e. 900 records from a wide range of operations). The NTS were found to make a good prediction of Mission Essential Components (R 2  > 0.80) above the effect of experience. Phase 3 undertook a reliability analysis where three raters assessed the NOTEMILS scheme with good results (i.e. all r wg  > 0.80). To look into the consistency of classifications, another test indicated that, at least, two out of three raters were in agreement in over 70% of the assessed flight segments. Practitioner Summary: A classification scheme of Non-Technical Skills (NTS) was developed and tested for reliability in military aviation operations. The NTS scheme is a valuable tool for assessing individual and team skills of F-16 pilots in combat. It is noteworthy that the tool had a good capability of predicting Mission Essential Competencies.

  15. The University of Colorado OSO-8 spectrometer experiment. IV - Mission operations

    Science.gov (United States)

    Hansen, E. R.; Bruner, E. C., Jr.

    1979-01-01

    The remote operation of two high-resolution ultraviolet spectrometers on the OSO-8 satellite is discussed. Mission operations enabled scientific observers to plan observations based on current solar data, interact with the observing program using real- or near real-time data and commands, evaluate quick-look instrument data, and analyze the observations for publication. During routine operations, experiments were planned a day prior to their execution, and the data from these experiments received a day later. When a shorter turnaround was required, a real-time mode was available. Here, the real-time data and command links into the remote control center were used to evaluate experiment operation and make satellite pointing or instrument configuration changes with a 1-90 minute turnaround.

  16. An Overview of the Jupiter Icy Moons Orbiter (JIMO) Mission, Environments, and Materials Challenges

    Science.gov (United States)

    Edwards, Dave

    2012-01-01

    Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter with the following main objectives: (1) Develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration. (2) Explore the three icy moons of Jupiter -- Callisto, Ganymede, and Europa -- and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences.

  17. Radiation beamline testbeds for the simulation of planetary and spacecraft environments for human and robotic mission risk assessment

    Science.gov (United States)

    Wilkins, Richard

    experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materi-als. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scien-tific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technol-ogy, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.

  18. Planning and Management of Real-Time Geospatialuas Missions Within a Virtual Globe Environment

    Science.gov (United States)

    Nebiker, S.; Eugster, H.; Flückiger, K.; Christen, M.

    2011-09-01

    This paper presents the design and development of a hardware and software framework supporting all phases of typical monitoring and mapping missions with mini and micro UAVs (unmanned aerial vehicles). The developed solution combines state-of-the art collaborative virtual globe technologies with advanced geospatial imaging techniques and wireless data link technologies supporting the combined and highly reliable transmission of digital video, high-resolution still imagery and mission control data over extended operational ranges. The framework enables the planning, simulation, control and real-time monitoring of UAS missions in application areas such as monitoring of forest fires, agronomical research, border patrol or pipeline inspection. The geospatial components of the project are based on the Virtual Globe Technology i3D OpenWebGlobe of the Institute of Geomatics Engineering at the University of Applied Sciences Northwestern Switzerland (FHNW). i3D OpenWebGlobe is a high-performance 3D geovisualisation engine supporting the web-based streaming of very large amounts of terrain and POI data.

  19. Application of State Analysis and Goal-based Operations to a MER Mission Scenario

    Science.gov (United States)

    Morris, John Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the system behavior in terms of state variables and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper first describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  20. Ground operations and logistics in the context of the International Asteroid Mission

    Science.gov (United States)

    The role of Ground Operations and Logistics, in the context of the International Asteroid Mission (IAM), is to define the mission of Ground Operations; to identify the components of a manned space infrastructure; to discuss the functions and responsibilities of these components; to provide cost estimates for delivery of the spacecraft to LEO from Earth; to identify significant ground operations and logistics issues. The purpose of this dissertation is to bring a degree of reality to the project. 'One cannot dissociate development and set up of a manned infrastructure from its operational phase since it is this last one which is the most costly due to transportation costs which plague space station use' (Eymar, 1990). While this reference is to space stations, the construction and assembly of the proposed crew vehicle and cargo vehicles will face similar cost difficulties, and logistics complexities. The uniqueness of long duration space flight is complicated further by the lack of experience with human habitated, and non-refurbishable life support systems. These problems are addressed.

  1. Testing VGT data continuity between SPOT and PROBA-V missions for operational yield forecasting in North African countries

    OpenAIRE

    MERONI MICHELE; FASBENDER DOMINIQUE; BALAGHI Raid; DALI Mustapha; HAFANI Miriam; HAYTHEM Ismael; HOOKER JOSEPH DOMINIC; LAHLOU Mouanis; LOPEZ LOZANO RAUL; MAHYOU Hamid; MONCEF Ben Moussa; SGHAIER Nabil; WAFA Talhaoui; LEO Olivier

    2015-01-01

    The SPOT-VEGETATION mission operationally provided 15 years of remote sensing indicators of vegetation status. The mission reached its end-of-life in May 2014 and was timely replaced by the PROBA-V mission, aiming to ensure, among other objectives, the seamless continuity of provision of VGT-like products, including Normalized Difference Vegetation Index (NDVI). Exploiting the period of overlap when both instruments were functioning (November 2013 –May 2014), this study compared NDVI data ...

  2. Expertise and Power: Agencies Operating in Complex Environments

    Directory of Open Access Journals (Sweden)

    Anthony R. Zito

    2015-03-01

    Full Text Available This contribution investigates the strategies that environmental agencies develop to enhance their policy autonomy, in order to fulfil their organisational missions for protecting the environment. This article asks whether there are particular strategic moves that an agency can make to augment this policy autonomy in the face of the principals. Critiquing principal agent theory, it investigates the evolution of three environmental agencies (the European Environment Agency, the England and Wales Environment Agency and the United States Environmental Protection Agency, focusing on the case study of climate change. The contribution examines how the agencies influence environmental policy on domestic, regional and global levels, with a special focus on the principals that constrain agency autonomy. A greater focus on different multi-level contexts, which the three agencies face, may create other possible dynamics and opportunities for agency strategies. Agencies can use particular knowledge, network and alliance building to strengthen their policy/political positions.

  3. The Impact of Military Exercises and Operations on Local Environment

    African Journals Online (AJOL)

    Among the non-conventional security matters, environment has emerged as a new sphere in which the military has been actively involved; as a benevolent and malevolent agent through its exercises and operations. Despite the notable positive contributions, the negative impact of military exercises and operations in the ...

  4. Alpha: A real-time decentralized operating system for mission-oriented system integration and operation

    Science.gov (United States)

    Jensen, E. Douglas

    1988-01-01

    Alpha is a new kind of operating system that is unique in two highly significant ways. First, it is decentralized transparently providing reliable resource management across physically dispersed nodes, so that distributed applications programming can be done largely as though it were centralized. And second, it provides comprehensive, high technology support for real-time system integration and operation, an application area which consists predominately of aperiodic activities having critical time constraints such as deadlines. Alpha is extremely adaptable so that it can be easily optimized for a wide range of problem-specific functionality, performance, and cost. Alpha is the first systems effort of the Archons Project, and the prototype was created at Carnegie-Mellon University directly on modified Sun multiprocessor workstation hardware. It has been demonstrated with a real-time C(sup 2) application. Continuing research is leading to a series of enhanced follow-ons to Alpha; these are portable but initially hosted on Concurrent's MASSCOMP line of multiprocessor products.

  5. Joint operations planning for space surveillance missions on the MSX satellite

    Science.gov (United States)

    Stokes, Grant; Good, Andrew

    1994-01-01

    The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a

  6. Global Military Operating Environments (GMOE) Phase I: Linking Natural Environments, International Security, and Military Operations

    Science.gov (United States)

    2013-01-30

    diverse range of natural environments and will require that U.S. forces adapt to a wide range of terrain, climate, and associated hazards within these...Synthetic Environment Core Area), baseline terrain information, and application of remote‐sensing technologies for Warfighter and Chameleon . The

  7. [Determine and Implement Updates to Be Made to MODEAR (Mission Operations Data Enterprise Architecture Repository)

    Science.gov (United States)

    Fanourakis, Sofia

    2015-01-01

    My main project was to determine and implement updates to be made to MODEAR (Mission Operations Data Enterprise Architecture Repository) process definitions to be used for CST-100 (Crew Space Transportation-100) related missions. Emphasis was placed on the scheduling aspect of the processes. In addition, I was to complete other tasks as given. Some of the additional tasks were: to create pass-through command look-up tables for the flight controllers, finish one of the MDT (Mission Operations Directorate Display Tool) displays, gather data on what is included in the CST-100 public data, develop a VBA (Visual Basic for Applications) script to create a csv (Comma-Separated Values) file with specific information from spreadsheets containing command data, create a command script for the November MCC-ASIL (Mission Control Center-Avionics System Integration Laboratory) testing, and take notes for one of the TCVB (Terminal Configured Vehicle B-737) meetings. In order to make progress in my main project I scheduled meetings with the appropriate subject matter experts, prepared material for the meetings, and assisted in the discussions in order to understand the process or processes at hand. After such discussions I made updates to various MODEAR processes and process graphics. These meetings have resulted in significant updates to the processes that were discussed. In addition, the discussions have helped the departments responsible for these processes better understand the work ahead and provided material to help document how their products are created. I completed my other tasks utilizing resources available to me and, when necessary, consulting with the subject matter experts. Outputs resulting from my other tasks were: two completed and one partially completed pass through command look-up tables for the fight controllers, significant updates to one of the MDT displays, a spreadsheet containing data on what is included in the CST-100 public data, a tool to create a csv

  8. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  9. Virtual Mission Operations Center -Explicit Access to Small Satellites by a Net Enabled User Base

    Science.gov (United States)

    Miller, E.; Medina, O.; Paulsen, P.; Hopkins, J.; Long, C.; Holloman, K.

    2008-08-01

    The Office of Naval Research (ON R), The Office of the Secr etary of Defense (OSD) , Th e Operationally Responsive Space Off ice (ORS) , and th e National Aeronautics and Space Administration (NASA) are funding the development and integration of key technologies and new processes that w ill allow users across th e bread th of operations the ab ility to access, task , retr ieve, and collaborate w ith data from various sensors including small satellites v ia the Intern et and the SIPRnet. The V irtual Mission Oper ations Center (VMO C) facilitates the dynamic apportionmen t of space assets, allows scalable mission man agement of mu ltiple types of sensors, and provid es access for non-space savvy users through an intu itive collaborative w eb site. These key technologies are b eing used as experimentation pathfinders fo r th e Do D's Operationally Responsiv e Sp ace (O RS) initiative and NASA's Sensor W eb. The O RS initiative seeks to provide space assets that can b e rapid ly tailored to meet a commander's in telligen ce or commun ication needs. For the DoD and NASA the V MO C provid es ready and scalab le access to space b ased assets. To the commercial space sector the V MO C may provide an analog to the innovativ e fractional ownersh ip approach represen ted by FlexJet. This pap er delves in to the technology, in tegration, and applicability of th e V MO C to th e DoD , NASA , and co mmer cial sectors.

  10. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    Science.gov (United States)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    operation time of up to 10 years. It also enables measurements of the libration point environment with the scientific payloads. This includes sensors for space dust, solar and cosmic radiation activity for satellite lifetime estimation and lunar crew protection by providing early-warning systems. The paper describes the mission concept and the pre-design of the demonstrator satellite according to the operational mission requirements, advantages and benefits of this service. The concept was awarded with the Space Generation Advisory Council and OHB Scholarship in 2011 and the concept study is conducted at the Institute of Space Systems (IRS) [1] of the University of Stuttgart and OHB-System, Bremen [2].

  11. OPERATIONAL SAR DATA PROCESSING IN GIS ENVIRONMENTS FOR RAPID DISASTER MAPPING

    Directory of Open Access Journals (Sweden)

    A. Meroni

    2013-05-01

    Full Text Available Having access to SAR data can be highly important and critical especially for disaster mapping. Updating a GIS with contemporary information from SAR data allows to deliver a reliable set of geospatial information to advance civilian operations, e.g. search and rescue missions. Therefore, we present in this paper the operational processing of SAR data within a GIS environment for rapid disaster mapping. This is exemplified by the November 2010 flash flood in the Veneto region, Italy. A series of COSMO-SkyMed acquisitions was processed in ArcGIS® using a single-sensor, multi-mode, multi-temporal approach. The relevant processing steps were combined using the ArcGIS ModelBuilder to create a new model for rapid disaster mapping in ArcGIS, which can be accessed both via a desktop and a server environment.

  12. Game theory: applications for surgeons and the operating room environment.

    Science.gov (United States)

    McFadden, David W; Tsai, Mitchell; Kadry, Bassam; Souba, Wiley W

    2012-11-01

    Game theory is an economic system of strategic behavior, often referred to as the "theory of social situations." Very little has been written in the medical literature about game theory or its applications, yet the practice of surgery and the operating room environment clearly involves multiple social situations with both cooperative and non-cooperative behaviors. A comprehensive review was performed of the medical literature on game theory and its medical applications. Definitive resources on the subject were also examined and applied to surgery and the operating room whenever possible. Applications of game theory and its proposed dilemmas abound in the practicing surgeon's world, especially in the operating room environment. The surgeon with a basic understanding of game theory principles is better prepared for understanding and navigating the complex Operating Room system and optimizing cooperative behaviors for the benefit all stakeholders. Copyright © 2012 Mosby, Inc. All rights reserved.

  13. Prediction of software operational reliability using testing environment factors

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Seong, Poong Hyun

    1995-01-01

    A number of software reliability models have been developed to estimate and to predict software reliability. However, there are no established standard models to quantify software reliability. Most models estimate the quality of software in reliability figures such as remaining faults, failure rate, or mean time to next failure at the testing phase, and they consider them ultimate indicators of software reliability. Experience shows that there is a large gap between predicted reliability during development and reliability measured during operation, which means that predicted reliability, or so-called test reliability, is not operational reliability. Customers prefer operational reliability to test reliability. In this study, we propose a method that predicts operational reliability rather than test reliability by introducing the testing environment factor that quantifies the changes in environments

  14. Probability of inadvertent operation of electrical components in harsh environments

    International Nuclear Information System (INIS)

    Knoll, A.

    1989-01-01

    Harsh environment, which means humidity and high temperature, may and will affect unsealed electrical components by causing leakage ground currents in ungrounded direct current systems. The concern in a nuclear power plant is that such harsh environment conditions could cause inadvertent operation of normally deenergized components, which may have a safety-related isolation function. Harsh environment is a common cause failure, and one way to approach the problem is to assume that all the unsealed electrical components will simultaneously and inadvertently energize as a result of the environmental common cause failure. This assumption is unrealistically conservative. Test results indicated that insulating resistences of any terminal block in harsh environments have a random distribution in the range of 1 to 270 kΩ, with a mean value ∼59 kΩ. The objective of this paper is to evaluate a realistic conditional failure probability for inadvertent operation of electrical components in harsh environments. This value will be used thereafter in probabilistic safety evaluations of harsh environment events and will replace both the overconservative common cause probability of 1 and the random failure probability used for mild environments

  15. Clinical Education Environment Experiences of Operating Room Students

    Directory of Open Access Journals (Sweden)

    Tahereh khazaei

    2016-01-01

    Full Text Available Background and purpose: The objective of medical education is to train competent and qualified workforce in order to provide services in various health environments. One of the important objectives of Operating Room students is to train workforce who can involve in patient’s health and recovery. Training these students should cause clinical ability and independent decision making during surgery. Since students during internship face with many problems, this study has been conducted to explore and describe the challenges and experiences.Methods: This qualitative study is a phenomenology that was conducted based on 20 students in the last semester of Operating Room associate’s degree with purposive sampling. Deep and semi-structured interviews were used to collect data and data were analyzed by content analysis method.Results: The findings in 5 main themes: (1 Physical space and equipment in the operating room, (2 The student’s position in operating room, (3 Integrating knowledge and action, (4 Managing education environment and 5- Student’s viewpoint about operating room and working in it.Conclusions: Interviews with students revealed the educational environment challenges with which they are faced during their study. Teachers can provide solutions to overcome the challenges and create a positive atmosphere for students' learning using results of this study and students may continue their interest in education and improve the quality of their education.Keywords: CLINICAL EDUCATION, OPERATING ROOM STUDENTS, CHALLENGE

  16. Energy expenditure and intake during Special Operations Forces field training in a jungle and glacial environment.

    Science.gov (United States)

    Johnson, Caleb D; Simonson, Andrew J; Darnell, Matthew E; DeLany, James P; Wohleber, Meleesa F; Connaboy, Christopher

    2018-04-01

    The purpose of this study was to identify and compare energy requirements specific to Special Operations Forces in field training, in both cool and hot environments. Three separate training sessions were evaluated, 2 in a hot environment (n = 21) and 1 in a cool environment (n = 8). Total energy expenditure was calculated using doubly labeled water. Dietary intake was assessed via self-report at the end of each training mission day, and macronutrient intakes were calculated. Across the 3 missions, mean energy expenditure (4618 ± 1350 kcal/day) exceeded mean energy intake (2429 ± 838 kcal/day) by an average of 2200 kcal/day. Macronutrient intakes (carbohydrates (g/(kg·day body weight (bw)) -1 ) = 3.2 ± 1.2; protein (g/(kg·day bw) -1 ) = 1.3 ± 0.7; fat (g/(kg·day bw) -1 ) = 1.2 ± 0.7) showed inadequate carbohydrate and possibly protein intake across the study period, compared with common recommendations. Total energy expenditures were found to be similar between hot (4664 ± 1399 kcal/day) and cool (4549 ± 1221 kcal/day) environments. However, energy intake was found to be higher in the cool (3001 ± 900 kcal/day) compared with hot (2200 ± 711 kcal/day) environments. Based on the identified energy deficit, high variation in energy expenditures, and poor macronutrient intake, a greater attention to feeding practices during similar training scenarios for Special Operations Forces is needed to help maintain performance and health. The differences in environmental heat stress between the 2 climates/environments had no observed effect on energy expenditures, but may have influenced intakes.

  17. Qualified operator training in the simulated control room environment

    International Nuclear Information System (INIS)

    Ionescu, Teodor; Studineanu, Emil; Radulescu, Catalina; Bolocan, Gabriel

    2005-01-01

    Full text: Mainly designed for the training of the Cernavoda NPP Unit 2 operators, the virtual simulated environment allows the training of the already qualified operators for Cernavoda NPP Unit 1, adding to the already trained knowledge, the differences which has occurred in the Unit 2 design. Using state-of-the-art computers and displays and qualified software, the virtual simulated panels could offer a viable alternative to classic hardware-based training. This approach allows quick training of the new procedures required by the new configuration of the re-designed operator panels in the main control room of Cernavoda NPP Unit 2. (authors)

  18. Qualified operator training in the simulated control room environment

    International Nuclear Information System (INIS)

    Ionescu, Teodor; Studineanu, Emil; Radulescu, Catalina; Bolocan, Gabriel

    2005-01-01

    Mainly designed for the training of the Cernavoda NPP Unit 2 operators, the virtual simulated environment allows the training of the already qualified operators for Cernavoda NPP Unit 1, adding to the already trained knowledge, the differences which have occurred in the Unit 2 design. Using state-of-the-art computers and displays and qualified software, the virtual simulated panels could offer a viable alternative to classic hardware-based training. This approach allows quick training of the new procedures required by the new configuration of the re-designed operator panels in the main control room of Cernavoda NPP Unit 2. (authors)

  19. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    Science.gov (United States)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  20. Control of the Environment in the Operating Room.

    Science.gov (United States)

    Katz, Jonathan D

    2017-10-01

    There is a direct relationship between the quality of the environment of a workplace and the productivity and efficiency of the work accomplished. Components such as temperature, humidity, ventilation, drafts, lighting, and noise each contribute to the quality of the overall environment and the sense of well-being of those who work there.The modern operating room is a unique workplace with specific, and frequently conflicting, environmental requirements for each of the inhabitants. Even minor disturbances in the internal environment of the operating room can have serious ramifications on the comfort, effectiveness, and safety of each of the inhabitants. A cool, well-ventilated, and dry climate is optimal for many members of the surgical team. Any significant deviation from these objectives raises the risk of decreased efficiency and productivity and adverse surgical outcomes. A warmer, more humid, and quieter environment is necessary for the patient. If these requirements are not met, the risk of surgical morbidity and mortality is increased. An important task for the surgical team is to find the correct balance between these 2 opposed requirements. Several of the components of the operating room environment, especially room temperature and airflow patterns, are easily manipulated by the members of the surgical team. In the following discussion, we will examine these elements to better understand the clinical ramifications of adjustments and accommodations that are frequently made to meet the requirements of both the surgical staff and the patient.

  1. Defensive Operations in a Decisive Action Training Environment

    Science.gov (United States)

    2017-07-01

    Operations in a Decisive Action Training Environment Christopher L. Vowels W. Anthony Scroggins U.S. Army Research Institute Captain Kyle T...Daniels Master Sergeant Paul M. Volino Joint Readiness Training Center July 2017 Approved for public release; distribution is unlimited...for distribution: MICHELLE SAMS Director Technical review by Dr. William R. Bickley, U.S. Army Research

  2. An operating environment with multitasking capabilities for radiochemistry autosynthesizers

    International Nuclear Information System (INIS)

    Feliu, A.L.

    1990-01-01

    AUTOMATE is an operating environment which has been developed for control of commercially available autosynthesizers of radiopharmaceuticals. The software is a user-friendly multitasking system with graphical display, compatible with standard 80x86 personal computers running MS-DOS. Up to four autosynthesizers may be controlled with the software simultaneously. Applications for both routine use and research are discussed

  3. An Analysis of the Operational Environments of Manufacturing Firms ...

    African Journals Online (AJOL)

    Our efforts in this research have been geared towards analyzing the operational environments of manufacturing firms in Aba, South-East, Nigeria. Specifically, the case study was Manufacturers Association of Nigeria (MAN), Abia chapter. Eight five percent of MAN‟s membership was studied. Percentages and test of ...

  4. Operating Classroom Aesthetic Reading Environment to Raise Children's Reading Motivation

    Science.gov (United States)

    Chou, Mei-Ju; Cheng, Jui-Ching; Cheng, Ya-Wen

    2016-01-01

    This research aims to explore how preschool educators understand about raising children's reading motivation through operating classroom aesthetic reading environment. With one year qualitative research, sixteen 4-6 years old young were observed and interviewed. The first stage interviews were undergone with environmental guidance. After the…

  5. PROGRAM EVALUATION INVOLVEMENT INDONESIAN NATIONAL ARMED FORCES (TNI ON MISSION UNITED NATIONS PEACEKEEPING OPERATIONS (UNPKO

    Directory of Open Access Journals (Sweden)

    I Gede Sumertha KY

    2017-07-01

    Full Text Available This research is constructed in order to study and to evaluate involvement TNI on mission United Nations Peacekeeping Operations (UNPKO in Lebanon program FY 2014-2015 due to achieve vision 4000 Peacekeepers. The CIPP model is using on apply the qualitative method for the research with consist of four evaluation components: (1 context; (2 input; (3 process; (4 product. The mechanism collecting data were collected through interviews, observations, questionnaires and documentation study. There are three levels of evaluation for judgment each aspect: low, moderate, and high. The summarized results and figured into case-order effect matrix was figure out of the categorization.The results of this research indicate that TNI involvement in mission UNPKO Lebanon, aspire to increase the number of peacekeepers up to 4.000 personnel in the category “high”, but still have some minor additional improvement especially on coordination among stakeholders. This is because the Results of Context Evaluation has a category of "high" with a scale of assessment "many" (75.3%; the Results of Input Evaluation has a category of "high" with a scale of assessment "moderate" (60.6%; the Results of Process Evaluation has a category of "high" with a scale of assessment "moderate" (65.3% and the Results of Product Evaluation has a category of "high" with a scale of assessment "moderate" (63.3% .

  6. Generating realistic environments for cyber operations development, testing, and training

    Science.gov (United States)

    Berk, Vincent H.; Gregorio-de Souza, Ian; Murphy, John P.

    2012-06-01

    Training eective cyber operatives requires realistic network environments that incorporate the structural and social complexities representative of the real world. Network trac generators facilitate repeatable experiments for the development, training and testing of cyber operations. However, current network trac generators, ranging from simple load testers to complex frameworks, fail to capture the realism inherent in actual environments. In order to improve the realism of network trac generated by these systems, it is necessary to quantitatively measure the level of realism in generated trac with respect to the environment being mimicked. We categorize realism measures into statistical, content, and behavioral measurements, and propose various metrics that can be applied at each level to indicate how eectively the generated trac mimics the real world.

  7. Prediction of software operational reliability using testing environment factor

    International Nuclear Information System (INIS)

    Jung, Hoan Sung

    1995-02-01

    Software reliability is especially important to customers these days. The need to quantify software reliability of safety-critical systems has been received very special attention and the reliability is rated as one of software's most important attributes. Since the software is an intellectual product of human activity and since it is logically complex, the failures are inevitable. No standard models have been established to prove the correctness and to estimate the reliability of software systems by analysis and/or testing. For many years, many researches have focused on the quantification of software reliability and there are many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. User's interest is on the operational reliability rather than on the test reliability, however. The experiences show that the operational reliability is higher than the test reliability. With the assumption that the difference in reliability results from the change of environment, testing environment factor comprising the aging factor and the coverage factor are defined in this work to predict the ultimate operational reliability with the failure data. It is by incorporating test environments applied beyond the operational profile into testing environment factor Test reliability can also be estimated with this approach without any model change. The application results are close to the actual data. The approach used in this thesis is expected to be applicable to ultra high reliable software systems that are used in nuclear power plants, airplanes, and other safety-critical applications

  8. The supply of pharmaceuticals in humanitarian assistance missions: implications for military operations.

    Science.gov (United States)

    Mahmood, Maysaa; Riley, Kevin; Bennett, David; Anderson, Warner

    2011-08-01

    In this article, we provide an overview of key international guidelines governing the supply of pharmaceuticals during disasters and complex emergencies. We review the World Health Organization's guidelines on pharmaceutical supply chain management and highlight their relevance for military humanitarian assistance missions. Given the important role of pharmaceuticals in addressing population health needs during humanitarian emergencies, a good understanding of how pharmaceuticals are supplied at the local level in different countries can help military health personnel identify the most appropriate supply options. Familiarity with international guidelines involved in cross-border movement of pharmaceuticals can improve the ability of military personnel to communicate more effectively with other actors involved in humanitarian and development spheres. Enhancing the knowledge base available to military personnel in terms of existing supply models and funding procedures can improve the effectiveness of humanitarian military operations and invite policy changes necessary to establish more flexible acquisition and funding regulations.

  9. Association of market, mission, operational, and financial factors with hospitals' level of cash and security investments.

    Science.gov (United States)

    McCue, M J; Thompson, J M; Dodd-McCue, D

    Using a resource dependency framework and financial theory, this study assessed the market, mission, operational, and financial factors associated with the level of cash and security investments in hospitals. We ranked hospitals in the study sample based on their cash and security investments as a percentage of total assets: hospitals in the high cash/security investment category were in the top 25th percentile of all hospitals; those in the low cash/security investment group were in the bottom 25th percentile. Findings indicate that high cash/security investment hospitals are under either public or private nonprofit ownership and have greater market share. They also serve more complex cases, offer more technology services, generate greater profits, incur a more stable patient revenue base, and maintain less debt.

  10. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    Science.gov (United States)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  11. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    Science.gov (United States)

    Bettanini, C.; Esposito, R.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; Di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; Harri, A.-M.; Montmessin, F.; Wilson, C.; Arruego Rodriguez, I.; Abbaki, S.; Apestigue, V.; Bellucci, G.; Berthelier, J. J.; Calcutt, S. B.; Forget, F.; Genzer, M.; Gilbert, P.; Haukka, H.; Jimenez, J. J.; Jimenez, S.; Josset, J. L.; Karatekin, O.; Landis, G.; Lorenz, R.; Martinez, J.; Möhlmann, D.; Moirin, D.; Palomba, E.; Pateli, M.; Pommereau, J.-P.; Popa, C. I.; Rafkin, S.; Rannou, P.; Renno, N. O.; Schmidt, W.; Simoes, F.; Spiga, A.; Valero, F.; Vazquez, L.; Vivat, F.; Witasse, O.

