WorldWideScience

Sample records for environment engineering geology

  1. Engineering geology and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, E M

    1979-01-01

    A classification is made of the anthropogenic processes in the environment into global, local, universally distributed, zonal, regional, and essentially local processes. Engineering geology is defined as the principal science concerned with the study of the geological medium which in turn involves the study of fossil fuel geology. 22 references.

  2. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  3. Near-field geologic environment as an effective barrier against radionuclide transport

    International Nuclear Information System (INIS)

    Umeki, H.; Sakuma, H.; Ishiguro, K.; Hatanaka, K.; Naito, M.

    1993-01-01

    A generic performance assessment of the geologic disposal system of HLW in Japan has been carried out by the Power Reactor and Nuclear Fuel Development Corporation (PNC) in accordance with the overall HLW management program defined by the Japanese Atomic Energy Commission. A massive engineered barrier system, consisting of vitrified waste, carbon-steel overpack and thick bentonite buffer, is introduced to ensure a long-term performance of the disposal system considering a wide range of geologic environment. A major part of the total performance of the disposal system is borne by the engineered barrier system given a geologic environment that assures and complements the performance of such engineered barrier system. The performance of the natural barrier system coupled with the strong engineered barrier system was investigated by sensitivity analyses. Two types of conceptual model were considered for the analysis to describe radionuclide transport in geologic media and the range of relevant parameters was given by taking the variation of the geologic environment in Japan into account. The results show that the degree of retardation of radionuclide transport chosen in the geologic media varies significantly depending on the parameter values chosen. However, it is indicated that there are realistic combinations of those geologic parameter values which could provide a sufficient degree of retardation within a range of only a few tens of meters from the engineered barrier system. The relative importance of the near-field geologic environment is also discussed

  4. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  5. Environmental aspects of engineering geological mapping in the United States

    Science.gov (United States)

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  6. Monitoring of the land and geological environment condition in the Eupatorijska arroyo in Dnipropetrovsk

    Directory of Open Access Journals (Sweden)

    Bogachenko L.D.

    2015-09-01

    Full Text Available The article analyzes the condition of the land and the geological environment in the Eupatorijska arroyo, engineering-geological estimation of the territory of the arroyo is carried out, negative engineering-geological processes and phenomena are defined. It was found that due to the negative technogenic impact in conjunction with natural and climatic factors, the slopes under study can be considered as those under the risk of landslides and therefore are in need of engineering protection.

  7. Engineering Geological Conditions of the Ignalina NPP Region

    International Nuclear Information System (INIS)

    Buceviciute, S.

    1996-01-01

    During engineering geological mapping, the upper part (to 15-20 m depths) of the lithosphere was investigated at the Ignalina Nuclear Power Plant (INPP) for physical rock characteristics and recent exogenic geological processes and phenomena. The final result of engineering geological mapping was the division of the area into engineering geological regions. In this case five engineering geological regions have been distinguished. The Fig. shows a scheme of engineering geological regionalization of the area and the typical sections of the engineering geological regions. The sections show genesis, age, soil type, thickness of stratigraphic genetical complex for the rocks occurring in the zone of active effect of engineering buildings, as well as the conical strength and density of the distinguished soils. 1 fig., 1 tab

  8. Geological disposal of high-level radioactive waste and geological environment in Japan

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko; Seo, Toshihiro; Yshida, Hidekazu

    2001-01-01

    The geological environment has two main functions in terms of ensuring the safety of geological disposal of high-level radioactive waste. One relates to the fundamental long-term stability of the site and the other to the properties of the host rock formations and groundwaters which facilitate the emplacement of the engineered barrier system and act as a natural barrier. In this connection, the feasibility of selecting a geological environment in Japan which is appropriate for geological disposal was discussed, based on findings obtained from case studies and field measurements. Considering long-term stability of the site, it is important to understand the effects and spatial distributions of the natural phenomena such as fault movement, volcanic activity, uplift/denudation and climatic/sea-level changes. Fault movement and volcanic activity are relatively localized phenomena, and can be avoided by considering only areas that are sufficiently remote from existing volcanoes and major active faults for these phenomena to have a negligible probability of causing significant effects. Uplift/denudation and climatic/sea-level changes are gradual phenomena and are more ubiquitous. It is, nevertheless, possible to estimate future trends by extrapolating the past changes into the future, and then to identify areas that may not be affected significantly by such phenomena. Considering the properties of the host rocks and groundwaters, it can be understood, from the presently available data, that deep groundwater in Japan generally flows slowly and its chemistry is in a reduced state. The data also suggest that deep rock masses, where the ground temperature is acceptably low and the rock pressure is almost homogeneous, are widely located throughout Japan. Based on the examination of the geological environment in Japan, it is possible to discuss the requirements for the geological environment to be considered and the investigations to be performed during the site selection

  9. Assessment of Environmental Factors of Geology on Waste and Engineering Barriers for Waste Storage Near Surface

    International Nuclear Information System (INIS)

    Arimuladi SP

    2007-01-01

    Geological environment factors include features and processes occurring within that spatial and temporal (post-closure) domain whose principal effect is to determine the evolution of the physical, chemical, biological and human conditions of the domain that are relevant to estimating the release and migration of radionuclide and consequent exposure to man. Hardness of radioactive waste and engineer barrier can be decrease by environmental factors. Disposal system domain geological environment factors is a category in the International FEP list and is divided into sub-categories. There are 13 sub-factors of geological environment, 12 sub-factors influence hardness of radioactive waste and engineer barrier, thermal processes and conditions in geosphere can be excluded. (author)

  10. Popularizing Geological Education among Civil Engineering Students

    Science.gov (United States)

    Chen, Xiang-jun; Zhou, Ying

    2012-01-01

    The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…

  11. Study plan for research on long-term stability of geological environments in FY2009

    International Nuclear Information System (INIS)

    Yasue, Ken-ichi; Hanamuro, Takahiro; Kokubu, Yoko; Ishimaru, Tsuneari; Umeda, Koji

    2009-09-01

    The Japanese islands lie in a region of the Circum-Pacific orogenic belt characterized by active tectonics such as volcanism and earthquakes. The concept of geological disposal of HLW in Japan is based on a multi-barrier system which consists of the engineered barrier in the stable geological environments and the natural barrier. The natural phenomena which potentially affect the geological environments in tectonically active Japan are volcanism, faulting, uplift, denudation, climatic change, and sea-level change. Investigation technologies to evaluate their long-term stability of the geological environments have been developed. In fiscal year 2009, we continue researches to develop technologies for detecting latent geotectonic events in preliminary investigation. With regard to modelling technology, we plan to develop prediction models for evaluating the changes of geological environment (e.g., thermal, hydraulic, mechanical, and geochemical conditions) for long term. In addition to these, the development of dating techniques prerequisite for these studies is also carried out. (author)

  12. The application of nuclear geophysics method to evaluate the geological environment of nuclear waste repository

    International Nuclear Information System (INIS)

    Fang, Fang; Xiaoqin, Wang; Kuanliang, Li; Xinsheng, Hou; Jingliang, Zhu; Binxin, Hu

    2002-01-01

    'Cleanly land should be given back ground.' This is a task while nuclear engineering have to be retired. We applied the nuclear geophysics methods and combined with geology, hydrology, geochemistry, and other methods, to evaluate the environment of nuclear waste repository. It is the important work to renovate environment and prepare technology before ex-service of the nuclear engineering

  13. Design studies on the engineered barrier system and on the in-situ experiments under the conditions of geological environment in Horonobe

    International Nuclear Information System (INIS)

    Kurihara, Yuji; Yui, Mikazu; Tanai, Kenji

    2004-04-01

    Following studies have been done in this papers in order to apply the technologies based on H12 report to the actual geological conditions of Horonobe underground research laboratory. 1) Reconsidering the process of repository design, the design process charts of a repository were presented. In the H12 report, the design process of the engineering barrier system was followed by the facility design process. In this paper, the both processes were placed in parallel position. 2) The relation between geological conditions and the performance of engineering barrier systems and the specifications of engineering barrier systems was arranged and the geological information needed for design of engineering barrier were selected. 3) The appropriate form of geological information as input-data for design were showed and the procedure for setting input-data was presented. 4) Based on the state of geological investigations at Horonobe, mechanical input-data were arranged for the design of the in-situ experiments on engineered barrier system at HORONOBE. 5) The stability of the hall for the in-situ experiments was studied by numerical analysis and the results indicated that there are difference in stability between the depth of 500 m and 570 m. (author)

  14. Selective Guide to Literature on Engineering Geology. Engineering Literature Guides, Number 7.

    Science.gov (United States)

    Mullen, Cecilia P., Comp.

    This guide has been prepared for use by the undergraduate or graduate student in engineering geology. Because of the broad scope of the field, the major disciplines of soil mechanics, rock mechanics, and foundations are primarily emphasized. This document is a survey of information sources in engineering geology and is intended to identify those…

  15. Engineering geological mapping in Wallonia (Belgium) : present state and recent computerized approach

    Science.gov (United States)

    Delvoie, S.; Radu, J.-P.; Ruthy, I.; Charlier, R.

    2012-04-01

    An engineering geological map can be defined as a geological map with a generalized representation of all the components of a geological environment which are strongly required for spatial planning, design, construction and maintenance of civil engineering buildings. In Wallonia (Belgium) 24 engineering geological maps have been developed between the 70s and the 90s at 1/5,000 or 1/10,000 scale covering some areas of the most industrialized and urbanized cities (Liège, Charleroi and Mons). They were based on soil and subsoil data point (boring, drilling, penetration test, geophysical test, outcrop…). Some displayed data present the depth (with isoheights) or the thickness (with isopachs) of the different subsoil layers up to about 50 m depth. Information about geomechanical properties of each subsoil layer, useful for engineers and urban planners, is also synthesized. However, these maps were built up only on paper and progressively needed to be updated with new soil and subsoil data. The Public Service of Wallonia and the University of Liège have recently initiated a study to evaluate the feasibility to develop engineering geological mapping with a computerized approach. Numerous and various data (about soil and subsoil) are stored into a georelational database (the geotechnical database - using Access, Microsoft®). All the data are geographically referenced. The database is linked to a GIS project (using ArcGIS, ESRI®). Both the database and GIS project consist of a powerful tool for spatial data management and analysis. This approach involves a methodology using interpolation methods to update the previous maps and to extent the coverage to new areas. The location (x, y, z) of each subsoil layer is then computed from data point. The geomechanical data of these layers are synthesized in an explanatory booklet joined to maps.

  16. Geology, geophysics and engineering: a case for synergism

    Energy Technology Data Exchange (ETDEWEB)

    Gretener, P.E.

    1984-06-01

    This article uses the example of artificial well fracturing to show how geologists, geophysicists and engineers can benefit from establishing an interdisciplinary dialogue. The term ''Ultimate Recovery'' is shown to be equally applicable to oil production and hard rock mining. While geology and geophysics schools gear their curricula toward the exploration for natural resources, engineers consider exploitation as their exclusive domain. It is proposed that geologists and geophysicists close ranks with the engineers and abolish the current state of separation which is being perpetuated by both sides. It is shown how geological considerations have helped to unravel the process of artificial well stimulation, while well stimulation in turn has provided valuable insights into the present stress conditions in various geological provinces.

  17. Conceptual design of the virtual engineering system for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    2000-02-01

    The role of Virtual Engineering System for High Level Radioactive Waste Geological Disposal (hereafter the VES) is to accumulate and unify the results of research and development which JNC had been carried out for the completion of the second progress report on a computer system. The purpose and functions of VES with considering the long-term plan for geological disposal in Japan was studied. The analysis between geological environment assessment, safety performance assessment, and engineering technology had not been integrated mutually in the conventional study. The iterative analysis performed by VES makes it possible to analyze natural barrier and engineering barrier more quantitatively for obtaining safety margin and rationalization of the design of a waste repository. We have examined the system functions to achieve the above purpose of VES. Next, conceptual design for codes, databases, and utilities that consist of VES were performed by examining their purpose and functions. The conceptual design of geological environment assessment system, safety performance assessment system, waste repository element database, economical assessment system, investigation support system, quality assurance system, and visualization system are preformed. The whole system configuration, examination of suitable configuration of hardware and software, examination of system implementation, the confirmation of parallel calculation technology, the conceptual design of platform, the development of demonstration program of platform are performed. Based upon studies stated above, the VES development plan including prototype development during the period of selection of the site candidate was studied. The concept of VES was build based on the examination stated above. (author)

  18. Geology and engineering geology of roads in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2004-07-01

    Full Text Available zone of the Limpopo Belt, South Africa, South African Journal of Geology, Vol 101 (3), pp 201-214. [3] Partridge, T. 1975. Some geomorphic factors influencing the formation and engineering properties of soil materials in South Africa. Proc 5th... land. 2003. Pretoria: Council for Geosciences and South African Institute of Engineering and Environmental Geologists. [23] Varnes, DJ. 1978. Slope movement types and processes. In: Landslides: analysis and control. Edited by RL Schuster and RJ...

  19. Operation environment construction of geological information database for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Wang Peng; Gao Min; Huang Shutao; Wang Shuhong; Zhao Yongan

    2014-01-01

    To fulfill the requirements of data storage and management in HLW geological disposal, a targeted construction method for data operation environment was proposed in this paper. The geological information database operation environment constructed by this method has its unique features. And it also will be the important support for HLW geological disposal project and management. (authors)

  20. ENGINEERING GEOLOGY PROPERTIES OF 'KONJSKO' TUNNEL

    Directory of Open Access Journals (Sweden)

    Ivan Grabovac

    2004-12-01

    Full Text Available Investigation works for the design of the Konjsko Tunnel with two pipes, part of the Split-Zagreb Motorway, provided relevant data on rock mass and soil properties for construction of the prognose engineering-geological longitudinal sections. West tunnel portals are situated in tectonically deformed and partly dynamically metamorphosed Eocene flysch marls, while east ones are located in Senonian limestones. There is an overthrust contact between flysch marls and limestones. With the beginning of the excavations, rock mass characteristics were regularly registered after each blasting and actual longitudinal engineering-geological cross-sections were constructed as well as cross-sections of the excavation face. There were some differences between prognosticated and registered sections since it was infeasible to accurately determine the dip of the overthrust plane that was at shallow depth below the tunnel grade line and also due to the occurrence of transversal faults that intersected the overthrust. Data collected before and during the tunnel construction complemented the knowledge on geological structure of the surroundings and physical-mechanical characteristics of strata (the paper is published in Croatian.

  1. Study on geological environment in the Tono area. An approach to surface-based investigation

    International Nuclear Information System (INIS)

    2002-12-01

    Mizunami Underground Research (MIU) Project has aimed at preparation of basis of investigation, analysis and evaluation of geology of deep underground and basis of engineering technologies of ultra deep underground. This report stated an approach and information of surface-based investigation for ground water flow system and MIU Project by the following contents, 1) objects and preconditions, 2) information of geological environment for analysis of material transition and design of borehole, 3) modeling, 4) tests and investigations and 5) concept of investigation. The reference data consists of results of studies such as the geological construction model, topography, geologic map, structural map, linear structure and estimated fault, permeability, underground stream characteristics, the quality of underground water and rock mechanics. (S.Y.)

  2. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  3. Safety assessment of HLW geological disposal system

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2006-01-01

    In accordance with the Japanese nuclear program, the liquid waste with a high level of radioactivity arising from reprocessing is solidified in a stable glass matrix (vitrification) in stainless steel fabrication containers. The vitrified waste is referred to as high-level radioactive waste (HLW), and is characterized by very high initial radioactivity which, even though it decreases with time, presents a potential long-term risk. It is therefore necessary to thoroughly manage HLW from human and his environment. After vitrification, HLW is stored for a period of 30 to 50 years to allow cooling, and finally disposed of in a stable geological environment at depths greater than 300 m below surface. The deep underground environment, in general, is considered to be stable over geological timescales compared with surface environment. By selecting an appropriate disposal site, therefore, it is considered to be feasible to isolate the waste in the repository from man and his environment until such time as radioactivity levels have decayed to insignificance. The concept of geological disposal in Japan is similar to that in other countries, being based on a multibarrier system which combines the natural geological environment with engineered barriers. It should be noted that geological disposal concept is based on a passive safety system that does not require any institutional control for assuring long term environmental safety. To demonstrate feasibility of safe HLW repository concept in Japan, following technical steps are essential. Selection of a geological environment which is sufficiently stable for disposal (site selection). Design and installation of the engineered barrier system in a stable geological environment (engineering measures). Confirmation of the safety of the constructed geological disposal system (safety assessment). For site selection, particular consideration is given to the long-term stability of the geological environment taking into account the fact

  4. Application of GIS in hydrogeology and engineering geology

    Directory of Open Access Journals (Sweden)

    Lucia Mihalová

    2007-06-01

    Full Text Available Hydrogeology as a specific science discipline has a multi spectral interest focused to officiating sources in drink water and utilization water and also in area aimed for pure mineral water sources. Although engineering geology works exercise with piece of knowledge, geosciences are focused to territorial planning, investment construction and protection environment. Application of GIS in appointed problems purvey possibility quality, quick and high special analysis appointed problems and take advantage all accessible quality and quantity related information of water focused to hydrogeology, as to occurrence varied basement soil, appropriate for building activity, possibly appointed for protection. Solution of this probleme is on first name terms definite interest area, as to adjudication sources focused economic significance state.

  5. Assessment of heterogeneous geological environment using geostatistical techniques

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Shiogama, Yukihiro; Atsumi, Hiroyuki; Abe, Yasunori; Furuichi, Mitsuaki

    2003-02-01

    'Geoscientific' research at Tono are developing site investigation and assessment techniques in geological environment. One of their important themes is to establish rational methodology to reduce uncertainties associated with the understanding of geological environment, which often exhibits significant heterogeneity. Purpose of this study is to identify and evaluate uncertainties associated with the understanding of geological environment. Because it is useful to guide designing effective site investigation techniques to reduce the uncertainty. For this, a methodology of the uncertainty analysis concerning the heterogeneous geological environment has been developed. In this report the methodology has also been tested through an exercise attempted in Tono area to demonstrate its applicability. This report summarizes as follows: 1) The exercise shows that the methodology considered 'variability' and 'ignorance' can demonstrate its applicability at three-dimensional case. 2) The exercise shows that the methodology can identity and evaluate uncertainties concerning ground water flow associated with performance assessment. 3) Based on sensitivity analyses, it is possible for the methodology to support designs of the following stage investigations to reduce the uncertainties efficiently. (author)

  6. Complex geologic characterization of the repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Harper, T R [British Petroleum Research Center, Sunberry, England; Szymanski, J S

    1982-01-01

    The present basis for characterizing geological environments is identified in this paper, and the additional requirements imposed by the need to isolate high-level waste safely are discussed. Solutions to these additional requirements are proposed. The time scale of concern and the apparent complexity of the required multidisciplinary approach are identified. It is proposed that an increased use of the geologic record, together with a recognition that all geologic processes operate within an interdependent system, be a key feature in geologic characterization of deep repositories.

  7. Japanese issues on the future behavior of the geological environment

    International Nuclear Information System (INIS)

    Aoki, Kaz; Nakatsuka, Noboru; Ishimaru, Tsuneari

    1994-01-01

    Comprehending and predicting the future states of the geological environment is very important in ensuring a safe geological disposal of high level radioactive wastes (HLW). This paper is one in a series of studies required to ascertain the existence of a geologically stable area in Japan over the long term. In particular, interest is focussed on the aspect of accumulating data on behavior patterns of selected natural phenomena which will enable predictions of future behavior of geological processes and finding of areas of long term stability. While this paper limits itself to the second and part of the third step, the overall flow-chart of study on natural processes and events which may perturb the geological environment entails three major steps. They include: (i) identification of natural processes and events relevant to long term stability of geological environment to be evaluated; (ii) characterization of the identified natural processes and events; and (iii) prediction of the probability of occurrence, magnitude and influence of the natural processes and events which may perturb the geological environment. (J.P.N)

  8. The Mizunami underground research laboratory in Japan - programme for study of the deep geological environment

    International Nuclear Information System (INIS)

    Sakuma, Hideki; Sugihara, Kozo; Koide, Kaoru; Mikake, Shinichiro

    1998-01-01

    This paper is an overview of the PNC's Mizunami Underground Research Laboratory project in Mizunami City, central Japan. The Mizunami Underground Research Laboratory now will succeed the Kamaishi Mine as the main facility for the geoscientific study of the crystalline environment. The site will never be considered as a site for a repository. The surface-based investigations, planned to continue for some 5 years commenced in the autumn 1997. The construction of the facility to the depth of 1000 m is currently planned to: Develop comprehensive investigation techniques for geological environment; Acquire data on the deep geological environment and to; Develop a range of engineering techniques for deep underground application. Besides PNC research, the facility will also be used to promote deeper understanding of earthquakes, to perform experiments under micro-gravity conditions etc. The geology of the site is shortly as follows: The sedimentary overburden some 20 - 100 m in thickness is of age 2 - 20 million years. The basement granite is approx. 70 million years. A reverse fault is crosscutting the site. The identified fault offers interesting possibilities for important research. Part of the work during the surface-based investigations, is to drill and test deep boreholes to a planned depth up to 2000 m. Based on the investigations, predictions will be made what geological environment will be encountered during the Construction Phase. Also the effect of construction will be predicted. Methodology for evaluation of predictions will be established

  9. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  10. Study on synthesis of geological environment at Horonobe area. A technical review

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Shiogama, Yukihiro; Atsumi, Hiroyuki; Abe, Yasunori; Furuichi, Mitsuaki

    2003-03-01

    The objective of the Horonobe Under Ground Research Project includes enhancing reliability of disposal techniques and safety assessment methods which are based on data on deep underground geological environment obtained by surface explorations and models for geological environment developed using those data. In this study, through development of conceptual models of geological environment based on those data, the flows from data collection to modeling, which have been conducted independently for each geological environment of geology/geological structure, hydrogeology, geochemistry of groundwater and rock mechanics, were synthesized, and a systematic approach including processes from investigation of geological environment to its modeling was established, which is expected to ensure objectivity and traceability of the design and safety assessment of a disposal system. This study is also a part of a program that includes an iterative process in which geological models would be developed and revised repeatedly through the Horonobe Under Ground Research Project and development of geological environment investigation techniques. The results of the study are summarized as follows: (1) Models based on current knowledge were developed; conceptual geology/geological structural model, conceptual hydrogeological model, conceptual geochemical model of groundwater, and conceptual rock mechanical model, (2) Information of data flow and interpretation in the modeling process were synthesized into an data flow which includes knowledge on historical geology and palaeogeology in addition to four models shown above in terms of safety assessment, and (3) Based on modeling processes and syntheses of data flow shown above, tasks that should be considered were organized and suggestions of investigation program were provided for the next phase. (author)

  11. ENGINEERING GEOLOGICAL CHARACTERISTICS OF THE ROAD SOLIN - KLIS (DALMATIA, CROATIA

    Directory of Open Access Journals (Sweden)

    Slobodan Šestanović

    1993-12-01

    Full Text Available The research, that has been done both on the »intact« terrain and on the opened cuts and discontinuities, and which has been carried on in the basic caves of the object, as well as in the tunnels; has verified the engineering geological and basic tectonic characteristics of Senonian limestones, Eocene flysch, the Promina breccias and breccia-conglomerates, as well as Oligocene poorly sorted breccias, on the route of semi-highway Solin-Klis (Dalmatia, Croatia. The lab analyses, of the great number of the rock samples, have brought out the parametres of their basic physical and mechanical features within a particular engineering geological unit. The results, thus obtained, have been compared to the qualities of the rock structure block as a whole, and had been previously evaluated by applying RMR-classification of the rocks, and the results of the measured velocities of the longitudinal waves. It has been pointed out that similar procedure may be applied in the publication of General Engineering Geological Map of the Republic of Croatia (the paper is published in Croatian.

  12. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  13. Development of JNC geological disposal technical information integration system for geological environment field

    International Nuclear Information System (INIS)

    Tsuchiya, Makoto; Ueta, Shinzo; Ohashi, Toyo

    2004-02-01

    Enormous data on geology, geological structure, hydrology, geochemistry and rock properties should be obtained by various investigation/study in the geological disposal study. Therefore, 'JNC Geological Disposal Technical Information Integration System for Geological Environment Field' was developed in order to manage these data systematically and to support/promote the use of these data for the investigators concerned. The system is equipped with data base to store the information of the works and the background information of the assumptions built up in the works on each stage of data flow ('instigative', → 'data sampling' → interpretation' → conceptualization/modeling/simulation' → 'output') in the geological disposal study. In this system the data flow is shown as 'plan' composed of task' and 'work' to be done in the geological disposal study. It is possible to input the data to the database and to refer data from the database by using GUI that shows the data flow as 'plan'. The system was installed to the server computer possessed by JNC and the system utilities were checked on both the server computer and client computer also possessed by JNC. (author)

  14. Research and development of the geological environment data base management system

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko

    1989-10-01

    PNC (Power Reactor and Nuclear Fuel Development Corporation) has been carrying out investigation and research to understand characteristics of the geological environment throughout the country of Japan so as to prepare the fundamental data for evaluation of suitability of the entire geological environment. Being accumulated are a large quantity and variety of data on the geological environment which comprises the geology, lithology, geomechanics, geochemistry, geotectonic conditions and resource potential. It will be necessary hereafter to manage these data efficiently and apply them to comprehensive analysis to assess the framework of the geological environment of Japan. Thus it was decided that a computer aided data management system would be introduced to support extensively the task of experts in charge of investigation and evaluation of the geological environment of Japan. A basic design and a development plan of the system, named Geological Environment Data Base Management System, were made on the basis of task analysis and investigation on current technology of computer graphics which consists of the most important factor of the system development. The method of data management and the specification of functions to be realized were examined. The user-interface is designed in consideration of application of the system to presentation for public acceptance and operation by the unexperienced. The whole system is divided into seven subsystems and the entire program is compiled as an assembly of modules corresponding to each functions so that the system is applicable to partial reforming and functional expansion with the change of requirement to the system or the advance of computer technology in future. Only the input and output data format of each subsystems are standardized and unified to maintain the compatibility in the system. (author)

  15. Study on systemizing technology on investigation and analysis of deep underground geological environment. Japanese fiscal year, 2007 (Contract research)

    International Nuclear Information System (INIS)

    Kojima, Keiji; Ohnishi, Yuzo; Aoki, Kenji; Watanabe, Kunio; Nishigaki, Makoto; Tosaka, Hiroyuki; Shimada, Jun; Tochiyama, Osamu; Yoshida, Hidekazu; Ogata, Nobuhisa; Nishio, Kazuhisa

    2009-03-01

    In this year, the following studies were carried out with the aim of systemizing the technology on the investigation and analysis to understand the deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R and D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis for the investigation and analysis of deep underground geological environment. The results obtained from the studies are as follows: Regarding (1), the specific investigations, measurements and numerical and chemical analyses were performed particularly for research subjects: 1) engineering technology and 2) geological environment. Based on the results on (1), 3) tasks of collaboration research on intermediate area between the research fields, including the safety assessment field, were selected. Also redefinition of the NFC (Near Field Concept) were discussed. Regarding (2), based on the extracted tasks of JAEA (Japan Atomic Energy Agency) research project, the study was implemented considering previous R and D results and detailed research at the research field was carried out. This study contributed to the R and D development for its practical application. Concurrently, information exchange and discussion on the 2nd phase (the Construction Phase) of the MIU (Mizunami Underground Research Laboratory) research program were often held. (author)

  16. Zoning method for environmental engineering geological patterns in underground coal mining areas.

    Science.gov (United States)

    Liu, Shiliang; Li, Wenping; Wang, Qiqing

    2018-09-01

    Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Evidence for Enhanced Matrix Diffusion in Geological Environment

    Science.gov (United States)

    Sato, Kiminori; Fujimoto, Koichiro; Nakata, Masataka; Shikazono, Naotatsu

    2013-01-01

    Molecular diffusion in rock matrix, called as matrix diffusion, has been appreciated as a static process for elemental migration in geological environment that has been acknowledged in the context of geological disposal of radioactive waste. However, incomprehensible enhancement of matrix diffusion has been reported at a number of field test sites. Here, the matrix diffusion of saline water at Horonobe, Hokkaido, Japan is highlighted directly probing angstrom-scale pores on a field scale up to 1 km by positron--positronium annihilation spectroscopy. The first application of positron--positronium annihilation spectroscopy to field-scale geophysical research reveals the slight variation of angstrom-scale pores influenced by saline water diffusion with complete accuracy. We found widely interconnected 3 Å pores, which offer the pathway of saline water diffusion with the highly enhanced effective matrix diffusion coefficient of 4× 10-6 cm2 s-1. The present findings provide unambiguous evidence that the angstrom-scale pores enhance effective matrix diffusion on a field scale in geological environment.

  18. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 1. Geological environment of Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 1 of the progress report, describes first in detail the role of geological environment in high-level radioactive wastes disposal, the features of Japanese geological environment, and programs to proceed the investigation in geological environment. The following chapter summarizes scientific basis for possible existence of stable geological environment, stable for a long period needed for the HLW disposal in Japan including such natural phenomena as volcano and faults. The results of the investigation of the characteristics of bed-rocks and groundwater are presented. These are important for multiple barrier system construction of deep geological disposal. The report furthermore describes the present status of technical and methodological progress in investigating geological environment and finally on the results of natural analog study in Tono uranium deposits area. (Ohno, S.)

  19. Range of engineering-geological properties for some carbonate rock complexes for Balkan peninsula

    International Nuclear Information System (INIS)

    Jovanovski, Milorad; Shpago, Azra; Peshevski, Igor

    2010-01-01

    The Carbonate Rock masses are a geological media with extremely complex states and properties, which has a certain influences on the mechanical and hydraulic behavior during construction and exploitation of engineering structures. Practical aspects of the problem analysis arise from the fact that the areas of Bosnia and Herzegovina, Macedonia and the entire Balkans is characterized by presence of wide areas covered with carbonate complexes, where large number of complex engineering structures have been, or shall be constructed in the future. In this context, their engineering-geological modeling is still a practical and scientific challenge. The analysis of engineering- geological properties is one of the main steps in forming of analytical and geotechnical models for complex rock structures. This article gives a data about the range for these properties, according to the results from an extensive investigation program. Some original correlations and testing results are given and they are compared with some published relations from the world. (Author)

  20. Geological disposal: security and R and D. Security of 'second draft for R and D of geological disposal'

    International Nuclear Information System (INIS)

    Shiotsuki, Masao; Miyahara, Kaname

    2003-01-01

    The second draft for R and D of geological disposal (second draft) was arranged in 1999. The idea of security of geological disposal in the second draft is explained. The evaluation results of the uncertainty analysis and an example of evaluation of the effect of separation nuclear transmutation on the geological disposal are shown. The construction of strong engineered barrier is a basic idea of geological disposal system. Three processes such as isolation, engineering countermeasures and safety evaluation are carried out for the security of geological disposal. The security of geological environment for a long time of 12 sites in Japan was studied by data. Provability of production and enforcement of engineered barrier were confirmed by trial of over pack, tests and the present and future technologies developed. By using the conditions of reference case in the second draft, the evaluation results of dose effects in the two cases: 1) 90 to 99% Cs and Sr removed from HLW (High Level radioactive Waste) and 2) high stripping ratio of actinium series are explained. (S.Y.)

  1. Landslides and engineering geology of the Seattle, Washington, area

    Science.gov (United States)

    Baum, Rex L.; Godt, Jonathan W.; Highland, Lynn M.

    2008-01-01

    This volume brings together case studies and summary papers describing the application of state-of-the-art engineering geologic methods to landslide hazard analysis for the Seattle, Washington, area. An introductory chapter provides a thorough description of the Quaternary and bedrock geology of Seattle. Nine additional chapters review the history of landslide mapping in Seattle, present case studies of individual landslides, describe the results of spatial assessments of landslide hazard, discuss hydrologic controls on landsliding, and outline an early warning system for rainfall-induced landslides.

  2. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  3. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  4. Assessment of NPP safety taking into account seismic and engineering-geological factors

    International Nuclear Information System (INIS)

    Yakovlev, E.A.

    1990-01-01

    Consideration is given to the problem of probabilistic analysis of NPP safety with account of risk of destructive effect of earthquakes and the danger of accidental geological processes (diapirism, karst etc.) under NPP operation. It is shown that account of seismic and engineering-geological (engineering-seismological) risk factors in probabilistic analysis of safety enables to perform anticipatory analysis of behaviour of principle plant objects and to improve safety of their operation by revealing the most unstable elements of geotechnical system forming the main contribution to the total NPP risk

  5. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 2. Engineering technology for geological disposal

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the deep geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, part 2 of the progress report, concerns engineering aspect with reference to Japanese geological disposal plan, according to which the vitrified HLW will be disposed of into a deep, stable rock mass with thick containers and surrounding buffer materials at the depth of several hundred meters. It discusses on multi-barrier systems consisting of a series of engineered and natural barriers that will isolate radioactive nuclides effectively and retard their migrations to the biosphere environment. Performance of repository components, including specifications of containers for vitrified HLW and their overpacks under design as well as buffer material such as Japanese bentonite to be placed in between are described referring also to such possible problems as corrosion arising from the supposed system. It also presents plans and designs for underground disposal facilities, and the presumed management of the underground facilities. (Ohno, S.)

  6. Engineering-Geological Data Model - The First Step to Build National Polish Standard for Multilevel Information Management

    Science.gov (United States)

    Ryżyński, Grzegorz; Nałęcz, Tomasz

    2016-10-01

    The efficient geological data management in Poland is necessary to support multilevel decision processes for government and local authorities in case of spatial planning, mineral resources and groundwater supply and the rational use of subsurface. Vast amount of geological information gathered in the digital archives and databases of Polish Geological Survey (PGS) is a basic resource for multi-scale national subsurface management. Data integration is the key factor to allow development of GIS and web tools for decision makers, however the main barrier for efficient geological information management is the heterogeneity of data in the resources of the Polish Geological Survey. Engineering-geological database is the first PGS thematic domain applied in the whole data integration plan. The solutions developed within this area will facilitate creation of procedures and standards for multilevel data management in PGS. Twenty years of experience in delivering digital engineering-geological mapping in 1:10 000 scale and archival geotechnical reports acquisition and digitisation allowed gathering of more than 300 thousands engineering-geological boreholes database as well as set of 10 thematic spatial layers (including foundation conditions map, depth to the first groundwater level, bedrock level, geohazards). Historically, the desktop approach was the source form of the geological-engineering data storage, resulting in multiple non-correlated interbase datasets. The need for creation of domain data model emerged and an object-oriented modelling (UML) scheme has been developed. The aim of the aforementioned development was to merge all datasets in one centralised Oracle server and prepare the unified spatial data structure for efficient web presentation and applications development. The presented approach will be the milestone toward creation of the Polish national standard for engineering-geological information management. The paper presents the approach and methodology

  7. Conceptual design of the Virtual Engineering System for High Level Radioactive Waste Geological Disposal

    International Nuclear Information System (INIS)

    1999-06-01

    The Virtual Engineering System for the High Level Radioactive Waste Geological Disposal (hereafter the VE) adopts such computer science technologies as advanced numerical simulation technology with special emphasis upon computer graphics, massive parallel computing, high speed networking, knowledge engineering, database technology to virtually construct the natural and the part of social environment of disposal site in syberspace to realize the disposal OS as its final target. The principle of tile VE is to provide for a firm business standpoint after The 2000 Report by JNC and supply decision support system which promotes various evaluations needed to be done from the year of 2000 to the licensing application for disposal to the government. The VE conceptual design was performed in the year of 1998. The functions of the VE are derived from the analysis of work scope of implementing organization in each step of geological waste disposal: the VE functions need the safety performance assessment, individual process analysis, facility designing, cost evaluation, site surveillance, research and development, public acceptance. Then the above functions are materialized by integrating such individual system as geology database, groundwater database, safety performance assessment system, coupled phenomena analysis system, decision support system, cost evaluation system, and public acceptance system. The integration method of the systems was studied. The concept of the integration of simulators has also been studied from the view point of CAPASA program. Parallel computing, networking, and computer graphic for high speed massive scientific calculation were studied in detail as the element technology to achieve the VE. Based on studies stated above, the concept of the waste disposal project and subjects that arise from 1999 to licensing application are decided. (author)

  8. Improving female participation in professional engineering geology to bring new perspectives to ethics in the geosciences.

    Science.gov (United States)

    Pereira, Dolores

    2014-09-11

    Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students "leak out" at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students' preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain). It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man's world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students' education and future careers.

  9. Improving Female Participation in Professional Engineering Geology to Bring New Perspectives to Ethics in the Geosciences

    Directory of Open Access Journals (Sweden)

    Dolores Pereira

    2014-09-01

    Full Text Available Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students “leak out” at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students’ preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain. It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man’s world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students’ education and future careers.

