WorldWideScience

Sample records for environment mission operation

  1. A Virtual Mission Operations Center: Collaborative Environment

    Science.gov (United States)

    Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system

  2. Artificial intelligence in a mission operations and satellite test environment

    Science.gov (United States)

    Busse, Carl

    1988-01-01

    A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.

  3. Cost Analysis In A Multi-Mission Operations Environment

    Science.gov (United States)

    Newhouse, M.; Felton, L.; Bornas, N.; Botts, D.; Roth, K.; Ijames, G.; Montgomery, P.

    2014-01-01

    Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the

  4. NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration

    Science.gov (United States)

    Bell, Mary S.

    2014-01-01

    The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.

  5. NEEMO - NASA's Extreme Environment Mission Operations: On to a NEO

    Science.gov (United States)

    Bell, M. S.; Baskin, P. J.; Todd, W. L.

    2011-01-01

    During NEEMO missions, a crew of six Aquanauts lives aboard the National Oceanic and Atmospheric Administration (NOAA) Aquarius Underwater Laboratory the world's only undersea laboratory located 5.6 km off shore from Key Largo, Florida. The Aquarius habitat is anchored 62 feet deep on Conch Reef which is a research only zone for coral reef monitoring in the Florida Keys National Marine Sanctuary. The crew lives in saturation for a week to ten days and conducts a variety of undersea EVAs (Extra Vehicular Activities) to test a suite of long-duration spaceflight Engineering, Biomedical, and Geoscience objectives. The crew also tests concepts for future lunar exploration using advanced navigation and communication equipment in support of the Constellation Program planetary exploration analog studies. The Astromaterials Research and Exploration Science (ARES) Directorate and Behavioral Health and Performance (BHP) at NASA/Johnson Space Center (JSC), Houston, Texas support this effort to produce a high-fidelity test-bed for studies of human planetary exploration in extreme environments as well as to develop and test the synergy between human and robotic curation protocols including sample collection, documentation, and sample handling. The geoscience objectives for NEEMO missions reflect the requirements for Lunar Surface Science outlined by the LEAG (Lunar Exploration Analysis Group) and CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials) white paper [1]. The BHP objectives are to investigate best meas-ures and tools for assessing decrements in cogni-tive function due to fatigue, test the feasibility study examined how teams perform and interact across two levels, use NEEMO as a testbed for the development, deployment, and evaluation of a scheduling and planning tool. A suite of Space Life Sciences studies are accomplished as well, ranging from behavioral health and performance to immunology, nutrition, and EVA suit design results of which will

  6. Mission operations management

    Science.gov (United States)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  7. Autonomous Mission Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Autonomous Mission Operations project will develop understanding of the impacts of increasing communication time delays on mission operations and develop...

  8. Mission operations technology

    Science.gov (United States)

    Varsi, Giulio

    In the last decade, the operation of a spacecraft after launch has emerged as a major component of the total cost of the mission. This trend is sustained by the increasing complexity, flexibility, and data gathering capability of the space assets and by their greater reliability and consequent longevity. The trend can, however, be moderated by the progressive transfer of selected functions from the ground to the spacecraft and by application, on the ground, of new technology. Advances in ground operations derive from the introduction in the mission operations environment of advanced microprocessor-based workstations in the class of a few million instructions per second and from the selective application of artificial intelligence technology. In the last few years a number of these applications have been developed, tested in operational settings and successfully demonstrated to users. Some are now being integrated in mission operations facilities. An analysis of mission operations indicates that the key areas are: concurrent control of multiple missions; automated/interactive production of command sequences of high integrity at low cost; automated monitoring of spacecraft health and automated aides for fault diagnosis; automated allocation of resources; automated processing of science data; and high-fidelity, high-speed spacecraft simulation. Examples of major advances in selected areas are described.

  9. Digital Learning Network Education Events of NASA's Extreme Environments Mission Operations

    Science.gov (United States)

    Paul, Heather; Guillory, Erika

    2007-01-01

    NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and web casting. The DLN has created a series of live education videoconferences connecting NASA s Extreme Environment Missions Operations (NEEMO) team to students across the United States. The programs are also extended to students around the world live web casting. The primary focus of the events is the vision for space exploration. During the programs, NEEMO Crewmembers including NASA astronauts, engineers and scientists inform and inspire students about the importance of exploration and share the impact of the project as it correlates with plans to return to the moon and explore the planet Mars. These events highlight interactivity. Students talk live with the aquanauts in Aquarius, the National Oceanic and Atmospheric Administration s underwater laboratory. With this program, NASA continues the Agency s tradition of investing in the nation's education programs. It is directly tied to the Agency's major education goal of attracting and retaining students in science, technology, and engineering disciplines. Before connecting with the aquanauts, the students conduct experiments of their own designed to coincide with mission objectives. This paper describes the events that took place in September 2006.

  10. Nutritional Assessment During a 14-d Saturation Dive: the NASA Extreme Environment Mission Operation V Project

    Science.gov (United States)

    Smith, S. M.; Davis-Street, J. E.; Fesperman, J. V.; Smith, M. D.; Rice, B. L.; Zwart, S. R.

    2006-01-01

    Ground-based analogs of spaceflight are an important means of studying physiological and nutritional changes associated with space travel, particularly since exploration missions are anticipated, and flight research opportunities are limited. A clinical nutritional assessment of the NASA Extreme Environment Mission Operation V (NEEMO) crew (4 M, 2 F) was conducted before, during, and after the 14-d saturation dive. Blood and urine samples were collected before (D-12 and D-1), during (MD 7 and MD 12), and after (R + 0 and R + 7) the dive. The foods were typical of the spaceflight food system. A number of physiological changes were reported both during the dive and post dive that are also commonly observed during spaceflight. Serum hemoglobin and hematocrit were decreased (P less than 0.05) post dive. Serum ferritin and ceruloplasmin significantly increased during the dive, while transferring receptors tended to go down during the dive and were significantly decreased by the last day (R + 0). Along with significant hematological changes, there was also evidence for increased oxidative damage and stress during the dive. 8-hydroxydeoxyguanosine was elevated (P less than 0.05) during the dive, while glutathione peroxidase and superoxide disrnutase activities were decreased (P less than 0.05) during the dive. Serum C-reactive protein (CRP) concentration also tended to increase during the dive, suggesting the presence of a stress-induced inflammatory response, Decreased leptin during the dive (P less than 0.05) may also be related to the increased stress. Similar to what is observed during spaceflight, subjects had decreased energy intake and weight loss during the dive. Together, these similarities to spaceflight provide a model to further define the physiological effects of spaceflight and investigate potential countermeasures.

  11. Automatic robotic arm operations and sampling in near zero gravity environment - functional tests results from Phobos-Grunt mission

    Science.gov (United States)

    Kozlova, Tatiana; Karol Seweryn, D..; Grygorczuk, Jerzy; Kozlov, Oleg

    The sample return missions have made a very significant progress to understanding of geology, the extra-terrestrial materials, processes occurring on surface and subsurface level, as well as of interactions between such materials and mechanisms operating there. The various sample return missions in the past (e.g. Apollo missions, Luna missions, Hayabusa mission) have provided scientists with samples of extra-terrestrial materials allowing to discover answers to critical scientific questions concerning the origin and evolution of the Solar System. Several new missions are currently planned: sample return missions, e.g Russian Luna-28, ESA Phootprint and MarcoPolo-R as well as both robotic and manned exploration missions to the Moon and Mars. One of the key challenges in such missions is the reliable sampling process which can be achieved by using many different techniques, e.g. static excavating technique (scoop), core drilling, sampling using dynamic mechanisms (penetrators), brushes and pneumatic systems. The effectiveness of any sampling strategy depends on many factors, including the required sample size, the mechanical and chemical soil properties (cohesive, hard or porous regolith, stones), the environment conditions (gravity, temperature, pressure, radiation). Many sampling mechanism have been studied, designed and built in the past, two techniques to collect regolith samples were chosen for the Phobos-Grunt mission. The proposed system consisted of a robotic arm with a 1,2m reach beyond the lander (IKI RAN); a tubular sampling device designed for collecting both regolith and small rock fragments (IKI RAN); the CHOMIK device (CBK PAN) - the low velocity penetrator with a single-sample container for collecting samples from the rocky surface. The functional tests were essential step in robotic arm, sampling device and CHOMIK device development process in the frame of Phobos-Grunt mission. Three major results were achieved: (i) operation scenario for autonomous

  12. Multiplatform Mission Planning and Operations Simulation Environment for Adaptive Remote Sensors

    Science.gov (United States)

    Smith, G.; Ball, C.; O'Brien, A.; Johnson, J. T.

    2017-12-01

    We report on the design and development of mission simulator libraries to support the emerging field of adaptive remote sensors. We will outline the current state of the art in adaptive sensing, provide analysis of how the current approach to performing observing system simulation experiments (OSSEs) must be changed to enable adaptive sensors for remote sensing, and present an architecture to enable their inclusion in future OSSEs.The growing potential of sensors capable of real-time adaptation of their operational parameters calls for a new class of mission planning and simulation tools. Existing simulation tools used in OSSEs assume a fixed set of sensor parameters in terms of observation geometry, frequencies used, resolution, or observation time, which allows simplifications to be made in the simulation and allows sensor observation errors to be characterized a priori. Adaptive sensors may vary these parameters depending on the details of the scene observed, so that sensor performance is not simple to model without conducting OSSE simulations that include sensor adaptation in response to varying observational environment. Adaptive sensors are of significance to resource-constrained, small satellite platforms because they enable the management of power and data volumes while providing methods for multiple sensors to collaborate.The new class of OSSEs required to utilize adaptive sensors located on multiple platforms must answer the question: If the physical act of sensing has a cost, how does the system determine if the science value of a measurement is worth the cost and how should that cost be shared among the collaborating sensors?Here we propose to answer this question using an architecture structured around three modules: ADAPT, MANAGE and COLLABORATE. The ADAPT module is a set of routines to facilitate modeling of adaptive sensors, the MANAGE module will implement a set of routines to facilitate simulations of sensor resource management when power and data

  13. Mission Operations Assurance

    Science.gov (United States)

    Faris, Grant

    2012-01-01

    Integrate the mission operations assurance function into the flight team providing: (1) value added support in identifying, mitigating, and communicating the project's risks and, (2) being an essential member of the team during the test activities, training exercises and critical flight operations.

  14. Optimal Mission Abort Policy for Systems Operating in a Random Environment.

    Science.gov (United States)

    Levitin, Gregory; Finkelstein, Maxim

    2018-04-01

    Many real-world critical systems, e.g., aircrafts, manned space flight systems, and submarines, utilize mission aborts to enhance their survivability. Specifically, a mission can be aborted when a certain malfunction condition is met and a rescue or recovery procedure is then initiated. For systems exposed to external impacts, the malfunctions are often caused by the consequences of these impacts. Traditional system reliability models typically cannot address a possibility of mission aborts. Therefore, in this article, we first develop the corresponding methodology for modeling and evaluation of the mission success probability and survivability of systems experiencing both internal failures and external shocks. We consider a policy when a mission is aborted and a rescue procedure is activated upon occurrence of the mth shock. We demonstrate the tradeoff between the system survivability and the mission success probability that should be balanced by the proper choice of the decision variable m. A detailed illustrative example of a mission performed by an unmanned aerial vehicle is presented. © 2017 Society for Risk Analysis.

  15. SOFIA mission operations

    Science.gov (United States)

    Waddell, Patrick G.; Davidson, Jacqueline A.

    2002-02-01

    The SOFIA Airborne Observatory will operate a 2.5 m aperture telescope with the goal of obtaining over 960 successful science hours per year at a nominal altitude of 12.5 km and covering a wavelength range from 0.3 mm to 1.6 mm. The observatory platform is comprised of a Boeing 747SP with numerous significant modifications. The ground and flight mission operations architectures and plans are tailored to keep the telescope emissivity low and achieve high observing efficiency.

  16. NASA Extreme Environments Mission Operations 10 - Evaluation of Robotic and Sensor Technologies for Surgery in Extreme Environments

    Science.gov (United States)

    2006-11-01

    were a number of minor medical issues typical of NEEMO missions that included skin lesions , a minor case of otitis externa and abrasions. During pre...mission. Treatment continued in saturation and the lesion healed successfully without complications. There were no infectious illnesses in any... meniscal injuries using an arthroscope or external fixation for joint dislocations. CMAS 5 Evaluation of tele- robotic technologies for

  17. The Joint Space Operations Center Mission System and the Advanced Research, Collaboration, and Application Development Environment Status Update 2016

    Science.gov (United States)

    Murray-Krezan, Jeremy; Howard, Samantha; Sabol, Chris; Kim, Richard; Echeverry, Juan

    2016-05-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is a service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA) performed at the US-led JSpOC. The Advanced Research, Collaboration, and Application Development Environment (ARCADE) is a test-bed maintained and operated by the Air Force to (1) serve as a centralized test-bed for all research and development activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support JMS Program Office-led market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. In this paper we will share with the international remote sensing community some of the recent JMS and ARCADE developments that may contribute to greater SSA at the JSpOC in the future, and share technical areas still in great need.

  18. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project

    Science.gov (United States)

    Smith, Scott M.; Davis-Street, Janis E.; Fesperman, J. Vernell; Smith, Myra D.; Rice, Barbara L.; Zwart, Sara R.

    2004-01-01

    Ground-based analogs of spaceflight are an important means of studying physiologic and nutritional changes associated with space travel, and the NASA Extreme Environment Mission Operations V (NEEMO) is such an analog. To determine whether saturation diving has nutrition-related effects similar to those of spaceflight, we conducted a clinical nutritional assessment of the NEEMO crew (4 men, 2 women) before, during, and after their 14-d saturation dive. Blood and urine samples were collected before, during, and after the dive. The foods consumed by the crew were typical of the spaceflight food system. A number of physiologic changes were observed, during and after the dive, that are also commonly observed during spaceflight. Hemoglobin and hematocrit were lower (P dive. Transferrin receptors were significantly lower immediately after the dive. Serum ferritin increased significantly during the dive. There was also evidence indicating that oxidative damage and stress increased during the dive. Glutathione peroxidase and superoxide dismutase decreased during and after the dive (P dive (P dive, similar to what is observed during spaceflight. Together, these similarities to spaceflight provide a model to use in further defining the physiologic effects of spaceflight and investigating potential countermeasures.

  19. Software Innovation in a Mission Critical Environment

    Science.gov (United States)

    Fredrickson, Steven

    2015-01-01

    Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.

  20. Lunar Surface Mission Operations Scenario and Considerations

    Science.gov (United States)

    Arnold, Larissa S.; Torney, Susan E.; Rask, John Doug; Bleisath, Scott A.

    2006-01-01

    Planetary surface operations have been studied since the last visit of humans to the Moon, including conducting analog missions. Mission Operations lessons from these activities are summarized. Characteristics of forecasted surface operations are compared to current human mission operations approaches. Considerations for future designs of mission operations are assessed.

  1. Flight Operations . [Zero Knowledge to Mission Complete

    Science.gov (United States)

    Forest, Greg; Apyan, Alex; Hillin, Andrew

    2016-01-01

    Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.

  2. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  3. Requirements for Common Bomber Mission Planning Environment

    National Research Council Canada - National Science Library

    White, III, Samuel G

    2006-01-01

    ...) level mission planning as a whole. Unfortunately, many of these initiatives have fallen short of seamlessly connecting the tactical level mission planning processes with the operational level or providing the unit-level mission...

  4. Operation and evaluation of the Terminal Configured Vehicle Mission Simulator in an automated terminal area metering and spacing ATC environment

    Science.gov (United States)

    Houck, J. A.

    1980-01-01

    This paper describes the work being done at the National Aeronautics and Space Administration's Langley Research Center on the development of a mission simulator for use in the Terminal Configured Vehicle Program. A brief description of the goals and objectives of the Terminal Configured Vehicle Program is presented. A more detailed description of the Mission Simulator, in its present configuration, and its components is provided. Finally, a description of the first research study conducted in the Mission Simulator is presented along with a discussion of some preliminary results from this study.

  5. Applying the Concept of Minimal Essential to Maintain Operational Continuity and Attain Mission Assurance During Internal and External Attacks on the Information Environment

    National Research Council Canada - National Science Library

    McCallam, Dennis H; Luzwick, Perry

    2002-01-01

    .... Because network centric warfare and information superiority are important in achieving military successes, data resiliency for operational continuity is essential for achieving mission assurance...

  6. Operational Lessons Learned from NASA Analog Missions

    Science.gov (United States)

    Arnold, Larissa S.

    2010-01-01

    National Aeronautics and Space Administration s (NASA) efforts in human space flight are currently focused on the Space Shuttle and International Space Station (ISS) programs, with efforts beginning on the future exploration opportunities. Both the Space Shuttle and ISS programs are important to the development of a capability for human exploration beyond Low Earth Orbit (LEO). The ISS provides extensive research capabilities to determine how the human body reacts to long duration stays in space. Also, the ISS and Shuttle can serve as a limited testbed for equipment or entire systems that may be used on missions to the Moon, Mars, or to a near-Earth asteroid. It has been nearly 35 years since the Apollo astronauts visited the Moon. Future space explorers will have to re-learn how to work and live on planetary surfaces, and how to do that for extended periods of time. Exploration crews will perform a wide assortment of scientific tasks, including material sampling and emplacement of automated instruments. Surface mission operations include the activities of the crew living and working, mission support from the Earth, and the operation of robotic and other remotely commanded equipment on the surface and in planetary orbit. Other surface activities will include the following: exploring areas surrounding a habitat; using rovers to collect rock and soil samples; setting up experiments on the surface to monitor the radiation environment and any seismic or thermal activity; and conducting scientific analyses and experiments inside a habitat laboratory. Of course, the astronauts will also have to spend some of their surface time "doing chores" and maintaining their habitat and other systems. In preparation for future planetary exploration, NASA must design the answers to many operational questions. What will the astronauts do on the surface? How will they accomplish this? What tools will they require for their tasks? How will robots and astronauts work together? What

  7. Evolution of Training in NASA's Mission Operations Directorate

    Science.gov (United States)

    Hutt, Jason

    2012-01-01

    NASA s Mission Operations Directorate provides all the mission planning, training, and operations support for NASA's human spaceflight missions including the International Space Station (ISS) and its fleet of supporting vehicles. MOD also develops and maintains the facilities necessary to conduct training and operations for those missions including the Mission Control Center, Space Station Training Facility, Space Vehicle Mockup Facility, and Neutral Buoyancy Laboratory. MOD's overarching approach to human spaceflight training is to "train like you fly." This approach means not only trying to replicate the operational environment in training but also to approach training with the same mindset as real operations. When in training, this means using the same approach for executing operations, responding to off-nominal situations, and conducting yourself in the operations environment in the same manner as you would for the real vehicle.

  8. Analyzing human errors in flight mission operations

    Science.gov (United States)

    Bruno, Kristin J.; Welz, Linda L.; Barnes, G. Michael; Sherif, Josef

    1993-01-01

    A long-term program is in progress at JPL to reduce cost and risk of flight mission operations through a defect prevention/error management program. The main thrust of this program is to create an environment in which the performance of the total system, both the human operator and the computer system, is optimized. To this end, 1580 Incident Surprise Anomaly reports (ISA's) from 1977-1991 were analyzed from the Voyager and Magellan projects. A Pareto analysis revealed that 38 percent of the errors were classified as human errors. A preliminary cluster analysis based on the Magellan human errors (204 ISA's) is presented here. The resulting clusters described the underlying relationships among the ISA's. Initial models of human error in flight mission operations are presented. Next, the Voyager ISA's will be scored and included in the analysis. Eventually, these relationships will be used to derive a theoretically motivated and empirically validated model of human error in flight mission operations. Ultimately, this analysis will be used to make continuous process improvements continuous process improvements to end-user applications and training requirements. This Total Quality Management approach will enable the management and prevention of errors in the future.

  9. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    Science.gov (United States)

    Johnson, K.; Kim, R.; Echeverry, J.

    The Joint Space Operations Center (JSpOC) is a command and control center focused on executing the Space Control mission of the Joint Functional Component Command for Space (JFCC-SPACE) to ensure freedom of action of United States (US) space assets, while preventing adversary use of space against the US. To accomplish this, the JSpOC tasks a network of space surveillance sensors to collect Space Situational Awareness (SSA) data on resident space objects (RSOs) in near earth and deep space orbits. SSA involves the ingestion of data sources and use of algorithms and tools to build, maintain, and disseminate situational awareness of RSOs in space. On the heels of emergent and complex threats to space assets, the JSpOC's capabilities are limited by legacy systems and CONOPs. The JSpOC Mission System (JMS) aims to consolidate SSA efforts across US agencies, international partners, and commercial partners. The JMS program is intended to deliver a modern service-oriented architecture (SOA) based infrastructure with increased process automation and improved tools to remove the current barriers to JSpOC operations. JMS has been partitioned into several developmental increments. Increment 1, completed and operational in early 2013, and Increment 2, which is expected to be completed in 2016, will replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. In 2017 JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources. Most importantly, Increment 3 is uniquely postured to evolve the JSpOC into the centralized and authoritative source for all Space Control applications by using its SOA to aggregate information and capabilities from across the community. To achieve this goal, Scitor Corporation has supported the JMS Program Office as it has entered into a partnership with AFRL/RD (Directed

  10. Infusion of innovative technologies for mission operations

    Science.gov (United States)

    Donati, Alessandro

    2010-11-01

    The Advanced Mission Concepts and Technologies Office (Mission Technologies Office, MTO for short) at the European Space Operations Centre (ESOC) of ESA is entrusted with research and development of innovative mission operations concepts systems and provides operations support to special projects. Visions of future missions and requests for improvements from currently flying missions are the two major sources of inspiration to conceptualize innovative or improved mission operations processes. They include monitoring and diagnostics, planning and scheduling, resource management and optimization. The newly identified operations concepts are then proved by means of prototypes, built with embedded, enabling technology and deployed as shadow applications in mission operations for an extended validation phase. The technology so far exploited includes informatics, artificial intelligence and operational research branches. Recent outstanding results include artificial intelligence planning and scheduling applications for Mars Express, advanced integrated space weather monitoring system for the Integral space telescope and a suite of growing client applications for MUST (Mission Utilities Support Tools). The research, development and validation activities at the Mission technologies office are performed together with a network of research institutes across Europe. The objective is narrowing the gap between enabling and innovative technology and space mission operations. The paper first addresses samples of technology infusion cases with their lessons learnt. The second part is focused on the process and the methodology used at the Mission technologies office to fulfill its objectives.

  11. Virtual Exploitation Environment Demonstration for Atmospheric Missions

    Science.gov (United States)

    Natali, Stefano; Mantovani, Simone; Hirtl, Marcus; Santillan, Daniel; Triebnig, Gerhard; Fehr, Thorsten; Lopes, Cristiano

    2017-04-01

    environment, the "Virtual Exploitation Environment Demonstration for Atmospheric Missions" (VEEDAM) aims at maintaining, running and evolving the platform, demonstrating e.g. the possibility to perform massive processing over heterogeneous data sources. This work presents the VEEDAM concepts, provides pre-operational examples, stressing on the interoperability achievable exposing standardized data access and processing services (e.g. making accessible data and processing resources from different VREs). [1] TAMP platform landing page http://vtpip.zamg.ac.at/ [2] TAMP introductory video https://www.youtube.com/watch?v=xWiy8h1oXQY

  12. Tropical Rainfall Measurement Mission (TRMM) Operation Summary

    Science.gov (United States)

    Nio, Tomomi; Saito, Susumu; Stocker, Erich; Pawloski, James H.; Murayama, Yoshifumi; Ohata, Takeshi

    2015-01-01

    The Tropical Rainfall Measurement Mission (TRMM) is a joint U.S. and Japan mission to observe tropical rainfall, which was launched by H-II No. 6 from Tanegashima in Japan at 6:27 JST on November 28, 1997. After the two-month commissioning of TRMM satellite and instruments, the original nominal mission lifetime was three years. In fact, the operations has continued for approximately 17.5 years. This paper provides a summary of the long term operations of TRMM.

  13. Navigation Operations for the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.

  14. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  15. Mission Operations Directorate - Success Legacy of the Space Shuttle Program

    Science.gov (United States)

    Azbell, James A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA s other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD s focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  16. Orbital Express mission operations planning and resource management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-04-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  17. The IRAS project organisation and mission operations

    Science.gov (United States)

    Van Holtz, R. C.

    1983-01-01

    The project organisation of IRAS is described, showing the tasks assigned to each project group during post-launch operations. The satellite is described, emphasizing the detectors. In the task division, the role of the U.S. is to construct the telescope and survey instrument, launch the satellite, process final science data for the survey instrument, and provide certain standard satellite items. The Netherlands construct the spacecraft and three additional instruments, integrates and tests the overall satellite, and designs and participates in the development of the operational system. The U.K. provides the operational control center and primary tracking station, generates a system for preliminary science analysis of the survey data, provides housekeeping analysis software and science data distribution software, and staffs the control center operations. The teams involved in mission planning and operations, and their roles, are identified, and a block diagram of the operations organisation is presented.

  18. Cyber Operations Virtual Environment

    Science.gov (United States)

    2010-09-01

    Design MA Mission Assurance MEC Mission Essential Competency MUTT Multi User Training Tool NAE National Academy of Engineering NCW Network...numbers of typical networks users (email, web browsing, etc.) through traffic generated from its Multi User Training Tool ( MUTT ). Building blocks will

  19. The space mission MIR'97: operational aspects.

    Science.gov (United States)

    Ewald, R; Lohn, K; Gerzer, R

    2000-12-01

    A German astronaut visited the MIR space station between 10 February and 2 March 1997. Together with his Russian colleagues, he conducted a series of scientific investigations before, during and after his stay aboard the MIR station. Research performed during this flight was part of a global space life sciences programme and focused on metabolic homeostasis, fluid balance, calcium homeostasis and cardiovascular regulatory mechanisms. The main goal of the scientific experiments was to use this mission as a milestone to establish international networks of scientific collaboration using space research as a tool for focused research in respective fields. Thus, in most cases the results obtained from the astronaut complemented a series of results obtained on ground and from other flights. In other cases, they extended previous results and opened new fields for future research. Human space flight with astronauts serving as operators and at the same time as test subjects is very complex. Many people, including mission control, a science management team, medical operations, ethics committees and a medical board, participated to harmonize the different requirements, thus making a maximal scientific outcome possible. In summary, this space mission may be seen as a model for focused long-term multidisciplinary international research, and demonstrates that space medicine is no longer adventure but science.

  20. JSpOC Mission System Application Development Environment

    Science.gov (United States)

    Luce, R.; Reele, P.; Sabol, C.; Zetocha, P.; Echeverry, J.; Kim, R.; Golf, B.

    2012-09-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is the program of record tasked with replacing the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities by the end of FY2015 as well as providing additional Space Situational Awareness (SSA) and Command and Control (C2) capabilities post-FY2015. To meet the legacy replacement goal, the JMS program is maturing a government Service Oriented Architecture (SOA) infrastructure that supports the integration of mission applications while acquiring mature industry and government mission applications. Future capabilities required by the JSpOC after 2015 will require development of new applications and procedures as well as the exploitation of new SSA data sources. To support the post FY2015 efforts, the JMS program is partnering with the Air Force Research Laboratory (AFRL) to build a JMS application development environment. The purpose of this environment is to: 1) empower the research & development community, through access to relevant tools and data, to accelerate technology development, 2) allow the JMS program to communicate user capability priorities and requirements to the developer community, 3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and 4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. The application development environment will consist of both unclassified and classified environments that can be accessed over common networks (including the Internet) to provide software developers, scientists, and engineers everything they need (e.g., building block JMS services, modeling and simulation tools, relevant test scenarios, documentation, data sources, user priorities/requirements, and SOA integration tools) to develop and test mission applications. The developed applications will be exercised in these

  1. Agent-Supported Mission Operations Teamwork

    Science.gov (United States)

    Malin, Jane T.

    2003-01-01

    This slide presentation reviews the development of software agents to support of mission operations teamwork. The goals of the work was to make automation by agents easy to use, supervise and direct, manage information and communication to decrease distraction, interruptions, workload and errors, reduce mission impact of off-nominal situations and increase morale and decrease turnover. The accomplishments or the project are: 1. Collaborative agents - mixed initiative and creation of instructions for mediating agent 2. Methods for prototyping, evaluating and evolving socio-technical systems 3. Technology infusion: teamwork tools in mISSIons 4. Demonstrations in simulation testbed An example of the use of agent is given, the use of an agent to monitor a N2 tank leak. An incomplete instruction to the agent is handled with mediating assistants, or Intelligent Briefing and Response Assistant (IBRA). The IBRA Engine also watches data stream for triggers and executes Act-Whenever actions. There is also a Briefing and Response Instruction (BRI) which is easy for a discipline specialist to create through a BRI editor.

  2. Autonomous Satellite Operations Via Secure Virtual Mission Operations Center

    Science.gov (United States)

    Miller, Eric; Paulsen, Phillip E.; Pasciuto, Michael

    2011-01-01

    The science community is interested in improving their ability to respond to rapidly evolving, transient phenomena via autonomous rapid reconfiguration, which derives from the ability to assemble separate but collaborating sensors and data forecasting systems to meet a broad range of research and application needs. Current satellite systems typically require human intervention to respond to triggers from dissimilar sensor systems. Additionally, satellite ground services often need to be coordinated days or weeks in advance. Finally, the boundaries between the various sensor systems that make up such a Sensor Web are defined by such things as link delay and connectivity, data and error rate asymmetry, data reliability, quality of service provisions, and trust, complicating autonomous operations. Over the past ten years, researchers from the NASA Glenn Research Center (GRC), General Dynamics, Surrey Satellite Technology Limited (SSTL), Cisco, Universal Space Networks (USN), the U.S. Geological Survey (USGS), the Naval Research Laboratory, the DoD Operationally Responsive Space (ORS) Office, and others have worked collaboratively to develop a virtual mission operations capability. Called VMOC (Virtual Mission Operations Center), this new capability allows cross-system queuing of dissimilar mission unique systems through the use of a common security scheme and published application programming interfaces (APIs). Collaborative VMOC demonstrations over the last several years have supported the standardization of spacecraft to ground interfaces needed to reduce costs, maximize space effects to the user, and allow the generation of new tactics, techniques and procedures that lead to responsive space employment.

  3. TAMU: A New Space Mission Operations Paradigm

    Science.gov (United States)

    Meshkat, Leila; Ruszkowski, James; Haensly, Jean; Pennington, Granvil A.; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a model-centric System of System (SoS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically diverse locations, to develop the architecture and associated workflow processes for a broad range of mission operations. Further, TAMU FPP envisions the simulation, automatic execution and re-planning of orchestrated workflow processes as they become operational. This paper provides the vision for the TAMU FPP paradigm. This includes a complete, coherent technique, process and tool set that result in an infrastructure that can be used for full lifecycle design and decision making during any flight production process. A flight production process is the process of developing all products that are necessary for flight.

  4. NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles

    Science.gov (United States)

    Shull, Sarah A.; Peek, Kenneth E.

    2011-01-01

    With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better

  5. Correlation of ISS Electric Potential Variations with Mission Operations

    Science.gov (United States)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging on the International Space Station (ISS) is caused by a complex combination of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. In this paper we provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.

  6. New Human-Computer Interface Concepts for Mission Operations

    Science.gov (United States)

    Fox, Jeffrey A.; Hoxie, Mary Sue; Gillen, Dave; Parkinson, Christopher; Breed, Julie; Nickens, Stephanie; Baitinger, Mick

    2000-01-01

    The current climate of budget cuts has forced the space mission operations community to reconsider how it does business. Gone are the days of building one-of-kind control centers with teams of controllers working in shifts 24 hours per day, 7 days per week. Increasingly, automation is used to significantly reduce staffing needs. In some cases, missions are moving towards lights-out operations where the ground system is run semi-autonomously. On-call operators are brought in only to resolve anomalies. Some operations concepts also call for smaller operations teams to manage an entire family of spacecraft. In the not too distant future, a skeleton crew of full-time general knowledge operators will oversee the operations of large constellations of small spacecraft, while geographically distributed specialists will be assigned to emergency response teams based on their expertise. As the operations paradigms change, so too must the tools to support the mission operations team's tasks. Tools need to be built not only to automate routine tasks, but also to communicate varying types of information to the part-time, generalist, or on-call operators and specialists more effectively. Thus, the proper design of a system's user-system interface (USI) becomes even more importance than before. Also, because the users will be accessing these systems from various locations (e.g., control center, home, on the road) via different devices with varying display capabilities (e.g., workstations, home PCs, PDAS, pagers) over connections with various bandwidths (e.g., dial-up 56k, wireless 9.6k), the same software must have different USIs to support the different types of users, their equipment, and their environments. In other words, the software must now adapt to the needs of the users! This paper will focus on the needs and the challenges of designing USIs for mission operations. After providing a general discussion of these challenges, the paper will focus on the current efforts of

  7. Assessing Sustainment Operations in a Decisive Action Training Environment

    Science.gov (United States)

    2017-05-01

    Research Report 2001 Measuring Command Post Operations in a Decisive Action Training Environment Michelle N...September 2014 - September 2015 4. TITLE AND SUBTITLE Measuring Command Post Operations in a Decisive Action Training Environment 5a...central to most missions, having an established SOP, prior to a CTC rotation, should increase the likelihood of success in such training environments

  8. Using full-mission simulation for human factors research in air transport operations

    Science.gov (United States)

    Orlady, Harry W.; Hennessy, Robert W.; Obermayer, Richard; Vreuls, Donald; Murphy, Miles R.

    1988-01-01

    This study examined state-of-the-art mission oriented simulation and its use in human factors research. Guidelines were developed for doing full-mission human factors research on crew member behavior during simulated air transport operations. The existing literature was reviewed. However, interviews with experienced investigators provided the most useful information. The fundamental scientific and practical issues of behavioral research in a simulation environment are discussed. Guidelines are presented for planning, scenario development, and the execution of behavioral research using full-mission simulation in the context of air transport flight operations . Research is recommended to enhance the validity and productivity of full-mission research by: (1) validating the need for high-fidelity simulation of all major elements in the operational environment, (2) improving methods for conducting full-mission research, and (3) examining part-task research on specific problems through the use of vehicles which contain higher levels of abstraction (and lower fidelity) of the operational environment.

  9. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  10. Cloud Computing for Mission Design and Operations

    Science.gov (United States)

    Arrieta, Juan; Attiyah, Amy; Beswick, Robert; Gerasimantos, Dimitrios

    2012-01-01

    The space mission design and operations community already recognizes the value of cloud computing and virtualization. However, natural and valid concerns, like security, privacy, up-time, and vendor lock-in, have prevented a more widespread and expedited adoption into official workflows. In the interest of alleviating these concerns, we propose a series of guidelines for internally deploying a resource-oriented hub of data and algorithms. These guidelines provide a roadmap for implementing an architecture inspired in the cloud computing model: associative, elastic, semantical, interconnected, and adaptive. The architecture can be summarized as exposing data and algorithms as resource-oriented Web services, coordinated via messaging, and running on virtual machines; it is simple, and based on widely adopted standards, protocols, and tools. The architecture may help reduce common sources of complexity intrinsic to data-driven, collaborative interactions and, most importantly, it may provide the means for teams and agencies to evaluate the cloud computing model in their specific context, with minimal infrastructure changes, and before committing to a specific cloud services provider.

  11. Towards a Multi-Mission, Airborne Science Data System Environment

    Science.gov (United States)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs

  12. A university-based distributed satellite mission control network for operating professional space missions

    Science.gov (United States)

    Kitts, Christopher; Rasay, Mike

    2016-03-01

    For more than a decade, Santa Clara University's Robotic Systems Laboratory has operated a unique, distributed, internet-based command and control network for providing professional satellite mission control services for a variety of government and industry space missions. The system has been developed and is operated by students who become critical members of the mission teams throughout the development, test, and on-orbit phases of these missions. The mission control system also supports research in satellite control technology and hands-on student aerospace education. This system serves as a benchmark for its comprehensive nature, its student-centric nature, its ability to support NASA and industry space missions, and its longevity in providing a consistent level of professional services. This paper highlights the unique features of this program, reviews the network's design and the supported spacecraft missions, and describes the critical programmatic features of the program that support the control of professional space missions.

  13. Team Cognition in Distributed Mission Environments

    National Research Council Canada - National Science Library

    Cooke, nancy

    2003-01-01

    ... in the context of military team environments. This part of the effort focuses on the increasingly common 'network centric' military environment in which individuals who are distributed in space communicate, share information, and make critical...

  14. Rapid Mission Design for Dynamically Complex Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — Designing trajectories in dynamically complex environments is very challenging and easily becomes an intractable problem. More complex planning implies potentially...

  15. Communication Modeling in the Joint Integrated Mission Model (JIMM) and the Air Combat Environment Test & Evaluation Facility (ACETEF)

    National Research Council Canada - National Science Library

    Chapman, Michael D; Mutschler, David W

    2006-01-01

    The Joint Integrated Mission Model (JIMM) is a complex analytical model that provides the threat environment and main control for integrated operation of installed system test in the NAVAIR Air Combat Environment Test...

  16. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    Science.gov (United States)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  17. Psychological Support Operations and the ISS One-Year Mission

    Science.gov (United States)

    Beven, G.; Vander Ark, S. T.; Holland, A. W.

    2016-01-01

    Since NASA began human presence on the International Space Station (ISS) in November 1998, crews have spent two to seven months onboard. In March 2015 NASA and Russia embarked on a new era of ISS utilization, with two of their crewmembers conducting a one-year mission onboard ISS. The mission has been useful for both research and mission operations to better understand the human, technological, mission management and staffing challenges that may be faced on missions beyond Low Earth Orbit. The work completed during the first 42 ISS missions provided the basis for the pre-flight, in-flight and post-flight work completed by NASA's Space Medicine Operations Division, while our Russian colleagues provided valuable insights from their long-duration mission experiences with missions lasting 10-14 months, which predated the ISS era. Space Medicine's Behavioral Health and Performance Group (BHP) provided pre-flight training, evaluation, and preparation as well as in-flight psychological support for the NASA crewmember. While the BHP team collaboratively planned for this mission with the help of all ISS international partners within the Human Behavior and Performance Working Group to leverage their collective expertise, the US and Russian BHP personnel were responsible for their respective crewmembers. The presentation will summarize the lessons and experience gained within the areas identified by this Working Group as being of primary importance for a one-year mission.

  18. Context-Sensitive Augmented Reality for Mission Operations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current NASA missions to the International Space Station (ISS) are heavily dependent upon ground controllers to assist crew members in performing routine operations...

  19. Context-sensitive Augmented Reality for Mission Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current NASA missions to the International Space Station are heavily dependent upon ground controllers to assist crew members in performing routine operations and...

  20. Virtualization in the Operations Environments

    Science.gov (United States)

    Pitts, Lee; Lankford, Kim; Felton, Larry; Pruitt, Robert

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  1. The ESA JUICE mission: the Science and the Science Operations

    Science.gov (United States)

    Lorente, Rosario; Altobelli, Nicolas; Vallat, Claire; Munoz, Claudio; Andres, Rafael; Cardesin, Alejandro; Witasse, Olivier; Erd, Christian

    2017-04-01

    JUICE - JUpiter ICy moons Explorer - is the first large mission in the ESA Cosmic Vision 2015-2025 programme [1]. The mission was selected in May 2012 and adopted in November 2014. The implementation phase started in July 2015, following the selection of the prime industrial contractor, Airbus Defense and Space (Toulouse, France). Due to launch in May 2022 and arrival at Jupiter in October 2029, it will spend almost three years making detailed observations of the Jovian system, with a special focus on the planet itself, its giant magnetosphere, and the three icy moons: Ganymede, Callisto and Europa. In August 2032, JUICE will then orbit Ganymede for at least ten months. The first goal of JUICE is to characterize the conditions that might have led to the emergence of habitable environments among the Jovian satellites, with special emphasis on the three giant icy worlds, likely hosting internal oceans [2]. The second goal is to explore the Jupiter system as an archetype of gas giants. Focused studies of Jupiter's atmosphere and magnetosphere, and their interaction with the Galilean satellites will further enhance our understanding of the evolution and dynamics of the Jovian system. The JUICE payload consists of 10 state-of-the-art instruments plus one experiment that uses the spacecraft telecommunication system with ground-based instruments. This payload is capable of addressing all of the mission's science goals [1,2]. A remote sensing package includes imaging (JANUS) and spectral-imaging capabilities from the ultraviolet to the sub-millimetre wavelengths (MAJIS, UVS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the surface and subsurface of the moons, and a radio science experiment (3GM) to probe the atmospheres of Jupiter and its satellites and to perform measurements of the gravity fields. An in situ package comprises a powerful suite to study plasma and neutral gas environments (PEP) with remote

  2. The Multi-Mission Operations Concept at the German Space Operations Center

    OpenAIRE

    Kuch, Thomas; Wickler, Martin

    2009-01-01

    The paper describes capabilities and activities of the German Space Operations Center (GSOC) which operates communication, navigation and earth observation satellites as well as Columbus, a human spaceflight mission. DLR offers its partners operations services for the different mission types on a modular basis. For many mission types DLR has the advantage to further offer the complete end-to-end services by additionally involving DLR’s Remote Sensing Data Center and several DLR research insti...

  3. Command and Control of Joint Air Operations through Mission Command

    Science.gov (United States)

    2016-06-01

    and outlines the C2 architecture systems, processes, and philosophy of com- mand required to enable mission command effectively. Mission Command...General Dempsey highlights the fact that “trust is the moral sinew that binds the distributed Joint Force 2020 together” and observes that “unless...con- fident about how their subordinates will make decisions and adapt to the dynamic battlespace environment. Processes, Systems, and Philosophy of

  4. Cognitive Performance in Operational Environments

    Science.gov (United States)

    Russo, Michael; McGhee, James; Friedler, Edna; Thomas, Maria

    2005-01-01

    Optimal cognition during complex and sustained operations is a critical component for success in current and future military operations. "Cognitive Performance, Judgment, and Decision-making" (CPJD) is a newly organized U.S. Army Medical Research and Materiel Command research program focused on sustaining operational effectiveness of Future Force Warriors by developing paradigms through which militarily-relevant, higher-order cognitive performance, judgment, and decision-making can be assessed and sustained in individuals, small teams, and leaders of network-centric fighting units. CPJD evaluates the impact of stressors intrinsic to military operational environments (e.g., sleep deprivation, workload, fatigue, temperature extremes, altitude, environmental/physiological disruption) on military performance, evaluates noninvasive automated methods for monitoring and predicting cognitive performance, and investigates pharmaceutical strategies (e.g., stimulant countermeasures, hypnotics) to mitigate performance decrements. This manuscript describes the CPJD program, discusses the metrics utilized to relate militarily applied research findings to academic research, and discusses how the simulated combat capabilities of a synthetic battle laboratory may facilitate future cognitive performance research.

  5. Preliminary Report on Mission Design and Operations for Critical Events

    Science.gov (United States)

    Hayden, Sandra C.; Tumer, Irem

    2005-01-01

    Mission-critical events are defined in the Jet Propulsion Laboratory s Flight Project Practices as those sequences of events which must succeed in order to attain mission goals. These are dependent on the particular operational concept and design reference mission, and are especially important when committing to irreversible events. Critical events include main engine cutoff (MECO) after launch; engine cutoff or parachute deployment on entry, descent, and landing (EDL); orbital insertion; separation of payload from vehicle or separation of booster segments; maintenance of pointing accuracy for power and communication; and deployment of solar arrays and communication antennas. The purpose of this paper is to report on the current practices in handling mission-critical events in design and operations at major NASA spaceflight centers. The scope of this report includes NASA Johnson Space Center (JSC), NASA Goddard Space Flight Center (GSFC), and NASA Jet Propulsion Laboratory (JPL), with staff at each center consulted on their current practices, processes, and procedures.

  6. Maintaining Mission Critical Systems in a 247 Environment

    CERN Document Server

    Curtis, Peter M

    2011-01-01

    "This book is meant to offer Architects, Property Mangers, Facility Managers, Building Engineers, Information Technology Professionals, Data Center Personnel, Electrical & Mechanical Technicians and students in undergraduate, graduate, or continuing education programs relevant insight into the Mission Critical Environment with an emphasis on business resiliency, data center efficiency, and green power technology. Industry improvements, standards, and techniques have been incorporated into the text and address the latest issues prevalent in the Mission Critical Industry. An emphasis on green technologies and certifications is presented throughout the book. In addition, a description of the United States energy infrastructure's dependency on oil, in relation to energy security in the mission critical industry, is discussed. In conjunction with this, either a new chapter will be created on updated policies and regulations specifically related to the mission critical industry or updates to policies and regula...

  7. Mission operations concepts for Earth Observing System (EOS)

    Science.gov (United States)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  8. Terra Mission Operations: Launch to the Present (and Beyond)

    Science.gov (United States)

    Thome, Kurt; Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren

    2014-01-01

    The Terra satellite, flagship of NASAs long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASAs international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations.

  9. Leveraging Existing Mission Tools in a Re-Usable, Component-Based Software Environment

    Science.gov (United States)

    Greene, Kevin; Grenander, Sven; Kurien, James; z,s (fshir. z[orttr); z,scer; O'Reilly, Taifun

    2006-01-01

    Emerging methods in component-based software development offer significant advantages but may seem incompatible with existing mission operations applications. In this paper we relate our positive experiences integrating existing mission applications into component-based tools we are delivering to three missions. In most operations environments, a number of software applications have been integrated together to form the mission operations software. In contrast, with component-based software development chunks of related functionality and data structures, referred to as components, can be individually delivered, integrated and re-used. With the advent of powerful tools for managing component-based development, complex software systems can potentially see significant benefits in ease of integration, testability and reusability from these techniques. These benefits motivate us to ask how component-based development techniques can be relevant in a mission operations environment, where there is significant investment in software tools that are not component-based and may not be written in languages for which component-based tools even exist. Trusted and complex software tools for sequencing, validation, navigation, and other vital functions cannot simply be re-written or abandoned in order to gain the advantages offered by emerging component-based software techniques. Thus some middle ground must be found. We have faced exactly this issue, and have found several solutions. Ensemble is an open platform for development, integration, and deployment of mission operations software that we are developing. Ensemble itself is an extension of an open source, component-based software development platform called Eclipse. Due to the advantages of component-based development, we have been able to vary rapidly develop mission operations tools for three surface missions by mixing and matching from a common set of mission operation components. We have also had to determine how to

  10. The Influence of Free Space Environment in the Mission Life Cycle: Material Selection

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; de Groh, Kim K.

    2014-01-01

    The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.

  11. Verification and Implementation of Operations Safety Controls for Flight Missions

    Science.gov (United States)

    Jones, Cheryl L.; Smalls, James R.; Carrier, Alicia S.

    2010-01-01

    Approximately eleven years ago, the International Space Station launched the first module from Russia, the Functional Cargo Block (FGB). Safety and Mission Assurance (S&MA) Operations (Ops) Engineers played an integral part in that endeavor by executing strict flight product verification as well as continued staffing of S&MA's console in the Mission Evaluation Room (MER) for that flight mission. How were these engineers able to conduct such a complicated task? They conducted it based on product verification that consisted of ensuring that safety requirements were adequately contained in all flight products that affected crew safety. S&MA Ops engineers apply both systems engineering and project management principles in order to gain a appropriate level of technical knowledge necessary to perform thorough reviews which cover the subsystem(s) affected. They also ensured that mission priorities were carried out with a great detail and success.

  12. The BRITE Constellation Nanosatellite Mission: Testing, Commissioning, and Operations

    Science.gov (United States)

    Pablo, H.; Whittaker, G. N.; Popowicz, A.; Mochnacki, S. M.; Kuschnig, R.; Grant, C. C.; Moffat, A. F. J.; Rucinski, S. M.; Matthews, J. M.; Schwarzenberg-Czerny, A.; Handler, G.; Weiss, W. W.; Baade, D.; Wade, G. A.; Zocłońska, E.; Ramiaramanantsoa, T.; Unterberger, M.; Zwintz, K.; Pigulski, A.; Rowe, J.; Koudelka, O.; Orleański, P.; Pamyatnykh, A.; Neiner, C.; Wawrzaszek, R.; Marciniszyn, G.; Romano, P.; Woźniak, G.; Zawistowski, T.; Zee, R. E.

    2016-12-01

    BRIght Target Explorer (BRITE) Constellation, the first nanosatellite mission applied to astrophysical research, is a collaboration among Austria, Canada and Poland. The fleet of satellites (6 launched; 5 functioning) performs precise optical photometry of the brightest stars in the night sky. A pioneering mission like BRITE—with optics and instruments restricted to small volume, mass and power in several nanosatellites, whose measurements must be coordinated in orbit—poses many unique challenges. We discuss the technical issues, including problems encountered during on-orbit commissioning (especially higher-than-expected sensitivity of the CCDs to particle radiation). We describe in detail how the BRITE team has mitigated these problems, and provide a complete overview of mission operations. This paper serves as a template for how to effectively plan, build and operate future low-cost niche-driven space astronomy missions. Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNiTP MNiSW), and National Science Centre (NCN).

  13. Study 2.6 operations analysis mission characterization

    Science.gov (United States)

    Wolfe, R. R.

    1973-01-01

    An analysis of the current operations concepts of NASA and DoD is presented to determine if alternatives exist which may improve the utilization of resources. The final product is intended to show how sensitive these ground rules and design approaches are relative to the total cost of doing business. The results are comparative in nature, and assess one concept against another as opposed to establishing an absolute cost value for program requirements. An assessment of the mission characteristics is explained to clarify the intent, scope, and direction of this effort to improve the understanding of what is to be accomplished. The characterization of missions is oriented toward grouping missions which may offer potential economic benefits by reducing overall program costs. Program costs include design, development, testing, and engineering, recurring unit costs for logistic vehicles, payload costs. and direct operating costs.