    2017-08-01

    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and direction, but also on solar irradiance, dust opacity and atmospheric electrification, to measure for the first time key parameters linked to hazard conditions for future manned explorations. Although with very limited mass and energy resources, DREAMS would be able to operate autonomously for at least two Martian days (sols) after landing in a very harsh environment as it was supposed to land on Mars during the dust storm season (October 2016 in Meridiani Planum) relying on its own power supply. ExoMars mission was successfully launched on 14th March 2016 and Schiaparelli entered the Mars atmosphere on October 20th beginning its 'six minutes of terror' journey to the surface. Unfortunately, some unexpected behavior during the parachuted descent caused an unrecoverable critical condition in navigation system of the lander driving to a destructive crash on the surface. The adverse sequence of events at 4 km altitude triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. This paper describes this experiment in terms of scientific goals, design, performances, testing and operational capabilities with an overview of in flight performances and available mission data.

  12. Model-Based Systems Engineering With the Architecture Analysis and Design Language (AADL) Applied to NASA Mission Operations

    Science.gov (United States)

    Munoz Fernandez, Michela Miche

    2014-01-01

    The potential of Model Model Systems Engineering (MBSE) using the Architecture Analysis and Design Language (AADL) applied to space systems will be described. AADL modeling is applicable to real-time embedded systems- the types of systems NASA builds. A case study with the Juno mission to Jupiter showcases how this work would enable future missions to benefit from using these models throughout their life cycle from design to flight operations.

  13. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  14. Operational efficiency of forest energy supply chains in different operational environments

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, D

    2012-06-15

    Ambitious international efforts to combat climate change have lead to a large interest about the use of forest biomass for energy in many countries. In order to meet the expected growing demand in the future, it will be necessary to improve operational efficiency of existing forest energy supply chains and support the establishment of efficient supply chains in new operational environments. The thesis applied a three-dimensional approach which examines forest energy supply chains from a technical, social and economic viewpoint. Four case studies in different operational environments have been carried out to investigate the applicability of the three dimensional approach to improve operational efficiency. The technical dimension was investigated in Paper 1 and 2. In Paper 1, the effects of climatic conditions, covering of piles, and partial debarking on drying of roundwood were studied in four experimental trials located in Scotland, Finland and Italy. In Paper 2, the chipping of forest biomass was studied in two different operational environments. The investigation of the social dimension in Paper 3 provides insights into the setup of two different supply chains through business process mapping and simulation. Finally, in paper 4, which investigated the economic dimension, an analysis of the effect of the operational environment on technology selection and design of supply chains, is presented. The thesis demonstrates that the chosen approach was practical to investigate the complex relationships between the chosen technologies and different supply chain actors and stakeholders thereby contributing to maintain or improve operational efficiency of forest energy supply chains. Due to its applicability in different operational environments, the approach is also suitable in a more global context. Furthermore, it captures the effect of different aspects and characteristics of the various operational environments on the setup and organization of supply chains. This will

  15. Ultralightweight PV Array Materials for Deep Space Mission Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Photovoltaic arrays for future deep space NASA missions demand multiple functionalities. They must efficiently generate electrical power, have very large areas and...

  16. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    Science.gov (United States)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-09-01

    The 2001 Mars Surveyor Program Mission includes an orbiter with a gamma ray spectrometer and a multispectral thermal imager, and a lander with an extensive set of instrumentation, a robotic arm, and the Marie Curie Rover. The Mars 2001 Science Operations Working Group (SOWG) is a subgroup of the Project Science Group that has been formed to provide coordinated planning and implementation of scientific observations, particularly for the landed portion of the mission. The SOWG will be responsible for delivery of a science plan and, during operations, generation and delivery of conflict-free sequences. This group will also develop an archive plan that is compliant with Planetary Data System (PDS) standards, and will oversee generation, validation, and delivery of integrated archives to the PDS. In this report we cover one element of the SOWG planning activities, the development of a plan that maximizes the scientific return from lander-based observations by treating the instrument packages as an integrated payload. Scientific objectives for the lander mission have been defined. They include observations focused on determining the bedrock geology of the site through analyses of rocks and also local materials found in the soils, and the surficial geology of the site, including windblown deposits and the nature and history of formation of indurated sediments such as duricrust. Of particular interest is the identification and quantification of processes related to early warm, wet conditions and the presence of hydrologic or hydrothermal cycles. Determining the nature and origin of duricrust and associated salts is -very important in this regard. Specifically, did these deposits form in the vadose zone as pore water evaporated from soils or did they form by other processes, such as deposition of volcanic aerosols? Basic information needed to address these questions includes the morphology, topography, and geologic context of landforms and materials exposed at the site

  17. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    Science.gov (United States)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    The 2001 Mars Surveyor Program Mission includes an orbiter with a gamma ray spectrometer and a multispectral thermal imager, and a lander with an extensive set of instrumentation, a robotic arm, and the Marie Curie Rover. The Mars 2001 Science Operations Working Group (SOWG) is a subgroup of the Project Science Group that has been formed to provide coordinated planning and implementation of scientific observations, particularly for the landed portion of the mission. The SOWG will be responsible for delivery of a science plan and, during operations, generation and delivery of conflict-free sequences. This group will also develop an archive plan that is compliant with Planetary Data System (PDS) standards, and will oversee generation, validation, and delivery of integrated archives to the PDS. In this report we cover one element of the SOWG planning activities, the development of a plan that maximizes the scientific return from lander-based observations by treating the instrument packages as an integrated payload. Scientific objectives for the lander mission have been defined. They include observations focused on determining the bedrock geology of the site through analyses of rocks and also local materials found in the soils, and the surficial geology of the site, including windblown deposits and the nature and history of formation of indurated sediments such as duricrust. Of particular interest is the identification and quantification of processes related to early warm, wet conditions and the presence of hydrologic or hydrothermal cycles. Determining the nature and origin of duricrust and associated salts is -very important in this regard. Specifically, did these deposits form in the vadose zone as pore water evaporated from soils or did they form by other processes, such as deposition of volcanic aerosols? Basic information needed to address these questions includes the morphology, topography, and geologic context of landforms and materials exposed at the site

  18. Preparing the American Soldier in a Brigade Combat Team to Conduct Information Operations in the Contemporary Operational Environment

    National Research Council Canada - National Science Library

    Beckno, Brian T

    2006-01-01

    ...) to conduct Information Operations (IO) in the Contemporary Operational Environment (COE). First, an explanation of IO and its Army applicability is presented using current examples from military operations in Operation Iraqi Freedom (OIF...

  19. Do We Need the Environment to Explain Operant Behavior?

    Science.gov (United States)

    Overskeid, Geir

    2018-01-01

    By way of operant conditioning, human behavior is continuously shaped and maintained by its consequences - and understanding this process is important to most fields of psychology and neuroscience. The role of the learning organism's environment has long been contentious, however. Much relevant research is being done by people identifying with the Skinnerian tradition, who tend to agree that the causes of behavior can be found exclusively in the environment. The meaning of this proposition is not clear, however. Some authors say the environment is outside the body, others claim it is also inside it. Among those who say the environment is outside the body, many are of the opinion that events inside the body and hence (in their view) not in the environment can also cause behavior, though they claim that events inside the body cannot be causes in the same sense as events taking place outside it. This is confusing, and the present paper argues that the "environment" may neither be a useful nor a necessary concept in the analysis of behavior. Moreover, abolishing the concept could clear the way for a reintegration of Skinnerian psychology into the mainstream.

  20. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    Science.gov (United States)

    Johannessen, J. A.

    2009-04-01

    , managerial and regulatory activities (i.e. weather forecasting, deforestation, flooding, etc.) essential to the safe exploitation of global resources, conservation of sustainable ecosystems, and the compliance with numerous international treaties and conventions, depend absolutely on continuity of satellite missions to maximise socio-economic and environmental benefits. This presentation will highlight some of the multidisciplinary Earth science achievements and operational applications using ESA satellite missions. It will also address some of the key scientific challenges and need for operational monitoring services in the years to come. It capitalizes on the knowledge and awareness outlined in "The Changing Earth - New scientific challenges for ESÁs Living Planet Programme" issued in 2006 together with updated views and approved plans expressed during ESÁs Earth Sciences Advisory Committee (ESAC) meetings and agreed at the recent User Consultation meeting in January 2009.

  1. Sentinel-3 SAR Altimetry Toolbox - Scientific Exploitation of Operational Missions (SEOM) Program Element

    Science.gov (United States)

    Benveniste, Jérôme; Lucas, Bruno; Dinardo, Salvatore

    2014-05-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage pioneered by ERS-1, ERS-2, Envisat and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the Sentinel-3 series is planned for launch in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales, the French Space Agency), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as net

  2. Assessment of communication technology and post-operative telephone surveillance during global urology mission.

    Science.gov (United States)

    Rapp, David E; Colhoun, Andrew; Morin, Jacqueline; Bradford, Timothy J

    2018-02-21

    Compliance with post-operative follow-up in the context of international surgical trips is often poor. The etiology of this problem is multifactorial and includes lack of local physician involvement, transportation costs, and work responsibilities. We aimed to better understand availability of communication technologies within Belize and use this information to improve follow-up after visiting surgical trips to a public hospital in Belize City. Accordingly, a 6-item questionnaire assessing access to communication technologies was completed by all patients undergoing evaluation by a visiting surgical team in 2014. Based on this data, a pilot program for patients undergoing surgery was instituted for subsequent missions (2015-2016) that included a 6-week post-operative telephone interview with a visiting physician located in the United States. Fifty-four (n = 54) patients were assessed via survey with 89% responding that they had a mobile phone. Patients reported less access to home internet (59%), local internet (52%), and email (48%). Of 35 surgical patients undergoing surgery during 2 subsequent surgical trips, 18 (51%) were compliant with telephone interview at 6-week follow-up. Issues were identified in 3 (17%) patients that allowed for physician assistance. The cost per patient interview was $10 USD.

  3. Neither nature nor environment: Systemic operationalism and ecologism

    International Nuclear Information System (INIS)

    Gomez E, Luis F

    2009-01-01

    Nature is a complex concept that some critics have found as one of the roots of the current crisis of orthodox modernity. Because of this, we think ecologism should develop a theory where it does not play a pivotal role. Here, we propose systemic operationalism as a theoretical basis for ecologism since it seems to meet this requirement without having to replace it with terms such as environment which appears to keep some of the problems critics see in the concept of nature.

  4. Organizing Special Operations Forces: Navigating the Paradoxical Requirements of Institutional-Bureaucratic and operational Environments

    DEFF Research Database (Denmark)

    Dalgaard-Nielsen, Anja

    2017-01-01

    Increased focus on the potential of special operations has lead several countries to establish dedicated special operations organizations. Analysts have warned against bureaucratization, yet little research has explored the effect of organizational formalization or asked how best to organize....... This article draws from research into high-reliability organizations and interviews in Denmark’s Special Operations Command. It contrasts the demands of the command’s institutional-bureaucratic and operational environments and argues that the ability to straddle them is key to success. The high...

  5. Radiological impact of the PARR-1 operation on the environment

    International Nuclear Information System (INIS)

    Bakhtyar, S.; Raza, S.S.; Tayyab, M.; Pervez, S.; Salahuddin, A.

    2005-01-01

    This paper presents a study related to the assessment of the radiological impact on the environment due to the operation of the Pakistan research reactor-1 (PARR-1) at the Pakistan Institute of Nuclear Sciences and Technology (PINSTECH), Islamabad. The parameters studied include the radioactivity releases in a gaseous form and also those originating from the liquid and solid wastes produced due to the operation of this research facility. The analysis is based on the environmental monitoring data for the last 10 years (1992-2002) and the conclusions have been drawn for the impact of the PARR-1 operation on the occupational workers as well as the general public living in the vicinity of the reactor site. Further, on the basis of this data, yearly average doses and the cumulative doses for the expected life of PARR-1, due to different radiation sources have been estimated. The analysis indicated that the maximum yearly doses at ground level for the occupational workers as well as for the public are a fraction of the International Atomic Energy Agency's (IAEA) defined limiting values. It is, therefore, concluded that the impact of the PARR-1 normal operation on the environment is negligible and it can be regarded as ''safe to the public as well as the occupational workers''. (orig.)

  6. Applied Operations Research: Augmented Reality in an Industrial Environment

    Science.gov (United States)

    Cole, Stuart K.

    2015-01-01

    Augmented reality is the application of computer generated data or graphics onto a real world view. Its use provides the operator additional information or a heightened situational awareness. While advancements have been made in automation and diagnostics of high value critical equipment to improve readiness, reliability and maintenance, the need for assisting and support to Operations and Maintenance staff persists. AR can improve the human machine interface where computer capabilities maximize the human experience and analysis capabilities. NASA operates multiple facilities with complex ground based HVCE in support of national aerodynamics and space exploration, and the need exists to improve operational support and close a gap related to capability sustainment where key and experienced staff consistently rotate work assignments and reach their expiration of term of service. The initiation of an AR capability to augment and improve human abilities and training experience in the industrial environment requires planning and establishment of a goal and objectives for the systems and specific applications. This paper explored use of AR in support of Operation staff in real time operation of HVCE and its maintenance. The results identified include identification of specific goal and objectives, challenges related to availability and computer system infrastructure.

  7. Do We Need the Environment to Explain Operant Behavior?

    Directory of Open Access Journals (Sweden)

    Geir Overskeid

    2018-03-01

    Full Text Available By way of operant conditioning, human behavior is continuously shaped and maintained by its consequences – and understanding this process is important to most fields of psychology and neuroscience. The role of the learning organism’s environment has long been contentious, however. Much relevant research is being done by people identifying with the Skinnerian tradition, who tend to agree that the causes of behavior can be found exclusively in the environment. The meaning of this proposition is not clear, however. Some authors say the environment is outside the body, others claim it is also inside it. Among those who say the environment is outside the body, many are of the opinion that events inside the body and hence (in their view not in the environment can also cause behavior, though they claim that events inside the body cannot be causes in the same sense as events taking place outside it. This is confusing, and the present paper argues that the “environment” may neither be a useful nor a necessary concept in the analysis of behavior. Moreover, abolishing the concept could clear the way for a reintegration of Skinnerian psychology into the mainstream.

  8. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    Science.gov (United States)

    Bettanini, C.; Esposito, F.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; International Dreams Team

    2018-07-01

    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) instrument on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and its direction, but also on solar irradiance, dust opacity and atmospheric electrification; this comprehensive set of parameters would assist the quantification of risks and hazards for future manned exploration missions mainly related to the presence of airborne dust. Schiaparelli landing on Mars was in fact scheduled during the foreseen dust storm season (October 2016 in Meridiani Planum) allowing DREAMS to directly measure the characteristics of such extremely harsh environment. DREAMS instrument’s architecture was based on a modular design developing custom boards for analog and digital channel conditioning, power distribution, on board data handling and communication with the lander. The boards, connected through a common backbone, were hosted in a central electronic unit assembly and connected to the external sensors with dedicated harness. Designed with very limited mass and an optimized energy consumption, DREAMS was successfully tested to operate autonomously, relying on its own power supply, for at least two Martian days (sols) after landing on the planet. A total of three flight models were fully qualified before launch through an extensive test campaign comprising electrical and functional testing, EMC verification and mechanical and thermal vacuum cycling; furthermore following the requirements for planetary protection, contamination control activities and assay sampling were conducted before model delivery for final integration on spacecraft. During the six months cruise to Mars following the successful launch of ExoMars on 14th March 2016, periodic check outs were conducted to verify instrument health check and

  9. SPICE for ESA Planetary Missions: geometry and visualization support to studies, operations and data analysis within your reach

    Science.gov (United States)

    Costa, Marc

    2018-05-01

    JUICE is a mission chosen in the framework of the Cosmic Vision 2015-2024 program of the SRE. JUICE will survey the Jovian system with a special focus on the three Galilean Moons. Currently the mission is under study activities during its Definition Phase. For this period the future mission scenarios are being studied by the Science Working Team (SWT). The Mission Analysis and Payload Support (MAPPS) and the Solar System Science Operations Laboratory (SOLab) tools are being used to provide active support to the SWT in synergy with other operational tools used in the Department in order to evaluate the feasibility of those scenarios. This contribution will outline the capabilities, synergies as well as use cases of the mentioned tools focusing on the support provided to JUICEís study phase on the study of its critical operational scenarios and the early developments of its Science Ground Segment demonstrating the added value that such a tool provides to planetary science missions.

  10. Individual styles of professional operator's performance for the needs of interplanetary mission.

    Science.gov (United States)

    Boritko, Yaroslav; Gushin, Vadim; Zavalko, Irina; Smoleevskiy, Alexandr; Dudukin, Alexandr

    Maintenance of the cosmonaut’s professional performance reliability is one of the priorities of long-term space flights safety. Cosmonaut’s performance during long-term space flight decreases due to combination of the microgravity effects and inevitable degradation of skills during prolonged breaks in training. Therefore, the objective of the elaboration of countermeasures against skill decrement is very relevant. During the experiment with prolonged isolation "Mars-500" in IMBP two virtual models of professional operator’s activities were used to investigate the influence of extended isolation, monotony and confinement on professional skills degradation. One is well-known “PILOT-1” (docking to the space station), another - "VIRTU" (manned operations of planet exploration). Individual resistance to the artificial sensory conflict was estimated using computerized version of “Mirror koordinograf” with GSR registration. Two different individual performance styles, referring to the different types of response to stress, have been identified. Individual performance style, called "conservative control", manifested in permanent control of parameters, conditions and results of the operator’s activity. Operators with this performance style demonstrate high reliability in performing tasks. The drawback of the style is intensive resource expenditure - both the operator (physiological "cost") and the technical system operated (fuel, time). This style is more efficient while executing tasks that require long work with high reliability required according to a detailed protocol, such as orbital flight. Individual style, called "exploratory ", manifested in the search of new ways of task fulfillment. This style is accompanied by partial, periodic lack of control of the conditions and result of operator’s activity due to flexible approach to the tasks perfect implementation. Operators spent less resource (fuel, time, lower physiological "cost") due to high self

  11. The application of total quality management principles to spacecraft mission operations

    Science.gov (United States)

    Sweetin, Maury

    1993-03-01

    By now, the philosophies of Total Quality Management have had an impact on every aspect of American industrial life. The trail-blazing work of Deming, Juran, and Crosby, first implemented in Japan, has 're-migrated' across the Pacific and now plays a growing role in America's management culture. While initially considered suited only for a manufacturing environment, TQM has moved rapidly into the 'service' areas of offices, sales forces, and even fast-food restaurants. The next logical step has also been taken - TQM has found its way into virtually all departments of the Federal Government, including NASA. Because of this widespread success, it seems fair to ask whether this new discipline is directly applicable to the profession of spacecraft operations. The results of quality emphasis on OAO Corporation's contract at JPL provide strong support for Total Quality Management as a useful tool in spacecraft operations.

  12. The application of total quality management principles to spacecraft mission operations

    Science.gov (United States)

    Sweetin, Maury

    1993-01-01

    By now, the philosophies of Total Quality Management have had an impact on every aspect of American industrial life. The trail-blazing work of Deming, Juran, and Crosby, first implemented in Japan, has 're-migrated' across the Pacific and now plays a growing role in America's management culture. While initially considered suited only for a manufacturing environment, TQM has moved rapidly into the 'service' areas of offices, sales forces, and even fast-food restaurants. The next logical step has also been taken - TQM has found its way into virtually all departments of the Federal Government, including NASA. Because of this widespread success, it seems fair to ask whether this new discipline is directly applicable to the profession of spacecraft operations. The results of quality emphasis on OAO Corporation's contract at JPL provide strong support for Total Quality Management as a useful tool in spacecraft operations.

  13. Marshall Space Flight Center's Tower Vector Magnetograph: Upgrades, Hardware, and Operations for the HESSI Mission

    Science.gov (United States)

    Adams, M. L.; Hagyard, M. J.; West, E. A.; Smith, J. E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center's (MSFC) solar group announces the successful upgrade of our tower vector magnetograph. In operation since 1973, the last major alterations to the system (which includes telescope, filter, polarizing optics, camera, and data acquisition computer) were made in 1982, when we upgraded from an SEC Vidicon camera to a CCD. In 1985, other changes were made which increased the field-of-view from 5 x 5 arc min (2.4 arc sec per pixel) to 6 x 6 arc min with a resolution of 2.81 arc sec. In 1989, the Apollo Telescope Mount H-alpha telescope was coaligned with the optics of the magnetograph. The most recent upgrades (year 2000), funded to support the High Energy Solar Spectroscopic Imager (HESSI) mission, have resulted in a pixel size of 0.64 arc sec over a 7 x 5.2 arc min field-of-view (binning 1x1). This poster describes the physical characteristics of the new system and compares spatial resolution, timing, and versatility with the old system. Finally, we provide a description of our Internet web site, which includes images of our most recent observations, and links to our data archives, as well as the history of magnetography at MSFC and education outreach pages.

  14. The Operation Consequence of Nuclear Energy to Environment

    International Nuclear Information System (INIS)

    Suhariyono, Gatot; Sutarman

    2003-01-01

    Objective of the paper is to give information the operation consequence of nuclear energy to environment, so that expected as organizer of PLTN can anticipate or depress as minimum as possible radiology impact to the radiation workers and society in general, and also socialization that operation of nuclear energy do not give the negative impact, if conducted its control to environment seriously. Parts of which it is important to know from this paper are : one. Estimate of equivalent dose of collective effective in a normal condition is the operation cycle for nuclear energy at worker and local or regional resident 10, 100 or 10.000 next years. 2. Equivalent dose of global collective effective is for various the radiation sources. 3. Estimate of dose per cap ut annual of nuclear electric power until year 2500. 4. Aspect of non-radiology is to cooler system, usage of farm, dismissal of chemistry, advantage of hot water waste, its effect to fish, benthos, plankton, vegetation, animal and preparation of nuclear emergency

  15. Mission Control Operations: Employing a New High Performance Design for Communications Links Supporting Exploration Programs

    Science.gov (United States)

    Jackson, Dan E., Jr.

    2015-01-01

    The planetary exploration programs demand a totally new examination of data multiplexing, digital communications protocols and data transmission principles for both ground and spacecraft operations. Highly adaptive communications devices on-board and on the ground must provide the greatest possible transmitted data density between deployed crew personnel, spacecraft and ground control teams. Regarding these requirements, this proposal borrows from research into quantum mechanical computing by applying the concept of a qubit, a single bit that represents 16 states, to radio frequency (RF) communications link design for exploration programs. This concept of placing multiple character values into a single data bit can easily make the evolutionary steps needed to meet exploration mission demands. To move the qubit from the quantum mechanical research laboratory into long distance RF data transmission, this proposal utilizes polarization modulation of the RF carrier signal to represent numbers from zero to fifteen. It introduces the concept of a binary-to-hexadecimal converter that quickly chops any data stream into 16-bit words and connects variously polarized feedhorns to a single-frequency radio transmitter. Further, the concept relies on development of a receiver that uses low-noise amplifiers and an antenna array to quickly assess carrier polarity and perform hexadecimal to binary conversion. Early testbed experiments using the International Space Station (ISS) as an operations laboratory can be implemented to provide the most cost-effective return for research investment. The improvement in signal-to-noise ratio while supporting greater baseband data rates that could be achieved through this concept justifies its consideration for long-distance exploration programs.

  16. Software Environment for Mission Design, Simulation, and Engineering Data Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As NASA designs and develops the next generation of scientific and space exploration vehicles and missions, there is a growing need for a robust, flexible, and...

  17. Guidance system operations plan for manned cm earth orbital and lunar missions using program Colossus 3. Section 2: Data links

    Science.gov (United States)

    Hamilton, M. H.

    1971-01-01

    The data links for use with the guidance system operations plan for manned command module earth orbital and lunar missions using program Colossus 3 are presented. The subjects discussed are: (1) digital uplink to CMC, (2) command module contiguous block update, (3) CMC retrofire external data update, (4) CMC digital downlink, and (5) CMC entry update.

  18. Sustainability of Biomass Utilisation in Changing operational Environment - SUBICHOE

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, S.; Hongisto, M.; Koponen, K. (VTT Technical Research Centre of Finland, Espoo (Finland)), e-mail: sampo.soimakallio@vtt.fi (and others)

    2011-11-15

    Sustainability is a multi-faceted and challenging target, but at the same time a crucial issue to assess when setting policies and targets for the future. The main objective of the SUBICHOE project is to assist public administration and companies in strategic decision- making in the most sustainable use of biomass, by taking into account the changing operational environment. The project aimed to assess how the sustainability criteria, in particular those set by the EC, ensure the sustainability of biofuels from short and long term perspectives. The project is carried out jointly by VTT Technical Research Centre of Finland, Finnish Environment Institute SYKE, MTT Agrifood Research Finland, Finnish Forest Research Institute (Metla) and The Government Institute for Economic Research (VATT). The work plan of the project is divided into four Work Packages. In this article, a summary of main findings of the project is presented. (orig.)

  19. Sustainability of biomass utilisation in changing operational environment - SUBICHOE

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, S. [VTT Technical Research Centre of Finland, Espoo (Finland)], email: sampo.soimakallio@vtt.fi

    2012-07-01

    The main objective of the project was to assist in strategic decision-making of public administration and companies, as regards the most sustainable use of biomass, by taking into account the changing operational environment. This project continued the work of the BIOVAIKU project by exploring in more details the most critical issues identified in sustainability assessment. These include the need to develop assessment methods and criteria in particular for land use and land-use change due to biomass cultivation and harvesting and indirect impacts due to resource competition.

  20. Chemistry of complexing molecules and environment. Report of the working group of the Cea ''mission environment''; Chimie des complexants en environnements. Rapport du groupe de travail de la mission environnement

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J.C

    1998-07-01

    The Working group 'Chemistry of Complexing Molecules and Environment' of the Mission Environment (AG/ENV) identified themes for an original positioning of CEA on important issues of environmental research if a sufficiently strong demand appears. The research of CEA on the environment should be complementary to actions undertaken by other partners (official institutions, research organizations and industrial firms). The themes suggested are: the synthesis of new chelating molecules and new materials having specific properties, with the support of theoretical chemistry and modeling, analytical physical chemistry and speciation of species in relation to their eco-toxicity and their biogeochemical mobility in the natural environment. These themes, illustrated by examples of actions in progress at CEA or likely to be launched quickly, draw largely from recognized competences of the teams, generally developed for finalized nuclear applications: experimental, theoretical and instrumental competences. (author)

  1. Chemistry of complexing molecules and environment. Report of the working group of the Cea ''mission environment''; Chimie des complexants en environnements. Rapport du groupe de travail de la mission environnement

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J C

    1998-07-01

    The Working group 'Chemistry of Complexing Molecules and Environment' of the Mission Environment (AG/ENV) identified themes for an original positioning of CEA on important issues of environmental research if a sufficiently strong demand appears. The research of CEA on the environment should be complementary to actions undertaken by other partners (official institutions, research organizations and industrial firms). The themes suggested are: the synthesis of new chelating molecules and new materials having specific properties, with the support of theoretical chemistry and modeling, analytical physical chemistry and speciation of species in relation to their eco-toxicity and their biogeochemical mobility in the natural environment. These themes, illustrated by examples of actions in progress at CEA or likely to be launched quickly, draw largely from recognized competences of the teams, generally developed for finalized nuclear applications: experimental, theoretical and instrumental competences. (author)

  2. Using Web 2.0 Techniques in NASA's Ares Engineering Operations Network (AEON) Environment - First Impressions

    Science.gov (United States)

    Scott, David W.

    2010-01-01

    The Mission Operations Laboratory (MOL) at Marshall Space Flight Center (MSFC) is responsible for Engineering Support capability for NASA s Ares rocket development and operations. In pursuit of this, MOL is building the Ares Engineering and Operations Network (AEON), a web-based portal to support and simplify two critical activities: Access and analyze Ares manufacturing, test, and flight performance data, with access to Shuttle data for comparison Establish and maintain collaborative communities within the Ares teams/subteams and with other projects, e.g., Space Shuttle, International Space Station (ISS). AEON seeks to provide a seamless interface to a) locally developed engineering applications and b) a Commercial-Off-The-Shelf (COTS) collaborative environment that includes Web 2.0 capabilities, e.g., blogging, wikis, and social networking. This paper discusses how Web 2.0 might be applied to the typically conservative engineering support arena, based on feedback from Integration, Verification, and Validation (IV&V) testing and on searching for their use in similar environments.