  10. Long-term observation of the geological environment: needs and techniques

    International Nuclear Information System (INIS)

    1993-01-01

    For site characterization programmes aimed at determining the suitability of sites for the disposal of radioactive waste, attention must be given to collecting data over long periods of time for adequate understanding of certain processes in the geological environment (hydrologic conditions, seismicity etc.). It is important for all national projects to carefully plan and implement programmes to observe the long-term behaviour of the geological environment in order to secure high-quality, reliable data for use in safety assessments. These proceedings present the results of a workshop organized to discuss the needs and techniques related to the planning and implementation of such programmes. 13 papers have been presented

  11. The potential impact of geological environment on health status of residents of the Slovak Republic.

    Science.gov (United States)

    Rapant, S; Cvečková, V; Dietzová, Z; Fajčíková, K; Hiller, E; Finkelman, R B; Škultétyová, S

    2014-06-01

    In order to assess the potential impact of the geological environment on the health of the population of the Slovak Republic, the geological environment was divided into eight major units: Paleozoic, Crystalline, Carbonatic Mesozoic and basal Paleogene, Carbonatic-silicate Mesozoic and Paleogene, Paleogene Flysch, Neovolcanics, Neogene and Quaternary sediments. Based on these geological units, the databases of environmental indicators (chemical elements/parameters in groundwater and soils) and health indicators (concerning health status and demographic development of the population) were compiled. The geological environment of the Neogene volcanics (andesites and basalts) has been clearly documented as having the least favourable impact on the health of Slovak population, while Paleogene Flysch geological environment (sandstones, shales, claystones) has the most favourable impact. The most significant differences between these two geological environments were observed, especially for the following health indicators: SMRI6364 (cerebral infarction and strokes) more than 70 %, SMRK (digestive system) 55 %, REI (circulatory system) and REE (endocrine and metabolic system) almost 40 % and REC (malignant neoplasms) more than 30 %. These results can likely be associated with deficit contents of Ca and Mg in groundwater from the Neogene volcanics that are only about half the level of Ca and Mg in groundwater of the Paleogene sediments.

  12. Geosciences research: development of techniques and instruments for investigation geological environments

    International Nuclear Information System (INIS)

    1993-01-01

    In order to understand the geological environment in Japan, new investigation techniques have been developed. These include: 1) Geological techniques for fracture characterization, 2) Nondestructive investigation techniques for detailed geological structure, 3) Instruments for hydraulic characterization, 4) Instruments for hydrochemical characterization. Results so far obtained are: 1) Fractures can be classified by their patterns, 2) The applicability and limitations of conventional geophysical methods were defined, 3) Instruments for measuring very low permeability were successfully developed, 4) Instruments for sampling formation water without changing in-situ conditions were developed. (author)

  13. Engineering Geological Investigation of Slow Moving Landslide in Jahiyang Village, Salawu, Tasikmalaya Regency

    Directory of Open Access Journals (Sweden)

    Dwi Sarah

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i1.133An understanding of landslide mechanism is imperative to determine the appropriate mitigation method. The slow moving landslide (creeping which occurred in Kampung Salawangi, Jahiyang Village, Salawu Subregency, Tasikmalaya had caused economical and environmental losses due to the frequent active movement particularly following rainfall events. Engineering geological investigation and slope stability analysis were carried out in the studied area in order to elucidate the mechanism of the landslide. The engineering geological investigation consists of local topographical mapping, geotechnical drillings, hand borings, cone penetration, and laboratory tests. The slope stability assessment of the recent landslide was conducted by a finite element method. The results of engineering geological data analysis show that the studied area is composed of residual soils of soft to firm sandy silt and loose to compact silty sand and base rock of fresh to weathered volcanic breccias with groundwater level varying between 3 - 16 m. The engineering properties of the residual soils indicate that the sandy silt is of high plasticity and the shear strength properties of the sandy silt and silty sand show low value with effective cohesion of 6.0 - 21.74 kPa and effective friction angle of 12.00 - 25.980. The assessment of slope stability shows that the stability of the studied area is largely influenced by the rise of groundwater level marked by the decrease of safety factor and increase of slope displacement.

  14. Technical know-how for modeling of geological environment. (1) Overview and groundwater flow modeling

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Takeuchi, Shinji; Maekawa, Keisuke; Osawa, Hideaki; Semba, Takeshi

    2011-01-01

    It is important for site characterization projects to manage the decision-making process with transparency and traceability and to transfer the technical know-how accumulated during the research and development to the implementing phase and to future generations. The modeling for a geological environment is to be used to synthesize investigation results. Evaluation of the impact of uncertainties in the model is important to identify and prioritize key issues for further investigations. Therefore, a plan for site characterization should be made based on the results of the modeling. The aim of this study is to support for the planning of initial surface-based site characterization based on the technical know-how accumulated from the Mizunami Underground Research Laboratory Project and the Horonobe Underground Research Laboratory Project. These projects are broad scientific studies of the deep geological environment that are a basis for research and development for the geological disposal of high-level radioactive wastes. In this study, the work-flow of the groundwater flow modeling, which is one of the geological environment models, and is to be used for setting the area for the geological environment modeling and for groundwater flow characterization, and the related decision-making process using literature data have been summarized. (author)

  15. Spent fuel performance in geologic repository environments

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1985-10-01

    The performance assessment of the waste package is a current area of study in the United States program to develop a geologic repository for nuclear waste isolation. The waste package is presently envisioned as the waste form and its surrounding containers and possibly a packing material composed of crushed host rock or mixtures of that rock with clays. This waste package is tied to performance criteria set forth in recent legislation. It is the goal of the Civilian Radioactive Waste Management Program to obtain the necessary information on the waste package, in several geologic environments, to show that the waste package provides reasonable assurance of meeting established performance criteria. This paper discusses the United States program directed toward managing high-level radioactive waste, with emphasis on the current effort to define the behavior of irradiated spent fuel in repository groundwaters. Current studies are directed toward understanding the rate and nature (such as valence state, colloid form if any, solid phase controlling solubility) of radionuclide release from the spent fuel. Due to the strong interactive effect of radiation, thermal fields, and waste package components on this release, current spent fuel studies are being conducted primarily in the presence of waste package components over a wide range of potential environments

  16. Engineering subcultures and working environment in Danish enterprises

    DEFF Research Database (Denmark)

    Broberg, Ole

    2000-01-01

    Engineers' role in the management of working environment has been studied in 20 Danish enterprises based on questionnaires to 680 engineers. In general, engineers are not aware that they may influence the working environment of other people through their decisions. It is suggested that engineering...... subcultures be examined in order to change engineers' attitudes toward the working environment of workers and users....

  17. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  18. Osmotic generation of 'anomalous' fluid pressures in geological environments

    Science.gov (United States)

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  19. A study on site characterization of the deep geological environment around KURT

    International Nuclear Information System (INIS)

    Park, Kw; Kim, Gy; Koh, Yk; Kim, Ks; Choi, Jw

    2009-01-01

    KURT (KAERI Underground Research Tunnel) is a small scale research tunnel which was constructed from 2005 to 2006 at Korea Atomic Energy Research Institute (KAERI). To understand the deep geological environment around KURT area, the surface geological surveys such as lineaments analysis and geophysical survey and borehole investigation were performed. For this study, a 3 dimensional geological model has been constructed using the surface and borehole geological data. The regional lineaments were determined using a topographical map and the surface geophysical survey data were collected for the geological model. In addition, statistical methods were applied to fracture data from borehole televiewer loggings to identify fracture zones in boreholes. For a hydro geological modeling, fixed interval hydraulic tests were carried out for all boreholes. The results of the hydraulic tests were analyzed and classified by the fracture zone data of geological model. At result, the hydrogeological elements were decided and the properties of each element were assessed around the KURT area

  20. Modeling study on geological environment at Horonobe URL site

    International Nuclear Information System (INIS)

    Shimo, Michito; Yamamoto, Hajime; Kumamoto, Sou; Fujiwara, Yasushi; Ono, Makoto

    2005-02-01

    The Horonobe underground research project has been operated by Japan Nuclear Cycle Development Institute to study the geological environment of sedimentary rocks in deep underground. The objectives of this study are to develop a geological environment model, which incorporate the current findings and the data obtained through the geological, geophysical, and borehole investigations at Horonobe site, and to predict the hydrological and geochemical impacts caused by the URL shaft excavation to the surrounding area. A three-dimensional geological structure model was constructed, integrating a large-scale model (25km x 15km) and a high-resolution site-scale model (4km x 4km) that have been developed by JNC. The constructed model includes surface topography, geologic formations (such as Yuchi, Koetoi, Wakkanai, and Masuporo Formations), and two major faults (Ohomagari fault and N1 fault). In hydrogeological modeling, water-conductive fractures identified in Wakkanai Formation are modeled stochastically using EHCM (Equivalent Heterogeneous Continuum Model) approach, to represent hydraulic heterogeneity and anisotropy in the fractured rock mass. Numerical code EQUIV FLO (Shimo et al., 1996), which is a 3D unsaturated-saturated groundwater simulator capable of EHCM, was used to simulate the regional groundwater flow. We used the same model and the code to predict the transient hydrological changes caused by the shaft excavations. Geochemical data in the Horonobe site such as water chemistries, mineral compositions of rocks were collected and summarized into digital datasets. M3 (Multivariate, Mixing and Mass-balance) method developed by SKB (Laaksoharju et al., 1999) was used to identify waters of different origins, and to infer the mixing ratio of these end-members to reproduce each sample's chemistry. Thermodynamic code such as RHREEQC, GWB, and EQ3/6 were used to model chemical reactions that explain the present minerals and aqueous concentrations observed in the site

  1. A Geology Sampling System for Small Bodies

    Science.gov (United States)

    Naids, Adam J.; Hood, Anthony D.; Abell, Paul; Graff, Trevor; Buffington, Jesse

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are being discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a small body. Currently, the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  2. A Geology Sampling System for Microgravity Bodies

    Science.gov (United States)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  3. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  4. U.S. Geological Survey Science at the Intersection of Health and Environment

    Science.gov (United States)

    Kimball, S. M.; Plumlee, G. S.

    2016-12-01

    People worldwide worry about how their environment affects their health, and expect scientists to help address these concerns. The OneHealth concept recognizes the crucial linkages between environment, human health, and health of other organisms. Many US Geological Survey science activities directly examine or help inform how the Earth and the environment influence toxicological and infectious diseases. Key is our ability to bring to bear a collective expertise in environmental processes, geology, hydrology, hazards, microbiology, analytical chemistry, ecosystems, energy/mineral resources, geospatial technologies, and other disciplines. Our science examines sources, environmental transport and fate, biological effects, and human exposure pathways of many microbial (e.g. bacteria, protozoans, viruses, fungi), inorganic (e.g. asbestos, arsenic, lead, mercury) and organic (e.g. algal toxins, pesticides, pharmaceuticals) contaminants from geologic, anthropogenic, and disaster sources. We develop new laboratory, experimental, and field methods to analyze, model, and map contaminants, to determine their baseline and natural background levels, and to measure their biological effects. We examine the origins, environmental persistence, wildlife effects, and potential for transmission to humans of pathogens that cause zoonotic or vector-borne diseases (e.g., avian influenza or West Nile virus). Collaborations with human health scientists from many organizations are essential. For example, our work with epidemiologists and toxicologists helps understand the exposure pathways and roles of geologically sourced toxicants such as arsenic (via drinking water) and asbestos (via dusts) in cancer. Work with pulmonologists and pathologists helps clarify the sources and fate of inhaled mineral particles in lungs. Wildlife health scientists help human health scientists assess animals as sentinels of human disease. Such transdisciplinary science is essential at the intersection of health

  5. Installation of borehole seismometer for earthquake characteristics in deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Hee; Choi, Weon Hack; Cho, Sung Il; Chang, Chun Joong [KHNP CRI, Seoul (Korea, Republic of)

    2014-10-15

    Deep geological disposal is currently accepted as the most appropriate method for permanently removing spent nuclear fuel from the living sphere of humans. For implementation of deep geological disposal, we need to understand the geological changes that have taken place over the past 100,000 years, encompassing active faults, volcanic activity, elevation, ubsidence, which as yet have not been considered in assessing the site characteristics for general facilities, as well as to investigate and analyze the geological structures, fracture systems and seismic responses regarding deep geological environment about 500 meters or more underground. In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. Korea Hydro and Nuclear Power Co., Ltd. (KHNP) have installed the deep borehole earthquake observatory at depths of about 300 to 600 meters in order to study the seismic response characteristics in deep geological environment on June, 2014 in Andong area. This paper will show the status of deep borehole earthquake observatory and the results of background noise response characteristics of these deep borehole seismic data as a basic data analysis. We present here the status of deep borehole seismometer installation by KHNP. In order to basic data analysis for the borehole seismic observation data, this study shows the results of the orientation of seismometer and background noise characteristics by using a probability density function. Together with the ground motion data recorded by the borehole seismometers can be utilized as basic data for seismic response characteristics studies with regard to spent nuclear fuel disposal depth and as the input data for seismic hazard assessment that

  6. International Collaboration Activities in Different Geologic Disposal Environments

    International Nuclear Information System (INIS)

    Birkholzer, Jens

    2015-01-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD's International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  7. International Collaboration Activities in Different Geologic Disposal Environments

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  8. International Conference: Analyses for Geology and Environment '97. Proceedings

    International Nuclear Information System (INIS)

    1997-01-01

    In this proceedings About 60 people from Albania, Czech Republic, Germany, Poland, Russia and Slovakia took part in the conference. 71 reports had been presented. The conference made an essential contribution into development of analytical methods for geology and environment. Twenty papers deals with the monitoring of uranium, thorium, lead-210 in soils, minerals and environmental samples

  9. Historical rock collection of the Commission for the Geological Map of Spainpreserved in the Madrid School of Civil Engineering

    International Nuclear Information System (INIS)

    Sanz Pérez, E.; Pérez Ruy-Díaz, J.A.; Menéndez-Pidal de Navascués, I.; Sanz Ojeda, P.; Pascual-Arribas, C.

    2017-01-01

    The collection of 200 rocks prepared by the Commission for the Geological Map of Spain for the Madrid School of Civil Engineering, without known author and dated between 1898 and 1907, is one of the collections sent by the Commission to meet the specific needs of engineering institutes, and in which have survived 200 explanatory index cards accompanying each of the specimens. The collection is national in scope and is designed with a clear teaching purpose focused on civil engineering students. Its main feature is to teach the historical geology of Spain summarized in a collection of representative rocks from the Spanish territory classified by geological periods. So that, by knowing the most common rocks that appear in the synthetic stratigraphic column of Spain, this could provide for uses for coeval type of rocks, such as building materials or as foundations. Petrologic classifications and the division of geological periods are used according to these times. The index cards, where many observations about uses of civil engineering rocks are made, endeavor to identify rocks as samples with one’s own eyes and at scale of outcrop in the field, within the regional stratigraphic context. [es

  10. Development of teaching modules for geology and engineering coursework using terrestrial LiDAR scanning systems

    Science.gov (United States)

    Yarbrough, L. D.; Katzenstein, K.

    2012-12-01

    Exposing students to active and local examples of physical geologic processes is beneficial to the learning process. Students typically respond with interest to examples that use state-of-the-art technologies to investigate local or regional phenomena. For lower cognitive level of learning (e.g. knowledge, comprehension, and application), the use of "close-to-home" examples ensures that students better understand concepts. By providing these examples, the students may already have a familiarity or can easily visit the location. Furthermore, these local and regional examples help students to offer quickly other examples of similar phenomena. Investigation of these examples using normal photographic techniques, as well as a more sophisticated 3-D Light Detection And Ranging (LiDAR) (AKA Terrestrial Laser Scanning or TLS) system, allows students to gain a better understanding of the scale and the mechanics of the geologic processes and hazards. The systems are used for research, teaching and outreach efforts and depending on departmental policies can be accessible to students are various learning levels. TLS systems can yield scans at sub-centimeter resolution and contain surface reflectance of targets. These systems can serve a number of learning goals that are essential for training geoscientists and engineers. While querying the data to answer geotechnical or geomorphologic related questions, students will develop skills using large, spatial databases. The upper cognitive level of learning (e.g. analysis, synthesis, and evaluation) is also promoted by using a subset of the data and correlating the physical geologic process of stream bank erosion and rock slope failures with mathematical and computer models using the scanned data. Students use the examples and laboratory exercises to help build their engineering judgment skills with Earth materials. The students learn not only applications of math and engineering science but also the economic and social implication

  11. Study on geological environment model using geostatistics method

    International Nuclear Information System (INIS)

    Honda, Makoto; Suzuki, Makoto; Sakurai, Hideyuki; Iwasa, Kengo; Matsui, Hiroya

    2005-03-01

    The purpose of this study is to develop the geostatistical procedure for modeling geological environments and to evaluate the quantitative relationship between the amount of information and the reliability of the model using the data sets obtained in the surface-based investigation phase (Phase 1) of the Horonobe Underground Research Laboratory Project. This study lasts for three years from FY2004 to FY2006 and this report includes the research in FY2005 as the second year of three-year study. In FY2005 research, the hydrogeological model was built as well as FY2004 research using the data obtained from the deep boreholes (HDB-6, 7 and 8) and the ground magnetotelluric (AMT) survey which were executed in FY2004 in addition to the data sets used in the first year of study. Above all, the relationship between the amount of information and the reliability of the model was demonstrated through a comparison of the models at each step which corresponds to the investigation stage in each FY. Furthermore, the statistical test was applied for detecting the difference of basic statistics of various data due to geological features with a view to taking the geological information into the modeling procedures. (author)

  12. Assessment of heterogeneous geological environment at Tono. A technical report

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Inaba, Takeshi; Sasakura, Takeshi; Atsumi, Hiroyuki; Tanaka, Toshiyuki; Kobayashi, Ichizo; Iwano, Keita; Furuichi, Mitsuaki

    2004-02-01

    'Geoscientific research' at Tono is developing site investigation, characterization and assessment techniques for understanding of geological environment. Their important themes are to establish a methodology for analyzing uncertainties in heterogeneous geological environment and to develop investigation techniques for reducing the uncertainties efficiently. The current study proposes a new approach where all the possible options in the models and data-sets that cannot be excluded in the light of the evidence available is identified. This approach enables uncertainties associated with the understanding at a given stage of the site characterization to be made explicitly using an uncertainty analysis technique based on Fuzzy geostatistics. This in turn, supports the design of the following investigation stage to reduce the uncertainties efficiently. In this report the technique has been tested through geological modelling and groundwater analyses with Tono area case based on current knowledge, to demonstrate its applicability. This report summarizes as follows; 1) It is possible to quantify the uncertainties with Tono area case based on current knowledge using the technique. 2) Based on sensitivity analyses, it is possible to support designs of the following investigation stage to reduce the uncertainties efficiently. 3) The methodology of the technique has been developed with Tono area case. 4) The above could evaluate its applicability and propose further issues for synthesis of the methodology. (author)

  13. Assessment of deep geological environment condition

    International Nuclear Information System (INIS)

    Bae, Dae Seok; Han, Kyung Won; Joen, Kwan Sik

    2003-05-01

    The main tasks of geoscientific study in the 2nd stage was characterized focusing mainly on a near-field condition of deep geologic environment, and aimed to generate the geologic input data for a Korean reference disposal system for high level radioactive wastes and to establish site characterization methodology, including neotectonic features, fracture systems and mechanical properties of plutonic rocks, and hydrogeochemical characteristics. The preliminary assessment of neotectonics in the Korean peninsula was performed on the basis of seismicity recorded, Quarternary faults investigated, uplift characteristics studied on limited areas, distribution of the major regional faults and their characteristics. The local fracture system was studied in detail from the data obtained from deep boreholes in granitic terrain. Through this deep drilling project, the geometrical and hydraulic properties of different fracture sets are statistically analysed on a block scale. The mechanical properties of intact rocks were evaluated from the core samples by laboratory testing and the in-situ stress conditions were estimated by a hydro fracturing test in the boreholes. The hydrogeochemical conditions in the deep boreholes were characterized based on hydrochemical composition and isotopic signatures and were attempted to assess the interrelation with a major fracture system. The residence time of deep groundwater was estimated by C-14 dating. For the travel time of groundwater between the boreholes, the methodology and equipment for tracer test were established

  14. The efficiency of the use of penetration nuclear logging in hydrogeology and engineering geology

    International Nuclear Information System (INIS)

    Ferronsky, V.I.

    1992-01-01

    The latest developments in equipment and techniques for nuclear and combined non-nuclear logging in friable unconsolidated deposits, including marine bottom sediments are described. The effectiveness of these techniques in hydrogeological and engineering geological investigations is discussed. (Author)

  15. Assessment of heterogeneous geological environment at Tono. Japanese fiscal year 2004 (Contract research)

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Mori, Takayuki; Inaba, Takeshi; Sasakura, Takeshi; Atsumi, Hiroyuki; Masumoto, Kazuhiko; Kobayashi, Ichizo; Iwano, Keita; Furuichi, Mitsuaki; Ogata, Nobuhisa

    2007-09-01

    'Geoscientific research' at the Tono Area is developing site investigation, characterization and assessment techniques for understanding of geological environment. Their important goals are to establish a methodology for analyzing uncertainties in heterogeneous geological environment and to develop investigation technique for efficiently reducing the uncertainties. The current study proposes a new approach where all the possible options in the models and data-sets, which cannot be excluded in the light of the evidences available, are identified. This approach enables uncertainties associated with the understanding at a given stage of the site characterization to be made explicitly using an uncertainty analysis technique based on Fuzzy geostatics. This approach supports the design of the following investigation stage and reduces the uncertainties efficiently. In FY H16 the technique has been tested through geological modelling and groundwater analyses with Tono Area case based on current knowledge, to demonstrate its applicability and to compile the knowledge/information required to describe the H17 report. This report can be summarized as follows: 1) The knowledge/information required to describe the heterogeneous characteristics was compiled and connected to uncertainties associated with the characterization of a geological environment using a synthesis diagram. 2) Methodologies for assignment and screening of parameters were developed by using Evidential Support Logic (ESL). 3) Applicability of the technique could be confirmed with Tono Area case. 4) This report proposed a new methodology that integrates the technique into JAEA ordinary technique to good advantage in the geoscientific research project. (author)

  16. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    International Nuclear Information System (INIS)

    Gupalo, T.; Milovidov, V.; Prokopoca, O.; Jardine, L.

    2002-01-01

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide suficient information to make an estimate of the suitability of locating a radioactive waste (RW) underground isolation facility at the Nizhnekansky granitoid massif.

  17. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  18. 'Kozloduy' NPP geological environment as a barrier against radionuclide migration

    International Nuclear Information System (INIS)

    Antonov, D.

    2000-01-01

    The aim of this report is to present an analysis of the geological settings along Kozloduy NPP area from the viewpoint of a natural, protective barrier against unacceptable radionuclides migration in the environment. Possible sources of such migration could be an eventual accident in an active nuclear plant; radioactive releases from decommissioned Power Units or from temporary or permanent radioactive waste repositories. The report is directed mainly to the last case, and especially to the site selection for near surface short lived low and intermediate level (LILW) radioactive repository. The main conclusion of the geological settings assessment and of the many years monitoring is that the Kozloduy NPP area offers good possibilities for site selection of LILW repository. (author)

  19. Preliminary report on the environmnetal geology of the Islamabad-Rawalpindi area, Pakistan

    International Nuclear Information System (INIS)

    Williams, V.S.; Sheikh, I.; Pasha, M.K.; Khan, K.S.A.; Reza, Q.

    1994-01-01

    Islamabad, the capital of Pakistan, is a planned city constructed since about 1960 at the foot of the Margala hills just north of the old city of Rawalpindi. Since then, rapid growth of both Islamabad and Rawalpindi to a combined population of about 1.3 million has caused ever increasing demands for natural resources and adverse effects on the environment. To maintain the quality of the capital, municipal authorities need information on the physical environment to guide future development. Environment concerns include (1) availability of building materials, (2) environmental degradation from extraction and processing of building materials, (3) availability of surface and ground water (4) pollution of water by waste disposal, (5) geological hazards, and (6) engineering characteristics of soil ad rock. This preliminary report summarizes information on the environmental geology of the Islamabad-Rawalpindi area. The information has been collected by a cooperative project of the geological Survey of Pakistan and the U.S. Geological Survey, supported by the United States Agency for International Development. (author)

  20. Geological aspects of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories

  1. New results concerning geophysical and geological-engineering data. Case study Telega, Romania

    Science.gov (United States)

    Maftei, Raluca-Mihaela; Rusu, Emil; Cristea, Paul; Manj, Valeriu; Avram, Ovidiu; Tudor, Elena; Porumbescu, Constantina; Ciurean, Roxana

    2010-05-01

    New results concerning geophysical and geological-engineering data. Case study Telega, Romania R.Maftei, E.Rusu, P.Cristea, V.Manj, R.Ciurean, O.Avram, E.Tudor, C.Porumbescu Geological Institute of Romania, Geohazard, Bucharest, Romania (mafteir@yahoo.com) Geophysical tests The geoelectric investigation (October-November 2009) outlines horizontally the sliding area, and vertically the elements of the landslide surface - position, depth, shape, and the bedrock's relief. The quantitative interpretation of the resistivity geoelectrical vertical tests, and the correlation with the geological structure identified 3 sliding surfaces, from which only the upper one (2-6m depth) was known before the stability works. There were localized the rainfall waters circulation and accumulation zones, areas with high sliding risk. Same results were obtained in sliding zones, been localized the principal elements of the landslides, with practical implications in land instability and estimation of the evolution of the destructive phenomena mechanisms. With this study we try to quantify the complex relationship between the natural factors that generate the terrain instability phenomena and the intensity of the socio-economic effects, at a regional and local scale, by correlating the engineering geology information and geophysical data. Recent seismic research program (September 2009) conceived for "La Butoi" landslide, Telega locality, aims to a specific monitoring of the dynamic deformations, more active in the central part of the landslide, with reference to the shallow seismic refraction information obtained in the 2004 - 2005 period. The investigations were performed on a seismic lines network, and two seismic boundaries, in the shallow seismic section, were exhibited. As a result, one can observe the curvature tendency of the first arrivals sin-phase for the end-off shot devices, setting off the velocity increasing regime with depth; relative high variations and irregularities of

  2. Reversibility and retrievability in geologic disposal of radioactive waste. A new Nea report

    International Nuclear Information System (INIS)

    Brown, P.A.; Pascatore, C.; Sumerling, T.

    2001-01-01

    Radioactive waste needs to be managed responsibly to ensure public safety and the protection of the environment, as well as security from unauthorized interference, now and in the future. One of the most challenging tasks is the management of long-lived radioactive waste that must be isolated from the human environment for many thousands, or even hundreds of thousands, of years. There is a consensus among the engaged technical community that engineered geologic disposal provides a safe and ethical method for the long term management of such waste. This method is also cited in the national policies of several countries as either a promising or appropriate method for dealing with long-lived radioactive waste. Engineered geologic disposal means emplacement of waste in repositories constructed deep underground in suitable geologic media. Thus the waste is contained, and safety assured by passive barriers with multiple safety functions, so that there is no need for any further actions by future generations. Primary principles of the engineered geologic disposal concept are that waste will only be emplaced in a repository when there is high confidence in the ultimate long-term safety, and that the long-term safety must not rely on actions following the closure of the repository. This does not mean, however, that actions cannot be taken. Most repository development programmes include the possibility of post-closure activities for security and monitoring purposes. (authors)

  3. Augmenting comprehension of geological relationships by integrating 3D laser scanned hand samples within a GIS environment

    Science.gov (United States)

    Harvey, A. S.; Fotopoulos, G.; Hall, B.; Amolins, K.

    2017-06-01

    Geological observations can be made on multiple scales, including micro- (e.g. thin section), meso- (e.g. hand-sized to outcrop) and macro- (e.g. outcrop and larger) scales. Types of meso-scale samples include, but are not limited to, rocks (including drill cores), minerals, and fossils. The spatial relationship among samples paired with physical (e.g. granulometric composition, density, roughness) and chemical (e.g. mineralogical and isotopic composition) properties can aid in interpreting geological settings, such as paleo-environmental and formational conditions as well as geomorphological history. Field samples are collected along traverses in the area of interest based on characteristic representativeness of a region, predetermined rate of sampling, and/or uniqueness. The location of a sample can provide relative context in seeking out additional key samples. Beyond labelling and recording of geospatial coordinates for samples, further analysis of physical and chemical properties may be conducted in the field and laboratory. The main motivation for this paper is to present a workflow for the digital preservation of samples (via 3D laser scanning) paired with the development of cyber infrastructure, which offers geoscientists and engineers the opportunity to access an increasingly diverse worldwide collection of digital Earth materials. This paper describes a Web-based graphical user interface developed using Web AppBuilder for ArcGIS for digitized meso-scale 3D scans of geological samples to be viewed alongside the macro-scale environment. Over 100 samples of virtual rocks, minerals and fossils populate the developed geological database and are linked explicitly with their associated attributes, characteristic properties, and location. Applications of this new Web-based geological visualization paradigm in the geosciences demonstrate the utility of such a tool in an age of increasing global data sharing.

  4. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  5. Airborne remote sensors applied to engineering geology and civil works design investigations

    Science.gov (United States)

    Gelnett, R. H.

    1975-01-01

    The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.

  6. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic

  7. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    Science.gov (United States)

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  8. Assessment of uncertainties associated with characterization of geological environment in the Tono area. Japanese fiscal year, 2006 (Contract research)

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Seno, Shoji; Atsumi, Hiroyuki; Ogata, Nobuhisa

    2008-03-01

    'Geoscientific research' performed at the Tono Geoscience Center is developing site investigation, characterization and assessment techniques for understanding of geological environment. Their important themes are to establish a methodology for analyzing uncertainties in heterogeneous geological environment, and to develop investigation techniques for reducing the uncertainties efficiently. This study proposes a new approach where all the possible options in the models and data-sets that cannot be excluded in the light of the evidence available, are identified. This approach enables uncertainties associated with the understanding at a given stage of the site characterization to be made explicitly using an uncertainty analysis technique based on Fuzzy geostatistics. This, in turn, supports the design of the following investigation stage to reduce the uncertainties efficiently. In the study, current knowledge had been compiled, and the technique had been advanced through geological modeling and groundwater analyses in the Tono area. This report systematized the uncertainty analysis methodology associated with the characterization of the geological environment, and organized the procedure of the methodology with the application examples in the study. This report also dealt with investigation techniques for reducing the uncertainties efficiently, and underground facility design options for handling geological uncertainties based on the characterization of the geological environment. (author)

  9. Self-sealing of Fractures in Argillaceous Formations in the Context of Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2010-01-01

    Disposal of high-level radioactive waste and spent nuclear fuel in engineered facilities, or repositories, located deep underground in suitable geological formations is being developed worldwide as the reference solution to protect humans and the environment both now and in the future. Assessing the long-term safety of geological disposal requires developing a comprehensive understanding of the geological environment. The transport pathways are key to this understanding. Of particular interest are fractures in the host rock, which may be either naturally occurring or induced, for example, during the construction of engineered portions of a repository. Such fractures could provide pathways for migration of contaminants. In argillaceous (clay) formations, there is evidence that, over time, fractures can become less conductive and eventually hydraulically insignificant. This process is commonly termed 'self-sealing'. The capacity for self-sealing relates directly to the function of clay host rocks as migration barriers and, consequently, to the safety of deep repositories in those geological settings. This report - conducted under the auspices of the NEA Clay Club - reviews the evidence and mechanisms for self-sealing properties of clays and evaluates their relevance to geological disposal. Results from laboratory tests, field investigations and geological analogues are considered. The evidence shows that, for many types of argillaceous formations, the understanding of self-sealing has progressed to a level that could justify its inclusion in performance assessments for geological repositories. (authors)

  10. Resilience engineering and the built environment

    DEFF Research Database (Denmark)

    Hollnagel, Erik

    2014-01-01

    important to understand the range of conditions about why and how the system functions in the desired' mode as well as unwanted' modes. Resilience is the capacity to sustain operations under both expected and unexpected conditions. The unexpected conditions are not only threats but also opportunities.......The possible relations between resilience engineering and built environments are explored. Resilience engineering has been concerned with the safe and efficient functioning of large and small industrial systems. These may be described as built systems or artefacts. The resilience engineering...... approach argues that if the performance of systems is to be resilient, then they must be able to respond, monitor, learn and anticipate. The last ability in particular means that they must be able to consider themselves vis-a-vis their environment, i.e. be sentient and reflective systems. In practice...

  11. The destabilizing influence of heat flow on the geological environment during underground nuclear explosions

    International Nuclear Information System (INIS)

    Politikov, M.I.; Kamberov, I.M.; Krivchenko, V.F.; Lukashenko, S.N.; Solodukhin, V.P.

    2001-01-01

    The study has determined the fact that the processes of gas-radioactive ectoplasm intrusion from nuclear cavities in the geological environment bring the significant contribution in bosom destabilizing besides the mechanical rock destruction as affected by underground nuclear explosions. Not only heat field forming that reduces the rock resistance and increases its porosity is related to it, but also the forming, on the way, of man-caused contamination aureoles of the geological environment, including the underground water bearing horizon. Unfortunately, this problem is hardly studied, mainly for the lack of reliable apparatus and methods. Judging by the results of information search, the best way to solve the problem is not yet known. (author)

  12. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  13. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  14. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  15. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  16. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  17. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  18. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  19. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    Science.gov (United States)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  20. Advanced Engineering Environment FY09/10 pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G.; Sego, Abraham L.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.

  1. Development and management of the knowledge base for the geological disposal technology. Annual report 2006

    International Nuclear Information System (INIS)

    Umeda, Koji; Oyama, Takuya; Kurosawa, Hideki; Semba, Takeshi; Takeuchi, Shinji; Tajikara, Masayoshi; Tsuruta, Tadahiko; Yasue, Ken-ichi; Ohi, Takao; Oda, Chie; Kamei, Gento; Kobayashi, Yasushi; Sasaki, Yasuo; Sawada, Atsushi; Taniguchi, Naoki; Tanai, Kenji; Naito, Morimasa; Nakayama, Masashi; Kuno, Yoshio; Fujita, Tomoo; Honda, Akira; Mihara, Morihiro; Miyahara, Kaname; Osawa, Hideaki; Fujishima, Atsushi; Kuji, Masayoshi; Saito, Haruo; Sanada, Hiroyuki; Niizato, Tadafumi; Funaki, Hironori; Maekawa, Keisuke; Fujiwara, Kenso

    2007-12-01

    To increase technical reliability in geological disposal technology of high-level radioactive waste, JAEA have been conducting R and D activities in the fields in the repository engineering, performance assessment (PA) of the geological disposal system, and geoscientific study. In the field of R and D on the repository engineering, laboratory experimental studies at Tokai Research Center are carried out by engineering-scale and non-radiogenic experiments. The studies on performance assessment include more realistic model development with extensive computer analyses and acquisition of basic data concerning the chemical properties and migration behavior of radionuclides under geological disposal conditions. The information obtained from the Underground Research Laboratories (URLs) is used to provide a realistic condition of geological environments for these studies. The R and D studies are also carried out for TRU waste. A particular JAEA R and D activity is to promote the projects of two Underground Research Laboratories (URLs): one at Mizunami city, in crystalline rock and the other at Horonobe town, in sedimentary rock. In the present stage (2nd R and D phase) of the URL projects, the investigation are being carried out during the excavation of shafts and drifts. Data obtained from the investigations will serve to verify and refine the results from the surface-based investigations and characterize the evolution of the geological environment during drift excavation. The research on natural processes, such as fault and volcanic activities, is also conducted to provide better understanding of long-term stability on the geological environment. JAEA has initiated a project to develop the next generation of novel knowledge management system (KMS) to develop and manage the technical knowledge base for supporting implementers and regulators. This knowledge base includes all technical achievements by the JAEA as well as know-how and experience which have been accumulated

  2. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    Science.gov (United States)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  3. Environmental education in Saudi general environment system - an engineering perspective

    International Nuclear Information System (INIS)

    Abdulrahman Salih Hariri

    2006-01-01

    The Saudi Cabinet of Ministers approved the Saudi General Environment System (SGES) in 2001. This approval is considered a step forward towards preserving the environment in Saudi Arabia. One of the targets of this system is to make environmental planning as an un-replaceable part of every comprehensive development planning in all industrial, agricultural, and architectural sectors. Achieving such a target requires a specialized labor force. Therefore, College of Engineering should act positively and actively in disseminating environmental awareness among engineers since they play a major rule in development projects. A degree in environmental engineering is a must at present, which is not available yet at any university in Saudi Arabia. Details of a B. Sc degree in environmental engineering offered by two universities in USA, are discussed. The syllabus of a degree in environment engineering adapted for the Saudi environment and culture is outlined

  4. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    Science.gov (United States)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  5. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  6. Creating Learning Environment Connecting Engineering Design and 3D Printing

    Science.gov (United States)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  7. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  8. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  9. Collaborative Engineering Environments. Two Examples of Process Improvement

    NARCIS (Netherlands)

    Spee, J.B.R.M.; Bijwaard, D.; Laan, D.J.