  14. Co-ordinating humanitarian operations in peace support missions

    NARCIS (Netherlands)

    Rietjens, S.J.H.; Voordijk, Johannes T.; de Boer, S.J.

    2007-01-01

    Purpose – This paper seeks to contribute to a more effective co-ordination of humanitarian operations by military and civilian organizations involved in a peace support mission in response to a complex emergency. Design/methodology/approach – The information processing view, in particular

  15. Lean Mission Operations Systems Design - Using Agile and Lean Development Principles for Mission Operations Design and Development

    Science.gov (United States)

    Trimble, Jay Phillip

    2014-01-01

    The Resource Prospector Mission seeks to rove the lunar surface with an in-situ resource utilization payload in search of volatiles at a polar region. The mission operations system (MOS) will need to perform the short-duration mission while taking advantage of the near real time control that the short one-way light time to the Moon provides. To maximize our use of limited resources for the design and development of the MOS we are utilizing agile and lean methods derived from our previous experience with applying these methods to software. By using methods such as "say it then sim it" we will spend less time in meetings and more time focused on the one outcome that counts - the effective utilization of our assets on the Moon to meet mission objectives.

  16. Calculation of Operations Efficiency Factors for Mars Surface Missions

    Science.gov (United States)

    Layback, Sharon L.

    2014-01-01

    For planning of Mars surface missions, to be operated on a sol-by-sol basis by a team on Earth (where a "sol" is a Martian day), activities are described in terms of "sol types" that are strung together to build a surface mission scenario. Some sol types require ground decisions based on a previous sol's results to feed into the activity planning ("ground in the loop"), while others do not. Due to the differences in duration between Earth days and Mars sols, for a given Mars local solar time, the corresponding Earth time "walks" relative to the corresponding times on the prior sol/day. In particular, even if a communication window has a fixed Mars local solar time, the Earth time for that window will be approximately 40 minutes later each succeeding day. Further complexity is added for non-Mars synchronous communication relay assets, and when there are multiple control centers in different Earth time zones. The solution is the development of "ops efficiency factors" that reflect the efficiency of a given operations configuration (how many and location of control centers, types of communication windows, synchronous or non-synchronous nature of relay assets, sol types, more-or-less sustainable operations schedule choices) against a theoretical "optimal" operations configuration for the mission being studied. These factors are then incorporated into scenario models in order to determine the surface duration (and therefore minimum spacecraft surface lifetime) required to fulfill scenario objectives. The resulting model is used to perform "what-if" analyses for variations in scenario objectives. The ops efficiency factor is the ratio of the figure of merit for a given operations factor to the figure of merit for the theoretical optimal configuration. The current implementation is a pair of models in Excel. The first represents a ground operations schedule for 500 sols in each operations configuration for the mission being studied (500 sols was chosen as being a long

  17. Space Mission Operations Ground Systems Integration Customer Service

    Science.gov (United States)

    Roth, Karl

    2014-01-01

    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security

  18. Operational training for the mission operations at the Brazilian National Institute for Space Research (INPE)

    Science.gov (United States)

    Rozenfeld, Pawel

    1993-01-01

    This paper describes the selection and training process of satellite controllers and data network operators performed at INPE's Satellite Tracking and Control Center in order to prepare them for the mission operations of the INPE's first (SCD1) satellite. An overview of the ground control system and SCD1 architecture and mission is given. Different training phases are described, taking into account that the applicants had no previous knowledge of space operations requiring, therefore, a training which started from the basics.

  19. Cyber Threat Assessment of Uplink and Commanding System for Mission Operation

    Science.gov (United States)

    Ko, Adans Y.; Tan, Kymie M. C.; Cilloniz-Bicchi, Ferner; Faris, Grant

    2014-01-01

    Most of today's Mission Operations Systems (MOS) rely on Ground Data System (GDS) segment to mitigate cyber security risks. Unfortunately, IT security design is done separately from the design of GDS' mission operational capabilities. This incoherent practice leaves many security vulnerabilities in the system without any notice. This paper describes a new way to system engineering MOS, to include cyber threat risk assessments throughout the MOS development cycle, without this, it is impossible to design a dependable and reliable MOS to meet today's rapid changing cyber threat environment.

  20. Constellation Mission Operation Working Group: ESMO Maneuver Planning Process Review

    Science.gov (United States)

    Moyer, Eric

    2015-01-01

    The Earth Science Mission Operation (ESMO) Project created an Independent Review Board to review our Conjunction Risk evaluation process and Maneuver Planning Process to identify improvements that safely manages mission conjunction risks, maintains ground track science requirements, and minimizes overall hours expended on High Interest Events (HIE). The Review Board is evaluating the current maneuver process which requires support by multiple groups. In the past year, there have been several changes to the processes although many prior and new concerns exist. This presentation will discuss maneuver process reviews and Board comments, ESMO assessment and path foward, ESMO future plans, recent changes and concerns.

  1. Cross support overview and operations concept for future space missions

    Science.gov (United States)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  2. The Operational plans for Ptolemy during the Rosetta mission

    Science.gov (United States)

    Morse, Andrew; Andrews, Dan; Barber, Simeon; Sheridan, Simon; Morgan, Geraint; Wright, Ian

    2014-05-01

    Ptolemy is a Gas Chromatography - Isotope Ratio - Mass Spectrometer (GC-IR-MS) instrument within the Philae Lander, part of ESA's Rosetta mission [1]. The primary aim of Ptolemy is to analyse the chemical and isotopic composition of solid comet samples. Samples are collected by the Sampler, Drill and Distribution (SD2) system [2] and placed into ovens for analysis by three instruments on the Lander: COSAC [3], ÇIVA[4] and/or Ptolemy. In the case of Ptolemy, the ovens can be heated with or without oxygen and the evolved gases separated by chemical and GC techniques for isotopic analysis. In addition Ptolemy can measure gaseous (i.e. coma) samples by either directly measuring the ambient environment within the mass spectrometer or by passively trapping onto an adsorbent phase in order to pre-concentrate coma species before desorbing into the mass spectrometer. At the time of this presentation the Rosetta spacecraft should have come out of hibernation and Ptolemy's Post Hibernation Commissioning phase will have been completed. During the Comet Approach phase of the mission Ptolemy will attempt to measure the coma composition both in sniffing and pre-concentration modes. Previous work has demonstrated that spacecraft outgassing is a significant component of the gaseous environment and highlighted the advantage of obtaining complementary measurements with different instruments [5]. In principle Ptolemy could study the spatial evolution of gases through the coma during the lander's descent to the comet surface, but in practice it is likely that mission resources will need to be fully directed towards ensuring a safe landing. Once on the surface of the comet the lander begins its First Science Sequence which continues until the primary batteries are exhausted after some 42 hours. SD2 will collect a sample from a depth of ~5cm and deliver it to a Ptolemy high temperature oven which will then be analysed in five temperature steps to determine the carbon isotopic

  3. Enabling Autonomous Space Mission Operations with Artificial Intelligence

    Science.gov (United States)

    Frank, Jeremy

    2017-01-01

    For over 50 years, NASA's crewed missions have been confined to the Earth-Moon system, where speed-of-light communications delays between crew and ground are practically nonexistent. This ground-centered mode of operations, with a large, ground-based support team, is not sustainable for NASAs future human exploration missions to Mars. Future astronauts will need smarter tools employing Artificial Intelligence (AI) techniques make decisions without inefficient communication back and forth with ground-based mission control. In this talk we will describe several demonstrations of astronaut decision support tools using AI techniques as a foundation. These demonstrations show that astronauts tasks ranging from living and working to piloting can benefit from AI technology development.

  4. Mission operations update for the restructured Earth Observing System (EOS) mission

    Science.gov (United States)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  5. The Mission Partner Environment: Challenges To Multinational Information Sharing

    Science.gov (United States)

    2016-02-15

    Europe, the Middle East, and the Pacific Rim . iv Abstract The need for U.S. forces, and the Army in particular, to conduct operations in complex...four regional commands (Africa Command, Central Command, European Command, and Pacific Command). On behalf of their powerful 4-star combatant...information sharing. Mission threads included Joint Fires , Force Protection, Counter-Improvised Explosive Device, and more. These agreements on shared

  6. The Cassini Solstice Mission: Streamlining Operations by Sequencing with PIEs

    Science.gov (United States)

    Vandermey, Nancy; Alonge, Eleanor K.; Magee, Kari; Heventhal, William

    2014-01-01

    The Cassini Solstice Mission (CSM) is the second extended mission phase of the highly successful Cassini/Huygens mission to Saturn. Conducted at a much-reduced funding level, operations for the CSM have been streamlined and simplified significantly. Integration of the science timeline, which involves allocating observation time in a balanced manner to each of the five different science disciplines (with representatives from the twelve different science instruments), has long been a labor-intensive endeavor. Lessons learned from the prime mission (2004-2008) and first extended mission (Equinox mission, 2008-2010) were utilized to design a new process involving PIEs (Pre-Integrated Events) to ensure the highest priority observations for each discipline could be accomplished despite reduced work force and overall simplification of processes. Discipline-level PIE lists were managed by the Science Planning team and graphically mapped to aid timeline deconfliction meetings prior to assigning discrete segments of time to the various disciplines. Periapse segments are generally discipline-focused, with the exception of a handful of PIEs. In addition to all PIEs being documented in a spreadsheet, allocated out-of-discipline PIEs were entered into the Cassini Information Management System (CIMS) well in advance of timeline integration. The disciplines were then free to work the rest of the timeline internally, without the need for frequent interaction, debate, and negotiation with representatives from other disciplines. As a result, the number of integration meetings has been cut back extensively, freeing up workforce. The sequence implementation process was streamlined as well, combining two previous processes (and teams) into one. The new Sequence Implementation Process (SIP) schedules 22 weeks to build each 10-week-long sequence, and only 3 sequence processes overlap. This differs significantly from prime mission during which 5-week-long sequences were built in 24 weeks

  7. IAEA Leads Operational Safety Mission to Muehleberg Nuclear Power Plant

    International Nuclear Information System (INIS)

    2012-01-01

    practices of the plant. These good practices will be shared with the nuclear industry world-wide for consideration. Examples include: - The plant has developed a comprehensive strategy to manage the core shroud cracking issue (detected in 1990 and monitored ever since) and allow long term operation; - Preserving and transferring corporate knowledge and know-how has been implemented by the plant as part of succession planning; - The plant has developed and implemented a comprehensive Accident Management Program including Severe Accident Management Guidance for shut-down conditions. Muehleberg NPP management expressed determination to address all the areas identified for improvement and requested that the IAEA schedule a follow-up mission in approximately 18 months. The team handed over a draft of their recommendations, suggestions and good practices to the plant management in the form of ''Technical Notes'' for factual comments. The technical notes will be reviewed at the IAEA headquarters including any comments from Muehleberg NPP and the Swiss Federal Nuclear Safety Inspectorate. The final report will be submitted to the Government of Switzerland within three months. This was the 170th mission of the OSART programme, which began in 1982. OSART missions were performed in Switzerland in 1994 at Leibstadt NPP, in 1995 at Beznau NPP, in 1999 at Goesgen NPP and in 2000 at Muehleberg NPP. General information about OSART missions can be found on the IAEA Website: OSART Missions. Background: The IAEA Nuclear Safety Action Plan defines a programme of work to strengthen the nuclear safety framework worldwide in the light of the Fukushima Daiichi Nuclear Power Plant accident. The plan was unanimously endorsed by IAEA Member States during the Agency's 55th General Conference in September 2011. The Action Plan recommended: ''Each Member State with nuclear power plants to voluntarily host at least one IAEA Operational Safety Review Team (OSART) mission during the coming three years

  8. Human-in-the-Loop Operations over Time Delay: NASA Analog Missions Lessons Learned

    Science.gov (United States)

    Rader, Steven N.; Reagan, Marcum L.; Janoiko, Barbara; Johnson, James E.

    2013-01-01

    Teams at NASA have conducted studies of time-delayed communications as it effects human exploration. In October 2012, the Advanced Exploration Systems (AES) Analog Missions project conducted a Technical Interchange Meeting (TIM) with the primary stakeholders to share information and experiences of studying time delay, to build a coherent picture of how studies are covering the problem domain, and to determine possible forward plans (including how to best communicate study results and lessons learned, how to inform future studies and mission plans, and how to drive potential development efforts). This initial meeting s participants included personnel from multiple NASA centers (HQ, JSC, KSC, ARC, and JPL), academia, and ESA. It included all of the known studies, analog missions, and tests of time delayed communications dating back to the Apollo missions including NASA Extreme Environment Mission Operations (NEEMO), Desert Research and Technology Studies (DRATS/RATS), International Space Station Test-bed for Analog Research (ISTAR), Pavilion Lake Research Project (PLRP), Mars 520, JPL Mars Orbiters/Rovers, Advanced Mission Operations (AMO), Devon Island analog missions, and Apollo experiences. Additionally, the meeting attempted to capture all of the various functional perspectives via presentations by disciplines including mission operations (flight director and mission planning), communications, crew, Capcom, Extra-Vehicular Activity (EVA), Behavioral Health and Performance (BHP), Medical/Surgeon, Science, Education and Public Outreach (EPO), and data management. The paper summarizes the descriptions and results from each of the activities discussed at the TIM and includes several recommendations captured in the meeting for dealing with time delay in human exploration along with recommendations for future development and studies to address this issue.

  9. Organizational environment and operator culture

    International Nuclear Information System (INIS)

    Morisseau, D.S.; Schoenfeld, I.E.

    1988-01-01

    The Nuclear Regulatory Commission has historically reviewed corporate and plant level management and organization against the criteria of NUREG-0800, The Standard Review Plan. These criteria address the organizational structure, management control, lines of authority and communication, the range and level of experience, and the availability of manpower to effectively and safely operate the facility. Now that most nuclear power plants have received their operating licenses, the emphasis for review has shifted to the day-to-day operation of the facilities. Along with this has come greater recognition that hardware and engineering systems, through vitally important, are not the only components needed for safe operation of power plants. The people who run and operate these plants are a vitally important component and are an integral part of the entire system, i.e., machinery does not operate in isolation

  10. Evaluation of Army Remotely Piloted Vehicle Mission Payload Operator Performance in Simulated Artillery Missions.

    Science.gov (United States)

    1983-11-01

    Intent Intercom to Range 19 ,, , , . . . , . . 6 ,%... -, - Ui . . . ; . . . . ... * . * . -. -. TAB,’ 1. RPV MISSION PAYLOAD OPERATOR TASK SEQUENCES...Activate Autotracking Scene Track/Feature Track Button 4.14 Note Lock-On Indication Video Monitor 4.15 Inform MC of Intent on Intercom Range 4.16 Lift...crossing river. ’ 0 0 ’a 0 ’ OFTRAVEL - level was a baseline condition and permitted an examination of performance at the maximum 4.6 Mbits per second

  11. Utilizing the EUVE Innovative Technology Testbed to Reduce Operations Cost for Present and Future Orbiting Mission

    Science.gov (United States)

    1997-01-01

    This report summarizes work done under Cooperative Agreement (CA) on the following testbed projects: TERRIERS - The development of the ground systems to support the TERRIERS satellite mission at Boston University (BU). HSTS - The application of ARC's Heuristic Scheduling Testbed System (HSTS) to the EUVE satellite mission. SELMON - The application of NASA's Jet Propulsion Laboratory's (JPL) Selective Monitoring (SELMON) system to the EUVE satellite mission. EVE - The development of the EUVE Virtual Environment (EVE), a prototype three-dimensional (3-D) visualization environment for the EUVE satellite and its sensors, instruments, and communications antennae. FIDO - The development of the Fault-Induced Document Officer (FIDO) system, a prototype application to respond to anomalous conditions by automatically searching for, retrieving, and displaying relevant documentation for an operators use.

  12. Operational computer graphics in the flight dynamics environment

    Science.gov (United States)

    Jeletic, James F.

    1989-01-01

    Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed.

  13. Mission Design and Concept of Operations of a 6U CubeSat Mission for Proximity Operations and RSO Imaging

    Science.gov (United States)

    2013-05-29

    flight heritage on the CINEMA mission that has recently launched. The radio operates in the S-band (around the 2.2GHz band) for downlink, and in the...Battery 9 numerous 8 On-board computer 6-7 Oculus 9 Radio 9 CINEMA , Sep. 2012 10 S-band antenna 7-8 numerous 11 Mini rangefinder 5 none 12 IR camera

  14. Night-reconnaissance operations in mission-oriented protective posture. Final memorandum report

    Energy Technology Data Exchange (ETDEWEB)

    Wick, C.H.; Morrissey, J.A.; Klopcic, J.T.

    1987-10-01

    Military commanders are concerned about the impact chemical agents may have on operations. This is especially apparent in night reconnaissance operations which frequently require soldiers to wear mission-oriented protective posture, level IV (MOPPIV) for the duration of the mission because of uncertainty about the location of chemical hazards. To evaluate this situation and provide a quantitative estimate of the degradation in performance, eight-reconnaissance tasks were performed in a field environment, at moderate temperatures (52-84F). The tasks included: route reconnaissance, movement to two objectives, air and water samplings, hasty sketches of an objective, emplace a claymore mine, and photography of a target. These operations were performed by several teams who alternated starts while wearing the standard battle dress uniform (BDU) and the MOPPIV ensemble. Individuals were highly motivated, in high physical readiness and psychologically prepared for the operation.

  15. Multiagent Modeling and Simulation in Human-Robot Mission Operations Work System Design

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; Sims, Michael H.; Shafto, Michael (Technical Monitor)

    2001-01-01

    This paper describes a collaborative multiagent modeling and simulation approach for designing work systems. The Brahms environment is used to model mission operations for a semi-autonomous robot mission to the Moon at the work practice level. It shows the impact of human-decision making on the activities and energy consumption of a robot. A collaborative work systems design methodology is described that allows informal models, created with users and stakeholders, to be used as input to the development of formal computational models.

  16. Avoiding Human Error in Mission Operations: Cassini Flight Experience

    Science.gov (United States)

    Burk, Thomas A.

    2012-01-01

    Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.

  17. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    Science.gov (United States)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  18. The lunar atmosphere and dust environment explorer mission (LADEE)

    CERN Document Server

    Russell, Christopher

    2015-01-01

    This volume contains five articles describing the mission and its instruments.  The first paper, by the project scientist Richard C. Elphic and his colleagues, describes the mission objectives, the launch vehicle, spacecraft and the mission itself.  This is followed by a description of LADEE’s Neutral Mass Spectrometer by Paul Mahaffy and company.  This paper describes the investigation that directly targets the lunar exosphere, which can also be explored optically in the ultraviolet.  In the following article Anthony Colaprete describes LADEE’s Ultraviolet and Visible Spectrometer that operated from 230 nm to 810 nm scanning the atmosphere just above the surface.  Not only is there atmosphere but there is also dust that putatively can be levitated above the surface, possibly by electric fields on the Moon’s surface.  Mihaly Horanyi leads this investigation, called the Lunar Dust Experiment, aimed at understanding the purported observations of levitated dust.  This experiment was also very succes...

  19. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    Science.gov (United States)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  20. Mission Operations and Data Systems Directorate's operational/development network (MODNET) at Goddard Space Flight Center

    Science.gov (United States)

    1988-01-01

    A brief, informal narrative is provided that summarizes the results of all work accomplished during the period of the contract; June 1, 1987 through September 30, 1988; in support of Mission Operations and Data Systems Directorate's Operational Development Network (MODNET). It includes descriptions of work performed in each functional area and recommendations and conclusions based on the experience and results obtained.

  1. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  2. Dynamic Sampling of Trace Contaminants During the Mission Operations Test of the Deep Space Habitat

    Science.gov (United States)

    Monje, Oscar; Valling, Simo; Cornish, Jim

    2013-01-01

    The atmospheric composition inside spacecraft during long duration space missions is dynamic due to changes in the living and working environment of crew members, crew metabolism and payload operations. A portable FTIR gas analyzer was used to monitor the atmospheric composition within the Deep Space Habitat (DSH) during the Mission Operations Test (MOT) conducted at the Johnson Space Center (JSC). The FTIR monitored up to 20 gases in near- real time. The procedures developed for operating the FTIR were successful and data was collected with the FTIR at 5 minute intervals. Not all the 20 gases sampled were detected in all the modules and it was possible to measure dynamic changes in trace contaminant concentrations that were related to crew activities involving exercise and meal preparation.

  3. Development of a Comprehensive Mission Operations System Designed to Operate Multiple Small Satellites

    OpenAIRE

    Sorensen, Trevor; Pilger, Eric; Wood, Mark; Nunes, Miguel; Yost, Bruce

    2011-01-01

    The Hawaii Space Flight Laboratory (HSFL) at the University of Hawaii at Manoa, in collaboration with NASA Ames Research Center (ARC), is developing COSMOS (Comprehensive Open-architecture Space Mission Operations System), a set of software tools and hardware that is designed to primarily support the development and operations of one or more small spacecraft. COSMOS will be particularly suited for organizations with limited development and operations budget, such as universities. COSMOS is a ...

  4. Radiation Hardened High Speed Integrated Circuits SERDES I/O for Extreme Operating Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Manned and robotic space missions require high-performance electronic control systems capable of operating for extended periods in harsh environments subject to...

  5. The ESA Scientific Exploitation of Operational Missions element

    Science.gov (United States)

    Desnos, Yves-Louis; Regner, Peter; Delwart, Steven; Benveniste, Jerome; Engdahl, Marcus; Zehner, Claus; Mathieu, Pierre-Philippe; Bojkov, Bojan; Gascon, Ferran; Donlon, Craig; Davidson, Malcolm; Goryl, Philippe; Pinnock, Simon

    2015-04-01

    SEOM is a program element within the fourth period (2013-2017) of ESA's Earth Observation Envelope Programme (http://seom.esa.int/). The prime objective is to federate, support and expand the international research community that the ERS,ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM will enable the science community to address new scientific research that are opened by free and open access to data from operational EO missions. Based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings, a work plan has been established and is approved every year by ESA Members States. The 2015 SEOM work plan is covering the organisation of three Science users consultation workshops for Sentinel1/3/5P , the launch of new R&D studies for scientific exploitation of the Sentinels, the development of open-source multi-mission scientific toolboxes, the organisation of advanced international training courses, summer schools and educational materials, as well as activities for promoting the scientific use of EO data. The first SEOM projects have been tendered since 2013 including the development of Sentinel toolboxes, advanced INSAR algorithms for Sentinel-1 TOPS data exploitation, Improved Atmospheric Spectroscopic data-base (IAS), as well as grouped studies for Sentinel-1, -2, and -3 land and ocean applications and studies for exploiting the synergy between the Sentinels. The status and first results from these SEOM projects will be presented and an outlook for upcoming SEOM studies will be given.

  6. Artificial intelligence for multi-mission planetary operations

    Science.gov (United States)

    Atkinson, David J.; Lawson, Denise L.; James, Mark L.

    1990-01-01

    A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.

  7. Design Considerations for Spacecraft Operations During Uncrewed Dormant Phases of Human Exploration Missions

    Science.gov (United States)

    Williams-Byrd, Julie; Antol, Jeff; Jefferies, Sharon; Goodliff, Kandyce; Williams, Phillip; Ambrose, Rob; Sylvester, Andre; Anderson, Molly; Dinsmore, Craig; Hoffman, Stephen; hide

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Subject matter experts from NASA's Human Exploration and Operations Mission Directorate (HEOMD) are currently studying a human exploration campaign that involves deployment of assets for planetary exploration. This study, called the Evolvable Mars Campaign (EMC) study, explores options with solar electric propulsion as a central component of the transportation architecture. This particular in-space transportation option often results in long duration transit to destinations. The EMC study is also investigating deployed human rated systems like landers, habitats, rovers, power systems and ISRU system to the surface of Mars, which also will involve long dormant periods when these systems are staged on the surface. In order to enable the EMC architecture, campaign and element design leads along with system and capability development experts from HEOMD's System Maturation Team (SMT) have identified additional capabilities, systems and operation modes that will sustain these systems especially during these dormant phases of the mission. Dormancy is defined by the absence of crew and relative inactivity of the systems. For EMC missions, dormant periods could range from several months to several years. Two aspects of uncrewed dormant operations are considered herein: (1) the vehicle systems that are placed in a dormant state and (2) the autonomous vehicle systems and robotic capabilities that monitor, maintain, and repair the vehicle and systems. This paper describes the mission stages of dormancy operations, phases of dormant

  8. Operating the Dual-Orbtier GRAIL Mission to Measure the Moon's Gravity

    Science.gov (United States)

    Beerer, Joseph G.; Havens, Glen G.

    2012-01-01

    The GRAIL mission is on track to satisfy all prime mission requirements. The performance of the orbiters and payload has been exceptional. Detailed pre-launch operations planning and validation have paid off. Prime mission timeline has been conducted almost exactly as laid out in the mission plan. Flight experience in the prime mission puts the flight team in a good position for completing the challenges of the extended mission where the science payoff is even greater

  9. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    Science.gov (United States)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects

  10. Interactive Cloud Data Farming Environment For Military Mission Planning Support

    Directory of Open Access Journals (Sweden)

    Bartosz Kryza

    2012-01-01

    Full Text Available In a modern globalised world, military and peace keeping forces often face situations which require very subtle and well planned operations taking into account cultural and social aspects of a given region and its population as well as dynamic psychological awareness related to recent events which can have impact on the attitude of the civilians. The goal of the EUSAS project is to develop a prototype of a system enabling mission planning support and training capabilities for soldiers and police forces dealing with asymmetric threat situations, such as crowd control in urban territory. In this paper, we discuss the data-farming infrastructure developed for this project, allowing generation of large amount of data from agent based simulations for further analysis allowing soldier training and evaluation of possible outcomes of different rules of engagement.

  11. Common spaceborne multicomputer operating system and development environment

    Science.gov (United States)

    Craymer, L. G.; Lewis, B. F.; Hayes, P. J.; Jones, R. L.

    1994-01-01

    A preliminary technical specification for a multicomputer operating system is developed. The operating system is targeted for spaceborne flight missions and provides a broad range of real-time functionality, dynamic remote code-patching capability, and system fault tolerance and long-term survivability features. Dataflow concepts are used for representing application algorithms. Functional features are included to ensure real-time predictability for a class of algorithms which require data-driven execution on an iterative steady state basis. The development environment supports the development of algorithm code, design of control parameters, performance analysis, simulation of real-time dataflow applications, and compiling and downloading of the resulting application.

  12. Benefits of SEDO mission - Safety Evaluation During Operation - SEDO

    International Nuclear Information System (INIS)

    Gaspar Junior, Joao Carlos A.; Fonseca, Victor Zidan da; Costa, Flavio Sobral da; Nunes Neto, Carlos Antonio; Pinheiro, Rubens Pinto

    2007-01-01

    The aim of this Safety Review Service is to assist the requesting Member State in enhancing the operational safety of Fuel Cycle Facilities and to promote the continuous development of operational safety by the dissemination of information on good safety practices. SEDO is intended to be a peer review conducted by a team of international experts with experience in operational and technical areas of evaluation. Judgments on safety performance of the facility are based on the IAEA Safety Standards and the combined expertise of the international team. The facilities to be covered by SEDO are: uranium milling and refining facilities, conversion and enrichment facilities, fuel fabrication facilities, spent fuel storage facilities, reprocessing facilities, waste conditioning facilities and fuel cycle research and development facilities. This work will show some important points of SEDO Mission during reviewers visit in Fuel Cycle Facilities in Industrias Nucleares do Brasil (INB), located in Rio de Janeiro State, in the Engenheiro Passos - Resende city. INB will be the first Fuel Cycle Facilities in the world to receive International Agency Energy Atomic (IAEA) inspectors with intention of evaluate safety conditions during operation. The results obtained by IAEA inspectors will shall delivery in report forms recommendations to INB. Inspectors will return to INB site after eighteen months. (author)

  13. Lunar Communication Terminals for NASA Exploration Missions: Needs, Operations Concepts and Architectures

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Anderson, Lynn M.

    2008-01-01

    NASA is conducting architecture studies prior to deploying a series of short- and long-duration human and robotic missions for the exploration of the Moon and Mars under the Vision for Space Exploration Initiative. A key objective of these missions is to establish and expand, through a series of launches, a system of systems approach to exploration capabilities and science return. The systems identified were Crew Exploration Vehicles, crew and cargo launch vehicles, crew EVA suits, crew and cargo landers, habitats, mobility carriers, and small, pressurized rovers. Multiple space communication networks and systems, deployed over time, will support these space exploration systems of systems. Each deployment phase will support interoperability of components and provide 20 years of legacy systems. In this paper, we describe the modular lunar communications terminals needed for the emerging lunar mission operational scenarios. These lunar communication terminals require flexibility for use in stationary, integrated, and mobile environments. They will support links directly to Earth, to lunar relay satellites, to astronauts and to fixed and mobile lunar surface systems. The operating concepts and traffic models are presented for these terminals within variety of lunar scenarios. A preliminary architecture is outlined, providing for suitable long-duration operations in the harsh lunar environment.

  14. Safety and Mission Assurance Knowledge Management Retention: Managing Knowledge for Successful Mission Operations

    Science.gov (United States)

    Johnson, Teresa A.

    2006-01-01

    Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.

  15. Decision Making Training in the Mission Operations Directorate

    Science.gov (United States)

    O'Keefe, William S.

    2013-01-01

    At JSC, we train our new flight controllers on a set of team skills that we call Space Flight Resource Management (SFRM). SFRM is akin to Crew Resource Management for the airlines and trains flight controllers to work as an effective team to reduce errors and improve safety. We have developed this training over the years with the assistance of Ames Research Center, Wyle Labs and University of Central Florida. One of the skills we teach is decision making/ problem solving (DM/PS). We teach DM/PS first in several classroom sessions, reinforce it in several part task training environments, and finally practice it in full-mission, full-team simulations. What I am proposing to talk about is this training flow: its content and how we teach it.

  16. SELMA: a mission to study lunar environment and surface interaction

    Science.gov (United States)

    Barabash, Stas; Futaana, Yoshifumi

    2017-04-01

    SELMA (Surface, Environment, and Lunar Magnetic Anomalies) proposed for the ESA M5 mission opportunity is a mission to study how the Moon environment and surface interact. SELMA addresses four overarching science questions: (1) What is the origin of water on the Moon? (2) How do the "volatile cycles" on the Moon work? (3) How do the lunar mini-magnetospheres work? (4) What is the influence of dust on the lunar environment and surface? SELMA uses a unique combination of remote sensing via UV, IR, and energetic neutral atoms and local measurements of plasma, fields, waves, exospheric gasses, and dust. It will also conduct an impact experiment to investigate volatile content in the soil of the permanently shadowed area of the Shakleton crater. SELMA carries an impact probe to sound the Reiner-Gamma mini-magnetosphere and its interaction with the lunar regolith from the SELMA orbit down to the surface. The SELMA science objectives include: - Establish the role of the solar wind and exosphere in the formation of the water bearing materials; - Determine the water content in the regolith of the permanently shadowed region and its isotope composition; - Establish variability, sources and sinks of the lunar exosphere and its relations to impact events; - Investigate a mini-magnetosphere interaction with the solar wind; - Investigate the long-term effects of mini-magnetospheres on the local surface; - Investigate how the impact events affect the lunar dust environments; - Investigate how the plasma effects result in lofting the lunar dust; SELMA is a flexible and short (15 months) mission including the following elements SELMA orbiter, SELMA Impact Probe for Magnetic Anomalies (SIP-MA), passive Impactor, and Relaying CubeSat (RCS). SELMA is placed on quasi-frozen polar orbit 30 km x 200 km with the pericenter over the South Pole. Approximately 9 months after the launch SELMA releases SIP-MA to sound the Reiner-Gamma magnetic anomaly with very high time resolution 10 sec

  17. Operation of the Radio Occultation Mission in KOMPSAT-5

    Directory of Open Access Journals (Sweden)

    Mansoo Choi

    2010-12-01

    Full Text Available Korea multi-purpose satellite-5 (KOMPSAT-5 is a low earth orbit (LEO satellite scheduled to be launched in 2010. To satisfy the precision orbit determination (POD requirement for a high resolution synthetic aperture radar image of KOMPSAT-5, KOMPSAT-5 has atmosphere occultation POD (AOPOD system which consists of a space-borne dual frequency global positioning system (GPS receiver and a laser retro reflector array. A space-borne dual frequency GPS receiver on a LEO satellite provides position data for the POD and radio occultation data for scientific applications. This paper describes an overview of AOPOD system and operation concepts of the radio occultation mission in KOMPSAT-5. We showed AOPOD system satisfies the requirements of KOMPSAT-5 in performance and stability.

  18. Virtualized Multi-Mission Operations Center (vMMOC) and its Cloud Services

    Science.gov (United States)

    Ido, Haisam Kassim

    2017-01-01

    His presentation will cover, the current and future, technical and organizational opportunities and challenges with virtualizing a multi-mission operations center. The full deployment of Goddard Space Flight Centers (GSFC) Virtualized Multi-Mission Operations Center (vMMOC) is nearly complete. The Space Science Mission Operations (SSMO) organizations spacecraft ACE, Fermi, LRO, MMS(4), OSIRIS-REx, SDO, SOHO, Swift, and Wind are in the process of being fully migrated to the vMMOC. The benefits of the vMMOC will be the normalization and the standardization of IT services, mission operations, maintenance, and development as well as ancillary services and policies such as collaboration tools, change management systems, and IT Security. The vMMOC will also provide operational efficiencies regarding hardware, IT domain expertise, training, maintenance and support.The presentation will also cover SSMO's secure Situational Awareness Dashboard in an integrated, fleet centric, cloud based web services fashion. Additionally the SSMO Telemetry as a Service (TaaS) will be covered, which allows authorized users and processes to access telemetry for the entire SSMO fleet, and for the entirety of each spacecrafts history. Both services leverage cloud services in a secure FISMA High and FedRamp environment, and also leverage distributed object stores in order to house and provide the telemetry. The services are also in the process of leveraging the cloud computing services elasticity and horizontal scalability. In the design phase is the Navigation as a Service (NaaS) which will provide a standardized, efficient, and normalized service for the fleet's space flight dynamics operations. Additional future services that may be considered are Ground Segment as a Service (GSaaS), Telemetry and Command as a Service (TCaaS), Flight Software Simulation as a Service, etc.

  19. The ESA Scientific Exploitation of Operational Missions element, first results

    Science.gov (United States)

    Desnos, Yves-Louis; Regner, Peter; Delwart, Steven; Benveniste, Jerome; Engdahl, Marcus; Mathieu, Pierre-Philippe; Gascon, Ferran; Donlon, Craig; Davidson, Malcolm; Pinnock, Simon; Foumelis, Michael; Ramoino, Fabrizio

    2016-04-01

    SEOM is a program element within the fourth period (2013-2017) of ESA's Earth Observation Envelope Programme (http://seom.esa.int/). The prime objective is to federate, support and expand the international research community that the ERS, ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM will enable the science community to address new scientific research that are opened by free and open access to data from operational EO missions. Based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings, a work plan is established and is approved every year by ESA Members States. During 2015 SEOM, Science users consultation workshops have been organized for Sentinel1/3/5P ( Fringe, S3 Symposium and Atmospheric science respectively) , new R&D studies for scientific exploitation of the Sentinels have been launched ( S3 for Science SAR Altimetry and Ocean Color , S2 for Science,) , open-source multi-mission scientific toolboxes have been launched (in particular the SNAP/S1-2-3 Toolbox). In addition two advanced international training courses have been organized in Europe to exploit the new S1-A and S2-A data for Land and Ocean remote sensing (over 120 participants from 25 countries) as well as activities for promoting the first scientific results ( e.g. Chili Earthquake) . In addition the First EO Open Science 2.0 was organised at ESA in October 2015 with 225 participants from 31 countries bringing together young EO scientists and data scientists. During the conference precursor activities in EO Open Science and Innovation were presented, while developing a Roadmap preparing for future ESA scientific exploitation activities. Within the conference, the first

  20. Critical issues in connection with human missions to Mars: protection of and from the Martian environment

    Science.gov (United States)

    Horneck, G.; Facius, R.; Reitz, G.; Rettberg, P.; Baumstark-Khan, C.; Gerzer, R.

    2003-01-01

    Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  1. Critical issues in connection with human planetary missions: protection of and from the environment.

    Science.gov (United States)

    Horneck, G; Facius, R; Reitz, G; Rettberg, P; Baumstark-Khan, C; Gerzer, R

    2001-01-01

    Activities associated with human missions to the Moon or to Mars will interact with the environment in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations: (ii) the specific natural environment of the Moon or Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; (vii) surface dust; (viii) impacts by meteorites and micrometeorites. In order to protect the planetary environment. the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the Greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. Grant numbers: 14056/99/NL/PA. c 2001. Elsevier Science Ltd. All rights reserved.

  2. Critical issues in connection with human missions to Mars: protection of and from the Martian environment.

    Science.gov (United States)

    Horneck, G; Facius, R; Reitz, G; Rettberg, P; Baumstark-Khan, C; Gerzer, R

    2003-01-01

    Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  3. Linking Knowledge and Skills to Mission Essential Competency-Based Syllabus Development for Distributed Mission Operations

    National Research Council Canada - National Science Library

    Symons, Steve; France, Michael; Bell, Jeffrey; Bennett, Jr, Winston

    2006-01-01

    ... of Mission Essential Competencies (MECs). MECs are defined as the higher order individual, team, and inter-team competencies that a fully prepared pilot, crew, or flight requires for successful mission completion under adverse conditions...

  4. Utilization of Virtual Server Technology in Mission Operations

    Science.gov (United States)

    Felton, Larry; Lankford, Kimberly; Pitts, R. Lee; Pruitt, Robert W.

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  5. Constraint and Flight Rule Management for Space Mission Operations

    Science.gov (United States)

    Barreiro, J.; Chachere, J.; Frank, J.; Bertels, C.; Crocker, A.

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et al, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et al., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et al, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on some of the latest research results as well as the latest challenges still facing the field.

  6. OSART mission highlights 1991-1992. Operational safety practices in nuclear power plants

    International Nuclear Information System (INIS)

    1995-05-01

    This report continues the practice of providing summaries of the OSART missions but the format is the first of its kind. Summaries of missions in the period 1983-1990 have covered missions to operational plants, missions to plants under construction or approaching commissioning and a compilation of good practices identified in OSART missions as separate publications. The format of this report includes all such aspects in one document

  7. Chemistry of complexing molecules and environment. Report of the working group of the Cea ''mission environment''

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-01-01

    The Working group 'Chemistry of Complexing Molecules and Environment' of the Mission Environment (AG/ENV) identified themes for an original positioning of CEA on important issues of environmental research if a sufficiently strong demand appears. The research of CEA on the environment should be complementary to actions undertaken by other partners (official institutions, research organizations and industrial firms). The themes suggested are: the synthesis of new chelating molecules and new materials having specific properties, with the support of theoretical chemistry and modeling, analytical physical chemistry and speciation of species in relation to their eco-toxicity and their biogeochemical mobility in the natural environment. These themes, illustrated by examples of actions in progress at CEA or likely to be launched quickly, draw largely from recognized competences of the teams, generally developed for finalized nuclear applications: experimental, theoretical and instrumental competences. (author)

  8. Probabilistic Verification of Multi-Robot Missions in Uncertain Environments

    Science.gov (United States)

    2015-11-01

    this approach on a two-robot, bounding overwatch mission. Keywords-component; Probabilistic Verification, Validation, Multi-robot Missions, Behavior...priori. II. MISSIONLAB WITH VERIFICATION This section reviews building robot software with MissionLab1 [10] and introduces the Bounding Overwatch ...Uncertain Obstacles Bounding overwatch is a military movement tactic used by units of infantry to advance forward under enemy fire or when crossing

  9. Distributed Motor Controller (DMC) for Operation in Extreme Environments

    Science.gov (United States)

    McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don

    2012-01-01

    This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.

  10. Evaluation of full and degraded mission reliability and mission dependability for intermittently operated, multi-functional systems

    International Nuclear Information System (INIS)

    Sols, Alberto; Ramirez-Marquez, Jose E.; Verma, Dinesh; Vitoriano, Begona

    2007-01-01

    Availability is one of the metrics often used in the evaluation of system effectiveness. Its use as an effectiveness metric is often dictated by the nature of the system under consideration. While some systems operate continuously, many others operate on an intermittent basis where each operational period may often involve a different set of missions. This is the most likely scenario for complex multi-functional systems, where each specific system mission may require the availability of a different combination of system elements. Similarly, for these systems, not only is it important to know whether a mission can be initiated, it is just as important to know whether the system is capable of completing such a mission. Thus, for these systems, additional measures become relevant to provide a more holistic assessment of system effectiveness. This paper presents techniques for the evaluation of both full and degraded mission reliability and mission dependability for coherent, intermittently operated multi-functional systems. These metrics complement previously developed availability and degraded availability measures of multi-functional systems, in the comprehensive assessment of system effectiveness

  11. Candidate functions for advanced technology implementation in the Columbus mission planning environment

    Science.gov (United States)

    Loomis, Audrey; Kellner, Albrecht

    1988-01-01

    The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.

  12. TAMU: Blueprint for A New Space Mission Operations System Paradigm

    Science.gov (United States)

    Ruszkowski, James T.; Meshkat, Leila; Haensly, Jean; Pennington, Al; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a System of System (SOS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically disperse locations, to develop the architecture and associated workflow processes of products for a broad range of flight projects. Further, TAMU FPP provides for the automatic execution and re-planning of the workflow processes as they become operational. This paper provides the blueprint for the TAMU FPP paradigm. This blueprint presents a complete, coherent technique, process and tool set that results in an infrastructure that can be used for full lifecycle design and decision making during the flight production process. Based on the many years of experience with the Space Shuttle Program (SSP) and the International Space Station (ISS), the currently cancelled Constellation Program which aimed on returning humans to the moon as a starting point, has been building a modern model-based Systems Engineering infrastructure to Re-engineer the FPP. This infrastructure uses a structured modeling and architecture development approach to optimize the system design thereby reducing the sustaining costs and increasing system efficiency, reliability, robustness and maintainability metrics. With the advent of the new vision for human space exploration, it is now necessary to further generalize this framework to take into consideration a broad range of missions and the participation of multiple organizations outside of the MOD; hence the Transferable, Adaptable, Modular and Upgradeable (TAMU) concept.

  13. The national operational environment model (NOEM)

    Science.gov (United States)

    Salerno, John J.; Romano, Brian; Geiler, Warren

    2011-06-01

    The National Operational Environment Model (NOEM) is a strategic analysis/assessment tool that provides insight into the complex state space (as a system) that is today's modern operational environment. The NOEM supports baseline forecasts by generating plausible futures based on the current state. It supports what-if analysis by forecasting ramifications of potential "Blue" actions on the environment. The NOEM also supports sensitivity analysis by identifying possible pressure (leverage) points in support of the Commander that resolves forecasted instabilities, and by ranking sensitivities in a list for each leverage point and response. The NOEM can be used to assist Decision Makers, Analysts and Researchers with understanding the inter-workings of a region or nation state, the consequences of implementing specific policies, and the ability to plug in new operational environment theories/models as they mature. The NOEM is built upon an open-source, license-free set of capabilities, and aims to provide support for pluggable modules that make up a given model. The NOEM currently has an extensive number of modules (e.g. economic, security & social well-being pieces such as critical infrastructure) completed along with a number of tools to exercise them. The focus this year is on modeling the social and behavioral aspects of a populace within their environment, primarily the formation of various interest groups, their beliefs, their requirements, their grievances, their affinities, and the likelihood of a wide range of their actions, depending on their perceived level of security and happiness. As such, several research efforts are currently underway to model human behavior from a group perspective, in the pursuit of eventual integration and balance of populace needs/demands within their respective operational environment and the capacity to meet those demands. In this paper we will provide an overview of the NOEM, the need for and a description of its main components

  14. A visual assistance environment for cyclotron operation

    International Nuclear Information System (INIS)

    Okamura, Tetsuya; Murakami, Tohru; Agematsu, Takashi; Okumura, Susumu; Arakawa, Kazuo.

    1993-01-01

    A computer-based operation system for a cyclotron which assists inexperienced operators has been developed. Cyclotron start-up operations require dozens of adjustable parameters to be finely tuned to maximize extracted beam current. The human interfaces of the system provide a visual environment designed to enhance beam parameter adjustments. First, the mental model of operators is analyzed. It is supposed to be composed of five partial mental models: beam behavior model, feasible setting regions model, parameter sensitivity model, parameter mutual relation model, and status map model. Next, based on these models, three visual interfaces are developed, i.e., (1) Beam trajectory is rapidly calculated and graphically displayed whenever the operators change the cyclotron parameters. (2) Feasible setting regions (FSR) of the parameters that satisfy the cyclotron's beam acceptance criteria are indicated. (3) Search traces, being a historical visual map of beam current values, are superimposed on the FSRs. Finally, to evaluate system effectiveness, the search time required to reach maximum beam current conditions was measured. In addition, system operability was evaluated using written questionnaires. Results of the experiment showed that the search time to reach specific beam conditions was reduced by approximately 65% using these interfaces. The written questionnaires survey showed the operators highly evaluate system operability. (author)

  15. MEDA, The New Instrument for Mars Environment Analysis for the Mars 2020 Mission

    Science.gov (United States)

    Moreno-Alvarez, Jose F.; Pena-Godino, Antonio; Rodriguez-Manfredi, Jose Antonio; Cordoba, Elizabeth; MEDA Team

    2016-08-01

    The Mars 2020 rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Designed to advance high-priority science goals for Mars exploration, the mission will address key questions about the potential for life on Mars. The mission will also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.The Mars Environmental Dynamics Analyzer (MEDA) is an integrated full suite of sensors designed to address the Mars 2020 mission objectives of characterization of dust size and morphology and surface weather measurements.MEDA system consists of one control unit and 10 separated sensor enclosures distributed in different positions along the Mars 2020 rover. MEDA is composed of an ARM-based control computer with its flight software application, two wind sensors including mixed ASICs inside, five air temperature sensors, one sky pointing camera complemented with 16 photo- detectors looking up and around, one thermal infrared sensor using five measurement bands, one relative humidity sensor, one pressure sensor and the harness that interconnects all of them. It is a complex system intended to operate in one of the harshest environments possible, the Mars surface, for many years to come.This will become a short term reality thanks to the combination of a strong international science team driving the science and system requirements working together with a powerful industrial organization to design and build the instrument. The instrument is being built right now, with its Critical Design Review at the end of 2016, and the flight model to be provided in 2018.This paper summarizes the main scientific objective of the MEDA instrument, the links between the Mission and the MEDA science objectives, and the challenging environmental Mars requirements. It will then focus on the engineered definition of the instrument, showing the overall

  16. Mission reliability of semi-Markov systems under generalized operational time requirements

    International Nuclear Information System (INIS)

    Wu, Xiaoyue; Hillston, Jane

    2015-01-01

    Mission reliability of a system depends on specific criteria for mission success. To evaluate the mission reliability of some mission systems that do not need to work normally for the whole mission time, two types of mission reliability for such systems are studied. The first type corresponds to the mission requirement that the system must remain operational continuously for a minimum time within the given mission time interval, while the second corresponds to the mission requirement that the total operational time of the system within the mission time window must be greater than a given value. Based on Markov renewal properties, matrix integral equations are derived for semi-Markov systems. Numerical algorithms and a simulation procedure are provided for both types of mission reliability. Two examples are used for illustration purposes. One is a one-unit repairable Markov system, and the other is a cold standby semi-Markov system consisting of two components. By the proposed approaches, the mission reliability of systems with time redundancy can be more precisely estimated to avoid possible unnecessary redundancy of system resources. - Highlights: • Two types of mission reliability under generalized requirements are defined. • Equations for both types of reliability are derived for semi-Markov systems. • Numerical methods are given for solving both types of reliability. • Simulation procedure is given for estimating both types of reliability. • Verification of the numerical methods is given by the results of simulation

  17. Chipping operations and efficiency in different operational environments

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, D.; Mola-Yudego, B.; Prinz, R.; Emer, B.; Sikanen, L., e-mail: dominik.roser@metla.fi

    2012-11-01

    This research analyses the productivity of energy wood chipping operations at several sites in Austria and Finland. The aim of the work is to examine the differences in productivity and the effects of the operational environment for the chipping of bioenergy at the roadside. Furthermore, the study quantifies the effects of different variables such as forest energy assortments, tree species, sieve size and machines on the overall productivity of chipping. The results revealed that there are significant differences in the chipping productivity in Austria and Finland which are largely based on the use of different sieve sizes. Furthermore, the different operational environments in both countries, as well as the characteristics of the raw material also seem to have an effect on productivity. In order to improve the chipping productivity, particularly in Central European conditions, all relevant stakeholders need to work jointly to find solutions that will allow a greater variation of chip size. Furthermore, in the future more consideration has to be given to the close interlinkage between the chipper, crane and grapple. As a result, investments costs can be optimized and operational costs and stress on the machines reduced. (orig.)

  18. OCO-2 (Orbiting Carbon Observatory-2) mission operations planning and initial operations experiences

    Science.gov (United States)

    Basilio, Ralph R.; Pollock, H. Randy; Hunyadi-Lay, Sarah L.

    2014-10-01

    OCO-2 (Orbiting Carbon Observatory-2) is the first NASA (National Aeronautics and Space Administration) mission dedicated to studying atmospheric carbon dioxide, specifically to identify sources (emitters) and sinks (absorbers) on a regional (1000 km x 1000 km) scale. The mission is designed to meet a science imperative by providing critical and urgent measurements needed to improve understanding of the carbon cycle and global climate change processes. The single instrument consisting of three grating spectrometers was built at the Jet Propulsion Laboratory, but is based on the design co-developed with Hamilton Sundstrand Corporation for the original OCO mission. The instrument underwent an extensive ground test program. This was generally made possible through the use of a thermal vacuum chamber with a window/port that allowed optical ground support equipment to stimulate the instrument. The instrument was later delivered to Orbital Sciences Corporation for integration and test with the LEOStar-2 spacecraft. During the overall ground test campaign, proper function and performance in simulated launch, ascent, and space environments were verified. The observatory was launched into space on 02 July 2014. Initial indications are that the instrument is meeting functional and performance specifications, and there is every expectation that the spatially-order, geo-located, calibrated spectra of reflected sunlight and the science retrievals will meet the Level 1 science requirements.