  3. Dynamic occupational risk model for offshore operations in harsh environments

    International Nuclear Information System (INIS)

    Song, Guozheng; Khan, Faisal; Wang, Hangzhou; Leighton, Shelly; Yuan, Zhi; Liu, Hanwen

    2016-01-01

    The expansion of offshore oil exploitation into remote areas (e.g., Arctic) with harsh environments has significantly increased occupational risks. Among occupational accidents, slips, trips and falls from height (STFs) account for a significant portion. Thus, a dynamic risk assessment of the three main occupational accidents is meaningful to decrease offshore occupational risks. Bow-tie Models (BTs) were established in this study for the risk analysis of STFs considering extreme environmental factors. To relax the limitations of BTs, Bayesian networks (BNs) were developed based on BTs to dynamically assess risks of STFs. The occurrence and consequence probabilities of STFs were respectively calculated using BTs and BNs, and the obtained probabilities verified BNs' rationality and advantage. Furthermore, the probability adaptation for STFs was accomplished in a specific scenario with BNs. Finally, posterior probabilities of basic events were achieved through diagnostic analysis, and critical basic events were analyzed based on their posterior likelihood to cause occupational accidents. The highlight is systematically analyzing STF accidents for offshore operations and dynamically assessing their risks considering the harsh environmental factors. This study can guide the allocation of prevention resources and benefit the safety management of offshore operations. - Highlights: • A novel dynamic risk model for occupational accidents. • First time consideration of harsh environment in occupational accident modeling. • A Bayesian network based model for risk management strategies.

  4. USA Space Debris Environment, Operations, and Research Updates

    Science.gov (United States)

    Liou, J.-C.

    2018-01-01

    ) assessment for the Joint Polar Satellite System (JPSS) provided the following findings - Millimeter-sized orbital debris pose the highest penetration risk to most operational spacecraft in LEO - The most effective means to collect direct measurement data on millimetersized debris above 600 km altitude is to conduct in situ measurements - There is currently no in situ data on such small debris above 600 km altitude Since the orbital debris population follows a power-law size distribution, there are many more millimeter-sized debris than the large tracked objects - Current conjunction assessments and collision avoidance maneuvers against the tracked objects (which are typically 10 cm and larger) only address a small fraction (<1%) of the mission-ending risk from orbital debris To address the millimeter-sized debris data gap above 600 km, NASA has recently developed an innovative in situ measurement instrument - the Space Debris Sensor (SDS) - One maneuver was conducted to avoid the ISS

  5. Toward humanoid robots for operations in complex urban environments

    Science.gov (United States)

    Pratt, Jerry E.; Neuhaus, Peter; Johnson, Matthew; Carff, John; Krupp, Ben

    2010-04-01

    Many infantry operations in urban environments, such as building clearing, are extremely dangerous and difficult and often result in high casualty rates. Despite the fast pace of technological progress in many other areas, the tactics and technology deployed for many of these dangerous urban operation have not changed much in the last 50 years. While robots have been extremely useful for improvised explosive device (IED) detonation, under-vehicle inspection, surveillance, and cave exploration, there is still no fieldable robot that can operate effectively in cluttered streets and inside buildings. Developing a fieldable robot that can maneuver in complex urban environments is challenging due to narrow corridors, stairs, rubble, doors and cluttered doorways, and other obstacles. Typical wheeled and tracked robots have trouble getting through most of these obstacles. A bipedal humanoid is ideally shaped for many of these obstacles because its legs are long and skinny. Therefore it has the potential to step over large barriers, gaps, rocks, and steps, yet squeeze through narrow passageways, and through narrow doorways. By being able to walk with one foot directly in front of the other, humanoids also have the potential to walk over narrow "balance beam" style objects and can cross a narrow row of stepping stones. We describe some recent advances in humanoid robots, particularly recovery from disturbances, such as pushes and walking over rough terrain. Our disturbance recovery algorithms are based on the concept of Capture Points. An N-Step Capture Point is a point on the ground in which a legged robot can step to in order to stop in N steps. The N-Step Capture Region is the set of all N-Step Capture Points. In order to walk without falling, a legged robot must step somewhere in the intersection between an N-Step Capture Region and the available footholds on the ground. We present results of push recovery using Capture Points on our humanoid robot M2V2.

  6. Storyboard for the Medical System Concept of Operations for Mars Exploration Missions

    Science.gov (United States)

    Antonsen, Eric; Hailey, Melinda; Reyes, David; Rubin, David; Urbina, Michelle

    2017-01-01

    This storyboard conceptualizes one scenario of an integrated medical system during a Mars exploration mission. All content is for illustrative purposes only and neither defines nor implies system design requirement.

  7. A Practice of Secure Development and Operational Environment Plan

    International Nuclear Information System (INIS)

    Park, Jaekwan; Seo, Sangmun; Suh, Yongsukl; Park, Cheol

    2017-01-01

    This paper suggests a practice of plan for SDOE establishment in a nuclear I and C. First, it is necessary to perform a requirements analysis to define key regulatory issues and determine the target systems. The analysis includes a survey to find out the applicable measures credited internationally. Based on the analysis results, this paper proposes an implementation plan including a process harmonizing security activities with legacy software activities and applicable technical, operational, and management measures for target systems. Recently, nuclear I and C has been faced with two security issues, cyber security (CS) and secure development and operational environment (SDOE). Unlike cyber security, few studies on planning SDOE have been presented. This paper suggests a plan for establishing an SDOE in a nuclear I and C. This paper defines three key considerations to comply with the regulatory position of RG. 1.152(R3) and proposes a process harmonizing the security activities with legacy software activities. In addition, this paper proposes technical, operational, and management measures applicable for SDOE.

  8. Effects of the solar-terrestrial environment on satellite operations

    International Nuclear Information System (INIS)

    Baker, D.N.

    1984-01-01

    Hot plasma and energetic particle populations in space are known to produce spacecraft operational anomalies. In the inner part of the earth's magnetosphere, these effects are primarily due to durably trapped radiation belt particles, and the integrated doses can be calculated quite accurately for any given orbit. In the outer magnetosphere many spacecraft operational problems appear to be due to intense, transient phenomena. It is shown that three types of naturally-occurring, and highly variable, hostile particle radiation environments are encountered at, or near, the geostationary orbit: (1) high-energy protons due to solar flares; (2) very high energy electrons (2-10 MeV) of unknown origin; and (3) energetic ions and electrons produced by magnetospheric substorms. Present particle sensor systems provide energetic particle detection and assessment capabilities during these kinds of high-energy radiation events. Numerous operational anomalies and subsystem problems have occurred during each type of event period and the association of such upsets is demonstrated in this paper. Methods of prediction of magnetospheric disturbances are discussed, and overall recommendations are made for dealing with this continuing problem

  9. Report of the peer review mission of national operational safety experience feedback process to the Ukraine 11-15 November 1996 Kiev

    International Nuclear Information System (INIS)

    1996-01-01

    At the invitation of the Nuclear Regulatory Administration of Ukraine (NRA), the IAEA carried out a Peer review mission of national operational safety experience feedback process at Kiev from 11 to 15 November 1996. The objective of this mission was to provide the host country, represented by the regulatory body, with independent and comprehensive review of current status of operational safety experience feedback (OSEF) process with respect to the IAEA's recommendations and international practices. The mission concluded that principal arrangements of operational feedback process in Ukraine are, at present, in force and brought positive results since their introduction. The mission also noted several good practices in these activities. 1 tab

  10. Women and Couples in Isolated Extreme Environments: Applications for Long-Duration Missions

    Science.gov (United States)

    Leon, G. R.; Sandal, G. M.

    four women from Greenland, Denmark, UK and Russia who traversed the Greenland ice by ski. The participants did not know each other prior to the expedition. Three were classified as "the right stuff' based on PCI findings. Diary and post-expedition reports indicated that incidents of interpersonal tension were often related to fatigue, homesickness, pain or cold. The participants also indicated that respect and tolerance for differences between them, as weIl as mutual emotional support were crucial factors for the successful completion of the expedition. Group 3 consisted of 3 married couples and the 2 1/2 year old child of the leader and his wife. Five of the crew sailed a small boat from Norway to the Canadian High Arctic; the leader's wife and child joined the team in Greenland. Over a 9 month period, the icelocked boat was ilie center of habitation, scientific, and other activities. Three of the group carried out a 6 week exploratory trek at the end of the winter-over. Participants completed the MPQ prior to the expedition, a WRF over the entire Arctic period, and a semi-structured personality interview at the close of the interval during which the entire group was together. AlI participants scored relatively highest on the Absorption scale, manifested in the salutory experience of enjoying and becoming engrossed in the beauty of the environment. WRF and interview findings indicated that team members consistently reported that the emotional support of and ability to confide in their partner were extremely important in alleviating interpersonal tensions with other team members, and contributed to the overall effective functioning of the group. Reported level of emotional response to stress and coping patterns used while in the stationary habitat were consistent with WRF responses during the later exploratory trek. The woman team member on the trek reported more discomfort regarding personal hygiene issues and fear of injury .In alI groups, the salience of the

  11. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    International Nuclear Information System (INIS)

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-01-01

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to 10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is ideally suited for applications that require 1-30s engagements at very high average power. If necessary, multiple laser apertures can provide continuous operation. Land Combat mission analysis of a stressing air defense

  12. Multi-Stage ADRs for Current and Future Astronomy Missions: Performance and Requirements for Cryogen-Free Operation

    Science.gov (United States)

    Shirron, Peter; Kimball, Mark; Vlahacos, Kosta

    2010-01-01

    The cooling requirements for current (e.g. Astro-H) and future (e.g. IXO and ASP) astronomy missions pose significant challenges for the sub-Kelvin Cooler. In particular, the use of large detector arrays increases the cooling power needed, and the variety of cryocoolers that can be used for pre-cooling greatly expands the range of temperatures at which the sub-Kelvin cooler can be designed to reject heat. In most cases, there is also a need for a stable higher temperature stage for cooling amplifiers or telescope components. NASA/GSFC is currently building a 3-stage ADR for the Astro-H mission, and is developing a 5-stage ADR suitable for IXO and ASP, as well as many other missions in the early planning stages. The architecture of these ADRs allows them to be adapted rather easily for different cooling requirements and to accommodate different cryocooler capabilities (operating temperature and cooling power). This paper will discuss the performance of these ADRs, which operate in both continuous, and single-shot cooling modes, and the minimum cryocooler capabilities needed to meet the requirements of future missions.

  13. NASA Operational Environment Team (NOET): NASA's key to environmental technology

    Science.gov (United States)

    Cook, Beth

    1993-01-01

    NASA has stepped forward to face the environmental challenge to eliminate the use of Ozone-Layer Depleting Substances (OLDS) and to reduce our Hazardous Air Pollutants (HAP) by 50 percent in 1995. These requirements have been issued by the Clean Air Act, the Montreal Protocol, and various other legislative acts. A proactive group, the NASA Operational Environment Team or NOET, received its charter in April 1992 and was tasked with providing a network through which replacement activities and development experiences can be shared. This is a NASA-wide team which supports the research and development community by sharing information both in person and via a computerized network, assisting in specification and standard revisions, developing cleaner propulsion systems, and exploring environmentally-compliant alternatives to current processes.

  14. Simulation of worst-case operating conditions for integrated circuits operating in a total dose environment

    International Nuclear Information System (INIS)

    Bhuva, B.L.

    1987-01-01

    Degradations in the circuit performance created by the radiation exposure of integrated circuits are so unique and abnormal that thorough simulation and testing of VLSI circuits is almost impossible, and new ways to estimate the operating performance in a radiation environment must be developed. The principal goal of this work was the development of simulation techniques for radiation effects on semiconductor devices. The mixed-mode simulation approach proved to be the most promising. The switch-level approach is used to identify the failure mechanisms and critical subcircuits responsible for operational failure along with worst-case operating conditions during and after irradiation. For precise simulations of critical subcircuits, SPICE is used. The identification of failure mechanisms enables the circuit designer to improve the circuit's performance and failure-exposure level. Identification of worst-case operating conditions during and after irradiation reduces the complexity of testing VLSI circuits for radiation environments. The results of test circuits for failure simulations using a conventional simulator and the new simulator showed significant time savings using the new simulator. The savings in simulation time proved to be circuit topology-dependent. However, for large circuits, the simulation time proved to be orders of magnitude smaller than simulation time for conventional simulators

  15. Sustainability of biomass utilisation in changing operational environment - SUBICHOE

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, S.; Hongisto, M.; Koponen, K.; Sokka, L. (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: sampo.soimakallio@vtt.fi; Antikainen, R.; Manninen, K. (Finnish Environment Inst. SYKE, Helsinki (Finland)); Thun, R.; Sinkko, T. (MTT Agrifood Research Finland, Jokioinen (Finland)); Pasanen, K. (Finnish Forest Research Inst., Joensuu (Finland))

    2010-10-15

    Sustaibability is a multi-faceted and challenging target, but at the same time a crucial issue to assess when setting policies and targets for the future. The main objective of the SUBICHOE project is to assist in strategic decision- making of public administration and companies, as regards the most sustainable use of biomass, by taking into account the changing operational environment. In the project the sustainability of biofuels and the criteria, in particular those set by the EC, for ensuring that set requirements can and will be fulfilled are being assessed from short and long term perspectives. The project is carried out jointly by VTT Technical Research Centre of Finland, Finnish Environment Institute SYKE, MTT Agrifood Research Finland, Finnish Forest Research Institute (Metla) and The Government Institute for Economic Research (VATT). The project started in June 2009 and it is scheduled to be finalised in June 2011. The work plan of the project is divided into four Work Packages. In this article, a summary of a critical view on the requirements and challenges related to the implementation of the RES Directive is also provided based on the main findings of the WP1. (orig.)

  16. Heuristic Scheduling in Grid Environments: Reducing the Operational Energy Demand

    Science.gov (United States)

    Bodenstein, Christian

    In a world where more and more businesses seem to trade in an online market, the supply of online services to the ever-growing demand could quickly reach its capacity limits. Online service providers may find themselves maxed out at peak operation levels during high-traffic timeslots but too little demand during low-traffic timeslots, although the latter is becoming less frequent. At this point deciding which user is allocated what level of service becomes essential. The concept of Grid computing could offer a meaningful alternative to conventional super-computing centres. Not only can Grids reach the same computing speeds as some of the fastest supercomputers, but distributed computing harbors a great energy-saving potential. When scheduling projects in such a Grid environment however, simply assigning one process to a system becomes so complex in calculation that schedules are often too late to execute, rendering their optimizations useless. Current schedulers attempt to maximize the utility, given some sort of constraint, often reverting to heuristics. This optimization often comes at the cost of environmental impact, in this case CO 2 emissions. This work proposes an alternate model of energy efficient scheduling while keeping a respectable amount of economic incentives untouched. Using this model, it is possible to reduce the total energy consumed by a Grid environment using 'just-in-time' flowtime management, paired with ranking nodes by efficiency.

  17. Enhancing Electromagnetic Side-Channel Analysis in an Operational Environment

    Science.gov (United States)

    Montminy, David P.

    Side-channel attacks exploit the unintentional emissions from cryptographic devices to determine the secret encryption key. This research identifies methods to make attacks demonstrated in an academic environment more operationally relevant. Algebraic cryptanalysis is used to reconcile redundant information extracted from side-channel attacks on the AES key schedule. A novel thresholding technique is used to select key byte guesses for a satisfiability solver resulting in a 97.5% success rate despite failing for 100% of attacks using standard methods. Two techniques are developed to compensate for differences in emissions from training and test devices dramatically improving the effectiveness of cross device template attacks. Mean and variance normalization improves same part number attack success rates from 65.1% to 100%, and increases the number of locations an attack can be performed by 226%. When normalization is combined with a novel technique to identify and filter signals in collected traces not related to the encryption operation, the number of traces required to perform a successful attack is reduced by 85.8% on average. Finally, software-defined radios are shown to be an effective low-cost method for collecting side-channel emissions in real-time, eliminating the need to modify or profile the target encryption device to gain precise timing information.

  18. Psychological biases affecting human cognitive performance in dynamic operational environments

    International Nuclear Information System (INIS)

    Takano, Kenichi; Reason, J.

    1999-01-01

    In order to identify cognitive error mechanisms observed in the dynamic operational environment, the following materials were analyzed giving special attention to psychological biases, together with possible cognitive tasks and these location, and internal and external performance shaping factors: (a) 13 human factors analyses of US nuclear power plant accidents, (b) 14 cases of Japanese nuclear power plant incidents, and (c) 23 cases collected in simulator experiments. In the resulting analysis, the most frequently identified cognitive process associated with error productions was situation assessment, and following varieties were KB processes and response planning, all of that were the higher cognitive activities. Over 70% of human error cases, psychological bias was affecting to cognitive errors, especially those to higher cognitive activities. In addition, several error occurrence patterns, including relations between cognitive process, biases, and PSFs were identified by the multivariate analysis. According to the identified error patterns, functions that an operator support system have to equip were discussed and specified for design base considerations. (author)

  19. Operational measurements in radioprotection in the industrial and medical environments

    International Nuclear Information System (INIS)

    Rodde, S.; Vial, Th.; Truffert, H.; Kramar, R.; Batalla, A.; Roine, Ph.; Pin, A.; Lahaye, Th.; Rodde, S.; Bordy, J.M.; Paquet, F.; Veres, A.; Cadiou, A.; Branthonne, J.Y.; Noel, A.; Laloubere, L.; Moreau, St.; Gensdarmes, F.; Marques, S.; Lestang, M.; Valendru, N.; Tranchant, Ph.; Martel, P.; Bernhard, S.; Chareyre, P.; Gardin, I.; Casanova, Ph.; De Vita, A.; Tenailleau, L.; Masson, B.; Feret, B.; Guerin, M.; Guillot, L.; Gaultier, E.

    2009-01-01

    This document gathers the slides of the available presentations given during these conference days. Thirty presentations are assembled in the document and deal with: 1 - enforcement circular of the labor code dispositions relative to workers protection against ionizing radiation hazards (T. Lahaye); 2 - context and regulatory evolutions - public health code (S. Rodde); 3 - references and perspectives in external dosimetry (J.M. Bordy); 4 - CIPR's Committee 2 works (F. Paquet); 5 - from protection data to measurement data (A. Pin); 6 - dosimetric control in radiotherapy (A. Veres); 7 - calibration of irradiation measurement devices in industrial environment (A. Cadiou); 8 - calibration and verification of nuclear measurement devices (J.Y. Branthonne); 9 - calibration of measurement devices in medical environment (J.M. Bordy); 10 - quality control in radiotherapy (A. Batalla); 11 - in-vivo dosimetry in radiotherapy (A. Noel); 12 - calibration metrology of fixed post irradiation sensors (L. Laloubere); 13 - design requirements for the radiological zoning and the wastes cleanliness of Flamanville 3 EPR reactor (S. Moreau); 14 - efficiency of aerosol capture systems used in CNPE EDF (F. Gensdarmes); 15 - mobile surveillance means of the atmospheric contamination of CNPE EDF's reactor building (S. Marques and M. Lestang); 16 - experience feedback about the security gates at EDF's nuclear facilities (N. Valendru); 17 - metrology needs for radioprotection technical controls (P. Tranchant); 18 - technical evaluation of a flowmeter/dosemeter in the framework of the regulatory control of X-ray electric generators used in radio-diagnosis (P. Martel); 19 - reinforced natural radioactivity - the case of radon measurement (S. Bernhard); 20 - fires during radioactive materials transport (P. Chareyre); 21 - measurement in the framework of medical examinations: radiology service (A. Noel); 22 - operational measurements in nuclear medicine (I. Gardin); 23 - from the operational

  20. COMPOEX Technology to Assist Leaders in Planning and Executing Campaigns in Complex Operational Environments

    National Research Council Canada - National Science Library

    Kott, Alexander; Corpac, Peter S

    2007-01-01

    ... in a complex operational environment. Leaders must understand the operational environment, develop campaign plans that include multiple lines of effort such as security, governance, political-economic development, rule of law and employ...

  1. Mission control team structure and operational lessons learned from the 2009 and 2010 NASA desert RATS simulated lunar exploration field tests

    Science.gov (United States)

    Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall

    2013-10-01

    The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations

  2. Low-Power Operation and Plasma Characterization of a Qualification Model SPT-140 Hall Thruster for NASA Science Missions

    Science.gov (United States)

    Garner, Charles E.; Jorns, Benjamin A.; van Derventer, Steven; Hofer, Richard R.; Rickard, Ryan; Liang, Raymond; Delgado, Jorge

    2015-01-01

    Hall thruster systems based on commercial product lines can potentially lead to lower cost electric propulsion (EP) systems for deep space science missions. A 4.5-kW SPT-140 Hall thruster presently under qualification testing by SSL leverages the substantial heritage of the SPT-100 being flown on Russian and US commercial satellites. The Jet Propulsion Laboratory is exploring the use of commercial EP systems, including the SPT-140, for deep space science missions, and initiated a program to evaluate the SPT-140 in the areas of low power operation and thruster operating life. A qualification model SPT-140 designated QM002 was evaluated for operation and plasma properties along channel centerline, from 4.5 kW to 0.8 kW. Additional testing was performed on a development model SPT-140 designated DM4 to evaluate operation with a Moog proportional flow control valve (PFCV). The PFCV was commanded by an SSL engineering model PPU-140 Power Processing Unit (PPU). Performance measurements on QM002 at 0.8 kW discharge power were 50 mN of thrust at a total specific impulse of 1250 s, a total thruster efficiency of 0.38, and discharge current oscillations of under 3% of the mean current. Steady-state operation at 0.8 kW was demonstrated during a 27 h firing. The SPT-140 DM4 was operated in closed-loop control of the discharge current with the PFCV and PPU over discharge power levels of 0.8-4.5 kW. QM002 and DM4 test data indicate that the SPT-140 design is a viable candidate for NASA missions requiring power throttling down to low thruster input power.

  3. Tour operators, environment and sustainable development; Tour operator, ambiente e sviluppo sostenibile

    Energy Technology Data Exchange (ETDEWEB)

    Andriola, L.; Chirico, R.; Declich, P. [ENEA, Divisione Caratterizzazione dell' Ambiente e del Territorio, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    The purpose of this work is to characterize the role of the tour operators in achieving sustainable development meaning a process of development which leaves at least the same amount of capital, natural and man-made, to future generations as current generations have access to. Tourism is one of the largest and fastest growing global industries, creating significant employment and economic development, particularly in many developing countries. Tourism can also have negative environmental and social impact resulting from resource consumption, pollution, generation of wastes and from the compromise of local culture while introducing new activities. Most tour operators has started to recognised that a clean environment is critical to their success, but few tour operators have the management tools or experience to design and conduct tours that minimize their negative environmental and social impacts. A group of tour operators from different parts of the world have joined forces to create the Tour Operators' Initiative for Sustainable Tourism Development. With this initiatives, tour operators are moving towards sustainable tourism by committing themselves to address the environmental, social, and cultural aspects of sustainable development within the tourism sector. [Italian] Lo scopo del presente lavoro e' individuare il ruolo dei Tour Operator nel perseguire uno sviluppo sostenibile ossia un processo di sviluppo che lasci alle generazioni future lo stesso capitale, naturale e creato dall'uomo, di cui dispone l'attuale generazione. Il turismo e' tra le industrie globali piu' vaste ed in rapida crescita che crea una occupazione ed uno sviluppo economico significativo, particolarmente in molti paesi in via di sviluppo. Il turismo puo' anche generare impatti sia ambientali che sociali derivanti dallo sfruttamento delle risorse, dall'inquinamento, dalla produzione di rifiuti e dalla compromissione delle culture locali introducendo

  4. Tour operators, environment and sustainable development; Tour operator, ambiente e sviluppo sostenibile

    Energy Technology Data Exchange (ETDEWEB)

    Andriola, L; Chirico, R; Declich, P [ENEA, Divisione Caratterizzazione dell' Ambiente e del Territorio, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    The purpose of this work is to characterize the role of the tour operators in achieving sustainable development meaning a process of development which leaves at least the same amount of capital, natural and man-made, to future generations as current generations have access to. Tourism is one of the largest and fastest growing global industries, creating significant employment and economic development, particularly in many developing countries. Tourism can also have negative environmental and social impact resulting from resource consumption, pollution, generation of wastes and from the compromise of local culture while introducing new activities. Most tour operators has started to recognised that a clean environment is critical to their success, but few tour operators have the management tools or experience to design and conduct tours that minimize their negative environmental and social impacts. A group of tour operators from different parts of the world have joined forces to create the Tour Operators' Initiative for Sustainable Tourism Development. With this initiatives, tour operators are moving towards sustainable tourism by committing themselves to address the environmental, social, and cultural aspects of sustainable development within the tourism sector. [Italian] Lo scopo del presente lavoro e' individuare il ruolo dei Tour Operator nel perseguire uno sviluppo sostenibile ossia un processo di sviluppo che lasci alle generazioni future lo stesso capitale, naturale e creato dall'uomo, di cui dispone l'attuale generazione. Il turismo e' tra le industrie globali piu' vaste ed in rapida crescita che crea una occupazione ed uno sviluppo economico significativo, particolarmente in molti paesi in via di sviluppo. Il turismo puo' anche generare impatti sia ambientali che sociali derivanti dallo sfruttamento delle risorse, dall'inquinamento, dalla produzione di rifiuti e dalla compromissione delle culture locali introducendo nuove attivita'. La maggiore parte dei

  5. Multi-Mission Geographic Information System for Science Operations: A Test Case Using MSL Data

    Science.gov (United States)

    Calef, F. J.; Abarca, H. E.; Soliman, T.; Abercrombie, S. P.; Powell, M. W.

    2017-06-01

    The Multi-Mission Geographic Information System (MMGIS) is a NASA AMMOS project in its second year of development, built to display and query science products in a spatial context. We present our progress building this tool using MSL in situ data.

  6. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  7. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    Science.gov (United States)

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  8. Augmented reality aided operation and maintenance system for indoor environments

    International Nuclear Information System (INIS)

    Tamura, Yuichi; Umetani, Tomohiro; Kubo, Shin

    2013-01-01

    This paper proposes an Augmented Reality (AR) system to assist operation and maintenance tasks in an indoor environment, such as a nuclear fusion reactor and its building. AR is a technology that enhances real information by adding 3D virtual objects, images, sounds, or movies via a web camera. The AR system often uses “markers” such as QR code to detect the place where the virtual content should appear. However, these markers are unnatural and they can disturb the scenery. We propose an AR system that can detect natural markers, which provides AR content via a network. This system stores the information related to markers and virtual objects on a server. A device connected to this system automatically downloads this content so that the user can watch the AR content via a web camera. We add a real-time numerical simulation function that allows us to simulate physical phenomena by touching AR contents. It also enables us to observe simulation results by downloading a movie of numerical simulation results from the simulation server. Overall, this system allows us to watch the same content with multiple devices and to simulate physical phenomena using various parameters. (author)

  9. Preview of the Mission Assurance Analysis Protocol (MAAP): Assessing Risk and Opportunity in Complex Environments

    National Research Council Canada - National Science Library

    Alberts, Christopher; Dorofee, Audrey; Marino, Lisa

    2008-01-01

    .... A MAAP assessment provides a systematic, in-depth analysis of the potential for success in distributed, complex, and uncertain environments and can be applied across the life cycle and throughout the supply chain...

  10. CryoSat: ESA's ice explorer mission. One year in operations: status and achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Ortega, B. H.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Davidson, M.; Cullen, R.; Wingham, D.

    2012-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. Scope of this paper is to describe the current mission status and the main scientific achievements since the start of the science phase. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  11. Cryosat: Esa's Ice Explorer Mission. Two YEARs in Operations: Status and Achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Hoyos, B.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Cullen, R.; Fornari, M.; Davidson, M.; Laxon, S.

    2012-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Experimental evidence have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. In April 2012, the first winter [2010 -2011] sea-ice variation map of the Arctic was released to the scientific community. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  12. Integration of Multiple UAVs for Collaborative ISR Missions in an Urban Environment

    OpenAIRE

    Chua, Chee Nam

    2012-01-01

    Military conflicts are shifting from jungles and deserts to cities. This is because terrorists, insurgents, and guerillas find these areas provide a rich target environment and good hideouts. With the use of UAVs, urban threats can be tracked and targeted effectively. However, in an urban environment where there is little or no GPS signals and many obstacles, navigation of UAVs is a major challenge. Multiple UAVs can be employed to share sensor information to counter these challenges and to p...