    Companies are recognising that innovative processes are determining factors in competitiveness. Two examples from projects in aircraft development describe the introduction of collaborative engineering environments as a way to improve engineering processes. A multi-disciplinary simulation

  10. Modeling of irradiated graphite {sup 14}C transfer through engineered barriers of a generic geological repository in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Poskas, Povilas; Grigaliuniene, Dalia, E-mail: Dalia.Grigaliuniene@lei.lt; Narkuniene, Asta; Kilda, Raimondas; Justinavicius, Darius

    2016-11-01

    There are two RBMK-1500 type graphite moderated reactors at the Ignalina nuclear power plant in Lithuania, and they are under decommissioning now. The graphite cannot be disposed of in a near surface repository, because of large amounts of {sup 14}C. Therefore, disposal of the graphite in a geological repository is a reasonable solution. This study presents evaluation of the {sup 14}C transfer by the groundwater pathway into the geosphere from the irradiated graphite in a generic geological repository in crystalline rocks and demonstration of the role of the different components of the engineered barrier system by performing local sensitivity analysis. The speciation of the released {sup 14}C into organic and inorganic compounds as well as the most recent information on {sup 14}C source term was taken into account. Two alternatives were considered in the analysis: disposal of graphite in containers with encapsulant and without it. It was evaluated that the maximal fractional flux of inorganic {sup 14}C into the geosphere can vary from 10{sup −} {sup 11} y{sup −} {sup 1} (for non-encapsulated graphite) to 10{sup −} {sup 12} y{sup −} {sup 1} (for encapsulated graphite) while of organic {sup 14}C it was about 10{sup −} {sup 3} y{sup −} {sup 1} of its inventory. Such difference demonstrates that investigations on the {sup 14}C inventory and chemical form in which it is released are especially important. The parameter with the highest influence on the maximal flux into the geosphere for inorganic {sup 14}C transfer was the sorption coefficient in the backfill and for organic {sup 14}C transfer – the backfill hydraulic conductivity. - Highlights: • Graphite moderated nuclear reactors are being decommissioned. • We studied interaction of disposed material with surrounding environment. • Specifically {sup 14}C transfer through engineered barriers of a geological repository. • Organic {sup 14}C flux to geosphere is considerably higher than inorganic

  11. Study on the interaction mechanism between the special geological environment and their extreme geo-microbes in Dagang Oilfield by combined methods

    Science.gov (United States)

    Yao, Jun

    2010-05-01

    Geo-microbes and their function were widespread ever since life appeared on the earth. Geo-microbiological process has left a rich and colorful material record in the geological body of earth, the most critical record of which is all sorts of organic hieroglyph and various forms of organic matter derived from bio-organisms, and oil field is the most ideal geological location to preserve these organic matters. It have already produced or might produce petroleum and natural gas sedimentary rocks under natural conditions, also known as olefiant (gas) rock or the parent rock, which is the product of the interaction between the life-system and earth environmental system in the specific geological conditions and integrate the whole microbial ecosystem in the geological time. The microbial community under extreme geological environment of Dagang Oilfield is relatively simple, therefore it is quite easy to investigate the special relationship between geo-microbes and biogeochemistry. We have mastered a large number of information related with the geological condition and biological species of Dagang Oilfield; what's more we also have isolated a number of archimycetes strains with different extremophiles capacity from the core samples collected in the Dagang oil field. At present, we are to proceed with the cooperative research at Environment School of Yale University and Institute of the Earth's biosphere using these strains. In the future, we will work together to carry out geological surveys in the field using international first-class equipment and methods and study the geological environment of Dagang Oilfield utilizing isotope techniques and mineral phase analysis method. Meanwhile we are going to undertake the on-line monitoring of the overall microbial activity of these collected geological samples, the specific metabolic activity of these extreme strains of microorganisms and the biomarkers produced during their metabolic processes under laboratory conditions

  12. Advanced engineering environment collaboration project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  13. Advanced engineering environment collaboration project

    International Nuclear Information System (INIS)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-01-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications

  14. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [Georgia Tech Research Corporation, Atlanta, GA (United States); Santamarina, J. Carlos [King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2017-12-30

    Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate natural hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.

  15. Connecting streamlined subglacial bedforms with the geological/geographical environment in which they are located.

    Science.gov (United States)

    Dowling, Tom; Möller, Per; Greenwood, Sarah; Spagnolo, Matteo; Åkesson, Maria; Fraser, Stephen; Hughs, Anna; Clark, Chris

    2016-04-01

    Much work has qualitatively shown that there appears to be a relationship between the morphology of streamlined subglacial bedforms (drumlinoids) and the geological/geographical environment in which said bedforms are located upon, particularly in terms of bedrock influence. However, the one quantitative study that has been carried out on this connectivity (Greenwood and Clark, 2010) found that there appears to be a connection between bedrock type and morphology only at a local scale. At a regional scale the most important geological factor seemed to be the properties of the substrate, usually till. In order to investigate these connections further, self-organising maps (SOM) are used to investigate the role of contextual geology/geography in drumlinoid morphology. The SOM method allows the statistical exploration of data that cannot normally be evaluated by traditional means; categorical data (e.g. bedrock type) can be used in the same analysis as continuous/vector data (e.g. drift depth). Here, three large morphological data sets from Sweden (20 041), Britain (36 104) and Ireland (13 454) are combined with bedrock type, drift depth, basal elevation and distance to esker to see if there are any relationships to be found between them. The results indicate that there are pervasive, statistically significant, and weak to very weak correlations between contextual geological/geographical factors and drumlinoid morphology. The most important contextual factor appears to be 'drift depth', followed by 'distance to esker'. Therefore, models of drumlinoid formation and any efforts to use such features for palaeo-ice reconstruction must take into account the geological and geographical environment in which they are situated. The logical extension of this is that models of ice-sheet growth and retreat must also take into account and be sensitive to the type of substratum present beneath the ice. Further research into the effect of drift properties on the flow of ice is needed.

  16. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  17. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements

  18. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  19. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  20. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  1. From creekology to geology: Finding and conserving oil on the Southern Plains, 1859--1930

    Science.gov (United States)

    Frehner, Brian

    This dissertation tells the story of the oil industry's westward migration from Pennsylvania to the Southern Plains states of Kansas, Oklahoma, and Texas and how different environments in these regions influenced prospectors' methods for finding oil. Petroleum engineers, geologists, and businessmen take center stage throughout the narrative, and I emphasize how their biases, values, and interests influenced the kind of knowledge produced. At the heart of this story lay a contest between professional, university-trained engineers and geologists and so-called practical oil men, or "wildcatters," who received their training less formally from surveying the landscape. Although both groups performed field work in their search for oil, I explore how each learned very different information from that activity. Wildcatters met with so much success that the oil industry failed to take geologists seriously for approximately fifty years after 1860 when the Pennsylvania oil boom started, and I argue that the environment played an important role in this contest for authority between oil prospectors who learned their trade through hands-on experience and those who learned it primarily in the classroom. I continue this theme by showing how the environment actively influenced the growing acceptance of geologists as the oil industry migrated west and companies with interests in Kansas, Oklahoma, and Texas began hiring geologists and establishing their own geological research departments. A pioneer in the use of geology, Henry L. Doherty, controlled Cities Service holding company and dispatched an army of geologists who discovered significant oil strikes in these states. Doherty's embrace of university-trained experts led him to advocate conservation of oil on the basis of geological and engineering principles. Practical men in Oklahoma, however, recognized the need for conservation even earlier and succeeded in lobbying their state legislature for laws which proved effective long

  2. ENGINEERING-GEOLOGICAL CHARACTERISTICS OF THE LANDSLIDE MLIJA AND THEIR IMPACT ON ENGINEERING STRUCTURES (OMIŠ, SOUTHERN CROATIA

    Directory of Open Access Journals (Sweden)

    Slobodan Šestanović

    1998-12-01

    Full Text Available In order to design the by-pass road of the city of Omiš which will partially he founded on the landslide Mlija and for the safety of foundations of houses, detail subsurface exploration especially engineering-geological surveys, geophysical surveys, boring and laboratory tests of the sliding material were conducted. Obtained results are presented in this paper. Due to numerous damages of roads, walls and houses built in the area of Mlija and Borak, the possibility of construction in the area was discussed and the foundation method proposed. In order to obtain an overview of circumstances, constant monitoring of variations of the water table level and velocity of the moving material has been proposed.

  3. Civil engineering challenge with nuclear waste

    International Nuclear Information System (INIS)

    Day, D.

    1985-01-01

    The civil engineer can help to solve the problems in disposing of nuclear waste in a deep geologic formation. The site for a nuclear waste repository must be carefully selected so that the geology provides the natural barrier between the waste and the accessible environment specified by the NRC and the EPA. This engineer is familiar with the needed structure and conditions of the host and surrounding rocks, and also the hydraulic mechanisms for limiting the migration of water in the rocks. To dispose of the nuclear waste underground requires stable and long-lasting shafts and tunnels such as civil engineers have designed and constructed for many other uses. The planning, design and construction of the ground surface facilities for a nuclear waste repository involves civil engineering in many ways. The transporation of heavy, metal shielded casks requires special attention to the system of highways and railroads accessing the repository. Structures for handling the shipping casks and transferring the waste onsite and into the deep geologic formation need special considerations. The structures must provide the NRC required containment, including hot cells for remote handling. Therefore, structural design strives for buildings, ventilation structures, shaft headframes, etc., to be earthquake and tornado-proof. These important design bases and considerations for the civil engineer working on a nuclear waste repository are discussed in this paper

  4. Introduction to environmental engineering

    Science.gov (United States)

    Šalić, Anita; Zelić, Bruno

    2018-02-01

    Nowadays we can easily say that environmental engineering is truly an interdisciplinary science. Combining biology, ecology, geology, geography, mathematics, chemistry, agronomy, medicine, economy, etc. environmental engineering strives to use environmental understanding and advancements in technology to serve mankind by decreasing production of environmental hazards and the effects of those hazards already present in the soil, water, and air. Major activities of environmental engineer involve water supply, waste water and solid management, air and noise pollution control, environmental sustainability, environmental impact assessment, climate changes, etc. And all this with only one main goal - to prevent or reduce undesirable impacts of human activities on the environment. To ensure we all have tomorrow.

  5. Advanced engineering environment pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  6. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  7. Forecasting the changes in engineering-geological properties of loess rocks by a penetration-logging method

    International Nuclear Information System (INIS)

    Saparov, A.

    1977-01-01

    Changes of volume weight, volume numidity, side friction and head resistance of loess rocks are considered. It is established, that the most perspective methods for forecasting engineering-geological properties of loess rocks are the methods of radioactivity logging and static probing. The quantitative determinations of physical and mechanical properties are made using the data of the following geophysical methods: gamma-gamma logging, neutron logging and gamma logging

  8. Review on study of multi-physics in environment engineering

    International Nuclear Information System (INIS)

    Liu Shanli; Zhao Jian; Sheng Jinchang

    2006-01-01

    This paper analyzes some problems on multi-field coupling ones between seepage mechanics and other physical and chemical processes (such as temperature field. stress field, solute transport. chemical action and so on) in environment engineering, it explains the research theory of multi-field coupling, it summarizes the abroad and domestic research about the model of multi-field problem and finally it looks into the future of research tendency in environment engineering. (authors)

  9. U.S. Geological Survey Rewarding Environment Culture Study, 2002

    Science.gov (United States)

    Nash, Janis C.; Paradise-Tornow, Carol A.; Gray, Vicki K.; Griffin-Bemis, Sarah P.; Agnew, Pamela R.; Bouchet, Nicole M.

    2010-01-01

    In its 2001 review of the U.S. Geological Survey (USGS), the National Research Council (NRC, p. 126) cautioned that ?high-quality personnel are essential for developing high-quality science information? and urged the USGS to ?devote substantial efforts to recruiting and retaining excellent staff.? Recognizing the importance of the NRC recommendation, the USGS has committed time and resources to create a rewarding work environment with the goal of achieving the following valued outcomes: ? USGS science vitality ? Customer satisfaction with USGS products and services ? Employee perceptions of the USGS as a rewarding place to work ? Heightened employee morale and commitment ? The ability to recruit and retain employees with critical skills To determine whether this investment of time and resources was proving to be successful, the USGS Human Resources Office conducted a Rewarding Environment Culture Study to answer the following four questions. ? Question 1: Does a rewarding work environment lead to the valued outcomes (identified above) that the USGS is seeking? ? Question 2: Which management, supervisory, and leadership behaviors contribute most to creating a rewarding work environment and to achieving the valued outcomes that the USGS is seeking? ? Question 3: Do USGS employees perceive that the USGS is a rewarding place to work? ? Question 4: What actions can and should be taken to enhance the USGS work environment? To begin the study, a conceptual model of a rewarding USGS environment was developed to test assumptions about a rewarding work environment. The Rewarding Environment model identifies the key components that are thought to contribute to a rewarding work environment and the valued outcomes that are thought to result from having a rewarding work environment. The 2002 Organizational Assessment Survey (OAS) was used as the primary data source for the study because it provided the most readily available data. Additional survey data were included as they

  10. Engineering Compensations in Web Service Environment

    DEFF Research Database (Denmark)

    Schäfer, Micahel; Dolog, Peter; Nejdl, Wolfgang

    2007-01-01

    Business to business integration has recently been performed by employing Web service environments. Moreover, such environments are being provided by major players on the technology markets. Those environments are based on open specifications for transaction coordination. When a failure in such a......Business to business integration has recently been performed by employing Web service environments. Moreover, such environments are being provided by major players on the technology markets. Those environments are based on open specifications for transaction coordination. When a failure...... in such an environment occurs, a compensation can be initiated to recover from the failure. However, current environments have only limited capabilities for compensations, and are usually based on backward recovery. In this paper, we introduce an engineering approach and an environment to deal with advanced...... compensations based on forward recovery principles. We extend the existing Web service transaction coordination architecture and infrastructure in order to support flexible compensation operations. A contract-based approach is being used, which allows the specification of permitted compensations at runtime. We...

  11. Towards a mature measurement environment: Creating a software engineering research environment

    Science.gov (United States)

    Basili, Victor R.

    1990-01-01

    Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.

  12. Geological-Hydrological Site Evaluation for NPP Planning

    Energy Technology Data Exchange (ETDEWEB)

    Faust, Brigitte; Mini, Paolo [Nordostsschweizerische Kraftwerke AG NOK, Parkstrasse 23, 5401 Baden (Switzerland)

    2008-07-01

    NOK is investigating the potential replacement of the current NPP in Beznau. In order to meet the requirements with respect to a general licence application, geological, seismological, and geotechnical engineering, but also hydrological boundary conditions have been defined. These conditions define the nature of necessary investigations to obtain the geological, seismic, geotechnical and hydrological data themselves forming the basis to determine the site suitability. Viability has to be provided that a NPP can be built and operated at the proposed site without compromising public health, safety and environment. The collected data are also the basis for the design of all safety relevant structures, systems, and components. For example, the latter have to withstand the effects of natural phenomena such as earthquakes and human induced impact such as airplane crash without loosing their capability to perform the assigned safety functions. (authors)

  13. Geological-Hydrological Site Evaluation for NPP Planning

    International Nuclear Information System (INIS)

    Faust, Brigitte; Mini, Paolo

    2008-01-01

    NOK is investigating the potential replacement of the current NPP in Beznau. In order to meet the requirements with respect to a general licence application, geological, seismological, and geotechnical engineering, but also hydrological boundary conditions have been defined. These conditions define the nature of necessary investigations to obtain the geological, seismic, geotechnical and hydrological data themselves forming the basis to determine the site suitability. Viability has to be provided that a NPP can be built and operated at the proposed site without compromising public health, safety and environment. The collected data are also the basis for the design of all safety relevant structures, systems, and components. For example, the latter have to withstand the effects of natural phenomena such as earthquakes and human induced impact such as airplane crash without loosing their capability to perform the assigned safety functions. (authors)

  14. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and

  15. Software Engineering Environment for Component-based Design of Embedded Software

    DEFF Research Database (Denmark)

    Guo, Yu

    2010-01-01

    as well as application models in a computer-aided software engineering environment. Furthermore, component models have been realized following carefully developed design patterns, which provide for an efficient and reusable implementation. The components have been ultimately implemented as prefabricated...... executable objects that can be linked together into an executable application. The development of embedded software using the COMDES framework is supported by the associated integrated engineering environment consisting of a number of tools, which support basic functionalities, such as system modelling......, validation, and executable code generation for specific hardware platforms. Developing such an environment and the associated tools is a highly complex engineering task. Therefore, this thesis has investigated key design issues and analysed existing platforms supporting model-driven software development...

  16. Electrochemical and corrosion properties of carbon steel in simulated geological disposal environments

    International Nuclear Information System (INIS)

    Sugimoto, Katsuhisa

    2011-01-01

    This paper reviews electrochemical and corrosion studies on the application of carbon steel to an overpack container, which is used for the geological disposal of radioactive wastes. Deaerated alkaline Na 2 SO 4 -NaHCO 3 - NaCl solutions and bentonite soaked with the solutions are used as simulated geological disposal environments. Electrochemical studies show the corrosion of the steel in an early stage is the activation control. Corrosion rates are controlled by the composition of the solutions, alloying elements, and the structure of the steel. The rates decrease with time due to the formation of FeCO 3 (siderite) film on the steel. Immersion corrosion tests show general corrosion morphology. Average corrosion rates of long duration have been evaluated. Clear proofs of the initiation of localized corrosion, such as pitting, crevice corrosion, hydrogen embrittlement and stress-corrosion cracking, have not been reported. (author)

  17. Analysis on the use of engineered barriers for geologic isolation of spent fuel in a reference salt site repository

    International Nuclear Information System (INIS)

    Cloninger, M.O.; Cole, C.R.; Washburn, J.F.

    1980-12-01

    A perspective on the potential durability and effectiveness requirements for the waste form, container and other engineered barriers for geologic disposal of spent nuclear fuel has been developed. This perspective is based on calculated potential doses to individuals who may be exposed to radioactivity released from a repository via a groundwater transport pathway. These potential dose commitments were calculated with an integrated geosphere transport and bioshpere transport model. A sensitivity analysis was accomplished by varying four important system parameters, namely the waste radionuclide release rate from the repository, the delay prior to groundwater contact with the waste (leach initiation), aquifer flow velocity and flow path length. The nuclide retarding capacity of the geologic media, a major determinant of the isolation effectiveness, was not varied as a parameter but was held constant for a particular reference site. This analysis is limited to looking only at engineered barriers whose net effect is either to delay groundwater contact with the waste form or to limit the rate of release of radionuclides into the groundwater once contact has occurred. The analysis considers only leach incident scenarios, including a water well intrusion into the groundwater near a repository, but does not consider other human intrusion events or catastrophic events. The analysis has so far been applied to a reference salt site repository system and conclusions are presented.Basically, in nearly all cases, the regional geology is the most effective barrier to release of radionuclides to the biosphere; however, for long-lived isotopes of carbon, technetium and iodine, which were poorly sorbed on the geologic media, the geology is not very effective once a leach incident is initiated

  18. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  19. Study to optimize a disposal tunnel layout taking into account heterogeneous characteristics of the geological environment

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Toida, Masaru; Yanagizawa, Koichi

    2007-01-01

    The geological environment has spatially heterogeneous characteristics with varied host rock types, fractures and so on. In this case the generic disposal tunnel layout, which has been designed by JNC, is not the most suitable for HLW disposal in Japan. The existence of spatially heterogeneous characteristics means that in the repository region there exist sub-regions that are more favorable from the perspective of long-term safety and ones that are less favorable. In order that the spatially heterogeneous environment itself may be utilized most effectively as an NBS, an alternative design of disposal tunnel layout is required. Focusing on the geological environment with spatially heterogeneous characteristics, the authors have developed an alternative design of disposal tunnel layout. The alternative design adopts an optimization approach using a 'variable disposal tunnel layout'. The optimization approach minimizes the number of locations where major water conducting fractures are intersected, and maximizes the number of emplacement locations for waste packages. This paper will outline the variable disposal tunnel layout and its applicability. (author)

  20. Preparation of information bases on long-term stability of geological environment

    International Nuclear Information System (INIS)

    Umeda, Koji; Nohara, Tsuyoshi; Fujiwara, Osamu; Asamori, Koichi; Kinoshita, Hirohisa; Nakatuka, Noboru

    2004-09-01

    From a point of clear grasp of change of thermal and dynamic properties of rock, and flow and geochemical characteristics of groundwater, the special phenomena in Japan such as upheaval, submergence, erosion, igneous activity, seismicity and fault and change of climate and seawater were investigated. Some figures and databases are prepared by collecting information and knowledge related. They contained seven databases: active faults map of Japan, structural map of sea region in Japan and its environs, quaternary volcanoes in Japan, well temperature database, spring geochemistry database, marine terrace in Japan and distribution of landslide configuration, and four figures: geothermal gradient, marine terrace, distribution of upheaval velocity and distribution of erosion velocity in Japan. These databases and figures are explained. The characteristics of diastrophism and igneous activity in Japan are discussed from the viewpoint of long-term stability of geological environment. (S.Y.)

  1. Study on the development of geological environmental model. 2

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Saito, Shigeyuki; Ueta, Shinzo; Ohashi, Toyo; Sasaki, Ryouichi; Tomiyama, Shingo

    2003-02-01

    The safety performance assessment was carried out in imaginary geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process from the data production to analysis in the three fields, and to systematize the knowledge base that unifies the information flow hierarchically. The information flow for geological environment model generation process is examined and modified base on the product of the research of 'Study on the development of geological environment model' that was examined in 2002. The work flow diagrams for geological structure and hydrology are modified, and those for geochemical and rock property are examined from the scratch. Furthermore, database design was examined to build geoclinal environment database (knowledgebase) based on the results of the systemisation of the environment model generation technology. The geoclinal environment database was designed and the prototype system is build to contribute databased design. (author)

  2. Several aspects of the effect of nuclear power engineering and thermal power engineering on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F

    1979-01-01

    A survey is made of the comparative effect of nuclear power engineering and thermal power engineering on environment and man. The most significant approaches to solution of radio-ecological problems of APS are found.

  3. Bioreactor engineering of stem cell environments.

    Science.gov (United States)

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-11-15

    Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The part played by applied geology in nuclear power plant site studies

    International Nuclear Information System (INIS)

    Giafferi, J.L.

    1994-01-01

    Site-related geological problems are one of the constraints affecting the environment of nuclear power plants. The natural features (soil and subsoil) at the nuclear power plant site affect numerous factors in the design, construction and operation of the civil engineering structures. The site geological criteria are not solely restricted to the soil as a static support for the structures. Earth tremors in France are of moderate intensity but the likelihood of their occurrence must nevertheless be taken into account for each site. Studies must concern the geological and seismic features of the region as well as the soil and subsoil configurations and composition in the immediate vicinity of the site in order to determine the physical characteristics of the earthquakes so that the safety of the plant can be guaranteed; in many cases, water tables have also to be taken into consideration. Geologic survey techniques are discussed. 13 figs., 7 refs

  5. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  6. The Influence of Engineering-Geological Conditions on the Construction of the Radioactive Waste Dump

    Directory of Open Access Journals (Sweden)

    Jozef Kuzma

    2007-01-01

    Full Text Available A secure stability and reliable serviceability of the radioactive dump is a difficult engineering problem. Due to the difficult geological formations determined mainly by a high compressibility, the low shear strength of soils, and the high ground water level, or a high upward hydrostatic pressure these demands will increase. An influence of the required reliability and the lifespan on the structure of these specific objects is considerable. In this contribution, we are trying to contribute to the problem of solving these difficulties and complicated problems.

  7. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  8. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    Science.gov (United States)

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  9. Progress in the study on Pu chemical behavior under the geological environment

    International Nuclear Information System (INIS)

    Zhang Yingjie; Fan Xianhua

    2006-01-01

    The generation, characteristic, and disposal technology of the high level radioactive waste were discussed, and a progress in the study on the chemical behavior of Pu, a transuranic element possessing the long-term potential risk for the environment, under the geological repository was reviewed. Release behavior of Pu from the high level radioactive glass waste form, the basic chemical reactions of Pu possibly happening in groundwater, including solubility, complexation, redox reaction, and colloidal formation. Some proposals for the further work in China are also suggested. (authors)

  10. The diesel engine and the environment

    International Nuclear Information System (INIS)

    1991-01-01

    For more than 15 years, the development of engines has been oriented towards reducing the emissions of exhaust substances that are harmful to the environment. In the case of diesel engines, emission control is mainly concentrated to nitrogen oxides (NO x ) and particulates. Exhaust emission control has already advanced so far that the results achieved would have been regarded unrealistic a mere ten years ago. Diesel exhaust gases also include hydrocarbons (HC) and carbon monoxide (CO), although technology is approaching the stage at which these substances will have been eliminated. This report summarizes problem areas of exhaust emission control, exhaust emission theory, exhaust gas substances and environmental chemistry, emission regulations, risks of automotive exhaust gases, among others. 33 refs

  11. Engineering geologic conditions at the sinkhole entrance to Logan Cave, Benton County, Arkansas

    Science.gov (United States)

    Schulz, William H.; McKenna, Jonathan P.

    2004-01-01

    Logan Cave, located in Benton County, Arkansas, is inhabited by several endangered and threatened species. The cave and surrounding area was designated a National Wildlife Refuge under the control of the U.S. Fish and Wildlife Service (USFWS) in 1989. Cave researchers access the cave through a steep-sided sinkhole entrance, which also is one of the two access points used by endangered bats. There is evidence of instability of one of the entrance slopes that has raised concerns that the entrance could close if slope failure was to occur. At the request of USFWS, we performed an engineering geologic investigation of the sinkhole to evaluate stability of this slope, which is comprised of soil, and other mechanisms of sediment transport into the cave entrance. The investigation included engineering geologic mapping, sampling and laboratory testing of subsurface geologic materials, and slope-stability analysis. We found that the sinkhole slope that extends into the entrance of the cave is comprised of sandy and gravelly soil to the depths explored (6.4 meters). This soil likely was deposited as alluvium within a previous, larger sinkhole. Based on properties of the alluvium, geometry of the slope, and results of finite-element slope-stability analyses, we conclude that the slope is marginally stable. Future failures of the slope probably would be relatively thin and small, thus several would be required to completely close the cave entrance. However, sediment is accumulating within the cave entrance due to foot traffic of those accessing the cave, surface-water erosion and transport, and shallow slope failures from the other sinkhole slopes. We conclude that the entrance will be closed by sediment in the future, similar to another entrance that we identified that completely closed in the past. Several measures could be taken to reduce the potential for closure of the cave entrance, including periodic sediment removal, installation of materials that reduce erosion by

  12. Mining and engineering aspects and variants for the underground construction of a deep geological repository for radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Milchev, M.; Michailov, B.; Nanovska, E.; Harizanov, A.

    2003-01-01

    The aim of the present report is to investigate and to describe systematically the foreign experience, scientific and technical achievements and stages of development concerning the mining and engineering aspects and variants for underground construction of a deep geological repository for radioactive waste (RAW) and spent nuclear fuel (SNF). The ideal solution in managing the problems with harmful wastes seems to be either to remove them permanently from Earth (which is related with high risks and high costs) or to transform long-lived radionuclides to short-lived radionuclides using nuclear transmutation processes in a reactor or a particle accelerator. The latter is also a complex and immensely costly process and it can only reduce the quantities of some long-lived radionuclides, which can be then disposed in a geological repository. At present, the deep geological disposal remains the only solution for solving the problem with the hazard of storing radioactive wastes. The report submits a brief description and systematization of the performed investigations, accompanied by analysis of the scientific and technical level on world scale. The analysis is related with the particular geological conditions and the existing scientific studies available so far in Bulgaria. The main conclusions are that the complex scientific-technical and engineering problems related with the construction of a deep geological repository for RAW and SNF require long-term scientific investigations and preliminary complex works and it is high time to launch them in Bulgaria. (authors)

  13. Public Health Engineering for the Built Environment: Completing Sustainability

    NARCIS (Netherlands)

    Bronswijk, van J.E.M.H.; Koren, L.G.H.; Pernot, C.E.E.; Vliet, van A.A.M.; Rameckers, E.M.A.L.; Erkelens, P.A.; Jonge, de S.; Vliet, van A.A.M.

    2000-01-01

    Good health is a prerequisite for sustainable development. From ancient times on environments are built with the good of man in mind, especially to extend his vital life span. At first most building could be considered as public health engineering. Built environments, however, always posed new risks

  14. Engineers' Role in the Management of Working Environment in Danish Enterprises: Results of a National Survey

    DEFF Research Database (Denmark)

    Broberg, Ole; Hansen, Nanette Juhler; Høgsbo, Mette Maribo

    1998-01-01

    training at engineering schools are very limited. As the engineers find it very important to teach working environment at engineering schools it must be considered what kind of curriculum would be most effective for the engineering career. Finally, the engineers do not perceive that management or others......This study confirms that many engineers are not aware that they influence the working environment of other people through their engineering. Also, it indicates that the extent of influence dependends on engineering domain and task content. Many engineers and enterprises have an espoused theory...... expressing a positive attitude towards working environment considerations in engineering. However, the theory-in-action seems to be quite different. Engineers do not know what to do in relation to working environment considerations. They mainly point to solidifying their knowledge in the area combined...

  15. Use of space applications for geologic research

    Energy Technology Data Exchange (ETDEWEB)

    Presnukhin, V I

    1981-01-01

    Overview of literature published in USSR during 1969-1977 shows broad potential and effectiveness for using satellite imaging of earth in the geologic sciences: geomorphology, tectonics, engineering geology, and searh for useful ore and minerals.

  16. Performance monitoring of an improved disposal trench in a humid environment in a fractured geology

    International Nuclear Information System (INIS)

    Mills, D.; Razor, J.

    1988-01-01

    An engineering evaluation of an improved disposal trench at the Maxey Flats Waste Disposal Site is being conducted in order to demonstrate the feasibility of a burial trench suitable for use at a site in a humid environment and underlain by complex and fractured geologic media. This demonstration is one of several proposed final site stabilization alternatives which will have to be evaluated prior to final site closure. Due to requirements in the Central Midwest Compact Commission, no waste generated as a result of the site closure may be disposed in the Commission's disposal site. Hence, the waste will be disposed on-site. The demonstration trench was constructed and filled with waste during the fall of 1985 with final trench capping being completed in July 1986. Since that time the trench has been evaluated utilizing trench settlement monument elevations, leachate production measurements, leachate radionuclide analysis, chemical tracer analysis and trench water balance. Measurements performed to date indicated that the trench lower infiltration barrier has a permeability of about 1E-7 cm/sec. Water balance measurements indicated that less than one percent of the total rainfall crossed the trench capillary barrier. No settlement of the trench cap has been observed. No liquid has appeared in the leachate collection and monitoring sumps

  17. Study on the development of geological environmental model

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Ueta, Shinzo; Saito, Shigeyuki; Kawamura, Yuji; Tomiyama, Shingo; Ohashi, Toyo

    2002-03-01

    The safety performance assessment was carried out in potential geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process form the data production to analysis in the three fields, and to systemize the knowledge base that unifies the information flow hierarchically. The purpose of the research is to support the development of the unified analysis system for geological disposal. The development technology for geological environmental model studied for the second progress report by JNC are organized and examined for the purpose of developing database system with considering the suitability for the deep underground research facility. The geological environmental investigation technology and building methodology for geological structure and hydro geological structure models are organized and systemized. Furthermore, the quality assurance methods in building geological environment models are examined. Information which is used and stored in the unified analysis system are examined to design database structure of the system based on the organized methodology for building geological environmental model. The graphic processing function for data stored in the unified database are examined. furthermore, future research subjects for the development of detail models for geological disposal are surveyed to organize safety performance system. (author)

  18. Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments

    International Nuclear Information System (INIS)

    Wang, YIFENG; Xu, HUIFANG

    2000-01-01

    Crystalline phases of pyrochlore (e.g., CaPuTi 2 O 7 , CaUTi 2 O 7 ) have been proposed as a durable ceramic waste form for disposal of high level radioactive wastes including surplus weapons-usable plutonium. In this paper, the authors use a linear free energy relationship to predict the Gibbs free energies of formation of pyrochlore phases (CaMTi 2 O 7 ). The Pu-pyrochlore phase is predicted to be stable with respect to PuO 2 , CaTiO 3 , and TiO 2 at room temperatures. Pu-pyrochlore is expected to be stable in a geologic repository where silica and carbonate components are absent or limited. The authors suggest that a repository in a salt formation be an ideal environment for disposal of high level, pyrochlore-based ceramic wastes. In such environment, adding CaO as a backfill will make pyrochlore minerals thermodynamically stable and therefore effectively prevent actinide release from these mineral phases

  19. ESSE: Engineering Super Simulation Emulation for Virtual Reality Systems Environment

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Yeon, Choul W.

    2008-01-01

    The trademark 4 + D Technology TM based Engineering Super Simulation Emulation (ESSE) is introduced. ESSE resorting to three-dimensional (3D) Virtual Reality (VR) technology pledges to provide with an interactive real-time motion, sound and tactile and other forms of feedback in the man machine systems environment. In particular, the 3D Virtual Engineering Neo cybernetic Unit Soft Power (VENUS) adds a physics engine to the VR platform so as to materialize a physical atmosphere. A close cooperation system and prompt information share are crucial, thereby increasing the necessity of centralized information system and electronic cooperation system. VENUS is further deemed to contribute towards public acceptance of nuclear power in general, and safety in particular. For instance, visualization of nuclear systems can familiarize the public in answering their questions and alleviating misunderstandings on nuclear power plants answering their questions and alleviating misunderstandings on nuclear power plants (NPPs) in general, and performance, security and safety in particular. An in-house flagship project Systemic Three-dimensional Engine Platform Prototype Engineering (STEPPE) endeavors to develop the Systemic Three-dimensional Engine Platform (STEP) for a variety of VR applications. STEP is home to a level system providing the whole visible scene of virtual engineering of man machine system environment. The system is linked with video monitoring that provides a 3D Computer Graphics (CG) visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators easy access to visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators to access the virtual systems by using their virtual characters. Virtually Engineered NPP Informative systems by using their virtual characters. Virtually Engineered NPP Informative

  20. Seismic Microzonation of Breginjski Kot (NW Slovenia) Based on Detailed Engineering Geological Mapping

    Science.gov (United States)

    2013-01-01

    Breginjski kot is among the most endangered seismic zones in Slovenia with the seismic hazard assessed to intensity IX MSK and the design ground acceleration of 0.250 g, both for 500-year return period. The most destructive was the 1976 Friuli Mw = 6.4 earthquake which had maximum intensity VIII-IX. Since the previous microzonation of the area was based solely on the basic geological map and did not include supplementary field research, we have performed a new soil classification of the area. First, a detailed engineering geological mapping in scale 1 : 5.000 was conducted. Mapped units were described in detail and some of them interpreted anew. Stiff sites are composed of hard to medium-hard rocks which were subjected to erosion mainly evoked by glacial and postglacial age. At that time a prominent topography was formed and different types of sediments were deposited in valleys by mass flows. A distinction between sediments and weathered rocks, their exact position, and thickness are of significant importance for microzonation. On the basis of geological mapping, a soil classification was carried out according to the Medvedev method (intensity increments) and the Eurocode 8 standard (soil factors) and two microzonation maps were prepared. The bulk of the studied area is covered by soft sediments and nine out of ten settlements are situated on them. The microzonation clearly points out the dependence of damage distribution in the case of 1976 Friuli earthquake to local site effects. PMID:24453884

  1. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  2. Student Scientific Conference, 2008. Collection of contributions. Vol. 2 - Sections of geography, geology, environment, chemistry and didactics

    International Nuclear Information System (INIS)

    2008-04-01

    The conference included the following sections: (i) Biology (114 contributions); (ii) Geography (37 contributions); (iii) Geology (24 contributions); (iv) Environment (16 contributions); (v) Chemistry (11 contributions); (vi) Didactics (8 contributions). Contributions relevant to INIS interest have been inputted to INIS.

  3. Open environments to support systems engineering tool integration: A study using the Portable Common Tool Environment (PCTE)

    Science.gov (United States)

    Eckhardt, Dave E., Jr.; Jipping, Michael J.; Wild, Chris J.; Zeil, Steven J.; Roberts, Cathy C.

    1993-01-01

    A study of computer engineering tool integration using the Portable Common Tool Environment (PCTE) Public Interface Standard is presented. Over a 10-week time frame, three existing software products were encapsulated to work in the Emeraude environment, an implementation of the PCTE version 1.5 standard. The software products used were a computer-aided software engineering (CASE) design tool, a software reuse tool, and a computer architecture design and analysis tool. The tool set was then demonstrated to work in a coordinated design process in the Emeraude environment. The project and the features of PCTE used are described, experience with the use of Emeraude environment over the project time frame is summarized, and several related areas for future research are summarized.

  4. Appraisal of the physical and dynamic state of the Mayak operations geological environment with a view to underground radwaste disposal

    International Nuclear Information System (INIS)

    Velichkin, V.I.; Petrov, V.A.; Tarasov, N.N.; Poluektov, V.V.; Kochkin, B.T.; Asadulin, A.A.; Volkov, A.B.