  19. Onboard Autonomy and Ground Operations Automation for the Intelligent Payload Experiment (IPEX) CubeSat Mission

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Tran, Daniel; Bellardo, John; Williams, Austin; Piug-Suari, Jordi; Crum, Gary; Flatley, Thomas

    2012-01-01

    The Intelligent Payload Experiment (IPEX) is a cubesat manifested for launch in October 2013 that will flight validate autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module (IPM) of the Hyperspectral Infra-red Imager (HyspIRI) mission concept. We first describe the ground and flight operations concept for HyspIRI IPM operations. We then describe the ground and flight operations concept for the IPEX mission and how that will validate HyspIRI IPM operations. We then detail the current status of the mission and outline the schedule for future development.

  20. Tour operators, environment and sustainable development

    International Nuclear Information System (INIS)

    Andriola, L.; Chirico, R.; Declich, P.

    2001-01-01

    The purpose of this work is to characterize the role of the tour operators in achieving sustainable development meaning a process of development which leaves at least the same amount of capital, natural and man-made, to future generations as current generations have access to. Tourism is one of the largest and fastest growing global industries, creating significant employment and economic development, particularly in many developing countries. Tourism can also have negative environmental and social impact resulting from resource consumption, pollution, generation of wastes and from the compromise of local culture while introducing new activities. Most tour operators has started to recognised that a clean environment is critical to their success, but few tour operators have the management tools or experience to design and conduct tours that minimize their negative environmental and social impacts. A group of tour operators from different parts of the world have joined forces to create the Tour Operators' Initiative for Sustainable Tourism Development. With this initiatives, tour operators are moving towards sustainable tourism by committing themselves to address the environmental, social, and cultural aspects of sustainable development within the tourism sector [it

  1. Increasing Intelligence, Surveillance, and Reconnaissance (ISR) Operational Agility through Mission Command

    Science.gov (United States)

    2016-06-10

    INCREASING INTELLIGENCE, SURVEILLANCE, AND RECONNAISSANCE (ISR) OPERATIONAL AGILITY THROUGH MISSION COMMAND A thesis presented to...other works incorporated into this manuscript. A work of the United States Government is not subject to copyright, however further publication or...Intelligence, Surveillance, and Reconnaissance (ISR) Operational Agility through Mission Command 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  2. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    Science.gov (United States)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  3. Pakistan Earthquake Relief Operations: Leveraging Humanitarian Missions for Strategic Success

    Science.gov (United States)

    2010-12-01

    pilots, relief missions had not previously been flown at night . But a little girl’s life was at stake, so Crocker authorized one of the State...with the Pakistani military, to Ambassador Crocker’s decision to launch a dangerous night mission to save the life of a 5-year-old girl, to Lance...PRISM 2, no. 1 leSSoNS leaRNed | 131 On Christmas morning 2005, at Saint Patrick’s Catholic Church in Auckland , New Zealand, a priest stepped up to

  4. Space Environments and Spacecraft Effects Concept: Transitioning Research to Operations and Applications

    Science.gov (United States)

    Edwards, D. L.; Burns, H. D.; Clinton, R. G.; Schumacher, D.; Spann, J. F.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous organizations specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline organizations, a concept is presented focusing on the development of a space environment and spacecraft effects organization. This includes space climate, space weather, natural and induced space environments, and effects on spacecraft materials and systems. This space environment and spacecraft effects organization would be comprised of Technical Working Groups (TWG) focusing on, for example: a) Charged Particles (CP), b) Space Environmental Effects (SEE), and c) Interplanetary and Extraterrestrial Environments (IEE). These technical working groups will generate products and provide knowledge supporting four functional areas: design environments, environment effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather observations to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA and other federal agencies to ensure that communications are well established and the needs of the programs are being met. The programmatic

  5. Surveillance mission planning for UAVs in GPS-denied urban environment

    Science.gov (United States)

    Pengfei, Wang

    In this thesis, the issues involved in the mission planning of UAVs for city surveillance have been studied. In this thesis, the research includes two major parts. Firstly, a mission planning system is developed that generates mission plans for a group of fixed-wing UAVs with on-board gimballed cameras to provide continuous surveillance over an urban area. Secondly, the problem of perching location selection (as part of perch-and-stare surveillance mission) for rotary-wing UAVs in a GPS-denied environment is studied. In this kind of mission, a UAV is dispatched to perch on a roof of a building to keep surveillance on a given target. The proposed algorithms to UAV surveillance mission planning (fixed-wing and rotary-wing) have been implemented and tested. It represents an important step towards achieving autonomous planning in UAV surveillance missions.

  6. Hierarchthis: An Interactive Interface for Identifying Mission-Relevant Components of the Advanced Multi-Mission Operations System

    Science.gov (United States)

    Litomisky, Krystof

    2012-01-01

    Even though NASA's space missions are many and varied, there are some tasks that are common to all of them. For example, all spacecraft need to communicate with other entities, and all spacecraft need to know where they are. These tasks use tools and services that can be inherited and reused between missions, reducing systems engineering effort and therefore reducing cost.The Advanced Multi-Mission Operations System, or AMMOS, is a collection of multimission tools and services, whose development and maintenance are funded by NASA. I created HierarchThis, a plugin designed to provide an interactive interface to help customers identify mission-relevant tools and services. HierarchThis automatically creates diagrams of the AMMOS database, and then allows users to show/hide specific details through a graphical interface. Once customers identify tools and services they want for a specific mission, HierarchThis can automatically generate a contract between the Multimission Ground Systems and Services Office, which manages AMMOS, and the customer. The document contains the selected AMMOS components, along with their capabilities and satisfied requirements. HierarchThis reduces the time needed for the process from service selections to having a mission-specific contract from the order of days to the order of minutes.

  7. Integrated Visualization Environment for Science Mission Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will provide NASA with an integrated visualization environment providing greater insight and a more intuitive representation of large technical...

  8. Integrated Visualization Environment for Science Mission Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will provide NASA with an integrated visualization environment providing greater insight and a more intuitive representation of large technical...

  9. Risk analysis for autonomous underwater vehicle operations in extreme environments.

    Science.gov (United States)

    Brito, Mario Paulo; Griffiths, Gwyn; Challenor, Peter

    2010-12-01

    Autonomous underwater vehicles (AUVs) are used increasingly to explore hazardous marine environments. Risk assessment for such complex systems is based on subjective judgment and expert knowledge as much as on hard statistics. Here, we describe the use of a risk management process tailored to AUV operations, the implementation of which requires the elicitation of expert judgment. We conducted a formal judgment elicitation process where eight world experts in AUV design and operation were asked to assign a probability of AUV loss given the emergence of each fault or incident from the vehicle's life history of 63 faults and incidents. After discussing methods of aggregation and analysis, we show how the aggregated risk estimates obtained from the expert judgments were used to create a risk model. To estimate AUV survival with mission distance, we adopted a statistical survival function based on the nonparametric Kaplan-Meier estimator. We present theoretical formulations for the estimator, its variance, and confidence limits. We also present a numerical example where the approach is applied to estimate the probability that the Autosub3 AUV would survive a set of missions under Pine Island Glacier, Antarctica in January-March 2009. © 2010 Society for Risk Analysis.

  10. Radiation Hardened High Speed Integrated Circuits Double Data Rate I/O for Extreme Operating Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Manned and robotic space missions require high-performance electronic control systems capable of operating for extended periods in harsh environments that are...

  11. JPL Space Telecommunications Radio System Operating Environment

    Science.gov (United States)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  12. IAEA Leads Operational Safety Mission to Rajasthan Atomic Power Station 3 and 4

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency (IAEA) today completed a review of safety practices at Units 3 and 4 of the Rajasthan Atomic Power Station in Rawatbhata. The team noted a series of good practices and made recommendations and suggestions to reinforce safety practices. The IAEA assembled the Operational Safety Review Team (OSART) at the request of the Government of India. Led by the IAEA's Division of Nuclear Installation Safety, the team performed an in-depth operational safety review from 29 October to 14 November 2012. The team was comprised of experts from Canada, Belgium, Finland, Germany, Romania, Slovakia, Slovenia, Sweden and the IAEA. The team conducted an in-depth review of the aspects essential to the safe operation of the Power Plant. The conclusions of the review are based on the IAEA's Safety Standards and good international practices. The review covered the areas of Management, Organization and Administration; Training; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry; Emergency Planning and Preparedness; and Severe Accident Management. The OSART team identified a number of good practices of the plant. These will be shared in due course by the IAEA with the global nuclear industry for consideration. Examples include the following: - The Power Plant's safety culture cultivates a constructive work environment and a sense of accountability among the Power Plant personnel, and gives its staff the opportunity to expand skills and training; - The Power Plant's Public Awareness Programme provides educational opportunities to the local community about nuclear and radiation safety; - The Power Plant has a Management of Training and Authorization system for effective management of training activities; and - The Power Plant uses testing facilities and mockups to improve the quality of maintenance work and to reduce radiation doses. The OSART

  13. Mitigating Extreme Environments for In-Situ Jupiter and Venus Missions

    Science.gov (United States)

    Balint, Tibor S.; Kolawa, Elizabeth A.; Cutts, James A.

    2006-01-01

    In response to the recommendations by the National Research Council (NRC), NASA's Solar System Exploration (SSE) Roadmap identified the in situ exploration of Venus and Jupiter as high priority science objectives. For Jupiter, deep entry probes are recommended, which would descend to approx.250 km - measured from the 1 bar pressure depth. At this level the pressure would correspond to approx.100 bar and the temperature would reach approx.500(deg)C. Similarly, at the surface of Venus the temperature and pressure conditions are approx.460(deg)C and approx.90 bar. Lifetime of the Jupiter probes during descent can be measured in hours, while in{situ operations at and near the surface of Venus are envisioned over weeks or months. In this paper we discuss technologies, which share commonalities in mitigating these extreme conditions over proposed mission lifetimes, specially focusing on pressure and temperature environments.

  14. Model based systems engineering (MBSE) applied to Radio Aurora Explorer (RAX) CubeSat mission operational scenarios

    Science.gov (United States)

    Spangelo, S. C.; Cutler, J.; Anderson, L.; Fosse, E.; Cheng, L.; Yntema, R.; Bajaj, M.; Delp, C.; Cole, B.; Soremekum, G.; Kaslow, D.

    Small satellites are more highly resource-constrained by mass, power, volume, delivery timelines, and financial cost relative to their larger counterparts. Small satellites are operationally challenging because subsystem functions are coupled and constrained by the limited available commodities (e.g. data, energy, and access times to ground resources). Furthermore, additional operational complexities arise because small satellite components are physically integrated, which may yield thermal or radio frequency interference. In this paper, we extend our initial Model Based Systems Engineering (MBSE) framework developed for a small satellite mission by demonstrating the ability to model different behaviors and scenarios. We integrate several simulation tools to execute SysML-based behavior models, including subsystem functions and internal states of the spacecraft. We demonstrate utility of this approach to drive the system analysis and design process. We demonstrate applicability of the simulation environment to capture realistic satellite operational scenarios, which include energy collection, the data acquisition, and downloading to ground stations. The integrated modeling environment enables users to extract feasibility, performance, and robustness metrics. This enables visualization of both the physical states (e.g. position, attitude) and functional states (e.g. operating points of various subsystems) of the satellite for representative mission scenarios. The modeling approach presented in this paper offers satellite designers and operators the opportunity to assess the feasibility of vehicle and network parameters, as well as the feasibility of operational schedules. This will enable future missions to benefit from using these models throughout the full design, test, and fly cycle. In particular, vehicle and network parameters and schedules can be verified prior to being implemented, during mission operations, and can also be updated in near real-time with oper

  15. Distributed Operations for the Cassini/Huygens Mission

    Science.gov (United States)

    Lock, P.; Sarrel, M.

    1998-01-01

    The cassini project employs a concept known as distributed operations which allows independent instrument operations from diverse locations, provides full empowerment of all participants and maximizes use of limited resources.

  16. Autonomy and Sensor Webs: The Evolution of Mission Operations

    Science.gov (United States)

    Sherwood, Rob

    2008-01-01

    Demonstration of these sensor web capabilities will enable fast responding science campaigns that combine spaceborne, airborne, and ground assets. Sensor webs will also require new operations paradigms. These sensor webs will be operated directly by scientists using science goals to control their instruments. We will explore these new operations architectures through a study of existing sensor web prototypes.

  17. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    Science.gov (United States)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; hide

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  18. The Impact of Meteoroid Streams on the Lunar Atmosphere and Dust Environment During the LADEE Mission

    Science.gov (United States)

    Stubbs, T. J.; Glenar, D. A.; Wang, Y.; Hermalyn, B.; Sarantos, M.; Colaprete, A.; Elphic, R. C.

    2015-01-01

    The scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are: (1) determine the composition of the lunar atmosphere, investigate processes controlling distribution and variability - sources, sinks, and surface interactions; and (2) characterize the lunar exospheric dust environment, measure spatial and temporal variability, and influences on the lunar atmosphere. Impacts on the lunar surface from meteoroid streams encountered by the Earth-Moon system are anticipated to result in enhancements in the both the lunar atmosphere and dust environment. Here we describe the annual meteoroid streams expected to be incident at the Moon during the LADEE mission, and their anticipated effects on the lunar environment.

  19. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    Science.gov (United States)

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  20. Shuttle Imaging Radar-C mission operations - Technology test bed for Earth Observing System synthetic aperture radar

    Science.gov (United States)

    Trimble, J. P.; Collins, C. E.

    1992-01-01

    The mission operations for the Space Radar Lab (SRL), particularly in the areas of real-time replanning and science activity coordination, are presented. The two main components of SRL are the Shuttle Imaging Radar-C and the X-Band Synthetic Aperture Radar. The Earth Observing System SAR will be a multispectral, multipolarization radar satellite that will provide information over an entire decade, permitting scientists to monitor large-scale changes in the earth's environment over a long period of time.

  1. PADME (Phobos And Deimos & Mars Environment): A Proposed NASA Discovery Mission

    Science.gov (United States)

    Lee, Pascal

    2014-11-01

    Ever the since their discovery in 1877 by American astronomer Asaph Hall, the two moons of Mars, Phobos and Deimos, have been enigmas. Spacecraft missions have revealed irregular-shaped small bodies with different densities, morphologies, and evolutionary histories. Spectral data suggest that they might be akin to D-type asteroids, although compositional interpretations of the spectra are ambiguous. The origin of Phobos and Deimos remains unknown. There are three prevailing hypotheses for their origin: 1) They are captured asteroids, possibly primitive D-type bodies from the outer main belt or beyond; 2) They are reaccreted impact ejecta from Mars; 3) They are remnants of Mars’s formation. Each one of these hypotheses has radically different and important implications regarding the evolution of the solar system, and/or the formation and evolution of planets and satellites, including the delivery of water and organics to the inner solar system. The Phobos And Deimos & Mars Environment (PADME) mission is a proposed NASA Discovery mission that will test these hypotheses, by investigating simultaneously the internal structure of Phobos and Deimos, and the composition and dynamics of their surface and near-surface materials. PADME would launch in 2020 and reach Mars orbit in early 2021. PADME would then begin a series of slow and increasingly close flybys of Phobos first, then of Deimos. PADME would use the proven LADEE spacecraft and mature instrument systems to enable a low-cost and low risk approach to carrying out its investigation. In addition to achieving its scientific objectives, PADME would fill strategic knowledge gaps identified by NASA’s SBAG and HEOMD for planning future, more ambitious robotic landed or sample return missions to Phobos and/or Deimos, and eventual human missions to Mars Orbit. PADME would be built, managed, and operated by NASA Ames Research Center. Partners include the SETI Institute, NASA JPL, NASA GSFC, NASA JSC, NASA KSC, LASP

  2. Cost management in a nuclear operating environment

    International Nuclear Information System (INIS)

    Steckel, J.K.; Gruber, C.O.

    1985-01-01

    This paper presents an integrated philosophy and program for managing costs in a nuclear operating environment. The ideas presented here are being used by Pennsyvania Power and Light Company (PPandL) at the Susquehanna Steam Electric Station. Three basic ideas necessary to successful cost management are listed and include: recognize the framework that is needed to ''manage'': treat cost as part of an integrated plan; and apply different techniques to different types of work activities. It is the author's opinion that the technical framework of a successful cost management system must include all work activities but recognize types. Project activities should be managed to a defined scope and authorized cost using a well communicated estimating program, aggressive trending and forecasting, and a change identification process

  3. Toward an automated signature recognition toolkit for mission operations

    Science.gov (United States)

    Cleghorn, T.; Laird, P.; Perrine, L.; Culbert, C.; Macha, M.; Saul, R.; Hammen, D.; Moebes, T.; Shelton, R.

    1994-10-01

    Signature recognition is the problem of identifying an event or events from its time series. The generic problem has numerous applications to science and engineering. At NASA's Johnson Space Center, for example, mission control personnel, using electronic displays and strip chart recorders, monitor telemetry data from three-phase electrical buses on the Space Shuttle and maintain records of device activation and deactivation. Since few electrical devices have sensors to indicate their actual status, changes of state are inferred from characteristic current and voltage fluctuations. Controllers recognize these events both by examining the waveform signatures and by listening to audio channels between ground and crew. Recently the authors have developed a prototype system that identifies major electrical events from the telemetry and displays them on a workstation. Eventually the system will be able to identify accurately the signatures of over fifty distinct events in real time, while contending with noise, intermittent loss of signal, overlapping events, and other complications. This system is just one of many possible signature recognition applications in Mission Control. While much of the technology underlying these applications is the same, each application has unique data characteristics, and every control position has its own interface and performance requirements. There is a need, therefore, for CASE tools that can reduce the time to implement a running signature recognition application from months to weeks or days. This paper describes our work to date and our future plans.

  4. Integrating Mission Type Orders into Operational Level Intelligence Collection

    Science.gov (United States)

    2011-05-27

    Purpose ......................................................................... 6 Conceptual Framework for Focusing Research...Operational Control OPLAN Operation Plan OSINT Open Source Intelligence OT Exercise OLYMPIC TITAN PED Processing, Exploitation, and Dissemination PIR...applied research framework , the researcher will offer assertions on the validity of using MTOs and recommendations on improving the use of MTOs in the

  5. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    Energy Technology Data Exchange (ETDEWEB)

    Chew, S.P.; Dunnett, S.J. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom); Andrews, J.D. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom)], E-mail: j.d.andrews@lboro.ac.uk

    2008-07-15

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically.

  6. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    International Nuclear Information System (INIS)

    Chew, S.P.; Dunnett, S.J.; Andrews, J.D.

    2008-01-01

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically

  7. Long term operation of nuclear power plants – IAEA SALTO missions observations and trends

    International Nuclear Information System (INIS)

    Krivanek, Robert; Havel, Radim

    2016-01-01

    Highlights: • During the period 2005–mid 2015, 22 SALTO peer review missions and 2 LTO modules of OSART missions were conducted. • Analysis of these mission results and main trends observed are gathered in this paper. • The main task of the assessment performed was to evaluate and give a weight to the evaluation. • Results of SALTO follow-up missions as well as OSART follow-up missions with LTO module are summarized. • The SALTO peer review service is strongly recommended for NPPs prior to entering LTO period. - Abstract: This paper builds on paper “Long term operation of nuclear power plants – IAEA SALTO peer review service and its results”, NED8070, presented in Nuclear Engineering and Design in September 2014. This paper presents the analysis of SALTO mission results and main trends observed so that all the most important results of SALTO missions are gathered in one paper. The paper also includes the results of LTO module reviews performed in the frame of OSART missions where applicable as well as follow-up missions. This paper is divided in three main Sections. Section 1 provides brief introduction to SALTO peer review service. Section 2 provides overview of performed SALTO missions and LTO modules of OSART missions performed between 2005 and mid-2015. Section 3 summarizes the most significant observations and trends resulting from the missions between 2005 and mid-2015. Section 4 summarizes the results of SALTO follow-up missions as well as OSART follow-up missions.

  8. CCSDS SM and C Mission Operations Interoperability Prototype

    Science.gov (United States)

    Lucord, Steven A.

    2010-01-01

    This slide presentation reviews the prototype of the Spacecraft Monitor and Control (SM&C) Operations for interoperability among other space agencies. This particular prototype uses the German Space Agency (DLR) to test the ideas for interagency coordination.

  9. Measuring Command Post Operations in a Decisive Action Training Environment

    Science.gov (United States)

    2017-05-01

    Vowels, C. L., Thomas, J. C., & Getchell, F. G. (2016). Assessing sustainment operations in a Decisive Action Training Environment . (ARI Research...Research Report 2001 Measuring Command Post Operations in a Decisive Action Training Environment Michelle N...September 2014 - September 2015 4. TITLE AND SUBTITLE Measuring Command Post Operations in a Decisive Action Training Environment 5a

  10. An operating environment for control systems on transputer networks

    NARCIS (Netherlands)

    Tillema, H.G.; Schoute, Albert L.; Wijbrans, K.C.J.; Wijbrans, K.C.J.

    1991-01-01

    The article describes an operating environment for control systems. The environment contains the basic layers of a distributed operating system. The design of this operating environment is based on the requirements demanded by controllers which can be found in complex control systems. Due to the

  11. Cost and Operational Effectiveness Analysis of Aiternative Force Structures for Fulfillment of the United States Marine Corps Operational Support Airlift and Search and Rescue Missions

    National Research Council Canada - National Science Library

    Chase, Eric

    2000-01-01

    This thesis provides a preliminary cost and operational effectiveness analysis of alternative force structures for the United States Marine Corps operational support airlift and search and rescue missions...

  12. Balancing burn-in and mission times in environments with catastrophic and repairable failures

    International Nuclear Information System (INIS)

    Bebbington, Mark; Lai, C.-D.; Zitikis, Ricardas

    2009-01-01

    In a system subject to both repairable and catastrophic (i.e., nonrepairable) failures, 'mission success' can be defined as operating for a specified time without a catastrophic failure. We examine the effect of a burn-in process of duration τ on the mission time x, and also on the probability of mission success, by introducing several functions and surfaces on the (τ,x)-plane whose extrema represent suitable choices for the best burn-in time, and the best burn-in time for a desired mission time. The corresponding curvature functions and surfaces provide information about probabilities and expectations related to these burn-in and mission times. Theoretical considerations are illustrated with both parametric and, separating the failures by failure mode, nonparametric analyses of a data set, and graphical visualization of results.

  13. Radiological risks in an operational environment

    International Nuclear Information System (INIS)

    Castagnet, X.; Lafferrerie, C.; Amabile, J.C.; Cazoulat, A.; Laroche, P.

    2010-01-01

    A radiological hazard (e. g. a detonating dirty bomb or accidental radionuclide dispersion) leading to a large number of contaminated or irradiated people needing immediate medical assistance is one of the main threats our troops deployed in an operational environment are facing. Immediate first aid anyway shall take precedence over decontamination but the unique nature of these injuries necessitates specific medical knowledge and training. A contaminated victim needs a rapid -clinical physical and biological- medical evaluation which will determine the amount of required medical support. A person with external contamination needs to be rapidly cleansed to limit spreading surface burns as well as limiting the possible contamination internally spreading into the body. A person with internal contamination requires rapid decontamination at the wound point and antidotes to internally cleanse the body. In France, the Military Health Service has developed a centre of expertise at the Percy military hospital near Paris which is geared up to deal with the victims of radiological attacks. It also has a mobile laboratory equipped with full radio toxicology equipment and body dosimeters to enable rapid and effective results when required. (authors)

  14. EOS Aqua: Mission Status at the Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) Meeting at the Kennedy Space Center (KSC)

    Science.gov (United States)

    Guit, Bill

    2017-01-01

    This presentation at the Earth Science Constellation Mission Operations Working Group meeting at KSC in December 2017 to discuss EOS (Earth Observing System) Aqua Earth Science Constellation status. Reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  15. Operational Resilience: Managing, Protecting, and Sustaining Organizational Missions

    Science.gov (United States)

    2014-01-23

    Operational Stress 10 © 2014 Carnegie Mellon University Saturday, February 4, 2012 New York THE WALL STREET JOURNAL . PRO. ESSIONAL WITH FACTIVA U...Monday, Aptil 16. 2012Asof8:21 PM EOT NewYOit 890 174° TilE WALL STREET JOURNAL . PROFESSIONAL WITH FACTIVA u.s. Edition Home • CFO Journal C IO...36 PM EDT New Yalt 89"(74° THE WALL STREET JOURNAL . PROFESSIONAL WITH FACTIVA U.S. Edit1on Home • CFO Journal CIO Journal Today’s Paper V ideo

  16. OSART mission highlights 2001-2003. Operational safety practices in nuclear power plants

    International Nuclear Information System (INIS)

    2005-05-01

    The IAEA Operational Safety Review Team (OSART) programme provides advice and assistance to Member States in enhancing the operational safety of nuclear power plants (NPPs). Careful design and high quality of construction are prerequisites for a safe nuclear power plant. However, a plant's safety depends ultimately on the ability and conscientiousness of the operating personnel and on the plant programmes, processes and working methods. An OSART mission compares a facility's operational performance with IAEA Safety Standards and proven good international practices. The OSART reviews are available to all countries with nuclear power plants in operation, but also approaching operation, commissioning or in earlier stages of construction (Pre-OSART). Most countries have participated in the programme by hosting one or more OSART missions or by making experts available to participate in missions. Operational safety missions can also be part of the design review missions of nuclear power plants and are known as Safety Review Missions (SRMs). Teams that review only a few specific areas or a specific issue are called Expert missions. Follow-up visits are a standard part of the OSART programme and are conducted between 12 to 18 months following the OSART mission. This report continues the practice of summarizing mission results so that all the aspects of OSART missions, Pre-OSART missions and OSART good practices are to be found in one document. It also includes the results of follow-up visits. Attempts have been made in this report to highlight the most significant findings while retaining as much of the vital background information as possible. This report is in three parts: Part I summarizes the most significant observations made during the missions and follow-up visits between 2001 and 2003; Part II, in chronological order, reviews the major strengths and opportunities for improvement identified during each OSART mission and summarizes the follow-up visits performed

  17. Evaluation of Crew-Centric Onboard Mission Operations Planning and Execution Tool: Year 2

    Science.gov (United States)

    Hillenius, S.; Marquez, J.; Korth, D.; Rosenbaum, M.; Deliz, Ivy; Kanefsky, Bob; Zheng, Jimin

    2018-01-01

    Currently, mission planning for the International Space Station (ISS) is largely affected by ground operators in mission control. The task of creating a week-long mission plan for ISS crew takes dozens of people multiple days to complete, and is often created far in advance of its execution. As such, re-planning or adapting to changing real-time constraints or emergent issues is similarly taxing. As we design for future mission operations concepts to other planets or areas with limited connectivity to Earth, more of these ground-based tasks will need to be handled autonomously by the crew onboard.There is a need for a highly usable (including low training time) tool that enables efficient self-scheduling and execution within a single package. The ISS Program has identified Playbook as a potential option. It already has high crew acceptance as a plan viewer from previous analogs and can now support a crew self-scheduling assessment on ISS or on another mission. The goals of this work, a collaboration between the Human Research Program and the ISS Program, are to inform the design of systems for more autonomous crew operations and provide a platform for research on crew autonomy for future deep space missions. Our second year of the research effort have included new insights on the crew self-scheduling sessions performed by the crew through use on the HERA (Human Exploration Research Analog) and NEEMO (NASA Extreme Environment Mission Operations) analogs. Use on the NEEMO analog involved two self-scheduling strategies where the crew planned and executed two days of EVAs (Extra-Vehicular Activities). On HERA year two represented the first HERA campaign where we were able to perform research tasks. This involved selected flexible activities that the crew could schedule, mock timelines where the crew completed more complex planning exercises, usability evaluation of the crew self-scheduling features, and more insights into the limit of plan complexity that the crew

  18. Joint Space Operations Center (JSpOC) Mission System (JMS)

    Science.gov (United States)

    Morton, M.; Roberts, T.

    2011-09-01

    US space capabilities benefit the economy, national security, international relationships, scientific discovery, and our quality of life. Realizing these space responsibilities is challenging not only because the space domain is increasingly congested, contested, and competitive but is further complicated by the legacy space situational awareness (SSA) systems approaching end of life and inability to provide the breadth of SSA and command and control (C2) of space forces in this challenging domain. JMS will provide the capabilities to effectively employ space forces in this challenging domain. Requirements for JMS were developed based on regular, on-going engagement with the warfighter. The use of DoD Architecture Framework (DoDAF) products facilitated requirements scoping and understanding and transferred directly to defining and documenting the requirements in the approved Capability Development Document (CDD). As part of the risk reduction efforts, the Electronic System Center (ESC) JMS System Program Office (SPO) fielded JMS Capability Package (CP) 0 which includes an initial service oriented architecture (SOA) and user defined operational picture (UDOP) along with force status, sensor management, and analysis tools. Development efforts are planned to leverage and integrate prototypes and other research projects from Defense Advanced Research Projects Agency, Air Force Research Laboratories, Space Innovation and Development Center, and Massachusetts Institute of Technology/Lincoln Laboratories. JMS provides a number of benefits to the space community: a reduction in operational “transaction time” to accomplish key activities and processes; ability to process the increased volume of metric observations from new sensors (e.g., SBSS, SST, Space Fence), as well as owner/operator ephemerides thus enhancing the high accuracy near-real-time catalog, and greater automation of SSA data sharing supporting collaboration with government, civil, commercial, and foreign

  19. Applied Multi-Mission Telemetry Processing and Display for Operations, Integration, Training, Playback and Event Reconstruction

    Science.gov (United States)

    Pomerantz, Marc; Nguyen, Viet; Lee, Daren; Lim, Christopher; Huynh, Tom

    2015-01-01

    Conveying spacecraft health and status information to mission engineering personnel during various mission phases, including mission operations, is a requirement to achieve a successful mission. For NASA/JPL spacecraft, that often means displaying hundreds of telemetry channels from a variety of sensors and components emitting data at rates varying from 1hz-100hz (and faster) in a way that allows the operations team to quickly evaluate the health of the vehicle, identify any off-nominal states and resolve any issues. In this paper we will discuss the system design, requirements and use cases of three telemetry processing and visualization systems recently developed and deployed by our team for NASA's Low Density Supersonic Decelerator (LDSD) test vehicle, NASA's Soil Moisture Active/Passive (SMAP) orbiter, and JPL's Sampling Lab Universal Robotic Manipulator (SLURM) test bed.

  20. The Evolvable Advanced Multi-Mission Operations System (AMMOS): Making Systems Interoperable

    Science.gov (United States)

    Ko, Adans Y.; Maldague, Pierre F.; Bui, Tung; Lam, Doris T.; McKinney, John C.

    2010-01-01

    The Advanced Multi-Mission Operations System (AMMOS) provides a common Mission Operation System (MOS) infrastructure to NASA deep space missions. The evolution of AMMOS has been driven by two factors: increasingly challenging requirements from space missions, and the emergence of new IT technology. The work described in this paper focuses on three key tasks related to IT technology requirements: first, to eliminate duplicate functionality; second, to promote the use of loosely coupled application programming interfaces, text based file interfaces, web-based frameworks and integrated Graphical User Interfaces (GUI) to connect users, data, and core functionality; and third, to build, develop, and deploy AMMOS services that are reusable, agile, adaptive to project MOS configurations, and responsive to industrially endorsed information technology standards.

  1. Shuttle Radar Topography Mission (SRTM) Flight System Design and Operations Overview

    Science.gov (United States)

    Shen, Yuhsyen; Shaffer, Scott J.; Jordan, Rolando L.

    2000-01-01

    This paper provides an overview of the Shuttle Radar Topography Mission (SRTM), with emphasis on flight system implementation and mission operations from systems engineering perspective. Successfully flown in February, 2000, the SRTM's primary payload consists of several subsystems to form the first spaceborne dual-frequency (C-band and X-band) fixed baseline interferometric synthetic aperture radar (InSAR) system, with the mission objective to acquire data sets over 80% of Earth's landmass for height reconstruction. The paper provides system architecture, unique design features, engineering budgets, design verification, in-flight checkout and data acquisition of the SRTM payload, in particular for the C-band system. Mission operation and post-mission data processing activities are also presented. The complexity of the SRTM as a system, the ambitious mission objective, the demanding requirements and the high interdependency between multi-disciplined subsystems posed many challenges. The engineering experience and the insight thus gained have important implications for future spaceborne interferometric SAR mission design and implementation.

  2. Operational Concept of the NEXTSat-1 for Science Mission and Space Core Technology Verification

    Directory of Open Access Journals (Sweden)

    Goo-Hwan Shin

    2014-03-01

    Full Text Available The next generation small satellite-1 (NEXTSat-1 program has been kicked off in 2012, and it will be launched in 2016 for the science missions and the verification of space core technologies. The payloads for these science missions are the Instrument for the Study of Space Storms (ISSS and NIR Imaging Spectrometer for Star formation history (NISS. The ISSS and the NISS have been developed by Korea Advanced Institute of Science and Technology (KAIST and Korea Astronomy and Space science Institute (KASI respectively. The ISSS detects plasma densities and particle fluxes of 10 MeV energy range near the Earth and the NISS uses spectrometer. In order to verify the spacecraft core technologies in the space, the total of 7 space core technologies (SCT will be applied to the NEXTSat-1 for space verification and those are under development. Thus, the operation modes for the ISSS and the NISS for space science missions and 7 SCTs for technology missions are analyzed for the required operation time during the NEXTSat-1’s mission life time of 2 years. In this paper, the operational concept of the NEXTSat-1’s science missions as well as the verification of space core technologies are presented considering constraints of volume, mass, and power after launch.

  3. Statistics of AUV's Missions for Operational Ocean Observation at the South Brazilian Bight.

    Science.gov (United States)

    dos Santos, F. A.; São Tiago, P. M.; Oliveira, A. L. S. C.; Barmak, R. B.; Miranda, T. C.; Guerra, L. A. A.

    2016-02-01

    The high costs and logistics limitations of ship-based data collection represent an obstacle for a persistent in-situ data collection. Satellite-operated Autonomous Underwater Vehicles (AUV's) or gliders (as these AUV's are generally known by the scientific community) are presented as an inexpensive and reliable alternative to perform long-term and real-time ocean monitoring of important parameters such as temperature, salinity, water-quality and acoustics. This work is focused on the performance statistics and the reliability for continuous operation of a fleet of seven gliders navigating in Santos Basin - Brazil, since March 2013. The gliders performance were evaluated by the number of standby days versus the number of operating days, the number of interrupted missions due to (1) equipment failure, (2) weather, (3) accident versus the number of successful missions and the amount and quality of data collected. From the start of the operations in March 2013 to the preparation of this work (July 2015), a total of 16 glider missions were accomplished, operating during 728 of the 729 days passed since then. From this total, 11 missions were successful, 3 missions were interrupted due to equipment failure and 2 gliders were lost. Most of the identified issues were observed in the communication with the glider (when recovery was necessary) or the optode sensors (when remote settings solved the problem). The average duration of a successful mission was 103 days while interrupted ones ended on average in 7 days. The longest mission lasted for 139 days, performing 859 continuous profiles and covering a distance of 2734 Km. The 2 projects performed together 6856 dives, providing an average of 9,5 profiles per day or one profile every 2,5 hours each day during 2 consecutive years.

  4. President Richard Nixon visits MSC to award Apollo 13 Mission Operations team

    Science.gov (United States)

    1970-01-01

    President Richard M. Nixon introduces Sigurd A. Sjoberg (far right), Director of Flight Operations at Manned Spacecraft Center (MSC), and the four Apollo 13 Flight Directors during the Presidnet's post-mission visit to MSC. The Flight Directors are (l.-r.) Glynn S. Lunney, Eugene A. Kranz, Gerald D. Griffin and Milton L. Windler. Dr. Thomas O. Paine, NASA Administrator, is seated at left. President Nixon was on the site to present the Presidential Medal of Freedom -- the nation's highest civilian honor -- to the Apollo 13 Mission Operations Team (35600); A wide-angle, overall view of the large crowd that was on hand to see President Richard M. Nixon present the Presidnetial Medal of Freedom to the Apollo 13 Mission Operations Team. A temporary speaker's platform was erected beside bldg 1 for the occasion (35601).

  5. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    International Nuclear Information System (INIS)

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A.; Normand, Eugene

    2006-01-01

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided

  6. Defensive Operations in a Decisive Action Training Environment

    Science.gov (United States)

    2017-07-01

    Sciences. Dasse, M. N., Vowels, C. L., Fair, A. J., & Boyer, D. D. (2017). Assessing sustainment operations in a Decisive Action Training Environment ...Operations in a Decisive Action Training Environment Christopher L. Vowels W. Anthony Scroggins U.S. Army Research Institute Captain Kyle T...SUBTITLE Defensive Operations in a Decisive Action Training Environment 5a. CONTRACT OR GRANT NUMBER 5b. PROGRAM ELEMENT NUMBER

  7. The Concept Of A Potential Operational CryoSat Follow-on Mission

    Science.gov (United States)

    Cullen, R.

    2016-12-01

    CryoSat was a planned as a 3 year mission with clear mission objectives to allow the assessment rates of change of thickness in the land and marine ice fields with reduced uncertainties with relation to other non-dedicated missions. Although CryoSat suffered a launch failure in Oct 2005, the mission was recovered with a launch in April 2010 of CryoSat-2. The nominal mission has now been completed, all mission requirements have been fulfilled and CryoSat has been shown to be most successful as a dedicated polar ice sheet measurement system demonstrated by nearly 200 peer reviewed publications within the first four years of launch. Following the completion of the nominal mission in Oct 2013 the platform was shown to be in good health and with a scientific backing provided by the ESA Earth Science Advisory Committee (ESAC) the mission has been extended until Feb 2017 by the ESA Programme Board for Earth Observation. Though not designed to provide data for science and operational services beyond its original mission requirements, a number of services have been developed for exploitation and these are expected to increase over the next few years. Services cover a number of aspects of land and marine ice fields in addition to complementary activities covering glacial monitoring, inland water in addition to coastal and open ocean surface topography science that CryoSat has demonstrated world leading advances with. This paper will present the overall concept for a potential low-cost continuity to the CryoSat mission with the objective to provide both continuity of the existing CryoSat based data sets, i.e., longer term science and operational services that cannot be provided by the existing Copernicus complement of satellites. This is, in part, due to the high inclination (92°) drifting orbit and state of the art Synthetic Aperture Interferometer Radar Altimeter (SIRAL). In addition, further improvements in performance are expected by use of improved modes of operation

  8. A Potential Operational CryoSat Follow-on Mission Concept and Design

    Science.gov (United States)

    Cullen, R.

    2015-12-01

    CryoSat was a planned as a 3 year mission with clear mission objectives to allow the assessment rates of change of thickness in the land and marine ice fields with reduced uncertainties with relation to other non-dedicated missions. Although CryoSat suffered a launch failure in Oct 2005, the mission was recovered with a launch in April 2010 of CryoSat-2. The nominal mission has now been completed, all mission requirements have been fulfilled and CryoSat has been shown to be most successful as a dedicated polar ice sheet measurement system demonstrated by nearly 200 peer reviewed publications within the first four years of launch. Following the completion of the nominal mission in Oct 2013 the platform was shown to be in good health and with a scientific backing provided by the ESA Earth Science Advisory Committee (ESAC) the mission has been extended until Feb 2017 by the ESA Programme Board for Earth Observation. Though not designed to provide data for science and operational services beyond its original mission requirements, a number of services have been developed for exploitation and these are expected to increase over the next few years. Services cover a number of aspects of land and marine ice fields in addition to complementary activities covering glacial monitoring, inland water in addition to coastal and open ocean surface topography science that CryoSat has demonstrated world leading advances with. This paper will present the overall concept for a potential low-cost follow-on to the CryoSat mission with the objective to provide both continuity of the existing CryoSat based data sets, i.e., longer term science and operational services that cannot be provided by the existing Copernicus complement of satellites. This is, in part, due to the high inclination (92°) drifting orbit and state of the art Synthetic Aperture Interferometer Radar Altimeter (SIRAL). In addition, further improvements in performance are expected by use of the instrument timing and

  9. Cryosat: ESA's ice Explorer Mission. 7 years in operations: status and future outlook

    Science.gov (United States)

    Parrinello, Tommaso

    2017-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. Since its launch, CryoSat data has been used by different scientific communities on a number of Earth Science topics also beyond its prime mission objectives, cryosphere. Scope of this paper is to describe the current mission status and provide programmatic highlights and information on the next development of the mission in its extended period of operations (2017-2019).

  10. Operating the Dual-Orbiter GRAIL Mission to Measure the Moon's Gravity

    Science.gov (United States)

    Beerer, Joseph G.; Havens, Glen G.

    2012-01-01

    NASA's mission to measure the Moon's gravity and determine the interior structure, from crust to core, has almost completed its 3-month science data collection phase. The twin orbiters of the Gravity Recovery and Interior Laboratory (GRAIL) mission were launched from Florida on September 10, 2011, on a Delta-II launch vehicle. After traveling for nearly four months on a low energy trajectory to the Moon, they were inserted into lunar orbit on New Year's Eve and New Year's Day. In January 2012 a series of circularization maneuvers brought the orbiters into co-planar near-circular polar orbits. In February a distant (75- km) rendezvous was achieved and the science instruments were turned on. A dual- frequency (Ka and S-band) inter-orbiter radio link provides a precise orbiter-to-orbiter range measurement that enables the gravity field estimation. NASA's Jet Propulsion Laboratory in Pasadena, CA, manages the GRAIL project. Mission management, mission planning and sequencing, and navigation are conducted at JPL. Lockheed Martin, the flight system manufacturer, operates the orbiters from their control center in Denver, Colorado. The orbiters together have performed 28 propulsive maneuvers to reach and maintain the science phase configuration. Execution of these maneuvers, as well as the payload checkout and calibration activities, has gone smoothly due to extensive pre-launch operations planning and testing. The key to the operations success has been detailed timelines for product interchange between the operations teams and proven procedures from previous JPL/LM planetary missions. Once in science phase, GRAIL benefitted from the payload operational heritage of the GRACE mission that measures the Earth's gravity.

  11. The Army Strategy for the Environment: Sustain the Mission, Secure the Future

    Science.gov (United States)

    2010-01-01

    materiel, facilities, and operations. We will integrate sustainability into all activities by using the ISO 14001 Environmental Management System Standard as... transitions the Army’s compliance- based environmental program to a mission-oriented approach based on the principles of sustainability. This document

  12. Operational Risk Management: Increasing Mission Effectiveness Through Improved Planning and Execution of Joint Operations

    National Research Council Canada - National Science Library

    Beckvonpeccoz, Stephen

    1997-01-01

    .... This deficiency should be remedied with the adoption of Operational Risk Management (ORM), an existing process which would provide operational commanders a tool for making smarter risk decisions...

  13. Operational security in a grid environment

    CERN Document Server

    CERN. Geneva

    2008-01-01

    This talk presents the main goals of computer security in a grid environment, by using a FAQ approach. It details the evolution of the risks in the recent years, likely objectives for attackers and the progress made by the malware toolkits and frameworks. Finally, recommendations to deal with these threats are proposed.

  14. Measuring emotions of robot operators in urban search and rescue missions

    NARCIS (Netherlands)

    Mioch, T.; Giele, T.R.A.; Smets, N.J.J.M.; Neerincx, M.A.

    2013-01-01

    This paper evaluates the feasibility and reliability of measuring the (emotional) state of the robot operators in urban search and rescue missions in real-time. An experiment has been conducted, in which a high-fidelity team task in a realistic urban search and rescue setting was executed by fire

  15. Spatial Thinking: Precept for Understanding Operational Environments

    Science.gov (United States)

    2016-06-10

    ATP Army Techniques Publication COP Common Operating Picture DOTMLPF Doctrine, Organization, Training, Materiel, Leadership and education ...numbers, linguists in vocal tones (words), and artists in images of feeling. To understand spatial thinking is to understand the nature of how humans...how that space impacts our interactions. Like any mode of thinking, be it numerical, artistic , or vocal, spatial thinking requires a medium for

  16. Operational Risk Defined Through a Complex Operating Environment

    Science.gov (United States)

    2015-02-26

    developed insurance as a viable market and a method to protect investments against negative consequences. Edward Lloyd operated a coffee -house at the port of...A drought , in 2011 led to a serious famine throughout 50 The CIA World Fact Book provided the geographic assessment, accessed on December 9...UN Security Council Resolution 1772 (2007), S/Res/1772(2007), August 2, 2007. 27 mandate timeline, stressed humanitarian rights, and focused on

  17. A Systems Approach to Architecting a Mission Package for LCS Support of Amphibious Operations

    Science.gov (United States)

    2014-09-01

    ESG expeditionary strike group F2T2EA find, fix, track, target, engage, and assess FAA functional area analysis FLIR forward-looking infrared FO...engagement capability. The LCS operating in support of a CSG or expeditionary strike group ( ESG ), or as part of a surface action group (SAG), will...Module 15 2. Anti-Submarine Warfare Mission Package Operating in direct support of a CSG or ESG , or as part of a forward-deployed group, the LCS

  18. Desert Rats 2011 Mission Simulation: Effects of Microgravity Operational Modes on Fields Geology Capabilities

    Science.gov (United States)

    Bleacher, Jacob E.; Hurtado, J. M., Jr.; Meyer, J. A.

    2012-01-01

    Desert Research and Technology Studies (DRATS) is a multi-year series of NASA tests that deploy planetary surface hardware and exercise mission and science operations in difficult conditions to advance human and robotic exploration capabilities. DRATS 2011 (Aug. 30-Sept. 9, 2011) tested strategies for human exploration of microgravity targets such as near-Earth asteroids (NEAs). Here we report the crew perspective on the impact of simulated microgravity operations on our capability to conduct field geology.

  19. Visual operations control in administrative environments

    Energy Technology Data Exchange (ETDEWEB)

    Carson, M.L.; Levine, L.O.

    1995-03-01

    When asked what comes to mind when they think of ``controlling work`` in the office, people may respond with ``overbearing boss,`` ``no autonomy,`` or ``Theory X management.`` The idea of controlling work in white collar or administrative environments can have a negative connotation. However, office life is often chaotic and miserable precisely because the work processes are out of control, and managers must spend their time looking over people`s shoulders and fighting fires. While management styles and structures vary, the need for control of work processes does not. Workers in many environments are being reorganized into self-managed work teams. These teams are expected to manage their own work through increased autonomy and empowerment. However, even empowered work teams must manage their work processes because of process variation. The amount of incoming jobs vary with both expected (seasonal) and unexpected demand. The mixture of job types vary over time, changing the need for certain skills or knowledge. And illness and turnover affect the availability of workers with needed skills and knowledge. Clearly, there is still a need to control work, whether the authority for controlling work is vested in one person or many. Visual control concepts provide simple, inexpensive, and flexible mechanisms for managing processes in work teams and continuous improvement administrative environments.

  20. Overpopulated, Underdeveloped Urban Agglomerations: Tomorrow’s Unstable Operating Environment

    Science.gov (United States)

    2012-05-08

    DATES COVERED (From - To) 4. TITLE AND SUBTITLE Overpopulated , Underdeveloped Urban Agglomerations: Tomorrow’s 5a. CONTRACT NUMBER...ABSTRACT This paper asserts that a unique future operational environment is developing: overpopulated , underdeveloped urban agglomerations. A...proposed definition for this operating environment is (or would be) an overpopulated urban area which is located within a developing or underdeveloped

  1. Appraisals for potential hazards in the operational environment and ...

    African Journals Online (AJOL)

    Objective: To appraise operational environments and facilities of petroleum refining and distribution industry in Nigeria with a view to establishing the potential hazards/health risks. Design: A prospective study. Setting: The Operational environments- facilities and activities of PHRC and PPMC, Eleme near Port Harcourt, ...

  2. Influence of Natural Environments in Spacecraft Design, Development, and Operation

    Science.gov (United States)

    Edwards, Dave

    2013-01-01

    Spacecraft are growing in complexity and sensitivity to environmental effects. The spacecraft engineer must understand and take these effects into account in building reliable, survivable, and affordable spacecraft. Too much protections, however, means unnecessary expense while too little will potentially lead to early mission loss. The ability to balance cost and risk necessitates an understanding of how the environment impacts the spacecraft and is a critical factor in its design. This presentation is intended to address both the space environment and its effects with the intent of introducing the influence of the environment on spacecraft performance.

  3. Communications During Critical Mission Operations: Preparing for InSight's Landing on Mars

    Science.gov (United States)

    Asmar, Sami; Oudrhiri, Kamal; Kurtik, Susan; Weinstein-Weiss, Stacy

    2014-01-01

    Radio communications with deep space missions are often taken for granted due to the impressively successful records since, for decades, the technology and infrastructure have been developed for ground and flight systems to optimize telemetry and commanding. During mission-critical events such as the entry, descent, and landing of a spacecraft on the surface of Mars, the signal's level and frequency dynamics vary significantly and typically exceed the threshold of the budgeted links. The challenge is increased when spacecraft shed antennas with heat shields and other hardware during those risky few minutes. We have in the past successfully received signals on Earth during critical events even ones not intended for ground reception. These included the UHF signal transmitted by Curiosity to Marsorbiting assets. Since NASA's Deep Space Network does not operate in the UHF band, large radio telescopes around the world are utilized. The Australian CSIRO Parkes Radio Telescope supported the Curiosity UHF signal reception and DSN receivers, tools, and expertise were used in the process. In preparation for the InSight mission's landing on Mars in 2016, preparations are underway to support the UHF communications. This paper presents communication scenarios with radio telescopes, and the DSN receiver and tools. It also discusses the usefulness of the real-time information content for better response time by the mission team towards successful mission operations.