  13. Mission Operations Working Group (MOWG) Report to the OMI Science Team

    Science.gov (United States)

    Fisher, Dominic M.

    2017-01-01

    This PowerPoint presentation will discuss Aura's current spacecraft and OMI insturment status, highlight any performance trends and impacts to OMI operations, identify any operational changes and express concerns or potential process improvements.

  14. Web Design for Space Operations: An Overview of the Challenges and New Technologies Used in Developing and Operating Web-Based Applications in Real-Time Operational Support Onboard the International Space Station, in Astronaut Mission Planning and Mission Control Operations

    Science.gov (United States)

    Khan, Ahmed

    2010-01-01

    The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX

  15. Global Environmental Micro Sensors Test Operations in the Natural Environment

    Science.gov (United States)

    Adams, Mark L.; Buza, Matthew; Manobianco, John; Merceret, Francis J.

    2007-01-01

    ENSCO, Inc. is developing an innovative atmospheric observing system known as Global Environmental Micro Sensors (GEMS). The GEMS concept features an integrated system of miniaturized in situ, airborne probes measuring temperature, relative humidity, pressure, and vector wind velocity. In order for the probes to remain airborne for long periods of time, their design is based on a helium-filled super-pressure balloon. The GEMS probes are neutrally buoyant and carried passively by the wind at predetermined levels. Each probe contains onboard satellite communication, power generation, processing, and geolocation capabilities. ENSCO has partnered with the National Aeronautics and Space Administration's Kennedy Space Center (KSC) for a project called GEMS Test Operations in the Natural Environment (GEMSTONE) that will culminate with limited prototype flights of the system in spring 2007. By leveraging current advances in micro and nanotechnology, the probe mass, size, cost, and complexity can be reduced substantially so that large numbers of probes could be deployed routinely to support ground, launch, and landing operations at KSC and other locations. A full-scale system will improve the data density for the local initialization of high-resolution numerical weather prediction systems by at least an order of magnitude and provide a significantly expanded in situ data base to evaluate launch commit criteria and flight rules. When applied to launch or landing sites, this capability will reduce both weather hazards and weather-related scrubs, thus enhancing both safety and cost-avoidance for vehicles processed by the Shuttle, Launch Services Program, and Constellation Directorates. The GEMSTONE project will conclude with a field experiment in which 10 to 15 probes are released over KSC in east central Florida. The probes will be neutrally buoyant at different altitudes from 500 to 3000 meters and will report their position, speed, heading, temperature, humidity, and

  16. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Mission Applications Study

    Science.gov (United States)

    Bose, David M.; Winski, Richard; Shidner, Jeremy; Zumwalt, Carlie; Johnston, Christopher O.; Komar, D. R.; Cheatwood, F. M.; Hughes, Stephen J.

    2013-01-01

    The objective of the HIAD Mission Applications Study is to quantify the benefits of HIAD infusion to the concept of operations of high priority exploration missions. Results of the study will identify the range of mission concepts ideally suited to HIADs and provide mission-pull to associated technology development programs while further advancing operational concepts associated with HIAD technology. A summary of Year 1 modeling and analysis results is presented covering missions focusing on Earth and Mars-based applications. Recommended HIAD scales are presented for near term and future mission opportunities and the associated environments (heating and structural loads) are described.

  17. A Radiation Hard Multi-Channel Digitizer ASIC for Operation in the Harsh Jovian Environment

    Science.gov (United States)

    Aslam, Shahid; Aslam, S.; Akturk, A.; Quilligan, G.

    2011-01-01

    ultimately impact the surface of Europa after the mission is completed. The current JEO mission concept includes a range of instruments on the payload, to monitor dynamic phenomena (such as Io's volcanoes and Jupiters atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. The payload includes a low mass (3.7 Kg) and low power (ASIC that resides very close to the thermopile linear array outputs. Both the thermopile array and the MCD ASIC will need to show full functionality within the harsh Jovian radiation environment, operating at cryogenic temperatures, typically 150 K to 170 K. In the following, a radiation mitigation strategy together with a low risk Radiation-Hardened-By-Design (RHBD) methodology using commercial foundry processes is given for the design and manufacture of a MCD ASIC that will meet this challenge.

  18. Commonalities in Russian Military Operations in Urban Environments

    National Research Council Canada - National Science Library

    Smith, Dale

    2003-01-01

    .... In doing so it advantage in technology will be significantly reduced. By conducting a study of the Russian operations in Chechnya and comparing it to operations in Stalingrad some enduring traits began to emerge...

  19. Use of Special Operations Forces in United Nations Missions: a Method to Resolve Complexity

    Science.gov (United States)

    2015-05-21

    physical stamina and psychological stability, followed by a rigorous training program are the imperatives to create SOF soldiers.42 Mark Bowden in...recommendation is that the United Nations should establish a Special Operations planning cell within the UN Department of Peacekeeping Operations. As of...now, the cell is nonexistent. This cell should be able to facilitate the integration of SOF into the overall peace operations concept. Finally, the

  20. Gaseous environment of the Shuttle early in the Spacelab 2 mission

    Science.gov (United States)

    Pickett, Jolene S.; Murphy, Gerald B.; Kurth, William S.

    1988-01-01

    A cold-cathode ionization gage was flown on Space Shuttle flight STS-5IF as part of the Spacelab 2 payload. Neutral pressure data that were taken in the payload bay during the first few hours on orbit are presented. These data show that when the payload bay is oriented such that the atmospheric gases are ramming into it, the pressure rises to a peak of 4 x 10 to the -6th Torr. Pressure is also slightly higher during the sunlit portion of each orbit. Outgassing of the payload bay causes the pressure to be elevated to a few times 10 to the -6th Torr early in the mission. In addition, several effects on pressure have been identified that are due to chemical releases. Substantial increases (50-150 percent) are seen during another experiment's gas purge. Orbiter chemical-release effects include: pressure increases of 200 percent up to 7 x 10 to the -6th Torr due to Orbital Maneuvering System burns, minor perturbations in pressure due to vernier thruster firings and little or no increase in pressure due to water dumps. In the case of vernier thruster firings, effects are seen only from down-firing thrusters in the back of the Orbiter, which are probably due to reflection of thruster gases off Orbiter surfaces.

  1. 78 FR 16465 - Energy and Environment Trade Mission to Malaysia, Thailand and the Philippines

    Science.gov (United States)

    2013-03-15

    ... Energy and Environmental Technologies markets in Malaysia, Thailand, and the Philippines. Led by a senior... from a cross-section of U.S. firms operating in energy and environmental technologies. Participating in... efficiency and sustainable townships with houses that will be equipped with eco- friendly features such as...

  2. Heatshield for Extreme Entry Environment Technology (HEEET) Enabling Missions Beyond Heritage Carbon Phenolic

    Science.gov (United States)

    Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzaes, G.; hide

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  3. Heatshield for Extreme Entry Environment Technology (HEEET) - Enabling Missions Beyond Heritage Carbon Phenolic

    Science.gov (United States)

    Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; hide

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  4. Heatshield for Extreme Entry Environment Technology (HEEET) Development and Maturation Status for NF Missions

    Science.gov (United States)

    Ellerby, D.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Hamm, K.; hide

    2016-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  5. Mission Planning for Heterogeneous UxVs Operating in a Post-Disaster Urban Environment

    Science.gov (United States)

    2017-09-01

    stay in the United States. Their playfulness and chirpy laughter always served as an encouragement and brightened each day, especially during the most...it has been a great year of fun, laughter and joy. I would like to take this opportunity to thank all my family, friends and colleagues whom I am

  6. The Big Picture: Imaging of the Global Geospace Environment by the TWINS Mission

    Science.gov (United States)

    Goldstein, J.; McComas, D. J.

    2018-03-01

    Encircling our planet at distances of 2.5 to 8 Earth radii is a dynamic plasma population known as the ring current (RC). During geomagnetic storms, the solar wind's interaction with Earth's magnetic field pumps petaJoules of energy into the RC, energizing and transporting particles. To measure the global geospace response, RC imaging is performed by capturing energetic neutral atoms (ENAs) created by charge exchange between geospace ions and the neutral exosphere. The H exosphere is itself imaged via its geocoronal Lyman-α glow. Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a stereoscopic ENA and Lyman-α imaging mission that has recorded the deep minimum of solar cycle (SC) 23 and the moderate maximum of SC 24, observing geospace conditions ranging from utterly quiet to major storms. This review covers TWINS studies of the geospace response published during 2013 to 2017. Stereo ENA imaging has revealed new dimensionality and structure of RC ions. Continuous coverage by two imagers has allowed monitoring storms from start to finish. Deconvolution of the low-altitude signal has extended ENA analysis and revealed causal connections between the trapped and precipitating ion populations. ENA-based temperature and composition analyses have been refined, validated, and applied to an unprecedented sequence of solar activity changes in SC 23 and SC 24. Geocoronal imaging has revealed a surprising amount of time variability and structure in the neutral H exosphere, driven by both Sun and solar wind. Global models have been measurably improved. Routine availability of simultaneous in situ measurements has fostered huge leaps forward in the areas of ENA validation and cross-scale studies.

  7. Radiometric Performance of the TerraSAR-X Mission over More Than Ten Years of Operation

    Directory of Open Access Journals (Sweden)

    Marco Schwerdt

    2018-05-01

    Full Text Available The TerraSAR-X mission, based on two satellites, has produced SAR data products of high quality for a number of scientific and commercial applications for more than ten years. To guarantee the stability and the reliability of these highly accurate SAR data products, both systems were first accurately calibrated during their respective commissioning phases and have been permanently monitored since then. Based on a short description of the methods applied, this paper focuses on the radiometric performance including the gain and phase properties of the transmit/receiver modules, the antenna pattern checked by evaluating scenes acquired over uniformly distributed targets and the radiometric stability derived from permanently deployed point targets. The outcome demonstrates the remarkable performance of both systems since their respective launch.

  8. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  9. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  10. Development of wide area environment accelerator operation and diagnostics method

    Science.gov (United States)

    Uchiyama, Akito; Furukawa, Kazuro

    2015-08-01

    Remote operation and diagnostic systems for particle accelerators have been developed for beam operation and maintenance in various situations. Even though fully remote experiments are not necessary, the remote diagnosis and maintenance of the accelerator is required. Considering remote-operation operator interfaces (OPIs), the use of standard protocols such as the hypertext transfer protocol (HTTP) is advantageous, because system-dependent protocols are unnecessary between the remote client and the on-site server. Here, we have developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force for Web-based systems, as a next-generation Web-based OPI using the Experimental Physics and Industrial Control System Channel Access protocol. As a result of this implementation, WebSocket-based client systems have become available for remote operation. Also, as regards practical application, the remote operation of an accelerator via a wide area network (WAN) faces a number of challenges, e.g., the accelerator has both experimental device and radiation generator characteristics. Any error in remote control system operation could result in an immediate breakdown. Therefore, we propose the implementation of an operator intervention system for remote accelerator diagnostics and support that can obviate any differences between the local control room and remote locations. Here, remote-operation Web-based OPIs, which resolve security issues, are developed.

  11. Development of wide area environment accelerator operation and diagnostics method

    Directory of Open Access Journals (Sweden)

    Akito Uchiyama

    2015-08-01

    Full Text Available Remote operation and diagnostic systems for particle accelerators have been developed for beam operation and maintenance in various situations. Even though fully remote experiments are not necessary, the remote diagnosis and maintenance of the accelerator is required. Considering remote-operation operator interfaces (OPIs, the use of standard protocols such as the hypertext transfer protocol (HTTP is advantageous, because system-dependent protocols are unnecessary between the remote client and the on-site server. Here, we have developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force for Web-based systems, as a next-generation Web-based OPI using the Experimental Physics and Industrial Control System Channel Access protocol. As a result of this implementation, WebSocket-based client systems have become available for remote operation. Also, as regards practical application, the remote operation of an accelerator via a wide area network (WAN faces a number of challenges, e.g., the accelerator has both experimental device and radiation generator characteristics. Any error in remote control system operation could result in an immediate breakdown. Therefore, we propose the implementation of an operator intervention system for remote accelerator diagnostics and support that can obviate any differences between the local control room and remote locations. Here, remote-operation Web-based OPIs, which resolve security issues, are developed.

  12. Organization for security and co-operation in Europe mission to Georgia / Joe McDonagh

    Index Scriptorium Estoniae

    McDonagh, Joe

    2003-01-01

    22.-23. septembrini 2003 Vilniuses toimunud seminaril "South Caucasus: making the best use of external assistance for stability building and for co-operation with NATO" esitatud ettekanne OSCE missiooni tegevusest Gruusias

  13. Command and Control Software for Single-Operator Multiple UAS Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing command and control (C2) paradigms for UAS platforms are extremely limited and cumbersome, requiring at least a single operator per UAS, if not more than...

  14. Command and Control Software for Single-Operator Multiple UAS Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing command and control (C2) paradigms for UAS platforms are extremely limited and cumbersome, requiring at least a single operator per UAS, if not more than...

  15. Safety and Mission Assurance (SMA) Automated Task Order Management System (ATOMS) Operation Manual

    Science.gov (United States)

    Wallace, Shawn; Fikes, Lou A.

    2016-01-01

    This document describes operational aspects of the ATOMS system. The information provided is limited to the functionality provided by ATOMS and does not include information provided in the contractor's proprietary financial and task management system.

  16. Virtual Environment Composable Training for Operational Readiness (VECTOR)

    National Research Council Canada - National Science Library

    Barba, Charles; Deaton, John E; Santarelli, Tom; Knerr, Bruce; Singer, Michael; Belanich, Jim

    2006-01-01

    .... This paper describes the cultural-training application, the architectural design, and the associated implementation of the immersive environment and intelligent agent technology to control game non-player characters (NPC...

  17. Management of anaphylaxis in an austere or operational environment.

    Science.gov (United States)

    Ellis, B Craig; Brown, Simon G A

    2014-01-01

    We present a case report of a Special Operations Soldier who developed anaphylaxis as a consequence of a bee sting, resulting in compromise of the operation. We review the current literature as it relates to the pathophysiology of the disease process, its diagnosis, and its management. An evidence-based field treatment algorithm is suggested. 2014.

  18. Increasing Intelligence, Surveillance, and Reconnaissance (ISR) Operational Agility through Mission Command

    Science.gov (United States)

    2016-06-10

    patterns can emerge within an acceptable deviance . As evolving problems and patters of emergence are communicated across the system, innovative and...the challenges of the complex, unpredictable, and challenging global security environment within the established boundaries of behavior . 93 ISR

  19. The Electrostatic Environments of the Moon and Mars: Implications for Human Missions

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James; Cox, Rachel E.

    2016-01-01

    Lacking a substantial atmosphere, the moon is exposed to the full spectrum of solar radiation as well as to cosmic rays. Electrostatically, the moon is a charged body in a plasma. A Debye sheet meters high on the dayside of the moon and kilometers high on the night side envelops the moon. This sheet isolates the lunar surface from high energy particles coming from the sun. The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  20. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  1. Sentinel-5: the new generation European operational atmospheric chemistry mission in polar orbit

    Science.gov (United States)

    Pérez Albiñana, Abelardo; Erdmann, Matthias; Wright, Norrie; Martin, Didier; Melf, Markus; Bartsch, Peter; Seefelder, Wolfgang

    2017-08-01

    Sentinel-5 is an Earth Observation instrument to be flown on the Metop Second Generation (Metop-SG) satellites with the fundamental objective of monitoring atmospheric composition from polar orbit. The Sentinel-5 instrument consists of five spectrometers to measure the solar spectral radiance backscattered by the earth atmosphere in five bands within the UV (270nm) to SWIR (2385nm) spectral range. Data provided by Sentinel-5 will allow obtaining the distribution of important atmospheric constituents such as ozone, on a global daily basis and at a finer spatial resolution than its precursor instruments on the first generation of Metop satellites. The launch of the first Metop-SG satellite is foreseen for 2021. The Sentinel-5 instrument is being developed by Airbus DS under contract to the European Space Agency. The Sentinel-5 mission is part of the Space Component of the Copernicus programme, a joint initiative by ESA, EUMETSAT and the European Commission. The Preliminary Design Review (PDR) for the Sentinel-5 development was successfully completed in 2015. This paper provides a description of the Sentinel-5 instrument design and data calibration.

  2. Aerospace Operations in Urban Environments: Exploring New Concepts

    National Research Council Canada - National Science Library

    Vick, Alan

    2000-01-01

    .... Peace operations in Somalia, especially the deaths of 18 U.S. servicemen and the wounding of almost 100 others on October 3, 1993, profoundly influenced the American public's perceptions of modern urban combat in the developing world...

  3. An operating environment with multitasking capabilities for radiochemistry autosynthesizers

    International Nuclear Information System (INIS)

    Feliu, A.L.

    1991-01-01

    The proliferation of positron emission tomography centers during recent years has stimulated intensive efforts to develop reliable and efficient devices for automating radiopharmaceutical syntheses. In order to expedite the design and operation of fully automated synthesizers, a graphical process control scheme featuring a simple method for the end-user to reconfigure the software was recently suggested. The flexibility and user-friendliness of this scheme were demonstrated with an application package to operate a commercially-available autosynthesizer. This methodology is now extended to include multitasking capabilities. To evaluate the multitasking concept, the demonstration program AUTOMATE was created to simulate independent operation of four autosynthesizers. With AUTOMATE, a chemist could easily supervise one routine synthesis whole ''warming up'' another synthesizer or conducting a research experiment. The graphical approach provides the simplicity of manual control, instant status information, and a choice between ''hands-on'' or unattended operations. The potential utility of AUTOMATE in the laboratory is discussed. (author)

  4. Developing an Environment for Exploring Distributed Operations: A Wargaming Example

    National Research Council Canada - National Science Library

    Holden, William T., Jr; Smith, Matthew L; Conzelman, Clair E; Smith, Paul G; Lickteig, Carl W; Sanders, William R

    2005-01-01

    Requirements for Future Force operations indicate that planning and wargaming must transition from a collocated, sequential, and staff-centered process to one that is distributed, simultaneous, and commander-centered...

  5. Performance confirmation operation of water environment control facility

    International Nuclear Information System (INIS)

    Magome, Hirokatsu; Okada, Yuji; Tomita, Kenji; Iida, Kazuhiro; Ando, Hitoshi; Yonekawa, Akihisa; Ueda, Haruyasu; Hanawa, Hiroshi; Kanno, Masaru; Sakuta, Yoshiyuki

    2015-09-01

    In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material was advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. The material irradiation test facility was installed from 2008 fiscal year to 2012 fiscal year in JMTR. The material irradiation test facility is used for IASCC study, and consists of mainly three equipments. This report described performance operating test of the water environmental control facilities for IASCC study carried out 2013 fiscal year. (author)

  6. Operating Nuclear Power Stations in a Regulated Cyber Security Environment

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, E.

    2014-07-01

    The United States Nuclear Regulatory Commission (NRC) issued 10CFR73.54 to implement a regulated Cyber Security Program at each operating nuclear reactor facility. Milestones were implemented December 31, 2012 to mitigate the attack vectors for the most critical digital assets acknowledged by the industry and the NR C. The NRC inspections have begun. The nuclear Cyber Security Plan, implemented by the site Cyber Security Program (Program), is an element of the operating license at each facility. (Author)

  7. Operating Nuclear Power Stations in a Regulated Cyber Security Environment

    International Nuclear Information System (INIS)

    Dorman, E.

    2014-01-01

    The United States Nuclear Regulatory Commission (NRC) issued 10CFR73.54 to implement a regulated Cyber Security Program at each operating nuclear reactor facility. Milestones were implemented December 31, 2012 to mitigate the attack vectors for the most critical digital assets acknowledged by the industry and the NR C. The NRC inspections have begun. The nuclear Cyber Security Plan, implemented by the site Cyber Security Program (Program), is an element of the operating license at each facility. (Author)

  8. Design and implementation of an inter-agency, multi-mission space flight operations network interface

    Science.gov (United States)

    Byrne, R.; Scharf, M.; Doan, D.; Liu, J.; Willems, A.

    2004-01-01

    An advanced network interface was designed and implemented by a team from the Jet Propulsion Lab with support from the European Space Operations Center. This poster shows the requirements for the interface, the design, the topology, the testing and lessons learned from the whole implementation.

  9. 14 CFR 431.43 - Reusable launch vehicle mission operational requirements and restrictions.

    Science.gov (United States)

    2010-01-01

    ... vehicle poses risk to public health and safety and the safety of property in excess of acceptable flight... energy; and (4) Vehicle safety operations personnel shall adhere to the following work and rest standards: (i) A maximum 12-hour work shift with at least 8 hours of rest after 12 hours of work, preceding...

  10. Crop classification and mapping based on Sentinel missions data in cloud environment

    Science.gov (United States)

    Lavreniuk, M. S.; Kussul, N.; Shelestov, A.; Vasiliev, V.

    2017-12-01

    Availability of high resolution satellite imagery (Sentinel-1/2/3, Landsat) over large territories opens new opportunities in agricultural monitoring. In particular, it becomes feasible to solve crop classification and crop mapping task at country and regional scale using time series of heterogenous satellite imagery. But in this case, we face with the problem of Big Data. Dealing with time series of high resolution (10 m) multispectral imagery we need to download huge volumes of data and then process them. The solution is to move "processing chain" closer to data itself to drastically shorten time for data transfer. One more advantage of such approach is the possibility to parallelize data processing workflow and efficiently implement machine learning algorithms. This could be done with cloud platform where Sentinel imagery are stored. In this study, we investigate usability and efficiency of two different cloud platforms Amazon and Google for crop classification and crop mapping problems. Two pilot areas were investigated - Ukraine and England. Google provides user friendly environment Google Earth Engine for Earth observation applications with a lot of data processing and machine learning tools already deployed. At the same time with Amazon one gets much more flexibility in implementation of his own workflow. Detailed analysis of pros and cons will be done in the presentation.

  11. Travel report on a preparatory mission to the Agencija RAO, Ljubljana for a radium conditioning operation

    International Nuclear Information System (INIS)

    Neubauer, J.

    2001-07-01

    The purpose of the trip was to establish the current status of radioactive waste management in Slovenia, to discuss their plans for the future management of their radioactive wastes and to prepare for a radium source conditioning operation to make safe and secure their known inventory of radium withdrawn from service. The IAEA are considering placing a contract on the Oesterreichisches Forschungszentrum Seibersdorf (OeFZS) to carry out the radium conditioning operation on the agency's behalf in a manner used successfully on a number of previous occasions. In Slovenia responsibility for the management of radioactive wastes arising from nuclear applications in medicine research and industry is delegated to 'Agencija Rao'. First a visit was made to the storage building in which such wastes are stored, the building being within the grounds of the Josef Stefan Institute in Ljubljana. The possibility of carrying out the radium conditioning operation in the building and the improvements and modifications necessary was discussed. The inventory of stored waste was reviewed, the packages containing radium were identified and located in the store. Some of these contained radium-beryllium sources. It was agreed that such sources would not be conditioned during the forthcoming operation. Next a visit was made to the chemistry laboratories of the Josef Stefan Institute, these being a possible alternative location for the operation. On returning to the 'Agencija Rao' office in Ljubljana detail discussion of the merits of the alternative locations were discussed. It was realized that the operation could proceed quicker and at less cost if the existing laboratory was chosen, the unknown factor is the time taken to obtain regulatory approval. Next detailed discussion took place of the availability of necessary equipment and consumable items and agreement reached on what should be supplied locally and what should be brought to Slovenia, by the conditioning team. Plans were made to

  12. Virtual age model for equipment aging plant based on operation environment and service state

    International Nuclear Information System (INIS)

    Zhang Liming; Cai Qi; Zhao Xinwen; Chen Ling

    2010-01-01

    The accelerated life model based on the operation environment and service state was established by taking the virtual age as the equipment aging indices. The effect of different operation environments and service states on the reliability and virtual age under the continuum operation conditions and cycle operation conditions were analyzed, and the sensitivities of virtual age on operational environments and service states were studied. The results of the example application show that the effect of NPP equipment lifetime and the key parameters related to the reliability can be quantified by this model, and the result is in accordance with the reality.(authors)

  13. Power plants operating in normal conditions, space management, and environment

    International Nuclear Information System (INIS)

    Bertron, L.

    1986-01-01

    This paper presents the local populations considerations related to the establishment of a nuclear power plant comprising 4 units of 900 MW: reception of a population in the existing environment, acceptance of the power plant by the local population, effluent releases and environmental impacts, and the power plant future [fr

  14. Reliability evaluation of oil pipelines operating in aggressive environment

    Science.gov (United States)

    Magomedov, R. M.; Paizulaev, M. M.; Gebel, E. S.

    2017-08-01

    In connection with modern increased requirements for ecology and safety, the development of diagnostic services complex is obligatory and necessary enabling to ensure the reliable operation of the gas transportation infrastructure. Estimation of oil pipelines technical condition should be carried out not only to establish the current values of the equipment technological parameters in operation, but also to predict the dynamics of changes in the physical and mechanical characteristics of the material, the appearance of defects, etc. to ensure reliable and safe operation. In the paper, existing Russian and foreign methods for evaluation of the oil pipelines reliability are considered, taking into account one of the main factors leading to the appearance of crevice in the pipeline material, i.e. change the shape of its cross-section, - corrosion. Without compromising the generality of the reasoning, the assumption of uniform corrosion wear for the initial rectangular cross section has been made. As a result a formula for calculation the probability of failure-free operation was formulated. The proposed mathematical model makes it possible to predict emergency situations, as well as to determine optimal operating conditions for oil pipelines.

  15. The Belgian End of Mission Transition Period: Lessons Learned from Third Location Decompression after Operational Deployment

    Science.gov (United States)

    2011-04-01

    Third Location Decompression after Operational Deployment 11 - 2 RTO-MP-HFM-205 programs is based upon the literature on combat motivation ...exposure to normal leisure activities and tourism . Massage is another interesting element in the French program. Each soldier receives at least one... gastronomy ; during the French TLD, soldiers were allowed to drink wine or beer with their meal starting at 7pm and bars closed at 1am ultimately. Alcohol

  16. Fast Flux Test Facility: first three years of operation and future mission

    International Nuclear Information System (INIS)

    Peckinpaugh, C.L.; Newland, D.J.; Evans, E.A.

    1985-03-01

    In summary, the FFTF has proven to be a high performance, versatile test reactor. Results obtained during its first three years of operation - and those to be obtained in the coming years - are building a technology and experience base that is invaluable to future LMRs. The FFTF demonstrates proven LMR technology with a focus for the future and provides the US with international LMR technology leadership

  17. Operating system considerations in the multiprocessor MIDAS environment

    International Nuclear Information System (INIS)

    Weaver, D.; Maples, C.; Meng, J.; Rathbun, W.

    1983-01-01

    The operating system for MIDAS provides interfaces for custom hardware, debugging facilities, and run time support. The MIDAS architecture uses various specialized hardware devices for controlling the multiple processors and to achieve high I/O throughput. The operating system interfaces with the custom hardware for diagnostics, problem setup, and loading the processors with user code. After the code is loaded, a debugging facility may be used to examine or modify the program in any of the processors, or all the processors simultaneously. During execution of the code, the operating system monitors the processors for exceptional conditions, detects hardware failures, and gathers statistics on performance. This performance information includes histograms depicting instruction execution frequency and analysis of data flow

  18. Challenges and Opportunities of Operation Enduring Freedom/Operation Iraqi Freedom Veterans with Disabilities Transitioning into Learning and Workplace Environments

    Science.gov (United States)

    Ostovary, Fariba; Dapprich, Janet

    2011-01-01

    This article presents issues related to disabled military servicemen and women who are transitioning to civilian life. The emphasis is on the experience of veterans serving in the Operation Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF) as they reintegrate into civilian workplace and learning environments. The authors begin with an…

  19. NASA Extreme Environments Mission Operations 10 - Evaluation of Robotic and Sensor Technologies for Surgery in Extreme Environments

    Science.gov (United States)

    2006-11-01

    Mitre AI, Lima SV, et al. Telementoring between Brazil and the United States: Initial Experience. J Endourol 2003; 17(4):217-20. 22. Marescaux J...next leg until you observe the “ beach ” indicator in the upper left rotate 90 degrees. If it does not rotate push the “leg” button again until it...sample contamination for example), an accurate bearing and range or grid coordinate of that sample will ensure that it can be located when desired. Real

  20. Military Engineer Contribution to Operational Art: The Hybrid Threat Environment

    Science.gov (United States)

    2015-05-22

    insurgency forces from the population. UNPIK, or the “ donkeys ,” was the UN’s irregular force, acting in concert with its regular conventional...Eighth Army exploited this opportunity, arming and training the refugees for operations against the rear of the PRC.78 The “ donkeys ” conducted numerous

  1. WFIRST: User and mission support at ISOC - IPAC Science Operations Center

    Science.gov (United States)

    Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Laine, Seppo; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin

    2018-01-01

    The science center for WFIRST is distributed between the Goddard Space Flight Center, the Infrared Processing and Analysis Center (IPAC) and the Space Telescope Science Institute (STScI). The main functions of the IPAC Science Operations Center (ISOC) are:* Conduct the GO, archival and theory proposal submission and evaluation process* Support the coronagraph instrument, including observation planning, calibration and data processing pipeline, generation of data products, and user support* Microlensing survey data processing pipeline, generation of data products, and user support* Community engagement including conferences, workshops and general support of the WFIRST exoplanet communityWe will describe the components planned to support these functions and the community of WFIRST users.