    1995-01-01

    The results of the research into geological structure, geomorphology, paleotectonics, mineralogy and petrography, petrophysics and petrochemistry of the site occupied by the Mayak radiochemical operations are presented. The research was aimed at the identification of the site for underground disposal of solidified high-level radioactive wastes (HLW). Geotectonic position of the district in the regional structures is shown, and paragenesis of fold and fault structures formed at the various stages and under various conditions of strains in the geological environment are described. The internal structure, nature and rates of the development of the processes of metamorphic and hydrothermal-metasomatic transformation of the geological environment, as well as basic petrogeochemical features of the strata were brought out. Stress-strained state of the strata at the stage of Cenozoic deformations that is retained nowadays was simulated. Basic petrophysical characteristics of adjoining strata were identified. Non-uniformity of the development of fissure-pore systems in the profile of strata of volcanic and sedimentary origin and peculiarities of deformations were revealed. The given comprehensive research was recommended for the identification of geological blocks suitable in varying degrees for the HLW disposal to the district

  5. Bilingual encyclopedic dictionary English-Spanish in sciences: mining, chemistry, geology, metallurgic and environment

    International Nuclear Information System (INIS)

    Munoz Maradona, M.; Bellini, R.; Busleiman, M.

    2007-01-01

    This dictionary has been designed to satisfy scientists, researchers, technicians, interpreters, translators and students needs in the areas of chemistry, geology, mining, metallurgy and environment if they find it necessary to have an English-Spanish encyclopedia for their sciences. It is a reliable book when looking for words that are normally not included in everyday dictionaries. It is now reaching the final revision stage with more than 15,000 entries. It includes scientific terms, chemical formulas of minerals and other elements, noticeable scientists biographies, tables, graphics, and images so as to help readers understanding. It is divided into three columns: the first one presents the English term and its area of concern; the second, the corresponding Spanish equivalent, and in the third, a suitable explanation In this work has been stablished a relation betwwen geological units and mineralizations related with the aim to understand the hydrochemistry in this area for future environmental impact

  6. Experimental methodology to study radionuclide sorption and migration in geological formations and engineered barriers of waste repositories

    International Nuclear Information System (INIS)

    Rojo Sanz, H.

    2010-01-01

    In Spain, the waste management options include either the possibility of a final storage in a deep geological repository (DGR) or the centralized temporal surface disposal (CTS). DGRs are based in a multi-barrier concept with the geological barrier and including the vitrified waste, the metal containers and engineered barriers such as compacted bentonite and cement-based materials. On the other hand, CTS mainly considers concrete and cement to confine the metal canisters containing the waste. Radionuclide migration will mainly take place by the existence of chemical concentration gradients being thus diffusion the main transport mechanism or by the existence of hydraulic gradients due to the existence of water-conductive fractures. Radionuclide sorption/retention on the materials composing the natural and engineered barriers is the fundamental process controlling contaminant migration. The evaluation of sorption parameters and the understanding of the different mechanisms leading to radionuclide retention are very important issues. The study of diffusion processes is very relevant as well. This paper describes the main experimental methodologies applied to analyse radionuclide transport in the different barriers of radioactive repositories. Particularly we focused on obtaining of retention parameters as distribution coefficients, kd, or retardation factors, Rf, and diffusion coefficients of radionuclides. (Author) 6 refs.

  7. Engineering geological mapping of Dar es Salaam city, Tanzania ...

    African Journals Online (AJOL)

    Two basic maps were prepared, namely, geomorphological and geological map depicts the spatial extent of the Neogene geological formations. Three distinct sandstone terraces could be distinguished in Dar es Salaam region at 0-15 m and 30 – 40 m above sea level. The terraces comprised sandstones fringed by coral ...

  8. State and forecast of radioactive contamination of geological environment in the region of 'Shelter' object

    International Nuclear Information System (INIS)

    Shestopalov, V.M.; Boguslavskij, A.S.; Kukharenko, D.E.; Onishchenko, I.P.; Panasyuk, N.I.

    2001-01-01

    Chornobyl NPP and especially the surroundings of the 'Shelter' object are the epicenter of radioactive impact of Chornobyl accident on geological environment, including groundwater. The two data sets- north from the 'Shelter' where groundwater from under the 'Shelter' moves, and south from the 'Shelter' characterizing the groundwater flow in the up-stream direction from the 'Shelter'. After data processing the generalized models of present distribution of 3 H, 90 Sr, and 137 Cs in groundwater around the 'Shelter' were obtained. They reflect the major role of the 'Shelter' in access of tritium and Strontium-90 into groundwater and main influence of the buned active layer on groundwater contamination with Cesium-137. The result obtained corresponds to high migrational activity of these isotopes. Along with this, the significantly higher migrational activity of Tritium, as compared to Strontium-90, has been proved. Obtained model schematic maps were used for onented assessment of accumulated amounts of radionuclides sorbed by rocks of geological environment around the 'Shelter' object. In watered zone of Quaternary deposits they reach more than 4000 Ci of 137 Cs, and about 6000 Ci of 90 Sr

  9. The Industrial Engineer and Energy and Environment

    Directory of Open Access Journals (Sweden)

    Sirichan Thongprasert

    2009-02-01

    Full Text Available Industries have always been a major consumer of energy and a major source of greenhouse gas emissions, causing environmental problems. Concerns about the impact of industries on the environment have led industries to change or adapt their methodologies to be more efficient and environmentally responsible. This article explains the impact that has on the industrial engineer.

  10. The Industrial Engineer and Energy and Environment

    OpenAIRE

    Sirichan Thongprasert

    2009-01-01

    Industries have always been a major consumer of energy and a major source of greenhouse gas emissions, causing environmental problems. Concerns about the impact of industries on the environment have led industries to change or adapt their methodologies to be more efficient and environmentally responsible. This article explains the impact that has on the industrial engineer.

  11. Thermodynamic data for predicting concentrations of Pu(III), Am(III), and Cm(III) in geologic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat; Rao, Linfeng; Weger, H.T.; Felmy, A.R. [Pacific Northwest National Laboratory, WA (United States); Choppin, G.R. [Florida State University, Florida (United States); Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    1999-01-01

    This report provides thermodynamic data for predicting concentrations of Pu(III), Am(III), and Cm(III) in geologic environments, and contributes to an integration of the JNC chemical thermodynamic database, JNC-TDB (previously PNC-TDB), for the performance analysis of geological isolation system for high-level radioactive wastes. Thermodynamic data for the formation of complexes or compounds with hydroxide, chloride, fluoride, carbonate, nitrate, sulfate and phosphate are discussed in this report. Where data for specific actinide(III) species are lacking, the data were selected based on chemical analogy to other trivalent actinides. In this study, the Pitzer ion-interaction model is mainly used to extrapolate thermodynamic constants to zero ionic strength at 25degC. (author)

  12. Development of an engineering design process and associated systems and procedures for a UK geological disposal facility - 59160

    International Nuclear Information System (INIS)

    Rendell, Philip; Breen, Brendan; Clark, Alastair; Reece, Steve; O'Grady, Henry

    2012-01-01

    In the United Kingdom the Nuclear Decommissioning Authority (NDA) has been charged with implementing Government policy for the long-term management of higher activity radioactive waste. The UK Government is leading a site selection process based on voluntarism and partnership with local communities interested in hosting such a facility and as set out in the 'Managing Radioactive Waste Safely' White Paper (2008). The NDA has set up the Radioactive Waste Management Directorate (RWMD) as the body responsible for planning, building and operating a geological disposal facility (GDF). RWMD will develop into a separately regulated Site Licence Company (SLC) responsible for the construction, operation and closure of the facility. RWMD will be the Design Authority for the GDF; requiring a formal process to ensure that the knowledge and integrity of the design is maintained. In 2010 RWMD published 'Geological Disposal - Steps towards implementation' which described the preparatory work that it is undertaking in planning the future work programme, and the phases of work needed to deliver the programme. RWMD has now developed a process for the design of the GDF to support this work. The engineering design process follows a staged approach, encompassing options development, requirements definition, and conceptual and detailed designs. Each stage finishes with a 'stage gate' comprising a technical review and a specific set of engineering deliverables. The process is intended to facilitate the development of the most appropriate design of GDF, and to support the higher level needs of both the project and the community engagement programmes. The process incorporates elements of good practices derived from other work programmes; including process mapping, issues and requirements management, and progressive design assurance. A set of design principles have been established, and supporting design guidance notes are being produced. In addition a requirements management system is being

  13. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description. Appendix I. Engineering drawings

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    The engineering plans for a test facility to monitor radionuclide transport in water through partially saturated geological media are included. Drawings for the experimental set-up excavation plan and details, lysimeter, pad, access caisson, and caisson details are presented

  14. Horonobe Underground Research Laboratory project. Synthesis of phase 1 investigation 2001-2005, Volume 'geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Ota, Kunio; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Hama, Katsuhiro; Kunimaru, Takanori; Takeuchi, Ryuji; Tanai, Kenji; Kurikami, Hiroshi; Wakasugi, Keiichiro; Ishii, Eiichi

    2011-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project, of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the project as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  15. Horonobe Underground Research Laboratory project synthesis of phase I investigation 2001-2005. Volume 'Geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Tanai, Kenji; Nishimura, Mayuka; Kobayashi, Yasushi; Hiramoto, Masayuki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Wakasugi, Keiichiro; Nakano, Katsushi; Seo, Toshihiro; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Kurikami, Hiroshi; Kunimaru, Takanori; Ishii, Eiichi; Ota, Kunio; Hama, Katsuhiro; Takeuchi, Ryuji

    2007-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project (HOR), of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in HOR as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  16. Key scientific challenges in geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Wang Ju

    2007-01-01

    The geological disposal of high radioactive waste is a challenging task facing the scientific and technical world. This paper introduces the latest progress of high level radioactive disposal programs in the latest progress of high level radioactive disposal programs in the world, and discusses the following key scientific challenges: (1) precise prediction of the evolution of a repository site; (2) characteristics of deep geological environment; (3) behaviour of deep rock mass, groundwater and engineering material under coupled con-ditions (intermediate to high temperature, geostress, hydraulic, chemical, biological and radiation process, etc); (4) geo-chemical behaviour of transuranic radionuclides with low concentration and its migration with groundwater; and (5) safety assessment of disposal system. Several large-scale research projects and several hot topics related with high-level waste disposal are also introduced. (authors)

  17. Site selection for deep geologic repositories - Consequences for society, economy and environment

    International Nuclear Information System (INIS)

    2010-03-01

    In a few years, Switzerland will make the decision regarding site selection for geological underground repositories for the storage of radioactive wastes. Besides the safety issue, many citizens are interested in how such a repository will affect environment, economy and society in the selected site's region. This brochure summarizes the results of many studies on the socio-economic impacts of nuclear waste repositories. Radioactive wastes must be stored in such a way that mankind and environment are safely protected for a long period of time. How this goal may be achieved, is already known: geologic deep repositories warrant long-term safety. For the oncoming years in Switzerland the question is where the repository will be built. The search for an appropriate site for a repository in the proposed regions will launch discussions. Within the participative framework the regions may bring their requests. The demonstration of the safety of potential repository sites has the highest priority in the selection process. In the third procedural step additional rock investigations will be made. The socio-economic studies and the experience with existing plants show that radioactive waste management plants can be built and operated in good agreement with environmental requirements. The radioactive wastes in a deep underground repository are stored many hundred meters below the Earth's surface. There, they are isolated from our vital space. Technical barriers and the surrounding dense rock confinement prevent the release of radioactive materials into the environment. A deep repository has positive consequences for the regional economy. It increases trade and value creation and creates work places. The socio-economic impacts practically extend over one century, but strongly vary with time; they are the largest during the building period. High life quality and a positive population development in the selected site region are compatible with a deep repository. A fair and

  18. Obtaining reasonable assurance on geochemical aspects of performance assessment of deep geologic repositories

    International Nuclear Information System (INIS)

    Van Luik, A.E.; Serne, R.J.

    1986-01-01

    Providing reasonable assurance that a deep geologic disposal system will perform as required by regulation involves, in part, the building of confidence by providing a sound scientific basis for the site characterization, engineered system design, and system performance modeling efforts. Geochemistry plays a role in each of these activities. Site characterization must result in a description of the in situ geochemical environment that will support the design of the engineered system and the modeling of the transport of specific radionuclides to the accessible environment. Judging the adequacy of this site characterization effort is a major aspect of providing reasonable assurance. Within site characterization, there are a number of geochemical issues that need to be addressed such as the usefulness of natural analog studies, and assessing the very long-term stability of the site geochemistry, given expected temperature and radiation conditions

  19. Geologic-geochemical characteristics of Guidong granitic massif and recognition of geo-tectonic environment at the time of its emplacement

    Energy Technology Data Exchange (ETDEWEB)

    Jianhong, Li; Shanyuan, Wei; Mingyue, Feng [Beijing Research Inst. of Uranium Geology, Beijing (China); Liang, Liang [East China Inst. of Technology, Fuzhou (China)

    2004-11-01

    Based on the study of geologic characteristics, such as mineralogic assemblage, structural and textural features of granite of Guidong granitic massif, and by using petrochemical, trace-element and isotopic data, and some petrochemical, trace-element and isotopic diagrams widely applied to the identification of geo-tectonic environments, authors recognize that Guidong granitic massif was emplaced in post-orogenic collision environment. (authors)

  20. Geology knowledge application in civil engineering realization: Gas Pipeline

    International Nuclear Information System (INIS)

    Techera, J.

    2001-01-01

    The Company manager for the building project of south gas pipeline contracted technical services to National Direction of Geology and Mining DINAMIGE for study the geology.It studied Colonia-Montevideo stretch s and then Colonia-Porto Alegre stretch s of gas pipeline.The main purpose was determine the physical and mechanics earthly characteristic for in a future to bury the gas pipe

  1. Technical summary of geological, hydrological, and engineering studies at the Slick Rock Uranium Mill Tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1990-12-01

    The purpose of this document is to provide the Colorado Department of Health (CDH) with a summary of the technical aspects of the proposed remedial action for the Slick Rock tailings near Slick Rock, Colorado. The technical issues summarized in this document are the geology and groundwater at the Burro Canyon disposal site and preliminary engineering considerations for the disposal cell

  2. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  3. Engineering geology model of the Crater Lake outlet, Mt. Ruapehu, New Zealand, to inform rim breakout hazard

    Science.gov (United States)

    Cook, Stefan C. W.; Kennedy, Ben M.; Villeneuve, Marlène C.

    2018-01-01

    Mt. Ruapehu, in the central North Island of New Zealand, hosts a hot acidic Crater Lake over the active volcanic vent with a surface elevation of c. 2530 m.a.s.l. Volcanic activity and other montane processes have previously resulted in catastrophic releases of some or all of the c. 10 Mm3 of water retained in the lake, creating serious hazards downstream. A major lahar in March 2007 exposed a 10 m high face representative of the rock units impounding the lake, providing an opportunity to conduct both field and laboratory analysis to characterise the rock mass conditions at the outlet to assess the stability of the outlet area. This paper presents an engineering geology model of Crater Lake outlet. Our model shows three andesitic geological units at the outlet, each with different geological histories and physical and mechanical properties, which impact its stability. Geotechnical methods used to characterise the outlet include laboratory testing of the strength, stiffness, porosity and unit weight, and field-based rock mass characterisation using the geological strength index (GSI) and rock mass rating (RMR). Field observations, geomorphology mapping, historic and contemporary photographs, and laboratory results are combined to create cross sections that provide key information for establishing the engineering geology model. The units are recognised in what is informally termed the Crater Lake Formation: i) The upper surface layer is a c. 2 m thick sub-horizontal dark grey lava unit (Armoured Lava Ledge) with sub-horizontal cooling joints spaced at 0.2 m to 2.0 m intervals. The intact rock has a porosity range of 15-27%, density range of 1723-2101 kg/m3, GSI range of 45-75, and unconfined compressive strength (UCS) range of 19-48 MPa. ii) Below this, and outcropping down the majority of the outlet waterfall is a poorly sorted breccia unit composed of block and matrix material (Lava Breccia). The blocks range from 0.1 m to 0.8 m in diameter with an average porosity

  4. Contribution of soil, water and food consumption to metal exposure of children from geological enriched environments in the coastal zone of Lake Victoria, Kenya.

    NARCIS (Netherlands)

    Oyoo-Okoth, E.; Admiraal, W.; Osano, O.; Manguya-Lusega, D; Ngure, V.; Kraak, M.H.S.; Chepkirui-Boit, V.; Makwali, J.

    2013-01-01

    Geologically enriched environments may contain high concentrations of some metals. In areas where industrial exposures remain superficial, children may be exposed to these geological metals through soil, drinking water and consumption of food locally grown. The aim of this study was to assess the

  5. Presumption of the distribution of the geological structure based on the geological survey and the topographic data in and around the Horonobe area

    International Nuclear Information System (INIS)

    Sakai, Toshihiro; Matsuoka, Toshiyuki

    2015-06-01

    The Horonobe Underground Research Laboratory (URL) Project, a comprehensive research project investigating the deep underground environment in sedimentary rock, is being pursued by the Japan Atomic Energy Agency (JAEA) at Horonobe-cho in Northern Hokkaido, Japan. One of the main goals of the URL project is to establish techniques for investigation, analysis and assessment of the deep geological environment. JAEA constructed the geologic map and the database of geological mapping in Horonobe-cho in 2005 based on the existing literatures and 1/200,000 geologic maps published by Geological Survey of Japan, and then updated the geologic map in 2007 based on the results of various investigations which were conducted around the URL as the surface based investigation phase of the URL project. On the other hand, there are many geological survey data which are derived from natural resources (petroleum, natural gas and coal, etc.) exploration in and around Horonobe-cho. In this report, we update the geologic map and the database of the geological mapping based on these geological survey and topographical analysis data in and around the Horonobe area, and construct a digital geologic map and a digital database of geological mapping as GIS. These data can be expected to improve the precision of modeling and analyzing of geological environment including its long-term evaluation. The digital data is attached on CD-ROM. (J.P.N.)

  6. Crystallography and environment development

    International Nuclear Information System (INIS)

    Radwan, M.M.

    1992-01-01

    Crystallography, the study of atomic and molecular structure, has given detailed information about the fine-structure of the inorganic and living world-i.e. about the environment (in the widest sense of the world)-. It has contributed to geology (at the atomic level), crystal chemistry, the structure of minerals, soils and clays. In the case of the living world it has contributed to structural studies of biological molecules; proteins, nucleic acids (DNA and RNA), and polysaccharides. knowing how the atoms in a material are arranged allows to understand the relationship between atomic structure and properties of these materials. Today we are entering a new age in crystallography-the age of genetic engineering in the living world, and inorganic crystallographic engineering, where we use crystallographic information from the structures nature has given us, to begin to design and build structure of our own, of specified properties, aiming at the welfare of man and the development of his environment

  7. Executive control systems in the engineering design environment

    Science.gov (United States)

    Hurst, P. W.; Pratt, T. W.

    1985-01-01

    Executive Control Systems (ECSs) are software structures for the unification of various engineering design application programs into comprehensive systems with a central user interface (uniform access) method and a data management facility. Attention is presently given to the most significant determinations of a research program conducted for 24 ECSs, used in government and industry engineering design environments to integrate CAD/CAE applications programs. Characterizations are given for the systems' major architectural components and the alternative design approaches considered in their development. Attention is given to ECS development prospects in the areas of interdisciplinary usage, standardization, knowledge utilization, and computer science technology transfer.

  8. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    R. Jarek

    2005-01-01

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  9. Russian geological education in the world market (the case of Russian State Geological Prospecting University

    Directory of Open Access Journals (Sweden)

    Vasily Ivanovich Lisov

    2016-12-01

    Full Text Available Higher geological education in Russia and in MSGPI-RSGPU specific. It - engineering. The mineral deposits determine the development of the global industry and foreign trade. Growing global demand for the profession of geologists and mining engineers. Training of foreign students in Russia has its own geopolitical and economic importance. In Russia a strong resource-based economy. It attracts students from developing countries. MGRI-RSGPU is the leading universities training specialists for mining. The article presents data about the University and types of education. Shown scientific and educational problems in higher education. This article discusses the prospects for the promotion of Russian higher geological education at the world market of educational services. The increasing role of new scientific and technological achievements in mining, enhanced environmental as well as staff requirements is revealed. Given that the leading schools in the mining industry, in addition to Russia, are formed in Canada, Germany, USA, Australia, Great Britain, many developing countries rich in natural resources, have begun to form their own national centers for training in this area. Under such competitive conditions Russian geological education maintains its own niche. Recognition of this is the active participation of Russian universities in the creation and development of the World Forum of sustainable development of mineral universities (WFURS, described in the article. The main factors of competitiveness that led to leading positions of Russian State Geological Prospecting University in system of the Russian geological education are described. Particular attention is paid to the international activities of Russian higher educational institutions including Geological Prospecting University. The basic statistics (both in the context of the country, and in the field of foreign undergraduate and graduate students enrolled at this university is provided. The

  10. Proceedings of the eighth thematic conference on geologic remote sensing

    International Nuclear Information System (INIS)

    Balmer, M.L.; Lange, F.F.; Levi, C.G.

    1991-01-01

    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems

  11. A review of warship man-machine-environment system engineering

    Directory of Open Access Journals (Sweden)

    ZHANG Yumei

    2017-03-01

    Full Text Available Warship Man-Machine-Environment System Engineering (MMESE is an integral part of the overall design, and its design principles were proposed according to safety, efficiency, comfort and pleasure. The typical characteristics of MMESE are summarized. The operating environment is extremely terrible on long voyages. High level collaboration is required due to the complex task system and large manpower demand. Owing to the dense computer interface information, the mental cognitive burden on the crew is heavy. The MMESE technology system is divided into four parts:man-machine coordinated, man-environment coordinated, the evaluation of man-machine-environment characteristics and the ergonomic simulation. Based on the MMESE development venation in this paper, the overseas and domestic research statuses are expounded. Interactive optimization can be realized according to the following aspects:researching the basic human characteristics of the crew, applying this to the warship's overall design, and formulating relevant ergonomic standards and norms. Next, Human System Integration (HSI professional engineering was introduced comprehensively into the marines in order to achieve an optimal system. On this basis, we completed the future development trend analysis. All these studies and results have some reference meaning for guiding the integrated optimization of warships as a whole, downsizing the manpower and improving efficiency.

  12. Analysis of the processes defining radionuclide migration from deep geological repositories in porous medium

    International Nuclear Information System (INIS)

    Brazauskaite, A.; Poskas, P.

    2004-01-01

    Due to the danger of exposure arising from long-lived radionuclides to humans and environment, spent nuclear fuel (SNF) and high level waste (HLW) are not allowed to be disposed of in near surface repositories. There exists an international consensus that such high level and long-lived radioactive wastes are best disposed of in geological repositories using a system of engineered and natural barriers. At present, the geological repository of SNF and HLW has not been realized yet in any country but there is a lot of experience in the assessment of radionuclide migration from deep repositories, investigations of different processes related to the safety of a disposal system. The aim of this study was to analyze the processes related to the radionuclide migration from deep geological repositories in porous medium such as SNF matrix dissolution, release mechanism of radionuclides from SNF matrix, radionuclide solubility, sorption, diffusive, advective transport of radionuclides from the canister and through the engineered and natural barriers. It has been indicated that SNF matrix dissolution, radionuclide solubility and sorption are sensitive to ambient conditions prevailing in the repository. The approaches that could be used for modeling the radionuclide migration from deep repositories in porous medium are also presented. (author)

  13. Application of local area network technology in an engineering environment

    International Nuclear Information System (INIS)

    Powell, A.D.; Sokolowski, M.A.

    1990-01-01

    This paper reports on the application of local area network technology in an engineering environment. Mobil Research and Development Corporation Engineering, Dallas, texas has installed a local area network (LAN) linking over 85 microcomputers. This network, which has been in existence for more than three years, provides common access by all engineers to quality output devices such as laser printers and multi-color pen plotters; IBM mainframe connections; electronic mail and file transfer; and common engineering program. The network has been expanded via a wide area ethernet network to link the Dallas location with a functionally equivalent LAN of over 400 microcomputers in Princeton, N.J. Additionally, engineers on assignment at remote areas in Europe, U.S., Africa and project task forces have dial-in access to the network via telephone lines

  14. Distribution and communication in software engineering environments. Application to the HELIOS Software Bus.

    OpenAIRE

    Jean, F. C.; Jaulent, M. C.; Coignard, J.; Degoulet, P.

    1991-01-01

    Modularity, distribution and integration are current trends in Software Engineering. To reach these goals HELIOS, a distributive Software Engineering Environment dedicated to the medical field, has been conceived and a prototype implemented. This environment is made by the collaboration of several, well encapsulated Software Components. This paper presents the architecture retained to allow communication between the different components and focus on the implementation details of the Software ...

  15. Development and Performance Verification of Fiber Optic Temperature Sensors in High Temperature Engine Environments

    Science.gov (United States)

    Adamovsky, Grigory; Mackey, Jeffrey R.; Kren, Lawrence A.; Floyd, Bertram M.; Elam, Kristie A.; Martinez, Martel

    2014-01-01

    A High Temperature Fiber Optic Sensor (HTFOS) has been developed at NASA Glenn Research Center for aircraft engine applications. After fabrication and preliminary in-house performance evaluation, the HTFOS was tested in an engine environment at NASA Armstrong Flight Research Center. The engine tests enabled the performance of the HTFOS in real engine environments to be evaluated along with the ability of the sensor to respond to changes in the engine's operating condition. Data were collected prior, during, and after each test in order to observe the change in temperature from ambient to each of the various test point levels. An adequate amount of data was collected and analyzed to satisfy the research team that HTFOS operates properly while the engine was running. Temperature measurements made by HTFOS while the engine was running agreed with those anticipated.

  16. Monitored Geologic Repository Project Description Document

    International Nuclear Information System (INIS)

    Curry, P.

    2000-01-01

    The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (CRWMS M and O 2000b) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) engineering design basis in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The engineering design basis documented in the PDD is to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the engineering design basis from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the engineering design basis captured in the SDDs and the design requirements captured in U.S. Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M and O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 2-1, the MGR Architecture (Section 4.1),the Engineering Design Bases (Section 5), and the Controlled Project Assumptions (Section 6)

  17. Predicting long-term performance of engineered geologic carbon dioxide storage systems to inform decisions amidst uncertainty

    Science.gov (United States)

    Pawar, R.

    2016-12-01

    Risk assessment and risk management of engineered geologic CO2 storage systems is an area of active investigation. The potential geologic CO2 storage systems currently under consideration are inherently heterogeneous and have limited to no characterization data. Effective risk management decisions to ensure safe, long-term CO2 storage requires assessing and quantifying risks while taking into account the uncertainties in a storage site's characteristics. The key decisions are typically related to definition of area of review, effective monitoring strategy and monitoring duration, potential of leakage and associated impacts, etc. A quantitative methodology for predicting a sequestration site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale geologic storage projects where projects will require quantitative assessments of potential long-term liabilities. An integrated assessment modeling (IAM) paradigm which treats a geologic CO2 storage site as a system made up of various linked subsystems can be used to predict long-term performance. The subsystems include storage reservoir, seals, potential leakage pathways (such as wellbores, natural fractures/faults) and receptors (such as shallow groundwater aquifers). CO2 movement within each of the subsystems and resulting interactions are captured through reduced order models (ROMs). The ROMs capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. The computational efficiency allows for performing Monte Carlo simulations necessary for quantitative probabilistic risk assessment. We have used the IAM to predict long-term performance of geologic CO2 sequestration systems and to answer questions related to probability of leakage of CO2 through wellbores, impact of CO2/brine leakage into shallow aquifer, etc. Answers to such questions are critical in making key risk management

  18. Monitored Geologic Repository Concept of Operations

    International Nuclear Information System (INIS)

    Curry, P.M.

    1999-01-01

    This updated document provides the top level guidance for development of the individual systems for the MGR which will be further developed in the System Description Documents. This document will serve as guidance for the development of functional interface and operational requirements. However, the data and engineering values presented in Monitored Geologic Repository Concept of Operations are provided as estimates or summaries of the current design. The original analyses or supporting documents must be utilized if the data or engineering values are used for design inputs. The concepts presented will be utilized as inputs for the development of operational concepts for the individual systems. It is recognized that the references listed may contain existing data or data which are to be verified. However, the data and engineering values presented will not impact the concepts presented in this technical document. As such, the data and engineering values are not being tracked as To Be Verified data. This revision was created to incorporate changes resulting from Enhanced Design Alternative II and Revision 3, DCN 01, of the Monitored Geologic Repository Requirements (YMP 1999)

  19. Estimates of the radiation environment for a nuclear rocket engine

    International Nuclear Information System (INIS)

    Courtney, J.C.; Manohara, H.M.; Williams, M.L.

    1992-01-01

    Ambitious missions in deep space, such as manned expeditions to Mars, require nuclear propulsion if they are to be accomplished in a reasonable length of time. Current technology is adequate to support the use of nuclear fission as a source of energy for propulsion; however, problems associated with neutrons and gammas leaking from the rocket engine must be addressed. Before manned or unmanned space flights are attempted, an extensive ground test program on the rocket engine must be completed. This paper compares estimated radiation levels and nuclear heating rates in and around the rocket engine for both a ground test and space environments

  20. Proceedings of the 7. Symposium on geology from southeastern Brazil

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents papers on the following subjects: regional geology of the proterozoic and fanerozoic, metallic and non metallic resources, tectoni-sedimentary evolution of the eastern margin Brazil basins and petroleum geology applied to the Santos, Campos and Espirito Santo basins, engineering and environmental geologies, ornamental rocks/building materials/mineral waters/industrial ores

  1. The geological model calibration - Learnings from integration of reservoir geology and field performance - Example from the upper carboniferous reservoirs of the Southern North Sea

    NARCIS (Netherlands)

    Moscariello, A.; Hoof, T.B. van; Kunakbayeva, G.; Veen, J.H. ten; Belt, F. van den; Twerda, A.; Peters, L.; Davis, P.; Williams, H.

    2013-01-01

    The Geological Model Calibration - Learnings from Integration of Reservoir Geology and Field Performance: example from the Upper Carboniferous Reservoirs of the Southern North Sea. Copyright © (2012) by the European Association of Geoscientists & Engineers All rights reserved.

  2. Knowledge management in an integrated design and engineering environment

    NARCIS (Netherlands)

    Reefman, R.J.B.; Van Nederveen, G.A.

    2012-01-01

    Organisations and / or disciplines in Building and Construction projects are usually working in their own design and engineering environments and using their own Building Information Models (BIM). The discipline models are merged into a project BIM which is mainly used to check for interferences or

  3. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  4. Environments for Fostering Effective Critical Thinking in Geotechnical Engineering Education (Geo-EFFECTs)

    Science.gov (United States)

    Pierce, Charles E.; Gassman, Sarah L.; Huffman, Jeffrey T.

    2013-01-01

    This paper describes the development, implementation, and assessment of instructional materials for geotechnical engineering concepts using the Environments for Fostering Effective Critical Thinking (EFFECTs) pedagogical framework. The central learning goals of engineering EFFECTs are to (i) improve the understanding and retention of a specific…

  5. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    International Nuclear Information System (INIS)

    Scheidt, Rafael de Faria; Vilain, Patrícia; Dantas, M A R

    2014-01-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers

  6. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    Science.gov (United States)

    de Faria Scheidt, Rafael; Vilain, Patrícia; Dantas, M. A. R.

    2014-10-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers.

  7. The Folding and Fracturing of Rocks: A milestone publication in Structural Geology research

    Science.gov (United States)

    Lisle, Richard; Bastida, Fernando

    2017-04-01

    In the field of structural geology, the textbook written by John G Ramsay in 1967, reprinted in 2004 and translated into Spanish and Chinese, is the one that has made the greatest research impact. With citations exceeding 4000 (Google Scholar) it far surpasses books by other authors on the subject, with this figure only being approached by his later book Modern Structural Geology (Ramsay and Huber 1983). In this paper we consider the factors that account for the book's success despite the fact that it is a research-level text beyond the comfort zone of most undergraduates. We also take stock of other measures of the book's success; the way it influenced the direction subsequent research effort. We summarize the major advances in structural geology that were prompted by Ramsay's book. Finally we consider the book's legacy. Before the publication of the book in 1967 structural geology had been an activity that had concentrated almost exclusively on geological mapping aimed at establishing the geometrical configuration of rock units. In fact, Ramsay himself has produced beautiful examples of such maps. However, the book made us aware that the geometrical pattern is controlled by the spatial variation of material properties, the boundary conditions, the deformation environment and the temporal variation of stresses. With the arrival of the book Structural Geology came of age as a modern scientific discipline that employed a range of tools such as those of physics, maths and engineering as well as those of geology.

  8. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  9. Study of an optimization approach for a disposal tunnel layout, taking into account the geological environment with spatially heterogeneous characteristics

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Toida, Masaru; Yanagizawa, Koichi

    2009-01-01

    The geological environment has spatially heterogeneous characteristics with varied host rock types, fractures and so on. In this case the generic disposal tunnel layout, which has been designed by JNC, is not the most suitable for HLW disposal in Japan. The existence of spatially heterogeneous characteristics means that in the repository region there exist sub-regions that are more favourable from the perspective of long-term safety and ones that are less favourable. In order that the spatially heterogeneous environment itself may be utilized most effectively as a natural barrier system, an alternative design of disposal tunnel layout is required. Focusing on the geological environment with spatially heterogeneous characteristics, the authors have developed an alternative design of disposal tunnel layout. The alternative design adopts an optimization approach using a variable disposal tunnel layout. The optimization approach minimizes the number of locations where major water-conducting fractures are intersected, and maximizes the number of emplacement locations for waste packages. This paper will outline the variable disposal tunnel layout and its applicability.

  10. Small County: Development of a Virtual Environment for Instruction in Geological Characterization of Petroleum Reservoirs

    Science.gov (United States)

    Banz, B.; Bohling, G.; Doveton, J.

    2008-12-01

    Traditional programs of geological education continue to be focused primarily on the evaluation of surface or near-surface geology accessed at outcrops and shallow boreholes. However, most students who graduate to careers in geology work almost entirely on subsurface problems, interpreting drilling records and petrophysical logs from exploration and production wells. Thus, college graduates commonly find themselves ill-prepared when they enter the petroleum industry and require specialized training in drilling and petrophysical log interpretation. To aid in this training process, we are developing an environment for interactive instruction in the geological aspects of petroleum reservoir characterization employing a virtual subsurface closely reflecting the geology of the US mid-continent, in the fictional setting of Small County, Kansas. Stochastic simulation techniques are used to generate the subsurface characteristics, including the overall geological structure, distributions of facies, porosity, and fluid saturations, and petrophysical logs. The student then explores this subsurface by siting exploratory wells and examining drilling and petrophysical log records obtained from those wells. We are developing the application using the Eclipse Rich Client Platform, which allows for the rapid development of a platform-agnostic application while providing an immersive graphical interface. The application provides an array of views to enable relevant data display and student interaction. One such view is an interactive map of the county allowing the student to view the locations of existing well bores and select pertinent data overlays such as a contour map of the elevation of an interesting interval. Additionally, from this view a student may choose the site of a new well. Another view emulates a drilling log, complete with drilling rate plot and iconic representation of examined drill cuttings. From here, students are directed to stipulate subsurface lithology and

  11. Developing Connectivist Schemas for Geological and Geomorphological Education

    Science.gov (United States)

    Whalley, B.

    2012-12-01

    Teaching geology is difficult; students need to grasp changes in time over three dimensions. Furthermore, the scales and rates of change in four dimensions may vary over several orders of magnitude. Geological explanations incorporate ideas from physics, chemistry, biology and engineering, lectures and textbooks provide a basic framework but they need to be amplified by laboratories and fieldwork involving active student participation and engagement. Being shown named 'things' is only a start to being able to being able to inculcate geological thinking that requires a wide and focused viewpoints. Kastens and Ishikawa (2006) suggested five aspects of thinking geologically, summarised as: 1. Observing, describing, recording, communicating geologically entities (ie basic cognitive skills) 2. (mentally) manipulating these entities 3. interpreting them via causal relationships 4. predicting other aspects using the basic knowledge (to create new knowledge) 5. using cognitive strategies to develop new ways of interpreting gained knowledge. These steps can be used follow the sequence from 'known' through 'need to know' to using knowledge to gain better geologic explanation, taken as enquiry-based or problem solving modes of education. These follow ideas from Dewey though Sternberg's 'thinking styles' and Siemens' connectivist approaches. Implementation of this basic schema needs to be structured for students in a complex geological world in line with Edelson's (2006) 'learning for' framework. In a geomorphological setting, this has been done by showing students how to interpret a landscape (landform, section etc) practice their skills and thus gain confidence with a tutor at hand. A web-based device, 'Virtorial' provides scenarios for students to practice interpretation (or even be assessed with). A cognitive tool is provided for landscape interpretation by division into the recognition of 'Materials' (rock, sediments etc), Processes (slope, glacial processes etc) and

  12. Thermodynamic data for predicting concentrations of Th(IV), U(IV), Np(IV), and Pu(IV) in geologic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat; Roa, Linfeng; Weger, H.T.; Felmy, A.R. [Battelle, Pacific Northwest National Laboratory (PNNL) (United States); Choppin, G.R. [Florida State University (United States); Yui, Mikazu [Waste Isolation Research Division, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    1999-01-01

    This report provides thermodynamic data for predicting concentrations of Th(IV), U(IV), Np(IV), and Pu(IV) in geologic environments, and contributes to an integration of the JNC chemical thermodynamic database, JNC-TDB (previously PNC-TDB), for the performance analysis of geological isolation system for high-level radioactive wastes. Thermodynamic data for the formation of complexes or compounds with hydroxide, chloride, fluoride, carbonate, nitrate, sulfate and phosphate are discussed in this report. Where data for specific actinide(IV) species was lacking, the data were selected based on chemical analogy to other tetravalent actinides. In this study, the Pitzer ion-interaction model is used to extrapolate thermodynamic constants to zero ionic strength at 25degC. (author)

  13. A PC/workstation cluster computing environment for reservoir engineering simulation applications

    International Nuclear Information System (INIS)

    Hermes, C.E.; Koo, J.