  4. Design, qualification and operation of nuclear rockets for safe Mars missions

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.W.; Olson, T.S.; Redd, L.R.

    1993-01-01

    Nuclear thermal propulsion modules planned for use on crew missions to Mars improve mission reliability and overall safety of the mission. This, as well as all other systems, are greatly enhanced if the system specifications take into account safety from design initiation, and operational considerations are well thought through and applied. For instance, the use of multiple engines in the propulsion module can lead to very high system safety and reliability. Operational safety enhancements may include: the use of multiple perigee burns, thus allowing time to ensure that all systems are functioning properly prior to departure from Earth orbit; the ability to perform all other parts of the mission in a degraded mode with little or no degradation of the mission; and the safe disposal of the nuclear propulsion module in a heliocentric orbit out of the ecliptic plane. The standards used to qualify nuclear rockets are one of the main cost drivers of the program. Concepts and systems that minimize cost and risk will rely on use of the element and component levels to demonstrate technology readiness and validation. Subsystem or systems testing then is only needed for verification of performance. Also, these will be the safest concepts because they will be more thoroughly understood and the safety margins will be well established and confirmed by tests

  5. Prediction of software operational reliability using testing environment factors

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Seong, Poong Hyun

    1995-01-01

    For many years, many researches have focused on the quantification of software reliability and there are many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. The experiences show that the operational reliability is higher than the test reliability User's interest is on the operational reliability rather than on the test reliability, however. With the assumption that the difference in reliability results from the change of environment, testing environment factors comprising the aging factor and the coverage factor are defined in this study to predict the ultimate operational reliability with the failure data. It is by incorporating test environments applied beyond the operational profile into testing environment factors. The application results are close to the actual data

  6. OSART mission highlights 1989-1990: Operational safety practices in nuclear power plants

    International Nuclear Information System (INIS)

    1992-12-01

    The IAEA Operational Safety Review Team (OSART) programme provides advice and assistance to Member States in enhancing the operational safety of nuclear power plants. OSART reviews are available to all countries with nuclear power plants in operation or approaching operation. Most of these countries have participated in the programme, by hosting one or more OSART missions or by making experts available to participate in missions. Careful design and high quality of construction are prerequisites for a safe nuclear power plant. However, a plant's safety depends ultimately on the ability and conscientiousness of the operating personnel and on their tools and work methods. OSART missions assess a facility's operational practices in comparison with those used successfully in other countries, and exchange, at the working level, ideas for promoting safety. Both the plants reviewed and the organizations providing experts have benefited from the programme. The observations of the OSART members are documented in technical notes which are then used as source material for the official OSART Report submitted to the government of the host country. The technical notes contain recommendations for improvements and descriptions of recommendable good practices. The same notes have been used to compile the present summary report which is intended for wide distribution to all organizations constructing, operating or regulating nuclear power plants. This report is the fourth in a series following IAEA-TECDOC-458, IAEA-TECDOC-497 and IAEA-TECDOC-570 and covers the period June 1989 to December 1990. Reference is also made to a summary report of Pre-OSART missions, which is in preparation. In addition, a report presenting OSART Good Practices has been published (IAEA-TECDOC-605)

  7. Programmer's manual for the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)

    Science.gov (United States)

    Lutzky, D.; Bjorkman, W. S.

    1973-01-01

    The Mission Analysis Evaluation and Space Trajectory Operations program known as MAESTRO is described. MAESTRO is an all FORTRAN, block style, computer program designed to perform various mission control tasks. This manual is a guide to MAESTRO, providing individuals the capability of modifying the program to suit their needs. Descriptions are presented of each of the subroutines descriptions consist of input/output description, theory, subroutine description, and a flow chart where applicable. The programmer's manual also contains a detailed description of the common blocks, a subroutine cross reference map, and a general description of the program structure.

  8. Operating systems in the air transportation environment.

    Science.gov (United States)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  9. The Skylab Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions

    Science.gov (United States)

    Polk, James D.; Duncan, James M.; Davis, Jeffrey R.; Williams, Richard S.; Lindgren, Kjell N.; Mathes, Karen L.; Gillis, David B.; Scheuring, Richard A.

    2009-01-01

    From May of 1973 to February of 1974, the National Aeronautics and Space Administration conducted a series of three manned missions to the Skylab space station, a voluminous vehicle largely descendant of Apollo hardware, and America s first space station. The crewmembers of these three manned missions spent record breaking durations of time in microgravity (28 days, 59 days and 84 days, respectively) and gave the U.S. space program its first experiences with long-duration space flight. The program overcame a number of obstacles (including a significant crippling of the Skylab vehicle) to conduct a lauded scientific program that encompassed life sciences, astronomy, solar physics, materials sciences and Earth observation. Skylab has more to offer than the results of its scientific efforts. The operations conducted by the Skylab crews and ground personnel represent a rich legacy of operational experience. As we plan for our return to the moon and the subsequent manned exploration of Mars, it is essential to utilize the experiences and insights of those involved in previous programs. Skylab and SMEAT (Skylab Medical Experiments Altitude Test) personnel have unique insight into operations being planned for the Constellation Program, such as umbilical extra-vehicular activity and water landing/recovery of long-duration crewmembers. Skylab was also well known for its habitability and extensive medical suite; topics which deserve further reflection as we prepare for lunar habitation and missions beyond Earth s immediate sphere of influence. The Skylab Medical Operations Summit was held in January 2008. Crewmembers and medical personnel from the Skylab missions and SMEAT were invited to participate in a two day summit with representatives from the Constellation Program medical operations community. The purpose of the summit was to discuss issues pertinent to future Constellation operations. The purpose of this document is to formally present the recommendations of the

  10. An Overview of Trajectory Design Operations for the Microwave Anisotropy Probe Mission

    Science.gov (United States)

    Mesarch, Michael A.; Kraft-Newman, Lauri; Cuevas, Osvaldo O.; Woodard, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    The purpose of this paper is to document the results of the pre-launch trajectory design and the real-time operations for the Microwave Anisotropy Probe (MAP) mission, launched on June 30, 2001. Once MAP was successfully inserted into a highly elliptical phasing orbit, three perigee maneuvers and a final perigee correction maneuver were performed to tailor a lunar encounter on July 30, 2001. MAP achieved its final Lissajous orbit (0.5 deg. by 10.5 deg.) about the Sun-Earth/Moon L2 libration point via this lunar encounter. This paper will show the maneuvers that were designed to arrive at the mission orbit. A further discussion of how the MAP trajectory analysts altered the pre-launch phasing loop maneuvers as well as the lunar encounter to meet all mission constraints, including the constraint of zero lunar shadows is also included.

  11. NASA's Planetary Science Summer School: Training Future Mission Leaders in a Concurrent Engineering Environment

    Science.gov (United States)

    Mitchell, K. L.; Lowes, L. L.; Budney, C. J.; Sohus, A.

    2014-12-01

    NASA's Planetary Science Summer School (PSSS) is an intensive program for postdocs and advanced graduate students in science and engineering fields with a keen interest in planetary exploration. The goal is to train the next generation of planetary science mission leaders in a hands-on environment involving a wide range of engineers and scientists. It was established in 1989, and has undergone several incarnations. Initially a series of seminars, it became a more formal mission design experience in 1999. Admission is competitive, with participants given financial support. The competitively selected trainees develop an early mission concept study in teams of 15-17, responsive to a typical NASA Science Mission Directorate Announcement of Opportunity. They select the mission concept from options presented by the course sponsors, based on high-priority missions as defined by the Decadal Survey, prepare a presentation for a proposal authorization review, present it to a senior review board and receive critical feedback. Each participant assumes multiple roles, on science, instrument and project teams. They develop an understanding of top-level science requirements and instrument priorities in advance through a series of reading assignments and webinars help trainees. Then, during the five day session at Jet Propulsion Laboratory, they work closely with concurrent engineers including JPL's Advanced Projects Design Team ("Team X"), a cross-functional multidisciplinary team of engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. All are mentored and assisted directly by Team X members and course tutors in their assigned project roles. There is a strong emphasis on making difficult trades, simulating a real mission design process as accurately as possible. The process is intense and at times dramatic, with fast-paced design sessions and late evening study sessions. A survey of PSSS alumni

  12. Asteroid Redirect Mission Proximity Operations for Reference Target Asteroid 2008 EV5

    Science.gov (United States)

    Reeves, David M.; Mazanek, Daniel D.; Cichy, Benjamin D.; Broschart, Steve B.; Deweese, Keith D.

    2016-01-01

    NASA's Asteroid Redirect Mission (ARM) is composed of two segments, the Asteroid Redirect Robotic Mission (ARRM), and the Asteroid Redirect Crewed Mission (ARCM). In March of 2015, NASA selected the Robotic Boulder Capture Option1 as the baseline for the ARRM. This option will capture a multi-ton boulder, (typically 2-4 meters in size) from the surface of a large (greater than approx.100 m diameter) Near-Earth Asteroid (NEA) and return it to cis-lunar space for subsequent human exploration during the ARCM. Further human and robotic missions to the asteroidal material would also be facilitated by its return to cis-lunar space. In addition, prior to departing the asteroid, the Asteroid Redirect Vehicle (ARV) will perform a demonstration of the Enhanced Gravity Tractor (EGT) planetary defense technique2. This paper will discuss the proximity operations which have been broken into three phases: Approach and Characterization, Boulder Capture, and Planetary Defense Demonstration. Each of these phases has been analyzed for the ARRM reference target, 2008 EV5, and a detailed baseline operations concept has been developed.

  13. Cryosat: ESA'S Ice Explorer Mission, 6 years in operations: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Maestroni, Elia; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Davidson, Malcolm; Fornari, Marco; Scagliola, Michele

    2016-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 6th years of operational life in April 2016. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and its main scientific achievements. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  14. Cryosat: ESA'S Ice Explorer Mission. Five years in operations: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Mardle, Nicola; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Fornari, Marco; Scagliola, Michele

    2015-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 5th years of operational life in April 2015. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  15. CryoSat: ESA's ice explorer mission. 4 years in operations: status and achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Ortega, B.; Bouffard, J.; Badessi, S.; Frommknecht, B.; Davidson, M.

    2014-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 4th years of operational life in April 2014. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  16. Multiple operating system rotation environment moving target defense

    Science.gov (United States)

    Evans, Nathaniel; Thompson, Michael

    2016-03-22

    Systems and methods for providing a multiple operating system rotation environment ("MORE") moving target defense ("MTD") computing system are described. The MORE-MTD system provides enhanced computer system security through a rotation of multiple operating systems. The MORE-MTD system increases attacker uncertainty, increases the cost of attacking the system, reduces the likelihood of an attacker locating a vulnerability, and reduces the exposure time of any located vulnerability. The MORE-MTD environment is effectuated by rotation of the operating systems at a given interval. The rotating operating systems create a consistently changing attack surface for remote attackers.

  17. Real-time data system: Incorporating new technology in mission critical environments

    Science.gov (United States)

    Muratore, John F.; Heindel, Troy A.

    1990-01-01

    If the Space Station Freedom is to remain viable over its 30-year life span, it must be able to incorporate new information systems technologies. These technologies are necessary to enhance mission effectiveness and to enable new NASA missions, such as supporting the Lunar-Mars Initiative. Hi-definition television (HDTV), neural nets, model-based reasoning, advanced languages, CPU designs, and computer networking standards are areas which have been forecasted to make major strides in the next 30 years. A major challenge to NASA is to bring these technologies online without compromising mission safety. In past programs, NASA managers have been understandably reluctant to rely on new technologies for mission critical activities until they are proven in noncritical areas. NASA must develop strategies to allow inflight confidence building and migration of technologies into the trusted tool base. NASA has successfully met this challenge and developed a winning strategy in the Space Shuttle Mission Control Center. This facility, which is clearly among NASA's most critical, is based on 1970's mainframe architecture. Changes to the mainframe are very expensive due to the extensive testing required to prove that changes do not have unanticipated impact on critical processes. Systematic improvement efforts in this facility have been delayed due to this 'risk to change.' In the real-time data system (RTDS) we have introduced a network of engineering computer workstations which run in parallel to the mainframe system. These workstations are located next to flight controller operating positions in mission control and, in some cases, the display units are mounted in the traditional mainframe consoles. This system incorporates several major improvements over the mainframe consoles including automated fault detection by real-time expert systems and color graphic animated schematics of subsystems driven by real-time telemetry. The workstations have the capability of recording

  18. Effects of an Advanced Reactor’s Design, Use of Automation, and Mission on Human Operators

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Johanna H. Oxstrand

    2014-06-01

    The roles, functions, and tasks of the human operator in existing light water nuclear power plants (NPPs) are based on sound nuclear and human factors engineering (HFE) principles, are well defined by the plant’s conduct of operations, and have been validated by years of operating experience. However, advanced NPPs whose engineering designs differ from existing light-water reactors (LWRs) will impose changes on the roles, functions, and tasks of the human operators. The plans to increase the use of automation, reduce staffing levels, and add to the mission of these advanced NPPs will also affect the operator’s roles, functions, and tasks. We assert that these factors, which do not appear to have received a lot of attention by the design engineers of advanced NPPs relative to the attention given to conceptual design of these reactors, can have significant risk implications for the operators and overall plant safety if not mitigated appropriately. This paper presents a high-level analysis of a specific advanced NPP and how its engineered design, its plan to use greater levels of automation, and its expanded mission have risk significant implications on operator performance and overall plant safety.

  19. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing, and Future Work

    Science.gov (United States)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve

    2016-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from

  20. Use of Special Operations Forces in United Nations Missions: a Method to Resolve Complexity

    Science.gov (United States)

    2015-05-21

    Sarajevo, the longest siege in modern history. The author emphasized not only the siege from a military standpoint, but also the unintended...Story of Modern War (New York: Atlantic Monthly Press, 1999), 9-14. 44 Linda Robinson, One Hundred Victories: Special Ops and the Future of American...The official code name of the operation was Gothic Serpent. Although the mission initially unfolded well, the Somalis shot down two US helicopters

  1. Mission Operations Directorate - Success Legacy of the Space Shuttle Program (Overview of the Evolution and Success Stories from MOD During the Space Shuttle program)

    Science.gov (United States)

    Azbell, Jim A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  2. Payload operations management of a planned European SL-Mission employing establishments of ESA and national agencies

    Science.gov (United States)

    Joensson, Rolf; Mueller, Karl L.

    1994-01-01

    Spacelab (SL)-missions with Payload Operations (P/L OPS) from Europe involve numerous space agencies, various ground infrastructure systems and national user organizations. An effective management structure must bring together different entities, facilities and people, but at the same time keep interfaces, costs and schedule under strict control. This paper outlines the management concept for P/L OPS of a planned European SL-mission. The proposal draws on the relevant experience in Europe, which was acquired via the ESA/NASA mission SL-1, by the execution of two German SL-missions and by the involvement in, or the support of, several NASA-missions.

  3. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    Science.gov (United States)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  4. The Mercury Thermal Environment As A Design Driver and A Scientific Objective of The Bepicolombo Mission

    Science.gov (United States)

    Perotto, V.; Malosti, T.; Martino, R.; Briccarello, M.; Anselmi, A.

    The thermal environment of Mercury is extremely severe and a strong design driver for any mission to the planet. The main factors are the large amount of energy both di- rectly received from the sun and reflected/re-emitted from the planet, and the variation of such energy with time. The total thermal flux received by an object in orbit or on the surface of Mercury is a combination of the above-mentioned contributions, weighted according to the orbit characteristics, or the morphology of the surface. For a lander mission, the problems are compounded by the uncertainty in the a-priori knowledge of the surface properties and morphology. The thermal design of the orbiting and land- ing elements of the BepiColombo mission has a major role in the Definition Study being carried out under ESA contract by a team led by Alenia Spazio. The project en- compasses a spacecraft in low, near-circular, polar orbit (Mercury Planetary Orbiter, MPO), a spacecraft in high-eccentricity, polar orbit (Mercury Magnetospheric Orbiter, MMO, provided by ISAS, Japan) and a lander (Mercury Surface Element, MSE). The approach to a feasible mission design must rely on several provisions. For the orbiting elements, the orientation of the orbit plane with respect to the line of apsides of the or- bit of Mercury is found to have a major effect on the achievable orbiter temperatures. The spacecraft configuration, and its attitude with respect to the planet and the sun, drive the accommodation of the scientific instruments. Once the optimal orientation, attitude and configuration are determined, specific thermal control solutions must be elaborated, to maintain all components including the instruments in the required tem- perature range. The objective is maximizing the scientific return under constraints such as the available on-board resources and the project budget. A major outcome of the study so far has been the specification of requirements for improved thermal con- trol technologies, which are

  5. Prototype Interoperability Document between NASA-JSC and DLR-GSOC Describing the CCSDS SM and C Mission Operations Prototype

    Science.gov (United States)

    Lucord, Steve A.; Gully, Sylvain

    2009-01-01

    The purpose of the PROTOTYPE INTEROPERABILITY DOCUMENT is to document the design and interfaces for the service providers and consumers of a Mission Operations prototype between JSC-OTF and DLR-GSOC. The primary goal is to test the interoperability sections of the CCSDS Spacecraft Monitor & Control (SM&C) Mission Operations (MO) specifications between both control centers. An additional goal is to provide feedback to the Spacecraft Monitor and Control (SM&C) working group through the Review Item Disposition (RID) process. This Prototype is considered a proof of concept and should increase the knowledge base of the CCSDS SM&C Mission Operations standards. No operational capabilities will be provided. The CCSDS Mission Operations (MO) initiative was previously called Spacecraft Monitor and Control (SM&C). The specifications have been renamed to better reflect the scope and overall objectives. The working group retains the name Spacecraft Monitor and Control working group and is under the Mission Operations and Information Services Area (MOIMS) of CCSDS. This document will refer to the specifications as SM&C Mission Operations, Mission Operations or just MO.

  6. The Impact of Military Exercises and Operations on Local Environment

    African Journals Online (AJOL)

    Among the non-conventional security matters, environment has emerged as a new sphere in which the military has been actively involved; as a benevolent and malevolent agent through its exercises and operations. Despite the notable positive contributions, the negative impact of military exercises and operations in the ...

  7. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    Directory of Open Access Journals (Sweden)

    Sangwook Park

    2009-12-01

    Full Text Available This paper describes the Flight Dynamics Automation (FDA system for COMS Flight Dynamics System (FDS and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  8. Perceptions of University Mission Statement and Person-Environment Fit by Osteopathic Medical School Faculty and Staff

    Science.gov (United States)

    Poppre, Beth Anne Edwards

    2017-01-01

    Understanding how university medical school faculty and staff perceive the institution's mission statement, in conjunction with their person-environment fit, can provide administration with useful insight into: employee's match to the institution's mission statement, employee level of organizational commitment, and reasons for retention. This…

  9. Expertise and Power: Agencies Operating in Complex Environments

    Directory of Open Access Journals (Sweden)

    Anthony R. Zito

    2015-03-01

    Full Text Available This contribution investigates the strategies that environmental agencies develop to enhance their policy autonomy, in order to fulfil their organisational missions for protecting the environment. This article asks whether there are particular strategic moves that an agency can make to augment this policy autonomy in the face of the principals. Critiquing principal agent theory, it investigates the evolution of three environmental agencies (the European Environment Agency, the England and Wales Environment Agency and the United States Environmental Protection Agency, focusing on the case study of climate change. The contribution examines how the agencies influence environmental policy on domestic, regional and global levels, with a special focus on the principals that constrain agency autonomy. A greater focus on different multi-level contexts, which the three agencies face, may create other possible dynamics and opportunities for agency strategies. Agencies can use particular knowledge, network and alliance building to strengthen their policy/political positions.

  10. Proximity Operations for the Robotic Boulder Capture Option for the Asteroid Redirect Mission

    Science.gov (United States)

    Reeves, David M.; Naasz, Bo J.; Wright, Cinnamon A.; Pini, Alex J.

    2014-01-01

    In September of 2013, the Asteroid Robotic Redirect Mission (ARRM) Option B team was formed to expand on NASA's previous work on the robotic boulder capture option. While the original Option A concept focuses on capturing an entire smaller Near-Earth Asteroid (NEA) using an inflatable bag capture mechanism, this design seeks to land on a larger NEA and retrieve a boulder off of its surface. The Option B team has developed a detailed and feasible mission concept that preserves many aspects of Option A's vehicle design while employing a fundamentally different technique for returning a significant quantity of asteroidal material to the Earth-Moon system. As part of this effort, a point of departure proximity operations concept was developed complete with a detailed timeline, as well as DeltaV and propellant allocations. Special attention was paid to the development of the approach strategy, terminal descent to the surface, controlled ascent with the captured boulder, and control during the Enhanced Gravity Tractor planetary defense demonstration. The concept of retrieving a boulder from the surface of an asteroid and demonstrating the Enhanced Gravity Tractor planetary defense technique is found to be feasible and within the proposed capabilities of the Asteroid Redirect Vehicle (ARV). While this point of departure concept initially focuses on a mission to Itokawa, the proximity operations design is also shown to be extensible to wide range of asteroids.

  11. The effects of meteoroid streams on the lunar environment: Observations from the LADEE mission

    Science.gov (United States)

    Stubbs, Timothy; Horanyi, Mihaly; Mahaffy, Paul; Wang, Yongli; Benna, Mehdi; Elphic, Richard; Sarantos, Menelaos; Kempf, Sascha; Colaprete, Anthony; Hurley, Dana; Delory, Gregory; Glenar, David; Hermalyn, Brendan; Wooden, Diane; Szalay, Jamey

    The scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are: (1) determine the composition of the lunar atmosphere, investigate processes controlling distribution and variability - sources, sinks, and surface interactions; and (2) characterize the lunar exospheric dust environment, measure spatial and temporal variability, and influences on the lunar atmosphere. Impacts on the lunar surface from meteoroid streams encountered by the Earth-Moon system can result in measurable enhancements in both the lunar atmosphere and dust environment. Here we describe the annual meteoroid streams incident at the Moon during the LADEE mission and their effects on the environment. The LADEE science payload consists of three instruments: the Ultraviolet/Visible Spectrometer (UVS) for measuring emission lines from exospheric species and scattered light from exospheric dust; the Lunar Dust Experiment (LDEX) for in situ measurement of exospheric dust; and the Neutral Mass Spectrometer (NMS) for in situ measurement of exospheric species. All three instruments are capable of detecting the effects of an encounter with a meteoroid stream. LADEE nominally has a 100-day science mission in which its retrograde equatorial orbit (inclination ≈157(°) ) will take it below 50 km altitude at periapsis near lunar sunrise. Lunar Orbit Insertion (LOI) occurred on 6 October 2013 and the current End-of-Mission (EOM) is planned for around 21 April 2014 following the lunar eclipse on 15 April 2014. The Earth-Moon system frequently encounters debris trails from comets and asteroids, which are referred to as meteoroid streams. The meteoroids in these streams have similar velocities and are on near-parallel trajectories, so when they enter the Earth's atmosphere the resulting shower of meteors appears to be emanating from a virtual point on the sky called the radiant. Meteor (and meteoroid) rates vary as a function of the Earth's position in its orbit, with an

  12. Ground operations and logistics in the context of the International Asteroid Mission

    Science.gov (United States)

    The role of Ground Operations and Logistics, in the context of the International Asteroid Mission (IAM), is to define the mission of Ground Operations; to identify the components of a manned space infrastructure; to discuss the functions and responsibilities of these components; to provide cost estimates for delivery of the spacecraft to LEO from Earth; to identify significant ground operations and logistics issues. The purpose of this dissertation is to bring a degree of reality to the project. 'One cannot dissociate development and set up of a manned infrastructure from its operational phase since it is this last one which is the most costly due to transportation costs which plague space station use' (Eymar, 1990). While this reference is to space stations, the construction and assembly of the proposed crew vehicle and cargo vehicles will face similar cost difficulties, and logistics complexities. The uniqueness of long duration space flight is complicated further by the lack of experience with human habitated, and non-refurbishable life support systems. These problems are addressed.

  13. Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth

    Science.gov (United States)

    Townsend, William F.

    1996-01-01

    NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.

  14. Reducing operating costs while protecting safety and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Lund, R. [Transocean Drilling ASA, (Norway)

    1996-12-31

    The paper deals with the change process by reducing the operating costs in the petroleum industry while protecting safety and the environment. The author`s intention is to examine some of these cost reduction initiatives and see if they have affected the HSE (Health, Safety and Environment) parameters and subsequently how HSE has been managed during the change process. The examination will be from a contractor`s point of view. Topics are: organisational change; safety, environment and change; reduction of profit margins; changing contract strategy; restructuring of the drilling industry; technological development; environment

  15. Progress Towards providing Heat-Shield for Extreme Entry Environment Technology (HEEET) for Venus and other New Froniters Missions

    Science.gov (United States)

    Venkatapathy, Ethiraj; Ellerby, Don; Gage, Peter

    2017-01-01

    Heat-shield for Extreme Entry Environment Technology (HEEET) has been in development since 2014 with the goal of enabling missions to Venus, Saturn and other high-speed sample return missions. It is offered as a new technology and incentivized for mission use in the New Frontiers 4 AO by NASA. The current plans are to mature the technology to TRL 6 by FY18. The HEEET Team has been working closely with multiple NF-4 proposals to Venus, Saturn and has been supporting recent Ice-Giants mission studies. This presentation will provide progress made to date and the plans for development in FY18.

  16. Design of InGaP/GaAs/Ge triple-junction solar cells in mercury exploration mission environments

    International Nuclear Information System (INIS)

    Shimada, Takanobu; Toyota, Hiroyuki; Imaizumi, Mitsuru; Hirose, Kazuyuki; Tajima, Michio; Hayakawa, Hajime; Ohshima, Takeshi; Okamoto, Akira; Nozaki, Yukisige; Watabe, Hirokazu

    2010-01-01

    Mercury Magnetospheric Orbiter will be exposed to high solar irradiance of up to 11 suns, with an estimated maximum solar panel temperature of 230degC in the Mercury's radiation environment. Therefore, it is necessary to evaluate the degradation of solar cell outputs to meet the power requirements throughout the mission life. To examine the solar cell output degradation under high intensity and high temperature conditions, continuous operation tests of CIC were conducted using the interior-planetary-thermal-vacuum chamber. Concurrently, irradiation experiments were performed to confirm radiation degradation. As a result of the tests, we obtained the predicted decrease in Pmax due to the HIHT as 17.3%, while that due to radiation as 11.0%. Accordingly, the panel design was determined so as to fulfill the minimum power requirement of 347.5 W at EOL. (author)

  17. Evaluating non-technical skills and mission essential competencies of pilots in military aviation environments.

    Science.gov (United States)

    Tsifetakis, Emmanuel; Kontogiannis, Tom

    2017-05-25

    To develop and validate a classification of non-technical skills (NTS) in military aviation, a study was conducted, using data from real operations of F16 aircraft formations. Phase 1 developed a NTS classification based on the literature review (e.g. NOTECHS) and a workshop with pilots. The Non-TEChnical-MILitary-Skills (NOTEMILS) scheme was tested in Phase 2 in a series of Principal Component Analysis with data from After-Action-Review sessions (i.e. 900 records from a wide range of operations). The NTS were found to make a good prediction of Mission Essential Components (R 2  > 0.80) above the effect of experience. Phase 3 undertook a reliability analysis where three raters assessed the NOTEMILS scheme with good results (i.e. all r wg  > 0.80). To look into the consistency of classifications, another test indicated that, at least, two out of three raters were in agreement in over 70% of the assessed flight segments. Practitioner Summary: A classification scheme of Non-Technical Skills (NTS) was developed and tested for reliability in military aviation operations. The NTS scheme is a valuable tool for assessing individual and team skills of F-16 pilots in combat. It is noteworthy that the tool had a good capability of predicting Mission Essential Competencies.

  18. An Overview of the Jupiter Icy Moons Orbiter (JIMO) Mission, Environments, and Materials Challenges

    Science.gov (United States)

    Edwards, Dave

    2012-01-01

    Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter with the following main objectives: (1) Develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration. (2) Explore the three icy moons of Jupiter -- Callisto, Ganymede, and Europa -- and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences.

  19. Radiation Beamline Testbeds for the Simulation of Planetary and Spacecraft Environments for Human and Robotic Mission Risk Assessment

    Science.gov (United States)

    Wilkins, Richard

    2010-01-01

    experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materials. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scientific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technology, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.

  20. Radiation beamline testbeds for the simulation of planetary and spacecraft environments for human and robotic mission risk assessment

    Science.gov (United States)

    Wilkins, Richard

    experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materi-als. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scien-tific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technol-ogy, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.

  1. Mission operations and data systems. [communications systems and techniques for controlling spacecraft experiments

    Science.gov (United States)

    1975-01-01

    A communications system for performing the basic functions of mission operations, orbit and attitude determination, and data processing is described. A block diagram is provided to show the relationships of these functions with the spacecraft in orbit and the experiments to be conducted on board the spacecraft. Specific areas of application are discussed as follows: (1) software operating systems for the ATS-F satellite testing and ground support, (2) inversion of the RAE-1 satellite (Explorer 38 satellite) in orbit, (3) ALSEP differential Doppler tracking, (4) minitrack calibration using satellite data, (5) angles-only orbit extraction, and (6) image processing system performance prediction and product quality evaluation techniques. Block diagrams of the various systems are provided to show the steps involved in the operations.

  2. ISS Plasma Environment: Status of CCMC Products for ISS Mission Ops

    Science.gov (United States)

    Minow, Joseph

    2010-01-01

    ISS Program currently using FPMU Ne, Te in-situ measurements to support operations and anomaly investigations. Working to acquire alternative data sources if FPMU is not available. Work is progressing on CCMC tools for low Earth orbit ionosphere characterization. Validation against FPMU data required before model output can be used for ISS operational support. MSFC plans to continue comparing CTIP output during FPMU campaigns. Results to date have been useful in identifying ionospheric origins of high latitude charging environments.

  3. Orbit Transfers for Dawn's Vesta Operations : Navigation and Mission Design Experience

    Science.gov (United States)

    Han, Dongsuk

    2012-01-01

    Dawn, a mission belonging to NASA's Discovery Program, was launched on September 27, 2007 to explore main belt asteroids in order to yield insights into important questions about the formation and evolution of the solar system. From July of 2011 to August of 2012, the Dawn spacecraft successfully returned valuable science data, collected during the four planned mapping orbits at its first target asteroid, Vesta. Each mapping orbit was designed to enable a different set of scientific observations. Such a mission would have been impossible without the low thrust ion propulsion system (IPS). Maneuvering a spacecraft using only the IPS for the transfers between the mapping orbits posed many technical challenges to Dawn's flight team at NASA's Jet Propulsion Laboratory. Each transfer needs a robust plan that accounts for uncertainties in maneuver execution, orbit determination, and physical characteristics of Vesta. This paper discusses the mission design and navigational experience during Dawn's Vesta operations. Topics include requirements and constraints from Dawn's science and spacecraft teams, orbit determination and maneuver design and building process for transfers, developing timelines for thrust sequence build cycles, and the process of scheduling very demanding coverage with ground antennae at NASA's Deep Space Network.

  4. Designing remote operations strategies to optimize science mission goals : Lessons learned from the Moon Mars Analog Mission Activities Mauna Kea 2012 field test

    NARCIS (Netherlands)

    Yingst, R. A.; Russell, P.; Ten Kate, I. L.; Noble, S.; Graff, T.; Graham, L. D.; Eppler, D.

    The Moon Mars Analog Mission Activities Mauna Kea 2012 (MMAMA 2012) field campaign aimed to assess how effectively an integrated science and engineering rover team operating on a 24-h planning cycle facilitates high-fidelity science products. The science driver of this field campaign was to

  5. Game theory: applications for surgeons and the operating room environment.

    Science.gov (United States)

    McFadden, David W; Tsai, Mitchell; Kadry, Bassam; Souba, Wiley W

    2012-11-01

    Game theory is an economic system of strategic behavior, often referred to as the "theory of social situations." Very little has been written in the medical literature about game theory or its applications, yet the practice of surgery and the operating room environment clearly involves multiple social situations with both cooperative and non-cooperative behaviors. A comprehensive review was performed of the medical literature on game theory and its medical applications. Definitive resources on the subject were also examined and applied to surgery and the operating room whenever possible. Applications of game theory and its proposed dilemmas abound in the practicing surgeon's world, especially in the operating room environment. The surgeon with a basic understanding of game theory principles is better prepared for understanding and navigating the complex Operating Room system and optimizing cooperative behaviors for the benefit all stakeholders. Copyright © 2012 Mosby, Inc. All rights reserved.

  6. Prediction of software operational reliability using testing environment factors

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Seong, Poong Hyun

    1995-01-01

    A number of software reliability models have been developed to estimate and to predict software reliability. However, there are no established standard models to quantify software reliability. Most models estimate the quality of software in reliability figures such as remaining faults, failure rate, or mean time to next failure at the testing phase, and they consider them ultimate indicators of software reliability. Experience shows that there is a large gap between predicted reliability during development and reliability measured during operation, which means that predicted reliability, or so-called test reliability, is not operational reliability. Customers prefer operational reliability to test reliability. In this study, we propose a method that predicts operational reliability rather than test reliability by introducing the testing environment factor that quantifies the changes in environments

  7. [Determine and Implement Updates to Be Made to MODEAR (Mission Operations Data Enterprise Architecture Repository)

    Science.gov (United States)

    Fanourakis, Sofia

    2015-01-01

    My main project was to determine and implement updates to be made to MODEAR (Mission Operations Data Enterprise Architecture Repository) process definitions to be used for CST-100 (Crew Space Transportation-100) related missions. Emphasis was placed on the scheduling aspect of the processes. In addition, I was to complete other tasks as given. Some of the additional tasks were: to create pass-through command look-up tables for the flight controllers, finish one of the MDT (Mission Operations Directorate Display Tool) displays, gather data on what is included in the CST-100 public data, develop a VBA (Visual Basic for Applications) script to create a csv (Comma-Separated Values) file with specific information from spreadsheets containing command data, create a command script for the November MCC-ASIL (Mission Control Center-Avionics System Integration Laboratory) testing, and take notes for one of the TCVB (Terminal Configured Vehicle B-737) meetings. In order to make progress in my main project I scheduled meetings with the appropriate subject matter experts, prepared material for the meetings, and assisted in the discussions in order to understand the process or processes at hand. After such discussions I made updates to various MODEAR processes and process graphics. These meetings have resulted in significant updates to the processes that were discussed. In addition, the discussions have helped the departments responsible for these processes better understand the work ahead and provided material to help document how their products are created. I completed my other tasks utilizing resources available to me and, when necessary, consulting with the subject matter experts. Outputs resulting from my other tasks were: two completed and one partially completed pass through command look-up tables for the fight controllers, significant updates to one of the MDT displays, a spreadsheet containing data on what is included in the CST-100 public data, a tool to create a csv

  8. OPERATIONAL SAR DATA PROCESSING IN GIS ENVIRONMENTS FOR RAPID DISASTER MAPPING

    Directory of Open Access Journals (Sweden)

    A. Meroni

    2013-05-01

    Full Text Available Having access to SAR data can be highly important and critical especially for disaster mapping. Updating a GIS with contemporary information from SAR data allows to deliver a reliable set of geospatial information to advance civilian operations, e.g. search and rescue missions. Therefore, we present in this paper the operational processing of SAR data within a GIS environment for rapid disaster mapping. This is exemplified by the November 2010 flash flood in the Veneto region, Italy. A series of COSMO-SkyMed acquisitions was processed in ArcGIS® using a single-sensor, multi-mode, multi-temporal approach. The relevant processing steps were combined using the ArcGIS ModelBuilder to create a new model for rapid disaster mapping in ArcGIS, which can be accessed both via a desktop and a server environment.

  9. Social Media: Valuable Tools in Today’s Operational Environment

    Science.gov (United States)

    2011-05-04

    The ever-increasing application of social media throughout the world, including in developing countries, signals a significant change in how new...level commanders must more effectively leverage social media as tools for strategic communication and to gain a better understanding of the operational...environment. This paper provides an assessment of how theater-strategic and operational level commanders are currently employing social media , and

  10. Global Military Operating Environments (GMOE) Phase I: Linking Natural Environments, International Security, and Military Operations

    Science.gov (United States)

    2013-01-30

    Synthetic Environment Core Area), baseline terrain information, and application of remote‐sensing technologies for Warfighter and Chameleon . The...Laboratory (Table 2). For each of the three soil profiles, a representative soil sample was collected from each genetic soil horizon identified in the field

  11. Distributed Mission Operations: Training Today’s Warfighters for Tomorrow’s Conflicts

    Science.gov (United States)

    2016-02-01

    whole and seek to govern and expand it as a joint enterprise, rather than a piece meal venture of independent commands. A whole enterprise approach...training war fighters of the twenty-first century requires integrated joint - service training in environments of contested and degraded operations. The...operations can overcome the fiscal limitations of live joint -integrated training and improve quality of life for U.S. war fighters. Recommendations

  12. Probability of inadvertent operation of electrical components in harsh environments

    International Nuclear Information System (INIS)

    Knoll, A.

    1989-01-01

    Harsh environment, which means humidity and high temperature, may and will affect unsealed electrical components by causing leakage ground currents in ungrounded direct current systems. The concern in a nuclear power plant is that such harsh environment conditions could cause inadvertent operation of normally deenergized components, which may have a safety-related isolation function. Harsh environment is a common cause failure, and one way to approach the problem is to assume that all the unsealed electrical components will simultaneously and inadvertently energize as a result of the environmental common cause failure. This assumption is unrealistically conservative. Test results indicated that insulating resistences of any terminal block in harsh environments have a random distribution in the range of 1 to 270 kΩ, with a mean value ∼59 kΩ. The objective of this paper is to evaluate a realistic conditional failure probability for inadvertent operation of electrical components in harsh environments. This value will be used thereafter in probabilistic safety evaluations of harsh environment events and will replace both the overconservative common cause probability of 1 and the random failure probability used for mild environments

  13. Qualified operator training in the simulated control room environment

    International Nuclear Information System (INIS)

    Ionescu, Teodor; Studineanu, Emil; Radulescu, Catalina; Bolocan, Gabriel

    2005-01-01

    Full text: Mainly designed for the training of the Cernavoda NPP Unit 2 operators, the virtual simulated environment allows the training of the already qualified operators for Cernavoda NPP Unit 1, adding to the already trained knowledge, the differences which has occurred in the Unit 2 design. Using state-of-the-art computers and displays and qualified software, the virtual simulated panels could offer a viable alternative to classic hardware-based training. This approach allows quick training of the new procedures required by the new configuration of the re-designed operator panels in the main control room of Cernavoda NPP Unit 2. (authors)

  14. Novel Interface for Simulation of Assembly Operations in Virtual Environments

    Directory of Open Access Journals (Sweden)

    CRACIUN, E.-G.

    2013-02-01

    Full Text Available The objective of this paper is to propose a new interface based on human gestures for simulation of assembly operation inside virtual environments. Using as a guide the current context for assembly simulation, we have analyzed the existing techniques used in developing gesture-based interface and extracted the constituent elements for an assembly gesture interface. The interface we propose offers support for assembly/disassembly operation, replace or delete components inside a virtual scene. To improve the current practice in virtual assembly simulation, our interface is an efficient method for assembly operations and a competitive approach for the current assembly simulation techniques.

  15. The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of- Opportunity - Up and Operational

    Science.gov (United States)

    McComas, D. J.

    2008-12-01

    *Presented on behalf of the entire TWINS Team Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a NASA Explorer Mission-of-Opportunity to stereoscopically image the Earth's magnetosphere for the first time [McComas et al., 2008]. TWINS extends our understanding of magnetospheric structure and processes by providing simultaneous Energetic Neutral Atom (ENA) imaging from two widely separated locations. TWINS observes ENAs from 1-100 keV with high angular (~4° x 4°) and time (~1-minute) resolution. The TWINS Ly-α monitor measures the geocoronal hydrogen density to aid in ENA analysis while environmental sensors provide contemporaneous measurements of the local charged particle environments. By imaging ENAs with identical instruments from two widely spaced, high-altitude, high-inclination spacecraft, TWINS enables three-dimensional visualization of the large-scale structures and dynamics within the magnetosphere for the first time. As of the summer of 2008, both TWINS instruments are finally on orbit and operational and stereo imaging of the magnetosphere has begun. This talk briefly summarizes the TWINS mission and instruments and shows some of the 'first-light' observations. More information about TWINS and access to these data are available at http://twins.swri.edu. Reference: McComas, D.J., F. Allegrini, J. Baldonado, B. Blake, P. C. Brandt, J. Burch, J. Clemmons, W. Crain, D. Delapp, R. DeMajistre, D. Everett, H. Fahr, L. Friesen, H. Funsten, J. Goldstein, M. Gruntman, R. Harbaugh, R. Harper, H. Henkel, C. Holmlund, G. Lay, D. Mabry, D. Mitchell, U. Nass, C. Pollock, S. Pope, M. Reno, S. Ritzau, E. Roelof, E. Scime, M. Sivjee, R. Skoug, T. S. Sotirelis, M. Thomsen, C. Urdiales, P. Valek, K. Viherkanto, S. Weidner, T. Ylikorpi, M. Young, J. Zoennchen, The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of-Opportunity, Submitted to Space Science Reviews, 2008.

  16. An Analysis of the Operational Environments of Manufacturing Firms ...

    African Journals Online (AJOL)

    These two factors are better described as the harsh economic environments of manufacturers, the cumulative effects of which include: operating below installed capacity, losing business opportunities, incurring losses and closing shop; contributing very little to the Gross Domestic Product (GDP), at 4.20% in 2011, inability to ...

  17. Control of the Environment in the Operating Room.

    Science.gov (United States)

    Katz, Jonathan D

    2017-10-01

    There is a direct relationship between the quality of the environment of a workplace and the productivity and efficiency of the work accomplished. Components such as temperature, humidity, ventilation, drafts, lighting, and noise each contribute to the quality of the overall environment and the sense of well-being of those who work there.The modern operating room is a unique workplace with specific, and frequently conflicting, environmental requirements for each of the inhabitants. Even minor disturbances in the internal environment of the operating room can have serious ramifications on the comfort, effectiveness, and safety of each of the inhabitants. A cool, well-ventilated, and dry climate is optimal for many members of the surgical team. Any significant deviation from these objectives raises the risk of decreased efficiency and productivity and adverse surgical outcomes. A warmer, more humid, and quieter environment is necessary for the patient. If these requirements are not met, the risk of surgical morbidity and mortality is increased. An important task for the surgical team is to find the correct balance between these 2 opposed requirements. Several of the components of the operating room environment, especially room temperature and airflow patterns, are easily manipulated by the members of the surgical team. In the following discussion, we will examine these elements to better understand the clinical ramifications of adjustments and accommodations that are frequently made to meet the requirements of both the surgical staff and the patient.

  18. Energy expenditure and intake during Special Operations Forces field training in a jungle and glacial environment.

    Science.gov (United States)

    Johnson, Caleb D; Simonson, Andrew J; Darnell, Matthew E; DeLany, James P; Wohleber, Meleesa F; Connaboy, Christopher

    2018-04-01

    The purpose of this study was to identify and compare energy requirements specific to Special Operations Forces in field training, in both cool and hot environments. Three separate training sessions were evaluated, 2 in a hot environment (n = 21) and 1 in a cool environment (n = 8). Total energy expenditure was calculated using doubly labeled water. Dietary intake was assessed via self-report at the end of each training mission day, and macronutrient intakes were calculated. Across the 3 missions, mean energy expenditure (4618 ± 1350 kcal/day) exceeded mean energy intake (2429 ± 838 kcal/day) by an average of 2200 kcal/day. Macronutrient intakes (carbohydrates (g/(kg·day body weight (bw)) -1 ) = 3.2 ± 1.2; protein (g/(kg·day bw) -1 ) = 1.3 ± 0.7; fat (g/(kg·day bw) -1 ) = 1.2 ± 0.7) showed inadequate carbohydrate and possibly protein intake across the study period, compared with common recommendations. Total energy expenditures were found to be similar between hot (4664 ± 1399 kcal/day) and cool (4549 ± 1221 kcal/day) environments. However, energy intake was found to be higher in the cool (3001 ± 900 kcal/day) compared with hot (2200 ± 711 kcal/day) environments. Based on the identified energy deficit, high variation in energy expenditures, and poor macronutrient intake, a greater attention to feeding practices during similar training scenarios for Special Operations Forces is needed to help maintain performance and health. The differences in environmental heat stress between the 2 climates/environments had no observed effect on energy expenditures, but may have influenced intakes.

  19. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    Science.gov (United States)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    operation time of up to 10 years. It also enables measurements of the libration point environment with the scientific payloads. This includes sensors for space dust, solar and cosmic radiation activity for satellite lifetime estimation and lunar crew protection by providing early-warning systems. The paper describes the mission concept and the pre-design of the demonstrator satellite according to the operational mission requirements, advantages and benefits of this service. The concept was awarded with the Space Generation Advisory Council and OHB Scholarship in 2011 and the concept study is conducted at the Institute of Space Systems (IRS) [1] of the University of Stuttgart and OHB-System, Bremen [2].

  20. Generating realistic environments for cyber operations development, testing, and training

    Science.gov (United States)

    Berk, Vincent H.; Gregorio-de Souza, Ian; Murphy, John P.

    2012-06-01

    Training eective cyber operatives requires realistic network environments that incorporate the structural and social complexities representative of the real world. Network trac generators facilitate repeatable experiments for the development, training and testing of cyber operations. However, current network trac generators, ranging from simple load testers to complex frameworks, fail to capture the realism inherent in actual environments. In order to improve the realism of network trac generated by these systems, it is necessary to quantitatively measure the level of realism in generated trac with respect to the environment being mimicked. We categorize realism measures into statistical, content, and behavioral measurements, and propose various metrics that can be applied at each level to indicate how eectively the generated trac mimics the real world.

  1. Prediction of software operational reliability using testing environment factor

    International Nuclear Information System (INIS)

    Jung, Hoan Sung

    1995-02-01

    Software reliability is especially important to customers these days. The need to quantify software reliability of safety-critical systems has been received very special attention and the reliability is rated as one of software's most important attributes. Since the software is an intellectual product of human activity and since it is logically complex, the failures are inevitable. No standard models have been established to prove the correctness and to estimate the reliability of software systems by analysis and/or testing. For many years, many researches have focused on the quantification of software reliability and there are many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. User's interest is on the operational reliability rather than on the test reliability, however. The experiences show that the operational reliability is higher than the test reliability. With the assumption that the difference in reliability results from the change of environment, testing environment factor comprising the aging factor and the coverage factor are defined in this work to predict the ultimate operational reliability with the failure data. It is by incorporating test environments applied beyond the operational profile into testing environment factor Test reliability can also be estimated with this approach without any model change. The application results are close to the actual data. The approach used in this thesis is expected to be applicable to ultra high reliable software systems that are used in nuclear power plants, airplanes, and other safety-critical applications

  2. Operational efficiency of forest energy supply chains in different operational environments

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, D.

    2012-06-15

    Ambitious international efforts to combat climate change have lead to a large interest about the use of forest biomass for energy in many countries. In order to meet the expected growing demand in the future, it will be necessary to improve operational efficiency of existing forest energy supply chains and support the establishment of efficient supply chains in new operational environments. The thesis applied a three-dimensional approach which examines forest energy supply chains from a technical, social and economic viewpoint. Four case studies in different operational environments have been carried out to investigate the applicability of the three dimensional approach to improve operational efficiency. The technical dimension was investigated in Paper 1 and 2. In Paper 1, the effects of climatic conditions, covering of piles, and partial debarking on drying of roundwood were studied in four experimental trials located in Scotland, Finland and Italy. In Paper 2, the chipping of forest biomass was studied in two different operational environments. The investigation of the social dimension in Paper 3 provides insights into the setup of two different supply chains through business process mapping and simulation. Finally, in paper 4, which investigated the economic dimension, an analysis of the effect of the operational environment on technology selection and design of supply chains, is presented. The thesis demonstrates that the chosen approach was practical to investigate the complex relationships between the chosen technologies and different supply chain actors and stakeholders thereby contributing to maintain or improve operational efficiency of forest energy supply chains. Due to its applicability in different operational environments, the approach is also suitable in a more global context. Furthermore, it captures the effect of different aspects and characteristics of the various operational environments on the setup and organization of supply chains. This will

  3. Aeolus -A Mission to Study the Thermal and Wind Environment of Mars

    Science.gov (United States)

    Colaprete, Anthony

    2017-01-01

    abundances. The combined spectral and thermal measurements will provide a new understanding of the global energy balance, dust transport processes, and climate cycles in the Martian atmosphere. Aeolus will consist of a single satellite in a near-polar orbit, allowing it to pass over all local times, with the baseline mission observing all seasons of an entire Martian year (two Earth years). Aeolus was one of two Martian smallsat concepts selected for study through the Planetary Science Deep Space SmallSat Studies program. This talk will provide an overview of the mission, including science rationale, instruments, spacecraft, and mission operations concept.

  4. Re-Engineering JPL's Mission Planning Ground System Architecture for Cost Efficient Operations in the 21st Century

    Science.gov (United States)

    Fordyce, Jess

    1996-01-01

    Work carried out to re-engineer the mission analysis segment of JPL's mission planning ground system architecture is reported on. The aim is to transform the existing software tools, originally developed for specific missions on different support environments, into an integrated, general purpose, multi-mission tool set. The issues considered are: the development of a partnership between software developers and users; the definition of key mission analysis functions; the development of a consensus based architecture; the move towards evolutionary change instead of revolutionary replacement; software reusability, and the minimization of future maintenance costs. The current status and aims of new developments are discussed and specific examples of cost savings and improved productivity are presented.