  2. 17 CFR 240.17Ad-21T - Operational capability in a Year 2000 environment.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Operational capability in a Year 2000 environment. 240.17Ad-21T Section 240.17Ad-21T Commodity and Securities Exchanges SECURITIES... Company Rules § 240.17Ad-21T Operational capability in a Year 2000 environment. (a) This section applies...

  3. Operation environment construction of geological information database for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Wang Peng; Gao Min; Huang Shutao; Wang Shuhong; Zhao Yongan

    2014-01-01

    To fulfill the requirements of data storage and management in HLW geological disposal, a targeted construction method for data operation environment was proposed in this paper. The geological information database operation environment constructed by this method has its unique features. And it also will be the important support for HLW geological disposal project and management. (authors)

  4. Gas mission; Mission gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This preliminary report analyses the desirable evolutions of gas transport tariffing and examines some questions relative to the opening of competition on the French gas market. The report is made of two documents: a synthesis of the previous report with some recommendations about the tariffing of gas transport, about the modalities of network access to third parties, and about the dissociation between transport and trade book-keeping activities. The second document is the progress report about the opening of the French gas market. The first part presents the European problem of competition in the gas supply and its consequences on the opening and operation of the French gas market. The second part presents some partial syntheses about each topic of the mission letter of the Ministry of Economics, Finances and Industry: future evolution of network access tariffs, critical analysis of contractual documents for gas transport and delivery, examination of auxiliary services linked with the access to the network (modulation, balancing, conversion), consideration about the processing of network congestions and denied accesses, analysis of the metering dissociation between the integrated activities of gas operators. Some documents are attached in appendixes: the mission letter from July 9, 2001, the detailed analysis of the new temporary tariffs of GdF and CFM, the offer of methane terminals access to third parties, the compatibility of a nodal tariffing with the presence of three transport operators (GdF, CFM and GSO), the contract-type for GdF supply, and the contract-type for GdF connection. (J.S.)

  5. An amplifier for VUV photomultiplier operating in cryogenic environment

    International Nuclear Information System (INIS)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S.; Di Giovanni, A.; D'Inzeo, M.; Franchi, G.; Pazos Clemens, L.

    2016-01-01

    We present the characterisation of an amplifier potentially interesting for noble liquid detectors. The design has been conceived considering the requirements of low power consumption (less than 30 mW), low noise, amplification factor of 10 at 100 MHz and use of commercial components. The amplifier has been integrated onto an electronic board with a voltage divider to operate an Hamamatsu R11410 photomultiplier tube (used in XENON1T, Aprile et al. (2014) [1] dark matter experiment).

  6. An amplifier for VUV photomultiplier operating in cryogenic environment

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Di Giovanni, A., E-mail: adriano.digiovanni@nyu.edu [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); D' Inzeo, M.; Franchi, G. [Age Scientific srl – Capezzano Pianore (Italy); Pazos Clemens, L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates)

    2016-07-11

    We present the characterisation of an amplifier potentially interesting for noble liquid detectors. The design has been conceived considering the requirements of low power consumption (less than 30 mW), low noise, amplification factor of 10 at 100 MHz and use of commercial components. The amplifier has been integrated onto an electronic board with a voltage divider to operate an Hamamatsu R11410 photomultiplier tube (used in XENON1T, Aprile et al. (2014) [1] dark matter experiment).

  7. Assessing Sustainment Operations in a Decisive Action Training Environment

    Science.gov (United States)

    2017-05-01

    constantly changing information requirements. Having established procedures in place to handle these challenges would seem requisite for units...maintain the continuous and rapid execution of command post operations. According to FM 3-90.2, the SOPs established and rehearsed for each CP...a rehearsed plan for a possible attack on the CP, and a rehearsed plan to move the CP. The Follow Up section emphasized the necessity of debriefing

  8. Measuring Command Post Operations in a Decisive Action Training Environment

    Science.gov (United States)

    2017-05-01

    constantly changing information requirements. Having established procedures in place to handle these challenges would seem requisite for units...maintain the continuous and rapid execution of command post operations. According to FM 3-90.2, the SOPs established and rehearsed for each CP...a rehearsed plan for a possible attack on the CP, and a rehearsed plan to move the CP. The Follow Up section emphasized the necessity of debriefing

  9. Development and application of visual support module for remote operator in 3D virtual environment

    International Nuclear Information System (INIS)

    Choi, Kyung Hyun; Cho, Soo Jeong; Yang, Kyung Boo; Bae, Chang Hyun

    2006-02-01

    In this research, the 3D graphic environment was developed for remote operation, and included the visual support module. The real operation environment was built by employing a experiment robot, and also the identical virtual model was developed. The well-designed virtual models can be used to retrieve the necessary conditions for developing the devices and processes. The integration of 3D virtual models, the experimental operation environment, and the visual support module was used for evaluating the operation efficiency and accuracy by applying different methods such as only monitor image and with visual support module

  10. Development and application of visual support module for remote operator in 3D virtual environment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyung Hyun; Cho, Soo Jeong; Yang, Kyung Boo [Cheju Nat. Univ., Jeju (Korea, Republic of); Bae, Chang Hyun [Pusan Nat. Univ., Busan (Korea, Republic of)

    2006-02-15

    In this research, the 3D graphic environment was developed for remote operation, and included the visual support module. The real operation environment was built by employing a experiment robot, and also the identical virtual model was developed. The well-designed virtual models can be used to retrieve the necessary conditions for developing the devices and processes. The integration of 3D virtual models, the experimental operation environment, and the visual support module was used for evaluating the operation efficiency and accuracy by applying different methods such as only monitor image and with visual support module.

  11. Piezoelectric PVDF materials performance and operation limits in space environments

    International Nuclear Information System (INIS)

    Dargaville, Tim Richard; Assink, Roger Alan; Clough, Roger Lee; Celina, Mathias Christopher

    2004-01-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies

  12. Apparatus and method for modifying the operation of a robotic vehicle in a real environment, to emulate the operation of the robotic vehicle operating in a mixed reality environment

    Science.gov (United States)

    Garretson, Justin R [Albuquerque, NM; Parker, Eric P [Albuquerque, NM; Gladwell, T Scott [Albuquerque, NM; Rigdon, J Brian [Edgewood, NM; Oppel, III, Fred J.

    2012-05-29

    Apparatus and methods for modifying the operation of a robotic vehicle in a real environment to emulate the operation of the robotic vehicle in a mixed reality environment include a vehicle sensing system having a communications module attached to the robotic vehicle for communicating operating parameters related to the robotic vehicle in a real environment to a simulation controller for simulating the operation of the robotic vehicle in a mixed (live, virtual and constructive) environment wherein the affects of virtual and constructive entities on the operation of the robotic vehicle (and vice versa) are simulated. These effects are communicated to the vehicle sensing system which generates a modified control command for the robotic vehicle including the effects of virtual and constructive entities, causing the robot in the real environment to behave as if virtual and constructive entities existed in the real environment.

  13. Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA

    Science.gov (United States)

    Jeon, Jeheon; Lee, Seongwhan; Yoon, Seyoung; Seon, Jongho; Jin, Ho; Lee, Donghun; Lin, Robert P.

    2013-12-01

    TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA) is a CubeSat with 3.14 kg in weight and 3-U (10 × 10 × 30 cm) in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultrahigh vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.

  14. Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA

    Directory of Open Access Journals (Sweden)

    Jeheon Jeon

    2013-09-01

    Full Text Available TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA is a CubeSat with 3.14 kg in weight and 3-U (10 × 10 × 30 cm in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultrahigh vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.

  15. Critical operations capabilities in a high cost environment: a multiple case study

    Science.gov (United States)

    Sansone, C.; Hilletofth, P.; Eriksson, D.

    2018-04-01

    Operations capabilities have been a popular research area for many years and several frameworks have been proposed in the literature. The current frameworks do not take specific contexts into consideration, for instance a high cost environment. This research gap is of particular interest since a manufacturing relocation process has been ongoing the last decades, leading to a huge amount of manufacturing being moved from high to low cost environments. The purpose of this study is to identify critical operations capabilities in a high cost environment. The two research questions were: What are the critical operations capabilities dimensions in a high cost environment? What are the critical operations capabilities in a high cost environment? A multiple case study was conducted and three Swedish manufacturing firms were selected. The study was based on the investigation of an existing framework of operations capabilities. The main dimensions of operations capabilities included in the framework were: cost, quality, delivery, flexibility, service, innovation and environment. Each of the dimensions included two or more operations capabilities. The findings confirmed the validity of the framework and its usefulness in a high cost environment and a new operations capability was revealed (employee flexibility).

  16. Artificial intelligent decision support for low-cost launch vehicle integrated mission operations

    Science.gov (United States)

    Szatkowski, Gerard P.; Schultz, Roger

    1988-01-01

    The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.

  17. Operation of an enclosed aquatic ecosystem in the Shenzhou-8 mission

    Science.gov (United States)

    Li, Xiaoyan; Richter, Peter R.; Hao, Zongjie; An, Yanjun; Wang, Gaohong; Li, Dunhai; Liu, Yongding; Strauch, Sebastian M.; Schuster, Martin; Haag, Ferdinand W.; Lebert, Michael

    2017-05-01

    Long- term spaceflight needs reliable Biological life support systems (BLSS) to supply astronauts with enough food, fresh air and recycle wasters, but the knowledge about the operation pattern and controlling strategy is rear. For this purpose, a miniaturized enclosed aquatic ecosystem was developed and flown on the Chinese spaceship Shenzhou-8. The system with a total volume of about 60 mL was separated into two chambers by means of a gas transparent membrane. The lower chamber was inoculated with Euglena gracilis cells, and the upper chamber was cultured with Chlorella cells and three snails. After 17.5 days flight, the samples were analyzed. It was found that all snails in the ground module (GM) were alive, while in the flight module (FM) only one snail survived. The total cell numbers, assimilation of nutrients like nitrogen and phosphorus, soluble proteins and carbohydrate contents showed a decrease in FM than in GM. The correlation analysis showed upper chambers of both FM and GM had the same positive and negative correlation factors, while differential correlation was found in lower chambers. These results suggested primary productivity in the enclosed system decreased in microgravity, accompanied with nutrients assimilation. The FM chamber endured lacking of domination species to sustain the system development and GM chamber endured richness in population abundance. These results implied photosynthesis intensity should be reduced to keep the system healthy. More Chlorella but less Euglena might be a useful strategy to sustain system stability. It is the first systematic analysis of enclosed systems in microgravity.

  18. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  19. Power demand operation - environment and potential. Proposals for main project

    International Nuclear Information System (INIS)

    Wathne, M.

    1995-01-01

    This report discusses proposals for a main project on environmental and other problems arising when hydroelectric power stations supply energy at gigawatt levels. The project aims in particular to identify environmental problems where too little is known today for proper planning of this type of operation. The proposals emphasize the consequences which cannot be adequately analysed in terms of current techniques. These techniques presuppose steady state conditions. One proposal concerns market terms for power sales. Other proposals deal with hydrological data and uncertainty, capacity of watercourses, ice and temperature, aquatic eco-systems, erosion, supersaturation of water with air, flooding and dam breaks, impact on climate, inflow of fresh water in fjords and impact on algae. 33 refs., 4 tabs

  20. Operational SAR Data Processing in GIS Environments for Rapid Disaster Mapping

    Science.gov (United States)

    Bahr, Thomas

    2014-05-01

    The use of SAR data has become increasingly popular in recent years and in a wide array of industries. Having access to SAR can be highly important and critical especially for public safety. Updating a GIS with contemporary information from SAR data allows to deliver a reliable set of geospatial information to advance civilian operations, e.g. search and rescue missions. SAR imaging offers the great advantage, over its optical counterparts, of not being affected by darkness, meteorological conditions such as clouds, fog, etc., or smoke and dust, frequently associated with disaster zones. In this paper we present the operational processing of SAR data within a GIS environment for rapid disaster mapping. For this technique we integrated the SARscape modules for ENVI with ArcGIS®, eliminating the need to switch between software packages. Thereby the premier algorithms for SAR image analysis can be directly accessed from ArcGIS desktop and server environments. They allow processing and analyzing SAR data in almost real time and with minimum user interaction. This is exemplified by the November 2010 flash flood in the Veneto region, Italy. The Bacchiglione River burst its banks on Nov. 2nd after two days of heavy rainfall throughout the northern Italian region. The community of Bovolenta, 22 km SSE of Padova, was covered by several meters of water. People were requested to stay in their homes; several roads, highways sections and railroads had to be closed. The extent of this flooding is documented by a series of Cosmo-SkyMed acquisitions with a GSD of 2.5 m (StripMap mode). Cosmo-SkyMed is a constellation of four Earth observation satellites, allowing a very frequent coverage, which enables monitoring using a very high temporal resolution. This data is processed in ArcGIS using a single-sensor, multi-mode, multi-temporal approach consisting of 3 steps: (1) The single images are filtered with a Gamma DE-MAP filter. (2) The filtered images are geocoded using a reference

  1. Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing for Mission and Fault Management Algorithms in the NASA Space Launch System

    Science.gov (United States)

    Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.

    2016-01-01

    Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements

  2. Space environment monitoring by low-altitude operational satellites

    International Nuclear Information System (INIS)

    Kroehl, H.W.

    1982-01-01

    The primary task of the Defense Meteorological Satellite Program (DMSP) is the acquisition of meteorological data in the visual and infrared spectral regions. The Air Weather Service operates two satellites in low-altitude, sun-synchronous, polar orbits at 850 km altitude, 98.7 deg inclination, 101.5 minute period and dawn-dusk or noon-midnight equatorial crossing times. Special DMSP sensors of interest to the space science community are the precipitating electron spectrometer, the terrestrial noise receiver, and the topside ionosphere plasma monitor. Data from low-altitude, meteorological satellites can be used to build empirical models of precipitating electron characteristics of the auroral zone and polar cap. The Tiros-NOAA satellite program complements the DMSP program. The orbital elements are the same as DMSP's, except for the times of equatorial crossing, and the tilt of the orbital plane. The Tiros-NOAA program meets the civilian community's needs for meteorological data as the DMSP program does for the military

  3. GRAPE, Solar Terrestrial Physics in an operational environment

    Directory of Open Access Journals (Sweden)

    Giorgiana De Franceschi

    2013-06-01

    Full Text Available […] The collection of papers that forms this special issue represents the whole amplitude of research that is being conducted in the framework of GRAPE, while also connecting to other initiatives that address the same objectives in regions outside the polar regions, and worldwide, such as the Training Research and Applications Network to Support the Mitigation of Ionospheric Threats (TRANSMIT; www.transmitionosphere.net, a Seventh Framework Programme (FP7 Marie Curie Initial Training Network that is focused on the study of ionospheric phenomena and their effects on systems embedded in our daily life, Near-Earth Space Data Infrastructure for e-Science (ESPAS, an FP7-funded project that aims to provide the e-Infrastructure necessary to support the access to observations, for the modeling and prediction of the near-Earth Space environment, Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America (CIGALA and its follow-up and extension Countering GNSS High-Accuracy Applications Limitations due to Ionospheric Disturbances in Brazil (CALIBRA, both of which are funded by the European Commission in the frame of FP7, for facing the equatorial ionosphere and its impact on GNSS. The main objective of the present Special Issue of Annals of Geophysics is to collect recent reports on work performed in the polar regions and on the datasets collected in time by the instrumentation deployed across various countries. This collection will set the starting point for further research in the field, especially in the perspective of the new and very advanced space system that will be available in the next few years. […

  4. Report on the Stanford/KACST/AMES UVLED small satellite mission to demonstrate charge management of an electrically isolated proof mass for drag-free operation

    Science.gov (United States)

    Saraf, Shailendhar

    A spacecraft demonstration of ultra-violet (UV) LEDs and UV LED charge management based on research done at Stanford University is being developed jointly by the King Abdulaziz City for Science and Technology (KACST) Saudi Arabia and NASA Ames Research Center, with an expected launch date of June 2014. This paper will report on the payload design and testing, mission preparation, satellite launch and payload bring -up in space. Mission lifetime is expected to be at least one month, during which time the ability for the UV LEDs to mitigate actual space-based charging and the effects of radiation on the UV LED device performance will be studied. Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. The mission will demonstrate that AlGaN UV LEDs operating at 255 nm are an effective low-cost, low-power and compact substitute for Mercury vapor lamps used in previous missions. The goal of the mission is to increase the UV LED device to TRL-9 and the charge management system to TRL-7.

  5. ISS And Space Environment Interactions Without Operating Plasma Contactor

    Science.gov (United States)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  6. The Epidemiology of Operation Stress during Continuing Promise 2011: A Humanitarian Response and Disaster Relief Mission aboard a US Navy Hospital Ship.

    Science.gov (United States)

    Scouten, William T; Mehalick, Melissa L; Yoder, Elizabeth; McCoy, Andrea; Brannock, Tracy; Riddle, Mark S

    2017-08-01

    Introduction Operational stress describes individual behavior in response to the occupational demands and tempo of a mission. The stress response of military personnel involved in combat and peace-keeping missions has been well-described. The spectrum of effect on medical professionals and support staff providing humanitarian assistance, however, is less well delineated. Research to date concentrates mainly on shore-based humanitarian missions. Problem The goal of the current study was to document the pattern of operational stress, describe factors responsible for it, and the extent to which these factors impact job performance in military and civilian participants of Continuing Promise 2011 (CP11), a ship-based humanitarian medical mission. This was a retrospective study of Disease Non-Battle Injury (DNBI) data from the medical sick-call clinic and from weekly self-report questionnaires for approximately 900 US military and civilian mission participants aboard the USNS COMFORT (T-AH 20). The incidence rates and job performance impact of reported Operational Stress/Mental Health (OS/MH) issues and predictors (age, rank, occupation, service branch) of OS/MH issues (depression, anxiety) were analyzed over a 22-week deployment period. Incidence rates of OS/MH complaints from the sick-call clinic were 3.7% (4.5/1,000 persons) and 12.0% (53/1,000 persons) from the self-report questionnaire. The rate of operational stress increased as the mission progressed and fluctuated during the mission according to ship movement. Approximately 57% of the responders reported no impact on job performance. Younger individuals (enlisted ranks E4-6, officer ranks O1-3), especially Air Force service members, those who had spent only one day off ship, and those who were members of specific directorates, reported the highest rates of operational stress. The overall incidence of OS/MH complaints was low in participants of CP11 but was under-estimated by clinic-based reporting. The OS

  7. Use of the RoboFlag synthetic task environment to investigate workload and stress responses in UAV operation.

    Science.gov (United States)

    Guznov, Svyatoslav; Matthews, Gerald; Funke, Gregory; Dukes, Allen

    2011-09-01

    Use of unmanned aerial vehicles (UAVs) is an increasingly important element of military missions. However, controlling UAVs may impose high stress and workload on the operator. This study evaluated the use of the RoboFlag simulated environment as a means for profiling multiple dimensions of stress and workload response to a task requiring control of multiple vehicles (robots). It tested the effects of two workload manipulations, environmental uncertainty (i.e., UAV's visual view area) and maneuverability, in 64 participants. The findings confirmed that the task produced substantial workload and elevated distress. Dissociations between the stress and performance effects of the manipulations confirmed the utility of a multivariate approach to assessment. Contrary to expectations, distress and some aspects of workload were highest in the low-uncertainty condition, suggesting that overload of information may be an issue for UAV interface designers. The strengths and limitations of RoboFlag as a methodology for investigating stress and workload responses are discussed.

  8. Leveraging Geospatial Intelligence (GEOINT) in Mission Command

    Science.gov (United States)

    2009-03-21

    Operational artists at all levels need new conceptual tools commensurate to today’s demands. Conceptual aids derived from old, industrial-age analogies...are not up to the mental gymnastics demanded by 21 st –century missions. Because operational environments evince increasingly dynamic complexity

  9. Mission Command in the Age of Network-Enabled Operations: Social Network Analysis of Information Sharing and Situation Awareness.

    Science.gov (United States)

    Buchler, Norbou; Fitzhugh, Sean M; Marusich, Laura R; Ungvarsky, Diane M; Lebiere, Christian; Gonzalez, Cleotilde

    2016-01-01

    A common assumption in organizations is that information sharing improves situation awareness and ultimately organizational effectiveness. The sheer volume and rapid pace of information and communications received and readily accessible through computer networks, however, can overwhelm individuals, resulting in data overload from a combination of diverse data sources, multiple data formats, and large data volumes. The current conceptual framework of network enabled operations (NEO) posits that robust networking and information sharing act as a positive feedback loop resulting in greater situation awareness and mission effectiveness in military operations (Alberts and Garstka, 2004). We test this assumption in a large-scale, 2-week military training exercise. We conducted a social network analysis of email communications among the multi-echelon Mission Command staff (one Division and two sub-ordinate Brigades) and assessed the situational awareness of every individual. Results from our exponential random graph models challenge the aforementioned assumption, as increased email output was associated with lower individual situation awareness. It emerged that higher situation awareness was associated with a lower probability of out-ties, so that broadly sending many messages decreased the likelihood of attaining situation awareness. This challenges the hypothesis that increased information sharing improves situation awareness, at least for those doing the bulk of the sharing. In addition, we observed two trends that reflect a compartmentalizing of networked information sharing as email links were more commonly formed among members of the command staff with both similar functions and levels of situation awareness, than between two individuals with dissimilar functions and levels of situation awareness; both those findings can be interpreted to reflect effects of homophily. Our results have major implications that challenge the current conceptual framework of NEO. In

  10. A Subjective Assessment of Alternative Mission Architecture Operations Concepts for the Human Exploration of Mars at NASA Using a Three-Dimensional Multi-Criteria Decision Making Model

    Science.gov (United States)

    Tavana, Madjid

    2003-01-01

    The primary driver for developing missions to send humans to other planets is to generate significant scientific return. NASA plans human planetary explorations with an acceptable level of risk consistent with other manned operations. Space exploration risks can not be completely eliminated. Therefore, an acceptable level of cost, technical, safety, schedule, and political risks and benefits must be established for exploratory missions. This study uses a three-dimensional multi-criteria decision making model to identify the risks and benefits associated with three alternative mission architecture operations concepts for the human exploration of Mars identified by the Mission Operations Directorate at Johnson Space Center. The three alternatives considered in this study include split, combo lander, and dual scenarios. The model considers the seven phases of the mission including: 1) Earth Vicinity/Departure; 2) Mars Transfer; 3) Mars Arrival; 4) Planetary Surface; 5) Mars Vicinity/Departure; 6) Earth Transfer; and 7) Earth Arrival. Analytic Hierarchy Process (AHP) and subjective probability estimation are used to captures the experts belief concerning the risks and benefits of the three alternative scenarios through a series of sequential, rational, and analytical processes.

  11. Developing safer systems in a NPP environment using the operator`s comfort parameters and virtual reality

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-07-01

    The contents of this paper is based on two studies involving the design of visual displays from the operator`s point of view, and the utilization of virtual reality for operations, training and maintenance repairs. The studies involve a methodology known as Neuro-Linguistic Programming (NLP), and its use in strengthening design choices from the user`s perspective model of the environment. The contents of this paper focuses on the results which may be implemented in nuclear power plants for the purpose of providing systems which are less inherently error prone.

  12. Summary of the results from the Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment (LADEE) Mission

    Science.gov (United States)

    Horanyi, Mihaly

    2016-07-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including

  13. Improving Tactical Psyop Video Dissemination in Media-Austere Operating Environments

    National Research Council Canada - National Science Library

    Tulak, Arthur

    2004-01-01

    .... Recent operations demonstrate the requirement for video PSYOP in media-austere environments where the target audience lacks access to television, due to poverty, or lack of supporting infrastructure...

  14. Development of monitoring-control methods for heavy remote handling operations in an irradiated environment

    Energy Technology Data Exchange (ETDEWEB)

    Argouac' h, J R [Alsthom-Atlantique, ACB Nantes (France)

    1984-11-01

    Heavy remote handling equipment units have benefited from the progress made in robotics, but with certain specific constraints linked to the environment in which they are required to operate. Notably, these constraints impose the exclusive use of electrical techniques.

  15. [PULMONARY COMPLICATIONS IN CHILDREN, OPERATED ON FOR INBORN HEART FAILURES IN THE ARTIFICIAL BLOOD CIRCULATION ENVIRONMENT].

    Science.gov (United States)

    Moshkivska, L V; Nastenko, E A; Golovenko, O S; Lazoryshynets, V V

    2015-11-01

    The risk factors of pulmonary complications occurrence were analyzed in children, operated on for inborn heart failures in atrificial blood circulation environment. Pulmonary complications rate and the risk factors of their occurrence were analyzed.

  16. Atmospheric energy harvesting: use of Doppler Wind Lidars on UAVs to extend mission endurance and enable quiet operations

    Science.gov (United States)

    Greco, S.; Emmitt, G. D.; Wood, S. A.; Costello, M.

    2014-10-01

    The investigators are developing a system tool that utilizes both pre-flight information and continuous real-time knowledge and description of the state of the atmosphere and atmospheric energetics by an Airborne Doppler Wind Lidar (ADWL) to provide the autonomous guidance for detailed and adaptive flight path planning by UAS and small manned aircraft. This flight planning and control has the potential to reduce mission dependence upon preflight assumptions, extend flight duration and endurance, enable long periods of quiet operations and allow for the optimum self-routing of the aircraft. The ADWL wind data is used in real-time to detect atmospheric energy features such as thermals, waves, wind shear and others. These detected features are then used with an onboard, weather model driven flight control model to adaptively plan a flight path that optimizes energy harvesting with frequent updates on local changes in the opportunities and atmospheric flow characteristics. We have named this package AEORA for the Atmospheric Energy Opportunity Ranking Algorithm (AEORA).

  17. Operational calibration and validation of landsat data continuity mission (LDCM) sensors using the image assessment system (IAS)

    Science.gov (United States)

    Micijevic, Esad; Morfitt, Ron

    2010-01-01

    Systematic characterization and calibration of the Landsat sensors and the assessment of image data quality are performed using the Image Assessment System (IAS). The IAS was first introduced as an element of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) ground segment and recently extended to Landsat 4 (L4) and 5 (L5) Thematic Mappers (TM) and Multispectral Sensors (MSS) on-board the Landsat 1-5 satellites. In preparation for the Landsat Data Continuity Mission (LDCM), the IAS was developed for the Earth Observer 1 (EO-1) Advanced Land Imager (ALI) with a capability to assess pushbroom sensors. This paper describes the LDCM version of the IAS and how it relates to unique calibration and validation attributes of its on-board imaging sensors. The LDCM IAS system will have to handle a significantly larger number of detectors and the associated database than the previous IAS versions. An additional challenge is that the LDCM IAS must handle data from two sensors, as the LDCM products will combine the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) spectral bands.

  18. Prediction of safety critical software operational reliability from test reliability using testing environment factors

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Seong, Poong Hyun

    1999-01-01

    It has been a critical issue to predict the safety critical software reliability in nuclear engineering area. For many years, many researches have focused on the quantification of software reliability and there have been many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. User's interest is however on the operational reliability rather than on the test reliability. The experiences show that the operational reliability is higher than the test reliability. With the assumption that the difference in reliability results from the change of environment, from testing to operation, testing environment factors comprising the aging factor and the coverage factor are developed in this paper and used to predict the ultimate operational reliability with the failure data in testing phase. It is by incorporating test environments applied beyond the operational profile into testing environment factors. The application results show that the proposed method can estimate the operational reliability accurately. (Author). 14 refs., 1 tab., 1 fig

  19. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into NASA Programs Associated With the Human Exploration and Operations Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.