    1995-01-01

    Like the rest of the petroleum industry, Texaco has been transferring its applications and databases from mainframes to PC's and workstations. This transition has been very positive because it provides an environment for integrating applications, increases end-user productivity, and in general reduces overall computing costs. On the down side, the transition typically results in a dramatic increase in workstation purchases and raises concerns regarding the cost and effective management of computing resources in this new environment. The workstation transition also places the user in a Unix computing environment which, to say the least, can be quite frustrating to learn and to use. This paper describes the approach, philosophy, architecture, and current status of the new reservoir engineering/simulation computing environment developed at Texaco's E and P Technology Dept. (EPTD) in Houston. The environment is representative of those under development at several other large oil companies and is based on a cluster of IBM and Silicon Graphics Intl. (SGI) workstations connected by a fiber-optics communications network and engineering PC's connected to local area networks, or Ethernets. Because computing resources and software licenses are shared among a group of users, the new environment enables the company to get more out of its investments in workstation hardware and software

  14. Geomodels of coseismic landslides environments in Central Chile.

    Science.gov (United States)

    Serey, A.; Sepulveda, S. A.; Murphy, W.; Petley, D. N.

    2017-12-01

    Landslides are a major source of fatalities and damage during strong earthquakes in mountain areas. Detailed geomodels of coseismic landslides environments are essential parts of seismic landslide hazard analyses. The development of a site specific geological model is required, based on consideration of the regional and local geological and geomorphological history and the current ground surface conditions. An engineering geological model is any approximation of the geological conditions, at varying scales, created for the purpose of solving an engineering problem. In our case, the objective is the development of a methodology for earthquake-induced landslide hazard assessment applicable to urban/territorial planning and disaster prevention strategies assessment at a regional scale adapted for the Chilean tectonic conditions. We have developed the only 2 complete inventories of landslides triggered by earthquakes in Chile. The first from the Mw 6.2, shallow crustal Aysén earthquake in 2007. Second one from the Mw 8.8, megathrust subduction Maule earthquake in 2010. From the comparison of these 2 inventories with others from abroad, as well as analysis of large, prehistoric landslide inventories proposed as likely induced by seismic activity we have determined topographic, geomorphological, geological and seismic controlling factors in the occurrence of earthquake-triggered landslides. With the information collected we have defined different environments for generation of coseismic landslides based on the construction of geomodels. As a result we have built several geomodels in the Santiago Cordillera in central Chile (33°S), based upon the San Ramón Fault, a west-vergent reverse fault that outcrops at the edge of Santiago basin recently found to be active and a likely source of seismic activity in the future, with potential of triggering landslides in the Santiago mountain front as well as inland into the Mapocho and Maipo Cordilleran valleys. In conclusion

  15. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2001-09-14

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been

  16. Integrated path towards geological storage

    International Nuclear Information System (INIS)

    Bouchard, R.; Delaytermoz, A.

    2004-01-01

    Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these

  17. Problems and approach to geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Kitayama, Kazumi; Yamazaki, Haruo; Ijiri, Yuji; Haga, Kazuko; Sakamaki, Masanori; Kishi, Kiyoshi

    2006-01-01

    This feature articles described a concept and technical problems of geological disposal of high-level radioactive waste in the civil engineering. It consists of six papers such as the present statues and subjects of geological disposal by KITAYAMA Kazumi, the diastrophism, igneous activity, and upheaval and erosion by YAMAZAKI Haruo, the groundwater flow and evaluation of nuclear transfer by IJIRI Yuji, evaluation of alteration of cement materials in the ultra-long period by HAGA Kazuko, The Mizunami Underground Research Laboratory in course of construction by SAKAMAKI Masanori, and interview of the ninetieth president of JSCE (Japan Society of Civil Engineers), he places his hope on JSCE and civil engineers by KISHI Kiyoshi. (S.Y.)

  18. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  19. Natural analogue of redox front formation in near-field environment at post-closure phase of HLW geological disposal

    International Nuclear Information System (INIS)

    Yoshida, Hidekazu; Yamamoto, Koushi; Amano, Yuki

    2005-01-01

    Redox fronts are created in the near field of rocks, in a range of oxidation environments, by microbial activity in rock groundwater. Such fronts, and the associated oxide formation, are usually unavoidable around high level radioactive waste (HLW) repositories, whatever their design. The long term behaviour of these oxides after repositories have been closed is however little known. Here we introduce an analogue of redox front formation, such as 'iron oxide' deposits, known as takashikozo forming cylindrical nodules, and the long term behaviour of secondarily formed iron oxyhydroxide in subsequent geological environments. (author)

  20. Applied geophysics for civil engineering and mining engineering. 2. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Militzer, H.; Schoen, J.; Stoetzner, U.

    1986-01-01

    In the process of geological and geotechnical prospecting for the exploration and exploitation of deposits, as well as for engineering structures, the knowledge contributed by geophysics is of significance in order to ensure an objective assessment of geological and geotechnical conditions of a given site, and to promote economic efficiency in the field of civil engineering and mining. For this reason, engineering and mining geophysics has become an important special subject field. The present second edition of the textbook offers enhanced information about practical applications of available methods and measuring techniques, and about the information to be obtained by civil and mining engineers from the geophysical science. The material has been arranged with a view to practice, facilitating an overview over potential applications and efficiencies as well as limits of geophysical methods. The methods are also explained in terms of suitability for the various steps of civil engineering or mining geological activities and studies. A major extension of the first edition's material consists of the chapter on basic principles and aspects of well geophysics for shallow well drilling. (orig./HP) [de

  1. An engineering geological investigation of ground subsidence above the Huntly East Mine

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, P.I.

    1987-10-01

    Ground subsidence above the Huntly East Mine at the N.Z.E.D. Hostel has affected an area of approximately seven hectares with measured settlements of over 800mm. Extensive damage was suffered by most buildings and services of the hostel complex To determine the cause(s) and mechanism(s) of the subsidence, site and laboratory investigations were undertaken. Site investigations included core and wash drilling, geophysical borehole logging, dutch cone penetrometer soundings plus piezometer installation and monitoring. Laboratory investigations included one dimensional consolidation and permeability testing, SEM fabric studies, XRD and chemical tests for clay mineralogy, and determinations of Atterberg Limits and grain size distributions. The mine overburden geology at the site consists of a 35 to 60m thick sequence of mudstones and coal seams of the Te Kuiti Group (Eocene to Oligocene), and overlain by a 50 to 70m thick succession of saturated sands, silts and gravels of the Tauranga Group (Pliocene to Holocene). Within the Tauranga Group three aquifers are present. The engineering geological model considered most likely to explain the subsidence is mine roof collapse causing void migration to near the top of the Te Kuiti Group sequence resulting in drainage and depressurising of aquifers at the base of the Tauranga Group. Aquifer depressurisation is considered likely to cause consolidation within both the aquifer and aquitards associated with it. Back-analyses of the dewatering consolidation model in terms of both magnitude and rates of settlement are consistent with observed values. A finite difference numerical analysis was developed for estimations of settlement rates. 98 refs., 67 figs., 12 tabs.

  2. Use of Groundwater Lifetime Expectancy for the Performance Assessment of Deep Geologic Radioactive Waste Repositories.

    Science.gov (United States)

    Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.

    2005-12-01

    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.

  3. An engineering geological appraisal of the Chamshir dam foundation using DMR classification and kinematic analysis, southwest of Iran

    Directory of Open Access Journals (Sweden)

    Torabi Kaveh Mehdi

    2011-12-01

    Full Text Available This paper describes the results of engineering geological  investigations and rock mechanics studies carried out at the proposed Chamshir dam site. It is proposed that a 155 m high solid concrete gravity-arc dam be built across the Zuhreh River to the southeast of the city of Gachsaran in south-western Iran. The dam and its associated structures are mainly located on the Mishan formation. Analysis consisted of rock mass classification and a kinematic
    analysis of the dam foundation's rock masses. The studies were carried out in the field and the laboratory. The field studies included geological mapping, intensive discontinuity surveying, core drilling and sampling for laboratory testing. Rock mass classifications were made in line with RMR and DMR classification for the dam foundation. Dam foundation analysis regarding stability using DMR classification and kinematic analysis indicated that the left abutment's rock foundation (area 2 was unstable for planar, wedge and toppling failure modes.

  4. Enhancement of environment and resources engineering studies through an international cooperation network

    Science.gov (United States)

    Caporali, E.; Tuneski, A.

    2012-12-01

    Higher education plays a very important role in the modern societies development, enhancing social, cultural and economic development for a sustainable growth, environment respectful. In this framework, the European Commission promotes the TEMPUS-Trans European Mobility Programme for University Studies. Curricula harmonization and lifelong learning programme development in higher education are among the focused aspects of the TEMPUS programme. The DEREL-Development of Environment and Resources Engineering Learning, is a three years TEMPUS project coordinated by the University of Firenze, in cooperation with colleagues of the Ss Cyril and Methodius University, Skopje financed and activated since October 2010. The DEREL Project Consortium consists of 4 EU Universities (from Italy, Greece, Germany and Austria), 7 Partner Countries (PC) Universities (from FYR of Macedonia, Serbia and Albania), and 1 PC Ministry, 4 PC National Agencies, 1 PC non governmental organization and 1 PC enterprise. In cooperation with the same 4 EU Universities and the same Macedonian Institutions, in the period 2005-2008 also a TEMPUS JEP entitled DEREC-Development of Environmental and Resources Engineering Curriculum, was also carried out by the University of Firenze in cooperation with colleagues of the Ss Cyril and Methodius University. Within DEREC a new three-years first cycle curriculum in Environmental and Resources Engineering was opened at the University Ss Cyril and Methodius, Skopje, and the necessary conditions for offering a Joint Degree Title, on the basis of an agreement between the Ss. Cyril and Methodius University and the University of Firenze, were fulfilled. The running DEREL project, as a continuation of DEREC, is aimed to introduce a new, up-to-date, postgraduate second cycle curriculum in Environment and Resources Engineering at the Ss Cyril and Methodius University in Skopje, FYR of Macedonia, University of Novi Sad, Serbia and Polytechnic University of Tirana, Albania

  5. Principal provisions of engineering and geological survey methodology in designing and construction of underground laboratory as a part of facility of RW underground isolation

    International Nuclear Information System (INIS)

    Prokopova, O.A.

    2006-01-01

    The most critical moment is the choice of a site for radioactive waste geological repository. Here the role of engineering and geological prospecting as a basis for the construction of a facility for underground isolation appears especially important; it is followed by finding a suitable area and subsequent allocation of the site and facility construction sites. The decision on the selection of construction site for the underground repository is taken by the principle 'descent from the general to the particular', which is a continuous process with the observance of stages in research for the design and exploration work. Each stage of research is typified by specific scale and methods of geological and geophysical studies and scientific research to be fulfilled in scopes sufficient for solution of basic problems for the designing. (author)

  6. Salts in soil and water within the arid climate zone. Effects on engineering geology, exemplified from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jergman, K.

    1981-01-01

    In the arid climate zone, where the potential evaporation is much higher than the precipitation, soil and water generally are enriched by salts. In this research project it has been pointed out how salts affect engineering geology in different ways. The extensive study of the Al Khafji area in Saudi Arabia has shown that salts have affected soil and water so that - the crust hardness has increased due to a development of duricrust. The strength of the upper part of the crust is similar to weak rock. - the coastal terrace area moves vertically - groundwater affects the salinization of the soil profile A general description of the effect of salts on engineering geology can be summarized as below: The precipitated salts affect the profile so that 1.Stability changes. 2.Swelling alternatively contraction can occur due to variations of the water content. 3.Vegetation growth becomes difficult or impossible. 4.Excavation work is difficult. 5.Aggregate sources are affected. 6.Concrete corrosion is caused. 7.There is demand for proper field and laboratory tests and for special design criteria.The occurance of salts in the water causes due special conditions that 1.The soil profile is enriched by salts 2. The plants are damaged. 3.Concrete corrosion is developed. 4.The water is not suitable for drinking or irrigation purposes. 5. The density increases to such an extent that it effects the direction of the groundwater flow.

  7. Gendered practices of constructing an engineering identity in a problem-based learning environment

    DEFF Research Database (Denmark)

    Du, Xiangyun

    2006-01-01

    of an engineering identity with masculinity and the culturally defined engineering competencies leads to different learning experiences for male and female students. The nature of hard-core engineering subjects, based on male interests, privileges men and acts as a barrier to women. The masculine culture......This article examines the learning experiences of engineering students of both genders in a problem-based and project-organized learning environment (PBL) at a Danish university. This study relates an amalgam of theories on learning and gender to the context of engineering education. Based on data...

  8. Open source engineering and sustainability tools for the built environment

    NARCIS (Netherlands)

    Coenders, J.L.

    2013-01-01

    This paper presents two novel open source software developments for design and engineering in the built environment. The first development, called “sustainability-open” [1], aims on providing open source design, analysis and assessment software source code for (environmental) performance of

  9. Study on a monitoring strategy to support decision making for geological repository closure

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Tanabe, Hiromi; Eto, Jiro; Yoshimura, Kimitaka

    2010-01-01

    Japan currently plans to dispose of high-level radioactive wastes (vitrified HLWs) produced from the reprocessing of spent nuclear fuel in deep geological formations, in order to isolate the radioactive wastes from the human environment for tens of thousands of years. Such a geological repository must be designed to ensure operational safety and post-closure safety. Then, following the closure of the geological repository, post-closure safety will be provided by an engineered barrier system (EBS) and a natural barrier system (NBS) without relying on monitoring or institutional control. However, from a technical standpoint, monitoring has been required during backfilling in current studies. Additionally, there has been strong social pressure to continue monitoring during all the phases including post-closure. On the basis of the current situations, a monitoring strategy for geological disposal must be studied to ensure the long term safety of geological disposal. Focusing on decision making for geological repository closure, the authors have created a basic logical structure for the decision making process with the principles for ensuring safety and have developed a monitoring strategy based on the logical structure. The monitoring strategy is founded on three key aspects: the role of monitoring, boundary conditions of monitoring at the time of decision making, and a methodology for monitoring planning. Then, the monitoring strategy becomes a starting point of monitoring planning during site characterization, construction, operation and staged closure, as well as post-closure with institutional control, and of social science studies. (author)

  10. New data on the geological environment of the natural reactors

    International Nuclear Information System (INIS)

    Gauthier-Lafaye, F.; Besnus, Y.; Weber, F.

    1978-01-01

    Since the Libreville symposium in 1975 knowledge of the geological environment of the reactors has advanced as a result of a more extensive study of the Francevillian uranium deposits. In the Oklo deposit a detailed stratigraphy of the Cl bed (uraniferous mineralized bed) has been established, making it possible to re-establish stratigraphically the position of the natural reactors. A tectonic analysis of the Oklo deposit has revealed the special features of the Oklo structure and the reaction zones situated in the shear troughs. Petrographic studies have revealed the presence of two types of ore with distinct modes of formation. In the first case, the role played by organic materials seems predominant, while in the second case migrations of oxidizing solutions are the main source of the reconcentrations. Finally, a geochemical study made of samples from Oklo and Okelobondo points to the existence of an ''isolated'' geochemical phase containing uranium and a certain number of trace elements. This phase is associated with the organic material. This study also deals with the migration of lead at Oklo and Mounana. (author)

  11. Approach to geologic repository post closure system performance assessment

    International Nuclear Information System (INIS)

    Pahwa, S.B.; Felton, W.; Duguid, J.O.

    1992-01-01

    An essential part of the license application for a geologic repository will be the demonstration of compliance with the standards set by the Environmental Protection Agency. The performance assessments that produce the demonstration must rely on models of various levels of detail. The most detailed of these models are needed for understanding thoroughly the complex physical and chemical processes affecting the behavior of the system. For studying the behavior of major components of the system, less detailed models are often useful. For predicting the behavior of the total system, models of a third kind may be needed. These models must cover all the important processes that contribute to the behavior of the system, because they must estimate the behavior under all significant conditions for 10,000 years. In addition, however, computer codes that embody these models must calculate very rapidly because of the EPA standard's requirement for probabilistic estimates, which will be produced by sampling thousands of times from probability distributions of parameters. For this reason, the total-system models must be less complex than the detailed-process and subsystem models. The total-system performance is evaluated through modeling of the following components: Radionuclide release from the engineered-barrier system. Fluid flow in the geologic units. Radionuclide transport to the accessible environment. Radionuclide release to the accessible environment and dose to man

  12. Classification of technogenic impacts on the geological medium

    International Nuclear Information System (INIS)

    Trofimov, V.T.; Korolev, V.A.; Gerasimova, A.S.

    1995-01-01

    The available systems of classification of technology-induced impacts on the geological environment are analyzed and a classification which is elaborated by the authors and allows to break the integrated impact into individual components for their subsequent analysis, evaluation and reflection in cartographic models. This classification assumes the division of technology-induced impacts into classes and subclasses. The first class-impacts of physical nature-includes a subclass of radioactive impacts where, in its turn, two types of impacts are distinguished: radioactive contamination and radiation decontamination of the components of the geological environment. The proposed classification can serve the basis for developing standards and regulations of typification and evaluation of technology-induced impacts o the geological environment. 27 refs., 1 tab

  13. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  14. Student Scientific Conference, 2008. Collection of contributions. Vol. 2 - Sections of geography, geology, environment, chemistry and didactics; Studentska vedecka konferencia, 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    The conference included the following sections: (i) Biology (114 contributions); (ii) Geography (37 contributions); (iii) Geology (24 contributions); (iv) Environment (16 contributions); (v) Chemistry (11 contributions); (vi) Didactics (8 contributions). Contributions relevant to INIS interest have been inputted to INIS.

  15. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  16. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  17. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S.; Sasselov, D. [Harvard Smithsonian Center for Astrophysics, 60 Garden st., 02138 MA Cambridge (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Kaltenegger, L., E-mail: srugheimer@cfa.harvard.edu [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States)

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  18. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    International Nuclear Information System (INIS)

    Rugheimer, S.; Sasselov, D.; Segura, A.; Kaltenegger, L.

    2015-01-01

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments

  19. Information from geology: Implications for soil formation and rehabilitation in the post coal mining environment, Bowen Basin, Australia

    International Nuclear Information System (INIS)

    Spain, A.V.; Esterle, J.; McLennan, T.P.T.

    1995-01-01

    The coal mining industry is likely to disturb as much as 60,000 ha of the Bowen Basin up to the year 2000. While comprising only a small proportion of the approximately 32,000 km 2 of the Bowen Basin, this considerable area will eventually need to be rehabilitated by creating appropriate land forms with a stabilizing and self-sustaining cover of vegetation. The job of restoring the disturbed area will fall to the practitioners of rehabilitation science. This paper briefly outlines the actual and potential significance of geological information to rehabilitation practice in the open-cut coal mining industry of the Bowen Basin. It focuses particularly on the problems of soil formation and the consequent limitations to ecosystem development due to the nature of the overburden materials and the environment. Lastly, it describes some of the distinctive features of the mine-soils of the area. Geological information can assist in the identification, classification, description and behaviour of post-mining materials. Potential inputs are not restricted to these and there is scope for wider inputs to management of the mining environment although the interface with biology requires further development. (author). 4 figs., 31 refs

  20. 2005 dossier: clay. Tome: phenomenological evolution of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological processes taking place in an argilite-type geologic disposal facility for high-level and long-lived (HLLL) radioactive wastes. Content: 1 - introduction: goal, input data, time and space scales, long-time forecasting of the phenomenological evolution; 2 - the Meuse/Haute-Marne site, the HLLL wastes and the disposal concepts: impact of the repository architecture; 3 - initial state of the geologic environment prior to the building up of the repository: general framework, geologic formations, tectonics and fractures, surface environment, geologic synthesis; 4 - phenomenological processes: storage-related processes, geodynamics-related processes, time scales of processes and of radionuclides migration, independence and evolution similarities of the repository and of the geologic environment; 5 - heat loads: heat transfers between containers and geologic formations, spatial organization of the thermal load, for C-type wastes and spent fuels, for B-type wastes, synthesis of the repository thermal load; 6 - flows and liquid solution and gas transfers: hydraulic behaviour of surrounding Jurassic formations (Tithonian, Kimmeridgian, Callovian, Oxfordian); 7 - chemical phenomena: chemical evolution of ventilated facilities (alveoles, galleries, boreholes), chemical evolution of B-type waste alveoles and of gallery and borehole sealing after closure, far field chemical evolution of Callovo-Oxfordian argilites and of other surrounding formations; 8 - mechanical evolution of the disposal and of the surrounding geologic environment: creation of an initial excavated damaged zone (EDZ), mechanical evolution of ventilated galleries, alveoles and sealing before and after closure, large-scale mechanical evolution; 9 - geodynamical evolution of the Callovo-Oxfordian and other surrounding formations and of the surface environment: internal

  1. Radionuclide migration in geological formations

    International Nuclear Information System (INIS)

    Barbreau, A.; Heremans, R.; Skytte Jensen, B.

    1980-01-01

    Radioactive waste disposal into geological formation is based on the capacity of rocks to confine radioactivity for a long period of time. Radionuclide migration from the repository to the environment depends on different mechanisms and phenomena whose two main ones are groundwater flow and the retention and ion-exchange property of rocks. Many studies are underway presently in EEC countries concerning hydrodynamic characteristics of deep geological formations as well as in radionuclide retention capacity and modelling. Important results have already been achieved which show the complexity of some phenomena and further studies shall principally be developed taking into account real conditions of the repository and its environment

  2. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  3. An Open-Source Simulation Environment for Model-Based Engineering, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work is a new spacecraft simulation environment for model-based engineering of flight algorithms and software. The goal is to provide a much faster way...

  4. Geology of high-level nuclear waste disposal: an introduction

    International Nuclear Information System (INIS)

    Roxbugh, I.S.

    1987-01-01

    Hazardous waste is produced by the nuclear fuel cycle from mining and milling of uranium ore, refinement and enrichment, reactor use, and during reprocessing of spent fuel. Waste can be classified according to origin, physical state, and levels of radioactivity and radiotoxicity. The method of the long-term waste disposal is based on the degree of the hazard and the length of time (1000 years to millions of years) for the waste to become safe. The International Atomic Energy Agency (IAEA) has classified radioactive waste into five categories (I-V) based on the amount of radioactivity and heat output of the waste. The text is concerned mainly with the two most hazardous categories (I and II). Disposal at various geological sites using proven mining, engineering, and deep drilling techniques has been proposed and studied. An ideal geological repository would have (1) minimum ground water movement, (2) geochemical and mineralogical properties to retard or immobilize the effects of the nuclear waste from reaching the biosphere, (3) thermochemical properties to allow for heat loading without damage, and (4) structural strength for the operational period. Types of geological environments (both undersea and on land) include evaporites, crystalline rocks, and argillaceous deposits. European and North American case histories are described, and there is a glossary and an extensive list of references in this concise review

  5. Encyclopedic dictionary bilingual English-Spanish of sciences: mining, chemistry, geology, metallurgy and environment

    International Nuclear Information System (INIS)

    Munoz Maradona, M.; Bellini, M.; Busleiman, M.

    2007-01-01

    This dictionary has been designed to satisfy scientists, researchers, technicians, interpreters, translators and students' needs in the areas of chemistry, geology, mining, metallurgy and environment for they find it necessary to have an English- Spanish encyclopedia on their sciences. It is a reliable book when looking for words that are normally not included in everyday dictionaries. It is now reaching the final revision stage with more than 15,000 entries. It includes scientific terms, chemical formulas of minerals and other elements, noticeable scientists' biographies, tables, graphics, and images so as to help readers' understanding. It is divided into three columns: the first one presents the English term and its area of concern; the second, the corresponding Spanish equivalent, and in the third, a suitable explanation.(author)

  6. Preliminary analysis of engineered barrieer performances in geological disposal of high level waste

    International Nuclear Information System (INIS)

    Ohe, Toshiaki; Maki, Yasuo; Tanaka, Hiroshi; Kawanishi, Motoi.

    1988-01-01

    This report represents preliminary results of safety analysis of a engineered barrier system in geological disposal of high level radioactive waste. Three well-known computer codes; ORIGEN 2, TRUMP, and SWIFT were used in the simulation. Main conceptual design of the repository was almost identical to that of SKB in Sweden and NAGRA in Switzerland; the engineered barrier conasists glass solidified waste, steel overpack, and compacted bentonite. Two different underground formations are considered; granite and neogene sedimentary rock, which are typically found in Japan. We first determined the repository configuration, particularly the space between disposal pitts. The ORIGEN 2 was used to estimate heat generation in the waste glass reprocessed at 4 years after removal from PWR. Then, temperature distribution was calculated by the TRUMP. The results of two or three dimensional calculation indicated that the pit interval should be kept more than 5 m in the case of granite formation at 500 m depth, according to the temperature criteria in the bentonite layer ( 90 Sr, 241 Am, 239 Pu, and 237 Np were chosen in one or two dimensional calculations. For both cases of steady release and instanteneous release, the maximum concentration in the pore water at the boundary between bentonite and surrounding rock had the following order; 237 Np> 239 Pu> 90 Sr> 241 Am. Sensitivity analysis showed that the order mainly due to the different adsorption characteristics of the nuclides in bentonite layer. (author)

  7. Spot the difference: engineered and natural nanoparticles in the environment--release, behavior, and fate.

    Science.gov (United States)

    Wagner, Stephan; Gondikas, Andreas; Neubauer, Elisabeth; Hofmann, Thilo; von der Kammer, Frank

    2014-11-10

    The production and use of nanoparticles leads to the emission of manufactured or engineered nanoparticles into the environment. Those particles undergo many possible reactions and interactions in the environment they are exposed to. These reactions and the resulting behavior and fate of nanoparticles in the environment have been studied for decades through naturally occurring nanoparticulate (1-100 nm) and colloidal (1-1000 nm) substances. The knowledge gained from these investigations is nowhere near sufficiently complete to create a detailed model of the behavior and fate of engineered nanoparticles in the environment, but is a valuable starting point for the risk assessment of these novel materials. It is the aim of this Review to critically compare naturally observed processes with those found for engineered systems to identify the "nanospecific" properties of manufactured particles and describe critical knowledge gaps relevant for the risk assessment of manufactured nanomaterials in the environment. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  8. Effects of gas overpressurisation on the geological environment of a deep repository

    International Nuclear Information System (INIS)

    Nash, P.J.; Rodwell, W.R.

    1990-04-01

    The effect of gas generated from the deep burial of low and intermediate level radioactive wastes is being assessed. Significant volumes of gas are expected to be produced by anaerobic corrosion of metals and microbial degradation of organic materials. Work is being carried out to determine how easily the gas generated can move away from the repository, since if its flow were impeded the pressure in the repository would rise. If the flow were sufficiently impeded then the pressure rise could ultimately lead to fracturing of the vault or the flow field environment, possibly providing pathways that could accelerate the movement of radionuclides to the surface. This study considers the effects of such an overpressurisation on the integrity of the geological environment containing the repository. It attempts to quantify the pore fluid pressures at which fracturing of hard rock masses may occur by investigating a number of models of rock failure in homogeneously stressed rock and the effects of the presence of an idealised vault on the stress field. A crack opening model has also been developed which considers the effect of the overpressurisation on the dimensions of existing cracks within the rock and hence on the value of its permeability. (Author)

  9. Geological, engineering and economic study of a portion of the Lloydminster Sparky pool, Lloydminster, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, A I; Adams, K C

    1977-05-01

    A tidal-bar model for the deposition of the Sparky Sandstone at Lloydminster is presented and is related to the geology of a portion of the Lloydminster Sparky pool. An engineering and economic evaluation to determine the feasibility of redeveloping this suspended pool is undertaken. This study indicates that installation of a water-injection scheme immediately following a short production evaluation is economically viable. Economics of a tertiary thermal scheme for the pool are presented, on the assumption that present technological problems such as production of high-viscosity emulsions and sand have been overcome. Indications are that the incentive for further research into the solution of these problems is significant. Installation of thermal recovery schemes in this pool can be expected to increase recoverable reserves by 15,000,000 bbl.

  10. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  11. Macro- and micro- geodynamic of Terebliya-Riksk geodetic man-caused polygon of Ukrainian Carpathians influenced by specificities of structure-geological and hydro-geological conditions

    Science.gov (United States)

    Kulchyzkyy, A.; Serebryannyy, Y.; Tretyak, K.; Trevogo, I.; Zadoroznnyy, V.

    2009-04-01

    Terebliya-Riksk diversion power station is located on two levels ( with difference of 180m ) of south mountainside of Ukrainian Carpathians and separate parts of this power station lie inside rock. Therefore influential parameters of it's stability are geological, tectonic and hydrogeological conditions in complex. Monitoring of intensity and nature of displacements of flow ( pressure) pipe and other objects of power station with geoditic methods indicates that fluctuations of water-level in reservoir caused bouth by natural and artificial efects are of great influence on objects mentioned. Based on geodetical high-precision observations made by LeicaTPS 1201 robotic total station short-periodic components of fundamental vibrations which result in their destructive deformation were determined. Mathematical apparatus ( which uses function of Fourie series and theory of cinematic coefficients ) for displacements determinations of pressure pipe was disigned. Complex of engineering-geological surveys gave an opportunity to define the origin of macro- and micro- geodynamics movements of Terebliya-Riksk diversion power station region. Engineering-geological conditions which influence on power station structure most of all were determined as following : small foldings and cleavage areas appearances, also fluctuations of level of underground water (refered to hydrogeological conditions). Periodic micro-displacemets appearances ( which operate on reducing-stretching scheme) fixed on power station structure are turned to be in direct relation on to what exend reservoir is filled up. Permanent macro- displacements appearances ( which operates in north-west direction ) fixed on pressure pipe are the result sum of residual micro-displacements caused by return periodic movements and are determined by structure-geological, engineering-geological and tectonic conditions.

  12. Comparative study of carbonic anhydrase activity in waters among different geological eco-environments of Yangtze River basin and its ecological significance.

    Science.gov (United States)

    Nzung'a, Sila Onesmus; Pan, Weizhi; Shen, Taiming; Li, Wei; Qin, Xiaoqun; Wang, Chenwei; Zhang, Liankai; Yu, Longjiang

    2018-04-01

    This study provides the presence of carbonic anhydrase (CA) activity in waters of the Yangtze River basin, China, as well as the correlation of CA activity with HCO 3 - concentration and CO 2 sink flux. Different degrees of CA activity could be detected in almost all of the water samples from different geological eco-environments in all four seasons. The CA activity of water samples from karst areas was significantly higher than from non-karst areas (PP3 - concentration (r=0.672, P2 sink flux (r=0.602, P=0.076) in karst areas. This suggests that CA in waters might have a promoting effect on carbon sinks for atmospheric CO 2 in karst river basins. In conditions of similar geological type, higher CA activity was generally detected in water samples taken from areas that exhibited better eco-environments, implying that the CA activity index of waters could be used as an indicator for monitoring ecological environments and protection of river basins. These findings suggest that the role of CA in waters in the karst carbon sink potential of river basins is worthy of further in-depth studies. Copyright © 2017. Published by Elsevier B.V.

  13. Niagara Falls Storage Site, Lewiston, New York: geologic report

    International Nuclear Information System (INIS)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area

  14. Niagara Falls Storage Site, Lewiston, New York: geologic report

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  15. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  16. Deep geological disposal of radioactive waste - An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland)

    2015-07-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted.

  17. Deep geological disposal of radioactive waste - An international perspective

    International Nuclear Information System (INIS)

    Gautschi, A.

    2015-01-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted

  18. High-level radioactive wastes disposals and collection of relating basic information on geological environment

    International Nuclear Information System (INIS)

    Ishii, Takemasa; Marui, Atsunao; Uchida, Youhei; Nakashima, Yoshito; Hayashi, Takeshi; Miyakoshi, Akinobu

    2004-01-01

    Details of the NMR (nuclear magnetic resonance) spectroscopic method with pulsed gradient magnetic field are described for obtaining self-diffusion coefficient of a water molecule in clay gels. By computer simulation of three dimensional diffusion in random lattice, it will be shown that a vast amount of data having hitherto collected on diffusion of water in geological environment may be understood systematically by employment of the concept of disturbance played by water adsorption on clay surface. The disturbance efficiency is expressed by a parameter obtainable in nuclear magnetic resonance (NMR) experiment. It is concluded that a thicker water-containing layer in buffer material surrounding the specimens would show a slower diffusion. (S. Ohno)

  19. Advances in Geologic Disposal System Modeling and Application to Crystalline Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fascitelli, D. G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-22

    The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

  20. Methodology of safety assessment and sensitivity analysis for geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1995-01-01

    A deterministic safety assessment methodology has been developed to evaluate long-term radiological consequences associated with geologic disposal of high-level radioactive waste, and to demonstrate a generic feasibility of geologic disposal. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. A computer code system GSRW thus developed is based on a non site-specific model, and consists of a set of sub-modules for calculating the release of radionuclides from engineered barriers, the transport of radionuclides in and through the geosphere, the behavior of radionuclides in the biosphere, and radiation exposures of the public. In order to identify the important parameters of the assessment models, an automated procedure for sensitivity analysis based on the Differential Algebra method has been developed to apply to the GSRW. (author)

  1. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  2. Engineers' Perceptions of Diversity and the Learning Environment at Work: A Mixed Methods Study

    Science.gov (United States)

    Firestone, Brenda L.

    2012-01-01

    The purpose of this dissertation research study was to investigate engineers' perceptions of diversity and the workplace learning environment surrounding diversity education efforts in engineering occupations. The study made use of a mixed methods methodology and was theoretically framed using a critical feminist adult education lens and…

  3. Evaluation of a ubiquitous learning system in a design engineering environment

    NARCIS (Netherlands)

    Vroom, R.W.; Horvath, I.; Rusak, Z.; De Smit, A.; Opiyo, E.Z.

    2012-01-01

    Ubiquitous computing is computing power that is integrated in devices and environments in such a way that they offer optimal support to human daily life activities. For industrial design engineering students, applying ubiquitous technologies offer a great opportunity and challenge for innovating

  4. An Agent Based Approach To Finding Expertise In The Engineering Design Environment

    OpenAIRE

    Crowder, Richard; Hughes, Gareth; Hall, Wendy

    2003-01-01

    During the engineering design process people need to locate colleagues with knowledge to resolve a problem. As identified by discussions with practicing designers the use of computer based systems that assist users with finding such expertise will become increasingly important. In this paper we discuss the development of an agent based Expertise Finder suitable for use within an engineering design environment. A key feature of our approach is that the Expertise Finder returns both recommended...

  5. Handling long timescales: approaches and issues in the context of geological disposal

    International Nuclear Information System (INIS)

    Preter, P. de; Smith, P.; Voinis, S.

    2005-01-01

    Geologic repositories are sited, designed and operated to protect humans and the environment from the hazards associated with radioactive waste. Most challengingly, they are required to provide protection after their closure and over timescales that are considerably in excess of those commonly considered in most engineering projects, often up to several thousand or even a million years. This requirement is laid down in international guidance and in many national regulations. Various processes and events will drive the evolution of a repository and its environment, and hence could affect the containment and lead to possible release of radioactive substances from the repository and their migration to the surface. These processes and events are characterised by timescales ranging from a few tens or hundreds of years for transient processes associated with, for example, the re-saturation of the repository and its immediate surroundings following closure, to perhaps millions of years for changes in the geological environment. Safety assessments must consider consequences of releases of radioactive substances and verify that targets set by regulation are complied with. In order to evaluate compliance with dose or risk criteria, assumptions must be made regarding the habits of potentially exposed groups (e.g., diet, lifestyle and land use), and these may change over timescales of just a few years. The need to deal with such a wide range of timescales gives rise to a range of issues related to the methods and presentation of safety assessments and of safety cases. (author)

  6. Application of modeling methods for an estimation of a specific activity 137Cs geologic environment

    International Nuclear Information System (INIS)

    Kalinovskij, A.K.; Batij, V.G.; Pravdivyj, A.A.; Krasnov, V.A.