  5. Mission Operations Center (MOC) - Precipitation Processing System (PPS) Interface Software System (MPISS)

    Science.gov (United States)

    Ferrara, Jeffrey; Calk, William; Atwell, William; Tsui, Tina

    2013-01-01

    MPISS is an automatic file transfer system that implements a combination of standard and mission-unique transfer protocols required by the Global Precipitation Measurement Mission (GPM) Precipitation Processing System (PPS) to control the flow of data between the MOC and the PPS. The primary features of MPISS are file transfers (both with and without PPS specific protocols), logging of file transfer and system events to local files and a standard messaging bus, short term storage of data files to facilitate retransmissions, and generation of file transfer accounting reports. The system includes a graphical user interface (GUI) to control the system, allow manual operations, and to display events in real time. The PPS specific protocols are an enhanced version of those that were developed for the Tropical Rainfall Measuring Mission (TRMM). All file transfers between the MOC and the PPS use the SSH File Transfer Protocol (SFTP). For reports and data files generated within the MOC, no additional protocols are used when transferring files to the PPS. For observatory data files, an additional handshaking protocol of data notices and data receipts is used. MPISS generates and sends to the PPS data notices containing data start and stop times along with a checksum for the file for each observatory data file transmitted. MPISS retrieves the PPS generated data receipts that indicate the success or failure of the PPS to ingest the data file and/or notice. MPISS retransmits the appropriate files as indicated in the receipt when required. MPISS also automatically retrieves files from the PPS. The unique feature of this software is the use of both standard and PPS specific protocols in parallel. The advantage of this capability is that it supports users that require the PPS protocol as well as those that do not require it. The system is highly configurable to accommodate the needs of future users.

  6. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    Science.gov (United States)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  7. Preparing the American Soldier in a Brigade Combat Team to Conduct Information Operations in the Contemporary Operational Environment

    National Research Council Canada - National Science Library

    Beckno, Brian T

    2006-01-01

    ...) to conduct Information Operations (IO) in the Contemporary Operational Environment (COE). First, an explanation of IO and its Army applicability is presented using current examples from military operations in Operation Iraqi Freedom (OIF...

  8. PROGRAM EVALUATION INVOLVEMENT INDONESIAN NATIONAL ARMED FORCES (TNI ON MISSION UNITED NATIONS PEACEKEEPING OPERATIONS (UNPKO

    Directory of Open Access Journals (Sweden)

    I Gede Sumertha KY

    2017-07-01

    Full Text Available This research is constructed in order to study and to evaluate involvement TNI on mission United Nations Peacekeeping Operations (UNPKO in Lebanon program FY 2014-2015 due to achieve vision 4000 Peacekeepers. The CIPP model is using on apply the qualitative method for the research with consist of four evaluation components: (1 context; (2 input; (3 process; (4 product. The mechanism collecting data were collected through interviews, observations, questionnaires and documentation study. There are three levels of evaluation for judgment each aspect: low, moderate, and high. The summarized results and figured into case-order effect matrix was figure out of the categorization.The results of this research indicate that TNI involvement in mission UNPKO Lebanon, aspire to increase the number of peacekeepers up to 4.000 personnel in the category “high”, but still have some minor additional improvement especially on coordination among stakeholders. This is because the Results of Context Evaluation has a category of "high" with a scale of assessment "many" (75.3%; the Results of Input Evaluation has a category of "high" with a scale of assessment "moderate" (60.6%; the Results of Process Evaluation has a category of "high" with a scale of assessment "moderate" (65.3% and the Results of Product Evaluation has a category of "high" with a scale of assessment "moderate" (63.3% .

  9. Organizing Special Operations Forces: Navigating the Paradoxical Requirements of Institutional-Bureaucratic and operational Environments

    DEFF Research Database (Denmark)

    Dalgaard-Nielsen, Anja

    2017-01-01

    Increased focus on the potential of special operations has lead several countries to establish dedicated special operations organizations. Analysts have warned against bureaucratization, yet little research has explored the effect of organizational formalization or asked how best to organize....... This article draws from research into high-reliability organizations and interviews in Denmark’s Special Operations Command. It contrasts the demands of the command’s institutional-bureaucratic and operational environments and argues that the ability to straddle them is key to success. The high......-reliability organization’s ability to match divergent problems with dissimilar internal organizational behaviors is held out as a model for inspiration....

  10. The supply of pharmaceuticals in humanitarian assistance missions: implications for military operations.

    Science.gov (United States)

    Mahmood, Maysaa; Riley, Kevin; Bennett, David; Anderson, Warner

    2011-08-01

    In this article, we provide an overview of key international guidelines governing the supply of pharmaceuticals during disasters and complex emergencies. We review the World Health Organization's guidelines on pharmaceutical supply chain management and highlight their relevance for military humanitarian assistance missions. Given the important role of pharmaceuticals in addressing population health needs during humanitarian emergencies, a good understanding of how pharmaceuticals are supplied at the local level in different countries can help military health personnel identify the most appropriate supply options. Familiarity with international guidelines involved in cross-border movement of pharmaceuticals can improve the ability of military personnel to communicate more effectively with other actors involved in humanitarian and development spheres. Enhancing the knowledge base available to military personnel in terms of existing supply models and funding procedures can improve the effectiveness of humanitarian military operations and invite policy changes necessary to establish more flexible acquisition and funding regulations.

  11. Association of market, mission, operational, and financial factors with hospitals' level of cash and security investments.

    Science.gov (United States)

    McCue, M J; Thompson, J M; Dodd-McCue, D

    Using a resource dependency framework and financial theory, this study assessed the market, mission, operational, and financial factors associated with the level of cash and security investments in hospitals. We ranked hospitals in the study sample based on their cash and security investments as a percentage of total assets: hospitals in the high cash/security investment category were in the top 25th percentile of all hospitals; those in the low cash/security investment group were in the bottom 25th percentile. Findings indicate that high cash/security investment hospitals are under either public or private nonprofit ownership and have greater market share. They also serve more complex cases, offer more technology services, generate greater profits, incur a more stable patient revenue base, and maintain less debt.

  12. Design and implementation of the flight dynamics system for COMS satellite mission operations

    Science.gov (United States)

    Lee, Byoung-Sun; Hwang, Yoola; Kim, Hae-Yeon; Kim, Jaehoon

    2011-04-01

    The first Korean multi-mission geostationary Earth orbit satellite, Communications, Ocean, and Meteorological Satellite (COMS) was launched by an Ariane 5 launch vehicle in June 26, 2010. The COMS satellite has three payloads including Ka-band communications, Geostationary Ocean Color Imager, and Meteorological Imager. Although the COMS spacecraft bus is based on the Astrium Eurostar 3000 series, it has only one solar array to the south panel because all of the imaging sensors are located on the north panel. In order to maintain the spacecraft attitude with 5 wheels and 7 thrusters, COMS should perform twice a day wheel off-loading thruster firing operations, which affect on the satellite orbit. COMS flight dynamics system provides the general on-station functions such as orbit determination, orbit prediction, event prediction, station-keeping maneuver planning, station-relocation maneuver planning, and fuel accounting. All orbit related functions in flight dynamics system consider the orbital perturbations due to wheel off-loading operations. There are some specific flight dynamics functions to operate the spacecraft bus such as wheel off-loading management, oscillator updating management, and on-station attitude reacquisition management. In this paper, the design and implementation of the COMS flight dynamics system is presented. An object oriented analysis and design methodology is applied to the flight dynamics system design. Programming language C# within Microsoft .NET framework is used for the implementation of COMS flight dynamics system on Windows based personal computer.

  13. Do We Need the Environment to Explain Operant Behavior?

    Science.gov (United States)

    Overskeid, Geir

    2018-01-01

    By way of operant conditioning, human behavior is continuously shaped and maintained by its consequences - and understanding this process is important to most fields of psychology and neuroscience. The role of the learning organism's environment has long been contentious, however. Much relevant research is being done by people identifying with the Skinnerian tradition, who tend to agree that the causes of behavior can be found exclusively in the environment. The meaning of this proposition is not clear, however. Some authors say the environment is outside the body, others claim it is also inside it. Among those who say the environment is outside the body, many are of the opinion that events inside the body and hence (in their view) not in the environment can also cause behavior, though they claim that events inside the body cannot be causes in the same sense as events taking place outside it. This is confusing, and the present paper argues that the "environment" may neither be a useful nor a necessary concept in the analysis of behavior. Moreover, abolishing the concept could clear the way for a reintegration of Skinnerian psychology into the mainstream.

  14. Neither nature nor environment: Systemic operationalism and ecologism

    International Nuclear Information System (INIS)

    Gomez E, Luis F

    2009-01-01

    Nature is a complex concept that some critics have found as one of the roots of the current crisis of orthodox modernity. Because of this, we think ecologism should develop a theory where it does not play a pivotal role. Here, we propose systemic operationalism as a theoretical basis for ecologism since it seems to meet this requirement without having to replace it with terms such as environment which appears to keep some of the problems critics see in the concept of nature.

  15. Model-Based Systems Engineering With the Architecture Analysis and Design Language (AADL) Applied to NASA Mission Operations

    Science.gov (United States)

    Munoz Fernandez, Michela Miche

    2014-01-01

    The potential of Model Model Systems Engineering (MBSE) using the Architecture Analysis and Design Language (AADL) applied to space systems will be described. AADL modeling is applicable to real-time embedded systems- the types of systems NASA builds. A case study with the Juno mission to Jupiter showcases how this work would enable future missions to benefit from using these models throughout their life cycle from design to flight operations.

  16. Is international election observation credible? Evidence from Organization for Security and Co-operation in Europe missions

    OpenAIRE

    Max Bader; Hans Schmeets

    2014-01-01

    While international election observations missions often aim to present generalizable claims about the quality and integrity of an election, their findings are rarely based on a representative sample of observations, undermining the credibility of the missions. Bias in the selection of polling stations, among other things, can inflate or deflate the percentage of polling stations where observers find significant flaws. This article uses original data from Organization for Security and Co-oper...

  17. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  18. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    Science.gov (United States)

    Bettanini, C.; Esposito, R.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; Di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; Harri, A.-M.; Montmessin, F.; Wilson, C.; Arruego Rodriguez, I.; Abbaki, S.; Apestigue, V.; Bellucci, G.; Berthelier, J. J.; Calcutt, S. B.; Forget, F.; Genzer, M.; Gilbert, P.; Haukka, H.; Jimenez, J. J.; Jimenez, S.; Josset, J. L.; Karatekin, O.; Landis, G.; Lorenz, R.; Martinez, J.; Möhlmann, D.; Moirin, D.; Palomba, E.; Pateli, M.; Pommereau, J.-P.; Popa, C. I.; Rafkin, S.; Rannou, P.; Renno, N. O.; Schmidt, W.; Simoes, F.; Spiga, A.; Valero, F.; Vazquez, L.; Vivat, F.; Witasse, O.

    2017-08-01

    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and direction, but also on solar irradiance, dust opacity and atmospheric electrification, to measure for the first time key parameters linked to hazard conditions for future manned explorations. Although with very limited mass and energy resources, DREAMS would be able to operate autonomously for at least two Martian days (sols) after landing in a very harsh environment as it was supposed to land on Mars during the dust storm season (October 2016 in Meridiani Planum) relying on its own power supply. ExoMars mission was successfully launched on 14th March 2016 and Schiaparelli entered the Mars atmosphere on October 20th beginning its 'six minutes of terror' journey to the surface. Unfortunately, some unexpected behavior during the parachuted descent caused an unrecoverable critical condition in navigation system of the lander driving to a destructive crash on the surface. The adverse sequence of events at 4 km altitude triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. This paper describes this experiment in terms of scientific goals, design, performances, testing and operational capabilities with an overview of in flight performances and available mission data.

  19. Radiological impact of the PARR-1 operation on the environment

    International Nuclear Information System (INIS)

    Bakhtyar, S.; Raza, S.S.; Tayyab, M.; Pervez, S.; Salahuddin, A.

    2005-01-01

    This paper presents a study related to the assessment of the radiological impact on the environment due to the operation of the Pakistan research reactor-1 (PARR-1) at the Pakistan Institute of Nuclear Sciences and Technology (PINSTECH), Islamabad. The parameters studied include the radioactivity releases in a gaseous form and also those originating from the liquid and solid wastes produced due to the operation of this research facility. The analysis is based on the environmental monitoring data for the last 10 years (1992-2002) and the conclusions have been drawn for the impact of the PARR-1 operation on the occupational workers as well as the general public living in the vicinity of the reactor site. Further, on the basis of this data, yearly average doses and the cumulative doses for the expected life of PARR-1, due to different radiation sources have been estimated. The analysis indicated that the maximum yearly doses at ground level for the occupational workers as well as for the public are a fraction of the International Atomic Energy Agency's (IAEA) defined limiting values. It is, therefore, concluded that the impact of the PARR-1 normal operation on the environment is negligible and it can be regarded as ''safe to the public as well as the occupational workers''. (orig.)

  20. Tire demand planning based on reliability and operating environment

    Directory of Open Access Journals (Sweden)

    Ali Nouri Qarahasanlou

    2016-12-01

    Full Text Available Tires represent a critical spare part in mines. There is a shortage of medium and large tires. In addition, with increased mining activities and the creation of new mines, the demand for tires has increased significantly. Thus, it is particularly important for mining engineers to identify tire characteristics and correctly manage the spare part inventory. Spare parts management is critical from an operational perspective, especially in asset intensive industries, such as mining, as well as in organizations owning and operating costly assets. A knowledge of the tires’ behavior (historical data must be considered together with the operating environment conditions (covariates. This study uses multiple regression analysis based on Cox’s regression model to incorporate machine operating environment information into systems reliability analysis to estimate spare parts. It considers a proportional hazard model and a stratified Cox regression model for time independent and dependent covariates. Based on the results, the study develops a mathematical model for spare parts estimation at the component level for non-repairable parts (tires. It validates the outcomes using a case study of loader tires in Sungun mine in Iran. There is a significant difference in the results of spare parts forecasting and inventory management when considering and not considering covariates.

  1. Assessment of Delivery Accuracy in an Operational-Like Environment

    Science.gov (United States)

    Sharma, Shivanjli; Wynnyk, Mitch

    2016-01-01

    In order to enable arrival management concepts and solutions in a Next Generation Air Transportation System (NextGen) environment, ground-based sequencing and scheduling functions were developed to support metering operations in the National Airspace System. These sequencing and scheduling tools are designed to assist air traffic controllers in developing an overall arrival strategy, from enroute down to the terminal area boundary. NASA developed a ground system concept and protoype capability called Terminal Sequencing and Spacing (TSAS) to extend metering operations into the terminal area to the runway. To demonstrate the use of these scheduling and spacing tools in an operational-like environment, the FAA, NASA, and MITRE conducted an Operational Integration Assessment (OIA) of a prototype TSAS system at the FAA's William J. Hughes Technical Center (WJHTC). This paper presents an analysis of the arrival management strategies utilized and delivery accuracy achieved during the OIA. The analysis demonstrates how en route preconditioning, in various forms, and schedule disruptions impact delivery accuracy. As the simulation spanned both enroute and terminal airspace, the use of Ground Interval Management - Spacing (GIM-S) enroute speed advisories was investigated. Delivery accuracy was measured as the difference between the Scheduled Time of Arrival (STA) and the Actual Time of Arrival (ATA). The delivery accuracy was computed across all runs conducted during the OIA, which included deviations from nominal operations which are known to commonly occur in real operations, such as schedule changes and missed approaches. Overall, 83% of all flights were delivered into the terminal airspace within +/- 30 seconds of their STA and 94% of flights were delivered within +/- 60 seconds. The meter fix delivery accuracy standard deviation was found to be between 36 and 55 seconds across all arrival procedures. The data also showed when schedule disruptions were excluded, the

  2. Applied Operations Research: Augmented Reality in an Industrial Environment

    Science.gov (United States)

    Cole, Stuart K.

    2015-01-01

    Augmented reality is the application of computer generated data or graphics onto a real world view. Its use provides the operator additional information or a heightened situational awareness. While advancements have been made in automation and diagnostics of high value critical equipment to improve readiness, reliability and maintenance, the need for assisting and support to Operations and Maintenance staff persists. AR can improve the human machine interface where computer capabilities maximize the human experience and analysis capabilities. NASA operates multiple facilities with complex ground based HVCE in support of national aerodynamics and space exploration, and the need exists to improve operational support and close a gap related to capability sustainment where key and experienced staff consistently rotate work assignments and reach their expiration of term of service. The initiation of an AR capability to augment and improve human abilities and training experience in the industrial environment requires planning and establishment of a goal and objectives for the systems and specific applications. This paper explored use of AR in support of Operation staff in real time operation of HVCE and its maintenance. The results identified include identification of specific goal and objectives, challenges related to availability and computer system infrastructure.

  3. Do We Need the Environment to Explain Operant Behavior?

    Directory of Open Access Journals (Sweden)

    Geir Overskeid

    2018-03-01

    Full Text Available By way of operant conditioning, human behavior is continuously shaped and maintained by its consequences – and understanding this process is important to most fields of psychology and neuroscience. The role of the learning organism’s environment has long been contentious, however. Much relevant research is being done by people identifying with the Skinnerian tradition, who tend to agree that the causes of behavior can be found exclusively in the environment. The meaning of this proposition is not clear, however. Some authors say the environment is outside the body, others claim it is also inside it. Among those who say the environment is outside the body, many are of the opinion that events inside the body and hence (in their view not in the environment can also cause behavior, though they claim that events inside the body cannot be causes in the same sense as events taking place outside it. This is confusing, and the present paper argues that the “environment” may neither be a useful nor a necessary concept in the analysis of behavior. Moreover, abolishing the concept could clear the way for a reintegration of Skinnerian psychology into the mainstream.

  4. Assessment of communication technology and post-operative telephone surveillance during global urology mission.

    Science.gov (United States)

    Rapp, David E; Colhoun, Andrew; Morin, Jacqueline; Bradford, Timothy J

    2018-02-21

    Compliance with post-operative follow-up in the context of international surgical trips is often poor. The etiology of this problem is multifactorial and includes lack of local physician involvement, transportation costs, and work responsibilities. We aimed to better understand availability of communication technologies within Belize and use this information to improve follow-up after visiting surgical trips to a public hospital in Belize City. Accordingly, a 6-item questionnaire assessing access to communication technologies was completed by all patients undergoing evaluation by a visiting surgical team in 2014. Based on this data, a pilot program for patients undergoing surgery was instituted for subsequent missions (2015-2016) that included a 6-week post-operative telephone interview with a visiting physician located in the United States. Fifty-four (n = 54) patients were assessed via survey with 89% responding that they had a mobile phone. Patients reported less access to home internet (59%), local internet (52%), and email (48%). Of 35 surgical patients undergoing surgery during 2 subsequent surgical trips, 18 (51%) were compliant with telephone interview at 6-week follow-up. Issues were identified in 3 (17%) patients that allowed for physician assistance. The cost per patient interview was $10 USD.

  5. Sentinel-3 SAR Altimetry Toolbox - Scientific Exploitation of Operational Missions (SEOM) Program Element

    Science.gov (United States)

    Benveniste, Jérôme; Lucas, Bruno; Dinardo, Salvatore

    2014-05-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage pioneered by ERS-1, ERS-2, Envisat and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the Sentinel-3 series is planned for launch in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales, the French Space Agency), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as net

  6. Ultralightweight PV Array Materials for Deep Space Mission Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Photovoltaic arrays for future deep space NASA missions demand multiple functionalities. They must efficiently generate electrical power, have very large areas and...

  7. Planning, implementation and optimization of future space missions using an immersive visualization environment (IVE) machine

    Science.gov (United States)

    Nathan Harris, E.; Morgenthaler, George W.

    2004-07-01

    Beginning in 1995, a team of 3-D engineering visualization experts assembled at the Lockheed Martin Space Systems Company and began to develop innovative virtual prototyping simulation tools for performing ground processing and real-time visualization of design and planning of aerospace missions. At the University of Colorado, a team of 3-D visualization experts also began developing the science of 3-D visualization and immersive visualization at the newly founded British Petroleum (BP) Center for visualization, which began operations in October, 2001. BP acquired ARCO in the year 2000 and awarded the 3-D flexible IVE developed by ARCO (beginning in 1990) to the University of Colorado, CU, the winner in a competition among 6 Universities. CU then hired Dr. G. Dorn, the leader of the ARCO team as Center Director, and the other experts to apply 3-D immersive visualization to aerospace and to other University Research fields, while continuing research on surface interpretation of seismic data and 3-D volumes. This paper recounts further progress and outlines plans in Aerospace applications at Lockheed Martin and CU.

  8. Test Waveform Applications for JPL STRS Operating Environment

    Science.gov (United States)

    Lux, James P.; Peters, Kenneth J.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.; Duncan, Courtney B.

    2013-01-01

    This software demonstrates use of the JPL Space Telecommunications Radio System (STRS) Operating Environment (OE), tests APIs (application programming interfaces) presented by JPL STRS OE, and allows for basic testing of the underlying hardware platform. This software uses the JPL STRS Operating Environment ["JPL Space Tele com - munications Rad io System Operating Environment,"(NPO-4776) NASA Tech Briefs, commercial edition, Vol. 37, No. 1 (January 2013), p. 47] to interact with the JPL-SDR Software Defined Radio developed for the CoNNeCT (COmmunications, Navigation, and Networking rEconfigurable Testbed) Project as part of the SCaN Testbed installed on the International Space Station (ISS). These are the first applications that are compliant with the new NASA STRS Architecture Standard. Several example waveform applications are provided to demonstrate use of the JPL STRS OE for the JPL-SDR platform used for the CoNNeCT Project. The waveforms provide a simple digitizer and playback capability for the SBand RF slice, and a simple digitizer for the GPS slice [CoNNeCT Global Positioning System RF Module, (NPO-47764) NASA Tech Briefs, commercial edition, Vol. 36, No. 3 (March 2012), p. 36]. These waveforms may be used for hardware test, as well as for on-orbit or laboratory checkout. Additional example waveforms implement SpaceWire and timer modules, which can be used for time transfer and demonstration of communication between the two Xilinx FPGAs in the JPLSDR. The waveforms are also compatible with ground-based use of the JPL STRS OE on radio breadboards and Linux.

  9. Is international election observation credible? Evidence from Organization for Security and Co-operation in Europe missions

    Directory of Open Access Journals (Sweden)

    Max Bader

    2014-07-01

    Full Text Available While international election observations missions often aim to present generalizable claims about the quality and integrity of an election, their findings are rarely based on a representative sample of observations, undermining the credibility of the missions. Bias in the selection of polling stations, among other things, can inflate or deflate the percentage of polling stations where observers find significant flaws. This article uses original data from Organization for Security and Co-operation in Europe (OSCE election observation missions to illustrate the nature of the problem of selection bias in international election observation, and show how the percentage of ‘bad’ polling stations (in the absence of selection bias can be estimated through a weighting procedure. The article finds that, while there is a strong degree of selection bias, this does not significantly impact the overall percentage of ‘bad’ polling stations that is reported by OSCE observation missions.

  10. Regulatory structures and operational environment in the Portuguese waste sector.

    Science.gov (United States)

    Simões, Pedro; De Witte, Kristof; Marques, Rui Cunha

    2010-06-01

    This research computes the influence of the operational environment on the efficiency of the Portuguese urban solid waste services. A sample of 29 solid waste utilities encompassing the whole continental country was used for this purpose. Particularly, we apply the non-parametric double bootstrap model to estimate the effect of various explanatory factors on robust data envelopment analysis estimates. In general, we find a significant influence of the environmental context on the solid waste utilities' performance. The environmental context is characterized by gross domestic product per capita, distance to treatment facilities, population density, regulation, type of management, composting and incineration services. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Fatigue in Military Operational Environments: An Annotated Bibliography

    Science.gov (United States)

    2007-07-01

    long duration missions, each preceded by 33 to 35-h of crew rest. Oral temperature, salivary melatonin and cortisol , as well as actigraph and...subjective measures, were collected during all missions. Temperature and melatonin data indicate that crews maintained their local home base circadian...cycles. Elevated cortisol and subjective fatigue during the first mission indicate that it was the most difficult of the three. Furthermore, quality

  12. The application of total quality management principles to spacecraft mission operations

    Science.gov (United States)

    Sweetin, Maury

    1993-03-01

    By now, the philosophies of Total Quality Management have had an impact on every aspect of American industrial life. The trail-blazing work of Deming, Juran, and Crosby, first implemented in Japan, has 're-migrated' across the Pacific and now plays a growing role in America's management culture. While initially considered suited only for a manufacturing environment, TQM has moved rapidly into the 'service' areas of offices, sales forces, and even fast-food restaurants. The next logical step has also been taken - TQM has found its way into virtually all departments of the Federal Government, including NASA. Because of this widespread success, it seems fair to ask whether this new discipline is directly applicable to the profession of spacecraft operations. The results of quality emphasis on OAO Corporation's contract at JPL provide strong support for Total Quality Management as a useful tool in spacecraft operations.

  13. The application of total quality management principles to spacecraft mission operations

    Science.gov (United States)

    Sweetin, Maury

    1993-01-01

    By now, the philosophies of Total Quality Management have had an impact on every aspect of American industrial life. The trail-blazing work of Deming, Juran, and Crosby, first implemented in Japan, has 're-migrated' across the Pacific and now plays a growing role in America's management culture. While initially considered suited only for a manufacturing environment, TQM has moved rapidly into the 'service' areas of offices, sales forces, and even fast-food restaurants. The next logical step has also been taken - TQM has found its way into virtually all departments of the Federal Government, including NASA. Because of this widespread success, it seems fair to ask whether this new discipline is directly applicable to the profession of spacecraft operations. The results of quality emphasis on OAO Corporation's contract at JPL provide strong support for Total Quality Management as a useful tool in spacecraft operations.

  14. Using Web 2.0 Techniques in NASA's Ares Engineering Operations Network (AEON) Environment - First Impressions

    Science.gov (United States)

    Scott, David W.

    2010-01-01

    The Mission Operations Laboratory (MOL) at Marshall Space Flight Center (MSFC) is responsible for Engineering Support capability for NASA s Ares rocket development and operations. In pursuit of this, MOL is building the Ares Engineering and Operations Network (AEON), a web-based portal to support and simplify two critical activities: Access and analyze Ares manufacturing, test, and flight performance data, with access to Shuttle data for comparison Establish and maintain collaborative communities within the Ares teams/subteams and with other projects, e.g., Space Shuttle, International Space Station (ISS). AEON seeks to provide a seamless interface to a) locally developed engineering applications and b) a Commercial-Off-The-Shelf (COTS) collaborative environment that includes Web 2.0 capabilities, e.g., blogging, wikis, and social networking. This paper discusses how Web 2.0 might be applied to the typically conservative engineering support arena, based on feedback from Integration, Verification, and Validation (IV&V) testing and on searching for their use in similar environments.

  15. Parameter estimation supplement to the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)

    Science.gov (United States)

    Bjorkman, W. S.; Uphoff, C. W.

    1973-01-01

    This Parameter Estimation Supplement describes the PEST computer program and gives instructions for its use in determination of lunar gravitation field coefficients. PEST was developed for use in the RAE-B lunar orbiting mission as a means of lunar field recovery. The observations processed by PEST are short-arc osculating orbital elements. These observations are the end product of an orbit determination process obtained with another program. PEST's end product it a set of harmonic coefficients to be used in long-term prediction of the lunar orbit. PEST employs some novel techniques in its estimation process, notably a square batch estimator and linear variational equations in the orbital elements (both osculating and mean) for measurement sensitivities. The program's capabilities are described, and operating instructions and input/output examples are given. PEST utilizes MAESTRO routines for its trajectory propagation. PEST's program structure and subroutines which are not common to MAESTRO are described. Some of the theoretical background information for the estimation process, and a derivation of linear variational equations for the Method 7 elements are included.

  16. USA Space Debris Environment, Operations, and Research Updates

    Science.gov (United States)

    Liou, J.-C.

    2018-01-01

    Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD

  17. Heatshield for Extreme Entry Environment Technology (HEEET) Enabling Missions Beyond Heritage Carbon Phenolic

    Science.gov (United States)

    Stackpoole, M.; Boghozian, T.; Chavez-Garcia, J.; Ellerby, D.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Kazemba, C.; Kellermann, C.; hide

    2017-01-01

    Future NASA robotic missions utilizing an entry system into Venus and the outer planets, results in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or AVCOAT. Previously, mission planners had to assume the use of fully dense carbon phenolic heatshields similar to what was flown on Pioneer Venus or Galileo. Carbon phenolic is a robust TPS material, however, its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. NASA has decided to invest in new technology development rather than invest in reviving carbon phenolic. The HEEET project, funded by STMD is maturing a game changing Woven Thermal Protection System technology. HEEET is a capability development project and is not tied to a single mission or destination, therefore, it is challenging to complete ground testing needed to demonstrate a capability that is much broader than any single mission or destination would require. This presentation will status HEEET progress. Near term infusion target for HEEET is the upcoming New Frontiers (NF-4) class of competitively selected Science Mission Directorate (SMD) missions for which it is incentivized.

  18. Effects of the solar-terrestrial environment on satellite operations

    International Nuclear Information System (INIS)

    Baker, D.N.

    1984-01-01

    Hot plasma and energetic particle populations in space are known to produce spacecraft operational anomalies. In the inner part of the earth's magnetosphere, these effects are primarily due to durably trapped radiation belt particles, and the integrated doses can be calculated quite accurately for any given orbit. In the outer magnetosphere many spacecraft operational problems appear to be due to intense, transient phenomena. It is shown that three types of naturally-occurring, and highly variable, hostile particle radiation environments are encountered at, or near, the geostationary orbit: (1) high-energy protons due to solar flares; (2) very high energy electrons (2-10 MeV) of unknown origin; and (3) energetic ions and electrons produced by magnetospheric substorms. Present particle sensor systems provide energetic particle detection and assessment capabilities during these kinds of high-energy radiation events. Numerous operational anomalies and subsystem problems have occurred during each type of event period and the association of such upsets is demonstrated in this paper. Methods of prediction of magnetospheric disturbances are discussed, and overall recommendations are made for dealing with this continuing problem

  19. Transitions Towards Operational Space-Based Ocean Observations: From Single Research Missions into Series and Constellations

    Science.gov (United States)

    2011-02-16

    globalisation has definitely advantages in terms of meeting temporal and spatial requirements provided that timely open access to data is guaranteed and...the Jason-3 mission. Moreover, concept definition and agency cooperation have started for a series of missions beyond Jason-3. In the context of

  20. Results from VIRTIS on board Venus Express after the end of the mission operations

    Science.gov (United States)

    Piccioni, G.; Drossart, P.; VIRTIS Venus Express Team

    After more than 8 years since the orbit insertion, the Venus Express mission is now at its end of mission operations. VIRTIS aboard the Venus Express spacecraft has addressed a significant amount of scientific results from the surface up to the upper atmosphere, in terms of mapping, composition, structure and dynamics. The VIRTIS instrument consists of two channels: VIRTIS-M, an imaging spectrometer with moderate spectral resolution in the range from 0.25 to 5.2 mu m and VIRTIS-H, a high spectral resolution spectrometer in the range from 2 to 5 mu m co-aligned with the field of view of -M \\citep{Piccioni2007a,Drossart2007a}. The resolution of VIRTIS-M is 2 nm from 0.25 to 1 mu m, and 10 nm from 1 to 5.2 mu m. The resolution of VIRTIS-H is about 2 nm. The atmosphere above the clouds has been observed both on day and night sides, in solar reflection and thermal emission in nadir geometry \\citep{Ignatiev2009, Cottini2012, Peralta2012, Peralta2009}. Limb observations provided O2\\citep{Piccioni2009, Garcia2009a, Gerard2013, Migliorini2013a, Gerard2008, Gerard2009}, OH \\citep{Piccioni2008,Gerard2010,Soret2010,Soret2012}, NO \\citep{Garcia2009b}, CO2 \\citep{Drossart2007b,Lopez-Valverde2011} and CO \\citep{Gilli2009,Gilli2015,Gilli2011} emissions, through nightglow and fluorescence observations. Spectroscopy of the 4-5 mu m range gave access to the cloud structure in the 60-95 km altitude levels \\citep{Irwin2008a,Grassi2014, Grassi2008,Grassi2010,Luz2011}. The deeper atmospheric windows, limited by CO2 and H2O bands were accessible only in thermal emission on the night side. The sounded levels at 1.7 and 2.3 mu m were limited respectively to 30-20 km altitude \\citep{Barstow2012,Bezard2009,Marcq2008a,Satoh2009,Tsang2009, Tsang2010,Tsang2008,Wilson2008,Wilson2009}, while at shorter wavelengths (1.18, 1.10, 1.01, 0.9 and 0.85 mu m), the hot surface of Venus was seen through the scattering clouds \\citep{Mueller2009,Helbert2008,Arnold2008a,Smrekar2010,Mueller2012

  1. Software Environment for Mission Design, Simulation, and Engineering Data Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As NASA designs and develops the next generation of scientific and space exploration vehicles and missions, there is a growing need for a robust, flexible, and...

  2. NASA Operational Environment Team (NOET): NASA's key to environmental technology

    Science.gov (United States)

    Cook, Beth

    1993-01-01

    NASA has stepped forward to face the environmental challenge to eliminate the use of Ozone-Layer Depleting Substances (OLDS) and to reduce our Hazardous Air Pollutants (HAP) by 50 percent in 1995. These requirements have been issued by the Clean Air Act, the Montreal Protocol, and various other legislative acts. A proactive group, the NASA Operational Environment Team or NOET, received its charter in April 1992 and was tasked with providing a network through which replacement activities and development experiences can be shared. This is a NASA-wide team which supports the research and development community by sharing information both in person and via a computerized network, assisting in specification and standard revisions, developing cleaner propulsion systems, and exploring environmentally-compliant alternatives to current processes.

  3. Chemistry of complexing molecules and environment. Report of the working group of the Cea ''mission environment''; Chimie des complexants en environnements. Rapport du groupe de travail de la mission environnement

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J.C

    1998-07-01

    The Working group 'Chemistry of Complexing Molecules and Environment' of the Mission Environment (AG/ENV) identified themes for an original positioning of CEA on important issues of environmental research if a sufficiently strong demand appears. The research of CEA on the environment should be complementary to actions undertaken by other partners (official institutions, research organizations and industrial firms). The themes suggested are: the synthesis of new chelating molecules and new materials having specific properties, with the support of theoretical chemistry and modeling, analytical physical chemistry and speciation of species in relation to their eco-toxicity and their biogeochemical mobility in the natural environment. These themes, illustrated by examples of actions in progress at CEA or likely to be launched quickly, draw largely from recognized competences of the teams, generally developed for finalized nuclear applications: experimental, theoretical and instrumental competences. (author)

  4. Heuristic Scheduling in Grid Environments: Reducing the Operational Energy Demand

    Science.gov (United States)

    Bodenstein, Christian

    In a world where more and more businesses seem to trade in an online market, the supply of online services to the ever-growing demand could quickly reach its capacity limits. Online service providers may find themselves maxed out at peak operation levels during high-traffic timeslots but too little demand during low-traffic timeslots, although the latter is becoming less frequent. At this point deciding which user is allocated what level of service becomes essential. The concept of Grid computing could offer a meaningful alternative to conventional super-computing centres. Not only can Grids reach the same computing speeds as some of the fastest supercomputers, but distributed computing harbors a great energy-saving potential. When scheduling projects in such a Grid environment however, simply assigning one process to a system becomes so complex in calculation that schedules are often too late to execute, rendering their optimizations useless. Current schedulers attempt to maximize the utility, given some sort of constraint, often reverting to heuristics. This optimization often comes at the cost of environmental impact, in this case CO 2 emissions. This work proposes an alternate model of energy efficient scheduling while keeping a respectable amount of economic incentives untouched. Using this model, it is possible to reduce the total energy consumed by a Grid environment using 'just-in-time' flowtime management, paired with ranking nodes by efficiency.

  5. Psychological biases affecting human cognitive performance in dynamic operational environments

    International Nuclear Information System (INIS)

    Takano, Kenichi; Reason, J.

    1999-01-01

    In order to identify cognitive error mechanisms observed in the dynamic operational environment, the following materials were analyzed giving special attention to psychological biases, together with possible cognitive tasks and these location, and internal and external performance shaping factors: (a) 13 human factors analyses of US nuclear power plant accidents, (b) 14 cases of Japanese nuclear power plant incidents, and (c) 23 cases collected in simulator experiments. In the resulting analysis, the most frequently identified cognitive process associated with error productions was situation assessment, and following varieties were KB processes and response planning, all of that were the higher cognitive activities. Over 70% of human error cases, psychological bias was affecting to cognitive errors, especially those to higher cognitive activities. In addition, several error occurrence patterns, including relations between cognitive process, biases, and PSFs were identified by the multivariate analysis. According to the identified error patterns, functions that an operator support system have to equip were discussed and specified for design base considerations. (author)

  6. Operational measurements in radioprotection in the industrial and medical environments

    International Nuclear Information System (INIS)

    Rodde, S.; Vial, Th.; Truffert, H.; Kramar, R.; Batalla, A.; Roine, Ph.; Pin, A.; Lahaye, Th.; Rodde, S.; Bordy, J.M.; Paquet, F.; Veres, A.; Cadiou, A.; Branthonne, J.Y.; Noel, A.; Laloubere, L.; Moreau, St.; Gensdarmes, F.; Marques, S.; Lestang, M.; Valendru, N.; Tranchant, Ph.; Martel, P.; Bernhard, S.; Chareyre, P.; Gardin, I.; Casanova, Ph.; De Vita, A.; Tenailleau, L.; Masson, B.; Feret, B.; Guerin, M.; Guillot, L.; Gaultier, E.

    2009-01-01

    This document gathers the slides of the available presentations given during these conference days. Thirty presentations are assembled in the document and deal with: 1 - enforcement circular of the labor code dispositions relative to workers protection against ionizing radiation hazards (T. Lahaye); 2 - context and regulatory evolutions - public health code (S. Rodde); 3 - references and perspectives in external dosimetry (J.M. Bordy); 4 - CIPR's Committee 2 works (F. Paquet); 5 - from protection data to measurement data (A. Pin); 6 - dosimetric control in radiotherapy (A. Veres); 7 - calibration of irradiation measurement devices in industrial environment (A. Cadiou); 8 - calibration and verification of nuclear measurement devices (J.Y. Branthonne); 9 - calibration of measurement devices in medical environment (J.M. Bordy); 10 - quality control in radiotherapy (A. Batalla); 11 - in-vivo dosimetry in radiotherapy (A. Noel); 12 - calibration metrology of fixed post irradiation sensors (L. Laloubere); 13 - design requirements for the radiological zoning and the wastes cleanliness of Flamanville 3 EPR reactor (S. Moreau); 14 - efficiency of aerosol capture systems used in CNPE EDF (F. Gensdarmes); 15 - mobile surveillance means of the atmospheric contamination of CNPE EDF's reactor building (S. Marques and M. Lestang); 16 - experience feedback about the security gates at EDF's nuclear facilities (N. Valendru); 17 - metrology needs for radioprotection technical controls (P. Tranchant); 18 - technical evaluation of a flowmeter/dosemeter in the framework of the regulatory control of X-ray electric generators used in radio-diagnosis (P. Martel); 19 - reinforced natural radioactivity - the case of radon measurement (S. Bernhard); 20 - fires during radioactive materials transport (P. Chareyre); 21 - measurement in the framework of medical examinations: radiology service (A. Noel); 22 - operational measurements in nuclear medicine (I. Gardin); 23 - from the operational

  7. Design and operation of an anaerobic digester for waste management and fuel generation during long term lunar mission

    Science.gov (United States)

    Dhoble, Abhishek S.; Pullammanappallil, Pratap C.

    2014-10-01

    Waste treatment and management for manned long term exploratory missions to moon will be a challenge due to longer mission duration. The present study investigated appropriate digester technologies that could be used on the base. The effect of stirring, operation temperature, organic loading rate and reactor design on the methane production rate and methane yield was studied. For the same duration of digestion, the unmixed digester produced 20-50% more methane than mixed system. Two-stage design which separated the soluble components from the solids and treated them separately had more rapid kinetics than one stage system, producing the target methane potential in one-half the retention time than the one stage system. The two stage system degraded 6% more solids than the single stage system. The two stage design formed the basis of a prototype digester sized for a four-person crew during one year exploratory lunar mission.

  8. User's guide to the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)

    Science.gov (United States)

    Lutzky, D.; Schafer, J.

    1973-01-01

    The MAESTRO system is a mission analysis tool designed to present to the user information necessary to make the various decisions required in the design and execution of a spaceflight mission. The system was designed so that it can be used in both the pre-launch mission planning phase of a mission and during the flight as an in-flight decision making tool. A description of each of the following modes is presented: (1) trajectory propagation mode; (2) retro-fire determination mode; (3) midcourse analysis determination mode; (4) Monte Carlo mode; (5) verification mode; (6) orbit stability mode; and (7) post injection trim mode. A description of the inputs necessary to run the program mode is given along with a sample case.

  9. Remote Infrared Imaging of the Space Shuttle During Hypersonic Flight: HYTHIRM Mission Operations and Coordination

    Science.gov (United States)

    Schwartz, Richard J.; McCrea, Andrew C.; Gruber, Jennifer R.; Hensley, Doyle W.; Verstynen, Harry A.; Oram, Timothy D.; Berger, Karen T.; Splinter, Scott C.; Horvath, Thomas J.; Kerns, Robert V.

    2011-01-01

    The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project has been responsible for obtaining spatially resolved, scientifically calibrated in-flight thermal imagery of the Space Shuttle Orbiter during reentry. Starting with STS-119 in March of 2009 and continuing through to the majority of final flights of the Space Shuttle, the HYTHIRM team has to date deployed during seven Shuttle missions with a mix of airborne and ground based imaging platforms. Each deployment of the HYTHIRM team has resulted in obtaining imagery suitable for processing and comparison with computational models and wind tunnel data at Mach numbers ranging from over 18 to under Mach 5. This paper will discuss the detailed mission planning and coordination with the NASA Johnson Space Center Mission Control Center that the HYTHIRM team undergoes to prepare for and execute each mission.

  10. COMPOEX Technology to Assist Leaders in Planning and Executing Campaigns in Complex Operational Environments

    National Research Council Canada - National Science Library

    Kott, Alexander; Corpac, Peter S

    2007-01-01

    ... in a complex operational environment. Leaders must understand the operational environment, develop campaign plans that include multiple lines of effort such as security, governance, political-economic development, rule of law and employ...

  11. Report of the peer review mission of national operational safety experience feedback process to the Ukraine 11-15 November 1996 Kiev

    International Nuclear Information System (INIS)

    1996-01-01

    At the invitation of the Nuclear Regulatory Administration of Ukraine (NRA), the IAEA carried out a Peer review mission of national operational safety experience feedback process at Kiev from 11 to 15 November 1996. The objective of this mission was to provide the host country, represented by the regulatory body, with independent and comprehensive review of current status of operational safety experience feedback (OSEF) process with respect to the IAEA's recommendations and international practices. The mission concluded that principal arrangements of operational feedback process in Ukraine are, at present, in force and brought positive results since their introduction. The mission also noted several good practices in these activities. 1 tab

  12. Tour operators, environment and sustainable development; Tour operator, ambiente e sviluppo sostenibile

    Energy Technology Data Exchange (ETDEWEB)

    Andriola, L.; Chirico, R.; Declich, P. [ENEA, Divisione Caratterizzazione dell' Ambiente e del Territorio, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    The purpose of this work is to characterize the role of the tour operators in achieving sustainable development meaning a process of development which leaves at least the same amount of capital, natural and man-made, to future generations as current generations have access to. Tourism is one of the largest and fastest growing global industries, creating significant employment and economic development, particularly in many developing countries. Tourism can also have negative environmental and social impact resulting from resource consumption, pollution, generation of wastes and from the compromise of local culture while introducing new activities. Most tour operators has started to recognised that a clean environment is critical to their success, but few tour operators have the management tools or experience to design and conduct tours that minimize their negative environmental and social impacts. A group of tour operators from different parts of the world have joined forces to create the Tour Operators' Initiative for Sustainable Tourism Development. With this initiatives, tour operators are moving towards sustainable tourism by committing themselves to address the environmental, social, and cultural aspects of sustainable development within the tourism sector. [Italian] Lo scopo del presente lavoro e' individuare il ruolo dei Tour Operator nel perseguire uno sviluppo sostenibile ossia un processo di sviluppo che lasci alle generazioni future lo stesso capitale, naturale e creato dall'uomo, di cui dispone l'attuale generazione. Il turismo e' tra le industrie globali piu' vaste ed in rapida crescita che crea una occupazione ed uno sviluppo economico significativo, particolarmente in molti paesi in via di sviluppo. Il turismo puo' anche generare impatti sia ambientali che sociali derivanti dallo sfruttamento delle risorse, dall'inquinamento, dalla produzione di rifiuti e dalla compromissione delle culture locali introducendo

  13. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    International Nuclear Information System (INIS)

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-01-01

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to 10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is ideally suited for applications that require 1-30s engagements at very high average power. If necessary, multiple laser apertures can provide continuous operation. Land Combat mission analysis of a stressing air defense

  14. Multi-Stage ADRs for Current and Future Astronomy Missions: Performance and Requirements for Cryogen-Free Operation

    Science.gov (United States)

    Shirron, Peter; Kimball, Mark; Vlahacos, Kosta

    2010-01-01

    The cooling requirements for current (e.g. Astro-H) and future (e.g. IXO and ASP) astronomy missions pose significant challenges for the sub-Kelvin Cooler. In particular, the use of large detector arrays increases the cooling power needed, and the variety of cryocoolers that can be used for pre-cooling greatly expands the range of temperatures at which the sub-Kelvin cooler can be designed to reject heat. In most cases, there is also a need for a stable higher temperature stage for cooling amplifiers or telescope components. NASA/GSFC is currently building a 3-stage ADR for the Astro-H mission, and is developing a 5-stage ADR suitable for IXO and ASP, as well as many other missions in the early planning stages. The architecture of these ADRs allows them to be adapted rather easily for different cooling requirements and to accommodate different cryocooler capabilities (operating temperature and cooling power). This paper will discuss the performance of these ADRs, which operate in both continuous, and single-shot cooling modes, and the minimum cryocooler capabilities needed to meet the requirements of future missions.

  15. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  16. Ptolemy operations as part of the Rosetta Mission from Hibernation to the Surface of Comet 67P

    Science.gov (United States)

    Andrews, Daniel; Morse, Andrew; Barber, Simeon; Morgan, Geraint; Sheridan, Simon; Wright, Ian

    2015-04-01

    Rosetta is a European Space Agency 'Planetary Cornerstone' mission intended to solve many of the unanswered questions surrounding the formation of the Solar System. Rosetta exited Deep Space Hibernation (DSH) on January 20th 2014, an event that started an exhilarating period of comet approach, mapping and then the eventful landings of Philae upon several locations on the surface of comet 67P/Churyumov-Gerasimenko. Ptolemy is a miniature chemical analysis laboratory aboard the Philae lander intended to determine the chemical and stable light isotopic composition of material sourced from beneath, on and above the surface of comet 67P. The Primary Science (chemical and stable light isotopic composition) was to be returned during the First Science Sequence (FSS) via Gas Chromatograph Mass Spectrometry of a solid cometary sample undergoing stepped pyrolysis/combustion in an oven of the Sampler, Drill and Distribution system (SD2). In addition, Ptolemy can also passively adsorb coma material onto molecular sieve within one of the SD2 sample ovens for later release and analysis, an operation known as the Comet Atmosphere Sample Experiment (CASE). A third operational mode consists of 'sniff' detections of the current spacecraft environment by directly analysing the inside of the mass spectrometer itself, which is connected to space via a vent pipe. This "Sniff Mode" is a simple, low resource mode that does not require an SD2 oven and was used during the baseline FSS to provide contextual information about the local coma. 'Sniff Mode' has been operated sixteen times since DSH, first at a comet distance of ~5,000,000 km and then twice each at ~15,000, 30, 20 and then 10 km comet centre distances. These first 9 measurements provide useful insight into the spacecraft environment and at the lower heights offer the tantalising possibility of direct comet coma detection. During the Philae landing a Sniff Mode measurement was undertaken ~9 minutes after the first Philae contact

  17. Collaborative Applications Used in a Wireless Environment at Sea for Use in Coast Guard Law Enforcement and Homeland Security Missions

    National Research Council Canada - National Science Library

    Klopson, Jadon E; Burdian, Stephen V

    2005-01-01

    ... Situational Awareness Agent, are utilized over the Tactical Mesh and OFDM network configurations to improve the Common Operating Picture of involved units within a marine environment to evaluate their potential impact for the Coast Guard...

  18. Women and Couples in Isolated Extreme Environments: Applications for Long-Duration Missions

    Science.gov (United States)

    Leon, G. R.; Sandal, G. M.

    four women from Greenland, Denmark, UK and Russia who traversed the Greenland ice by ski. The participants did not know each other prior to the expedition. Three were classified as "the right stuff' based on PCI findings. Diary and post-expedition reports indicated that incidents of interpersonal tension were often related to fatigue, homesickness, pain or cold. The participants also indicated that respect and tolerance for differences between them, as weIl as mutual emotional support were crucial factors for the successful completion of the expedition. Group 3 consisted of 3 married couples and the 2 1/2 year old child of the leader and his wife. Five of the crew sailed a small boat from Norway to the Canadian High Arctic; the leader's wife and child joined the team in Greenland. Over a 9 month period, the icelocked boat was ilie center of habitation, scientific, and other activities. Three of the group carried out a 6 week exploratory trek at the end of the winter-over. Participants completed the MPQ prior to the expedition, a WRF over the entire Arctic period, and a semi-structured personality interview at the close of the interval during which the entire group was together. AlI participants scored relatively highest on the Absorption scale, manifested in the salutory experience of enjoying and becoming engrossed in the beauty of the environment. WRF and interview findings indicated that team members consistently reported that the emotional support of and ability to confide in their partner were extremely important in alleviating interpersonal tensions with other team members, and contributed to the overall effective functioning of the group. Reported level of emotional response to stress and coping patterns used while in the stationary habitat were consistent with WRF responses during the later exploratory trek. The woman team member on the trek reported more discomfort regarding personal hygiene issues and fear of injury .In alI groups, the salience of the

  19. A modular approach for assessing the effect of radiation environments on man in operational systems. The radiobiological vulnerability of man during task performance

    Science.gov (United States)

    Ewing, D. E.