  20. Dried Colony in Cyanobacterium, Nostoc sp. HK-01 — Several high Space Environment Tolerances for ``Tanpopo'' Mission

    Science.gov (United States)

    Tomita-Yokotani, K.; Kimura, S.; Kimura, Y.; Igarashi, Y.; Ajioka, R.; Sato, S.; Katoh, H.; Baba, K.

    2013-11-01

    A cyanobacterium, Nostoc sp. HK-01, has high several space environmental tolerance. Nostoc sp HK-01 would have high contribution for the “Tanpopo” mission in Japan Experimental Module of the International Space Station.

  1. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  2. Advanced Satellite Workstation - An integrated workstation environment for operational support of satellite system planning and analysis

    Science.gov (United States)

    Hamilton, Marvin J.; Sutton, Stewart A.

    A prototype integrated environment, the Advanced Satellite Workstation (ASW), which was developed and delivered for evaluation and operator feedback in an operational satellite control center, is described. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central objective of ASW is to provide an intelligent decision support and training environment for operator/analysis of complex systems such as satellites. Compared to the many recent workstation implementations that incorporate graphical telemetry displays and expert systems, ASW provides a considerably broader look at intelligent, integrated environments for decision support, based on the premise that the central features of such an environment are intelligent data access and integrated toolsets.

  3. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  4. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    Science.gov (United States)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  5. NASA Laboratory Analysis for Manned Exploration Missions

    Science.gov (United States)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  6. The Copernicus S5P Mission Performance Centre / Validation Data Analysis Facility for TROPOMI operational atmospheric data products

    Science.gov (United States)

    Compernolle, Steven; Lambert, Jean-Christopher; Langerock, Bavo; Granville, José; Hubert, Daan; Keppens, Arno; Rasson, Olivier; De Mazière, Martine; Fjæraa, Ann Mari; Niemeijer, Sander

    2017-04-01

    Sentinel-5 Precursor (S5P), to be launched in 2017 as the first atmospheric composition satellite of the Copernicus programme, carries as payload the TROPOspheric Monitoring Instrument (TROPOMI) developed by The Netherlands in close cooperation with ESA. Designed to measure Earth radiance and solar irradiance in the ultraviolet, visible and near infrared, TROPOMI will provide Copernicus with observational data on atmospheric composition at unprecedented geographical resolution. The S5P Mission Performance Center (MPC) provides an operational service-based solution for various QA/QC tasks, including the validation of S5P Level-2 data products and the support to algorithm evolution. Those two tasks are to be accomplished by the MPC Validation Data Analysis Facility (VDAF), one MPC component developed and operated at BIRA-IASB with support from S[&]T and NILU. The routine validation to be ensured by VDAF is complemented by a list of validation AO projects carried out by ESA's S5P Validation Team (S5PVT), with whom interaction is essential. Here we will introduce the general architecture of VDAF, its relation to the other MPC components, the generic and specific validation strategies applied for each of the official TROPOMI data products, and the expected output of the system. The S5P data products to be validated by VDAF are diverse: O3 (vertical profile, total column, tropospheric column), NO2 (total and tropospheric column), HCHO (tropospheric column), SO2 (column), CO (column), CH4 (column), aerosol layer height and clouds (fractional cover, cloud-top pressure and optical thickness). Starting from a generic validation protocol meeting community-agreed standards, a set of specific validation settings is associated with each data product, as well as the appropriate set of Fiducial Reference Measurements (FRM) to which it will be compared. VDAF collects FRMs from ESA's Validation Data Centre (EVDC) and from other sources (e.g., WMO's GAW, NDACC and TCCON). Data

  7. Quantum operations that cannot be implemented using a small mixed environment

    International Nuclear Information System (INIS)

    Zalka, Christof; Rieffel, Eleanor

    2002-01-01

    To implement any quantum operation (a.k.a. ''superoperator'' or ''CP map'') on a d-dimensional quantum system, it is enough to apply a suitable overall unitary transformation to the system and a d 2 -dimensional environment which is initialized in a fixed pure state. It has been suggested that a d-dimensional environment might be enough if we could initialize the environment in a mixed state of our choosing. In this note we show with elementary means that certain explicit quantum operations cannot be realized in this way. Our counterexamples map some pure states to pure states, giving strong and easily manageable conditions on the overall unitary transformation. Everything works in the more general setting of quantum operations from d-dimensional to d ' -dimensional spaces, so we place our counterexamples within this more general framework

  8. MOURA magnetometer for Mars MetNet Precursor Mission. Its potential for an in situ magnetic environment and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Michelena, M.; Sanz, R.; Fernandez, A.B.; Manuel, V. de; Cerdan, M.F.; Apestigue, V.; Arruego, I.; Azcue, J.; Dominguez, J.A.; Gonzalez, M.; Guerrero, H.; Sabau, M.; Kilian, R.; Baeza, O.; Ros, F.; Vazquez, M.; Tordesillas, J.M.; Covisa, P.; Aguado, J.

    2016-07-01

    MOURA magnetometer and gradiometer is part of the scientific instrumentation for Mars MetNet Precursor mission. This work describes the objective of the investigation, summarizes the work done in the design and development of the sensor as well as its calibration, and shows the demonstration campaigns to show the potential of such instrument for planetary landers and rovers. (Author)

  9. Aram Chaos: a Long Lived Subsurface Aqueous Environment with Strong Water Resources Potential for Human Missions on Mars

    Science.gov (United States)

    Sibille, L.; Mueller, R.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-01-01

    Aram Chaos, Mars is a crater 280 kilometers in diameter with elevations circa. minus 2 to minus 3 kilometers below datum that provides a compelling landing site for future human explorers as it features multiple scientific regions of interest (ROI) paired with a rich extensible Resource ROI that features poly-hydrated sulfates [1]. The geologic history of Aram Chaos suggests several past episodes of groundwater recharge and infilling by liquid water, ice, and other materials [1-3]. The creation of the fractured region with no known terrestrial equivalent may have been caused by melting of deep ice reservoirs that triggered the collapse of terrain followed by catastrophic water outflows over the region. Aram Chaos is of particular scientific interest because it is hypothesized that the chaotic terrain may be the source of water that contributed to the creation of nearby valleys such as Ares Vallis flowing toward Chryse Planitia. The liquid water was likely sourced as groundwater and therefore represents water derived from a protected subsurface environment making it a compelling astrobiological site [2]. The past history of water is also represented by high concentrations of hematite, Fe-oxyhydroxides, mono-hydrated and poly-hydrated sulfates [1, 2]. Poly-hydrated sulfates are likely to contain abundant water that evolves at temperatures below 500 degrees Centigrade thus conferring Aram Chaos a potentially high value for early in-situ resource utilization (ISRU) [4]. The geologic history also calls for future prospecting of deep ice deposits and possibly liquid water via deep drilling. The most recent stratigraphic units in the central part of Aram Chaos are not fractured, and are part of a dome-shaped formation that features bright, poorly-consolidated material that contains both hydrated sulfates and ferric oxides according to OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) data [5]. These surface material characteristics are

  10. On-line task scheduling and trajectory planning techniques for reconnaissance missions with multiple unmanned aerial vehicles supervised by a single human operator

    Science.gov (United States)

    Ortiz Rubiano, Andres Eduardo

    The problem of a single human operator monitoring multiple UAVs in reconnaissance missions is addressed in this work. In such missions, the operator inspects and classifies targets as they appear on video feeds from the various UAVs. In parallel, the aircraft autonomously execute a flight plan and transmit real-time video of an unknown terrain. The main contribution of this work is the development of a system that autonomously schedules the display of video feeds such that the human operator is able to inspect each target in real time (i.e., no video data is recorded and queued for later inspection). The construction of this non-overlapping schedule is made possible by commanding changes to the flight plan of the UAVs. These changes are constructed such that the impact on the mission time is minimized. The development of this system is addressed in the context of both fixed and arbitrary target inspection times. Under the assumption that the inspection time is constant, a Linear Program (LP) formulation is used to optimally solve the display scheduling problem in the time domain. The LP solution is implemented in the space domain via velocity and trajectory modifications to the flight plan of the UAVs. An online algorithm is proposed to resolve scheduling conflicts between multiple video feeds as targets are discovered by the UAVs. Properties of this algorithm are studied to develop conflict resolution strategies that ensure correctness regardless of the target placement. The effect of such strategies on the mission time is evaluated via numerical simulations. In the context of arbitrary inspection time, the human operator indicates the end of target inspection in real time. A set of maneuvers is devised that enable the operator to inspect each target uninterruptedly and indefinitely. In addition, a cuing mechanism is proposed to increase the situational awareness of the operator and potentially reduce the inspection times. The benefits of operator cuing on mission

  11. A robust optimization based approach for microgrid operation in deregulated environment

    International Nuclear Information System (INIS)

    Gupta, R.A.; Gupta, Nand Kishor

    2015-01-01

    Highlights: • RO based approach developed for optimal MG operation in deregulated environment. • Wind uncertainty modeled by interval forecasting through ARIMA model. • Proposed approach evaluated using two realistic case studies. • Proposed approach evaluated the impact of degree of robustness. • Proposed approach gives a significant reduction in operation cost of microgrid. - Abstract: Micro Grids (MGs) are clusters of Distributed Energy Resource (DER) units and loads. MGs are self-sustainable and generally operated in two modes: (1) grid connected and (2) grid isolated. In deregulated environment, the operation of MG is managed by the Microgrid Operator (MO) with an objective to minimize the total cost of operation. The MG management is crucial in the deregulated power system due to (i) integration of intermittent renewable sources such as wind and Photo Voltaic (PV) generation, and (ii) volatile grid prices. This paper presents robust optimization based approach for optimal MG management considering wind power uncertainty. Time series based Autoregressive Integrated Moving Average (ARIMA) model is used to characterize the wind power uncertainty through interval forecasting. The proposed approach is illustrated through a case study having both dispatchable and non-dispatchable generators through different modes of operation. Further the impact of degree of robustness is analyzed in both cases on the total cost of operation of the MG. A comparative analysis between obtained results using proposed approach and other existing approach shows the strength of proposed approach in cost minimization in MG management

  12. Optimum Operating Room Environment for the Prevention of Surgical Site Infections.

    Science.gov (United States)

    Gaines, Sara; Luo, James N; Gilbert, Jack; Zaborina, Olga; Alverdy, John C

    Surgical site infections (SSI), whether they be incisional or deep, can entail major morbidity and death to patients and additional cost to the healthcare system. A significant amount of effort has gone into optimizing the surgical patient and the operating room environment to reduce SSI. Relevant guidelines and literature were reviewed. The modern practice of surgical antisepsis involves the employment of strict sterile techniques inside the operating room. Extensive guidelines are available regarding the proper operating room antisepsis as well as pre-operative preparation. The use of pre-operative antimicrobial prophylaxis has become increasingly prevalent, which also presents the challenge of opportunistic and nosocomial infections. Ongoing investigative efforts have brought about a greater appreciation of the surgical patient's endogenous microflora, use of non-bactericidal small molecules, and pre-operative microbial screening. Systematic protocols exist for optimizing the surgical sterility of the operating room to prevent SSIs. Ongoing research efforts aim to improve the precision of peri-operative antisepsis measures and personalize these measures to tailor the patient's unique microbial environment.

  13. Measuring Situation Awareness of Operating Team in Different Main Control Room Environments of Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Seung Woo Lee

    2016-02-01

    Full Text Available Environments in nuclear power plants (NPPs are changing as the design of instrumentation and control systems for NPPs is rapidly moving toward fully digital instrumentation and control, and modern computer techniques are gradually introduced into main control rooms (MCRs. Within the context of these environmental changes, the level of performance of operators in a digital MCR is a major concern. Situation awareness (SA, which is used within human factors research to explain to what extent operators of safety-critical systems know what is transpiring in the system and the environment, is considered a prerequisite factor to guarantee the safe operation of NPPs. However, the safe operation of NPPs can be guaranteed through a team effort. In this regard, the operating team's SA in a conventional and digital MCR should be measured in order to assess whether the new design features implemented in a digital MCR affect this parameter. This paper explains the team SA measurement method used in this study and the results of applying this measurement method to operating teams in different MCR environments. The paper also discusses several empirical lessons learned from the results.

  14. Cleaning Genesis Mission Payload for Flight with Ultra-Pure Water and Assembly in ISO Class 4 Environment

    Science.gov (United States)

    Allton, Judith H.

    2012-01-01

    Genesis mission to capture and return to Earth solar wind samples had very stringent contamination control requirements in order to distinguish the solar atoms from terrestrial ones. Genesis mission goals were to measure solar composition for most of the periodic table, so great care was taken to avoid particulate contamination. Since the number 1 and 2 science goals were to determine the oxygen and nitrogen isotopic composition, organic contamination was minimized by tightly controlling offgassing. The total amount of solar material captured in two years is about 400 micrograms spread across one sq m. The contamination limit requirement for each of C, N, and O was <1015 atoms/sq cm. For carbon, this is equivalent to 10 ng/cm2. Extreme vigilance was used in pre-paring Genesis collectors and cleaning hardware for flight. Surface contamination on polished silicon wafers, measured in Genesis laboratory is approximately 10 ng/sq cm.

  15. Human missions to Mars: issues and challenges

    Science.gov (United States)

    Race, M.; Kminek, G.

    Recent announcements of the planned future human exploration of Mars by both European and US space agencies have raised a host of questions and challenges that must be addressed in advance of long-duration human missions. While detailed mission planning is a long way off, numerous issues can already be identified in the broad context of planetary protection. In this session, a panel of experts will provide brief overviews of the types of challenges ahead, such as the protection of the martian environment; the integration of human and robotic mission elements and operations; precursor scientific information necessary to plan human missions; development and use of nuclear and other technologies for the protection and support of astronauts during the mission; protection of Earth upon return; and societal and ethical questions about human exploration. The session has been designed to encourage and incorporate audience participation in the discussion about the issues and challenges ahead.

  16. Global-scale Observations of the Limb and Disk (GOLD) Mission -Ultraviolet Remote Sensing of Earth's Space Environment from Geostationary Orbit

    Science.gov (United States)

    Burns, A. G.; Eastes, R.

    2017-12-01

    The GOLD mission of opportunity will fly a far ultraviolet imaging spectrograph in geostationary (GEO) orbit as a hosted payload. The mission is scheduled for launch in late January 2018 on SES-14, a commercial communications satellite that will be stationed over eastern South America at 47.5 degrees west longitude. GOLD is on schedule to be the first NASA science mission to fly as a hosted payload on a commercial communications satellite. The GOLD imager has two identical channels. Each channel can scan the full disk at a 30 minute cadence, making spectral images of Earth's UV emission from 132 to 162 nm, as well as make a measurement on the Earth's limb. Remote sensing techniques that have been proven on previous Low Earth Orbit (LEO) missions will be used to derive fundamental parameters for the neutral and ionized space environment. Parameters that will be derived include composition (O/N2 ratio) and temperature of the neutral atmosphere on the dayside disk. On the nightside, peak electron densities will be obtained in the low latitude ionosphere. Many of the algorithms developed for the mission are extensions of ones used on previous earth and planetary missions, with modifications for observations from geostationary orbit. All the algorithms have been tested using simulated observations based on the actual instrument performance. From geostationary orbit, GOLD can repeatedly image the same geographic locations over most of the hemisphere at a cadence comparable to that of the T-I system (order of an hour). Such time resolution and spatial coverage will allow the mission to track the changes due to geomagnetic storms, variations in solar extreme ultraviolet radiation, and forcing from the lower atmosphere. In addition to providing a new perspective by being able to repeatedly remotely sense the same hemisphere at a high cadence, GOLD's simultaneous measurements of not only composition but also temperatures across the disk will provide a valuable, new parameter

  17. Basic research on intelligent robotic systems operating in hostile environments: New developments at ORNL

    International Nuclear Information System (INIS)

    Barhen, J.; Babcock, S.M.; Hamel, W.R.; Oblow, E.M.; Saridis, G.N.; deSaussure, G.; Solomon, A.D.; Weisbin, C.R.

    1984-01-01

    Robotics and artificial intelligence research carried out within the Center for Engineering Systems Advanced Research (CESAR) is presented. Activities focus on the development and demonstration of a comprehensive methodological framework for intelligent machines operating in unstructured hostile environments. Areas currently being addressed include mathematical modeling of robot dynamics, real-time control, ''world'' modeling, machine perception and strategy planning

  18. Techniques and Procedures for Conducting Mission Analysis for Stability and Support Operations: An Application of Systems Theory

    National Research Council Canada - National Science Library

    Hupp, Christopher

    2002-01-01

    In June of 2001, the Department of the Army published FM 3-0: Operations. FM 3-0 specifies the principles for conducting Army operations across the spectrum of conflict ranging from military operations other than war to war...

  19. Addressing Challenges to the Design & Test of Operational Lighting Environments for the International Space Station

    Science.gov (United States)

    Clark, Toni A.

    2014-01-01

    In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed

  20. International Earth Science Constellation Mission Operations Working Group: Constellation Coordination System (CCS) Status. [Constellation Coordination System (CCS) Status

    Science.gov (United States)

    Skeberdis, Daniel

    2016-01-01

    This is a presentation at the MOWG fall meeting that will discuss CCS purpose, future status, security enhancements, arbitrary ephemeris mission features, overview of CCS 7.3, approach for the use of NORAD TLEs, account and data security, CCS System virtualization, control box visualization modification and other enhancements.

  1. Making surgical missions a joint operation: NGO experiences of visiting surgical teams and the formal health care system in Guatemala.

    Science.gov (United States)

    Roche, Stephanie; Hall-Clifford, Rachel

    2015-01-01

    Each year, thousands of Guatemalans receive non-emergent surgical care from short-term medical missions (STMMs) hosted by local non-governmental organizations (NGOs) and staffed by foreign visiting medical teams (VMTs). The purpose of this study was to explore the perspectives of individuals based in NGOs involved in the coordination of surgical missions to better understand how these missions articulate with the larger Guatemalan health care system. During the summers of 2011 and 2013, in-depth interviews were conducted with 25 representatives from 11 different Guatemalan NGOs with experience with surgical missions. Transcripts were analysed for major themes using an inductive qualitative data analysis process. NGOs made use of the formal health care system but were limited by several factors, including cost, issues of trust and current ministry of health policy. Participants viewed the government health care system as a potential resource and expressed a desire for more collaboration. The current practices of STMMs are not conducive to health system strengthening. The role of STMMs must be defined and widely understood by all stakeholders in order to improve patient safety and effectively utilise health resources. Priority should be placed on aligning the work of VMTs with that of the larger health care system.

  2. Guidance system operations plan for manned CM earth orbital missions using program Skylark 1. Section 2: Data links

    Science.gov (United States)

    Hamilton, M. H.

    1972-01-01

    A computer program to define the digital uplink and downlink for use in manned command module orbital missions is presented. The subjects discussed are: (1) digital uplink to command module, (2) CMC digital downlink, (3) downlist formats, (4) description of telemetered qualities, (5) flagbits, and (6) effects of Fresh Start (V36) and Hardware Restart on flagword and channel bits.

  3. [Design of an anesthesia and micro-environment information management system in mobile operating room].

    Science.gov (United States)

    Wang, Xianwen; Liu, Zhiguo; Zhang, Wenchang; Wu, Qingfu; Tan, Shulin

    2013-08-01

    We have designed a mobile operating room information management system. The system is composed of a client and a server. A client, consisting of a PC, medical equipments, PLC and sensors, provides the acquisition and processing of anesthesia and micro-environment data. A server is a powerful computer that stores the data of the system. The client gathers the medical device data by using the C/S mode, and analyzes the obtained HL7 messages through the class library call. The client collects the micro-environment information with PLC, and finishes the data reading with the OPC technology. Experiment results showed that the designed system could manage the patient anesthesia and micro-environment information well, and improve the efficiency of the doctors' works and the digital level of the mobile operating room.

  4. Integration of a browser based operator manual in the system environment of a process computer system

    International Nuclear Information System (INIS)

    Weber, Andreas; Erfle, Robert; Feinkohl, Dirk

    2012-01-01

    The integration of a browser based operator manual in the system environment of a process computer system is an optimization of the operating procedure in the control room and a safety enhancement due to faster and error-free access to the manual contents. Several requirements by the authorities have to be fulfilled: the operating manual has to be available as hard copy, the format has to be true to original, protection against manipulation has to be provided, the manual content of the browser-based version and the hard copy have to identical, and the display presentation has to be consistent with ergonomic principals. The integration of the on-line manual in the surveillance process computer system provides the operator with the relevant comments to the surveillance signal. The described integration of the on-line manual is an optimization of the operator's everyday job with respect to ergonomics and safety (human performance).

  5. PSYCHOLOGICAL PROBLEMS AND STRESS FACED BY SOLDIERS WHO OPERATE IN ASYMMETRIC WARFARE ENVIRONMENTS: EXPERIENCES IN THE FIELD

    Directory of Open Access Journals (Sweden)

    Giuseppe CAFORIO

    2014-10-01

    Full Text Available This article deals with the problems of anxiety, stress and psychological discomfort that can affect soldiers sent on asymmetric warfare operations. It is based on secondary analysis of the data of two important field researches whose results have recently (2013 been published. Although the two researches adopted different methodologies, the testimonies are fully comparable and show that soldiers from different countries and cultures display common or similar reactions when they are placed in the stress conditions that the asymmetric environment involves. The approach of the paper is drawn up in such a way as to make the reader a participating observer of the reality of such missions. It is therefore centered on the personal testimonies of the soldiers interviewed in the two researches, testimonies reported just as they are, in their simplicity and, often, drama, with comments by the author kept to a minimum in order to give readers ample opportunity to evaluate and interpret the reported texts on their own. The research data, drawn from the declarations of those directly concerned, reveal the existence of a problem of psychological distress resulting from deployment in asymmetric warfare situations that is in part different in the causes of the problems resulting from deployment in traditional combat and affects percentages of participating soldiers that are not high but definitely significant. The highest incidence appears to be constituted by problems relating to reintegration into normal social and working life upon returning from the mission. This is followed in percentage terms by anxiety situations relating to life far from the family, due in large part to a sense of powerlessness for the scant possibility of managing family situations that may have cropped up or already existed beforehand.

  6. A novel method of personnel cooling in an operating theatre environment.

    Science.gov (United States)

    Casha, Aaron R; Manché, Alexander; Camilleri, Liberato; Gauci, Marilyn; Grima, Joseph N; Borg, Michael A

    2014-10-01

    An optimized theatre environment, including personal temperature regulation, can help maintain concentration, extend work times and may improve surgical outcomes. However, devices, such as cooling vests, are bulky and may impair the surgeon's mobility. We describe the use of a low-cost, low-energy 'bladeless fan' as a personal cooling device. The safety profile of this device was investigated by testing air quality using 0.5- and 5-µm particle counts as well as airborne bacterial counts on an operating table simulating a wound in a thoracic operation in a busy theatre environment. Particle and bacterial counts were obtained with both an empty and full theatre, with and without the 'bladeless fan'. The use of the 'bladeless fan' within the operating theatre during the simulated operation led to a minor, not statistically significant, lowering of both the particle and bacterial counts. In conclusion, the 'bladeless fan' is a safe, effective, low-cost and low-energy consumption solution for personnel cooling in a theatre environment that maintains the clean room conditions of the operating theatre. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  7. A software environment to execute automatic operational sequences on the ITER-FEAT DTP facility

    International Nuclear Information System (INIS)

    Fermani, G.; Zarfino, M.

    2001-01-01

    The divertor test platform (DTP) maintenance operations are carried out by means of the remote handling equipments (RHE), each dedicated to perform a set of specialised remote actions. Each RHE is controlled by an RHE control system (RHE-CS) and can be locally operated by an RHE-operator using the local control panel (LOP). To perform the maintenance activity, the DTP-operator coordinates the remote operations of every RHEs, using the supervisory system (DTP S S). Because the remote maintenance activities demand for a high degree of parallelism, automation and cooperation between various RHEs, the development of a software environment (OSAExE) that had the indicated characteristics has been necessary. The OSAExE environment is applicable to any distributed and cooperating system that is modelled as a set of autonomous subsystems. Each maintenance remote sequence needs to be modelled as a modified Petri-net diagram and subsequently 'compiled', in order to be automatically executed on OSAExE environment. The OSAExE architecture allows both, to program 'event driven' automatic sequences, and to maintain unchanged all the existing DTP S S features

  8. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  9. Features of an effective operative dentistry learning environment: students' perceptions and relationship with performance.

    Science.gov (United States)

    Suksudaj, N; Lekkas, D; Kaidonis, J; Townsend, G C; Winning, T A

    2015-02-01

    Students' perceptions of their learning environment influence the quality of outcomes they achieve. Learning dental operative techniques in a simulated clinic environment is characterised by reciprocal interactions between skills training, staff- and student-related factors. However, few studies have examined how students perceive their operative learning environments and whether there is a relationship between their perceptions and subsequent performance. Therefore, this study aimed to clarify which learning activities and interactions students perceived as supporting their operative skills learning and to examine relationships with their outcomes. Longitudinal data about examples of operative laboratory sessions that were perceived as effective or ineffective for learning were collected twice a semester, using written critical incidents and interviews. Emergent themes from these data were identified using thematic analysis. Associations between perceptions of learning effectiveness and performance were analysed using chi-square tests. Students indicated that an effective learning environment involved interactions with tutors and peers. This included tutors arranging group discussions to clarify processes and outcomes, providing demonstrations and constructive feedback. Feedback focused on mistakes, and not improvement, was reported as being ineffective for learning. However, there was no significant association between students' perceptions of the effectiveness of their learning experiences and subsequent performance. It was clear that learning in an operative technique setting involved various factors related not only to social interactions and observational aspects of learning but also to cognitive, motivational and affective processes. Consistent with studies that have demonstrated complex interactions between students, their learning environment and outcomes, other factors need investigation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment

    Directory of Open Access Journals (Sweden)

    Myong-Chul Shin

    2010-12-01

    Full Text Available One of the most important requirements of microgrid operation is to maintain a constant frequency such as 50 Hz or 60 Hz, which is closely related to a power balance between supply and demand. In general, microgrids are connected to power grids and surplus/shortage power of microgrids is traded with power grids. Since islanded microgrids are isolated from any power grids, the decrease in generation or load-shedding can be used to maintain the frequency when a power imbalance between supply and demand occurs. The power imbalance restricts the electricity use of consumers in the case of supply shortage and the power supply of suppliers in the case of supply surplus. Therefore, the islanded microgrid should be operated to reduce power imbalance conditions. Meanwhile, the microgrid is a small-scale power system and the employment of skillful operators for effective operation of its components requires high costs. Therefore, automatic operation of the components is effective realistically. In addition, the components are distributed in the microgrid and their operation should consider their owners’ profits. For these reasons, a multiagent system application can be a good alternative for microgrid operation. In this paper, we present a multiagent system for autonomous operation of the islanded microgrid on a power market environment. The proposed multiagent system is designed based on a cooperative operation scheme. We show the functionality and the feasibility of the proposed multiagent system through several tests.

  11. A multiagent system for autonomous operation of islanded microgrids based on a power market environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.-M. [Department of Electrical Engineering, University of Incheon/12-1, Sondo-dong, Yeonsu-gu, Incheon, 406-840 (Korea, Republic of); Kinoshita, T. [Graduate School of Information Science, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Shin, M.-Ch. [School of Information and Communication Engineering, Sungkyunkwan University/300, Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-746 (Korea, Republic of)

    2010-12-15

    One of the most important requirements of microgrid operation is to maintain a constant frequency such as 50 Hz or 60 Hz, which is closely related to a power balance between supply and demand. In general, microgrids are connected to power grids and surplus/shortage power of microgrids is traded with power grids. Since islanded microgrids are isolated from any power grids, the decrease in generation or load-shedding can be used to maintain the frequency when a power imbalance between supply and demand occurs. The power imbalance restricts the electricity use of consumers in the case of supply shortage and the power supply of suppliers in the case of supply surplus. Therefore, the islanded microgrid should be operated to reduce power imbalance conditions. Meanwhile, the microgrid is a small-scale power system and the employment of skillful operators for effective operation of its components requires high costs. Therefore, automatic operation of the components is effective realistically. In addition, the components are distributed in the microgrid and their operation should consider their owners' profits. For these reasons, a multiagent system application can be a good alternative for microgrid operation. In this paper, we present a multiagent system for autonomous operation of the islanded microgrid on a power market environment. The proposed multiagent system is designed based on a cooperative operation scheme. We show the functionality and the feasibility of the proposed multiagent system through several tests. (authors)

  12. Assessment of environments for Mars Science Laboratory entry, descent, and surface operations

    Science.gov (United States)

    Vasavada, Ashwin R.; Chen, Allen; Barnes, Jeffrey R.; Burkhart, P. Daniel; Cantor, Bruce A.; Dwyer-Cianciolo, Alicia M.; Fergason, Robini L.; Hinson, David P.; Justh, Hilary L.; Kass, David M.; Lewis, Stephen R.; Mischna, Michael A.; Murphy, James R.; Rafkin, Scot C.R.; Tyler, Daniel; Withers, Paul G.