    2004-01-01

    The manual application of methods of mathematical and physical modeling for an estimation of the specific activity 137 Cs in soils composing a geological profile of site of object 'Ukryttya' is demonstrated. The calculations are executed by the software packages of Micro Shield, CYCLON, MCNP5. The experimental measurements are carried out by logging radiometers of different type on the borehole models. The value of a conversion coefficient of infinite environment for quantitative interpretation of gamma-ray logging data is determined over calculations outcomes and experimental measurements. The calculated and experimental values have agreement among themselves. the error estimation of the obtained outcomes is executed. 26 refs., 3 tab., 10 figs

  7. Investigation of the long term stability and corrosion resistance of engineering barriers

    International Nuclear Information System (INIS)

    Aoyama, Eri; Tachikawa, Hirokazu; Shimizu, Akihiko

    2005-03-01

    The Japan Nuclear Cycle Development Institute submitted 'Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan' to the Japanese government. This report contains investigations of the long term behavior of alteration of bentonite, and of the corrosion life time of overpack on the basis of experimental data and past research, assuming the ranging geological environment of Japan. However some subjects, such as the behavior of the bentonite and overpack under high pH conditions and the behavior of the engineering barrier with change of near-field environmental condition with time for promoting reliability have still been left. To take into account these conditions, expert committees composed of clay science and metal corrosion science experts were established in the Nuclear Safety Research Association and past research outcomes and the theory of safety assessment were investigated from the view points of long term stability and corrosion resistance of engineering barrier. (author)

  8. Global environment action plant of Japan Society of Civil Engineers. ; Agenda 21 / Japan Society of Civil Engineers. Doboku gakkai chikyu kankyo kodo keikaku. ; Agenda 21 / doboku gakkai

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-15

    This paper explains the involvement of the global environment action plan of Japan Society of Civil Engineers, Agenda 21, with civil engineerings and global environmental problems, as well as the global environment action plan. Global environmental problems require handling the matters in three ways: identification and elucidation of events, effect analysis estimation, and alleviation, avoidance and prevention of the effect. Settlement and proliferation of civil engineering technologies transferred to developing countries demand indispensably understanding such features of the developing countries as social and economic conditions, natural conditions, climates, histories, races, and cultures. Realizing the sustainable development requires the followings: formation of civil engineerings that contribute to improving global environments; development of civil engineerings that make coexistence of human being and other living organisms possible; analyses of effects and mechanisms of global warming and weather change and the corresponding technique and system development; and development of techniques to build resource circulating type national land and cities. It is also essential to move forward positively structuring civil engineerings that contribute to solving such global environmental problems as acid rains and marine pollution, and technical development thereof; providing guidelines on execution of international civil engineering constructions, and technical development thereof; developing civil engineerings in developing countries and assisting training of people.

  9. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    Science.gov (United States)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  10. Industry and Academic Consortium for Computer Based Subsurface Geology Laboratory

    Science.gov (United States)

    Brown, A. L.; Nunn, J. A.; Sears, S. O.

    2008-12-01

    Twenty two licenses for Petrel Software acquired through a grant from Schlumberger are being used to redesign the laboratory portion of Subsurface Geology at Louisiana State University. The course redesign is a cooperative effort between LSU's Geology and Geophysics and Petroleum Engineering Departments and Schlumberger's Technical Training Division. In spring 2008, two laboratory sections were taught with 22 students in each section. The class contained geology majors, petroleum engineering majors, and geology graduate students. Limited enrollments and 3 hour labs make it possible to incorporate hands-on visualization, animation, manipulation of data and images, and access to geological data available online. 24/7 access to the laboratory and step by step instructions for Petrel exercises strongly promoted peer instruction and individual learning. Goals of the course redesign include: enhancing visualization of earth materials; strengthening student's ability to acquire, manage, and interpret multifaceted geological information; fostering critical thinking, the scientific method; improving student communication skills; providing cross training between geologists and engineers and increasing the quantity, quality, and diversity of students pursuing Earth Science and Petroleum Engineering careers. IT resources available in the laboratory provide students with sophisticated visualization tools, allowing them to switch between 2-D and 3-D reconstructions more seamlessly, and enabling them to manipulate larger integrated data-sets, thus permitting more time for critical thinking and hypothesis testing. IT resources also enable faculty and students to simultaneously work with the software to visually interrogate a 3D data set and immediately test hypothesis formulated in class. Preliminary evaluation of class results indicate that students found MS-Windows based Petrel easy to learn. By the end of the semester, students were able to not only map horizons and faults

  11. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  12. The Woman Engineering Academic: An Investigation of Departmental and Institutional Environments.

    Science.gov (United States)

    McKendall, Sherron Benson

    2000-01-01

    Interviewed women engineering faculty at two universities to determine their experiences and perceptions of departmental and institutional environments. Most participants had experienced some type of isolation or singling out due to gender. Some questioned whether they were overreacting. Many had difficulty balancing home and work lives.…

  13. Mathematical Modeling of Non-Fickian Diffusional Mass Exchange of Radioactive Contaminants in Geological Disposal Formations

    Directory of Open Access Journals (Sweden)

    Anna Suzuki

    2018-01-01

    Full Text Available Deep geological repositories for nuclear wastes consist of both engineered and natural geologic barriers to isolate the radioactive material from the human environment. Inappropriate repositories of nuclear waste would cause severe contamination to nearby aquifers. In this complex environment, mass transport of radioactive contaminants displays anomalous behaviors and often produces power-law tails in breakthrough curves due to spatial heterogeneities in fractured rocks, velocity dispersion, adsorption, and decay of contaminants, which requires more sophisticated models beyond the typical advection-dispersion equation. In this paper, accounting for the mass exchange between a fracture and a porous matrix of complex geometry, the universal equation of mass transport within a fracture is derived. This equation represents the generalization of the previously used models and accounts for anomalous mass exchange between a fracture and porous blocks through the introduction of the integral term of convolution type and fractional derivatives. This equation can be applied for the variety of processes taking place in the complex fractured porous medium, including the transport of radioactive elements. The Laplace transform method was used to obtain the solution of the fractional diffusion equation with a time-dependent source of radioactive contaminant.

  14. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Introductory part and summaries

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan and comprises seven chapters. Chapter I briefly describes the importance of HLW management in promoting nuclear energy utilization. According to the long-term program, the HLW separated from spent fuels at reprocessing plants is to be vitrified and stored for a period of 30 to 50 years to allow cooling, then be disposed of in a deep geological formation. Chapter II mainly explains the concepts of geological disposal in Japan. Chapters III to V are devoted to discussions on three important technical elements (the geological environment of Japan, engineering technology and safety assessment of the geological disposal system) which are necessary for reliable realization of the geological disposal concept. Chapter VI demonstrates the technical ground for site selection and for setup of safety standards of the disposal. Chapter VII summarizes together with plans for future research and development. (Ohno, S.)

  15. Ecological geology environmental assessment of open-pit mines

    International Nuclear Information System (INIS)

    Dong Shuangfa; Jiang Xue

    2010-01-01

    In this paper, there is a detail description of ecological geology environmental assessment of open-pit mines, including method, process and results. We took ecological geology environmental assessment work on the base of the results of some open-pit mines such as extremely low content magnetite in Hebei Province, inducted and summarized the ecological geology environment quality. The results are reasonable. It provides basic data for the second mines programming in Hebei Province. (authors)

  16. Geologic Field Database

    Directory of Open Access Journals (Sweden)

    Katarina Hribernik

    2002-12-01

    Full Text Available The purpose of the paper is to present the field data relational database, which was compiled from data, gathered during thirty years of fieldwork on the Basic Geologic Map of Slovenia in scale1:100.000. The database was created using MS Access software. The MS Access environment ensures its stability and effective operation despite changing, searching, and updating the data. It also enables faster and easier user-friendly access to the field data. Last but not least, in the long-term, with the data transferred into the GISenvironment, it will provide the basis for the sound geologic information system that will satisfy a broad spectrum of geologists’ needs.

  17. Geology and environments of subglacial Lake Vostok.

    Science.gov (United States)

    Leitchenkov, German L; Antonov, Anton V; Luneov, Pavel I; Lipenkov, Vladimir Ya

    2016-01-28

    The reconstruction of the geological (tectonic) structure and environments of subglacial Lake Vostok is based on geophysical surveys and the study of mineral particles found in cores of accreted ice and frozen lake water (sampled after the lake was unsealed). Seismic reflection and refraction investigations conducted in the southern part of Lake Vostok show very thin (200-300 m) sedimentary cover overlying a crystalline basement. Most of this thin veneer is thought to have been deposited during temperate-glacial conditions in Oligocene to Middle Miocene time (ca 34-14 Ma). The composition of the lake-bottom sediments can be deduced from mineral inclusions found in cores of accreted ice. Inclusions are represented by soft aggregates consisting mainly of clay-mica minerals and micrometre-sized quartz grains. Some of these inclusions contain subangular to semi-rounded rock clasts (siltstones and sandstones) ranging from 0.3 to 8 mm in size. In total, 31 zircon grains have been identified in two rock clasts and dated using SHRIMP-II. The ages of the studied zircons range from 0.6 to 2.0 Ga with two distinct clusters between 0.8 and 1.15 Ga and between 1.6 and 1.8 Ga. Rock clasts obviously came from the western lake shore, which is thus composed of terrigenous strata with an age of not older than 600 Ma. The sedimentary nature of the western lake shore is also confirmed by seismic refraction data showing seismic velocities there of 5.4-5.5 km s(-1) at the bedrock surface. After Lake Vostok was unsealed, its water (frozen and sampled next season) was also studied with scanning electron microscopy and X-ray microprobe analysis. This study showed the existence of calcium carbonate and silica microparticles (10-20 μm across) in frozen water. © 2015 The Author(s).

  18. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2004-02-25

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on

  19. Enhancement of the Work in Scia Engineer's Environment by Employment of XML Programming Language

    Directory of Open Access Journals (Sweden)

    Kortiš Ján

    2015-12-01

    Full Text Available The productivity of the work of engineers in the design of building structures by applying the rules of technical standards [1] has been increasing by using different software products for recent years. The software products offer engineers new possibilities to design different structures. However, there are problems especially for design of structures with similar static schemes as it is needed to follow the same work-steps. This can be more effective if the steps are done automatically by using a programming language for leading the processes that are done by software. The design process of timber structure which is done in the environment of Scia Engineer software is presented in the article. XML Programming Language is used for automatization of the design and the XML code is modified in the Excel environment by using VBA Programming language [2], [3].

  20. Analysis of near-field thermal and psychometric waste package environment using ventilation

    International Nuclear Information System (INIS)

    Danko, G.

    1995-03-01

    The ultimate objective of the Civilian Radioactive Waste Management System (CRWMS) Program is to safely emplace and isolate the nations' spent nuclear fuel (SNF) and radioactive wastes in a geologic repository. Radioactive waste emplaced in a geologic repository will generate heat, increasing the temperature in the repository. The magnitude of this temperature increase depends upon (1) the heat source, i.e. the thermal loading of the repository, and (2) the geologic and engineered heat transport characteristics of the repository. Thermal management techniques currently under investigation include ventilation of the emplacement drifts during the preclosure period which could last as long as 100 years. Understanding the amount of heat and moisture removed from the emplacement drifts and near-field rock by ventilation, are important in determining performance of the engineered barrier system (EBS), as well as the corrosive environment of the waste packages, and the interaction of the EBS with the near-field host rock. Since radionuclide releases and repository system performance are significantly affected by the corrosion rate related to the psychometric environment, it is necessary to predict the amount of heat and moisture that are removed from the repository horizon using a realistic model for a wide range of thermal loading. This can be realized by coupling the hydrothermal model of the rock mass to a ventilation/climate model which includes the heat and moisture transport on the rock-air interface and the dilution of water vapor in the drift. This paper deals with the development of the coupled model concept, and determination of the boundary conditions for the calculations

  1. Potential uses of genetic geological modelling to identify new uranium provinces

    International Nuclear Information System (INIS)

    Finch, W.I.

    1982-01-01

    Genetic-geological modelling is the placing of the various processes of the development of a uranium province into distinct stages that are ordered chronologically and made part of a matrix with corresponding geologic evidence. The models can be applied to a given region by using one of several methods to determine a numerical favorability rating. Two of the possible methods, geologic decision analysis and an oil-and-gas type of play analysis, are briefly described. Simplified genetic models are given for environments of the quartz-pebble conglomerate, unconformity-related vein, and sandstone types of deposits. Comparison of the genetic models of these three sedimentary-related environments reveals several common attributes that may define a general uranium province environment

  2. 13th International Conference on Man-Machine-Environment System Engineering

    CERN Document Server

    Dhillon, Balbir

    2014-01-01

    The integrated and advanced science research topic Man-Machine-Environment System Engineering (MMESE) was first established in China by Professor Shengzhao Long in 1981, with direct support from one of the greatest modern Chinese scientists, Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993, Xuesen Qian wrote: “You have created a very important modern science and technology in China!”   MMESE primarily focuses on the relationship between man, machines and the environment, studying the optimum combination of man-machine-environment systems. In this system, “man” refers to people in the workplace (e.g. operators, decision-makers); “ machine” is the general name for any object controlled by man (including tools, machinery, computers, systems and technologies), and “environment” describes the specific working conditions under which man and machine interact (e.g. temperature, noise, vibration, hazardous gases etc.). The three goals of optimization of Man-Machine-Environment system...

  3. 14th International Conference on Man-Machine-Environment System Engineering

    CERN Document Server

    Dhillon, Balbir

    2015-01-01

    The integrated and advanced science research topic man-machine-environment system engineering (MMESE) was first established in China by Professor Shengzhao Long in 1981, with direct support from one of the greatest modern Chinese scientists, Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993, Xuesen Qian wrote: “You have created a very important modern science and technology in China!”   MMESE primarily focuses on the relationship between man, machines and the environment, studying the optimum combination of man-machine-environment systems. In this system, “man” refers to people in the workplace (e.g. operators, decision-makers); “ machine” is the general name for any object controlled by man (including tools, machinery, computers, systems and technologies), and “environment” describes the specific working conditions under which man and machine interact (e.g. temperature, noise, vibration, hazardous gases etc.). The three goals of optimization of man-machine-environment system...

  4. Information collection and analysis of geological characterization and evaluation technology and application to geological characterization study

    International Nuclear Information System (INIS)

    Kawamura, Hideki; Noda, Masaru; Nishikawa, Naohito; Sato, Shoko; Tanaka, Tatsuya

    2003-03-01

    Tono Geoscience Center (TGC) of Japan Nuclear Cycle Development Institute has been conducting the Regional Groundwater Investigation and Mizunami Underground Laboratory (MIU) Project in order to develop investigation technologies and evaluation methods of geological environment. At present, towards the next progress reporting on research and development for geological disposal of HLW in Japan, based on the existing research and development results, the projects which are conducted by TGC are required for promoting smoothly and efficiently with regard to the current Japanese HLW program. According to such situation, for planning of the geological environment investigation and research at TGC and the next progress reporting, this study has investigated and summarizes overseas environmental impact assessments for final disposal, overseas site characterization and site selection, and overseas research plan of underground research laboratories. Based on the results of investigation, some technologies which have possibility to be applied to the MIU Project have been studied. Also overseas quality assurance programs have been investigated, and examples of the application of their concepts to MIU project have been considered. (author)

  5. 2. National scientific conference on process engineering in environment protection. Conference materials

    International Nuclear Information System (INIS)

    1994-01-01

    The national conference on 'Process engineering in environment protection' Jachranka 1994 has been divided into three sessions. Section 1 has been devoted to flue gas purification and collects 13 papers. Section 2 on liquid purification gathered 8 presentation. Section 3 - the poster session with 12 posters on related topics. During the conference 2 lectures and 3 posters have been devoted to the application of nuclear techniques to the solution different problems connected with environment protection

  6. GeoSciML version 3: A GML application for geologic information

    Science.gov (United States)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred

  7. Advanced Nuclear Fuel Cycle Effects on the Treatment of Uncertainty in the Long-Term Assessment of Geologic Disposal Systems - EBS Input

    International Nuclear Information System (INIS)

    Sutton, M.; Blink, J.A.; Greenberg, H.R.; Sharma, M.

    2012-01-01

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated

  8. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were

  9. Siting regions for deep geological repositories. Why just here?

    International Nuclear Information System (INIS)

    Rieser, A.

    2009-09-01

    This report helps to the popularization of the Nagra works accomplished for the management and disposal of the radioactive wastes in Switzerland. The programme for management and disposal of the radioactive wastes are extensively determined by regulations. Protection of mankind and environment is the primary objective. The basic storage process is considered as having been solved. The question addressed in the report is where the facility has to be built; the site selection procedure includes five steps: 1) according to their type the wastes have to be allocated to two different repositories: for low- and intermediate-level wastes (L/ILW), and for high-level and alpha-toxic wastes (HLW); 2) the safety concept for both repositories and the requirements on the geology have to be determined; 3) large suitable geological-tectonic zones must be found where repositories could be built; 4) in these geological zones a suitable host rock has to be identified; 5) the most important spatial geological conditions of the host rock (minimum depth with respect to surface erosion, maximum depth in terms of engineering requirements, lateral extent) have to be identified. Based on these criteria, three suitable siting regions for a HLW repository were found in the North of Switzerland. The preferred host rock is Opalinus clay because of its very low permeability; it is therefore an excellent barrier against nuclide transport. In the three proposed siting regions, Opalinus clay is present in sufficient volumes at a suitable depth. For a L/ILW repository six different possible siting regions were identified, five in Northern Switzerland and one in Central Switzerland. In the three siting regions found for a possible HLW repository, it would also be possible to built a combined repository for both HLW and L/ILW wastes

  10. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    Science.gov (United States)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  11. Environmental geology of Nampo, Puyo, Sochon, Hamyol

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Han, Dae Suk; Kim, Yoon Jong; Yu, Il Hyun; Lee, Bong Joo; Jeong, Gyo Cheol; Kim, Kyeong Su [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    An environmental geology map at a scale of 1:100,000 was produced to provide information on land use potential within the area of over 1,300 km{sup 2} consisting of Nampo, Puyo , Sochon and Hamyol. Land use potentiality was quantitatively assigned in accordance with the environmental geologic index(EI) derived from such factors as landslide frequency, engineering geological unit, topography and density of lineament length, being classified into 4 units. Also produced was a landslide susceptibility map at the same scale as the above map, showing five different grades of susceptibility based on hazard index(HI). Besides the above mentioned mapping, an investigation on the soils, rocks and natural aggregates throughout the study area was undertaken to assess their utilization potential as construction materials. Also carried out were the analysis of erosion and sedimentation in/around the Keum river, a geotechnical engineering investigation on the reclaimed tidal zone south of the Taechon beach, and the stability analysis of the cut slopes along the national roads. All the results of the investigations and analyses are presented in the paper. It is expected that the maps and accompanying information could be utilized in formulating regional land-use planning for variable projects. (author). 51 refs., 60 figs., 62 tabs., 3 maps.

  12. An assessment of gas impact on geological repository. Methodology and material property of gas migration analysis in engineered barrier system

    International Nuclear Information System (INIS)

    Yamamoto, Mikihiko; Mihara, Morihiro; Ooi, Takao

    2004-01-01

    Gas production in a geological repository has potential hazard, as overpressurisation and enhanced release of radionuclides. Amongst data needed for assessment of gas impact, gas migration properties of engineered barriers, focused on clayey and cementitious material, was evaluated in this report. Gas injection experiments of saturated bentonite sand mixture, mortar and cement paste were carried out. In the experiments, gas entry phenomenon and gas outflow rate were observed for these materials. Based on the experimental results, two-phase flow parameters were evaluated quantitatively. A conventional continuum two-phase flow model, which is only practically used multidimensional multi-phase flow model, was applied to fit the experimental results. The simulation results have been in good agreement with the gas entry time and the outflow flux of gas and water observed in the experiments. It was confirmed that application of the continuum two-phase flow model to gas migration in cementitious materials provides sufficient degree of accuracy for assessment of repository performance. But, for sand bentonite mixture, further extension of basic two-phase flow model is needed especially for effect of stress field. Furthermore, gas migration property of other barrier materials, including rocks, but long-term gas injection test, clarification of influence of chemicals environment and large-scale gas injection test is needed for multi-barrier assessment tool development and their verification. (author)

  13. Using Web 2.0 Techniques in NASA's Ares Engineering Operations Network (AEON) Environment - First Impressions

    Science.gov (United States)

    Scott, David W.

    2010-01-01

    The Mission Operations Laboratory (MOL) at Marshall Space Flight Center (MSFC) is responsible for Engineering Support capability for NASA s Ares rocket development and operations. In pursuit of this, MOL is building the Ares Engineering and Operations Network (AEON), a web-based portal to support and simplify two critical activities: Access and analyze Ares manufacturing, test, and flight performance data, with access to Shuttle data for comparison Establish and maintain collaborative communities within the Ares teams/subteams and with other projects, e.g., Space Shuttle, International Space Station (ISS). AEON seeks to provide a seamless interface to a) locally developed engineering applications and b) a Commercial-Off-The-Shelf (COTS) collaborative environment that includes Web 2.0 capabilities, e.g., blogging, wikis, and social networking. This paper discusses how Web 2.0 might be applied to the typically conservative engineering support arena, based on feedback from Integration, Verification, and Validation (IV&V) testing and on searching for their use in similar environments.

  14. Global Journal of Engineering Research

    African Journals Online (AJOL)

    The Global Journal of Engineering Research is aimed at promoting research in all areas of Engineering Research including Mechanical, Civil, Electrical, Chemical, Electronics, Geological etc. Visit the Global Journal Series website here: http://www.globaljournalseries.com/ ...

  15. Designing and Using Virtual Field Environments to Enhance and Extend Field Experience in Professional Development Programs in Geology for K-12 Teachers

    Science.gov (United States)

    Granshaw, Frank Douglas

    2011-01-01

    Virtual reality (VR) is increasingly used to acquaint geoscience novices with some of the observation, data gathering, and problem solving done in actual field situations by geoscientists. VR environments in a variety of forms are used to prepare students for doing geologic fieldwork, as well as to provide proxies for such experience when…

  16. Report of interim evaluation of Horonobe Underground Research Project Plan in FY2004

    International Nuclear Information System (INIS)

    2005-09-01

    The research results on the ground in the first step, until 2004 FY, and the research program of drift work in the second step are evaluated. On the first step, development of the geological environment research technologies, the monitoring technologies and the basic engineering technologies in the deep underground, long period stability of geological environment, and improvement of the geological disposal technologies, and the stability evaluation methods are investigated and these research results were high in estimation. The research program in the second step contains to obtain the geological environment data at sinking shaft, the effects of sinking on the geological environment, validity of the geological environment model in the first step and around the shaft are estimated. Validity of monitoring technologies of geological environment on the ground, engineering technologies of work, maintenance and management of shaft are evaluated. The fault, upheaval, submergence, change of sea level and climate are determined by earthquakes measurements, GPS and time-stratigraphic classification. The geological disposal technologies are improved by storage of data, better model and verification of engineering element techniques. Test program of materials transition in the geological disposal system is work out. (S.Y.)

  17. Acoustical monitoring of diesel engines in reverberant environment

    International Nuclear Information System (INIS)

    Mein, M.

    1995-10-01

    The feed-back knowledge of emergency diesel generators in nuclear power plants shows that some malfunctions, mainly affecting fuel-injection or distribution system of the engine can be heard and detected by experienced maintenance agents. This study consists in the feasibility,v of acoustical monitoring of those diesel engines, taking into account the reverberant environment of the machine. The operating cycle of the diesel is composed of transient events (injection, combustion, valve closure...) which generate highly non stationary acoustical signals. The detection of a malfunction appearing on such transients requires the use of adapted signal processing techniques. Visual analysis of the phenomena is first proceeded using time-frequency and time-scale representations. The second step will be parametric modeling of acoustical signatures for the extraction of characteristic parameters, in order to characterize the fault and to use an automatic classification system. The lest part of the study will concern the evaluation of the robustness of the detection methods in regard to acoustical reverberation. (author). 10 refs., 6 figs

  18. 939 Department of Geology and Mineral Science

    African Journals Online (AJOL)

    USER

    2015-11-12

    Nov 12, 2015 ... Department of Geology and Mineral Sciences, University of Ilorin, Ilorin, Nigeria P.M.B. 1515, Ilorin, Nigeria. 2. Department of Petroleum Engineering and Geosciences, Petroleum Training Institute, P.M.B.. 20, Effurun, Delta State, Nigeria. Abstract. Hydrochemical investigation of thirty groundwater samples ...

  19. Geology along topographic profile for near-surface test facility

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-01-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in the Columbia River Basalt. A portion of the geological work conducted in support of the Engineering Design Unit to evaluate the west end of Gable Mountain as a site for in situ testing of the thermomechanical behavior of basalt is reported. The surficial geology of the west end of Gable Mountain was mapped in a reconnaissance fashion at a scale of 1:62,500 to identify geologic features which could affect siting of the proposed facilities. A detailed study of the geological conditions was conducted along a traverse across the most probable site for the proposed project

  20. Development and improvement of safety analysis code for geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to confirm the long-term safety concerning geological disposal, probabilistic safety assessment code and other analysis codes, which can evaluate possibility of each event and influence on engineered barrier and natural barrier by the event, were introduced. We confirmed basic functions of those codes and studied the relation between those functions and FEP/PID which should be taken into consideration in safety assessment. We are planning to develop 'Nuclide Migration Assessment System' for the purpose of realizing improvement in efficiency of assessment work, human error prevention for analysis, and quality assurance of the analysis environment and analysis work for safety assessment by using it. As the first step, we defined the system requirements and decided the system composition and functions which should be mounted in them based on those requirements. (author)

  1. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Science.gov (United States)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  2. Design and implementation of a flipped classroom learning environment in the biomedical engineering context.

    Science.gov (United States)

    Corrias, Alberto; Cho Hong, James Goh

    2015-01-01

    The design and implementation of a learning environment that leverages on the use of various technologies is presented. The context is an undergraduate core engineering course within the biomedical engineering curriculum. The topic of the course is data analysis in biomedical engineering problems. One of the key ideas of this study is to confine the most mathematical and statistical aspects of data analysis in prerecorded video lectures. Students are asked to watch the video lectures before coming to class. Since the classroom session does not need to cover the mathematical theory, the time is spent on a selected real world scenario in the field of biomedical engineering that exposes students to an actual application of the theory. The weekly cycle is concluded with a hands-on tutorial session in the computer rooms. A potential problem would arise in such learning environment if the students do not follow the recommendation of watching the video lecture before coming to class. In an attempt to limit these occurrences, two key instruments were put in place: a set of online self-assessment questions that students are asked to take before the classroom session and a simple rewards system during the classroom session. Thanks to modern learning analytics tools, we were able to show that, on average, 57.9% of students followed the recommendation of watching the video lecture before class. The efficacy of the learning environment was assessed through various means. A survey was conducted among the students and the gathered data support the view that the learning environment was well received by the students. Attempts were made to quantify the impacts on learning of the proposed measures by taking into account the results of selected questions of the final examination of the course. Although the presence of confounding factors demands caution in the interpretation, these data seem to indicate a possible positive effect of the use of video lectures in this technologically

  3. Geologic aspects of seismic hazards assessment at the Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Smith, R.P.; Hackett, W.R.; Rodgers, D.W.

    1989-01-01

    The Idaho National Engineering Laboratory (INEL), located on the northwestern side of the Eastern Snake River Plain (ESRP), lies in an area influenced by two distinct geologic provinces. The ESRP province is a northeast-trending zone of late Tertiary and Quaternary volcanism which transects the northwest-trending, block-fault mountain ranges of the Basin and Range province. An understanding of the interaction of these two provinces is important for realistic geologic hazards assessment. Of particular importance for seismic hazards analysis is the relationship of volcanic rift zones on the ESRP to basin-and-range faults north of the plain. The Arco Rift Zone, a 20-km-long belt of deformation and volcanism on the plain just west of the INEL, is colinear with the basin-and-range Lost River fault. Recent field studies have demonstrated that Arco Rift Zone deformation is typical of that induced by dike injection in other volcanic rift zones. The deformation is characterized by a predominance of dilational fissuring with less extensive development of faults and grabens. Cumulative vertical displacements over the past 0.6 Ma are an order of magnitude lower than those associated with the Arco Segment of the Lost River fault to the northwest. The evidence suggests that the northeast-directed extension that produces the block fault mountains of the Basin and Range is expressed by dike injection and volcanic rift zone development in the ESRP. Seismicity associated with dike injection during rift zone development is typically of low magnitude and would represent only minor hazard compared to that associated with the block faulting. Since the ESRP responds to extension in a manner distinct from basin-and-range faulting, it is not appropriate to consider the volcanic rift zones as extensions of basin-and-range faults for seismic hazard analysis

  4. Horonobe underground research laboratory project. The plan for the in-situ experiments in Phase 2 and Phase 3 in/around URL

    International Nuclear Information System (INIS)

    Matsui, Hiroya

    2005-09-01

    This report describes for preliminary research plan in Phase 2 and Phase 3 taken into consideration of expected geological environment at location of URL based on the results of the investigations until FY 2003/2004. Duration of construction phase and total cost are considered as important factors for planning as well. The below items are planned for in-situ experiments in Phase 2 and Phase 3 in/around URL are planning. Phase 2. (In-situ experiments for understanding of geological environment) Geological survey at tunnel. Inflow measurement in shafts. Water pressure monitoring and groundwater sampling around shafts during excavation of URL. Investigation for EDZ around shafts. Stress measurement on support. Detail investigations for geological environment around drifts. Excavation disturbance experiment in a drift. Investigation for desaturation zone and REDOX condition around drifts. (Engineered barrier system) In-situ experiment on low-alkali concrete. In-situ experiment for gas migration in engineering barrier system. Phase 3. (In-situ experiments for understanding of geological environment) EDZ experiment for stress interference. Investigation of long-term behavior of EDZ around drifts. Detail investigation on fault/fault zone. Monitoring for the change of geological environment at earthquake. Backfill test in boreholes. (Engineered barrier system) T-H-M-C experiment. In-situ experiment for corrosion of overpack. Investigation of the influence of a concrete to engineering barrier system and geological environment. In-situ experiment for interference between backfill material and geological environment. Backfill test in a drift. (Safety assessment) Tracer tests in engineering barrier system, natural barrier and fault/fault zone. (author)

  5. Reversibility and retrievability in geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-01-01

    Reversibility of decisions is an important consideration in the step-wise decision-making process that is foreseen for engineered geologic disposal of radioactive waste. The implications of favouring retrievability of the waste within disposal strategies and the methods to implement it are also being considered by NEA Member countries. This report reviews the concepts of reversibility and retrievability as they may apply to the planning and development of engineered geologic repositories. The concepts span technical, policy and ethical issues, and it is important that a broad understanding is developed of their value and implications. Furthermore, improved comprehension and communication of these issues will clarify the value of flexible, step-wise decision making in repository development programmes and may help to generate a climate conducive to the further progress of such programmes. (author)

  6. Motor SUS i životna sredina / IC engine and environment

    Directory of Open Access Journals (Sweden)

    Zoran Građin

    2002-03-01

    Full Text Available Ekološki pokreti u svetu su sve aktivniji, zbog stvarne ugroženosti Zemlje Mnogobrojni su oblici i izvori zagađenja, a jedan od najvećih su motori sa unutrašnjim sagorevanjem, za koje se pretpostavlja da će još dugo dominirati kao pogonski agregati u mnogim oblastima primene. U vezi s tim moguće je delovati u dva smera: zamenom konvencionalnih goriva alternativnim i konstrukcionim izmenama na motorima radi smanjenja emisije i potrošnje goriva. Jedna od mogućnosti konstrukcionog poboljšanja motora je i smanjenje mehaničkih gubitaka, koji kod današnjih konstrukcija još uvek imaju znatan udeo u gubicima, pogotovo na parcijalnim režimima. Treba naglasiti da kompleksni problemi smanjenja potrošnje goriva i emisije izduvnih gasova motora (vozila mogu da se reše samo spregom razvoja automobilske i naftne industrije. / Ecological trends and movements in the modern world grow stronger and more active, due to a real danger of Earth pollution. One of the main sources of pollution are IC engines and their influence on environment is significant. However, conventional combustion engines still are and will be dominant powering systems for numerous future applications. Two solutions are possible answers to this problem: first, the replacement of conventional fuels by alternative ones and second, modifications on the IC engine design in order to decrease fuel emission and consumption. One of the solutions for the improvement of IC engine design is the modification of engine parts or their design, with great influence on the decrease of mechanical losses, especially on partial rating. Therefore, it is important to say that complex problems of engine (automotive decrease of fuel consumption and exhaust gas emission can be solved only by simultaneous development of oil and engine (automotive industry.

  7. Geological hazard monitoring system in Georgia

    Science.gov (United States)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  8. The physical work environment and end-user requirements: Investigating marine engineering officers' operational demands and ship design.

    Science.gov (United States)

    Mallam, Steven C; Lundh, Monica

    2016-08-12

    Physical environments influence how individuals perceive a space and behave within it. Previous research has revealed deficiencies in ship engine department work environments, and their impact on crew productivity, health and wellbeing. Connect operational task demands to pragmatic physical design and layout solutions by implementing a user-centric perspective. Three focus groups, each consisting of three marine engineers participated in this study. Focus groups were divided into two sessions: first, to investigate the end-user's operational requirements and their relationship with ship physical design and layout. Second, criteria formulated from group discussions were applied to a ship design case study. All focus group sessions were audio recorded and transcribed verbatim. The data were analyzed using Grounded Theory. Design choices made in a ships general arrangement were described to inherently influence how individuals and teams are able to function within the system. Participants detailed logistical relationships between key areas, stressing that the work environment and physical linkages must allow for flexibility of work organization and task execution. Traditional engine control paradigms do not allow effective mitigation of traditional engine department challenges. The influence of technology and modernization of ship systems can facilitate improvement of physical environments and work organization if effectively utilized.

  9. Using digital databases to create geologic maps for the 21st century : a GIS model for geologic, environmental, cultural and transportation data from southern Rhode Island

    Science.gov (United States)

    2002-05-01

    Knowledge of surface and subsurface geology is fundamental to the planning and development of new or modified transportation systems. Toward this : end, we have compiled a model GIS database consisting of important geologic, cartographic, environment...

  10. Design of plant safety model in plant enterprise engineering environment

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  11. Geomass: geological modelling analysis and simulation software for the characterisation of fractured hard rock environments

    International Nuclear Information System (INIS)

    White, M.J.; Humm, J.P.; Todaka, N.; Takeuchi, S.

    1998-01-01

    This paper presents the development and functionality of a suite of applications which are being developed to support the geological investigations in the Tono URL. GEOMASS will include 3D geological modelling, 3D fluid flow and solute transport and 3D visualisation capabilities. The 3D geological modelling in GEOMASS will be undertaken using a commercially available 3D geological modelling system, EarthVision. EarthVision provides 3D mapping, interpolation, analysis and well planning software. It is being used in the GEOMASS system to provide the geological framework (structure of the tectonic faults and stratigraphic and lithological contacts) to the 3D flow code. It is also being used to gather the geological data into a standard format for use throughout the investigation programme. The 3D flow solver to be used in GEOMASS is called Frac-Affinity. Frac-Affinity models the 3D geometry of the flow system as a hybrid medium, in which the rock contains both permeable, intact rock and fractures. Frac-Affinity also performs interpolation of heterogeneous rock mass property data using a fractal based approach and the generation of stochastic fracture networks. The code solves for transient flow over a user defined sub-region of the geological framework supplied by EarthVision. The results from Frac-Affinity are passed back to EarthVision so that the flow simulation can be visualized alongside the geological structure. This work-flow allows rapid assessment of the role of geological features in controlling flow. This paper will present the concepts and approach of GEOMASS and illustrate the practical application of GEOMASS using data from Tono

  12. Geologic and hydrologic records of observation wells, test holes, test wells, supply wells, springs, and surface water stations in the Los Alamos area

    International Nuclear Information System (INIS)

    Purtymun, W.D.

    1995-01-01

    Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment

  13. A CAMAC and FASTBUS engineering test environment supported by a MicroVAX/MicroVMS system

    International Nuclear Information System (INIS)

    Logg, C.A.

    1987-10-01

    A flexible, multiuser engineering test environment has been established for the engineers in SLAC's Electronic Instrumentation Engineering group. The system hardware includes a standard MicroVAX II and MicroVAX I with multiple CAMAC, FASTBUS, and GPIB instrumentation buses. The system software components include MicroVMS licenses with DECNET/SLACNET, FORTRAN, PASCAL, FORTH, and a versatile graphical display package. In addition, there are several software utilities available to facilitate FASTBUS and CAMAC prototype hardware debugging. 16 refs., 7 figs

  14. Deep geological disposal research in Argentina

    International Nuclear Information System (INIS)

    Ninci Martinez, Carlos A.; Ferreyra, Raul E.; Vullien, Alicia R.; Elena, Oscar; Lopez, Luis E.; Maloberti, Alejandro; Nievas, Humberto O.; Reyes, Nancy C.; Zarco, Juan J.; Bevilacqua, Arturo M.; Maset, Elvira R.; Jolivet, Luis A.