    1972-01-01

    A modular approach for assessing the affects of radiation environments on man in operational systems has been developed. The feasibility of the model has been proved and the practicality has been assessed. It has been applied to one operational system to date and information obtained has been submitted to systems analysts and mission planners for the assessment of man's vulnerability and impact on systems survivability. In addition, the model has been developed so that the radiobiological data can be input to a sophisticated man-machine interface model to properly relate the radiobiological stress with other mission stresses including the effects of a degraded system.

  20. The LASSII Program: Objectives, Spacecraft Design, and Mission Scenarios for Full-Scale, Shuttle-Launched, Free-Flyer Operations.

    Science.gov (United States)

    1982-06-16

    a multiagency, multipurpose mission which is R3 compatible (designed to be Recovered, Recharged, and Reflown), LASSI ! allows for an extremely cost...but prior to release from the RMS. Moae I continues with release of LASSI and the initial stage of free flight. When adequate separation between...AUGMNTED FOR LASSI I OPERATIONS TOIRACES A E Z .51L t %,. : I- UNLESS OTRARWSE SAICIPID o ft Fig. 5.3-2 - MICROCATS subsystem augmented for LASSI

  1. Augmented reality aided operation and maintenance system for indoor environments

    International Nuclear Information System (INIS)

    Tamura, Yuichi; Umetani, Tomohiro; Kubo, Shin

    2013-01-01

    This paper proposes an Augmented Reality (AR) system to assist operation and maintenance tasks in an indoor environment, such as a nuclear fusion reactor and its building. AR is a technology that enhances real information by adding 3D virtual objects, images, sounds, or movies via a web camera. The AR system often uses “markers” such as QR code to detect the place where the virtual content should appear. However, these markers are unnatural and they can disturb the scenery. We propose an AR system that can detect natural markers, which provides AR content via a network. This system stores the information related to markers and virtual objects on a server. A device connected to this system automatically downloads this content so that the user can watch the AR content via a web camera. We add a real-time numerical simulation function that allows us to simulate physical phenomena by touching AR contents. It also enables us to observe simulation results by downloading a movie of numerical simulation results from the simulation server. Overall, this system allows us to watch the same content with multiple devices and to simulate physical phenomena using various parameters. (author)

  2. Advancing Small Satellite Earth Observation: Operational Spacecraft, Planned Missions and Future Concepts

    OpenAIRE

    Wicks, A.; da Silva Curiel, A.; Ward, J.; Fouquet, M.

    2000-01-01

    The launch of Surrey’s UoSAT-12 in April 1999 heralded a new era in small-satellite Earth observation. The UoSAT-12 mission, Surrey’s first mini-satellite, supports a variety of payloads, including a 10-m panchromatic imager and a 32-m multispectral imager - both built at Surrey using COTS technology. In building these imagers, Surrey applied the lessons learned over sixteen microsatellite missions, and took advantage of the minisatellite class platform, which can support larger payloads and ...

  3. Mission control team structure and operational lessons learned from the 2009 and 2010 NASA desert RATS simulated lunar exploration field tests

    Science.gov (United States)

    Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall

    2013-10-01

    The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations

  4. Global Environmental Micro Sensors Test Operations in the Natural Environment

    Science.gov (United States)

    Adams, Mark L.; Buza, Matthew; Manobianco, John; Merceret, Francis J.

    2007-01-01

    ENSCO, Inc. is developing an innovative atmospheric observing system known as Global Environmental Micro Sensors (GEMS). The GEMS concept features an integrated system of miniaturized in situ, airborne probes measuring temperature, relative humidity, pressure, and vector wind velocity. In order for the probes to remain airborne for long periods of time, their design is based on a helium-filled super-pressure balloon. The GEMS probes are neutrally buoyant and carried passively by the wind at predetermined levels. Each probe contains onboard satellite communication, power generation, processing, and geolocation capabilities. ENSCO has partnered with the National Aeronautics and Space Administration's Kennedy Space Center (KSC) for a project called GEMS Test Operations in the Natural Environment (GEMSTONE) that will culminate with limited prototype flights of the system in spring 2007. By leveraging current advances in micro and nanotechnology, the probe mass, size, cost, and complexity can be reduced substantially so that large numbers of probes could be deployed routinely to support ground, launch, and landing operations at KSC and other locations. A full-scale system will improve the data density for the local initialization of high-resolution numerical weather prediction systems by at least an order of magnitude and provide a significantly expanded in situ data base to evaluate launch commit criteria and flight rules. When applied to launch or landing sites, this capability will reduce both weather hazards and weather-related scrubs, thus enhancing both safety and cost-avoidance for vehicles processed by the Shuttle, Launch Services Program, and Constellation Directorates. The GEMSTONE project will conclude with a field experiment in which 10 to 15 probes are released over KSC in east central Florida. The probes will be neutrally buoyant at different altitudes from 500 to 3000 meters and will report their position, speed, heading, temperature, humidity, and

  5. Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation for Logistical Use in Complex Environments

    Science.gov (United States)

    2012-06-01

    would like to thank Dr. Daniel Nussbaum from the NPS Operations Research Department for helping us locate various logistical platform data that assisted...mimic human directions. In 2010, the Air Force released the results of a yearlong study highlighting the need for increased autonomy in modern weapon... right platform to perform a certain mission. 2. Variable Short Tons with Constant Mission Duration Time Under the normal circumstances

  6. Capacity Building in the Operational Environment: Stories and Lessons Learned

    Science.gov (United States)

    2012-09-01

    Another leader recounted how his team successfully supported a MARSOC mission, which resulted in the Marines accepting them. The reputation they...what’s going on in our province. What we’re trying to do now is get the ADT to carve out one of their guys, the agribusiness development guys...out and vote,” addressing all the generalized themes that we have to stress when we’re out there. Basically, we made our reputation and our money

  7. Commonalities in Russian Military Operations in Urban Environments

    National Research Council Canada - National Science Library

    Smith, Dale

    2003-01-01

    .... In doing so it advantage in technology will be significantly reduced. By conducting a study of the Russian operations in Chechnya and comparing it to operations in Stalingrad some enduring traits began to emerge...

  8. Web Design for Space Operations: An Overview of the Challenges and New Technologies Used in Developing and Operating Web-Based Applications in Real-Time Operational Support Onboard the International Space Station, in Astronaut Mission Planning and Mission Control Operations

    Science.gov (United States)

    Khan, Ahmed

    2010-01-01

    The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX

  9. Fixing the DOTMLPF Handicap: Effectively Integrating the Conventional Combat Air Force Into Special Operations Forces Missions

    Science.gov (United States)

    2010-04-01

    conventional aircrews pierce the veil of secrecy and truly learn about the SOF missions, capabilities, and limitations. These select aviators then walk...the main things gained through “The Basic School” is an understanding of capabilities and limitations of the infantry. Covered by a veil of secrecy...Maneuver Capability Through Greater Air-Ground Joint Interdependence. Santa Monica, CA: RAND Corporation , 2009. Kirmis, Lt Col Paul D., Director of

  10. Mission Operations Working Group (MOWG) Report to the OMI Science Team

    Science.gov (United States)

    Fisher, Dominic M.

    2017-01-01

    This PowerPoint presentation will discuss Aura's current spacecraft and OMI insturment status, highlight any performance trends and impacts to OMI operations, identify any operational changes and express concerns or potential process improvements.

  11. CryoSat: ESA's ice explorer mission. One year in operations: status and achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Ortega, B. H.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Davidson, M.; Cullen, R.; Wingham, D.

    2012-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. Scope of this paper is to describe the current mission status and the main scientific achievements since the start of the science phase. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  12. Cryosat: Esa's Ice Explorer Mission. Two YEARs in Operations: Status and Achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Hoyos, B.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Cullen, R.; Fornari, M.; Davidson, M.; Laxon, S.

    2012-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Experimental evidence have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. In April 2012, the first winter [2010 -2011] sea-ice variation map of the Arctic was released to the scientific community. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  13. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    Science.gov (United States)

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  14. A Radiation Hard Multi-Channel Digitizer ASIC for Operation in the Harsh Jovian Environment

    Science.gov (United States)

    Aslam, Shahid; Aslam, S.; Akturk, A.; Quilligan, G.

    2011-01-01

    ultimately impact the surface of Europa after the mission is completed. The current JEO mission concept includes a range of instruments on the payload, to monitor dynamic phenomena (such as Io's volcanoes and Jupiters atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. The payload includes a low mass (3.7 Kg) and low power (ASIC that resides very close to the thermopile linear array outputs. Both the thermopile array and the MCD ASIC will need to show full functionality within the harsh Jovian radiation environment, operating at cryogenic temperatures, typically 150 K to 170 K. In the following, a radiation mitigation strategy together with a low risk Radiation-Hardened-By-Design (RHBD) methodology using commercial foundry processes is given for the design and manufacture of a MCD ASIC that will meet this challenge.

  15. Development of wide area environment accelerator operation and diagnostics method

    Science.gov (United States)

    Uchiyama, Akito; Furukawa, Kazuro

    2015-08-01

    Remote operation and diagnostic systems for particle accelerators have been developed for beam operation and maintenance in various situations. Even though fully remote experiments are not necessary, the remote diagnosis and maintenance of the accelerator is required. Considering remote-operation operator interfaces (OPIs), the use of standard protocols such as the hypertext transfer protocol (HTTP) is advantageous, because system-dependent protocols are unnecessary between the remote client and the on-site server. Here, we have developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force for Web-based systems, as a next-generation Web-based OPI using the Experimental Physics and Industrial Control System Channel Access protocol. As a result of this implementation, WebSocket-based client systems have become available for remote operation. Also, as regards practical application, the remote operation of an accelerator via a wide area network (WAN) faces a number of challenges, e.g., the accelerator has both experimental device and radiation generator characteristics. Any error in remote control system operation could result in an immediate breakdown. Therefore, we propose the implementation of an operator intervention system for remote accelerator diagnostics and support that can obviate any differences between the local control room and remote locations. Here, remote-operation Web-based OPIs, which resolve security issues, are developed.

  16. Requirements assessment and operational demands for a resource mapping rover mission to the lunar polar regions

    Energy Technology Data Exchange (ETDEWEB)

    KLARER,PAUL R.; BINDER,ALAN B.; LENARD,ROGER X.

    2000-01-26

    A preliminary set of requirements for a robotic rover mission to the lunar polar region are described and assessed. Tasks to be performed by the rover include core drill sample acquisition, mineral and volatile soil content assay, and significant wide area traversals. Assessment of the postulated requirements is performed using first order estimates of energy, power, and communications throughput issues. Two potential rover system configurations are considered, a smaller rover envisioned as part of a group of multiple rovers, and a larger single rover envisioned along more traditional planetary surface rover concept lines.

  17. The Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) on the Landsat Data Continuity Mission (LDCM)

    Science.gov (United States)

    Reuter, Dennis; Irons, James; Lunsford, Allen; Montanero, Matthew; Pellerano, Fernando; Richardson, Cathleen; Smith, Ramsey; Tesfaye, Zelalem; Thome, Kurtis

    2011-01-01

    The Landsat Data Continuity Mission (LDCM), a joint NASA and United States Geological Survey (USGS) mission, is scheduled for launch in December, 2012. The LDCM instrument payload will consist of the Operational Land Imager (OLI), provided by Ball Aerospace and Technology Corporation (BATC) under contract to NASA and the Thermal Infrared Sensor (TIRS), provided by NASA's Goddard Space Flight Center (GSFC). This paper will describe the design, capabilities and status of the OLI and TIRS instruments. The OLI will provide 8 channel multispectral images at a spatial resolution of 30 meters and panchromatic images at 15 meter spatial resolution. The TIRS is a 100 meter spatial resolution push-broom imager whose two spectral channels, centered at 10.8 and 12 microns, split the ETM+ thermal bands. The two channels allow the use of the "split-window" technique to aid in atmospheric correction. The TIRS focal plane consists of three Quantum Well Infrared Photodetector (QWIP) arrays to span the 185 km swath width. The OLI and TIRS instruments will be operated independently but in concert with each other. Data from both instruments will be merged into a single data stream at the (USGS)/Earth Resources Observation and Science (EROS) facility. The ground system, being developed by USGS, includes an Image Assessment System (lAS), similar to Landsat-7's, to operationally monitor, characterize and update the calibrations of the two sensors.

  18. Foil system fatigue load environments for commercial hydrofoil operation

    Science.gov (United States)

    Graves, D. L.

    1979-01-01

    The hydrofoil fatigue loads environment in the open sea is examined. The random nature of wave orbital velocities, periods and heights plus boat heading, speed and control system design are considered in the assessment of structural fatigue requirements. Major nonlinear load events such as hull slamming and foil unwetting are included in the fatigue environment. Full scale rough water load tests, field experience plus analytical loads work on the model 929 Jetfoil commercial hydrofoil are discussed. The problem of developing an overall sea environment for design is defined. State of the art analytical approaches are examined.

  19. One-year operation of TANSO-FTS on GOSAT and follow-on mission feasibility

    Science.gov (United States)

    Shiomi, Kei; Nakajima, Masakatsu; Kuze, Akihiko; Takeshima, Toshiaki; Kawakami, Shuji; Suto, Hiroshi

    2017-11-01

    The Greenhouse gases Observing SATellite (GOSAT) was developed to contribute to monitoring of carbon dioxide and methane from space [1]. The mission objectives are global greenhouse gas measurements from space with precision of 1 % for CO2 and 2 % for CH4 in seasonal mean. The GOSAT carries Thermal And Near infrared Sensor for carbon Observation (TANSO) for precise measurement of greenhouse gases. Main instrument is Fourier Transfer Spectrometer (TANSO-FTS) to observe atmospheric absorption spectra of CO2 and CH4 with high spectral resolution of 0.2 cm-1, broad wavelength coverage of 0.76 - 14.3 microns, wide swath of 790 km and frequent revisit of 3 days. Cloud and Aerosol Imager (TANSO-CAI) is simultaneously on board for cloud detection and correction of optical thin cirrus and aerosol interference within the FTS instantaneous field of view. The GOSAT satellite was launched by H2A-15 rocket on January 23, 2009. The Level 1B products of calibrated spectra were released from September 2009 in public. The Level 2 products of CO2 and CH4 column densities were released from February 2010 [2]. The normal observation data is acquired over one year regularly from April 2009. The mission lifetime is 5 years.

  20. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Mission Applications Study

    Science.gov (United States)

    Bose, David M.; Winski, Richard; Shidner, Jeremy; Zumwalt, Carlie; Johnston, Christopher O.; Komar, D. R.; Cheatwood, F. M.; Hughes, Stephen J.

    2013-01-01

    The objective of the HIAD Mission Applications Study is to quantify the benefits of HIAD infusion to the concept of operations of high priority exploration missions. Results of the study will identify the range of mission concepts ideally suited to HIADs and provide mission-pull to associated technology development programs while further advancing operational concepts associated with HIAD technology. A summary of Year 1 modeling and analysis results is presented covering missions focusing on Earth and Mars-based applications. Recommended HIAD scales are presented for near term and future mission opportunities and the associated environments (heating and structural loads) are described.

  1. Assessing command and control system vulnerabilities in underdeveloped, degraded and denied operational environments

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2013-06-01

    Full Text Available ) context. In underdeveloped, degraded or denied operational environments, some technical support systems may fail or not be available to a commander to successfully conduct operations. The effect of the degraded or denied technical capabilities on work may...

  2. Mission Planning for Heterogeneous UxVs Operating in a Post-Disaster Urban Environment

    Science.gov (United States)

    2017-09-01

    wife, Nicole, who took the time off work to support me as well as to nurture our two wonderful kids , Kate and Matthew, during this one-year eventful...described in the book Probabilistic Robotics (Thrun and Burgard 2005). The Chapman-Kolmogorov equation, specifically the discrete analog component

  3. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  4. Results of the Quasi-Steady Acceleration Environment from the STS-62 Missions

    Science.gov (United States)

    Matisak, Brian; French, Larry; DeLombard, Richard; Wagar, William

    1995-01-01

    One of the clear benefits of conducting scientific research in space is to take advantage of the reduced acceleration environment. Many accelerometer packages have proven to accurately measure the acceleration environment at frequency levels above one Hz. However, for particular classes of experiments the quality of science returns is a direct function of the extremely low frequency (less than 0.01 Hz), quasi-steady acceleration environment. One class particularly interested in this acceleration regime is the group of crystal growth experimenters. These scientists are primarily interested in knowing the resultant quasi-steady acceleration vector at their respective crystal growth locations. The objective of many of these scientists is to minimize the amount of convective flow acting in a direction perpendicular to the growth axis of the crystal. Convective flow within the crystal can be induced by the direction and magnitude of the quasi-steady acceleration vector. Convective flows acting perpendicular to the growth axis of the crystal can cause nonuniformity within the crystal, thus reducing the quality of the results. The Orbital Acceleration Research Experiment (OARE), an accelerometer package hardmounted to the bottom of the payload bay of the orbiter Columbia (OV-102), has the capability of monitoring and recording the quasi-steady acceleration environment. This paper will describe the components that make up the on-orbit quasi-steady acceleration environment, detail how results from the OARE device were achieved, and compare modelled acceleration results with actual on-orbit OARE results from the STS-62 and STS-65 flights. A summary of the results will be provided along with possible recommendations of how to combine modelled and realtime quasi-steady accelerometer data for future Shuttle flights.

  5. Operating Nuclear Power Stations in a Regulated Cyber Security Environment

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, E.

    2014-07-01

    The United States Nuclear Regulatory Commission (NRC) issued 10CFR73.54 to implement a regulated Cyber Security Program at each operating nuclear reactor facility. Milestones were implemented December 31, 2012 to mitigate the attack vectors for the most critical digital assets acknowledged by the industry and the NR C. The NRC inspections have begun. The nuclear Cyber Security Plan, implemented by the site Cyber Security Program (Program), is an element of the operating license at each facility. (Author)

  6. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  7. Validation of GNSS Multipath Model for Space Proximity Operations Using the Hubble Servicing Mission 4 Experiment

    Science.gov (United States)

    Ashman, Ben; Veldman, Jeanette; Axelrad, Penina; Garrison, James; Winternitz, Luke

    2016-01-01

    In the rendezvous and docking of spacecraft, GNSS signals can reflect off the target vehicle and cause prohibitively large errors in the chaser vehicle receiver at ranges below 200 meters. It has been proposed that the additional ray paths, or multipath, be used as a source of information about the state of the target relative to the receiver. With Hubble Servicing Mission 4 as a case study, electromagnetic ray tracing has been used to construct a model of reflected signals from known geometry. Oscillations in the prompt correlator power due to multipath, known as multipath fading, are studied as a means of model validation. Agreement between the measured and simulated multipath fading serves to confirm the presence of signals reflected off the target spacecraft that might be used for relative navigation.

  8. Gaseous environment of the Shuttle early in the Spacelab 2 mission

    Science.gov (United States)

    Pickett, Jolene S.; Murphy, Gerald B.; Kurth, William S.

    1988-01-01

    A cold-cathode ionization gage was flown on Space Shuttle flight STS-5IF as part of the Spacelab 2 payload. Neutral pressure data that were taken in the payload bay during the first few hours on orbit are presented. These data show that when the payload bay is oriented such that the atmospheric gases are ramming into it, the pressure rises to a peak of 4 x 10 to the -6th Torr. Pressure is also slightly higher during the sunlit portion of each orbit. Outgassing of the payload bay causes the pressure to be elevated to a few times 10 to the -6th Torr early in the mission. In addition, several effects on pressure have been identified that are due to chemical releases. Substantial increases (50-150 percent) are seen during another experiment's gas purge. Orbiter chemical-release effects include: pressure increases of 200 percent up to 7 x 10 to the -6th Torr due to Orbital Maneuvering System burns, minor perturbations in pressure due to vernier thruster firings and little or no increase in pressure due to water dumps. In the case of vernier thruster firings, effects are seen only from down-firing thrusters in the back of the Orbiter, which are probably due to reflection of thruster gases off Orbiter surfaces.

  9. Command and Control Software for Single-Operator Multiple UAS Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing command and control (C2) paradigms for UAS platforms are extremely limited and cumbersome, requiring at least a single operator per UAS, if not more than...

  10. Command and Control Software for Single-Operator Multiple UAS Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing command and control (C2) paradigms for UAS platforms are extremely limited and cumbersome, requiring at least a single operator per UAS, if not more than...

  11. Organization for security and co-operation in Europe mission to Georgia / Joe McDonagh

    Index Scriptorium Estoniae

    McDonagh, Joe

    2003-01-01

    22.-23. septembrini 2003 Vilniuses toimunud seminaril "South Caucasus: making the best use of external assistance for stability building and for co-operation with NATO" esitatud ettekanne OSCE missiooni tegevusest Gruusias

  12. Safety and Mission Assurance (SMA) Automated Task Order Management System (ATOMS) Operation Manual

    Science.gov (United States)

    Wallace, Shawn; Fikes, Lou A.

    2016-01-01

    This document describes operational aspects of the ATOMS system. The information provided is limited to the functionality provided by ATOMS and does not include information provided in the contractor's proprietary financial and task management system.

  13. Heatshield for Extreme Entry Environment Technology (HEEET) - Enabling Missions Beyond Heritage Carbon Phenolic

    Science.gov (United States)

    Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; hide

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  14. Heatshield for Extreme Entry Environment Technology (HEEET) for Missions to Saturn and Beyond

    Science.gov (United States)

    Ellerby, D.; Blosser, M.; Chinnapongse, R.; Fowler, M.; Gasch, M.; Hamm, K.; Kazemba, C.; Ma, J.; Milos, F.; Nishioka, O.; hide

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  15. Heatshield for Extreme Entry Environment Technology (HEEET) Development and Maturation Status for NF Missions

    Science.gov (United States)

    Ellerby, D.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Hamm, K.; hide

    2016-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  16. The case for planetary sample return missions - Origin and evolution of the moon and its environment

    International Nuclear Information System (INIS)

    Ryder, G.; Spudis, P.D.; Taylor, G.J.

    1989-01-01

    The most important questions concerning the origin and evolution of the moon and its environment are reviewed, and the ways that studying lunar samples could help answer them, are discussed. Recommendations are made about methods for obtaining samples and the best lunar sites for obtaining them using simple, unmanned sample returners. Lunar geologic field sites that require intensive field work with human interaction are also considered. 16 refs

  17. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  18. Reliability evaluation of oil pipelines operating in aggressive environment

    Science.gov (United States)

    Magomedov, R. M.; Paizulaev, M. M.; Gebel, E. S.

    2017-08-01

    In connection with modern increased requirements for ecology and safety, the development of diagnostic services complex is obligatory and necessary enabling to ensure the reliable operation of the gas transportation infrastructure. Estimation of oil pipelines technical condition should be carried out not only to establish the current values of the equipment technological parameters in operation, but also to predict the dynamics of changes in the physical and mechanical characteristics of the material, the appearance of defects, etc. to ensure reliable and safe operation. In the paper, existing Russian and foreign methods for evaluation of the oil pipelines reliability are considered, taking into account one of the main factors leading to the appearance of crevice in the pipeline material, i.e. change the shape of its cross-section, - corrosion. Without compromising the generality of the reasoning, the assumption of uniform corrosion wear for the initial rectangular cross section has been made. As a result a formula for calculation the probability of failure-free operation was formulated. The proposed mathematical model makes it possible to predict emergency situations, as well as to determine optimal operating conditions for oil pipelines.

  19. The local environment as a supportive operator in innovation diffusion

    NARCIS (Netherlands)

    Damman, M.; Nijkamp, P.; Geenhuizen, van M.

    1996-01-01

    Spatial patterns of technology diffusion determine the capacity of regions and cities to compete in a global market. It is therefore, important to know in what way the local environment can contribute to the attraction of new technology to business locations and what factors differentiate in the

  20. Power plants operating in normal conditions, space management, and environment

    International Nuclear Information System (INIS)

    Bertron, L.

    1986-01-01

    This paper presents the local populations considerations related to the establishment of a nuclear power plant comprising 4 units of 900 MW: reception of a population in the existing environment, acceptance of the power plant by the local population, effluent releases and environmental impacts, and the power plant future [fr

  1. Validation of Virtual Environments Incorporating Virtual Operators for Procedural Learning

    Science.gov (United States)

    2012-09-01

    Head Mounted Display HTA Hierarchical Task Analysis ICS Internal Communication System IMC Instrument Meteorological Conditions IOS Instructor...on the actual console as their attention is usually directed out of the Howdah, viewing the helicopter and ship. Figure 3. LSO subject wearing...were created in the Integrated Performance Modelling Environment (IPME) using a Hierarchical Task Analysis ( HTA ) framework in a procedural, but

  2. Developing a Tactical Environment Cyber Operations Training Program

    Science.gov (United States)

    2015-01-31

    training pro- gram. The training environment consists of approximately 180 buildings in- cluding a school, hospital , prison, dormitories, light industrial ...methodologies . Risk analysis . Safety system design . Process Industry Practices (PIP) . Ergonomics . Interpreting design specifications and system...in CPS to include Industrial and Distributed Control Systems, Supervisory Control and Data Acquisition (SCADA), and RF wireless technologies. TECO

  3. Operating system considerations in the multiprocessor MIDAS environment

    International Nuclear Information System (INIS)

    Weaver, D.; Maples, C.; Meng, J.; Rathbun, W.

    1983-01-01

    The operating system for MIDAS provides interfaces for custom hardware, debugging facilities, and run time support. The MIDAS architecture uses various specialized hardware devices for controlling the multiple processors and to achieve high I/O throughput. The operating system interfaces with the custom hardware for diagnostics, problem setup, and loading the processors with user code. After the code is loaded, a debugging facility may be used to examine or modify the program in any of the processors, or all the processors simultaneously. During execution of the code, the operating system monitors the processors for exceptional conditions, detects hardware failures, and gathers statistics on performance. This performance information includes histograms depicting instruction execution frequency and analysis of data flow

  4. Military Engineer Contribution to Operational Art: The Hybrid Threat Environment

    Science.gov (United States)

    2015-05-22

    possess the capacity and capability to combat conventional and unconventional threats in the environment. However, can military engineers do both at the... Reservoir , the CPV initiated an envelopment.65 The CPV maneuvered through the mountainous terrain around the reservoir to establish roadblocks in the...for transportation and supplies during the bloody events at the Chosin Reservoir .101 To relieve pressure on the supply convoys pushing supplies to UN

  5. Sentinel-5: the new generation European operational atmospheric chemistry mission in polar orbit

    Science.gov (United States)

    Pérez Albiñana, Abelardo; Erdmann, Matthias; Wright, Norrie; Martin, Didier; Melf, Markus; Bartsch, Peter; Seefelder, Wolfgang

    2017-08-01

    Sentinel-5 is an Earth Observation instrument to be flown on the Metop Second Generation (Metop-SG) satellites with the fundamental objective of monitoring atmospheric composition from polar orbit. The Sentinel-5 instrument consists of five spectrometers to measure the solar spectral radiance backscattered by the earth atmosphere in five bands within the UV (270nm) to SWIR (2385nm) spectral range. Data provided by Sentinel-5 will allow obtaining the distribution of important atmospheric constituents such as ozone, on a global daily basis and at a finer spatial resolution than its precursor instruments on the first generation of Metop satellites. The launch of the first Metop-SG satellite is foreseen for 2021. The Sentinel-5 instrument is being developed by Airbus DS under contract to the European Space Agency. The Sentinel-5 mission is part of the Space Component of the Copernicus programme, a joint initiative by ESA, EUMETSAT and the European Commission. The Preliminary Design Review (PDR) for the Sentinel-5 development was successfully completed in 2015. This paper provides a description of the Sentinel-5 instrument design and data calibration.

  6. Advances in Medical Analytics Solutions for Autonomous Medical Operations on Long-Duration Missions

    Science.gov (United States)

    Thompson, David E.; Lindsey, Antonia Edward

    2017-01-01

    A review will be presented on the progress made under STMDGame Changing Development Program Funding towards the development of a Medical Decision Support System for augmenting crew capabilities during long-duration missions, such as Mars Transit. To create an MDSS, initial work requires acquiring images and developing models that analyze and assess the features in such medical biosensor images that support medical assessment of pathologies. For FY17, the project has focused on ultrasound images towards cardiac pathologies: namely, evaluation and assessment of pericardial effusion identification and discrimination from related pneumothorax and even bladder-induced infections that cause inflammation around the heart. This identification is substantially changed due to uncertainty due to conditions of fluid behavior under space-microgravity. This talk will present and discuss the work-to-date in this Project, recognizing conditions under which various machine learning technologies, deep-learning via convolutional neural nets, and statistical learning methods for feature identification and classification can be employed and conditioned to graphical format in preparation for attachment to an inference engine that eventually creates decision support recommendations to remote crew in a triage setting.

  7. Operation environment construction of geological information database for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Wang Peng; Gao Min; Huang Shutao; Wang Shuhong; Zhao Yongan

    2014-01-01

    To fulfill the requirements of data storage and management in HLW geological disposal, a targeted construction method for data operation environment was proposed in this paper. The geological information database operation environment constructed by this method has its unique features. And it also will be the important support for HLW geological disposal project and management. (authors)

  8. 17 CFR 240.17Ad-21T - Operational capability in a Year 2000 environment.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Operational capability in a Year 2000 environment. 240.17Ad-21T Section 240.17Ad-21T Commodity and Securities Exchanges SECURITIES... Company Rules § 240.17Ad-21T Operational capability in a Year 2000 environment. (a) This section applies...

  9. Personnel Recovery: Using Game Theory to Model Strategic Decision Making in the Contemporary Operating Environment

    Science.gov (United States)

    2005-06-17

    PERSONNEL RECOVERY: USING GAME THEORY TO MODEL STRATEGIC DECISION MAKING IN THE CONTEMPORARY OPERATING ENVIRONMENT A thesis...Personnel Recovery: Using Game Theory to Model Strategic Decision Making in the Contemporary Operating Environment 5c. PROGRAM ELEMENT NUMBER...As a flexible and adaptive strategic decision-making tool, game theory offers a logical way to graphically represent and compare all strategy

  10. Design and implementation of an inter-agency, multi-mission space flight operations network interface

    Science.gov (United States)

    Byrne, R.; Scharf, M.; Doan, D.; Liu, J.; Willems, A.

    2004-01-01

    An advanced network interface was designed and implemented by a team from the Jet Propulsion Lab with support from the European Space Operations Center. This poster shows the requirements for the interface, the design, the topology, the testing and lessons learned from the whole implementation.

  11. Joint Space Operations Center (JSpOC) Mission System Increment 3 (JMS Inc 3)

    Science.gov (United States)

    2016-03-01

    Component Command (JFCC) Space, to make rapid , responsive decisions for the protection of space assets from proliferating threats (adversary as well as... orbiting debris). JMS Increment-1 provided the foundational infrastructure, service oriented architecture, and user-defined operational picture. JMS

  12. The Electronic Documentation Project in the NASA mission control center environment

    Science.gov (United States)

    Wang, Lui; Leigh, Albert

    1994-01-01

    NASA's space programs like many other technical programs of its magnitude is supported by a large volume of technical documents. These documents are not only diverse but also abundant. Management, maintenance, and retrieval of these documents is a challenging problem by itself; but, relating and cross-referencing this wealth of information when it is all on a medium of paper is an even greater challenge. The Electronic Documentation Project (EDP) is to provide an electronic system capable of developing, distributing and controlling changes for crew/ground controller procedures and related documents. There are two primary motives for the solution. The first motive is to reduce the cost of maintaining the current paper based method of operations by replacing paper documents with electronic information storage and retrieval. And, the other is to improve the efficiency and provide enhanced flexibility in document usage. Initially, the current paper based system will be faithfully reproduced in an electronic format to be used in the document viewing system. In addition, this metaphor will have hypertext extensions. Hypertext features support basic functions such as full text searches, key word searches, data retrieval, and traversal between nodes of information as well as speeding up the data access rate. They enable related but separate documents to have relationships, and allow the user to explore information naturally through non-linear link traversals. The basic operational requirements of the document viewing system are to: provide an electronic corollary to the current method of paper based document usage; supplement and ultimately replace paper-based documents; maintain focused toward control center operations such as Flight Data File, Flight Rules and Console Handbook viewing; and be available NASA wide.

  13. Force Modeling and State Propagation for Navigation and Maneuver Planning for the Proximity Operations Nano-Satellite Flight Demonstration Mission

    Science.gov (United States)

    Roscoe, C.; Griesbach, J.; Westphal, J.; Hawes, D.; Carrico, J.

    2013-09-01

    The state propagation accuracy resulting from different choices of gravitational force models and orbital perturbations is investigated for a pair of CubeSats flying in formation in low Earth orbit (LEO). Accurate on-board state propagation is necessary to autonomously plan maneuvers and perform proximity operations and docking safely. The ability to perform high-precision navigation is made especially challenging by the limited computer processing power available on-board the spacecraft. Propagation accuracy is investigated both in terms of the absolute (chief) state and the relative (deputy relative to chief) state. Different perturbing effects are quantified and related directly to important mission factors such as maneuver accuracy, fuel use (mission lifetime), and collision prediction/avoidance (mission safety). The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The primary orbital perturbation affecting spacecraft in low Earth orbit (LEO) is the Earth oblateness, or J2, perturbation. Provided that a spacecraft does not have an extremely high area-to-mass ratio or is not flying at a very low altitude, the effect of J2 will usually be greater than that of atmospheric drag, which will typically be the next largest perturbing force in LEO. After these perturbations, factors such as higher-order Earth gravitational parameters, third-body perturbations, and solar radiation pressure will follow in magnitude but will have much less noticeable effects than J2 and drag. For spacecraft formations, where relative dynamics and not

  14. Operational Reconnaissance for the Anti-Access /Area Denial environment

    Science.gov (United States)

    2015-04-01

    routinely refer to these aircraft as “information sponges ” and “fast-moving intelligence-gathering, surveillance and reconnaissance platforms.”32...problematic as the DGCS also has finite resources and current communications systems preclude rapid dissemination of raw fighter data to analysts outside the...8. Maj David N. Jones (77 Fighter Squadron Assistant Director of Operations), interview by the author, 26 February 2015. 9. Pentagon Air- Sea Battle

  15. A Complex Adaptive Systems Approach to the Future Operational Environment

    Science.gov (United States)

    2014-05-22

    disciplines or bodies of specialized knowledge to advance fundamental understanding or to solve problems whose solutions are beyond the scope of a single...Operate - Test – Exit (TOTE) model is an example of an early systematic solution that sought to bridge cognitive and behavioral science.158 In...stave off the Malthusian apocalyptic scenarios of overpopulation .164 While not ending famine or starvation, these technologies created an accumulated

  16. Enhancing Electromagnetic Side-Channel Analysis in an Operational Environment

    Science.gov (United States)

    2013-09-01

    Although typically DRAMs will lose their contents gradually over a period of seconds at room temperature , if the chips are kept at low temperatures ...microcontroller contains a number of analog features including two 12-bit analog-to-digital converters (ADCs), three analog comparators, two temperature ...being an “open source alternative to Magma , Maple, Mathematica, and MATLAB” [124]. For a full AES-128 encryption operation this system includes 7288

  17. Fatigue in Military Operational Environments: An Annotated Bibliography

    OpenAIRE

    Miller, Nita Lewis; Shattuck, Lawrence G.; Matsangas, Panagiotis

    2007-01-01

    Research involving sleep and fatigue in military operations has been conducted for many years. Indeed, following nearly every major military engagement or conflict, reports are published which detail the effects of sleep deprivation on human performance. Unfortunately, many of these reports never make it to the scientific literature, and are published instead as technical reports. Following an extensive search of all available data sources including open scientific journals and electronic res...

  18. An amplifier for VUV photomultiplier operating in cryogenic environment

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Di Giovanni, A., E-mail: adriano.digiovanni@nyu.edu [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); D' Inzeo, M.; Franchi, G. [Age Scientific srl – Capezzano Pianore (Italy); Pazos Clemens, L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates)

    2016-07-11

    We present the characterisation of an amplifier potentially interesting for noble liquid detectors. The design has been conceived considering the requirements of low power consumption (less than 30 mW), low noise, amplification factor of 10 at 100 MHz and use of commercial components. The amplifier has been integrated onto an electronic board with a voltage divider to operate an Hamamatsu R11410 photomultiplier tube (used in XENON1T, Aprile et al. (2014) [1] dark matter experiment).

  19. Development and application of visual support module for remote operator in 3D virtual environment

    International Nuclear Information System (INIS)

    Choi, Kyung Hyun; Cho, Soo Jeong; Yang, Kyung Boo; Bae, Chang Hyun

    2006-02-01

    In this research, the 3D graphic environment was developed for remote operation, and included the visual support module. The real operation environment was built by employing a experiment robot, and also the identical virtual model was developed. The well-designed virtual models can be used to retrieve the necessary conditions for developing the devices and processes. The integration of 3D virtual models, the experimental operation environment, and the visual support module was used for evaluating the operation efficiency and accuracy by applying different methods such as only monitor image and with visual support module

  20. The Electrostatic Environments of the Moon and Mars: Implications for Human Missions

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James; Cox, Rachel E.

    2016-01-01

    Lacking a substantial atmosphere, the moon is exposed to the full spectrum of solar radiation as well as to cosmic rays. Electrostatically, the moon is a charged body in a plasma. A Debye sheet meters high on the dayside of the moon and kilometers high on the night side envelops the moon. This sheet isolates the lunar surface from high energy particles coming from the sun. The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  1. Operational Modelling of the Aerospace Propagation Environment. Volume II

    Science.gov (United States)

    1978-11-01

    radiative transfer models are rarely available in a battlefield environment. tnly secondary ECNET parameters may be available. Hence, current modeling and...adopthe done lee traitements a 6tA de remplacer chaque valeur X4Dar son rang. Clest-h-diro quo Zj eet rermplacO pax Is nombre d’dohant~illons do X. qui...out uslub r -aItistial model relevant to thobe arcac If the Urt chooses a terraln typ- from the lIs- glvtn ,hov, a stetistlcol ’irregulal terr .’n

  2. Apparatus and method for modifying the operation of a robotic vehicle in a real environment, to emulate the operation of the robotic vehicle operating in a mixed reality environment

    Science.gov (United States)

    Garretson, Justin R [Albuquerque, NM; Parker, Eric P [Albuquerque, NM; Gladwell, T Scott [Albuquerque, NM; Rigdon, J Brian [Edgewood, NM; Oppel, III, Fred J.

    2012-05-29

    Apparatus and methods for modifying the operation of a robotic vehicle in a real environment to emulate the operation of the robotic vehicle in a mixed reality environment include a vehicle sensing system having a communications module attached to the robotic vehicle for communicating operating parameters related to the robotic vehicle in a real environment to a simulation controller for simulating the operation of the robotic vehicle in a mixed (live, virtual and constructive) environment wherein the affects of virtual and constructive entities on the operation of the robotic vehicle (and vice versa) are simulated. These effects are communicated to the vehicle sensing system which generates a modified control command for the robotic vehicle including the effects of virtual and constructive entities, causing the robot in the real environment to behave as if virtual and constructive entities existed in the real environment.

  3. Roles and Mission of the U.S. Army in Disaster Operations

    Science.gov (United States)

    1993-04-11

    Neth.), 1989, p. 27-33. Zogning, A., Risgues de Catastrophes Naturelles le Long de la LiQne du Cameroun , ORSTOM: Centre de Rescherches Geographique...resources in both domestic and international disaster response operations. As the rapid growth of the human population meets *head on’ with global...hazards within their national capacities. Indonesia (4) is an industrializing island nation with a dense population and active volcanoes. The

  4. Range and mission scheduling automation using combined AI and operations research techniques

    Science.gov (United States)

    Arbabi, Mansur; Pfeifer, Michael

    1987-01-01

    Ground-based systems for Satellite Command, Control, and Communications (C3) operations require a method for planning, scheduling and assigning the range resources such as: antenna systems scattered around the world, communications systems, and personnel. The method must accommodate user priorities, last minute changes, maintenance requirements, and exceptions from nominal requirements. Described are computer programs which solve 24 hour scheduling problems, using heuristic algorithms and a real time interactive scheduling process.

  5. Conditions for Mission Completion in Low Intensity Conflict: Operation Enduring Freedom-Philippines

    Science.gov (United States)

    2017-06-01

    winning ” was accomplished in this low intensity conflict and what the future security concerns look like for the Philippines and Southeast (SE) Asia...Quinn, Henry Mintzberg, and Robert M. James (Englewood Cliffs, NJ: Prentice-Hall, 1988), 351–358. 3 Graham Allison, “Conceptual Models and the Cuban...operations or counter-guerrilla warfare follows the 13 guidelines or principles influenced by the work of Sir Robert Thompson. Some of the more important

  6. Piezoelectric PVDF materials performance and operation limits in space environments

    International Nuclear Information System (INIS)

    Dargaville, Tim Richard; Assink, Roger Alan; Clough, Roger Lee; Celina, Mathias Christopher

    2004-01-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies

  7. Critical operations capabilities in a high cost environment: a multiple case study

    Science.gov (United States)

    Sansone, C.; Hilletofth, P.; Eriksson, D.

    2018-04-01

    Operations capabilities have been a popular research area for many years and several frameworks have been proposed in the literature. The current frameworks do not take specific contexts into consideration, for instance a high cost environment. This research gap is of particular interest since a manufacturing relocation process has been ongoing the last decades, leading to a huge amount of manufacturing being moved from high to low cost environments. The purpose of this study is to identify critical operations capabilities in a high cost environment. The two research questions were: What are the critical operations capabilities dimensions in a high cost environment? What are the critical operations capabilities in a high cost environment? A multiple case study was conducted and three Swedish manufacturing firms were selected. The study was based on the investigation of an existing framework of operations capabilities. The main dimensions of operations capabilities included in the framework were: cost, quality, delivery, flexibility, service, innovation and environment. Each of the dimensions included two or more operations capabilities. The findings confirmed the validity of the framework and its usefulness in a high cost environment and a new operations capability was revealed (employee flexibility).

  8. Operational SAR Data Processing in GIS Environments for Rapid Disaster Mapping

    Science.gov (United States)

    Bahr, Thomas

    2014-05-01

    The use of SAR data has become increasingly popular in recent years and in a wide array of industries. Having access to SAR can be highly important and critical especially for public safety. Updating a GIS with contemporary information from SAR data allows to deliver a reliable set of geospatial information to advance civilian operations, e.g. search and rescue missions. SAR imaging offers the great advantage, over its optical counterparts, of not being affected by darkness, meteorological conditions such as clouds, fog, etc., or smoke and dust, frequently associated with disaster zones. In this paper we present the operational processing of SAR data within a GIS environment for rapid disaster mapping. For this technique we integrated the SARscape modules for ENVI with ArcGIS®, eliminating the need to switch between software packages. Thereby the premier algorithms for SAR image analysis can be directly accessed from ArcGIS desktop and server environments. They allow processing and analyzing SAR data in almost real time and with minimum user interaction. This is exemplified by the November 2010 flash flood in the Veneto region, Italy. The Bacchiglione River burst its banks on Nov. 2nd after two days of heavy rainfall throughout the northern Italian region. The community of Bovolenta, 22 km SSE of Padova, was covered by several meters of water. People were requested to stay in their homes; several roads, highways sections and railroads had to be closed. The extent of this flooding is documented by a series of Cosmo-SkyMed acquisitions with a GSD of 2.5 m (StripMap mode). Cosmo-SkyMed is a constellation of four Earth observation satellites, allowing a very frequent coverage, which enables monitoring using a very high temporal resolution. This data is processed in ArcGIS using a single-sensor, multi-mode, multi-temporal approach consisting of 3 steps: (1) The single images are filtered with a Gamma DE-MAP filter. (2) The filtered images are geocoded using a reference

  9. Development of use of an Operational Procedure Information System (OPIS) for future space missions

    Science.gov (United States)

    Illmer, N.; Mies, L.; Schoen, A.; Jain, A.

    1994-01-01

    A MS-Windows based electronic procedure system, called OPIS (Operational Procedure Information System), was developed. The system consists of two parts, the editor, for 'writing' the procedure and the notepad application, for the usage of the procedures by the crew during training and flight. The system is based on standardized, structured procedure format and language. It allows the embedding of sketches, photos, animated graphics and video sequences and the access to off-nominal procedures by linkage to an appropriate database. The system facilitates the work with procedures of different degrees of detail, depending on the training status of the crew. The development of a 'language module' for the automatic translation of the procedures, for example into Russian, is planned.

  10. Cost and risk assessment for spacecraft operation decisions caused by the space debris environment

    Science.gov (United States)

    Schaub, Hanspeter; Jasper, Lee E. Z.; Anderson, Paul V.; McKnight, Darren S.

    2015-08-01

    Space debris is a topic of concern among many in the space community. Most forecasting analyses look centuries into the future to attempt to predict how severe debris densities and fluxes will become in orbit regimes of interest. Conversely, space operators currently do not treat space debris as a major mission hazard. This survey paper outlines the range of cost and risk evaluations a space operator must consider when determining a debris-related response. Beyond the typical direct costs of performing an avoidance maneuver, the total cost including indirect costs, political costs and space environmental costs are discussed. The weights on these costs can vary drastically across mission types and orbit regimes flown. The operator response options during a mission are grouped into four categories: no action, perform debris dodging, follow stricter mitigation, and employ ADR. Current space operations are only considering the no action and debris dodging options, but increasing debris risk will eventually force the stricter mitigation and ADR options. Debris response equilibria where debris-related risks and costs settle on a steady-state solution are hypothesized.

  11. Nanosatellites for Interplanetary Exploration : Missions of Co-Operation and Exploration to Mars, Exo-Moons and other worlds in the Solar System

    Science.gov (United States)

    Ravi, Aditya; Radhakrishnan, Arun

    2016-07-01

    The last decade has borne witness to a large number of Nano-satellites being launched.This increasing trend is mainly down to the advancements in consumer electronics that has played a crucial role in increasing the potential power available on board for mission study and analysis whilst being much smaller in size when compared to their satellite counterparts. This overall reduction in size and weight is a crucial factor when coupled with the recent innovations in various propulsion systems and orbital launch vehicles by private players has also allowed the cost of missions to brought down to a very small budget whilst able to retain the main science objectives of a dedicated space Missions. The success of first time missions such as India's Mars Orbiter Mission and the upcoming Cube-Sat Mission to Mars has served as a catalyst and is a major eye-opener on how Interplanetary missions can be funded and initiated in small time spans. This shows that Interplanetary missions with the main objective of a scientific study can be objectified by using Dedicated Nano-satellite constellations with each satellite carrying specific payloads for various mission parameters such as Telemetry, Observation and possible small lander payloads for studying the various Atmospheric and Geo-Physical parameters of a particular object with-out the requirement of a very long term expensive Spacecraft Mission. The association of Major Universities and Colleges in building Nano and-satellites are facilitating an atmosphere of innovation and research among students in a class-room level as their creative potential will allow for experiments and innovation on a scale never imagined before. In this paper, the Author envisions the feasibility of such low cost Nano satellite missions to various bodies in the solar system and how Nano satellite partnerships from universities and space agencies from around the world could foster a new era in diplomacy and International Co-operation.

  12. Assessment of SOI AND Gate, Type CHT-7408, for Operation in Extreme Temperature Environments

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Dones, Keishla Rivera

    2009-01-01

    Electronic parts based on silicon-on-insulator (SOI) technology are finding widespread applications due to their ability to operate in harsh environments and the benefits they offer as compared to their silicon counterparts. Due to their construction, they are tailored for high temperature operation and show good tolerance to radiation events. In addition, their inherent design lessens the formation of parasitic junctions, thereby reducing leakage currents, decreasing power consumption, and enhancing speed. These devices are typically rated in temperature capability from -55 C to about +225 C, and their characteristics over this temperature range are documented in data sheets. Since electronics in some of NASA space exploration missions are required to operate under extreme temperature conditions, both cold and hot, their characteristic behavior within the full temperature spectrum must be determined to establish suitability for use in space applications. The effects of extreme temperature exposure on the performance of a new commercial-off-the-shelf (COTS) SOI AND gate device were evaluated in this work. The high temperature, quad 2-inputs AND gate device, which was recently introduced by CISSOID, is fabricated using a CMOS SOI process. Some of the specifications of the CHT-7408 chip are listed in a table. By supplying a constant DC voltage to one gate input and a 10 kHz square wave into the other associated gate input, the chip was evaluated in terms of output response, output rise (t(sub r)) and fall times (tf), and propagation delays (using a 50% level between input and output during low to high (tPLH) and high to low (tPHL) transitions). The supply current of the gate circuit was also obtained. These parameters were recorded at various test temperatures between -195 C and +250 C using a Sun Systems environmental chamber programmed at a temperature rate of change of 10 C/min. In addition, the effects of thermal cycling on this chip were determined by exposing

  13. GRAPE, Solar Terrestrial Physics in an operational environment

    Directory of Open Access Journals (Sweden)

    Giorgiana De Franceschi

    2013-06-01

    Full Text Available […] The collection of papers that forms this special issue represents the whole amplitude of research that is being conducted in the framework of GRAPE, while also connecting to other initiatives that address the same objectives in regions outside the polar regions, and worldwide, such as the Training Research and Applications Network to Support the Mitigation of Ionospheric Threats (TRANSMIT; www.transmitionosphere.net, a Seventh Framework Programme (FP7 Marie Curie Initial Training Network that is focused on the study of ionospheric phenomena and their effects on systems embedded in our daily life, Near-Earth Space Data Infrastructure for e-Science (ESPAS, an FP7-funded project that aims to provide the e-Infrastructure necessary to support the access to observations, for the modeling and prediction of the near-Earth Space environment, Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America (CIGALA and its follow-up and extension Countering GNSS High-Accuracy Applications Limitations due to Ionospheric Disturbances in Brazil (CALIBRA, both of which are funded by the European Commission in the frame of FP7, for facing the equatorial ionosphere and its impact on GNSS. The main objective of the present Special Issue of Annals of Geophysics is to collect recent reports on work performed in the polar regions and on the datasets collected in time by the instrumentation deployed across various countries. This collection will set the starting point for further research in the field, especially in the perspective of the new and very advanced space system that will be available in the next few years. […

  14. Operation of an enclosed aquatic ecosystem in the Shenzhou-8 mission

    Science.gov (United States)

    Li, Xiaoyan; Richter, Peter R.; Hao, Zongjie; An, Yanjun; Wang, Gaohong; Li, Dunhai; Liu, Yongding; Strauch, Sebastian M.; Schuster, Martin; Haag, Ferdinand W.; Lebert, Michael

    2017-05-01

    Long- term spaceflight needs reliable Biological life support systems (BLSS) to supply astronauts with enough food, fresh air and recycle wasters, but the knowledge about the operation pattern and controlling strategy is rear. For this purpose, a miniaturized enclosed aquatic ecosystem was developed and flown on the Chinese spaceship Shenzhou-8. The system with a total volume of about 60 mL was separated into two chambers by means of a gas transparent membrane. The lower chamber was inoculated with Euglena gracilis cells, and the upper chamber was cultured with Chlorella cells and three snails. After 17.5 days flight, the samples were analyzed. It was found that all snails in the ground module (GM) were alive, while in the flight module (FM) only one snail survived. The total cell numbers, assimilation of nutrients like nitrogen and phosphorus, soluble proteins and carbohydrate contents showed a decrease in FM than in GM. The correlation analysis showed upper chambers of both FM and GM had the same positive and negative correlation factors, while differential correlation was found in lower chambers. These results suggested primary productivity in the enclosed system decreased in microgravity, accompanied with nutrients assimilation. The FM chamber endured lacking of domination species to sustain the system development and GM chamber endured richness in population abundance. These results implied photosynthesis intensity should be reduced to keep the system healthy. More Chlorella but less Euglena might be a useful strategy to sustain system stability. It is the first systematic analysis of enclosed systems in microgravity.