    2012-01-01

    The Mars Science Laboratory mission aims to land a car-sized rover on Mars' surface and operate it for at least one Mars year in order to assess whether its field area was ever capable of supporting microbial life. Here we describe the approach used to identify, characterize, and assess environmental risks to the landing and rover surface operations. Novel entry, descent, and landing approaches will be used to accurately deliver the 900-kg rover, including the ability to sense and "fly out" deviations from a best-estimate atmospheric state. A joint engineering and science team developed methods to estimate the range of potential atmospheric states at the time of arrival and to quantitatively assess the spacecraft's performance and risk given its particular sensitivities to atmospheric conditions. Numerical models are used to calculate the atmospheric parameters, with observations used to define model cases, tune model parameters, and validate results. This joint program has resulted in a spacecraft capable of accessing, with minimal risk, the four finalist sites chosen for their scientific merit. The capability to operate the landed rover over the latitude range of candidate landing sites, and for all seasons, was verified against an analysis of surface environmental conditions described here. These results, from orbital and model data sets, also drive engineering simulations of the rover's thermal state that are used to plan surface operations.

  13. Assessment of an Onboard EO Sensor to Enable Detect-and-Sense Capability for UAVs Operating in a Cluttered Environment

    Science.gov (United States)

    2017-09-01

    rates of accidents. To ensure safe operation in such complex environment , the unmanned systems have to perform accurate and timely detection and...security. C. PROBLEM FORMULATION To ensure the safe operation of unmanned systems in modern complex environment , this thesis strives to answer two...computer vision algorithm work in a complex operating environment with multiple moving objects? This thesis examines the integration of the CV

  14. Raising of Operating a Motor Vehicle Effects on Environment in Winter

    Science.gov (United States)

    Ertman, S. A.; Ertman, J. A.; Zakharov, D. A.

    2016-08-01

    Severe low-temperature conditions, in which considerable part of Russian Motor Park is operated, affect vehicles negatively. Cold weather causes higher fuel consumption and C02 emissions always. It is because of temperature profile changing of automobile motors, other systems and materials. For enhancement of car operation efficiency in severe winter environment the dependency of engine warm-up and cooling time on ambient air temperature and wind speed described by multifactorial mathematical models is established. -On the basis of experimental research it was proved that the coolant temperature constitutes the engine representative temperature and may be used as representative temperature of engine at large. The model of generation of integrated index for vehicle adaptability to winter operating conditions by temperature profile of engines was developed. the method for evaluation of vehicle adaptability to winter operating conditions by temperature profile of engines allows to decrease higher fuel consumption in cold climate.

  15. Influence of operation of national experimental nuclear reactor on the natural environment

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarek-Kacprzak

    2012-09-01

    Full Text Available This paper presents the impact of experimental nuclear reactor operations on the national environment, based on assessment reports of the radiological protection of active nuclear technology sources. Using the analysis of measurements carried out in the last 15 years, the trends are presented in selected elements of the environment on the Świerk Nuclear Centre site and its surroundings. In addition, the impact of research results is presented from the fi fteen year period of environmental analysis on building public confi dence on the eve of the start of construction of the first Polish nuclear power plant.

  16. Quantities of transuranic elements in the environment from operations relating to nuclear weapons

    International Nuclear Information System (INIS)

    Facer, G.

    1980-01-01

    Only nuclear explosions near or above the earth's surface or under water have contributed substantial amounts of transuranic materials to the world bioenvironment. The amounts of transuranics placed in the environment through underground test ventings, accidents involving US nuclear weapons, and releases during weapon production operations have been negligible in comparison with those from atmospheric testing of nuclear explosives. On the order of 10 5 Ci of plutonium has been dispersed within our environment from about 400 nuclear explosive tests, including those by the US, Great Britain, and Russia, between 1945 and 1963, plus more recent nuclear explosive tests in the atmosphere by China, India, and France

  17. Space Environment Effects on Materials at Different Positions and Operational Periods of ISS

    Science.gov (United States)

    Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo

    2009-01-01

    A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.

  18. Rugged optical mirrors for the operation of Fourier-Transform Spectrometers in rough environments

    Science.gov (United States)

    Feist, Dietrich G.

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC) operate a growing number of Fourier-Transform Spectrometers (FTS) that measure the total column of several atmospheric trace gases. For these measurements, the sun is used as a light source. This is typically achieved by a solar tracker that uses a pair of optical mirrors to guide the sunlight into the instrument. There is a growing demand to operate these instruments in remote locations that fill the gaps in the global observation network. Besides the logistical challenges of running a remote site, the environment at these locations can be very harsh compared to the sheltered environment of the instruments' home institutions. While the FTS itself is usually well protected inside a building or container, the solar tracker and especially its mirrors are exposed to the environment. There they may suffer from - temperature fluctuations - high humidity - sea salt corrosion at coastal sites - dirt and dust - air pollution from anthropogenic sources - deposition from plants or animals The Max Planck Institute for Biogeochemistry (MPI-BGC) operates a TCCON station on Ascension Island, about 200 m from the sea. Under the rough conditions at this site, typical optical mirrors that are made for laboratory conditions are destroyed by sea salt spray within a few weeks. Besides, typical gold-coated mirrors cannot be cleaned as their soft surface is easily scratched or damaged. To overcome these problems, the MPI-BGC has developed optical mirrors that - offer good reflectivity in the near and mid infrared - are highly resistant to salt and chlorine - have a hard surface so that they can be cleaned often and easily - are not affected by organic solvents - last for months in very harsh environments - can be reused after polishing These mirrors could be applied to most TCCON and NDACC sites. This way, the network could be expanded to regions where operation

  19. Integration operators for generating RDF/OWL-based user defined mediator views in a grid environment

    OpenAIRE

    Tawil, Abdel-Rahman H.; Taweel, Adel; Naeem, Usman; Montebello, Matthew; Bashroush, Rabih; Al-Nemrat, Ameer

    2014-01-01

    Research and development activities relating to the grid have generally focused on applications where data is stored in files. However, many scientific and commercial applications are highly dependent on Information Servers (ISs) for storage and organization of their data. A data-information system that supports operations on multiple information servers in a grid environment is referred to as an interoperable grid system. Different perceptions by end-users of interoperable systems in a grid ...

  20. Collaborative Applications Used in a Wireless Environment at Sea for Use in Coast Guard Law Enforcement and Homeland Security Missions

    National Research Council Canada - National Science Library

    Klopson, Jadon E; Burdian, Stephen V

    2005-01-01

    ... an 802.11 mesh layer architecture and 802.16 Orthogonal Frequency Division Multiplexing, in order to effectively and more efficiently transmit data and create a symbiotic operational picture between Coast Guard Cutters, their boarding teams...

  1. Orbit and geometry constraints on the design and operation of a long-life SIRTF mission. [Shuttle Infrared Telescope Facility

    Science.gov (United States)

    Jackson, R. W.

    1984-01-01

    For a long-life SIRTF mission, the ability of the telescope to observe targets everywhere in the sky is an important requirement. For low-inclination orbits, a telescope aperture shade must be designed for Sun and Earth Limb avoidance angles of 50 deg to 60 deg to prevent unwanted radiation from entering the telescope. The minimum orbit inclination depends on the Earth Limb avoidance angle. About 30 percent of the sky will be prohibited for observations during any day in orbit, with about 100 days in orbit required to observe the entire sky.

  2. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends.

    Science.gov (United States)

    Arico, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Babiloni, Fabio

    2017-07-01

    This minireview aims to highlight recent important aspects to consider and evaluate when passive brain-computer interface (pBCI) systems would be developed and used in operational environments, and remarks future directions of their applications. Electroencephalography (EEG) based pBCI has become an important tool for real-time analysis of brain activity since it could potentially provide covertly-without distracting the user from the main task-and objectively-not affected by the subjective judgment of an observer or the user itself-information about the operator cognitive state. Different examples of pBCI applications in operational environments and new adaptive interface solutions have been presented and described. In addition, a general overview regarding the correct use of machine learning techniques (e.g., which algorithm to use, common pitfalls to avoid, etc.) in the pBCI field has been provided. Despite recent innovations on algorithms and neurotechnology, pBCI systems are not completely ready to enter the market yet, mainly due to limitations of the EEG electrodes technology, and algorithms reliability and capability in real settings. High complexity and safety critical systems (e.g., airplanes, ATM interfaces) should adapt their behaviors and functionality accordingly to the user' actual mental state. Thus, technologies (i.e., pBCIs) able to measure in real time the user's mental states would result very useful in such "high risk" environments to enhance human machine interaction, and so increase the overall safety.

  3. Integrated Analysis of Environment-driven Operational Effects in Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, Alfred J [ORNL; Perumalla, Kalyan S [ORNL

    2007-07-01

    There is a rapidly growing need to evaluate sensor network functionality and performance in the context of the larger environment of infrastructure and applications in which the sensor network is organically embedded. This need, which is motivated by complex applications related to national security operations, leads to a paradigm fundamentally different from that of traditional data networks. In the sensor networks of interest to us, the network dynamics depend strongly on sensor activity, which in turn is triggered by events in the environment. Because the behavior of sensor networks is sensitive to these driving phenomena, the integrity of the sensed observations, measurements and resource usage by the network can widely vary. It is therefore imperative to accurately capture the environmental phenomena, and drive the simulation of the sensor network operation by accounting fully for the environment effects. In this paper, we illustrate the strong, intimate coupling between the sensor network operation and the driving phenomena in their applications with an example sensor network designed to detect and track gaseous plumes.

  4. TransFormers for Ensuring Long-Term Operations in Lunar Extreme Environments

    Science.gov (United States)

    Mantovani, J. G.; Stoica, A.; Alkalai, L.; Wilcox, B.; Quadrelli, M.

    2016-01-01

    "Surviving Extreme Space Environments" (EE) is one of NASA's Space Technology Grand Challenges. Power generation and thermal control are the key survival ingredients that allow a robotic explorer to cope with the EE using resources available to it, for example, by harvesting the local solar energy or by utilizing an onboard radioisotope thermoelectric generator (RTG). TransFormers (TFs) are a new technology concept designed to transform a localized area within a harsh extreme environment into a survivable micro-environment by projecting energy to the precise location where robots or humans operate. For example, TFs placed at a location on the rim of Shackleton Crater, which is illuminated by solar radiation for most of the year, would be able to reflect solar energy onto robots operating in the dark cold crater. TFs utilize a shape transformation mechanism to un-fold from a compact volume to a large reflective surface, and to control how much-and where-the energy is projected, and by adjusting for the changing position of the sun. TFs would enable in-situ resource utilization (ISRU) activities within locations of high interest that would normally be unreachable because of their extreme environment

  5. MONTE: the next generation of mission design and navigation software

    Science.gov (United States)

    Evans, Scott; Taber, William; Drain, Theodore; Smith, Jonathon; Wu, Hsi-Cheng; Guevara, Michelle; Sunseri, Richard; Evans, James

    2018-03-01

    The Mission analysis, Operations and Navigation Toolkit Environment (MONTE) (Sunseri et al. in NASA Tech Briefs 36(9), 2012) is an astrodynamic toolkit produced by the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory. It provides a single integrated environment for all phases of deep space and Earth orbiting missions. Capabilities include: trajectory optimization and analysis, operational orbit determination, flight path control, and 2D/3D visualization. MONTE is presented to the user as an importable Python language module. This allows a simple but powerful user interface via CLUI or script. In addition, the Python interface allows MONTE to be used seamlessly with other canonical scientific programming tools such as SciPy, NumPy, and Matplotlib. MONTE is the prime operational orbit determination software for all JPL navigated missions.

  6. A study on operators' cognitive response characteristics to the computerized working environment

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, Jang Soo; Suh, Sang Moon; Lee, Hyun Cheol; Jung, Kwang Tae; Lee, Dhong Ha

    1998-12-01

    Although the introduction of computerized working environment to the nuclear facilities, the study on the human factors impacts of computers and automation has not been enough like the other industries. It is necessary to prepare the way to cope with the negative aspects in spite of many positive aspects of computerization in nuclear. This study is an empirical study including the survey of the human factor concerning, especially to the cognitive response of operators' and the experiments on the error proneness. At first, we survey the design and its changes of operator interface and interaction in nuclear power plants, and conclude five human factor issues. We discuss situation awareness issues as one of the major human factor concerning, and the assessment method. Secondly, a questionnaire and interviews survey to the operator's response characteristics are performed for possible criterion measures tot he in-depth study on the cognitive characteristics. Finally, several experiments are conducted to test the error proneness. The issues and findings of this study could be utilized to any further study on the cognitive characteristic of operators to the computerized work environment

  7. A study on operators' cognitive response characteristics to the computerized working environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, Jang Soo; Suh, Sang Moon; Lee, Hyun Cheol; Jung, Kwang Tae; Lee, Dhong Ha

    1998-12-01

    Although the introduction of computerized working environment to the nuclear facilities, the study on the human factors impacts of computers and automation has not been enough like the other industries. It is necessary to prepare the way to cope with the negative aspects in spite of many positive aspects of computerization in nuclear. This study is an empirical study including the survey of the human factor concerning, especially to the cognitive response of operators' and the experiments on the error proneness. At first, we survey the design and its changes of operator interface and interaction in nuclear power plants, and conclude five human factor issues. We discuss situation awareness issues as one of the major human factor concerning, and the assessment method. Secondly, a questionnaire and interviews survey to the operator's response characteristics are performed for possible criterion measures to the in-depth study on the cognitive characteristics. Finally, several experiments are conducted to test the error proneness. The issues and findings of this study could be utilized to any further study on the cognitive characteristic of operators to the computerized work environment.

  8. Operating environment threats influence on the maritime ferry technical system safety – the numerical approach

    Directory of Open Access Journals (Sweden)

    Kuligowska Ewa

    2017-06-01

    Full Text Available The material given in this paper delivers the procedure for numerical approach that allows finding the main practically important safety characteristics of the complex technical systems at the variable operation conditions including operating environment threats. The obtained results are applied to the safety evaluation of the maritime ferry technical system. It is assumed that the conditional safety functions are different at various operation states and have the exponential forms. Using the procedure and the program written in Mathematica, the considered maritime ferry technical system main characteristics including: the conditional and the unconditional expected values and standard deviations of the system lifetimes, the unconditional safety function and the risk function are determined.

  9. The impact of the operating environment on the design of redundant configurations

    International Nuclear Information System (INIS)

    Marseguerra, M.; Padovani, E.; Zio, E.

    1999-01-01

    Safety systems are often characterized by substantial redundancy and diversification in safety critical components. In principle, such redundancy and diversification can bring benefits when compared to single-component systems. However, it has also been recognized that the evaluation of these benefits should take into account that redundancies cannot be founded, in practice, on the assumption of complete independence, so that the resulting risk profile is strongly dominated by dependent failures. It is therefore mandatory that the effects of common cause failures be estimated in any probabilistic safety assessment (PSA). Recently, in the Hughes model for hardware failures and in the Eckhardt and Lee models for software failures, it was proposed that the stressfulness of the operating environment affects the probability that a particular type of component will fail. Thus, dependence of component failure behaviors can arise indirectly through the variability of the environment which can directly affect the success of a redundant configuration. In this paper we investigate the impact of indirect component dependence by means of the introduction of a probability distribution which describes the variability of the environment. We show that the variance of the distribution of the number, or times, of system failures can give an indication of the presence of the environment. Further, the impact of the environment is shown to affect the reliability and the design of redundant configurations

  10. A new generation of real-time DOS technology for mission-oriented system integration and operation

    Science.gov (United States)

    Jensen, E. Douglas

    1988-01-01

    Information is given on system integration and operation (SIO) requirements and a new generation of technical approaches for SIO. Real-time, distribution, survivability, and adaptability requirements and technical approaches are covered. An Alpha operating system program management overview is outlined.

  11. Operations Charioteer, Musketeer, Touchstone, Cornerstone, Aqueduct, Sculpin and Julin. Tests Mill Yard, Diamond Beech, Mighty Oak, Middle Note Mission Ghost, Mission Cyber, Misty Echo, Disko Elm, Mineral Quarry, Distant Zenith, Diamond Fortune, and Hunters Trophy

    National Research Council Canada - National Science Library

    Schoengold, Carole

    1999-01-01

    ...; Tests MILL YARD, DIAMOND BEECH, MIGHTY OAK, MIDDLE NOTE, MISSION GHOST, MISSION CYBER, MISTY ECHO, DISKO ELM, MINERAL QUARRY, DISTANT ZENITH, DIAMOND FORTUNE, and HUNTERS TROPHY, 9 October 1985 to 18 September 1992...

  12. Immersive environment technologies for planetary exploration with applications for mixed reality

    Science.gov (United States)

    Wright, J.; Hartman, F.; Cooper, B.

    2002-01-01

    Immersive environments are successfully being used to support mission operations at JPL. This technology contributed to the Mars Pathfinder Mission in planning sorties for the Sojourner rover. Results and operational experiences with these tools are being incorporated into the development of the second generation of mission planning tools.

  13. Operating nuclear power stations in a regulated cyber security environment: a roadmap for success

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, E., E-mail: Erik.Dorman@areva.com [AREVA Inc., Cyber Security Solutions, Charlotte, NC (United States)

    2015-07-01

    The United States Nuclear Regulatory Commission (NRC) issued 10CFR73.54 to implement a regulated Cyber Security Program at each operating nuclear reactor facility. Milestones were implemented December 31, 2012 to mitigate the attack vectors for the most critical digital assets acknowledged by the industry and the NRC. The NRC inspections have begun. The nuclear Cyber Security Plan, implemented by the site Cyber Security Program (Program), is an element of the operating license at each facility. The Program is designed to protect critical digital assets (CDAs) by applying and maintaining defense-in depth protective strategies to ensure the capability to detect, respond to, and recover from cyber-attacks. The Program references NEI 08-09 R. 6, the Nuclear Energy Institute Template that provides guidance for applying Cyber Security controls derived from NIST 800-53/82 and slightly modified to fit the nuclear environment. Many mature processes are in place at nuclear facilities in response to numerous regulations implemented over the past 30 years. Many of these processes such as the Physical Security Program offer protections that are leveraged to protect the functions of critical digital assets from unauthorized physical access. Other processes and technology such as engineering design control, work management and pre-job briefs, control of portable media and mobile devices, and deterministically segregated networks protect critical digital assets. By leveraging the regulated nuclear environment, integrating NIST type Cyber Security controls, and prudently deploying technology the Cyber Security posture of operating nuclear facilities supports on-demand base load electricity 24/7 with capacity factors exceeding 85%. This paper is designed to provide a glimpse into Cyber Security Programs that support safe operation and reliability in the regulated nuclear environment while supporting the on-demand base load electricity production 24/7. (author)

  14. Operating nuclear power stations in a regulated cyber security environment: a roadmap for success

    International Nuclear Information System (INIS)

    Dorman, E.

    2015-01-01

    The United States Nuclear Regulatory Commission (NRC) issued 10CFR73.54 to implement a regulated Cyber Security Program at each operating nuclear reactor facility. Milestones were implemented December 31, 2012 to mitigate the attack vectors for the most critical digital assets acknowledged by the industry and the NRC. The NRC inspections have begun. The nuclear Cyber Security Plan, implemented by the site Cyber Security Program (Program), is an element of the operating license at each facility. The Program is designed to protect critical digital assets (CDAs) by applying and maintaining defense-in depth protective strategies to ensure the capability to detect, respond to, and recover from cyber-attacks. The Program references NEI 08-09 R. 6, the Nuclear Energy Institute Template that provides guidance for applying Cyber Security controls derived from NIST 800-53/82 and slightly modified to fit the nuclear environment. Many mature processes are in place at nuclear facilities in response to numerous regulations implemented over the past 30 years. Many of these processes such as the Physical Security Program offer protections that are leveraged to protect the functions of critical digital assets from unauthorized physical access. Other processes and technology such as engineering design control, work management and pre-job briefs, control of portable media and mobile devices, and deterministically segregated networks protect critical digital assets. By leveraging the regulated nuclear environment, integrating NIST type Cyber Security controls, and prudently deploying technology the Cyber Security posture of operating nuclear facilities supports on-demand base load electricity 24/7 with capacity factors exceeding 85%. This paper is designed to provide a glimpse into Cyber Security Programs that support safe operation and reliability in the regulated nuclear environment while supporting the on-demand base load electricity production 24/7. (author)

  15. Ground-based characterization of Hayabusa2 mission target asteroid 162173 Ryugu: constraining mineralogical composition in preparation for spacecraft operations

    Science.gov (United States)

    Le Corre, Lucille; Sanchez, Juan A.; Reddy, Vishnu; Takir, Driss; Cloutis, Edward A.; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri

    2018-03-01

    Asteroids that are targets of spacecraft missions are interesting because they present us with an opportunity to validate ground-based spectral observations. One such object is near-Earth asteroid (NEA) (162173) Ryugu, which is the target of the Japanese Space Agency's (JAXA) Hayabusa2 sample return mission. We observed Ryugu using the 3-m NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on 2016 July 13 to constrain the object's surface composition, meteorite analogues, and link to other asteroids in the main belt and NEA populations. We also modelled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Ishiguro et al. Our spectral analysis has found a near-perfect match between our spectrum of Ryugu and those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regoliths have similar composition. We compared Ryugu's spectrum with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as a possible source of Ryugu by Campins et al. We found that the spectrum of Clarissa shows significant differences with our spectrum of Ryugu, but it is similar to the spectrum obtained by Moskovitz et al. The best possible meteorite analogues for our spectrum of Ryugu are two CM2 carbonaceous chondrites, Mighei and ALH83100.

  16. SPICE for ESA Planetary Missions

    Science.gov (United States)

    Costa, M.

    2018-04-01

    The ESA SPICE Service leads the SPICE operations for ESA missions and is responsible for the generation of the SPICE Kernel Dataset for ESA missions. This contribution will describe the status of these datasets and outline the future developments.

  17. Cognitive architectures: choreographing the dance of mental operations with the task environment.

    Science.gov (United States)

    Gray, Wayne D

    2008-06-01

    In this article, I present the ideas and trends that have given rise to the use of cognitive architectures in human factors and provide a cognitive engineering-oriented taxonomy of these architectures and a snapshot of their use for cognitive engineering. Architectures of cognition have had a long history in human factors but a brief past. The long history entails a 50-year preamble, whereas the explosion of work in the current decade reflects the brief past. Understanding this history is key to understanding the current and future prospects for applying cognitive science theory to human factors practice. The review defines three formative eras in cognitive engineering research: the 1950s, 1980s, and now. In the first era, the fledging fields of cognitive science and human factors emphasized characteristics of the dancer the limited capacity or bounded rationality view of the mind, and the ballroom, the task environment. The second era emphasized the dance (i.e., the dynamic interaction between mental operations and task environment). The third era has seen the rise of cognitive architectures as tools for choreographing the dance of mental operations within the complex environments posed by human factors practice. Hybrid architectures present the best vector for introducing cognitive science theories into a renewed engineering-based human factors. The taxonomy provided in this article may provide guidance on when and whether to apply a cognitive science or a hybrid architecture to a human factors issue.

  18. Perception vs. Reality: Improving Mission Commander Decision Making Capabilities by use of Heart Rate Zone Feedback in Training Environments

    Science.gov (United States)

    2017-03-23

    literature identities the development of technology that could be used to enhance performance stamina in military communities while allowing critical...atrophy, and weight loss (O’Hara, Henry, Serres, Russell, & Locke , 2014). While the intense training of these elite warfighters is necessary; without...doi:10.1037//0033-295x.83.6.508. O’Hara, R., Henry, A., Serres, J., Russell, D., & Locke , R. (2014). Operational stressors on physical

  19. Operating the EOSDIS at the land processes DAAC managing expectations, requirements, and performance across agencies, missions, instruments, systems, and user communities

    Science.gov (United States)

    Kalvelage, T.A.; ,

    2002-01-01

    NASA developed the Earth Observing System (EOS) during the 1990'S. At the Land Processes Distributed Active Archive Center (LP DAAC), located at the USGS EROS Data Center, the EOS Data and Information System (EOSDIS) is required to support heritage missions as well as Landsat 7, Terra, and Aqua. The original system concept of the early 1990'S changed as each community had its say - first the managers, then engineers, scientists, developers, operators, and then finally the general public. The systems at the LP DAAC - particularly the largest single system, the EOSDIS Core System (ECS) - are changing as experience accumulates, technology changes, and each user group gains influence. The LP DAAC has adapted as contingencies were planned for, requirements and therefore plans were modified, and expectations changed faster than requirements could hope to be satisfied. Although not responsible for Quality Assurance of the science data, the LP DAAC works to ensure the data are accessible and useable by influencing systems, capabilities, and data formats where possible, and providing tools and user support as necessary. While supporting multiple missions and instruments, the LP DAAC also works with and learns from multiple management and oversight groups as they review mission requirements, system capabilities, and the overall operation of the LP DAAC. Stakeholders, including the Land Science community, are consulted regularly to ensure that the LP DAAC remains cognizant and responsive to the evolving needs of the user community. Today, the systems do not look or function as originally planned, but they do work, and they allow customers to search and order of an impressive amount of diverse data.

  20. SEE induced in SRAM operating in a superconducting electron linear accelerator environment

    Science.gov (United States)

    Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan

    2005-02-01

    Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.

  1. Experimental control versus realism: methodological solutions for simulator studies in complex operating environments

    Energy Technology Data Exchange (ETDEWEB)

    Skraaning, Gyrd Jr.

    2004-03-15

    This report is a reprint of a dr.philos. thesis written by Gyrd Skraaning Jr. The text was submitted and accepted by the Norwegian University of Science and Technology in 2003 (ISBN 82-471-5237-1). The thesis suggests a nonlinear model of the theoretical relationship between experimental control and realism, claiming that high degrees of realism and experimental control can be obtained simultaneously if the experimental methods are utilized strategically and developed further. This is in opposition to the conventional opinion that realism and experimental control are mutually excluding objectives. The thesis debates the impact of the operating task on human performance during simulator studies in HAMMLAB, and suggests how task variation can be experimentally controlled. In a within subject design, every subject is tested under all experimental conditions, and the presentation order of the conditions is counterbalanced to compensate for order effects. In realistic settings, it is essential that the experimental design imposes few artificial constrains on the research environment. At the same time, the design should be able to uncover experimental effects in situations where the number of participants is low. Within-subject design represents a reasonable compromise between these aspirations. In this respect, an alternative counterbalancing method is proposed (dis-ORDER). A theoretical analysis of the human performance concept and a discussion about performance measurement in complex operating environments, are followed by a debate on the shortcomings of traditional performance indicators. Two specialized operator performance assessment techniques are then presented and evaluated (OPAS and ORT). (Author)

  2. The Operation Consequence of Nuclear Energy to Environment; Konsekuensi Pengoperasian Tenaga Nuklir terhadap Lingkungan

    Energy Technology Data Exchange (ETDEWEB)

    Suhariyono, Gatot; Sutarman, [Center for Research and Development of Radiation Safety and Nuclear Biomedicine, (Indonesia)

    2003-08-15

    Objective of the paper is to give information the operation consequence of nuclear energy to environment, so that expected as organizer of PLTN can anticipate or depress as minimum as possible radiology impact to the radiation workers and society in general, and also socialization that operation of nuclear energy do not give the negative impact, if conducted its control to environment seriously. Parts of which it is important to know from this paper are : one. Estimate of equivalent dose of collective effective in a normal condition is the operation cycle for nuclear energy at worker and local or regional resident 10, 100 or 10.000 next years. 2. Equivalent dose of global collective effective is for various the radiation sources. 3. Estimate of dose per cap ut annual of nuclear electric power until year 2500. 4. Aspect of non-radiology is to cooler system, usage of farm, dismissal of chemistry, advantage of hot water waste, its effect to fish, benthos, plankton, vegetation, animal and preparation of nuclear emergency.