    2001-01-01

    Argentina shall require a deep geological repository for the final disposal of radioactive wastes, mainly high-level waste (HLW) and spent nuclear fuel produced at two nuclear power plants and two research reactors. In the period 1980-1990 the first part of feasibility studies and a basic engineering project for a radioactive high level waste repository were performed. From the geological point of view it was based on the study of granitic rocks. The area of Sierra del Medio, Province of Chubut, was selected to carry out detailed geological, geophysical and hydrogeological studies. Nevertheless, by the end of the eighties the project was socially rejected and CNEA decided to stop it at the beginning of the nineties. That decision was strongly linked with the little attention paid to social communication issues. Government authorities were under a strong pressure from social groups which demanded the interruption of the project, due to lack of information and the fear it generated. The lesson learned was: social communication activities shall be carried out very carefully in order to advance in the final disposal of HLW at deep geological repositories (author)

  15. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs

  16. Geology and environmental impact of artisanal gold mining around ...

    African Journals Online (AJOL)

    Geology and effect of artisanal gold mining was investigated in Kataeregi and environ, North-central Nigeria with the aim of determining its host rock and assessing the impact of such activity on the surrounding. Geological field mapping show the area comprise of the Migmatite-Gneiss complex, Schist, Granite and ...

  17. Investigation and technical reviews of the long term stability and corrosion resistance of engineering barriers

    International Nuclear Information System (INIS)

    Tachikawa, Hirokazu

    2004-03-01

    The Japan Nuclear Fuel Cycle Development Institute submitted 'Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan' to the Japanese government. This report contains investigations of the long term behavior of alteration of bentonite, and of the corrosion life time of overpack on the basis of experimental data and past research, assuming the ranging geological environment of Japan. However some subjects, such as the behavior of the bentonite and overpack under high pH conditions and the behavior of the engineering barrier with change of near-field environmental condition with time for promoting reliability have still been left. To take into account these conditions, expert committees composed of clay science and metal corrosion science experts were established in the Nuclear Safety Research Association and past research outcomes and the theory of safety assessment were investigated and technically reviewed from the view points of long term stability and corrosion resistance of engineering buffer materials. (author)

  18. Integrating Sustainability in a PBL Environment for Electronics Engineering

    DEFF Research Database (Denmark)

    Arsat, Mahyuddin; Holgaard, Jette Egelund; de Graaff, Erik

    2013-01-01

    (PBL) has been put forward as a promising pedagogical model and emerged as an opportunity to implement sustainability successfully. Due to the almost forty years of experience in PBL, a case study was carried out at Aalborg University, Denmark to excerpt their experience of integrating sustainability...... in a problem based learning environment. Three electronics engineering project modules were selected as example and empirically supported by constructed interviews with staff and document analysis of selected material. The findings were analysed with a systems approach and presented with reference to three...

  19. Review of uranium in Australia: its geology, exploration and world significance

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, J; Gaskell, J L; Spaargaren, F A; Butler, R D; Francis, T; Ross, J

    1973-01-01

    The aim of this report is to review and classify all known Australian uranium occurrences, to compare them with world-wide deposits and on this basis, derive conclusions on the uranium potential in various Australian geological environments. In an introductory section the properties, uses, chemistry, mineralogy and processing of uranium are summarised. An outline of modern prospecting techniques applicable in different geological environments is also presented. Foreign uranium deposits are classified and briefly discussed. World supply and demand to the year 2000 is analysed and the importance of Australia as a major uranium producer is considered. Uranium occurrences and deposits in all States are described in detail, and potential uraniferous geological environments are reviewed. A large scale map is presented which delineates these environments and indicates areas considered to be the most prospective. Conclusions are drawn and recommendations made concerning the selection of areas which are considered to hold the most promise for the discovery of further uranium deposits.

  20. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    International Nuclear Information System (INIS)

    McEvoy, F.M.; Schofield, D.I.; Shaw, R.P.; Norris, S.

    2016-01-01

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  1. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, F.M., E-mail: fmcevoy@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Schofield, D.I. [British Geological Survey, Tongwynlais, CF15 7NE (United Kingdom); Shaw, R.P. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Norris, S. [Radioactive Waste Management Limited, B587, Curie Avenue, Harwell, Didcot OX11 0RH (United Kingdom)

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  2. Mapping urban geology of the city of Girona, Catalonia

    Science.gov (United States)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  3. Construction of the Geological Model around KURT area based on the surface investigations

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Koh, Yong Kwon; Kim, Kyung Su; Choi, Jong Won

    2009-01-01

    To characterize the geological features in the study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing several geological investigations such as geophysical surveys and borehole drillings since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep boreholes, which have 500 m depth inside the left research module of the KURT and 1,000 m depth outside the KURT, were drilled to confirm and validate the results from a geological model. The objective of this research was to investigate hydrogeological conditions using a 3-D geological model around the KURT. The geological analysis from the surface and borehole investigations determined four important geological elements including subsurface weathered zone, low-angled fractures zone, fracture zones and bedrock for the geological model. In addition, the geometries of these elements were also calculated for the three-dimensional model. The results from 3-D geological model in this study will be beneficial to understand hydrogeological environment in the study area as an important part of high-level radioactive waste disposal technology.

  4. How to Shape a Successful Repository Program: Staged Development of Geologic Repositories for High-Level Waste

    International Nuclear Information System (INIS)

    Isaacs, T.

    2004-01-01

    Programs to manage and ultimately dispose of high-level radioactive wastes are unique from scientific and technological as well as socio-political aspects. From a scientific and technological perspective, high-level radioactive wastes remain potentially hazardous for geological time periods--many millennia--and scientific and technological programs must be put in place that result in a system that provides high confidence that the wastes will be isolated from the accessible environment for these many thousands of years. Of course, ''proof'' in the classical sense is not possible at the outset, since the performance of the system can only be known with assurance, if ever, after the waste has been emplaced for those geological time periods. Adding to this challenge, many uncertainties exist in both the natural and engineered systems that are intended to isolate the wastes, and some of the uncertainties will remain regardless of the time and expense in attempting to characterize the system and assess its performance

  5. How to Shape a Successful Repository Program: Staged Development of Geologic Repositories for High-Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, T.

    2004-10-03

    Programs to manage and ultimately dispose of high-level radioactive wastes are unique from scientific and technological as well as socio-political aspects. From a scientific and technological perspective, high-level radioactive wastes remain potentially hazardous for geological time periods--many millennia--and scientific and technological programs must be put in place that result in a system that provides high confidence that the wastes will be isolated from the accessible environment for these many thousands of years. Of course, ''proof'' in the classical sense is not possible at the outset, since the performance of the system can only be known with assurance, if ever, after the waste has been emplaced for those geological time periods. Adding to this challenge, many uncertainties exist in both the natural and engineered systems that are intended to isolate the wastes, and some of the uncertainties will remain regardless of the time and expense in attempting to characterize the system and assess its performance.

  6. Architecture independent environment for developing engineering software on MIMD computers

    Science.gov (United States)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  7. A Geospatial Information Grid Framework for Geological Survey.

    Science.gov (United States)

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  8. Regional Geology Web Map Application Development: Javascript v2.0

    International Nuclear Information System (INIS)

    Russell, Glenn

    2017-01-01

    This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to the SFSWT program.

  9. Regional Geology Web Map Application Development: Javascript v2.0

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Glenn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-19

    This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to the SFSWT program.

  10. Research Into the Role of Students’ Affective Domain While Learning Geology in Field Environments

    Science.gov (United States)

    Elkins, J.

    2009-12-01

    Existing research programs in field-based geocognition include assessment of cognitive, psychomotor, and affective domains. Assessment of the affective domain often involves the use of instruments and techniques uncommon to the geosciences. Research regarding the affective domain also commonly results in the collection and production of qualitative data that is difficult for geoscientists to analyze due to their lack of familiarity with these data sets. However, important information about students’ affective responses to learning in field environments can be obtained by using these methods. My research program focuses on data produced by students’ affective responses to field-based learning environments, primarily among students at the introductory level. For this research I developed a Likert-scale Novelty Space Survey, which presents student ‘novelty space’ (Orion and Hofstien, 1993) as a polygon; the larger the polygons, the more novelty students are experiencing. The axises for these polygons correspond to novelty domains involving geographic, social, cognitive, and psychological factors. In addition to the Novelty Space Survey, data which I have collected/generated includes focus group interviews on the role of recreational experiences in geology field programs. I have also collected data concerning the motivating factors that cause students to take photographs on field trips. The results of these studies give insight to the emotional responses students have to learning in the field and are important considerations for practitioners of teaching in these environments. Collaborative investigations among research programs that cross university departments and include multiple institutions is critical at this point in development of geocognition as a field due to unfamiliarity with cognitive science methodology by practitioners teaching geosciences and the dynamic nature of field work by cognitive scientists. However, combining the efforts of cognitive

  11. New safety concept for geological disposal in Japan - -16339

    International Nuclear Information System (INIS)

    Kitayama, Kazumi

    2009-01-01

    This paper describes a new safety concept for the Japanese geological disposal program, which is a development of the conventional multi-barrier system concept. The Japanese government established the 'Nuclear Waste Management Organization of Japan' (NUMO) as an implementation body in 2000 based on the 'Final disposal act' following the publication of the 'H-12 Report', which confirmed the scientific and engineering feasibility of HLW geological disposal in Japan. Since then, NUMO has undertaken further technical developments aimed at achieving safe and efficient implementation of final disposal. The safety concept developed in the 'H-12 Report' provides sufficient safety on the basis of site-generic considerations. However, it is considered to be over-conservative and therefore does not represent the most probable performance of the engineered or natural barriers. Recently, concrete measures have been proposed requiring the safety case to be presented in terms of a realistic assessment of the most probable performance. This approach takes into account the safety functions of both engineered and natural barriers as well as the long-term static geochemical equilibrium. In particular, the evolution of the safety performance of engineered and natural barriers can be efficiently augmented by the realistic long-term geochemical equilibrium. (author)

  12. Systems engineering management plan

    International Nuclear Information System (INIS)

    Conner, C.W.

    1985-10-01

    The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe the systems engineering procedures to be implemented at the Program level and the minimum requirements for systems engineering at the Program-element level. The Program level corresponds to the Director, OCRWM, or to the organizations within OCRWM to which the Director delegates responsibility for the development of the System and for coordinating and integrating the activities at the Program-element level. The Office of Policy and Outreach (OPO) and the Office of Resource Management (ORM) support the Director at the Program level. The Program-element level corresponds to the organizations within OCRWM (i.e., the Office of Geologic Repositories (OGR) and the Office of Storage and Transportation Systems (OSTS)) with overall responsibility for developing the System elements - that is, the mined geologic disposal system (MGDS), monitored retrievable storage (MRS) (if approved by Congress), and the transportation system

  13. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment : Proceedings of the 19th ISPE International Conference on Concurrent Engineering

    CERN Document Server

    Rock, Georg; Bil, Cees

    2013-01-01

    The CE Conference series is organized annually by the International Society for Productivity Enhancement (ISPE) and constitutes an important forum for international scientific exchange on concurrent and collaborative enterprise engineering. These international conferences attract a significant number of researchers, industrialists and students, as well as government representatives, who are interested in the recent advances in concurrent engineering research and applications. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment: Proceedings of the 19th ISPE International Conference on Concurrent Engineering contains papers accepted, peer reviewed and presented at the annual conference held  at the University of Applied Sciences in Trier, Germany, from 3rd-7th of September 2012. This covers a wide range of cutting-edge topics including: •Systems Engineering and Innovation •Design for Sustainability •Knowledge Engineering and Management •Managing pro...

  14. Grimsel test site. Research on safe geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2010-07-01

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  15. Grimsel test site. Research on safe geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  16. Motivation, Classroom Environment, and Learning in Introductory Geology: A Hierarchical Linear Model

    Science.gov (United States)

    Gilbert, L. A.; Hilpert, J. C.; Van Der Hoeven Kraft, K.; Budd, D.; Jones, M. H.; Matheney, R.; Mcconnell, D. A.; Perkins, D.; Stempien, J. A.; Wirth, K. R.

    2013-12-01

    Prior research has indicated that highly motivated students perform better and that learning increases in innovative, reformed classrooms, but untangling the student effects from the instructor effects is essential to understanding how to best support student learning. Using a hierarchical linear model, we examine these effects separately and jointly. We use data from nearly 2,000 undergraduate students surveyed by the NSF-funded GARNET (Geoscience Affective Research NETwork) project in 65 different introductory geology classes at research universities, public masters-granting universities, liberal arts colleges and community colleges across the US. Student level effects were measured as increases in expectancy and self-regulation using the Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich et al., 1991). Instructor level effects were measured using the Reformed Teaching Observation Protocol, (RTOP; Sawada et al., 2000), with higher RTOP scores indicating a more reformed, student-centered classroom environment. Learning was measured by learning gains on a Geology Concept Inventory (GCI; Libarkin and Anderson, 2005) and normalized final course grade. The hierarchical linear model yielded significant results at several levels. At the student level, increases in expectancy and self-regulation are significantly and positively related to higher grades regardless of instructor; the higher the increase, the higher the grade. At the instructor level, RTOP scores are positively related to normalized average GCI learning gains. The higher the RTOP score, the higher the average class GCI learning gains. Across both levels, average class GCI learning gains are significantly and positively related to student grades; the higher the GCI learning gain, the higher the grade. Further, the RTOP scores are significantly and negatively related to the relationship between expectancy and course grade. The lower the RTOP score, the higher the correlation between change in

  17. Electrical Resistivity Models in Geological Formations in the Southern Area of the East of Cuba

    Directory of Open Access Journals (Sweden)

    José Antonio García-Gutiérrez

    2017-04-01

    Full Text Available The purpose of this study is to develop electrical resistivity models in geological formations of greater interest for geological engineering in the southern area of the East of Cuba. A procedure for the generalization of the geo-electrical database was prepared to generate the referred geo-electrical models. A total of 38 works with 895 vertical electrical surveys, of which 317 (35.4% located near (parametrical drills. Three models for the Paso Real formation and one for the Capdevila, the most distributed in the region under investigation were defined. The surface quartz sands from the municipality of Sandino were identified to have higher electrical resistivity averages (1241 Ω•m, while they do not exceed 86 Ω•m in the lower horizons to resolve basic tasks of the geological engineering investigations. The assessment of the cover clayey sandy soils was satisfactory in both geological formations while the determination of the water table depth was unfavorable. The remaining tasks varied between relatively favorable to unfavorable according to the geological formations.

  18. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  19. Status and development of deep geological repository in Slovak republic from geological point of view

    Directory of Open Access Journals (Sweden)

    Jozef Franzen

    2007-01-01

    Full Text Available During the operation of Slovak NPPs, production of approximately 2,300 metric tons of spent fuel expressed as heavy metal (18,654 spent fuel assemblies is expected. In addition, about 5000 metric tons of radioactive waste unfit for near surface repository at Mochovce and destined for a deep geological disposal. The safe and long-term solution of back-end fuel cycle is so highly required.One of the most favorable solutions is Deep Geological Repository (DGR. The site for a DGR, along with repository design and the engineered barrier system must ensure long-term safety of the disposal system.A preliminary set of site-selection criteria for a DGR was proposed in Slovakia, based on worldwide experience and consistent with IAEA recommendations. Main groups of criteria are: 1 geological and tectonic stability of prospective sites; 2 appropriate characteristics of host rock (lithological homogeneity, suitable hydrogeological and geochemical conditions, favourable geotechnical setting, absence of mineral resources, etc.; 3 conflict of interests (natural resources, natural and cultural heritage, protected resources of thermal waters, etc..Based on the previous geological investigations, three distinct areas (five localities were determined as the most prospective sites for construction of a DGR so far. Three of them are built by granitoids rock (Tribeč Mts., Veporske vrchy Mts. and Stolicke vrchy Mts., other consist of sedimentary rock formations (Cerova vrchovina Upland and Rimavska kotlina Basin. Objective for the next investigation stage is to perform more detailed geological characterization of the prospective sites.

  20. Gas-water-rock interactions induced by reservoir exploitation, CO2 sequestration, and other geological storage

    International Nuclear Information System (INIS)

    Lecourtier, J.

    2005-01-01

    Here is given a summary of the opening address of the IFP International Workshop: 'gas-water-rock interactions induced by reservoir exploitation, CO 2 sequestration, and other geological storage' (18-20 November 2003). 'This broad topic is of major interest to the exploitation of geological sites since gas-water-mineral interactions determine the physicochemical characteristics of these sites, the strategies to adopt to protect the environment, and finally, the operational costs. Modelling the phenomena is a prerequisite for the engineering of a geological storage, either for disposal efficiency or for risk assessment and environmental protection. During the various sessions, several papers focus on the great achievements that have been made in the last ten years in understanding and modelling the coupled reaction and transport processes occurring in geological systems, from borehole to reservoir scale. Remaining challenges such as the coupling of mechanical processes of deformation with chemical reactions, or the influence of microbiological environments on mineral reactions will also be discussed. A large part of the conference programme will address the problem of mitigating CO 2 emissions, one of the most important issues that our society must solve in the coming years. From both a technical and an economic point of view, CO 2 geological sequestration is the most realistic solution proposed by the experts today. The results of ongoing pilot operations conducted in Europe and in the United States are strongly encouraging, but geological storage will be developed on a large scale in the future only if it becomes possible to predict the long term behaviour of stored CO 2 underground. In order to reach this objective, numerous issues must be solved: - thermodynamics of CO 2 in brines; - mechanisms of CO 2 trapping inside the host rock; - geochemical modelling of CO 2 behaviour in various types of geological formations; - compatibility of CO 2 with oil-well cements

  1. Geological modeling of a stratified deposit with CAD-Based solid model automation

    Directory of Open Access Journals (Sweden)

    Ayten Eser

    Full Text Available Abstract The planning stages of mining activities require many comprehensive and detailed analyses. Determining the correct orebody model is the first stage and one of the most important. Three-dimensional solid modeling is one of the significant methods that can examine the position and shape of the ore deposit. Although there are many different types of mining software for determining a solid model, many users try to build geological models in the computer without knowing how these software packages work. As researchers on the subject, we wanted to answer the question "How would we do it". For this purpose, a system was developed for generating solid models using data obtained from boreholes. Obtaining this model in an AutoCAD environment will be important for geologists and engineers. Developed programs were first tested with virtual borehole data belonging to a virtual deposit. Then the real borehole data of a cement raw material site were successfully applied. This article allows readers not only to see a clear example of the programming approach to layered deposits but also to produce more complicated software in this context. Our study serves as a window to understanding the geological modeling process.

  2. Nurture of human resources for geological repository program

    International Nuclear Information System (INIS)

    Fujiwara, A.

    2004-01-01

    The Japanese geological repository program entered the implementing stage in 2002. At the implementing stage of the program, different sectors need various human resources to conduct their functions. This paper discusses a suitable framework of nurture of the human resources to progress the geological repository program. The discussion is based on considering of specific characters involved in the program and of the multidisciplinary knowledge related to geological disposal. Considering the specific characters of the project, two types of the human resources need to be nurtured. First type is the core persons with the highest knowledge on geological disposal. They are expected to communicate with the various stakeholders and pass down the whole knowledge of the project to the next generation. Another is to conduct the project as the managers, the engineers and the workers. The former human resources can be developed through the broad practice and experience in each sector. The latter human resources can be effectively developed by training of the fundamental knowledge on geological disposal at training centers as well as by conventional on-the-job training. The sectors involved in the program need to take their own roles in the nurture of these human resources. (author)

  3. ELECTRICAL TECHNIQUES FOR ENGINEERING APPLICATIONS.

    Science.gov (United States)

    Bisdorf, Robert J.

    1985-01-01

    Surface electrical geophysical methods have been used in such engineering applications as locating and delineating shallow gravel deposits, depth to bedrock, faults, clay zones, and other geological phenomena. Other engineering applications include determining water quality, tracing ground water contaminant plumes and locating dam seepages. Various methods and electrode arrays are employed to solve particular geological problems. The sensitivity of a particular method or electrode array depends upon the physics on which the method is based, the array geometry, the electrical contrast between the target and host materials, and the depth to the target. Each of the available electrical methods has its own particular advantages and applications which the paper discusses.

  4. Liquid rocket propulsion dynamic flow modeling using the ROCETS engineering modules in the EASY5x environment

    Science.gov (United States)

    Follett, Randolph F.; Taylor, Robert P.; Nunez, Stephen C.

    1993-01-01

    A report on the progress of porting the ROCETS (ROCket Engine Transient Simulator) into the EASY5x simulation environment is presented. Brief descriptions of each of the software systems, information regarding the actual port process, and examples comparing the results of the two systems are given. It is shown that EASY5x is a suitable environment for utilization of the ROCETS engineering modules, and that, for the example systems shown, EASY5x actually seems to give more accurate solutions than the straight ROCETS code.

  5. Person-job and person-organization fits: Co-op fits in an aerospace engineering environment

    Science.gov (United States)

    Urban, Anthony John, Jr.

    This dissertation research was a replication of a quantitative study completed by Dr. Cynthia Shantz at Wayne State University during 2003. The intent of the research was to investigate the fits of college students who participated in cooperative academic-work programs (co-ops) to employment positions within aerospace engineering. The objective of investigating person-job (P-J) and person-organization (P-O) fits was to determine if variables could be identified that indicated an individual's aptitude to complete successfully aerospace engineering standard work. Research participants were co-op employees who were surveyed during their employment to identify indications of their fits into their organization and job assignments. Dr. Shantz's research led to the thought employment success might increase when P-J and P-O fits increase. For example, reduced initial training investments and increased employee retention might result with improved P-O and P-J fits. Research data were gathered from surveys of co-ops who worked at a Connecticut aerospace engineering company. Data were collected by distributing invitations to co-ops to participate in three online surveys over a 9-11 week period. Distribution of survey invitations was accomplished through the Human Resources Department to ensure that respondent identities were maintained private. To protect anonymity and privacy further, no identifying information about individuals or the company is published. However, some demographic information was collected to ensure that correlations were based on valid and reliable data and research and analysis methods. One objective of this research was to determine if co-op characteristics could be correlated with successful employment in an aerospace engineering environment. A second objective was to determine if P-J and P-O fits vary over time as co-ops become increasing familiar with their assignments, organization, and environment. Understanding and incorporating the use P-J and P

  6. SEA Change: Bringing together Science, Engineering and the Arts at the University of Florida

    Science.gov (United States)

    Perfit, M. R.; Mertz, M. S.; Lavelli, L.

    2014-12-01

    A group of interested and multifaceted faculty, administrators and students created the Science, Engineering, Arts Committee (SEA Change) two years ago at the University of Florida (UF). Recognizing that innovative ideas arise from the convergence of divergent thinkers, the committee seeks to bring together faculty in Science, Engineering, the Arts and others across campus to develop and disseminate innovative ideas for research, teaching and service that will enhance the campus intellectual environment. We meet regularly throughout the year as faculty with graduate and undergraduate students to catalyze ideas that could lead to collaborative or interdisciplinary projects and make recommendations to support innovative, critical and creative work. As an example, the Department of Geological Sciences and the School of Art and Art History collaborated on a competition among UF undergraduate painting students to create artistic works that related to geoscience. Each student gathered information from Geological Sciences faculty members to use for inspiration in creating paintings along with site-specific proposals to compete for a commission. The winning work was three-story high painting representing rock strata and the Florida environment entitled "Prairie Horizontals" that is now installed in the Geoscience building entrance atrium. Two smaller paintings of the second place winner, depicting geologists in the field were also purchased and displayed in a main hallway. Other activities supported by SEA Change have included a collaborative work of UF engineering and dance professors who partnered for the Creative Storytelling and Choreography Lab, to introduce basic storytelling tools to engineering students. A campus-wide gathering of UF faculty and graduate students titled Creative Practices: The Art & Science of Discovery featured guest speakers Steven Tepper, Victoria Vesna and Benjamin Knapp in spring 2014. The Committee plans to develop and foster ideas that will

  7. NATO Advanced Research Workshop on Chemical Instabilities : Applications in Chemistry, Engineering, Geology, and Materials Science

    CERN Document Server

    Baras, F

    1984-01-01

    On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex­ xon Corporation. The present Volume includes most of the material of the in­ vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num­ ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and...

  8. Role of the engineer in protecting personnel and the environment in the nuclear industry

    International Nuclear Information System (INIS)

    Braun, J.D.

    1977-01-01

    The engineer plays a key role in protecting both people and the environment from the adverse effects of radioactive materials. The nature of the hazards and some of the problems associated with plutonium and tritium operations are discussed and the solutions provided by sound engineering facility design are shown. Facility designs have been required for operations involving 239 Pu, 238 Pu and 3 H, and the different properties of these isotopes require differing solutions to design problems

  9. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    OpenAIRE

    Zhu, Yong-Guan; Rosen, Barry P

    2009-01-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loa...

  10. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    Science.gov (United States)

    Freedman, A.; Thompson, J. R.

    2013-12-01

    community analysis to test the hypothesis that a low but non-zero diversity that includes taxa from other subsurface environments will be present, reflecting the extreme ecological selective pressures of scCO2. A wide range of phylogenies have been identified, including genera that fall within the Proteobacteria, Bacilli, and Clostridial classes. Several species identified by 16S BLAST best hits are also known to inhabit deep subsurface environments, preliminarily confirming that a non-zero diversity has been able to survive, and possibly thrive, in the extreme scCO2-exposed deep subsurface environment at McElmo Dome. It thus appears that at least a subsection of native subsurface community biota may withstand the severe stresses associated with the injection of scCO2 for long-term geologic carbon sequestration efforts.

  11. Quality of engineering surveysas a factor of natural-technogenic systems formation

    Directory of Open Access Journals (Sweden)

    Kashperyuk Pavel Ivanovich

    2014-01-01

    Full Text Available Construction in urban areas is often related to reusing previously developed sites, which requires solving additional tasks both by builders and surveyors additional. The tasks are related to the evaluation of already changed natural (geological environment of this area and its further investigation in connection with the proposed creation of a new natural-technogenic system (NTS. This article presents some examples of the influence of engineering survey quality on adopting extraordinary project solutions excluding the negative impact on NTS formation in the process of construction and operation of facilities in Moscow. In particular it is stated that the lack of control in the process of land works and transfer from the platform of water-bearing communications may ultimately lead to a different change in the strength and deformation properties of soil at the base of structures, and in some cases to geoecological disfuncion of the newly created NTS due to adverse geological processes development. The author draws attention to the complexity and responsibility of engineering geological surveys in the areas of developing powerful (>10 m strata of bulk soils. The article considers some aspects of the influence of the temperature regime of soils in the foundation structures active zone on heat and moisture transfer in these soils, their condition and deformation properties in city area. A particular example of the construction of a high-rise building in Moscow has shown that the presence of heat-bearing communications within 3—10 m from the earth's surface may increase the annual average temperature of the strata up to 30 degrees and more, thus, dismantling such communications leads to different changes in the established temperature regime and conditions of clay soils. It is noted that the forecast of the change in basic physical and mechanical properties of the base soil in urban conditions is not possible without thermometric work during

  12. Evolution of waste-package design at the potential U.S. geologic repository

    International Nuclear Information System (INIS)

    Benton, H.; Harkins, B.

    2000-01-01

    This paper describes the evolution of the waste-package design at the potential geologic repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. Because the potential repository is the first of its kind, the design of its components must be flexible and capable of evolving in response to continuing scientific study, development efforts, and changes to performance criteria. The team of scientists and engineers at the Yucca Mountain Project has utilized a systematic, scientific approach to design the potential geologic nuclear-waste repository. As a result of continuing development efforts, the design has incorporated a growing base of scientific and engineering information to ensure that regulatory and performance requirements are met. (authors)

  13. A proposed descriptive methodology for environmental geologic (envirogeologic) site characterization

    International Nuclear Information System (INIS)

    Schwarz, D.L.; Snyder, W.S.

    1994-01-01

    We propose a descriptive methodology for use in environmental geologic (envirogeologic) site characterization. The method uses traditional sedimentologic descriptions augmented by environmental data needs, and facies analysis. Most other environmental methodologies for soil and sediment characterization use soil engineering and engineering geology techniques that classify by texture and engineering properties. This technique is inadequate for envirogeologic characterization of sediments. In part, this inadequacy is due to differences in the grain-size between the Unified soil Classification and the Udden-Wentworth scales. Use of the soil grain-size classification could easily cause confusion when attempting to relate descriptions based on this classification to our basic understanding of sedimentary depositional systems. The proposed envirogeologic method uses descriptive parameters to characterize a sediment sample, suggests specific tests on samples for adequate characterization, and provides a guidelines for subsurface facies analysis, based on data retrieved from shallow boreholes, that will allow better predictive models to be developed. This methodology should allow for both a more complete site assessment, and provide sufficient data for selection of the appropriate remediation technology, including bioremediation. 50 refs

  14. Geologic and engineering dimensions of nuclear waste storage

    International Nuclear Information System (INIS)

    Hoskins, E.R.; Russell, J.E.

    1983-01-01

    Nuclear waste characteristics, existing and projected quantities of radioactive materials that need to be stored, various disposal or storage strategies or alternatives, geologic media under consideration, and repository construction techniques and problems are discussed. The best alternative at this time is containment in mined caverns, deep underground. There are still uncertainties in site selection criteria, in the design of underground openings, and in the prediction of both cultural and natural hazards and their effects on the repository over a 1000-year or longer time frame. It is possible to minimize the negative effects by careful site selection, although this involves more than just technical issues

  15. Geologic, stratigraphic, thermal, and mechanical factors which influence repository design in the bedded salt environment

    International Nuclear Information System (INIS)

    Ashby, J.P.; Nair, O.; Ortman, D.; Rowe, J.

    1979-12-01

    This report describes the geologic, stratigraphic, thermal, and mechanical considerations applicable to repository design. The topics discussed in the report include: tectonic activity; geologic structure; stratigraphy; rock mechanical properties; and hydrologic properties

  16. Bureau of Economic Geology. 1978 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Bureau research programs and projects are designed to address many of the State's major concerns in the areas of geologic, energy, mineral, land, and environmental resouces. Research programs incorporate geologic concepts that will build toward an understanding of a specific resource and its impact on human activities. In addition to resource assessments in uranium, lignite, and geopressured geothermal energy, the Bureau continued research into analysis of governmental policy related to energy. Systemic geologic mapping, coastal studies, basin analysis projects, and investigations in other areas of economic geology further indicate the range of research programs carried forward in 1978. Specifically, research on mineral resources and land resources, coastal studies, hydrogeology, basin studies, geologic mapping, and other research (tektites and meteorites, carboniferous of Texas, depositional environments of the Marble Falls Formation, Central Texas) are reported. The establishment of the Mining and Mineral Resources Research Institute is followed. Contracts and grant support and contract reports are listed. The publications eminating from the Bureau are listed. Services rendered by the Bureau and personnel information are included. (MCW)

  17. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  18. A Sustainable Engineering Solution for Pediatric Dehydration in Low-Resource Clinical Environments

    Directory of Open Access Journals (Sweden)

    Ashley R Taylor

    2016-09-01

    Full Text Available Engineering efforts in low resource environments pose a unique set of challenges, requiring an in-depth understanding of local needs, comprehensive mapping of community resources, and extensive collaboration with local expertise. The importance of these principles is demonstrated in this paper by detailing the novel design and field demonstration of an affordable, locally manufactured intravenous fluid regulation device. Collaboration with clinical personnel in Uganda and Malawi guided device design. In-country physicians emphasised the need to regulate volume of intravenous (IV fluid delivered to a paediatric patient without use of electricity. The proposed device regulates IV fluid delivery within ±20 mL of total prescribed dosage, providing a method of reducing fatalities caused by over-hydration in low resource environments; the feasibility of building the device from local resources was demonstrated by a field research team in Malawi. The device was successfully constructed entirely from local resources for a total cost of $46.21 (USD. Additionally, the device was demonstrated in rural clinics where 89 % of surveyed clinical staff reported that they would use the device to regulate IV fluid delivery. This paper emphasises the importance of collaborating with communities for community-based engineering solutions. Mapping community assets and collaborating with local expertise are crucial to success of engineering efforts. Long-term, community-based efforts are likely to sustainably improve health outcomes and strengthen economies of communities worldwide.

  19. Geological and engineering analysis of residual soil for forewarning landslide from highland area in northern Thailand

    Science.gov (United States)

    Thongkhao, Thanakrit; Phantuwongraj, Sumet; Choowong, Montri; Thitimakorn, Thanop; Charusiri, Punya

    2015-11-01

    One devastating landslide event in northern Thailand occurred in 2006 at Ban Nong Pla village, Chiang Klang highland of Nan province after, a massive amount of residual soil moved from upstream to downstream, via creek tributaries, into a main stream after five days of unusual heavy rainfall. In this paper, the geological and engineering properties of residual soil derived fromsedimentary rocks were analyzed and integrated. Geological mapping, electrical resistivity survey and test pits were carried out along three transect lines together with systematic collection of undisturbed and disturbed residual soil samples. As a result, the average moisture content in soil is 24.83% with average specific gravity of 2.68,whereas the liquid limit is 44.93%, plastic limit is 29.35% and plastic index is 15.58%. The cohesion of soil ranges between 0.096- 1.196 ksc and the angle of internal friction is between 11.51 and 35.78 degrees. This suggests that the toughness properties of soil change when moisture content increases. Results from electrical resistivity survey reveal that soil thicknesses above the bedrock along three transects range from 2 to 9 m. The soil shear strength reach the rate of high decreases in the range of 72 to 95.6% for residual soil from shale, siltstone and sandstone, respectively. Strength of soil decreaseswhen the moisture content in soil increases. Shear strength also decreases when the moisture content changes. Therefore, the natural soil slope in the study area will be stable when the moisture content in soil level is equal to one, but when the moisture content between soil particle increases, strength of soil will decrease resulting in soil strength decreasing.

  20. Geologic considerations for urban planning in seismic environment

    International Nuclear Information System (INIS)

    Agrawal, R.C.

    1988-12-01

    Even though it is desirable to visualize the performance of an entire metropolitan centre during earthquake occurrences as part of local hazards mitigation programme, yet these centres still remain vulnerable to major seismic activity. Geological considerations lack in urban planning and do not account for hazards mitigation. This may also be due to the involvement of several interdependent activities, like services, functions, life line elements, etc. The failure of any one of these can make the entire metropolitan area inoperative. It is recommended that multidisciplinary teams should undertake zoning studies for use in the future growth areas of Indian urban centres. (author). 5 refs, 1 fig., 2 tabs

  1. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-01-01

    Roč. 15, č. 1 (2017), s. 486-493 E-ISSN 2391-5471 R&D Projects: GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:68145535 ; RVO:67985530 Keywords : deep geological repository * earthquake * seismicity * neo-deterministic analysis * probabilistic seismic hazard assessment Subject RIV: DC - Siesmology, Volcanology, Earth Structure; DC - Siesmology, Volcanology, Earth Structure (GFU-E) OBOR OECD: Environmental and geological engineering, geotechnics; Environmental and geological engineering, geotechnics (GFU-E) Impact factor: 0.745, year: 2016 https://www.degruyter.com/downloadpdf/j/phys.2017.15.issue-1/phys-2017-0055/phys-2017-0055.pdf

  2. Medical Physics and Biomedical Engineering in Clinical Environment and Legal Surrounding

    International Nuclear Information System (INIS)

    Medvedec, M.

    2013-01-01

    An application of radiation in medicine is essentially associated with medical physics and biomedical engineering. The purpose of this study is to analyze the perception and the status of clinical medical physicists and biomedical engineers within the current international and Croatian legal framework. The International Labour Organization (ILO) in its International Standard Classification of Occupations (ISCO-08) notes that medical physicists and biomedical engineers are an integral part of the health workforce, alongside those occupations classified as health professionals. International Atomic Energy Agency (IAEA) in its basic safety standards for radiation protection and safety of radiation sources also defines medical physicists as health professional. The World Health Organization (WHO) urges member states to include biomedical engineers in assessment, planning, procurement, implementation and management of health technologies, in particular biomedical devices. The Council of the European Union (EU) in its directives defines qualified professionals, especially experts in medical physics, as workers who carry out physical, technical and radiochemical work in regard to dosimetry, radiation protection, quality assurance and quality control, equipment management, etc. According to the U.S. Office of Labor Statistics, biomedical engineer is an occupation with the third-fastest growth rate in the economy, as projected for the period 2010-2020. It is expected that the role and the importance of medical physics and biomedical engineering profession in Croatia, a member state of ILO, WHO, IAEA and EU, will be soon fully regulated in a way comparable to the career paths of other health professionals within a clinical environment, primarily for the benefit of patients and hospital staff, healthcare facilities and healthcare system in general.(author)

  3. Development on high precision monitoring technique of radon and thoron in environment

    International Nuclear Information System (INIS)

    Imaizumi, Masayuki; Hamada, Hiromasa; Goto, Masahiro; Nakazato, Hiroomi; Mori, Mitsuhiro

    1999-01-01

    In a field of the environmental management, many technical research and developments such as monitoring on drainage section and flowing speed change of groundwater, analysis on alternating flow phenomenon between surface water and groundwater, analysis on water leakage at a dam, forecasting of landslide, safety evaluation on ground due to detection of faults, have conducted. And, an application to analysis on gas flowing phenomenon from underground to atmosphere as a part of study on evaluation of effect of gas emitted from earth surface on the earth environment was investigated. This study aimed to elucidate behaviors of radon and thoron at environment and to develop a high precision monitoring technique on radon and thoron required to conduct an advanced application to a tracer in hydrology, applied geology, and environment engineering. (G.K.)