  15. Artificial intelligent decision support for low-cost launch vehicle integrated mission operations

    Science.gov (United States)

    Szatkowski, Gerard P.; Schultz, Roger

    1988-01-01

    The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.

  16. Manual Operated Ultraviolet Surface Decontamination for Healthcare Environments.

    Science.gov (United States)

    Corrêa, Thaila Quatrini; Blanco, Kate Cristina; Inada, Natalia Mayumi; Hortenci, Maisa de Fátima; Costa, Angela Aparecida; Silva, Evaine da Silveira; Gimenes, Patricia Pereira da Costa; Pompeu, Soraya; de Holanda E Silva, Raphael Luiz; Figueiredo, Walter Manso; Bagnato, Vanderlei Salvador

    2017-12-01

    The aim of this study was to evaluate the effectiveness of a new handheld equipment based on a mercury low-pressure vapor lamp. The Surface UV ® device was tested in Staphylococcus aureus, Streptococcus mutans, Streptococcus pneumoniae, two strains of Escherichia coli, Pseudomonas aeruginosa, Candida albicans, and other clinical microorganisms isolated from different surfaces of a public health hospital. The incidence of hospital infections has increased in recent years. Despite the variety of available chemicals to reduce the microorganisms, the search for antimicrobial agents and the characterization of novel targets are a continued need. Also, the minimization of chemical procedures is a constant need, and the use of ultraviolet (UV) light as a germicidal device for microorganisms' inactivation has been an alternative and one possible approach for the reduction of contamination. The in vitro decontamination was performed by application of Surface UV in different species of microorganisms (study 1). The surface decontamination was carried out by application of Surface UV on each surface of hospital environment (study 2). The device presents ultraviolet C (UV-C) light at 254 nm and produces an irradiance of 13 mW/cm 2 at a distance of 1 cm of the surfaces. The light dose was 0.78 J/cm 2 for 60 sec of application in both studies. The results for in vitro decontamination indicated a log 10 reduction factor of 6.5 for S. aureus, 6.7 for S. mutans, 6.2 for S. pneumoniae, 5.4 for E. coli, 5.2 for E. coli (ATCC 8739), 5.4 for P. aeruginosa, and 6.7 for C. albicans. The hospital level of microorganisms decreases more by 75% after the procedure. The study highlights the development and successful application of a new portable device that can reduce the risk of contamination in health settings. Our results suggest that Surface UV is efficient and may be an alternative decontamination method.

  17. Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA

    Directory of Open Access Journals (Sweden)

    Jeheon Jeon

    2013-09-01

    Full Text Available TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA is a CubeSat with 3.14 kg in weight and 3-U (10 × 10 × 30 cm in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultrahigh vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.

  18. Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA

    Science.gov (United States)

    Jeon, Jeheon; Lee, Seongwhan; Yoon, Seyoung; Seon, Jongho; Jin, Ho; Lee, Donghun; Lin, Robert P.

    2013-12-01

    TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA) is a CubeSat with 3.14 kg in weight and 3-U (10 × 10 × 30 cm) in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultrahigh vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.

  19. Gas mission; Mission gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This preliminary report analyses the desirable evolutions of gas transport tariffing and examines some questions relative to the opening of competition on the French gas market. The report is made of two documents: a synthesis of the previous report with some recommendations about the tariffing of gas transport, about the modalities of network access to third parties, and about the dissociation between transport and trade book-keeping activities. The second document is the progress report about the opening of the French gas market. The first part presents the European problem of competition in the gas supply and its consequences on the opening and operation of the French gas market. The second part presents some partial syntheses about each topic of the mission letter of the Ministry of Economics, Finances and Industry: future evolution of network access tariffs, critical analysis of contractual documents for gas transport and delivery, examination of auxiliary services linked with the access to the network (modulation, balancing, conversion), consideration about the processing of network congestions and denied accesses, analysis of the metering dissociation between the integrated activities of gas operators. Some documents are attached in appendixes: the mission letter from July 9, 2001, the detailed analysis of the new temporary tariffs of GdF and CFM, the offer of methane terminals access to third parties, the compatibility of a nodal tariffing with the presence of three transport operators (GdF, CFM and GSO), the contract-type for GdF supply, and the contract-type for GdF connection. (J.S.)

  20. Developing safer systems in a NPP environment using the operator`s comfort parameters and virtual reality

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-07-01

    The contents of this paper is based on two studies involving the design of visual displays from the operator`s point of view, and the utilization of virtual reality for operations, training and maintenance repairs. The studies involve a methodology known as Neuro-Linguistic Programming (NLP), and its use in strengthening design choices from the user`s perspective model of the environment. The contents of this paper focuses on the results which may be implemented in nuclear power plants for the purpose of providing systems which are less inherently error prone.

  1. Use of the RoboFlag synthetic task environment to investigate workload and stress responses in UAV operation.

    Science.gov (United States)

    Guznov, Svyatoslav; Matthews, Gerald; Funke, Gregory; Dukes, Allen

    2011-09-01

    Use of unmanned aerial vehicles (UAVs) is an increasingly important element of military missions. However, controlling UAVs may impose high stress and workload on the operator. This study evaluated the use of the RoboFlag simulated environment as a means for profiling multiple dimensions of stress and workload response to a task requiring control of multiple vehicles (robots). It tested the effects of two workload manipulations, environmental uncertainty (i.e., UAV's visual view area) and maneuverability, in 64 participants. The findings confirmed that the task produced substantial workload and elevated distress. Dissociations between the stress and performance effects of the manipulations confirmed the utility of a multivariate approach to assessment. Contrary to expectations, distress and some aspects of workload were highest in the low-uncertainty condition, suggesting that overload of information may be an issue for UAV interface designers. The strengths and limitations of RoboFlag as a methodology for investigating stress and workload responses are discussed.

  2. Development of monitoring-control methods for heavy remote handling operations in an irradiated environment

    International Nuclear Information System (INIS)

    Argouac'h, J.R.

    1984-01-01

    Heavy remote handling equipment units have benefited from the progress made in robotics, but with certain specific constraints linked to the environment in which they are required to operate. Notably, these constraints impose the exclusive use of electrical techniques [fr

  3. An evaluation of grease type ball bearing lubricants operating in various environments

    Science.gov (United States)

    Mcmurtrey, E. L.

    1984-01-01

    Because many future spacecraft or space stations will require mechanisms to operate for long periods of time in environments which are adverse to most bearing lubricants, a series of tests has been completed to evaluate 38 grease type lubricants in R-4 size bearings in five different environments for a 1 year period. Four repetitions of each test were made to provide statistical samples. These tests were also used to select four lubricants for 5 year tests in selected environments with five repetitions of each test for statistical samples. In this completed program, 172 test sets have been completed. The three 5 year tests in: (1) continuous operation and (2) start stop operation, with both in vacuum at ambient temperatures, and (3) continuous vacuum operation at 93.3 C have been completed. In both the 1 year and 5 year tests, the best results in all environments have been obtained with a high viscosity index perfluoroalkylpolyether (PFPE) grease.

  4. High Intensity Radiated Field External Environments for Civil Aircraft Operating in the United States of America

    National Research Council Canada - National Science Library

    Heather, Frederick

    2002-01-01

    ... (FAR) Parts 23, 25, 27, and 29. The HIRF survey determined the Rotorcraft Severe, Fixed Wing Severe, Certification, and Normal Environments that civil aircraft may be exposed to while operating in the continental U.S...

  5. High Intensity Radiated Field External Environments for Civil Aircraft Operating in the United States of America

    National Research Council Canada - National Science Library

    Heather, Frederick

    1998-01-01

    ...) Parts 23, 25, 27, and 29. The HIRF survey determined the Rotorcraft Severe, Fixed Wing Severe, Certification, and Normal Environments that civil aircraft may be exposed to while operating in the continental U.S...

  6. Space Environment NanoSat Experiment (SENSE) - A New Frontier in Operational Space Environmental Monitoring (Invited)

    Science.gov (United States)

    Kalamaroff, K. I.; Thompson, D. C.; Cooke, D. L.; Gentile, L. C.; Bonito, N. A.; La Tour, P.; Sondecker, G.; Bishop, R. L.; Nicholas, A. C.; Doe, R. A.

    2013-12-01

    The Space Environmental NanoSat Experiment (SENSE) program is a rapid development effort of the USAF Space and Missiles Center Development Planning Directorate (SMC/XR) which will demonstrate the capability of NanoSats to perform space missions in an affordable and resilient manner. The three primary objectives for the SENSE mission are: 1) to develop best practices for operational CubeSat/NanoSat procurement, development, test, and operations; 2) to mature CubeSat bus and sensor component technology readiness levels; and 3) to demonstrate the operational utility of CubeSat measurements by flowing validated, low-latency data into operational space weather models. SENSE consists of two 3-U CubeSats built by Boeing Phantom Works. Both satellites are 3-axis stabilized with star cameras for attitude determination and are equipped with a Compact Total Electron Density Sensor (CTECS) to provide radio occultation measurements of total electron content and L-band scintillation. One satellite has a Cubesat Tiny Ionospheric Photometer (CTIP) monitoring 135.6 nm photons produced by the recombination of O+ ions and electrons. The other satellite has a Wind Ion Neutral Composite Suite (WINCS) to acquire simultaneous co-located, in situ measurements of atmospheric and ionospheric density, composition, temperature and winds/drifts. Mission data will be used to improve current and future space weather models and demonstrate the utility of data from CubeSats for operational weather requirements. Launch is scheduled for November 2013, and we will discuss the first 30 days of on-orbit operations.

  7. SOCaaS: Security Operations Center as a Service for Cloud Computing Environments

    OpenAIRE

    Fahad F. Alruwaili; T. Aaron Gulliver

    2014-01-01

    The management of information security operations is a complex task, especially in a cloud environment.  The cloud service layers and multi-tenancy architecture creates a complex environment in which to develop and manage an information security incident management and compliance program. This paper presents a novel security operations center (SOC) framework as a service for cloud service providers and customers. The goal is to protect cloud services against new and existing attacks as well a...

  8. Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing for Mission and Fault Management Algorithms in the NASA Space Launch System

    Science.gov (United States)

    Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.

    2016-01-01

    Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements

  9. Dealing with Absolutes: Religion, the Operational Environment, and the Art of Design

    Science.gov (United States)

    2010-12-01

    environment. Religion as a Presence in the Operational Environment Although many religions have been used to further political, social, or spiritual aims...eschatological and metaphysical aim, religion provides moral and ethical norms for both individual and collective life . In addition, many religions ...most intractable quality . The fact that many religions affirm knowledge of absolute truth makes them much more intractable to interactions that

  10. Prediction of safety critical software operational reliability from test reliability using testing environment factors

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Seong, Poong Hyun

    1999-01-01

    It has been a critical issue to predict the safety critical software reliability in nuclear engineering area. For many years, many researches have focused on the quantification of software reliability and there have been many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. User's interest is however on the operational reliability rather than on the test reliability. The experiences show that the operational reliability is higher than the test reliability. With the assumption that the difference in reliability results from the change of environment, from testing to operation, testing environment factors comprising the aging factor and the coverage factor are developed in this paper and used to predict the ultimate operational reliability with the failure data in testing phase. It is by incorporating test environments applied beyond the operational profile into testing environment factors. The application results show that the proposed method can estimate the operational reliability accurately. (Author). 14 refs., 1 tab., 1 fig

  11. The Epidemiology of Operation Stress during Continuing Promise 2011: A Humanitarian Response and Disaster Relief Mission aboard a US Navy Hospital Ship.

    Science.gov (United States)

    Scouten, William T; Mehalick, Melissa L; Yoder, Elizabeth; McCoy, Andrea; Brannock, Tracy; Riddle, Mark S

    2017-08-01

    Introduction Operational stress describes individual behavior in response to the occupational demands and tempo of a mission. The stress response of military personnel involved in combat and peace-keeping missions has been well-described. The spectrum of effect on medical professionals and support staff providing humanitarian assistance, however, is less well delineated. Research to date concentrates mainly on shore-based humanitarian missions. Problem The goal of the current study was to document the pattern of operational stress, describe factors responsible for it, and the extent to which these factors impact job performance in military and civilian participants of Continuing Promise 2011 (CP11), a ship-based humanitarian medical mission. This was a retrospective study of Disease Non-Battle Injury (DNBI) data from the medical sick-call clinic and from weekly self-report questionnaires for approximately 900 US military and civilian mission participants aboard the USNS COMFORT (T-AH 20). The incidence rates and job performance impact of reported Operational Stress/Mental Health (OS/MH) issues and predictors (age, rank, occupation, service branch) of OS/MH issues (depression, anxiety) were analyzed over a 22-week deployment period. Incidence rates of OS/MH complaints from the sick-call clinic were 3.7% (4.5/1,000 persons) and 12.0% (53/1,000 persons) from the self-report questionnaire. The rate of operational stress increased as the mission progressed and fluctuated during the mission according to ship movement. Approximately 57% of the responders reported no impact on job performance. Younger individuals (enlisted ranks E4-6, officer ranks O1-3), especially Air Force service members, those who had spent only one day off ship, and those who were members of specific directorates, reported the highest rates of operational stress. The overall incidence of OS/MH complaints was low in participants of CP11 but was under-estimated by clinic-based reporting. The OS

  12. Mission Command in the Age of Network-Enabled Operations: Social Network Analysis of Information Sharing and Situation Awareness.

    Science.gov (United States)

    Buchler, Norbou; Fitzhugh, Sean M; Marusich, Laura R; Ungvarsky, Diane M; Lebiere, Christian; Gonzalez, Cleotilde

    2016-01-01

    A common assumption in organizations is that information sharing improves situation awareness and ultimately organizational effectiveness. The sheer volume and rapid pace of information and communications received and readily accessible through computer networks, however, can overwhelm individuals, resulting in data overload from a combination of diverse data sources, multiple data formats, and large data volumes. The current conceptual framework of network enabled operations (NEO) posits that robust networking and information sharing act as a positive feedback loop resulting in greater situation awareness and mission effectiveness in military operations (Alberts and Garstka, 2004). We test this assumption in a large-scale, 2-week military training exercise. We conducted a social network analysis of email communications among the multi-echelon Mission Command staff (one Division and two sub-ordinate Brigades) and assessed the situational awareness of every individual. Results from our exponential random graph models challenge the aforementioned assumption, as increased email output was associated with lower individual situation awareness. It emerged that higher situation awareness was associated with a lower probability of out-ties, so that broadly sending many messages decreased the likelihood of attaining situation awareness. This challenges the hypothesis that increased information sharing improves situation awareness, at least for those doing the bulk of the sharing. In addition, we observed two trends that reflect a compartmentalizing of networked information sharing as email links were more commonly formed among members of the command staff with both similar functions and levels of situation awareness, than between two individuals with dissimilar functions and levels of situation awareness; both those findings can be interpreted to reflect effects of homophily. Our results have major implications that challenge the current conceptual framework of NEO. In

  13. A Subjective Assessment of Alternative Mission Architecture Operations Concepts for the Human Exploration of Mars at NASA Using a Three-Dimensional Multi-Criteria Decision Making Model

    Science.gov (United States)

    Tavana, Madjid

    2003-01-01

    The primary driver for developing missions to send humans to other planets is to generate significant scientific return. NASA plans human planetary explorations with an acceptable level of risk consistent with other manned operations. Space exploration risks can not be completely eliminated. Therefore, an acceptable level of cost, technical, safety, schedule, and political risks and benefits must be established for exploratory missions. This study uses a three-dimensional multi-criteria decision making model to identify the risks and benefits associated with three alternative mission architecture operations concepts for the human exploration of Mars identified by the Mission Operations Directorate at Johnson Space Center. The three alternatives considered in this study include split, combo lander, and dual scenarios. The model considers the seven phases of the mission including: 1) Earth Vicinity/Departure; 2) Mars Transfer; 3) Mars Arrival; 4) Planetary Surface; 5) Mars Vicinity/Departure; 6) Earth Transfer; and 7) Earth Arrival. Analytic Hierarchy Process (AHP) and subjective probability estimation are used to captures the experts belief concerning the risks and benefits of the three alternative scenarios through a series of sequential, rational, and analytical processes.

  14. Multi-Mission Space Exploration Vehicle Concept Simulation of Operations in Proximity to a Near Earth Object

    Science.gov (United States)

    Kline, Heather

    2011-01-01

    This paper details a project to simulate the dynamics of a proposed Multi-Mission Space Exploration Vehicle (MMSEV), and modeling the control of this spacecraft. A potential mission of the MMSEV would be to collect samples from a Near-Earth Object (NEO), a mission which would require the spacecraft to be able to navigate to an orbit keeping it stationary over an area of a spinning asteroid while a robotic arm interacts with the surface.

  15. Context dependent memory in two learning environments: the tutorial room and the operating theatre.

    Science.gov (United States)

    Coveney, Andrew P; Switzer, Timothy; Corrigan, Mark A; Redmond, Henry P

    2013-09-01

    Psychologists have previously demonstrated that information recall is context dependent. However, how this influences the way we deliver medical education is unclear. This study aimed to determine if changing the recall context from the learning context affects the ability of medical students to recall information. Using a free recall experimental model, fourteen medical student participants were administered audio lists of 30 words in two separate learning environments, a tutorial room and an operating theatre. They were then asked to recall the words in both environments. While in the operating theatre participants wore appropriate surgical clothing and assembled around an operating table. While in the tutorial room, participants dressed casually and were seated around a table. Students experienced the same duration (15 minutes) and disruption in both environments. The mean recall score from the 28 tests performed in the same environment was 12.96 +/- 3.93 (mean, SD). The mean recall score from the 28 tests performed in an alternative environment to the learning episode was 13.5 +/- 5.31(mean, SD), indicating that changing the recall environment from the learning environment does not cause any statistical difference (p=0.58). The average recall score of participants who learned and recalled in the tutorial room was 13.0 +/- 3.84 (mean, SD). The average recall score of participants who learnt and recalled in the operating theatre was 12.92 +/- 4.18 (mean, SD), representing no significant difference between the two environments for learning (p=0.4792). The results support the continued use of tutorial rooms and operating theatres as appropriate environments in which to teach medical students, with no significant difference in information recall seen either due to a same context effect or specific context effect.

  16. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into NASA Programs Associated With the Human Exploration and Operations Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.

  17. Sleep in space as a new medical frontier: the challenge of preserving normal sleep in the abnormal environment of space missions.

    Science.gov (United States)

    Pandi-Perumal, Seithikurippu R; Gonfalone, Alain A

    2016-01-01

    Space agencies such as the National Aeronautics and Space Administration of the United States, the Russian Federal Space Agency, the European Space Agency, the China National Space Administration, the Japan Aerospace Exploration Agency, and Indian Space Research Organization, although differing in their local political agendas, have a common interest in promoting all applied sciences that may facilitate man's adaptation to life beyond the earth. One of man's most important adaptations has been the evolutionary development of sleep cycles in response to the 24 hour rotation of the earth. Less well understood has been man's biological response to gravity. Before humans ventured into space, many questioned whether sleep was possible at all in microgravity environments. It is now known that, in fact, space travelers can sleep once they leave the pull of the earth's gravity, but that the sleep they do get is not completely refreshing and that the associated sleep disturbances can be elaborate and variable. According to astronauts' subjective reports, the duration of sleep is shorter than that on earth and there is an increased incidence of disturbed sleep. Objective sleep recordings carried out during various missions including the Skylab missions, space shuttle missions, and Mir missions all support the conclusion that, compared to sleep on earth, the duration in human sleep in space is shorter, averaging about six hours. In the new frontier of space exploration, one of the great practical problems to be solved relates to how man can preserve "normal" sleep in a very abnormal environment. The challenge of managing fatigue and sleep loss during space mission has critical importance for the mental efficiency and safety of the crew and ultimately for the success of the mission itself. Numerous "earthly" examples now show that crew fatigue on ships, trucks, and long-haul jetliners can lead to inadequate performance and sometimes fatal consequences, a reality which has

  18. Early Operations Flight Correlation of the Lunar Laser Communications Demonstration (LLCD) on the Lunar Atmosphere and Dust Environment Explorer (LADEE)

    Science.gov (United States)

    Peabody, Hume; Yang, Kan; Nguyen, Daniel; Cornwell, Donald

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission launched on September 7, 2013 with a one month cruise before lunar insertion. The LADEE spacecraft is a power limited, octagonal, composite bus structure with solar panels on all eight sides with four vertical segments per side and 2 panels dedicated to instruments. One of these panels has the Lunar Laser Communications Demonstration (LLCD), which represents a furthering of the laser communications technology demonstration proved out by the Lunar Reconnaissance Orbiter (LRO). LLCD increases the bandwidth of communication to and from the moon with less mass and power than LROs technology demonstrator. The LLCD Modem and Controller boxes are mounted to an internal cruciform composite panel and have no dedicated radiator. The thermal design relies on power cycling of the boxes and radiation of waste heat to the inside of the panels, which then reject the heat when facing cold space. The LADEE mission includes a slow roll and numerous attitudes to accommodate the challenging thermal requirements for all the instruments on board. During the cruise phase, the internal Modem and Controller avionics for LLCD were warmer than predicted by more than modeling uncertainty would suggest. This caused concern that if the boxes were considerably warmer than expected while off, they would also be warmer when operating and could limit the operational time when in lunar orbit. The thermal group at Goddard Space Flight Center evaluated the models and design for these critical avionics for LLCD. Upon receipt of the spacecraft models and audit was performed and data was collected from the flight telemetry to perform a sanity check of the models and to correlate to flight where possible. This paper describes the efforts to correlate the model to flight data and to predict the thermal performance when in lunar orbit and presents some lessons learned.

  19. Operation of commercial R3000 processors in the Low Earth Orbit (LEO) space environment

    Energy Technology Data Exchange (ETDEWEB)

    Kaschmitter, J.L.; Shaeffer, D.L.; Colella, N.J. [Lawrence Livermore National Lab., CA (United States); McKnett, C.L.; Coakley, P.G. [JAYCOR, Santa Monica, CA (United States)

    1990-08-09

    Spacecraft processors must operate with minimal degradation of performance in the Low Earth Orbit (LEO) radiation environment, which includes the effects of total accumulated ionizing dose and Single Event Phenomena (SEP) caused by protons and cosmic rays. Commercially available microprocessors can offer a number of advantages relative to radiation-hardened devices, including lower cost, reduced development and procurement time, extensive software support, higher density and performance. However, commercially available systems are not normally designed to tolerate effects induced by the LEO environment. Lawrence Livermore National Laboratory (LLNL) and others have extensively tested the MIPS R3000 Reduced Instruction Set Computer (RISC) microprocessor family for operation in LEO environments. We have characterized total dose and SEP effects for altitudes and inclinations of interest to systems operating in LEO, and we postulate techniques for detection and alleviation of SEP effects based on experimental results. 12 refs.

  20. Operation of commercial R3000 processors in the low earth orbit (LEO) space environment

    Energy Technology Data Exchange (ETDEWEB)

    Kaschmitter, J.L.; Shaeffer, D.L.; Colella, N.J. (Lawrence Livermore National Lab., CA (United States)); McKnett, C.L.; Coakley, P.G. (JAYCOR, Santa Monica, CA (United States))

    1991-12-01

    Spacecraft processors must operate with minimal degradation of performance in the Low Earth Orbit (LEO) radiation environment, which includes the effects of total accumulated ionizing dose and Single Event Phenomena (SEP) caused by protons and cosmic rays. Commercially available microprocessors can offer a number of advantages relative to radiation-hardened devices, including lower cost, reduced development and procurement time, extensive software support, higher density and performance. However, commercially available systems are not normally designed to tolerate effects induced by the LEO environments. Lawrence Livermore National Laboratory (LLNL) and others have extensively tested the MIPS R3000 Reduced Instruction Set Computer (RISC) microprocessor family for operation in LEO environments. In this paper the authors characterize total dose and SEP effects for altitudes and inclinations of interest to systems operating in LEO, and the authors postulate techniques for detection and alleviation of SEP effects based on experimental results.

  1. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    Science.gov (United States)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  2. Climate Change Implications to the Global Security Environment, U.S. Interests, and Future Naval Operations

    Science.gov (United States)

    2011-03-14

    Title: Climate Change Implications to the Global Security Environment , U.S. Interests, and Future Naval Operations Thesis: This paper aims to...United States over the next 20 years. ·This is because it will aggravate existing problems such as poverty tensions, environmental degradation...Implications on the Global Security Environment As discussed above, the physical effects of climate change -rising sea levels, rising temperatures

  3. The Copernicus S5P Mission Performance Centre / Validation Data Analysis Facility for TROPOMI operational atmospheric data products

    Science.gov (United States)

    Compernolle, Steven; Lambert, Jean-Christopher; Langerock, Bavo; Granville, José; Hubert, Daan; Keppens, Arno; Rasson, Olivier; De Mazière, Martine; Fjæraa, Ann Mari; Niemeijer, Sander

    2017-04-01

    Sentinel-5 Precursor (S5P), to be launched in 2017 as the first atmospheric composition satellite of the Copernicus programme, carries as payload the TROPOspheric Monitoring Instrument (TROPOMI) developed by The Netherlands in close cooperation with ESA. Designed to measure Earth radiance and solar irradiance in the ultraviolet, visible and near infrared, TROPOMI will provide Copernicus with observational data on atmospheric composition at unprecedented geographical resolution. The S5P Mission Performance Center (MPC) provides an operational service-based solution for various QA/QC tasks, including the validation of S5P Level-2 data products and the support to algorithm evolution. Those two tasks are to be accomplished by the MPC Validation Data Analysis Facility (VDAF), one MPC component developed and operated at BIRA-IASB with support from S[&]T and NILU. The routine validation to be ensured by VDAF is complemented by a list of validation AO projects carried out by ESA's S5P Validation Team (S5PVT), with whom interaction is essential. Here we will introduce the general architecture of VDAF, its relation to the other MPC components, the generic and specific validation strategies applied for each of the official TROPOMI data products, and the expected output of the system. The S5P data products to be validated by VDAF are diverse: O3 (vertical profile, total column, tropospheric column), NO2 (total and tropospheric column), HCHO (tropospheric column), SO2 (column), CO (column), CH4 (column), aerosol layer height and clouds (fractional cover, cloud-top pressure and optical thickness). Starting from a generic validation protocol meeting community-agreed standards, a set of specific validation settings is associated with each data product, as well as the appropriate set of Fiducial Reference Measurements (FRM) to which it will be compared. VDAF collects FRMs from ESA's Validation Data Centre (EVDC) and from other sources (e.g., WMO's GAW, NDACC and TCCON). Data

  4. Optimum Operating Room Environment for the Prevention of Surgical Site Infections.

    Science.gov (United States)

    Gaines, Sara; Luo, James N; Gilbert, Jack; Zaborina, Olga; Alverdy, John C

    Surgical site infections (SSI), whether they be incisional or deep, can entail major morbidity and death to patients and additional cost to the healthcare system. A significant amount of effort has gone into optimizing the surgical patient and the operating room environment to reduce SSI. Relevant guidelines and literature were reviewed. The modern practice of surgical antisepsis involves the employment of strict sterile techniques inside the operating room. Extensive guidelines are available regarding the proper operating room antisepsis as well as pre-operative preparation. The use of pre-operative antimicrobial prophylaxis has become increasingly prevalent, which also presents the challenge of opportunistic and nosocomial infections. Ongoing investigative efforts have brought about a greater appreciation of the surgical patient's endogenous microflora, use of non-bactericidal small molecules, and pre-operative microbial screening. Systematic protocols exist for optimizing the surgical sterility of the operating room to prevent SSIs. Ongoing research efforts aim to improve the precision of peri-operative antisepsis measures and personalize these measures to tailor the patient's unique microbial environment.

  5. A robust optimization based approach for microgrid operation in deregulated environment

    International Nuclear Information System (INIS)

    Gupta, R.A.; Gupta, Nand Kishor

    2015-01-01

    Highlights: • RO based approach developed for optimal MG operation in deregulated environment. • Wind uncertainty modeled by interval forecasting through ARIMA model. • Proposed approach evaluated using two realistic case studies. • Proposed approach evaluated the impact of degree of robustness. • Proposed approach gives a significant reduction in operation cost of microgrid. - Abstract: Micro Grids (MGs) are clusters of Distributed Energy Resource (DER) units and loads. MGs are self-sustainable and generally operated in two modes: (1) grid connected and (2) grid isolated. In deregulated environment, the operation of MG is managed by the Microgrid Operator (MO) with an objective to minimize the total cost of operation. The MG management is crucial in the deregulated power system due to (i) integration of intermittent renewable sources such as wind and Photo Voltaic (PV) generation, and (ii) volatile grid prices. This paper presents robust optimization based approach for optimal MG management considering wind power uncertainty. Time series based Autoregressive Integrated Moving Average (ARIMA) model is used to characterize the wind power uncertainty through interval forecasting. The proposed approach is illustrated through a case study having both dispatchable and non-dispatchable generators through different modes of operation. Further the impact of degree of robustness is analyzed in both cases on the total cost of operation of the MG. A comparative analysis between obtained results using proposed approach and other existing approach shows the strength of proposed approach in cost minimization in MG management

  6. Measuring Situation Awareness of Operating Team in Different Main Control Room Environments of Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Seung Woo Lee

    2016-02-01

    Full Text Available Environments in nuclear power plants (NPPs are changing as the design of instrumentation and control systems for NPPs is rapidly moving toward fully digital instrumentation and control, and modern computer techniques are gradually introduced into main control rooms (MCRs. Within the context of these environmental changes, the level of performance of operators in a digital MCR is a major concern. Situation awareness (SA, which is used within human factors research to explain to what extent operators of safety-critical systems know what is transpiring in the system and the environment, is considered a prerequisite factor to guarantee the safe operation of NPPs. However, the safe operation of NPPs can be guaranteed through a team effort. In this regard, the operating team's SA in a conventional and digital MCR should be measured in order to assess whether the new design features implemented in a digital MCR affect this parameter. This paper explains the team SA measurement method used in this study and the results of applying this measurement method to operating teams in different MCR environments. The paper also discusses several empirical lessons learned from the results.

  7. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  8. NASA Laboratory Analysis for Manned Exploration Missions

    Science.gov (United States)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  9. Basic research on intelligent robotic systems operating in hostile environments: New developments at ORNL

    International Nuclear Information System (INIS)

    Barhen, J.; Babcock, S.M.; Hamel, W.R.; Oblow, E.M.; Saridis, G.N.; deSaussure, G.; Solomon, A.D.; Weisbin, C.R.

    1984-01-01

    Robotics and artificial intelligence research carried out within the Center for Engineering Systems Advanced Research (CESAR) is presented. Activities focus on the development and demonstration of a comprehensive methodological framework for intelligent machines operating in unstructured hostile environments. Areas currently being addressed include mathematical modeling of robot dynamics, real-time control, ''world'' modeling, machine perception and strategy planning

  10. An evaluation of grease-type ball bearing lubricants operation in various environments

    Science.gov (United States)

    Mcmurtrey, E. L.

    1983-01-01

    Because many future spacecraft or space stations will require mechanisms to operate for long periods of time in environments which are adverse to most bearing lubricants, a series of tests is continuing to evaluate 38 grease type lubricants in R-4 size bearings in five different environments for a 1 year period. Four repetitions of each test are made to provide statistical samples. These tests have also been used to select four lubricants for 5 year tests in selected environments with five repetitions of each test for statistical samples. At the present time, 142 test sets have been completed and 30 test sets are underway. The three 5 year tests in (1) continuous operation and (2) start stop operation, with both in vacuum at ambient temperatures, and (3) continuous vacuum operation at 93.3 C are now completed. To date, in both the 1 year and 5 year tests, the best results in all environments have been obtained with a high viscosity index perfluoroalkylpolyether (PFPE) grease.

  11. Operability of nuclear systems in normal and adverse environments. Volume 1

    International Nuclear Information System (INIS)

    1989-01-01

    These proceedings of the International Conference on Operability of nuclear systems in normal and adverse environments, Volume 1, are divided into sections bearing on: - General session: 8 conferences - Analytical approaches: 5 conferences - Environmental effects: 7 conferences - Degradation monitoring: 8 conferences - Aging and life assessment: 9 conferences - Test experience on mechanical equipment: 8 conferences - Test experience on electrical equipment: 8 conferences - Reliability studies: 8 conferences

  12. Addressing Challenges to the Design & Test of Operational Lighting Environments for the International Space Station

    Science.gov (United States)

    Clark, Toni A.

    2014-01-01

    In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed

  13. Nursing in a technological environment: nursing care in the operating room.

    Science.gov (United States)

    Bull, Rosalind; FitzGerald, Mary

    2006-02-01

    Operating room nurses continue to draw criticism regarding the appropriateness of a nursing presence in the operating room. The technological focus of the theatre and the ways in which nurses in the theatre have shaped and reshaped their practice in response to technological change have caused people within and outside the nursing profession to question whether operating room nursing is a technological rather than nursing undertaking. This paper reports findings from an ethnographic study that was conducted in an Australian operating department. The study examined the contribution of nurses to the work of the operating room through intensive observation and ethnographic interviews. This paper uses selected findings from the study to explore the ways in which nurses in theatre interpret their role in terms of caring in a technological environment.

  14. [Design of an anesthesia and micro-environment information management system in mobile operating room].

    Science.gov (United States)

    Wang, Xianwen; Liu, Zhiguo; Zhang, Wenchang; Wu, Qingfu; Tan, Shulin

    2013-08-01

    We have designed a mobile operating room information management system. The system is composed of a client and a server. A client, consisting of a PC, medical equipments, PLC and sensors, provides the acquisition and processing of anesthesia and micro-environment data. A server is a powerful computer that stores the data of the system. The client gathers the medical device data by using the C/S mode, and analyzes the obtained HL7 messages through the class library call. The client collects the micro-environment information with PLC, and finishes the data reading with the OPC technology. Experiment results showed that the designed system could manage the patient anesthesia and micro-environment information well, and improve the efficiency of the doctors' works and the digital level of the mobile operating room.

  15. A software environment to execute automatic operational sequences on the ITER-FEAT DTP facility

    International Nuclear Information System (INIS)

    Fermani, G.; Zarfino, M.

    2001-01-01

    The divertor test platform (DTP) maintenance operations are carried out by means of the remote handling equipments (RHE), each dedicated to perform a set of specialised remote actions. Each RHE is controlled by an RHE control system (RHE-CS) and can be locally operated by an RHE-operator using the local control panel (LOP). To perform the maintenance activity, the DTP-operator coordinates the remote operations of every RHEs, using the supervisory system (DTP S S). Because the remote maintenance activities demand for a high degree of parallelism, automation and cooperation between various RHEs, the development of a software environment (OSAExE) that had the indicated characteristics has been necessary. The OSAExE environment is applicable to any distributed and cooperating system that is modelled as a set of autonomous subsystems. Each maintenance remote sequence needs to be modelled as a modified Petri-net diagram and subsequently 'compiled', in order to be automatically executed on OSAExE environment. The OSAExE architecture allows both, to program 'event driven' automatic sequences, and to maintain unchanged all the existing DTP S S features

  16. Understanding stress in the operating room: a step toward improving the work environment.

    Science.gov (United States)

    Vowels, Anthony; Topp, Robert; Berger, Jill

    2012-01-01

    Job-related stress is an important factor predicting staff satisfaction and position turnover among nursing staff, particularly in the operating room. The purpose of this study was to examine the perceived amount of stress elicited by events in the perioperative environment, the frequency of those events, and the impact of those events on the perceived stress of operating room nurses (ORNs) and operating room technologists (ORTs). The Survey on Stress in the OR instrument, which was used to query the subjects, exhibited high internal consistency of all items. The findings indicated that the ORNs and the ORTs exhibited remarkable similarities between stressful events perceived as high and low impact. The two groups agreed that the highest impact stressful event was "pressure to work more quickly." Using the results of this study, OR administrators may be able to redesign the OR environment to minimize the impact of stressful events and thereby improve job satisfaction and minimize nursing staff turnover.

  17. Features of an effective operative dentistry learning environment: students' perceptions and relationship with performance.

    Science.gov (United States)

    Suksudaj, N; Lekkas, D; Kaidonis, J; Townsend, G C; Winning, T A

    2015-02-01

    Students' perceptions of their learning environment influence the quality of outcomes they achieve. Learning dental operative techniques in a simulated clinic environment is characterised by reciprocal interactions between skills training, staff- and student-related factors. However, few studies have examined how students perceive their operative learning environments and whether there is a relationship between their perceptions and subsequent performance. Therefore, this study aimed to clarify which learning activities and interactions students perceived as supporting their operative skills learning and to examine relationships with their outcomes. Longitudinal data about examples of operative laboratory sessions that were perceived as effective or ineffective for learning were collected twice a semester, using written critical incidents and interviews. Emergent themes from these data were identified using thematic analysis. Associations between perceptions of learning effectiveness and performance were analysed using chi-square tests. Students indicated that an effective learning environment involved interactions with tutors and peers. This included tutors arranging group discussions to clarify processes and outcomes, providing demonstrations and constructive feedback. Feedback focused on mistakes, and not improvement, was reported as being ineffective for learning. However, there was no significant association between students' perceptions of the effectiveness of their learning experiences and subsequent performance. It was clear that learning in an operative technique setting involved various factors related not only to social interactions and observational aspects of learning but also to cognitive, motivational and affective processes. Consistent with studies that have demonstrated complex interactions between students, their learning environment and outcomes, other factors need investigation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. On-line task scheduling and trajectory planning techniques for reconnaissance missions with multiple unmanned aerial vehicles supervised by a single human operator

    Science.gov (United States)

    Ortiz Rubiano, Andres Eduardo

    The problem of a single human operator monitoring multiple UAVs in reconnaissance missions is addressed in this work. In such missions, the operator inspects and classifies targets as they appear on video feeds from the various UAVs. In parallel, the aircraft autonomously execute a flight plan and transmit real-time video of an unknown terrain. The main contribution of this work is the development of a system that autonomously schedules the display of video feeds such that the human operator is able to inspect each target in real time (i.e., no video data is recorded and queued for later inspection). The construction of this non-overlapping schedule is made possible by commanding changes to the flight plan of the UAVs. These changes are constructed such that the impact on the mission time is minimized. The development of this system is addressed in the context of both fixed and arbitrary target inspection times. Under the assumption that the inspection time is constant, a Linear Program (LP) formulation is used to optimally solve the display scheduling problem in the time domain. The LP solution is implemented in the space domain via velocity and trajectory modifications to the flight plan of the UAVs. An online algorithm is proposed to resolve scheduling conflicts between multiple video feeds as targets are discovered by the UAVs. Properties of this algorithm are studied to develop conflict resolution strategies that ensure correctness regardless of the target placement. The effect of such strategies on the mission time is evaluated via numerical simulations. In the context of arbitrary inspection time, the human operator indicates the end of target inspection in real time. A set of maneuvers is devised that enable the operator to inspect each target uninterruptedly and indefinitely. In addition, a cuing mechanism is proposed to increase the situational awareness of the operator and potentially reduce the inspection times. The benefits of operator cuing on mission

  19. A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment

    Directory of Open Access Journals (Sweden)

    Myong-Chul Shin

    2010-12-01

    Full Text Available One of the most important requirements of microgrid operation is to maintain a constant frequency such as 50 Hz or 60 Hz, which is closely related to a power balance between supply and demand. In general, microgrids are connected to power grids and surplus/shortage power of microgrids is traded with power grids. Since islanded microgrids are isolated from any power grids, the decrease in generation or load-shedding can be used to maintain the frequency when a power imbalance between supply and demand occurs. The power imbalance restricts the electricity use of consumers in the case of supply shortage and the power supply of suppliers in the case of supply surplus. Therefore, the islanded microgrid should be operated to reduce power imbalance conditions. Meanwhile, the microgrid is a small-scale power system and the employment of skillful operators for effective operation of its components requires high costs. Therefore, automatic operation of the components is effective realistically. In addition, the components are distributed in the microgrid and their operation should consider their owners’ profits. For these reasons, a multiagent system application can be a good alternative for microgrid operation. In this paper, we present a multiagent system for autonomous operation of the islanded microgrid on a power market environment. The proposed multiagent system is designed based on a cooperative operation scheme. We show the functionality and the feasibility of the proposed multiagent system through several tests.

  20. A multiagent system for autonomous operation of islanded microgrids based on a power market environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.-M. [Department of Electrical Engineering, University of Incheon/12-1, Sondo-dong, Yeonsu-gu, Incheon, 406-840 (Korea, Republic of); Kinoshita, T. [Graduate School of Information Science, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Shin, M.-Ch. [School of Information and Communication Engineering, Sungkyunkwan University/300, Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-746 (Korea, Republic of)

    2010-12-15

    One of the most important requirements of microgrid operation is to maintain a constant frequency such as 50 Hz or 60 Hz, which is closely related to a power balance between supply and demand. In general, microgrids are connected to power grids and surplus/shortage power of microgrids is traded with power grids. Since islanded microgrids are isolated from any power grids, the decrease in generation or load-shedding can be used to maintain the frequency when a power imbalance between supply and demand occurs. The power imbalance restricts the electricity use of consumers in the case of supply shortage and the power supply of suppliers in the case of supply surplus. Therefore, the islanded microgrid should be operated to reduce power imbalance conditions. Meanwhile, the microgrid is a small-scale power system and the employment of skillful operators for effective operation of its components requires high costs. Therefore, automatic operation of the components is effective realistically. In addition, the components are distributed in the microgrid and their operation should consider their owners' profits. For these reasons, a multiagent system application can be a good alternative for microgrid operation. In this paper, we present a multiagent system for autonomous operation of the islanded microgrid on a power market environment. The proposed multiagent system is designed based on a cooperative operation scheme. We show the functionality and the feasibility of the proposed multiagent system through several tests. (authors)

  1. Experimental Setup to Assess Blast and Penetration-Induced Secondary Debris in a Military Operations in Urban Terrain (MOUT) Environment

    Science.gov (United States)

    2015-11-01

    in a Military Operations in Urban Terrain (MOUT) Environment by Paul S Duvall Approved for public release; distribution...Research Laboratory Experimental Setup to Assess Blast and Penetration-Induced Secondary Debris in a Military Operations in Urban Terrain...Induced Secondary Debris in a Military Operations in Urban Terrain (MOUT) Environment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  2. MOURA magnetometer for Mars MetNet Precursor Mission. Its potential for an in situ magnetic environment and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Michelena, M.; Sanz, R.; Fernandez, A.B.; Manuel, V. de; Cerdan, M.F.; Apestigue, V.; Arruego, I.; Azcue, J.; Dominguez, J.A.; Gonzalez, M.; Guerrero, H.; Sabau, M.; Kilian, R.; Baeza, O.; Ros, F.; Vazquez, M.; Tordesillas, J.M.; Covisa, P.; Aguado, J.

    2016-07-01

    MOURA magnetometer and gradiometer is part of the scientific instrumentation for Mars MetNet Precursor mission. This work describes the objective of the investigation, summarizes the work done in the design and development of the sensor as well as its calibration, and shows the demonstration campaigns to show the potential of such instrument for planetary landers and rovers. (Author)

  3. THE CURRENT STATE OF STRUCTURAL FUNDS ABSORPTION IN ROMANIA THROUGH OPERATIONAL PROGRAMME ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    ALINA GEORGIANA HOLT

    2013-08-01

    Full Text Available The Operational Programme Environment (OP Environment contributes to the implementation of the 3rd priority of the National Development Plan 2007-2013, "Protecting and improving the environment," takinginto account the social, economic and environmental needs in Romania, so as to achieve sustainable impact onenvironment and stimulate economic development. From the international perspective, it is based on the EUSustainable Development Strategy and the 6th Environmental Action Programme. It is designed to contribute tothe achievement of the thematic priority of the National Strategic Reference Framework, namely thedevelopment of infrastructure at European standards.The OP Environment is fully consistent with the priorities established in the Strategic Guidelines forCohesion Cohesion Policy, especially those aimed at increasing the attractiveness of Member States, regionsand cities and to strengthen the synergies between environmental protection and economic growth.

  4. An evaluation of grease type ball bearing lubricants operating in various environments /Status report no. 2/

    Science.gov (United States)

    Demorest, K. E.; Mcmurtrey, E. L.

    1976-01-01

    Because many future spacecraft or space stations will require mechanisms to operate for long periods of time in environments which are inimical to most bearing lubricants, a series of tests has been started to evaluate 25 grease type lubricants in R-4 size bearings in five different environments for a 1 year period. Four repetitions of each test are made to provide statistical samples. These tests will be used to select from two to five lubricants for 5 year tests in the same environments. At the present time, approximately 30 test sets have been completed and 25 sets are underway. To date, best results in all environments have been obtained with a high viscosity index perfluoropolyether grease.

  5. Aram Chaos: a Long Lived Subsurface Aqueous Environment with Strong Water Resources Potential for Human Missions on Mars

    Science.gov (United States)

    Sibille, L.; Mueller, R.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-01-01

    Aram Chaos, Mars is a crater 280 kilometers in diameter with elevations circa. minus 2 to minus 3 kilometers below datum that provides a compelling landing site for future human explorers as it features multiple scientific regions of interest (ROI) paired with a rich extensible Resource ROI that features poly-hydrated sulfates [1]. The geologic history of Aram Chaos suggests several past episodes of groundwater recharge and infilling by liquid water, ice, and other materials [1-3]. The creation of the fractured region with no known terrestrial equivalent may have been caused by melting of deep ice reservoirs that triggered the collapse of terrain followed by catastrophic water outflows over the region. Aram Chaos is of particular scientific interest because it is hypothesized that the chaotic terrain may be the source of water that contributed to the creation of nearby valleys such as Ares Vallis flowing toward Chryse Planitia. The liquid water was likely sourced as groundwater and therefore represents water derived from a protected subsurface environment making it a compelling astrobiological site [2]. The past history of water is also represented by high concentrations of hematite, Fe-oxyhydroxides, mono-hydrated and poly-hydrated sulfates [1, 2]. Poly-hydrated sulfates are likely to contain abundant water that evolves at temperatures below 500 degrees Centigrade thus conferring Aram Chaos a potentially high value for early in-situ resource utilization (ISRU) [4]. The geologic history also calls for future prospecting of deep ice deposits and possibly liquid water via deep drilling. The most recent stratigraphic units in the central part of Aram Chaos are not fractured, and are part of a dome-shaped formation that features bright, poorly-consolidated material that contains both hydrated sulfates and ferric oxides according to OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) data [5]. These surface material characteristics are

  6. Space Environment Workshop

    International Nuclear Information System (INIS)

    Horne, W.E.

    1985-01-01

    Various environmental effects were ranked according to their perceived importance. The relative importance of any particular environment component is viewed within the context of the anticipated mission environment. The chart does serve as an indication of the historically major environmental concerns for operating space power systems

  7. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  8. Raising of Operating a Motor Vehicle Effects on Environment in Winter

    Science.gov (United States)

    Ertman, S. A.; Ertman, J. A.; Zakharov, D. A.

    2016-08-01

    Severe low-temperature conditions, in which considerable part of Russian Motor Park is operated, affect vehicles negatively. Cold weather causes higher fuel consumption and C02 emissions always. It is because of temperature profile changing of automobile motors, other systems and materials. For enhancement of car operation efficiency in severe winter environment the dependency of engine warm-up and cooling time on ambient air temperature and wind speed described by multifactorial mathematical models is established. -On the basis of experimental research it was proved that the coolant temperature constitutes the engine representative temperature and may be used as representative temperature of engine at large. The model of generation of integrated index for vehicle adaptability to winter operating conditions by temperature profile of engines was developed. the method for evaluation of vehicle adaptability to winter operating conditions by temperature profile of engines allows to decrease higher fuel consumption in cold climate.