  3. Experimental control versus realism: methodological solutions for simulator studies in complex operating environments

    International Nuclear Information System (INIS)

    Skraaning, Gyrd Jr.

    2004-03-01

    This report is a reprint of a dr.philos. thesis written by Gyrd Skraaning Jr. The text was submitted and accepted by the Norwegian University of Science and Technology in 2003 (ISBN 82-471-5237-1). The thesis suggests a nonlinear model of the theoretical relationship between experimental control and realism, claiming that high degrees of realism and experimental control can be obtained simultaneously if the experimental methods are utilized strategically and developed further. This is in opposition to the conventional opinion that realism and experimental control are mutually excluding objectives. The thesis debates the impact of the operating task on human performance during simulator studies in HAMMLAB, and suggests how task variation can be experimentally controlled. In a within subject design, every subject is tested under all experimental conditions, and the presentation order of the conditions is counterbalanced to compensate for order effects. In realistic settings, it is essential that the experimental design imposes few artificial constrains on the research environment. At the same time, the design should be able to uncover experimental effects in situations where the number of participants is low. Within-subject design represents a reasonable compromise between these aspirations. In this respect, an alternative counterbalancing method is proposed (dis-ORDER). A theoretical analysis of the human performance concept and a discussion about performance measurement in complex operating environments, are followed by a debate on the shortcomings of traditional performance indicators. Two specialized operator performance assessment techniques are then presented and evaluated (OPAS and ORT). (Author)

  4. Operation Poorman

    International Nuclear Information System (INIS)

    Pruvost, N.; Tsitouras, J.

    1981-01-01

    The objectives of Operation Poorman were to design and build a portable seismic system and to set up and use this system in a cold-weather environment. The equipment design uses current technology to achieve a low-power, lightweight system that is configured into three modules. The system was deployed in Alaska during wintertime, and the results provide a basis for specifying a mission-ready seismic verification system

  5. Toho Gas accepts the challenge of operational reform creation of an integrated OA environment

    International Nuclear Information System (INIS)

    Kato, Hisaatsu; Ito, Mari; Goto, Akihito

    1997-01-01

    Toho Gas Co., Ltd. is Japan's third largest city gas supplier. In response to changes in the industrial environment, the company began the Integrated OA Project in 1994 promoting use of information technology while reforming its systems and culture. We made a proposal to distribute one personal computer connected to a company-wide network to each office worker. In addition, we attached importance to the creation of a database, which can integrate all information systems with a flexible structure and also play a central role in end user computing. A data model for the entire company has been already made and implemented into some operational systems and data-warehouses. Furthermore, to reform our business we are offering incremental goals, including the first step such as achieving a paper less working environment with a little effort. This methodology has achieved a great success. In the near future, we will expand the infrastructure with mobile computers and implementation of a database. (au)

  6. Mastering vRealize operations manager analyze and optimize your it environment by gaining a practical understanding of vRealize operations 6.6

    CERN Document Server

    Kaloferov, Spas; Carnie, Alasdair; Norris, Scott

    2018-01-01

    Nowadays you can find companies that have virtualized 75%, or even more than 95% of their environment. Having a good forensic tool with comprehensive predictive analysis functionality, to monitor your virtual environment and software, is crucial. vRealize Operations 6.6 offers this and much more to help your business run uninterrupted.

  7. Method, apparatus and system for managing queue operations of a test bench environment

    Science.gov (United States)

    Ostler, Farrell Lynn

    2016-07-19

    Techniques and mechanisms for performing dequeue operations for agents of a test bench environment. In an embodiment, a first group of agents are each allocated a respective ripe reservation and a second set of agents are each allocated a respective unripe reservation. Over time, queue management logic allocates respective reservations to agents and variously changes one or more such reservations from unripe to ripe. In another embodiment, an order of servicing agents allocated unripe reservations is based on relative priorities of the unripe reservations with respect to one another. An order of servicing agents allocated ripe reservations is on a first come, first served basis.

  8. Occupant Responses and Office Work Performance in Environments with Moderately Drifting Operative Temperatures (RP-1269)

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2009-01-01

    of 21.4°C (70.5°F) (for 6 h) were examined. Subjects assessed their thermal sensation, acceptability of the thermal environment, perceived air quality, and intensity of sick building syndrome (SBS) symptoms. Subjects’ performance was measured by simulated office work, including tasks such as addition...... found, while intensity of headache, concentration ability, and general well-being were significantly affected in most of the ramps. Linear dependence of perceived air quality on operative temperature was noted. No significantly consistent effects of individual temperature ramps on office work...... performance were found....

  9. The use of processes evaporation and condensation to provide a suitable operating environment of systems

    Energy Technology Data Exchange (ETDEWEB)

    Kolková, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [University of Žilina, Research centre, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Holubčík, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz’s Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain the waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.

  10. Preserving the Near-Earth Space Environment with Green Engineering and Operations

    Science.gov (United States)

    Johnson, Nicholas L.

    2009-01-01

    Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.

  11. The use of processes evaporation and condensation to provide a suitable operating environment of systems

    Science.gov (United States)

    Kolková, Zuzana; Holubčík, Michal; Malcho, Milan

    2016-06-01

    All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz's Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain the waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.

  12. Remote operation of microwave systems for solids content analysis and chemical dissolution in highly radioactive environments

    International Nuclear Information System (INIS)

    Sturcken, E.F.; Floyd, T.S.; Manchester, D.P.

    1986-10-01

    Microwave systems provide quick and easy determination of solids content of samples in high-level radioactive cells. In addition, dissolution of samples is much faster when employing microwave techniques. These are great advantages because work in cells,using master-slave manipulators through leaded glass walls, is normally slower by an order of magnitude than direct contact methods. This paper describes the modifiction of a moisture/solids analyzer microwave system and a drying/digestion microwave system for remote operation in radiation environments. The moisture/solids analyzer has operated satisfactorily for over a year in a gamma radiation field of 1000 roentgens per hour and the drying/digestion system is ready for installation in a cell

  13. Challenges for Transitioning Science Knowledge to an Operational Environment for Space Weather

    Science.gov (United States)

    Spann, James

    2012-01-01

    Effectively transitioning science knowledge to an operational environment relevant to space weather is critical to meet the civilian and defense needs, especially considering how technologies are advancing and present evolving susceptibilities to space weather impacts. The effort to transition scientific knowledge to a useful application is not a research task nor is an operational activity, but an effort that bridges the two. Successful transitioning must be an intentional effort that has a clear goal for all parties and measureable outcome and deliverable. This talk will present proven methodologies that have been demonstrated to be effective for terrestrial weather and disaster relief efforts, and how those methodologies can be applied to space weather transition efforts.

  14. Evaluation of the Physiological Challenges in Extreme Environments: Implications for Enhanced Training, Operational Performance and Sex-Specific Responses

    Science.gov (United States)

    2017-10-01

    Operational Performance and Sex -Specific Responses PRINCIPAL INVESTIGATOR: Brent C. Ruby CONTRACTING ORGANIZATION: The University of Montana Missoula...Implications for Enhanced Training, Operational Performance and Sex -Specific Responses 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Evaluation of the physiological challenges in extreme environments: Implications for enhanced training, operational performance and sex -specific

  15. Observation of galactic cosmic ray spallation events from the SoHO mission 20-Year operation of LASCO

    Science.gov (United States)

    Koutchmy, S.; Tavabi, E.; Urtado, O.

    2018-05-01

    A shower of secondary Cosmic Ray (CR) particles is produced at high altitudes in the Earth's atmosphere, so the primordial Galactic Cosmic Rays (GCRs) are never directly measured outside the Earth magnetosphere and atmosphere. They approach the Earth and other planets in the complex pattern of rigidity's dependence, generally excluded by the magnetosphere. GCRs revealed by images of single nuclear reactions also called spallation events are described here. Such an event was seen on Nov. 29, 2015 using a unique LASCO C3 space coronagraph routine image taken during the Solar and Heliospheric Observatory (SoHO) mission observing uninterruptedly at the Lagrangian L1 point. The spallation signature of a GCR identified well outside the Earth's magnetosphere is obtained for the 1st time. The resulting image includes different diverging linear "tracks" of varying intensity, leading to a single pixel; this frame identifies the site on the silicon CCD chip of the coronagraph camera. There was no solar flare reported at that time, nor Coronal Mass Ejection (CME) and no evidence of optical debris around the spacecraft. More examples of smaller CR events have been discovered through the 20 years of continuous observations from SoHO. This is the first spallation event from a CR, recorded outside the Earth's magnetosphere. We evaluate the probable energy of these events suggesting a plausible galactic source.

  16. Personality factors in flight operations. Volume 1: Leader characteristics and crew performance in a full-mission air transport simulation

    Science.gov (United States)

    Chidester, Thomas R.; Kanki, Barbara G.; Foushee, H. Clayton; Dickinson, Cortlandt L.; Bowles, Stephen V.

    1990-01-01

    Crew effectiveness is a joint product of the piloting skills, attitudes, and personality characteristics of team members. As obvious as this point might seem, both traditional approaches to optimizing crew performance and more recent training development highlighting crew coordination have emphasized only the skill and attitudinal dimensions. This volume is the first in a series of papers on this simulation. A subsequent volume will focus on patterns of communication within crews. The results of a full-mission simulation research study assessing the impact of individual personality on crew performance is reported. Using a selection algorithm described in previous research, captains were classified as fitting one of three profiles along a battery of personality assessment scales. The performances of 23 crews led by captains fitting each profile were contrasted over a one-and-one-half-day simulated trip. Crews led by captains fitting a positive Instrumental-Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Expressive profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of competitiveness, verbal aggressiveness, and impatience and irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  17. Operational Research: Evaluating Multimodel Implementations for 24/7 Runtime Environments

    Science.gov (United States)

    Burkhart, J. F.; Helset, S.; Abdella, Y. S.; Lappegard, G.

    2016-12-01

    We present a new open source framework for operational hydrologic rainfall-runoff modeling. The Statkraft Hydrologic Forecasting Toolbox (Shyft) is unique from existing frameworks in that two primary goals are to provide: i) modern, professionally developed source code, and ii) a platform that is robust and ready for operational deployment. Developed jointly between Statkraft AS and The University of Oslo, the framework is currently in operation in both private and academic environments. The hydrology presently available in the distribution is simple and proven. Shyft provides a platform for distributed hydrologic modeling in a highly efficient manner. In it's current operational deployment at Statkraft, Shyft is used to provide daily 10-day forecasts for critical reservoirs. In a research setting, we have developed a novel implementation of the SNICAR model to assess the impact of aerosol deposition on snow packs. Several well known rainfall-runoff algorithms are available for use, allowing for intercomparing different approaches based on available data and the geographical environment. The well known HBV model is a default option, and other routines with more localized methods handling snow and evapotranspiration, or simplifications of catchment scale processes are included. For the latter, we have implemented the Kirchner response routine. Being developed in Norway, a variety snow-melt routines, including simplified degree day models or more advanced energy balance models, may be selected. Ensemble forecasts, multi-model implementations, and statistical post-processing routines enable a robust toolbox for investigating optimal model configurations in an operational setting. The Shyft core is written in modern templated C++ and has Python wrappers developed for easy access to module sub-routines. The code is developed such that the modules that make up a "method stack" are easy to modify and customize, allowing one to create new methods and test them rapidly. Due

  18. Enabling the Future Force: The Use of Regional Alignment, Mission Command and Cultural Competence to Create an Operationally Adaptive Army

    Science.gov (United States)

    2014-05-22

    a Japanese government. Russell Brines, an Associated Press member and expert on Japanese and Asian culture who reported on the occupation firsthand...they shaped the Japanese cultural economic environment. All of the laws created and approved through the Japanese Diet were fundamentally American... cultural values placed a strong emphasis on ancestral lands; these values shaped their perception of time and authority.117 The concept of

  19. FB Line Basis for Interim Operation

    International Nuclear Information System (INIS)

    Shedrow, B.

    1998-01-01

    The safety analysis of the FB-Line Facility indicates that the operation of FB-Line to support the current mission does not present undue risk to the facility and co-located workers, general public, or the environment

  20. UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment.

    Science.gov (United States)

    Chen, Jessie Y C

    2010-08-01

    A military reconnaissance environment was simulated to examine the performance of ground robotics operators who were instructed to utilise streaming video from an unmanned aerial vehicle (UAV) to navigate his/her ground robot to the locations of the targets. The effects of participants' spatial ability on their performance and workload were also investigated. Results showed that participants' overall performance (speed and accuracy) was better when she/he had access to images from larger UAVs with fixed orientations, compared with other UAV conditions (baseline- no UAV, micro air vehicle and UAV with orbiting views). Participants experienced the highest workload when the UAV was orbiting. Those individuals with higher spatial ability performed significantly better and reported less workload than those with lower spatial ability. The results of the current study will further understanding of ground robot operators' target search performance based on streaming video from UAVs. The results will also facilitate the implementation of ground/air robots in military environments and will be useful to the future military system design and training community.

  1. Species management benchmarking: outcomes over outputs in a changing operating environment.

    Science.gov (United States)

    Hogg, Carolyn J; Hibbard, Chris; Ford, Claire; Embury, Amanda

    2013-03-01

    Species management has been utilized by the zoo and aquarium industry, since the mid-1990s, to ensure the ongoing genetic and demographic viability of populations, which can be difficult to maintain in the ever-changing operating environments of zoos. In 2009, the Zoo and Aquarium Association Australasia reviewed their species management services, focusing on addressing issues that had arisen as a result of the managed programs maturing and operating environments evolving. In summary, the project examined resourcing, policies, processes, and species to be managed. As a result, a benchmarking tool was developed (Health Check Report, HCR), which evaluated the programs against a set of broad criteria. A comparison of managed programs (n = 98), between 2008 and 2011, was undertaken to ascertain the tool's effectiveness. There was a marked decrease in programs that were designated as weak (37 down to 13); and an increase in excellent programs (24 up to 49) between the 2 years. Further, there were significant improvements in the administration benchmarking area (submission of reports, captive management plan development) across a number of taxon advisory groups. This HCR comparison showed that a benchmarking tool enables a program's performance to be quickly assessed and any remedial measures applied. The increases observed in program health were mainly due to increased management goals being attained. The HCR will be an ongoing program, as the management of the programs increases and goals are achieved, criteria will be refined to better highlight ongoing issues and ways in which these can be resolved. © 2012 Wiley Periodicals, Inc.

  2. Power Subsystem Approach for the Europa Mission

    Directory of Open Access Journals (Sweden)

    Ulloa-Severino Antonio

    2017-01-01

    Full Text Available NASA is planning to launch a spacecraft on a mission to the Jovian moon Europa, in order to conduct a detailed reconnaissance and investigation of its habitability. The spacecraft would orbit Jupiter and perform a detailed science investigation of Europa, utilizing a number of science instruments including an ice-penetrating radar to determine the icy shell thickness and presence of subsurface oceans. The spacecraft would be exposed to harsh radiation and extreme temperature environments. To meet mission objectives, the spacecraft power subsystem is being architected and designed to operate efficiently, and with a high degree of reliability.

  3. The complete integration of MissionLab and CARMEN

    Directory of Open Access Journals (Sweden)

    FJ Serrano Rodriguez

    2017-05-01

    Full Text Available Nowadays, a major challenge in the development of advanced robotic systems is the creation of complex missions for groups of robots, with two main restrictions: complex programming activities not needed and the mission configuration time should be short (e.g. Urban Search And Rescue. With these ideas in mind, we analysed several robotic development environments, such as Robot Operating System (ROS, Open Robot Control Software (OROCOS, MissionLab, Carnegie Mellon Robot Navigation Toolkit (CARMEN and Player/Stage, which are helpful when creating autonomous robots. MissionLab provides high-level features (automatic mission creation, code generation and a graphical mission editor that are unavailable in other significant robotic development environments. It has however some weaknesses regarding its map-based capabilities. Creating, managing and taking advantage of maps for localization and navigation tasks are among CARMEN’s most significant features. This fact makes the integration of MissionLab with CARMEN both possible and interesting. This article describes the resulting robotic development environment, which makes it possible to work with several robots, and makes use of their map-based navigation capabilities. It will be shown that the proposed platform solves the proposed goal, that is, it simplifies the programmer’s job when developing control software for robot teams, and it further facilitates multi-robot deployment task in mission-critical situations.

  4. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects at Glenn Research Center for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).

  5. Why Mission-Critical Systems Are Critical to the Future of Academic Libraries

    Science.gov (United States)

    Oberlander, Cyril

    2012-01-01

    A mission-critical system is one that is so intertwined with the operation of an organization that the organization can scarcely function without it. Just as in corporations, mission-critical library systems offer the capability to unlock talent and time. They are essential to the transformation of higher education and the learning environment. A…

  6. Secure, Network-Centric Operations of a Space-Based Asset: Cisco Router in Low Earth Orbit (CLEO) and Virtual Mission Operations Center (VMOC)

    Science.gov (United States)

    Ivancic, William; Stewart, Dave; Shell, Dan; Wood, Lloyd; Paulsen, Phil; Jackson, Chris; Hodgson, Dave; Notham, James; Bean, Neville; Miller, Eric

    2005-01-01

    This report documents the design of network infrastructure to support operations demonstrating the concept of network-centric operations and command and control of space-based assets. These demonstrations showcase major elements of the Transformal Communication Architecture (TCA), using Internet Protocol (IP) technology. These demonstrations also rely on IP technology to perform the functions outlined in the Consultative Committee for Space Data Systems (CCSDS) Space Link Extension (SLE) document. A key element of these demonstrations was the ability to securely use networks and infrastructure owned and/or controlled by various parties. This is a sanitized technical report for public release. There is a companion report available to a limited audience. The companion report contains detailed networking addresses and other sensitive material and is available directly from William Ivancic at Glenn Research Center.

  7. Areva - 2013 annual results: breakeven free operating cash flow objective reached despite a difficult environment

    International Nuclear Information System (INIS)

    Duperray, Julien; Grange, Aurelie; Rosso, Jerome; Thebault, Alexandre; Scorbiac, Marie de; Repaire, Philippine du

    2014-01-01

    The Areva group reached a major milestone in 2013 in turning performance around by meeting a key objective of its Action 2016 plan: the return to breakeven of free operating cash flow. For the first time since 2005, cash generated by the Group's operations allowed it to fully fund strategic capital expenditures essential to the group's profitable growth. To achieve this result, Areva built on robust growth in nuclear operations, on contributions from its cost reduction plan and on strict management of capital spending. However, two projects launched in the previous decade (OL3 and a power plant modernization) and the Renewable Energies business impacted negatively the group's 2013 net income. On the Renewable Energies market, in a situation marked by a reduction of capital spending by customers, AREVA anticipated the consolidation required in the sector by implementing industrial partnerships such as the joint venture project with Gamesa, which aims to create a European champion in offshore wind. Similar initiatives were undertaken in solar energy and energy storage. The Group continues to implement the Action 2016 plan to pursue its recovery. While the economic environment remains uncertain and projects launched in the previous decade remain a burden, the Group forecasts further performance improvement and significant growth in cash flow generation by the end of the plan

  8. Evaluation of Temperature and Material Combinations on Several Lubricants for Use in the Geostationary Operational Environmental Satellite (GOES) Mission Filter Wheel Bearings

    Science.gov (United States)

    Jansen, Mark J.; Jones, William R., Jr.; Predmore, Roamer E.

    2001-01-01

    A bearing test apparatus was used to investigate lubricant degradation rates and elastohydrodynamic transition temperatures for several perfluoropolyether (Krytox) formulations, a pentasilahydrocarbon, and a synthetic hydrocarbon (Pennzane 2001 A) in an MPB 1219 bearing, which is used in the geostationary operational environmental satellite (GOES) mission filter wheel assembly. Test conditions were the following: 1000-hr duration, 75 C, 20 lb axial load, vacuum level less than 1 x 10(exp -6) Torr, and a 600-rpm rotational speed. Baseline tests were performed using unformulated Krytox 143AB, the heritage lubricant. Krytox additive formulations showed small reductions in degradation rate. Krytox GPL-105, a higher viscosity version, yielded the least amount of degradation products. Both the silahydrocarbon and Pennzane 2001A showed no signs of lubricant degradation and had ample amounts of free oil at test conclusion.

  9. [The mission].

    Science.gov (United States)

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense.

  10. 17 CFR 240.15b7-3T - Operational capability in a Year 2000 environment.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Operational capability in a Year 2000 environment. 240.15b7-3T Section 240.15b7-3T Commodity and Securities Exchanges SECURITIES... § 240.15b7-3T Operational capability in a Year 2000 environment. (a) This section applies to every...

  11. Aspect Determination Using a Beacon with a Spiral Wave Front: Modeling and Performance Analysis in Operational Environments

    Science.gov (United States)

    2014-12-19

    Modeling and Performance Analysis in Operational Environments.” Encl: (1) Final Report for the subject grant. (2) Publications, (three) and...Modeling and Performance Analysis in operational environments. Brian Todd Hefner Applied Physics Laboratory, University of Washington, 1013 NE 40th...far-field, the phase difference between the refer- ence source and the spiral source can be written linearly in h, DU ¼ / $ p $ 4p Dz k h: (6) If the

  12. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    Science.gov (United States)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This viewgraph presentation reviews the architectural description of the Mission Data Processing and Control System (MPCS). MPCS is an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is designed with these factors (1) Enabling plug and play architecture (2) MPCS has strong inheritance from GDS components that have been developed for other Flight Projects (MER, MRO, DAWN, MSAP), and are currently being used in operations and ATLO, and (3) MPCS components are Java-based, platform independent, and are designed to consume and produce XML-formatted data

  13. Cyber warfare and electronic warfare integration in the operational environment of the future: cyber electronic warfare

    Science.gov (United States)

    Askin, Osman; Irmak, Riza; Avsever, Mustafa

    2015-05-01

    For the states with advanced technology, effective use of electronic warfare and cyber warfare will be the main determining factor of winning a war in the future's operational environment. The developed states will be able to finalize the struggles they have entered with a minimum of human casualties and minimum cost thanks to high-tech. Considering the increasing number of world economic problems, the development of human rights and humanitarian law it is easy to understand the importance of minimum cost and minimum loss of human. In this paper, cyber warfare and electronic warfare concepts are examined in conjunction with the historical development and the relationship between them is explained. Finally, assessments were carried out about the use of cyber electronic warfare in the coming years.

  14. Combining On-Line Characterization Tools with Modern Software Environments for Optimal Operation of Polymerization Processes

    Directory of Open Access Journals (Sweden)

    Navid Ghadipasha

    2016-02-01

    Full Text Available This paper discusses the initial steps towards the formulation and implementation of a generic and flexible model centric framework for integrated simulation, estimation, optimization and feedback control of polymerization processes. For the first time it combines the powerful capabilities of the automatic continuous on-line monitoring of polymerization system (ACOMP, with a modern simulation, estimation and optimization software environment towards an integrated scheme for the optimal operation of polymeric processes. An initial validation of the framework was performed for modelling and optimization using literature data, illustrating the flexibility of the method to apply under different systems and conditions. Subsequently, off-line capabilities of the system were fully tested experimentally for model validations, parameter estimation and process optimization using ACOMP data. Experimental results are provided for free radical solution polymerization of methyl methacrylate.

  15. Virtual Business Operating Environment in the Cloud: Conceptual Architecture and Challenges

    Science.gov (United States)

    Nezhad, Hamid R. Motahari; Stephenson, Bryan; Singhal, Sharad; Castellanos, Malu

    Advances in service oriented architecture (SOA) have brought us close to the once imaginary vision of establishing and running a virtual business, a business in which most or all of its business functions are outsourced to online services. Cloud computing offers a realization of SOA in which IT resources are offered as services that are more affordable, flexible and attractive to businesses. In this paper, we briefly study advances in cloud computing, and discuss the benefits of using cloud services for businesses and trade-offs that they have to consider. We then present 1) a layered architecture for the virtual business, and 2) a conceptual architecture for a virtual business operating environment. We discuss the opportunities and research challenges that are ahead of us in realizing the technical components of this conceptual architecture. We conclude by giving the outlook and impact of cloud services on both large and small businesses.

  16. Operation of commercially-based microcomputer technology in a space radiation environment

    Science.gov (United States)

    Yelverton, J. N.

    This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.

  17. The thermal comfort, the indoor environment control, and the energy consumption in three types of operating rooms

    NARCIS (Netherlands)

    Melhado, M.D.A.; Beyer, P.O.; Hensen, J.L.M.; Siqueira, L.F.G.

    2005-01-01

    This research investigated the influence of three layouts of operating rooms on the indoor environment control, on thermal comfort and on energy consumption. It was used the EnergyPlus software. The parameters of the environment were described in accordance with standards. The three layouts had

  18. Concept of Operations for the Information Sharing Environment Electronic Directory Services - People and Organizations

    National Research Council Canada - National Science Library

    2006-01-01

    Section 1016 of the Intelligence Reform and Terrorism Prevention Act (IRTPA) calls for improved sharing of terrorism information to support the country's ability to effectively prosecute the counterterrorism (CT) mission...

  19. An integrated GIS environment enhancing the operation and planning of power utilities

    International Nuclear Information System (INIS)

    Yared, George Antoine

    1996-05-01

    The evolution of electrical power systems was tightly geared by the development of two fields: power engineering, with the advanced technology of physical elements comprising all parts of a power system, and information processing tools to manage the performance of electric power utilities. Compared to power engineering that has gone through tremendous developments, information technology applications for electrical power systems are relatively young. The possible improvements of these applications are in their graphical, mapping an data analysis capabilities. State-of-the art information technology such as Geographic Information Systems provides these facilities. The objective of this thesis is to devise a technique that combines power system software tools with the Geographic Information Systems software to enhance the operation, control and planning of electrical transmission systems. The load flow, voltage control and fault analysis models for the transmission system will be re-engineered in a Geographic Information System environment.The research is generic, special attention is given to its application to the Lebanese electrical power system, which is recovering from an infrastructure devastating war. The research entails integrating power systems analysis and control package, or PSACP developed at the AUB within a Geographic Information Systems environment. This will enhance the power modeling capabilities by the use of powerful thematic mapping, geographic and data analysis and user interface techniques that come with Geographic Information Systems. An overview of the two technologies involved is presented, followed by a detailed description of the integration technique before describing the integrated system. Moving to a higher level, the features of the system are presented, followed by sample applications of the integrated system on the Lebanese electrical power system. The thesis contributes to the research arena by developing a software re

  20. Environmental program with operational cases to reduce risk to the marine environment significantly

    International Nuclear Information System (INIS)

    Cline, J.T.; Forde, R.

    1991-01-01

    In this paper Amoco Norway Oil Company's environmental program is detailed, followed by example operational programs and achievements aimed to minimize environmental risks to the marine environment at Valhall platform. With a corporate goal to be a leader in protecting the environment, the appropriate strategies and policies that form the basis of the environmental management system are incorporated in the quality assurance programs. Also, included in the program are necessary organizational structures, responsibilities of environmental affairs and line organization personnel, compliance procedures and a waste task force obliged to implement operations improvements. An internal environmental audit system has been initiated, in addition to corporate level audits, which, when communicated to the line organization closes the environmental management loop through experience feed back. Environmental projects underway are significantly decreasing the extent and/or risk of pollution from offshore activities. The cradle to grave responsibility is assumed with waste separated offshore and onshore followed by disposal in audited sites. A $5 MM program is underway to control produced oily solids and reduce oil in produced water aiming to less than 20 ppm. When oil-based mud is used in deeper hole sections, drill solids disposed at sea average less than 60 g oil/kg dry cuttings using appropriate shaker screens, and a washing/centrifuge system to remove fines. Certain oily liquid wastes are being injected down hole whereas previously they were burned using a mud burner. Finally, a program is underway with a goal to eliminate sea discharge of oil on cuttings through injection disposal of oily wastes, drilling with alternative muds such as a cationic water base mud, and/or proper onshore disposal of oily wastes