  9. Sentinel-2 Mission status

    Science.gov (United States)

    Hoersch, Bianca; Colin, Olivier; Gascon, Ferran; Arino, Olivier; Spoto, Francois; Marchese, Franco; Krassenburg, Mike; Koetz, Benjamin

    2016-04-01

    Copernicus is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. Within the Copernicus programme, ESA is responsible for the development of the Space Component, a fully operational space-based capability to supply earth-observation data to sustain environmental information Services in Europe. The Sentinel missions are Copernicus dedicated Earth Observation missions composing the essential elements of the Space Component. In the global Copernicus framework, they are complemented by other satellites made available by third-parties or by ESA and coordinated in the synergistic system through the Copernicus Data-Access system versus the Copernicus Services. The Copernicus Sentinel-2 mission provides continuity to services relying on multi-spectral high-resolution optical observations over global terrestrial surfaces. Sentinel-2 capitalizes on the technology and the vast experience acquired in Europe and the US to sustain the operational supply of data for services such as forest monitoring, land cover changes detection or natural disasters management. The Sentinel-2 mission offers an unprecedented combination of the following capabilities: ○ Systematic global coverage of land surfaces: from 56°South to 84°North, coastal waters and Mediterranean sea; ○ High revisit: every 5 days at equator under the same viewing conditions with 2 satellites; ○ High spatial resolution: 10m, 20m and 60m; ○ Multi-spectral information with 13 bands in the visible, near infra-red and short wave infra-red part of the spectrum; ○ Wide field of view: 290 km. The data from the Sentinel-2 mission are available openly and freely for all users with online easy access since December 2015. The presentation will give a status report on the Sentinel-2 mission, and outlook for the remaining ramp-up Phase, the

  10. International Earth Science Constellation Mission Operations Working Group: Constellation Coordination System (CCS) Status. [Constellation Coordination System (CCS) Status

    Science.gov (United States)

    Skeberdis, Daniel

    2016-01-01

    This is a presentation at the MOWG fall meeting that will discuss CCS purpose, future status, security enhancements, arbitrary ephemeris mission features, overview of CCS 7.3, approach for the use of NORAD TLEs, account and data security, CCS System virtualization, control box visualization modification and other enhancements.

  11. Intubation after rapid sequence induction performed by non-medical personnel during space exploration missions: a simulation pilot study in a Mars analogue environment.

    Science.gov (United States)

    Komorowski, Matthieu; Fleming, Sarah

    2015-01-01

    The question of the safety of anaesthetic procedures performed by non anaesthetists or even by non physicians has long been debated. We explore here this question in the hypothetical context of an exploration mission to Mars. During future interplanetary space missions, the risk of medical conditions requiring surgery and anaesthetic techniques will be significant. On Earth, anaesthesia is generally performed by well accustomed personnel. During exploration missions, onboard medical expertise might be lacking, or the crew doctor could become ill or injured. Telemedical assistance will not be available. In these conditions and as a last resort, personnel with limited medical training may have to perform lifesaving procedures, which could include anaesthesia and surgery. The objective of this pilot study was to test the ability for unassisted personnel with no medical training to perform oro-tracheal intubation after a rapid sequence induction on a simulated deconditioned astronaut in a Mars analogue environment. The experiment made use of a hybrid simulation model, in which the injured astronaut was represented by a torso manikin, whose vital signs and hemodynamic status were emulated using a patient simulator software. Only assisted by an interactive computer tool (PowerPoint(®) presentation), five participants with no previous medical training completed a simplified induction of general anaesthesia with intubation. No major complication occurred during the simulated trials, namely no cardiac arrest, no hypoxia, no cardiovascular collapse and no failure to intubate. The study design was able to reproduce many of the constraints of a space exploration mission. Unassisted personnel with minimal medical training and familiarization with the equipment may be able to perform advanced medical care in a safe and efficient manner. Further studies integrating this protocol into a complete anaesthetic and surgical scenario will provide valuable input in designing health

  12. Influence of operation of national experimental nuclear reactor on the natural environment

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarek-Kacprzak

    2012-09-01

    Full Text Available This paper presents the impact of experimental nuclear reactor operations on the national environment, based on assessment reports of the radiological protection of active nuclear technology sources. Using the analysis of measurements carried out in the last 15 years, the trends are presented in selected elements of the environment on the Świerk Nuclear Centre site and its surroundings. In addition, the impact of research results is presented from the fi fteen year period of environmental analysis on building public confi dence on the eve of the start of construction of the first Polish nuclear power plant.

  13. Human missions to Mars: issues and challenges

    Science.gov (United States)

    Race, M.; Kminek, G.

    Recent announcements of the planned future human exploration of Mars by both European and US space agencies have raised a host of questions and challenges that must be addressed in advance of long-duration human missions. While detailed mission planning is a long way off, numerous issues can already be identified in the broad context of planetary protection. In this session, a panel of experts will provide brief overviews of the types of challenges ahead, such as the protection of the martian environment; the integration of human and robotic mission elements and operations; precursor scientific information necessary to plan human missions; development and use of nuclear and other technologies for the protection and support of astronauts during the mission; protection of Earth upon return; and societal and ethical questions about human exploration. The session has been designed to encourage and incorporate audience participation in the discussion about the issues and challenges ahead.

  14. Extreme operative temperatures are better descriptors of the thermal environment than mean temperatures.

    Science.gov (United States)

    Camacho, Agustín; Trefaut Rodrigues, Miguel; Navas, Carlos

    2015-01-01

    In ecological studies of thermal biology the thermal environment is most frequently described using the mean or other measures of central tendency in environmental temperatures. However, this procedure may hide biologically relevant thermal variation for ectotherms, potentially misleading interpretations. Extremes of operative temperatures (EOT) can help with this problem by bracketing the thermal environment of focal animals. Within this paper, we quantify how mean operative temperatures relate to the range of simultaneously available operative temperatures (a measure of error). We also show how EOT: 1) detect more thermal differences among microsites than measures of central tendency, like the mean OT, 2) allow inferring on microsite use by ectothermic animals, and 3) clarify the relationships between field operative temperatures and temperatures measured at weather stations (WS). To do that, we explored operative temperatures measured at four sites of the Brazilian Caatingas and their correspondent nearest weather stations. We found that the daily mean OT can hide temperature ranges of 41 °C simultaneously available at our study sites. In addition, EOT detected more thermal differences among microsites than central quantiles. We also show how EOT allow inferring about microsite use of ectothermic animals in a given site. Finally, the daily maximum temperature and the daily temperature range measured at WSs predicted well the minimum available field OT at localities many kilometers away. Based on our results, we recommend the use of EOT, instead of mean OT, in thermal ecology studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Global-scale Observations of the Limb and Disk (GOLD) Mission -Ultraviolet Remote Sensing of Earth's Space Environment from Geostationary Orbit

    Science.gov (United States)

    Burns, A. G.; Eastes, R.

    2017-12-01

    The GOLD mission of opportunity will fly a far ultraviolet imaging spectrograph in geostationary (GEO) orbit as a hosted payload. The mission is scheduled for launch in late January 2018 on SES-14, a commercial communications satellite that will be stationed over eastern South America at 47.5 degrees west longitude. GOLD is on schedule to be the first NASA science mission to fly as a hosted payload on a commercial communications satellite. The GOLD imager has two identical channels. Each channel can scan the full disk at a 30 minute cadence, making spectral images of Earth's UV emission from 132 to 162 nm, as well as make a measurement on the Earth's limb. Remote sensing techniques that have been proven on previous Low Earth Orbit (LEO) missions will be used to derive fundamental parameters for the neutral and ionized space environment. Parameters that will be derived include composition (O/N2 ratio) and temperature of the neutral atmosphere on the dayside disk. On the nightside, peak electron densities will be obtained in the low latitude ionosphere. Many of the algorithms developed for the mission are extensions of ones used on previous earth and planetary missions, with modifications for observations from geostationary orbit. All the algorithms have been tested using simulated observations based on the actual instrument performance. From geostationary orbit, GOLD can repeatedly image the same geographic locations over most of the hemisphere at a cadence comparable to that of the T-I system (order of an hour). Such time resolution and spatial coverage will allow the mission to track the changes due to geomagnetic storms, variations in solar extreme ultraviolet radiation, and forcing from the lower atmosphere. In addition to providing a new perspective by being able to repeatedly remotely sense the same hemisphere at a high cadence, GOLD's simultaneous measurements of not only composition but also temperatures across the disk will provide a valuable, new parameter

  16. Space Environment Effects on Materials at Different Positions and Operational Periods of ISS

    Science.gov (United States)

    Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo

    2009-01-01

    A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.

  17. Methodology for analyzing environmental quality indicators in a dynamic operating room environment.

    Science.gov (United States)

    Gormley, Thomas; Markel, Troy A; Jones, Howard W; Wagner, Jennifer; Greeley, Damon; Clarke, James H; Abkowitz, Mark; Ostojic, John

    2017-04-01

    Sufficient quantities of quality air and controlled, unidirectional flow are important elements in providing a safe building environment for operating rooms. To make dynamic assessments of an operating room environment, a validated method of testing the multiple factors influencing the air quality in health care settings needed to be constructed. These include the following: temperature, humidity, particle load, number of microbial contaminants, pressurization, air velocity, and air distribution. The team developed the name environmental quality indicators (EQIs) to describe the overall air quality based on the actual measurements of these properties taken during the mock surgical procedures. These indicators were measured at 3 different hospitals during mock surgical procedures to simulate actual operating room conditions. EQIs included microbial assessments at the operating table and the back instrument table and real-time analysis of particle counts at 9 different defined locations in the operating suites. Air velocities were measured at the face of the supply diffusers, at the sterile field, at the back table, and at a return grille. The testing protocol provided consistent and comparable measurements of air quality indicators between institutions. At 20 air changes per hour (ACH), and an average temperature of 66.3°F, the median of the microbial contaminants for the 3 operating room sites ranged from 3-22 colony forming units (CFU)/m 3 at the sterile field and 5-27 CFU/m 3 at the back table. At 20 ACH, the median levels of the 0.5-µm particles at the 3 sites were 85,079, 85,325, and 912,232 in particles per cubic meter, with a predictable increase in particle load in the non-high-efficiency particulate air-filtered operating room site. Using a comparison with cleanroom standards, the microbial and particle counts in all 3 operating rooms were equivalent to International Organization for Standardization classifications 7 and 8 during the mock surgical

  18. Rugged optical mirrors for the operation of Fourier-Transform Spectrometers in rough environments

    Science.gov (United States)

    Feist, Dietrich G.

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC) operate a growing number of Fourier-Transform Spectrometers (FTS) that measure the total column of several atmospheric trace gases. For these measurements, the sun is used as a light source. This is typically achieved by a solar tracker that uses a pair of optical mirrors to guide the sunlight into the instrument. There is a growing demand to operate these instruments in remote locations that fill the gaps in the global observation network. Besides the logistical challenges of running a remote site, the environment at these locations can be very harsh compared to the sheltered environment of the instruments' home institutions. While the FTS itself is usually well protected inside a building or container, the solar tracker and especially its mirrors are exposed to the environment. There they may suffer from - temperature fluctuations - high humidity - sea salt corrosion at coastal sites - dirt and dust - air pollution from anthropogenic sources - deposition from plants or animals The Max Planck Institute for Biogeochemistry (MPI-BGC) operates a TCCON station on Ascension Island, about 200 m from the sea. Under the rough conditions at this site, typical optical mirrors that are made for laboratory conditions are destroyed by sea salt spray within a few weeks. Besides, typical gold-coated mirrors cannot be cleaned as their soft surface is easily scratched or damaged. To overcome these problems, the MPI-BGC has developed optical mirrors that - offer good reflectivity in the near and mid infrared - are highly resistant to salt and chlorine - have a hard surface so that they can be cleaned often and easily - are not affected by organic solvents - last for months in very harsh environments - can be reused after polishing These mirrors could be applied to most TCCON and NDACC sites. This way, the network could be expanded to regions where operation

  19. How do early emotional experiences in the operating theatre influence medical student learning in this environment?

    Science.gov (United States)

    Bowrey, David J; Kidd, Jane M

    2014-01-01

    The emotions experienced by medical students on first exposure to the operating theatre are unknown. It is also unclear what influence these emotions have on the learning process. To understand the emotions experienced by students when in the operating theatre for the first time and the impact of these emotions on learning. Nine 3rd-year medical students participated in semistructured interviews to explore these themes. A qualitative approach was used; interviews were transcribed and coded thematically. All participants reported initial negative emotions (apprehension, anxiety, fear, shame, overwhelmed), with excitement being reported by 3. Six participants considered that their anxiety was so overwhelming that it was detrimental to their learning. Participants described a period of familiarization to the environment, after which learning was facilitated. Early learning experiences centered around adjustment to the physical environment of the operating theatre. Factors driving initial negative feelings were loss of familiarity, organizational issues, concerns about violating protocol, and a fear of syncope. Participants considered that it took a median of 1 week (range = 1 day-3 weeks) or 5 visits to the operating theatre (range = 1-10) before feeling comfortable in the new setting. Emotions experienced on subsequent visits to the operating theatre were predominantly positive (enjoyment, happiness, confident, involved, pride). Two participants reported negative feelings related to social exclusion. Being included in the team was a powerful determinant of enjoyment. These findings indicate that for learning in the operating theatre to be effective, addressing the negative emotions of the students might be beneficial. This could be achieved by a formal orientation program for both learners and tutors in advance of attendance in the operating theatre. For learning to be optimized, students must feel a sense of inclusion in the theatre community of practice.

  20. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends.

    Science.gov (United States)

    Arico, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Babiloni, Fabio

    2017-07-01

    This minireview aims to highlight recent important aspects to consider and evaluate when passive brain-computer interface (pBCI) systems would be developed and used in operational environments, and remarks future directions of their applications. Electroencephalography (EEG) based pBCI has become an important tool for real-time analysis of brain activity since it could potentially provide covertly-without distracting the user from the main task-and objectively-not affected by the subjective judgment of an observer or the user itself-information about the operator cognitive state. Different examples of pBCI applications in operational environments and new adaptive interface solutions have been presented and described. In addition, a general overview regarding the correct use of machine learning techniques (e.g., which algorithm to use, common pitfalls to avoid, etc.) in the pBCI field has been provided. Despite recent innovations on algorithms and neurotechnology, pBCI systems are not completely ready to enter the market yet, mainly due to limitations of the EEG electrodes technology, and algorithms reliability and capability in real settings. High complexity and safety critical systems (e.g., airplanes, ATM interfaces) should adapt their behaviors and functionality accordingly to the user' actual mental state. Thus, technologies (i.e., pBCIs) able to measure in real time the user's mental states would result very useful in such "high risk" environments to enhance human machine interaction, and so increase the overall safety.

  1. Integrated Analysis of Environment-driven Operational Effects in Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, Alfred J [ORNL; Perumalla, Kalyan S [ORNL

    2007-07-01

    There is a rapidly growing need to evaluate sensor network functionality and performance in the context of the larger environment of infrastructure and applications in which the sensor network is organically embedded. This need, which is motivated by complex applications related to national security operations, leads to a paradigm fundamentally different from that of traditional data networks. In the sensor networks of interest to us, the network dynamics depend strongly on sensor activity, which in turn is triggered by events in the environment. Because the behavior of sensor networks is sensitive to these driving phenomena, the integrity of the sensed observations, measurements and resource usage by the network can widely vary. It is therefore imperative to accurately capture the environmental phenomena, and drive the simulation of the sensor network operation by accounting fully for the environment effects. In this paper, we illustrate the strong, intimate coupling between the sensor network operation and the driving phenomena in their applications with an example sensor network designed to detect and track gaseous plumes.

  2. Numerical Simulation for Thermal Shock Resistance of Thermal Protection Materials Considering Different Operating Environments

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2013-01-01

    Full Text Available Based on the sensitivities of material properties to temperature and the complexity of service environment of thermal protection system on the spacecraft, ultrahigh-temperature ceramics (UHTCs, which are used as thermal protection materials, cannot simply consider thermal shock resistance (TSR of the material its own but need to take the external constraint conditions and the thermal environment into full account. With the thermal shock numerical simulation on hafnium diboride (HfB2, a detailed study of the effects of the different external constraints and thermal environments on the TSR of UHTCs had been made. The influences of different initial temperatures, constraint strengths, and temperature change rates on the TSR of UHTCs are discussed. This study can provide a more intuitively visual understanding of the evolution of the TSR of UHTCs during actual operation conditions.

  3. TransFormers for Ensuring Long-Term Operations in Lunar Extreme Environments

    Science.gov (United States)

    Mantovani, J. G.; Stoica, A.; Alkalai, L.; Wilcox, B.; Quadrelli, M.

    2016-01-01

    "Surviving Extreme Space Environments" (EE) is one of NASA's Space Technology Grand Challenges. Power generation and thermal control are the key survival ingredients that allow a robotic explorer to cope with the EE using resources available to it, for example, by harvesting the local solar energy or by utilizing an onboard radioisotope thermoelectric generator (RTG). TransFormers (TFs) are a new technology concept designed to transform a localized area within a harsh extreme environment into a survivable micro-environment by projecting energy to the precise location where robots or humans operate. For example, TFs placed at a location on the rim of Shackleton Crater, which is illuminated by solar radiation for most of the year, would be able to reflect solar energy onto robots operating in the dark cold crater. TFs utilize a shape transformation mechanism to un-fold from a compact volume to a large reflective surface, and to control how much-and where-the energy is projected, and by adjusting for the changing position of the sun. TFs would enable in-situ resource utilization (ISRU) activities within locations of high interest that would normally be unreachable because of their extreme environment

  4. Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions

    Science.gov (United States)

    Adamczyk, Anne M.; Clowdsley, Martha S.; Qualls, Garry D.; Blattnig, Steve B.; Lee, Kerry T.; Fry, Dan J.; Stoffle, Nicholas N.; Simonsen, Lisa C.; Slaba, Tony C.; Walker, Steven A.; hide

    2010-01-01

    Risk to astronauts due to ionizing radiation exposure is a primary concern for missions beyond Low Earth Orbit (LEO) and will drive mission architecture requirements, mission timelines, and operational practices. Both galactic cosmic ray (GCR) and solar particle event (SPE) environments pose a risk to astronauts for missions beyond LEO. The GCR environment, which is made up of protons and heavier ions covering a broad energy spectrum, is ever present but varies in intensity with the solar cycle, while SPEs are sporadic events, consisting primarily of protons moving outward through the solar system from the sun. The GCR environment is more penetrating and is more difficult to shield than SPE environments, but lacks the intensity to induce acute effects. Large SPEs are rare, but they could result in a lethal dose, if adequate shielding is not provided. For short missions, radiation risk is dominated by the possibility of a large SPE. Longer missions also require planning for large SPEs; adequate shielding must be provided and operational constraints must allow astronauts to move quickly to shielded locations. The dominant risk for longer missions, however, is GCR exposure, which accumulates over time and can lead to late effects such as cancer. SPE exposure, even low level SPE exposure received in heavily shielded locations, will increase this risk. In addition to GCR and SPE environments, the lunar neutron albedo resulting mainly from the interaction of GCRs with regolith will also contribute to astronaut risk. Full mission exposure assessments were performed for proposed long duration lunar surface mission scenarios. In order to accomplish these assessments, radiation shielding models were developed for a proposed lunar habitat and rover. End-to-End mission exposure assessments were performed by first calculating exposure rates for locations in the habitat, rover, and during extra-vehicular activities (EVA). Subsequently, total mission exposures were evaluated for

  5. Missile Defense in the 21st Century Acquisition Environment: Exploring a BMD-Capable LCS Mission Package

    Science.gov (United States)

    2013-09-01

    Environment & Development, Rio de Janeiro , Brazil. xx THIS PAGE INTENTIONALLY LEFT BLANK xxi ACKNOWLEDGMENTS Team LCS would like to thank their thesis...their resources.” Report of the united nations conference on environment and development. Rio de Janeiro . United States Navy. (2007). A cooperative... populations , destabilize regional governments, and threaten United States and allied strategic interests. Of particular concern are the threats

  6. A study on operators' cognitive response characteristics to the computerized working environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, Jang Soo; Suh, Sang Moon; Lee, Hyun Cheol; Jung, Kwang Tae; Lee, Dhong Ha

    1998-12-01

    Although the introduction of computerized working environment to the nuclear facilities, the study on the human factors impacts of computers and automation has not been enough like the other industries. It is necessary to prepare the way to cope with the negative aspects in spite of many positive aspects of computerization in nuclear. This study is an empirical study including the survey of the human factor concerning, especially to the cognitive response of operators' and the experiments on the error proneness. At first, we survey the design and its changes of operator interface and interaction in nuclear power plants, and conclude five human factor issues. We discuss situation awareness issues as one of the major human factor concerning, and the assessment method. Secondly, a questionnaire and interviews survey to the operator's response characteristics are performed for possible criterion measures to the in-depth study on the cognitive characteristics. Finally, several experiments are conducted to test the error proneness. The issues and findings of this study could be utilized to any further study on the cognitive characteristic of operators to the computerized work environment.

  7. A study on operators' cognitive response characteristics to the computerized working environment

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, Jang Soo; Suh, Sang Moon; Lee, Hyun Cheol; Jung, Kwang Tae; Lee, Dhong Ha

    1998-12-01

    Although the introduction of computerized working environment to the nuclear facilities, the study on the human factors impacts of computers and automation has not been enough like the other industries. It is necessary to prepare the way to cope with the negative aspects in spite of many positive aspects of computerization in nuclear. This study is an empirical study including the survey of the human factor concerning, especially to the cognitive response of operators' and the experiments on the error proneness. At first, we survey the design and its changes of operator interface and interaction in nuclear power plants, and conclude five human factor issues. We discuss situation awareness issues as one of the major human factor concerning, and the assessment method. Secondly, a questionnaire and interviews survey to the operator's response characteristics are performed for possible criterion measures tot he in-depth study on the cognitive characteristics. Finally, several experiments are conducted to test the error proneness. The issues and findings of this study could be utilized to any further study on the cognitive characteristic of operators to the computerized work environment

  8. Analysis of Adaptation of Smartphone Operating Systems for Work in the Lithuanian Linguistic Environment

    Directory of Open Access Journals (Sweden)

    Vilija Celiešienė

    2014-06-01

    Full Text Available The paper provides analysis of linguistic aspects of the lithuanisation of smartphone operating systems (An - droid and Windows Phone and their adaptation for work in the Lithuanian linguistic environment. Having analysed the data of lithuanisation of smartphones, it was established that the aforementioned operating systems could be attributed to partially localised OS. Furthermore, the comparative analysis of linguistic localisation of operating systems in question showed that there were considerably more flaws in linguistic localisation of Android OS than those of Windows Phone OS. Windows Phone OS texts were evaluated as more corresponding to the norms of standard Lithuanian language. Most of the terms used in both Android OS and Windows Phone OS are included in the approved terminology sources. Unapproved, inaccurate, liter- ally translated terms, and non-standard loanwords constituted only a minor part of all terms used in OS texts.

  9. Operating environment threats influence on the maritime ferry technical system safety – the numerical approach

    Directory of Open Access Journals (Sweden)

    Kuligowska Ewa

    2017-06-01

    Full Text Available The material given in this paper delivers the procedure for numerical approach that allows finding the main practically important safety characteristics of the complex technical systems at the variable operation conditions including operating environment threats. The obtained results are applied to the safety evaluation of the maritime ferry technical system. It is assumed that the conditional safety functions are different at various operation states and have the exponential forms. Using the procedure and the program written in Mathematica, the considered maritime ferry technical system main characteristics including: the conditional and the unconditional expected values and standard deviations of the system lifetimes, the unconditional safety function and the risk function are determined.

  10. Shielded Heavy-Ion Environment Linear Detector (SHIELD): an experiment for the Radiation and Technology Demonstration (RTD) Mission

    Science.gov (United States)

    Shavers, M. R.; Cucinotta, F. A.; Miller, J.; Zeitlin, C.; Heilbronn, L.; Wilson, J. W.; Singleterry, R. C. Jr

    2001-01-01

    Radiological assessment of the many cosmic ion species of widely distributed energies requires the use of theoretical transport models to accurately describe diverse physical processes related to nuclear reactions in spacecraft structures, planetary atmospheres and surfaces, and tissues. Heavy-ion transport models that were designed to characterize shielded radiation fields have been validated through comparison with data from thick-target irradiation experiments at particle accelerators. With the RTD Mission comes a unique opportunity to validate existing radiation transport models and guide the development of tools for shield design. For the first time, transport properties will be measured in free-space to characterize the shielding effectiveness of materials that are likely to be aboard interplanetary space missions. Target materials composed of aluminum, advanced composite spacecraft structure and other shielding materials, helium (a propellant) and tissue equivalent matrices will be evaluated. Large solid state detectors will provide kinetic energy and charge identification for incident heavy-ions and for secondary ions created in the target material. Transport calculations using the HZETRN model suggest that 8 g cm -2 thick targets would be adequate to evaluate the shielding effectiveness during solar minimum activity conditions for a period of 30 days or more.

  11. Operating nuclear power stations in a regulated cyber security environment: a roadmap for success

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, E., E-mail: Erik.Dorman@areva.com [AREVA Inc., Cyber Security Solutions, Charlotte, NC (United States)

    2015-07-01

    The United States Nuclear Regulatory Commission (NRC) issued 10CFR73.54 to implement a regulated Cyber Security Program at each operating nuclear reactor facility. Milestones were implemented December 31, 2012 to mitigate the attack vectors for the most critical digital assets acknowledged by the industry and the NRC. The NRC inspections have begun. The nuclear Cyber Security Plan, implemented by the site Cyber Security Program (Program), is an element of the operating license at each facility. The Program is designed to protect critical digital assets (CDAs) by applying and maintaining defense-in depth protective strategies to ensure the capability to detect, respond to, and recover from cyber-attacks. The Program references NEI 08-09 R. 6, the Nuclear Energy Institute Template that provides guidance for applying Cyber Security controls derived from NIST 800-53/82 and slightly modified to fit the nuclear environment. Many mature processes are in place at nuclear facilities in response to numerous regulations implemented over the past 30 years. Many of these processes such as the Physical Security Program offer protections that are leveraged to protect the functions of critical digital assets from unauthorized physical access. Other processes and technology such as engineering design control, work management and pre-job briefs, control of portable media and mobile devices, and deterministically segregated networks protect critical digital assets. By leveraging the regulated nuclear environment, integrating NIST type Cyber Security controls, and prudently deploying technology the Cyber Security posture of operating nuclear facilities supports on-demand base load electricity 24/7 with capacity factors exceeding 85%. This paper is designed to provide a glimpse into Cyber Security Programs that support safe operation and reliability in the regulated nuclear environment while supporting the on-demand base load electricity production 24/7. (author)

  12. Cognitive architectures: choreographing the dance of mental operations with the task environment.

    Science.gov (United States)

    Gray, Wayne D

    2008-06-01

    In this article, I present the ideas and trends that have given rise to the use of cognitive architectures in human factors and provide a cognitive engineering-oriented taxonomy of these architectures and a snapshot of their use for cognitive engineering. Architectures of cognition have had a long history in human factors but a brief past. The long history entails a 50-year preamble, whereas the explosion of work in the current decade reflects the brief past. Understanding this history is key to understanding the current and future prospects for applying cognitive science theory to human factors practice. The review defines three formative eras in cognitive engineering research: the 1950s, 1980s, and now. In the first era, the fledging fields of cognitive science and human factors emphasized characteristics of the dancer the limited capacity or bounded rationality view of the mind, and the ballroom, the task environment. The second era emphasized the dance (i.e., the dynamic interaction between mental operations and task environment). The third era has seen the rise of cognitive architectures as tools for choreographing the dance of mental operations within the complex environments posed by human factors practice. Hybrid architectures present the best vector for introducing cognitive science theories into a renewed engineering-based human factors. The taxonomy provided in this article may provide guidance on when and whether to apply a cognitive science or a hybrid architecture to a human factors issue.

  13. Collaborative Applications Used in a Wireless Environment at Sea for Use in Coast Guard Law Enforcement and Homeland Security Missions

    National Research Council Canada - National Science Library

    Klopson, Jadon E; Burdian, Stephen V

    2005-01-01

    ... an 802.11 mesh layer architecture and 802.16 Orthogonal Frequency Division Multiplexing, in order to effectively and more efficiently transmit data and create a symbiotic operational picture between Coast Guard Cutters, their boarding teams...

  14. Robotic Mission Simulation Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes a software tool to predict robotic mission performance and support supervision of robotic missions even when environments and...

  15. EU's global engagement : a database of CSDP military operations and civilian missions worldwide : codebook : version 2.0. 2003-2017

    OpenAIRE

    DI MAURO, Danilo; KROTZ, Ulrich; WRIGHT, Katerina

    2017-01-01

    The EU’s Global Engagement database was developed by a research team composed of Danilo Di Mauro, Ulrich Krotz, and Katerina Wright within the Europe in the World programme at the Robert Schumann Centre of Advanced Studies (EUI). The primary purpose of the database is to fill the gap in existing empirical knowledge by providing the most comprehensive, complete and accurate database on the EU’s military operations and civilian missions worldwide. The version 2.0 of the database contains detail...

  16. MONTE: the next generation of mission design and navigation software

    Science.gov (United States)

    Evans, Scott; Taber, William; Drain, Theodore; Smith, Jonathon; Wu, Hsi-Cheng; Guevara, Michelle; Sunseri, Richard; Evans, James

    2018-03-01

    The Mission analysis, Operations and Navigation Toolkit Environment (MONTE) (Sunseri et al. in NASA Tech Briefs 36(9), 2012) is an astrodynamic toolkit produced by the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory. It provides a single integrated environment for all phases of deep space and Earth orbiting missions. Capabilities include: trajectory optimization and analysis, operational orbit determination, flight path control, and 2D/3D visualization. MONTE is presented to the user as an importable Python language module. This allows a simple but powerful user interface via CLUI or script. In addition, the Python interface allows MONTE to be used seamlessly with other canonical scientific programming tools such as SciPy, NumPy, and Matplotlib. MONTE is the prime operational orbit determination software for all JPL navigated missions.

  17. MONTE: the next generation of mission design and navigation software

    Science.gov (United States)

    Evans, Scott; Taber, William; Drain, Theodore; Smith, Jonathon; Wu, Hsi-Cheng; Guevara, Michelle; Sunseri, Richard; Evans, James

    2018-01-01

    The Mission analysis, Operations and Navigation Toolkit Environment (MONTE) (Sunseri et al. in NASA Tech Briefs 36(9), 2012) is an astrodynamic toolkit produced by the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory. It provides a single integrated environment for all phases of deep space and Earth orbiting missions. Capabilities include: trajectory optimization and analysis, operational orbit determination, flight path control, and 2D/3D visualization. MONTE is presented to the user as an importable Python language module. This allows a simple but powerful user interface via CLUI or script. In addition, the Python interface allows MONTE to be used seamlessly with other canonical scientific programming tools such as SciPy, NumPy, and Matplotlib. MONTE is the prime operational orbit determination software for all JPL navigated missions.

  18. Operation Poorman

    International Nuclear Information System (INIS)

    Pruvost, N.; Tsitouras, J.

    1981-01-01

    The objectives of Operation Poorman were to design and build a portable seismic system and to set up and use this system in a cold-weather environment. The equipment design uses current technology to achieve a low-power, lightweight system that is configured into three modules. The system was deployed in Alaska during wintertime, and the results provide a basis for specifying a mission-ready seismic verification system

  19. Immersive environment technologies for planetary exploration with applications for mixed reality

    Science.gov (United States)

    Wright, J.; Hartman, F.; Cooper, B.

    2002-01-01

    Immersive environments are successfully being used to support mission operations at JPL. This technology contributed to the Mars Pathfinder Mission in planning sorties for the Sojourner rover. Results and operational experiences with these tools are being incorporated into the development of the second generation of mission planning tools.

  20. Toho Gas accepts the challenge of operational reform creation of an integrated OA environment

    International Nuclear Information System (INIS)

    Kato, Hisaatsu; Ito, Mari; Goto, Akihito

    1997-01-01

    Toho Gas Co., Ltd. is Japan's third largest city gas supplier. In response to changes in the industrial environment, the company began the Integrated OA Project in 1994 promoting use of information technology while reforming its systems and culture. We made a proposal to distribute one personal computer connected to a company-wide network to each office worker. In addition, we attached importance to the creation of a database, which can integrate all information systems with a flexible structure and also play a central role in end user computing. A data model for the entire company has been already made and implemented into some operational systems and data-warehouses. Furthermore, to reform our business we are offering incremental goals, including the first step such as achieving a paper less working environment with a little effort. This methodology has achieved a great success. In the near future, we will expand the infrastructure with mobile computers and implementation of a database. (au)

  1. Method, apparatus and system for managing queue operations of a test bench environment

    Science.gov (United States)

    Ostler, Farrell Lynn

    2016-07-19

    Techniques and mechanisms for performing dequeue operations for agents of a test bench environment. In an embodiment, a first group of agents are each allocated a respective ripe reservation and a second set of agents are each allocated a respective unripe reservation. Over time, queue management logic allocates respective reservations to agents and variously changes one or more such reservations from unripe to ripe. In another embodiment, an order of servicing agents allocated unripe reservations is based on relative priorities of the unripe reservations with respect to one another. An order of servicing agents allocated ripe reservations is on a first come, first served basis.

  2. Safe Operations of Unmanned Systems for Reconnaissance in Complex Environments Army Technology Objective (SOURCE ATO)

    Science.gov (United States)

    Kott, Norbert J., III; Wellfare, Mike; van Lierop, Tracy K.; Mottern, Edward

    2011-05-01

    This paper examines the systems, hardware, and software engineering efforts required to overcome the challenges of operating autonomously around dynamic objects in complex environments. To detect these dynamic objects, the SOURCE ATO will utilize ARL/GDRS developed moving obstacle detection algorithms that will run on the Autonomous Navigation System (ANS) hardware.1 These algorithms use data from multiple sensors including laser detection and ranging (LADAR), Electro-optic, and Millimeter-Wave Radar (MMWR) to produce detections. This limits erroneous identifications that occur when using only one sensor. This paper describes co-development of Safe Operation Technologies between the SOURCE ATO and the ANS development program. This approach allows a more rapid development cycle, which will enable both current and future ground combat vehicle systems the flexibility to readily adopt emerging software, process hardware, and sensor technologies.

  3. Ground-based characterization of Hayabusa2 mission target asteroid 162173 Ryugu: constraining mineralogical composition in preparation for spacecraft operations

    Science.gov (United States)

    Le Corre, Lucille; Sanchez, Juan A.; Reddy, Vishnu; Takir, Driss; Cloutis, Edward A.; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri

    2018-03-01

    Asteroids that are targets of spacecraft missions are interesting because they present us with an opportunity to validate ground-based spectral observations. One such object is near-Earth asteroid (NEA) (162173) Ryugu, which is the target of the Japanese Space Agency's (JAXA) Hayabusa2 sample return mission. We observed Ryugu using the 3-m NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on 2016 July 13 to constrain the object's surface composition, meteorite analogues, and link to other asteroids in the main belt and NEA populations. We also modelled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Ishiguro et al. Our spectral analysis has found a near-perfect match between our spectrum of Ryugu and those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regoliths have similar composition. We compared Ryugu's spectrum with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as a possible source of Ryugu by Campins et al. We found that the spectrum of Clarissa shows significant differences with our spectrum of Ryugu, but it is similar to the spectrum obtained by Moskovitz et al. The best possible meteorite analogues for our spectrum of Ryugu are two CM2 carbonaceous chondrites, Mighei and ALH83100.

  4. Operating the EOSDIS at the Land Processes DAAC Managing Expectations, Requirements, and Performance Across Agencies, Missions, Instruments, Systems, and User Communities

    Science.gov (United States)

    Kalvelage, Thomas A.

    2002-09-01

    NASA developed the Earth Observing System (EOS) during the 1990's. At the Land Processes Distributed Active Archive Center (LP DAAC), located at the USGS EROS Data Center, the EOS Data and Information System (EOSDIS) is required to support heritage missions as well as Landsat 7, Terra, and Aqua. The original system concept of the early 1990's changed as each community had its say -- first the managers, then engineers, scientists, developers, operators, and then finally the general public. The systems at the LP DAAC -- particularly the largest single system, the EOSDIS Core System (ECS) -- are changing as experience accumulates, technology changes, and each user group gains influence. The LP DAAC has adapted as contingencies were planned for, requirements and therefore plans were modified, and expectations changed faster than requirements could hope to be satisfied. Although not responsible for Quality Assurance of the science data, the LP DAAC works to ensure the data are accessible and useable by influencing systems, capabilities, and data formats where possible, and providing tools and user support as necessary. While supporting multiple missions and instruments, the LP DAAC also works with and learns from multiple management and oversight groups as they review mission requirements, system capabilities, and the overall operation of the LP DAAC. Stakeholders, including the Land Science community, are consulted regularly to ensure that the LP DAAC remains cognizant and responsive to the evolving needs of the user community. Today, the systems do not look or function as originally planned, but they do work, and they allow customers to search and order of an impressive amount of diverse data.

  5. Mission Command and the Starfish Organizational Models: A Comparison of Organizational Philosophies in a Decentralized Combat Environment

    Science.gov (United States)

    2015-06-12

    Decentralized Combat Environment Approved by: , Thesis Committee Chair Bill McCollum, Ed.D , Member LTC Brian S. Manus, M.Ed...military success against future decentralized threats. v ACKNOWLEDGMENTS I would like to thank my thesis committee especially Dr. Bill McCollum...organization. Coined by Joseph Nye , soft power is “getting others to want the outcomes you want – co-opts people rather than coerces them”77 Both the

  6. Flexible operation strategy for environment control system in abnormal supply power condition

    Science.gov (United States)

    Liping, Pang; Guoxiang, Li; Hongquan, Qu; Yufeng, Fang

    2017-04-01

    This paper establishes an optimization method that can be applied to the flexible operation of the environment control system in an abnormal supply power condition. A proposed conception of lifespan is used to evaluate the depletion time of the non-regenerative substance. The optimization objective function is to maximize the lifespans. The optimization variables are the allocated powers of subsystems. The improved Non-dominated Sorting Genetic Algorithm is adopted to obtain the pareto optimization frontier with the constraints of the cabin environmental parameters and the adjustable operating parameters of the subsystems. Based on the same importance of objective functions, the preferred power allocation of subsystems can be optimized. Then the corresponding running parameters of subsystems can be determined to ensure the maximum lifespans. A long-duration space station with three astronauts is used to show the implementation of the proposed optimization method. Three different CO2 partial pressure levels are taken into consideration in this study. The optimization results show that the proposed optimization method can obtain the preferred power allocation for the subsystems when the supply power is at a less-than-nominal value. The method can be applied to the autonomous control for the emergency response of the environment control system.

  7. UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment.

    Science.gov (United States)

    Chen, Jessie Y C

    2010-08-01

    A military reconnaissance environment was simulated to examine the performance of ground robotics operators who were instructed to utilise streaming video from an unmanned aerial vehicle (UAV) to navigate his/her ground robot to the locations of the targets. The effects of participants' spatial ability on their performance and workload were also investigated. Results showed that participants' overall performance (speed and accuracy) was better when she/he had access to images from larger UAVs with fixed orientations, compared with other UAV conditions (baseline- no UAV, micro air vehicle and UAV with orbiting views). Participants experienced the highest workload when the UAV was orbiting. Those individuals with higher spatial ability performed significantly better and reported less workload than those with lower spatial ability. The results of the current study will further understanding of ground robot operators' target search performance based on streaming video from UAVs. The results will also facilitate the implementation of ground/air robots in military environments and will be useful to the future military system design and training community.

  8. FB Line Basis for Interim Operation

    International Nuclear Information System (INIS)

    Shedrow, B.

    1998-01-01

    The safety analysis of the FB-Line Facility indicates that the operation of FB-Line to support the current mission does not present undue risk to the facility and co-located workers, general public, or the environment

  9. FB Line Basis for Interim Operation

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, B.

    1998-10-19

    The safety analysis of the FB-Line Facility indicates that the operation of FB-Line to support the current mission does not present undue risk to the facility and co-located workers, general public, or the environment.

  10. [Development and clinical application of 3D operative planning system of live in virtual reality environments].

    Science.gov (United States)

    Chen, Gang; Yang, Shi-zhong; Wu, Guo-qing; Wang, Yi; Fan, Gui-hua; Tan, Li-wen; Fang, Bin; Zhang, Shao-xiang; Dong, Jia-hong

    2009-11-01

    To explore and develop three-dimension (3D) virtual reality (VR) liver model and convert computed tomography data into a fully 3D VR environment for display, measure and manipulation. 3D-reconstruction of liver was restored from spiral computed tomography (CT) data by using LiVirtue software. Dextrobeam was used to view the 3D model in the VR environment. The liver and its anatomic structure were reconstructed to illuminate the location of the tumor and its related vessels. 3D models of liver, tumor and their relative vessels were reconstructed successfully. These models could be viewed and manipulated in the VR environment on personal computer.38 patients underwent liver resection, including 21 right hemihepatectomy, 14 left hemihepatectomy and 3 extended right hemihepatectomy. The intraoperative contrast with preoperative simulation confirmed the reliability of our 3D operative planning system. The preoperative simulation in 3D VR facilitated liver resection by the ability to view tumor and its relative vessels. This preoperative estimation from 3D model of liver benefits a lot to complicated liver resection.

  11. Operation Sophia in Uncharted Waters: European and International Law Challenges for the EU Naval Mission in the Mediterranean Sea

    DEFF Research Database (Denmark)

    Butler, Graham; Ratcovich, Martin

    2016-01-01

    to scepticism on the viability of this type of operation, ranging from challenges under European Union law regarding mandate and oversight, to complex questions of compliance with international law. Forcible measures may be at variance with the international law of the sea, binding on the EU and its Member...... States alike. Even if such strictures can be avoided by a broad United Nations mandate and/or the consent of the neighbouring government(s), international refugee law and international human rights law provide limitations on measures that Operation Sophia will be tasked with. A number of avenues...

  12. Personality factors in flight operations. Volume 1: Leader characteristics and crew performance in a full-mission air transport simulation

    Science.gov (United States)

    Chidester, Thomas R.; Kanki, Barbara G.; Foushee, H. Clayton; Dickinson, Cortlandt L.; Bowles, Stephen V.

    1990-01-01

    Crew effectiveness is a joint product of the piloting skills, attitudes, and personality characteristics of team members. As obvious as this point might seem, both traditional approaches to optimizing crew performance and more recent training development highlighting crew coordination have emphasized only the skill and attitudinal dimensions. This volume is the first in a series of papers on this simulation. A subsequent volume will focus on patterns of communication within crews. The results of a full-mission simulation research study assessing the impact of individual personality on crew performance is reported. Using a selection algorithm described in previous research, captains were classified as fitting one of three profiles along a battery of personality assessment scales. The performances of 23 crews led by captains fitting each profile were contrasted over a one-and-one-half-day simulated trip. Crews led by captains fitting a positive Instrumental-Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Expressive profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of competitiveness, verbal aggressiveness, and impatience and irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  13. Areva - 2013 annual results: breakeven free operating cash flow objective reached despite a difficult environment

    International Nuclear Information System (INIS)

    Duperray, Julien; Grange, Aurelie; Rosso, Jerome; Thebault, Alexandre; Scorbiac, Marie de; Repaire, Philippine du

    2014-01-01

    The Areva group reached a major milestone in 2013 in turning performance around by meeting a key objective of its Action 2016 plan: the return to breakeven of free operating cash flow. For the first time since 2005, cash generated by the Group's operations allowed it to fully fund strategic capital expenditures essential to the group's profitable growth. To achieve this result, Areva built on robust growth in nuclear operations, on contributions from its cost reduction plan and on strict management of capital spending. However, two projects launched in the previous decade (OL3 and a power plant modernization) and the Renewable Energies business impacted negatively the group's 2013 net income. On the Renewable Energies market, in a situation marked by a reduction of capital spending by customers, AREVA anticipated the consolidation required in the sector by implementing industrial partnerships such as the joint venture project with Gamesa, which aims to create a European champion in offshore wind. Similar initiatives were undertaken in solar energy and energy storage. The Group continues to implement the Action 2016 plan to pursue its recovery. While the economic environment remains uncertain and projects launched in the previous decade remain a burden, the Group forecasts further performance improvement and significant growth in cash flow generation by the end of the plan

  14. Transfer of Real-time Dynamic Radiation Environment Assimilation Model; Research to Operation

    Science.gov (United States)

    Cho, K. S. F.; Hwang, J.; Shin, D. K.; Kim, G. J.; Morley, S.; Henderson, M. G.; Friedel, R. H.; Reeves, G. D.

    2015-12-01

    Real-time Dynamic Radiation Environment Assimilation Model (rtDREAM) was developed by LANL for nowcast of energetic electrons' flux at the radiation belt to quantify potential risks from radiation damage at the satellites. Assimilated data are from multiple sources including LANL assets (GEO, GPS). For transfer from research to operation of the rtDREAM code, LANL/KSWC/NOAA makes a Memorandum Of Understanding (MOU) on the collaboration between three parts. By this MOU, KWSC/RRA provides all the support for transitioning the research version of DREAM to operations. KASI is primarily responsible for providing all the interfaces between the current scientific output formats of the code and useful space weather products that can be used and accessed through the web. In the second phase, KASI will be responsible in performing the work needed to transform the Van Allen Probes beacon data into "DREAM ready" inputs. KASI will also provide the "operational" code framework and additional data preparation, model output, display and web page codes back to LANL and SWPC. KASI is already a NASA partnering ground station for the Van Allen Probes' space weather beacon data and can here show use and utility of these data for comparison between rtDREAM and observations by web. NOAA has offered to take on some of the data processing tasks specific to the GOES data.

  15. Enabling the Future Force: The Use of Regional Alignment, Mission Command and Cultural Competence to Create an Operationally Adaptive Army

    Science.gov (United States)

    2014-05-22

    Creation of the Operating System Stella Ting-Toomey, a Professor of Human Communication Studies at California State...cultures are added this basic figure, it becomes more complex and communication must then take place across multiple cultures. Stella Ting-Toomey...Intelligence: People Skills for Global Business. San Francisco, CA: Berrett-Koehler, 2004. Ting-Toomey, Stella . Communicating across Cultures. The

  16. Design Reference Missions for Deep-Space Optical Communication

    Science.gov (United States)

    Breidenthal, J.; Abraham, D.

    2016-05-01

    We examined the potential, but uncertain, NASA mission portfolio out to a time horizon of 20 years, to identify mission concepts that potentially could benefit from optical communication, considering their communications needs, the environments in which they would operate, and their notional size, weight, and power constraints. A set of 12 design reference missions was selected to represent the full range of potential missions. These design reference missions span the space of potential customer requirements, and encompass the wide range of applications that an optical ground segment might eventually be called upon to serve. The design reference missions encompass a range of orbit types, terminal sizes, and positions in the solar system that reveal the chief system performance variables of an optical ground segment, and may be used to enable assessments of the ability of alternative systems to meet various types of customer needs.

  17. 17 CFR 240.15b7-3T - Operational capability in a Year 2000 environment.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Operational capability in a Year 2000 environment. 240.15b7-3T Section 240.15b7-3T Commodity and Securities Exchanges SECURITIES... § 240.15b7-3T Operational capability in a Year 2000 environment. (a) This section applies to every...

  18. Solar Power for Near Sun, High-Temperature Missions

    Science.gov (United States)

    Landis, Geoffrey A.

    2008-01-01

    Existing solar cells lose performance at the high temperatures encountered in Mercury orbit and inward toward the sun. For future missions designed to probe environments close to the sun, it is desirable to develop array technologies for high temperature and high light intensity. Approaches to solar array design for near-sun missions include modifying the terms governing temperature of the cell and the efficiency at elevated temperature, or use of techniques to reduce the incident solar energy to limit operating temperature. An additional problem is found in missions that involve a range of intensities, such as the Solar Probe + mission, which ranges from a starting distance of 1 AU from the sun to a minimum distance of 9.5 solar radii, or 0.044 AU. During the mission, the solar intensity ranges from one to about 500 times AM0. This requires a power system to operate over nearly three orders of magnitude of incident intensity.

  19. Special Operations Forces in the People’s Liberation Army and the Development of an Integral Unconventional Warfare Mission

    Science.gov (United States)

    2005-06-01

    Yahuda , Michael . The International Politics of the Asia-Pacific, 1945-1995 (New York; Routledge, 1996). Yang, Andrew N.D. and Liao, Milton Wen...Action: The Challenge of Unconventional Warfare (Portland: Frank Cass Press, 2001), 3-4. 9. Michael J.Strack, “China: Special Operations Forces of...weapons/scud.html; Internet; accessed 21 March 2005. 59. Michael B. Gordon and General Bernard E. Trainor, “ The General’s War: The Inside Story of

  20. Secure, Network-Centric Operations of a Space-Based Asset: Cisco Router in Low Earth Orbit (CLEO) and Virtual Mission Operations Center (VMOC)

    Science.gov (United States)

    Ivancic, William; Stewart, Dave; Shell, Dan; Wood, Lloyd; Paulsen, Phil; Jackson, Chris; Hodgson, Dave; Notham, James; Bean, Neville; Miller, Eric

    2005-01-01

    This report documents the design of network infrastructure to support operations demonstrating the concept of network-centric operations and command and control of space-based assets. These demonstrations showcase major elements of the Transformal Communication Architecture (TCA), using Internet Protocol (IP) technology. These demonstrations also rely on IP technology to perform the functions outlined in the Consultative Committee for Space Data Systems (CCSDS) Space Link Extension (SLE) document. A key element of these demonstrations was the ability to securely use networks and infrastructure owned and/or controlled by various parties. This is a sanitized technical report for public release. There is a companion report available to a limited audience. The companion report contains detailed networking addresses and other sensitive material and is available directly from William Ivancic at Glenn Research Center.