  4. Evaluation and analysis of geological condition of in-situ fragmentation leaching uranium

    International Nuclear Information System (INIS)

    Yang Jianming; Tan Kaixuan; Huang Xiaonai

    2003-01-01

    The ore geological condition, hydrogeological condition, engineering geological condition and technological mineralogical character of in-situ fragmentation leaching uranium are analyzed, and it is considered that the implementation of in-situ fragmentation leaching uranium technology is decided by different geological factor. Previously prospecting and geological condition evaluation of uranium ore is based on traditional mining method. If in-situ fragmentation leaching uranium method is adopted, one must re-evaluate previously prospected deposits before they are mined, or one must evaluate new prospecting deposits according to geological conditions of in-situ fragmentation leaching uranium method. The feasibility evaluation method of uranium deposit by in-situ fragmentation leaching uranium put forward by B. N. Mociniets is introducd, and it is considered that B. N. Mociniets method has guidable significance for geological condition evaluation before uranium deposits are mined. A feasibility study is done by applying B. N. Mociniets method to a uranium deposit. (authors)

  5. Disposal systems evaluations and tool development : Engineered Barrier System (EBS) evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny (LBNL); Liu, Hui-Hai (LBNL); Steefel, Carl I. (LBNL); Serrano de Caro, M. A. (LLNL); Caporuscio, Florie Andre (LANL); Birkholzer, Jens T. (LBNL); Blink, James A. (LLNL); Sutton, Mark A. (LLNL); Xu, Hongwu (LANL); Buscheck, Thomas A. (LLNL); Levy, Schon S. (LANL); Tsang, Chin-Fu (LBNL); Sonnenthal, Eric (LBNL); Halsey, William G. (LLNL); Jove-Colon, Carlos F.; Wolery, Thomas J. (LLNL)

    2011-01-01

    Key components of the nuclear fuel cycle are short-term storage and long-term disposal of nuclear waste. The latter encompasses the immobilization of used nuclear fuel (UNF) and radioactive waste streams generated by various phases of the nuclear fuel cycle, and the safe and permanent disposition of these waste forms in geological repository environments. The engineered barrier system (EBS) plays a very important role in the long-term isolation of nuclear waste in geological repository environments. EBS concepts and their interactions with the natural barrier are inherently important to the long-term performance assessment of the safety case where nuclear waste disposition needs to be evaluated for time periods of up to one million years. Making the safety case needed in the decision-making process for the recommendation and the eventual embracement of a disposal system concept requires a multi-faceted integration of knowledge and evidence-gathering to demonstrate the required confidence level in a deep geological disposal site and to evaluate long-term repository performance. The focus of this report is the following: (1) Evaluation of EBS in long-term disposal systems in deep geologic environments with emphasis on the multi-barrier concept; (2) Evaluation of key parameters in the characterization of EBS performance; (3) Identification of key knowledge gaps and uncertainties; and (4) Evaluation of tools and modeling approaches for EBS processes and performance. The above topics will be evaluated through the analysis of the following: (1) Overview of EBS concepts for various NW disposal systems; (2) Natural and man-made analogs, room chemistry, hydrochemistry of deep subsurface environments, and EBS material stability in near-field environments; (3) Reactive Transport and Coupled Thermal-Hydrological-Mechanical-Chemical (THMC) processes in EBS; and (4) Thermal analysis toolkit, metallic barrier degradation mode survey, and development of a Disposal Systems

  6. Disposal systems evaluations and tool development: Engineered Barrier System (EBS) evaluation

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Liu, Hui-Hai; Steefel, Carl I.; Serrano de Caro, M.A.; Caporuscio, Florie Andre; Birkholzer, Jens T.; Blink, James A.; Sutton, Mark A.; Xu, Hongwu; Buscheck, Thomas A.; Levy, Schon S.; Tsang, Chin-Fu; Sonnenthal, Eric; Halsey, William G.; Jove-Colon, Carlos F.; Wolery, Thomas J.

    2011-01-01

    Key components of the nuclear fuel cycle are short-term storage and long-term disposal of nuclear waste. The latter encompasses the immobilization of used nuclear fuel (UNF) and radioactive waste streams generated by various phases of the nuclear fuel cycle, and the safe and permanent disposition of these waste forms in geological repository environments. The engineered barrier system (EBS) plays a very important role in the long-term isolation of nuclear waste in geological repository environments. EBS concepts and their interactions with the natural barrier are inherently important to the long-term performance assessment of the safety case where nuclear waste disposition needs to be evaluated for time periods of up to one million years. Making the safety case needed in the decision-making process for the recommendation and the eventual embracement of a disposal system concept requires a multi-faceted integration of knowledge and evidence-gathering to demonstrate the required confidence level in a deep geological disposal site and to evaluate long-term repository performance. The focus of this report is the following: (1) Evaluation of EBS in long-term disposal systems in deep geologic environments with emphasis on the multi-barrier concept; (2) Evaluation of key parameters in the characterization of EBS performance; (3) Identification of key knowledge gaps and uncertainties; and (4) Evaluation of tools and modeling approaches for EBS processes and performance. The above topics will be evaluated through the analysis of the following: (1) Overview of EBS concepts for various NW disposal systems; (2) Natural and man-made analogs, room chemistry, hydrochemistry of deep subsurface environments, and EBS material stability in near-field environments; (3) Reactive Transport and Coupled Thermal-Hydrological-Mechanical-Chemical (THMC) processes in EBS; and (4) Thermal analysis toolkit, metallic barrier degradation mode survey, and development of a Disposal Systems

  7. Corrosion of high purity copper as engineering barrier in deep geological repositories

    International Nuclear Information System (INIS)

    Ochoa, Maité; Rodríguez Martín, A.; Farina Silvia, B.

    2013-01-01

    Pure copper with oxygen content below 5 ppm (to minimize segregation at grain boundaries) and doped with phosphorus (to increase creep resistance) is the chosen material for the corrosion-resistant barrier of the High Level Radioactive 2 Wastecontainers in the Swedish and Finnish repository models. These models include the construction of the repository below the water table, which is a reducing environment in which copper has excellent resistance to general and localized corrosion in aqueous electrolytes. The aim of this work is contribute to determine the durability of the material, given that deep geological repositories of HLW are designed to ensure the protection of the environment for periods of hundreds of thousands years. As a first step in a more general analysis the effects of chloride, one of the main aggressive species of corrosion, are evaluated. To this purpose corrosion potential was determined and anodic polarization curves were performed in deaerated solutions varying the chloride concentration between 0.01 and 1M and the temperature between 30 and 90°C. Several electrochemical techniques were used: the evolution of corrosion potential was measured, anodic polarization curves were obtained and electrochemical impedance tests were performed. The analysis was complemented with microscopic observations of the type of corrosive attack, as well as determinations of the eventual corrosion products formed using Energy-Dispersive X-ray Analysis (EDS). Results show that the corrosion potential decreases with the increase of temperature and with the increase of chloride concentration. A correlation of the corrosion potential as a function of temperature and chloride concentration was obtained, with the purpose of making predictions in variable conditions.The current density increases both with temperature and with chloride concentration. A pitting potential is observed in certain conditions. (author)

  8. 40 CFR 90.116 - Certification procedure-determining engine displacement, engine class, and engine families.

    Science.gov (United States)

    2010-07-01

    ... engine displacement, engine class, and engine families. 90.116 Section 90.116 Protection of Environment...-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Standards and Certification Provisions § 90.116 Certification procedure—determining engine displacement, engine class, and engine families. (a) Engine...

  9. Global Journal of Engineering Research: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. The Global Journal of Engineering Research is aimed at promoting research in all areas of Engineering Research including Mechanical, Civil, Electrical, Chemical, Electronics, Geological etc. Section Policies. Articles. Checked Open Submissions, Checked Indexed, Checked Peer Reviewed. Publication ...

  10. Relationship of engineering geology to conceptual repository design in the Gibson Dome area, Utah

    International Nuclear Information System (INIS)

    Helgerson, R.; Henderson, N.

    1984-01-01

    The Paradox Basin in Southeastern Utah is being investigated as a potential site for development of a high-level nuclear waste repository. Geologic considerations are key areas of concern and influence repository design from a number of aspects: depth to the host rock, thickness of the host rock, and hydrologic conditions surrounding the proposed repository are of primary concern. Surface and subsurface investigations have provided data on these key geologic factors for input to the repository design. A repository design concept, based on the surface and subsurface geologic investigations conducted at Gibson Dome, was synthesized to provide needed information on technical feasibility and cost for repository siting decision purposes. Significant features of the surface and subsurface repository facilities are presented. 5 references, 4 figures

  11. Geological setting of the Novi Han radioactive waste storage site

    International Nuclear Information System (INIS)

    Evstatiev, D.; Kozhukharov, D.

    2000-01-01

    The geo environment in the area of the only operating radioactive waste repository in Bulgaria has been analysed. The repository is intended for storage of all kinds of low and medium level radioactive wastes with the exception of these from nuclear power production. The performed investigations prove that the 30 years of operation have not caused pollution of the geo environment. Meanwhile the existing complex geological settings does not provide prerequisites to rely on the natural geological safety barriers. The studies performed so far are considered to be incomplete since they do not provide the necessary information for the development of a model describing the radionuclide migration as well as for understanding of the neotectonic circumstances. The tasks of the future activities are described in order to obtain more detailed information about the geology in the area. (authors)

  12. The geological thought process: A help in developing business instincts

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S.A. [Dean Witter Reynolds, New York, NY (United States)

    1995-09-01

    Since the beginning of modern-day geology it has been understood that the present is the key to the past. However, when attempting to apply current geological models one discovers that there are no exact look-alikes. Thus, the geological discipline inherently accepts modifications, omissions, and relatively large margins of error compared with engineering. Geologists are comfortable in a world of non-unique solutions. Thus the experience in working with numerous geological settings is extremely critical in selecting the most reasonable geological interpretations, often by using a composite of specific models. One can not simply replace a dynamic geologist`s life-time of experiences and geologic instinct with simply a book-smart young upstart. Petroleum corporations accept geologic risk and manage it by drilling numerous wells in various geological provenances. Oil corporations have attempted to quantify and manage risk by using Monte Carlo simulations, thus invoking a formal discipline of risk. The acceptance of risk, results in an asset allocation approach to investing. Asset allocators attempt to reduce volatility and risk, inherently understanding that in any specific time interval anything can happen. Dollar cost averaging significantly reduces market risk over time, however it requires discipline and commitment. The single most important ingredient to a successful investing plan is to assign a reasonable holding period. Historically, a majority of the investment community demands instant gratification causing unneeded anxiety and failure. As in geology nothing can replace experience.

  13. Synthetic Study on the Geological and Hydrogeological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2011-01-01

    To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area

  14. Performance test of remote controlled engineering vehicle system for CBRN threat. Countermeasure performance for CBRN-environment

    International Nuclear Information System (INIS)

    Naruse, Masahiro; Uemura, Keisuke; Morishita, Masahiro

    2015-01-01

    A research of 'remote controlled engineering vehicle system for CBRN threat' was triggered by the nuclear accident that successively happened after the Great East Japan Earthquake. This project focuses on the remote controlled engineering system that can be used for multi purposes such as debris/obstacle clearing operation or various reconnaissance operation, under CBRN threat. For the remote-controlled engineering vehicle, we conducted a series of validation tests for countermeasure performance for CBRN-environment. As a result, it is proved that the vehicle possess required performances for CBRN threat. (author)

  15. Directions of the US Geological Survey Landslide Hazards Reduction Program

    Science.gov (United States)

    Wieczorek, G.F.

    1993-01-01

    The US Geological Survey (USGS) Landslide Hazards Reduction Program includes studies of landslide process and prediction, landslide susceptibility and risk mapping, landslide recurrence and slope evolution, and research application and technology transfer. Studies of landslide processes have been recently conducted in Virginia, Utah, California, Alaska, and Hawaii, Landslide susceptibility maps provide a very important tool for landslide hazard reduction. The effects of engineering-geologic characteristics of rocks, seismic activity, short and long-term climatic change on landslide recurrence are under study. Detailed measurement of movement and deformation has begun on some active landslides. -from Author

  16. Energy and environment: a primer for scientists and engineers

    Energy Technology Data Exchange (ETDEWEB)

    Thorndike, E.H.

    1976-01-01

    The book is written for practicing scientists and engineers and for students to introduce them to the field of energy and the environment; it is concerned with energy and how it affects the Earth's environment and how it affects man. Natural processes (weather and climate and biological systems) and man-made energy processes (such as the generation and distribution of electricity) are discussed. Chapter titles following an introductory chapter are Global Energy Flows; Biological Energy and Ecosystems; Sources of Energy; The Technology of Energy Use; Energy-Related Environmental Problems with five parts (General Considerations, Thermal Pollution, Radioactivity, Air Pollution, and Other Energy-Related Environmental Problems); Energy Use--History and Projections; Energy Conservation and Growth Reduction; and Conclusions and Biased Opinions. Questions are posed at the end of each chapter. Appendixes are entitled: A Short Course in Thermodynamics; A Short Course in Nuclear Physics; Electromagnetic Radiation; Title I of the National Environmental Policy Act of 1969; Units, Conversion Factors, Physical Constants, and Useful Numerical Data; and Answers to Selected Problems. (MCW)

  17. 40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...

  18. Arizona Geology Trip - February 25-28, 2008

    Science.gov (United States)

    Thomas, Gretchen A.; Ross, Amy J.

    2008-01-01

    A variety of hardware developers, crew, mission planners, and headquarters personnel traveled to Gila Bend, Arizona, in February 2008 for a CxP Lunar Surface Systems Team geology experience. Participating in this field trip were the CxP Space Suit System (EC5) leads: Thomas (PLSS) and Ross (PGS), who presented the activities and findings learned from being in the field during this KC. As for the design of a new spacesuit system, this allowed the engineers to understand the demands this type of activity will have on NASA's hardware, systems, and planning efforts. The engineers also experienced the methods and tools required for lunar surface activity.

  19. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective.

    Science.gov (United States)

    McEvoy, F M; Schofield, D I; Shaw, R P; Norris, S

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1millionyears into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. An Overview of NASA's Integrated Design and Engineering Analysis (IDEA) Environment

    Science.gov (United States)

    Robinson, Jeffrey S.

    2011-01-01

    Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures), each of which performs design and analysis in relative isolation from others. This is possible, in most cases, either because the amount of interdisciplinary coupling is minimal, or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA's X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable, as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective, can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design and Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary designs for launch vehicle and high speed atmospheric flight configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, packaging, propulsion, trajectory, aerodynamics, aerothermodynamics, engine and airframe subsystem design, thermal and structural analysis, and vehicle closure into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA?s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics

  1. Engineering support strategies in the competitive environment

    International Nuclear Information System (INIS)

    Casella, L.R.; Hall, T.E.; Stark, D.R.

    1996-01-01

    This paper focuses on the innovative use of support personnel during plant outages and other maintenance/upkeep periods. At the South Texas Project the authors have formed an engineering support group specifically tailored to provide real time solutions to maintenance and operation problems. The core group consists of a cross section from the engineering disciplines and systems engineers. The group is housed in the Maintenance and Operations Facility adjacent to the power block. Close proximity and maintenance and operations personnel improves communications and response to emergent technical issues. During outages the group is augmented with additional personnel from the Design and Systems Engineering Departments. This allows for around the clock support that directly complements plant operations activities and maintenance tasks. The Thirty Minute Rule highlights urgent issues requiring engineering management attention. Dedicated twenty-four (24) hour engineering management oversight completes the engineering outage support package. Revised procedures, networks, and software enhancements, streamline the interface between engineering and work control processes. Good communications across the engineering disciplines and departments provide for enhanced teamwork and timely resolution of emergent technical issues for customers. The techniques to be described in the paper contributed directly to the South Texas Project recently establishing a new world record for a Westinghouse 3 and 4 loop pressurized water reactor refueling outage

  2. Natural analog study of engineered protective barriers at the Hanford Site

    International Nuclear Information System (INIS)

    Bjornstad, B.N.; Teel, S.S.

    1993-09-01

    The purpose of this study is to evaluate surficial sedimentary deposits formed in the Pasco Basin over the geologic past as analogs for engineered protective barriers. Evidence for likely changes to be expected in an engineered barrier are preserved in geologically recent deposits. Although the design life of the engineered bonier is only 1,000 years, soils and sediments of this age are uncommon in the Pasco Basin. The evidence of and probability for the following natural processes that could adversely affect the long-term stability of an engineered protective barrier reviewed in this report are deflation by wind, soil compaction, soil eluviation/illuviation, bioturbation, and cryoturbation

  3. Logistics engineering education from the point of view environment

    Science.gov (United States)

    Bányai, Ágota

    2010-05-01

    A new field of MSc programme offered by the Faculty of Mechanical Engineering and Informatics of the University of Miskolc is represented by the programme in logistics engineering. The Faculty has always laid great emphasis on assigning processes connected with environment protection and globalisation issues the appropriate weight in its programmes. This is based on the fact that the Faculty has initiated and been involved in a great number of research and development projects with a substantial emphasis on the fundamental principles of sustainable development. The objective of the programme of logistics engineering is to train engineers who, in possession of the science, engineering, economic, informatics and industrial, transportation technological knowledge related to the professional field of logistics, are able to analyse, design, organise, and control logistics processes and systems (freight transportation, materials handling, storage, commissioning, loading, purchasing, distribution and waste management) as well as to design and develop machinery and equipment as the elements of logistic systems and also to be involved in their manufacture and quality control and are able to control their operation. The programme prepares its students for performing the logistics management tasks in a company, for creative participation in solving research and development problems in logistics and for pursuing logistics studies in doctoral programmes. There are several laboratories available for practice-oriented training. The 'Integrated Logistics Laboratory' consists of various fixed and mobile, real industrial, i.e. not model-level equipment, the integration of which in one system facilitates not only the presentation, examination and development of the individual self-standing facilities, but the study of their interaction as well in terms of mechatronics, engineering, control engineering, informatics, identification technology and logistics. The state

  4. Geology and Design: Formal and Rational Connections

    Science.gov (United States)

    Eriksson, S. C.; Brewer, J.

    2016-12-01

    Geological forms and the manmade environment have always been inextricably linked. From the time that Upper Paleolithic man created drawings in the Lascaux Caves in the southwest of France, geology has provided a critical and dramatic spoil for human creativity. This inspiration has manifested itself in many different ways, and the history of architecture is rife with examples of geologically derived buildings. During the early 20th Century, German Expressionist art and architecture was heavily influenced by the natural and often translucent quality of minerals. Architects like Bruno Taut drew and built crystalline forms that would go on to inspire the more restrained Bauhaus movement. Even within the context of Contemporary architecture, geology has been a fertile source for inspiration. Architectural practices across the globe leverage the rationality and grounding found in geology to inform a process that is otherwise dominated by computer-driven parametric design. The connection between advanced design technology and the beautifully realized geo natural forms insures that geology will be a relevant source of architectural inspiration well into the 21st century. The sometimes hidden relationship of geology to the various sub-disciplines of Design such as Architecture, Interiors, Landscape Architecture, and Historic Preservation is explored in relation to curriculum and the practice of design. Topics such as materials, form, history, the cultural and physical landscape, natural hazards, and global design enrich and inform curriculum across the college. Commonly, these help define place-based education.

  5. 'Create the future': an environment for excellence in teaching future-oriented Industrial Design Engineering

    NARCIS (Netherlands)

    Eger, Arthur O.; Lutters, Diederick; van Houten, Frederikus J.A.M.

    2004-01-01

    In 2001, the University of Twente started a new course on Industrial Design Engineering. This paper describes the insights that have been employed in developing the curriculum, and in developing the environment in which the educational activities are facilitated. The University of Twente has a broad

  6. Rock engineering applications, 1991

    International Nuclear Information System (INIS)

    Franklin, J.A.; Dusseault, M.B.

    1991-01-01

    This book demonstrates how to apply the theories and principles of rock engineering to actual engineering and construction tasks. It features insights on geology for mining and tunnelling applications. It is practical resource that focuses on the latest technological innovation and examines up-to-date procedures used by engineers for coping with complex rock conditions. The authors also discuss question related to underground space, from design approaches to underground housing and storage. And they cover the monitoring of storage caverns for liquid and gaseous products or toxic and radioactive wastes

  7. Site selection and design basis of the National Disposal Facility for LILW. Geological and engineering barriers

    International Nuclear Information System (INIS)

    Boyanov, S.

    2010-01-01

    Content of the presentation: Site selection; Characteristics of the “Radiana” site (location, geological structure, physical and mechanical properties, hydro-geological conditions); Design basis of the Disposal Facility; Migration analysis; Safety assessment approach

  8. Engineered nano particles: Nature, behavior, and effect on the environment.

    Science.gov (United States)

    Goswami, Linee; Kim, Ki-Hyun; Deep, Akash; Das, Pallabi; Bhattacharya, Satya Sundar; Kumar, Sandeep; Adelodun, Adedeji A

    2017-07-01

    Increased application of engineered nano particles (ENPs) in production of various appliances and consumer items is increasing their presence in the natural environment. Although a wide variety of nano particles (NPs) are ubiquitously dispersed in ecosystems, risk assessment guidelines to describe their ageing, direct exposure, and long-term accumulation characteristics are poorly developed. In this review, we describe what is known about the life cycle of ENPs and their impact on natural systems and examine if there is a cohesive relationship between their transformation processes and bio-accessibility in various food chains. Different environmental stressors influence the fate of these particles in the environment. Composition of solid media, pore size, solution chemistry, mineral composition, presence of natural organic matter, and fluid velocity are some environmental stressors that influence the transformation, transport, and mobility of nano particles. Transformed nano particles can reduce cell viability, growth and morphology, enhance oxidative stress, and damage DNA in living organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Geology Of Wadi Sidri Radioactive Ocurrences, Western Sinai, Egypt

    OpenAIRE

    El Kassas, I. A. [ابراهيم علي القصاص

    1995-01-01

    Geologic and radiomclric investigations have been carried out in the environs of Wadi Sidri in Western Sinai, applying a combination of various geological, geophysical and gcochcmical techniques. This work revealed the presence of some radioactive anomalies of various intensities, extensions and origin, associated with different rock types. The discovered anomalies arc classified into two main groups of quite different types but they seem to be genetically related to each other. The first typ...

  10. Proceedings of the 39. Brazilian congress on geology. v. 1

    International Nuclear Information System (INIS)

    1996-01-01

    The book presents the 39. Brazilian Congress on Geology works, occurred in Salvador, Bahia, during the period of September 1 to 6, 1996. The meeting main subject - geology and society - reflects the current change epoch. The symposiums revealed the more important actions about geosciences applications to the society in the country. The round tables, structured for the polemical subjects debates that involves the geosciences and the mineral sector crisis aspects, were achieved by several invited participants completely embraced with the subject. During the congress activities development there were some courses, technical excursions and external actions in Salvador, aiming to to show the geosciences role to the social welfare. The works were presented the following symposiums: the social value of the environment study; urban geology and geology risks; degraded areas recovery; coastal erosion; global paleoregisters; and carstic terranes geology

  11. Overview of the regional geology of the Paradox Basin Study Region

    International Nuclear Information System (INIS)

    1983-03-01

    The Geologic Project Manager for the Paradox Basin Salt Region (PBSR), Woodward-Clyde Consultants, has conducted geologic studies to characterize the region and evaluate selected geologic formations as potential repositories for the storage and disposal of nuclear waste. Evaluations have been made from the standpoint of engineering feasibility, safety, public health, and resource conflicts. The Regulatory Project Manager for the PBSR, Bechtel National, Inc., has performed environmental characterizations to ensure that data on ecological, socioeconomic, and other environmental factors required by the National Environmental Policy Act of 1969 are considered. This report characterizes, at a regional overview level of detail, the Paradox Basin Study Region Geology. Information sources include the published literature, field trip guidebooks, open file data of the US Geological Survey (USGC) and Utah Geologic and Mineral Survey, university theses, Geo-Ref Computer Search, and various unpublished sources of subsurface data such as well logs. Existing information has been synthesized and characterized. No field work was conducted as part of this study. Where possible, attempts were made to evaluate the data. All results of this study are subject to change as more data become available

  12. Great Basin geologic framework and uranium favorability

    International Nuclear Information System (INIS)

    Larson, L.T.; Beal, L.H.

    1978-01-01

    Work on this report has been done by a team of seven investigators assisted over the project span by twenty-three undergraduate and graduate students from May 18, 1976 to August 19, 1977. The report is presented in one volume of text, one volume or Folio of Maps, and two volumes of bibliography. The bibliography contains approximately 5300 references on geologic subjects pertinent to the search for uranium in the Great Basin. Volume I of the bibliography lists articles by author alphabetically and Volume II cross-indexes these articles by location and key word. Chapters I through IV of the Text volume and accompanying Folio Map Sets 1, 2, 3, 4, and 5, discuss the relationship of uranium to rock and structural environments which dominate the Great Basin. Chapter 5 and Map Sets 6 and 7 provide a geochemical association/metallogenic grouping of mineral occurrences in the Great Basin along with information on rock types hosting uranium. Chapter VI summarizes the results of a court house claim record search for 'new' claiming areas for uranium, and Chapter VII along with Folio Map Set 8 gives all published geochronological data available through April 1, 1977 on rocks of the Great Basin. Chapter VIII provides an introduction to a computer analysis of characteristics of certain major uranium deposits in crystalline rocks (worldwide) and is offered as a suggestion of what might be done with uranium in all geologic environments. We believe such analysis will assist materially in constructing exploration models. Chapter IX summarizes criteria used and conclusions reached as to the favorability of uranium environments which we believe to exist in the Great Basin and concludes with recommendations for both exploration and future research. A general summary conclusion is that there are several geologic environments within the Great Basin which have considerable potential and that few, if any, have been sufficiently tested

  13. Designing and Using Virtual Field Environments to Enhance and Extend Field Experience in Professional Development Programs in Geology for K-12 Teachers

    Science.gov (United States)

    Granshaw, Frank Douglas

    2011-12-01

    Virtual reality (VR) is increasingly used to acquaint geoscience novices with some of the observation, data gathering, and problem solving done in actual field situations by geoscientists. VR environments in a variety of forms are used to prepare students for doing geologic fieldwork, as well as to provide proxies for such experience when venturing into the field is not possible. However, despite increased use of VR for these purposes, there is little research on how students learn using these environments, how using them impacts student field experience, or what constitutes effective design in light of emerging theories of geocognition. To address these questions, I investigated the design and use of a virtual reality environment in a professional development program for middle school Earth science teachers called Teachers on the Leading Edge (TOTLE). This environment, called a virtual field environment, or VFE, was based largely on the field sites visited by the participants during summer workshops. It was designed as a tool to prepare the participants for workshop field activities and as a vehicle for taking elements of that experience back to their students. I assessed how effectively the VFE accomplished these goals using a quasi-experimental, mixed method study that involved a series of teaching experiments, interviews, participant surveys, and focus groups. The principle conclusions reached in this study are as follows: 1. In a field trip orientation experiment involving 35 middle school teachers, 90.6% of the participants stated a preference for VFE enhanced orientation over an alternative orientation that used photographs and static maps to complete a practice field activity. When asked about how the VFE prepared them for their field experience, the participants ranked it as most helpful for visualize the location and geography of the field sites. They ranked it lower for helping them visualize structural and geomorphic patterns, and ranked it as least

  14. Tailoring Systems Engineering Processes in a Conceptual Design Environment: A Case Study at NASA Marshall Spaceflight Center's ACO

    Science.gov (United States)

    Mulqueen, John; Maples, C. Dauphne; Fabisinski, Leo, III

    2012-01-01

    This paper provides an overview of Systems Engineering as it is applied in a conceptual design space systems department at the National Aeronautics and Space Administration (NASA) Marshall Spaceflight Center (MSFC) Advanced Concepts Office (ACO). Engineering work performed in the NASA MFSC's ACO is targeted toward the Exploratory Research and Concepts Development life cycle stages, as defined in the International Council on Systems Engineering (INCOSE) System Engineering Handbook. This paper addresses three ACO Systems Engineering tools that correspond to three INCOSE Technical Processes: Stakeholder Requirements Definition, Requirements Analysis, and Integration, as well as one Project Process Risk Management. These processes are used to facilitate, streamline, and manage systems engineering processes tailored for the earliest two life cycle stages, which is the environment in which ACO engineers work. The role of systems engineers and systems engineering as performed in ACO is explored in this paper. The need for tailoring Systems Engineering processes, tools, and products in the ever-changing engineering services ACO provides to its customers is addressed.

  15. The French geological disposal project CIGEO

    Energy Technology Data Exchange (ETDEWEB)

    Ouzounian, G. [ANDRA, Chatenay-Malabry cedex (France)

    2015-07-01

    This paper discusses the major management options for high level waste in France. Safety of the population and protection of the environment is the first priority. Reprocessing of used fuel and reuse of valuable material is considered. Reversible geological disposal (Cigéo Project) is the reference solution for the high-level waste.

  16. On the road to personalised and precision geomedicine: medical geology and a renewed call for interdisciplinarity.

    Science.gov (United States)

    Kamel Boulos, Maged N; Le Blond, Jennifer

    2016-01-28

    Our health depends on where we currently live, as well as on where we have lived in the past and for how long in each place. An individual's place history is particularly relevant in conditions with long latency between exposures and clinical manifestations, as is the case in many types of cancer and chronic conditions. A patient's geographic history should routinely be considered by physicians when diagnosing and treating individual patients. It can provide useful contextual environmental information (and the corresponding health risks) about the patient, and should thus form an essential part of every electronic patient/health record. Medical geology investigations, in their attempt to document the complex relationships between the environment and human health, typically involve a multitude of disciplines and expertise. Arguably, the spatial component is the one factor that ties in all these disciplines together in medical geology studies. In a general sense, epidemiology, statistical genetics, geoscience, geomedical engineering and public and environmental health informatics tend to study data in terms of populations, whereas medicine (including personalised and precision geomedicine, and lifestyle medicine), genetics, genomics, toxicology and biomedical/health informatics more likely work on individuals or some individual mechanism describing disease. This article introduces with examples the core concepts of medical geology and geomedicine. The ultimate goals of prediction, prevention and personalised treatment in the case of geology-dependent disease can only be realised through an intensive multiple-disciplinary approach, where the various relevant disciplines collaborate together and complement each other in additive (multidisciplinary), interactive (interdisciplinary) and holistic (transdisciplinary and cross-disciplinary) manners.

  17. The geological and material investigation programme

    International Nuclear Information System (INIS)

    Joshi, A.V.

    1982-01-01

    The radioactive waste disposal problem is an interdisciplinary problem. The geological formation cannot be considered on its own, but must also be considered in connection with the engineering design of the disposal facility. Engineering design including the encapsulation of the glass in a 15 cm thick steel cylinder and a minimum 40 year cooling time ensures low temperatures in the salt-steel interface. Even if large quantities of carnallite were found 3.5 m away from the sides of the borehole, the temperature at 2500 m depth after taking into account temperature increase from radioactive waste will not release crystal water from the carnallite. Anhydrite layers, which may be found in the neighbourhood of Erslev 2 and at the depths contemplated for radioactive waste disposal, will not be continous, but only in the form of blocks of limited lengths. They cannot therefore form a passage to a water bearing aquifer. The volume of salt necessary for waste disposal - including a 200 m safety barrier - is less than 2 km 3 . The Mors dome with a salt volume of about 264 km 3 provides a very substantial safety margin. The geological investigations have fulfilled the purpose of the present phase of investigations and show the Mors salt dome to be a suitable dome for disposal of high-level radioactive waste. (EG)

  18. HYPER-­TVT: Development and Implementation of an Interactive Learning Environment for Students of Chemical and Process Engineering

    Science.gov (United States)

    Santoro, Marina; Mazzotti, Marco

    2006-01-01

    Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…

  19. Selected water-resources activities of the U.S. Geological Survey in New England in 2017

    Science.gov (United States)

    Weiskel, Peter K.

    2017-06-22

    The New England Water Science Center of the U.S. Geological Survey (USGS) is headquartered in Pembroke, New Hampshire, with offices in East Hartford, Connecticut; Augusta, Maine; Northborough, Massachusetts; and Montpelier, Vermont. The areas of expertise covered by the water science center’s staff of 130 include aquatic biology, chemistry, geographic information systems, geology, hydrologic sciences and engineering, and water use.

  20. Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

    Science.gov (United States)

    Stokes, Jack W.

    2003-01-01

    An austere fiscal environment in the aerospace community creates pressures to reduce program costs, often minimizing or sometimes even deleting the human interface requirements from the design process. With an assumption that the flight crew can recover real time from a poorly human factored space vehicle design, the classical crew interface requirements have been either not included in the design or not properly funded, though carried as requirements. Cost cuts have also affected quality of retained human factors engineering personnel. In response to this concern, planning is ongoing to correct the acting issues. Herein are techniques for ensuring that human interface requirements are integrated into a flight design, from proposal through verification and launch activation. This includes human factors requirements refinement and consolidation across flight programs; keyword phrases in the proposals; closer ties with systems engineering and other classical disciplines; early planning for crew-interface verification; and an Agency integrated human factors verification program, under the One NASA theme. Importance is given to communication within the aerospace human factors discipline, and utilizing the strengths of all government, industry, and academic human factors organizations in an unified research and engineering approach. A list of recommendations and concerns are provided in closing.

  1. Effects of sea water environment on glass fiber reinforced plastic materials used for marine civil engineering constructions

    International Nuclear Information System (INIS)

    Garcia-Espinel, J.D.; Castro-Fresno, D.; Parbole Gayo, P.; Ballester-Muñoz, F.

    2015-01-01

    Highlights: • Seawater environment over composite material that are suitable for civil applications. • Seawater intake is linked to tensile and flexural strength degradation in GFC. • Fatigue performance of glass composites is similar in seawater environment than in air. - Abstract: Glass fiber composites (GFRP) are common in civil engineering projects, but not in marine structures. One reason is that seawater effects degrade GFRP composites mechanical properties and interlaminar shear strength (ILSS). Here, influence of seawater environment is studied to determine the best composite materials for marine civil engineer applications, studying the influence of several factors in their mechanical properties. This is to determine safety factors to use in the design of structural calculations for marine applications. Glass/epoxy composites are the safest materials to use in marine civil structures as mechanical properties degradation becomes stabilized after moisture saturation level. UV and water cyclic analysis must be done to determine affection to transversal strength. Only vinylester GFRP has problems with biodegradation. GFRP fatigue performance is not influenced by seawater environment

  2. A national collaboration process: Finnish engineering education for the benefit of people and environment.

    Science.gov (United States)

    Takala, A; Korhonen-Yrjänheikki, K

    2013-12-01

    The key stakeholders of the Finnish engineering education collaborated during 2006-09 to reform the system of education, to face the challenges of the changing business environment and to create a national strategy for the Finnish engineering education. The work process was carried out using participatory work methods. Impacts of sustainable development (SD) on engineering education were analysed in one of the subprojects. In addition to participatory workshops, the core part of the work on SD consisted of a research with more than 60 interviews and an extensive literature survey. This paper discusses the results of the research and the work process of the Collaboration Group in the subproject of SD. It is suggested that enhancing systematic dialogue among key stakeholders using participatory work methods is crucial in increasing motivation and commitment in incorporating SD in engineering education. Development of the context of learning is essential for improving skills of engineering graduates in some of the key abilities related to SD: systemic- and life-cycle thinking, ethical understanding, collaborative learning and critical reflection skills. This requires changing of the educational paradigm from teacher-centred to learner-centred applying problem- and project-oriented active learning methods.

  3. Natural analogue study on engineered barriers for underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Araki, K.; Motegi, M.; Emoto, Y.; Kaji, Y.; Ikari, S.; Nada, T.; Watanabe, T.

    1989-01-01

    This is a report to develop the natural analogue methodology for the assessment of the life of the engineered barriers beyond the time period of normal experiments, 1000 years, for the disposal of low-level radioactive wastes with activity levels greater than those of wastes acceptable for shallow land burial in Japan. Geological and archeological events and objects available for the assessment of the possible life of each engineered barrier are surveyed. Taking heavy precipitation into account in Japan, a long-term, zero-release engineered barrier system using long-term durable materials based on the natural analogue events and objects is proposed along with the conventional type of water permeable engineered barrier system. The combination of the material quality and the environment that could be achieved within the repository is important for the long-term durability of the engineered barrier material. It is proposed that for the natural analogue study a physico-chemical methodology, which may be referred to as the physico-chemical natural history, is necessary to get parameters from the natural analogue events for the long-term assessment of the disposal system

  4. 3D geological and hydrogeological modeling as design tools for the Conawapa generating station

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J.; Sharif, S.; Smith, B. [KGS Group, Winnipeg, MB (Canada); Cook, G.N.; Osiowy, B.J. [Manitoba Hydro, Winnipeg, MB (Canada)

    2008-07-01

    Following the project's suspension in the early 1990s, part of Manitoba Hydro's recommitment study involved digital modeling of geological and hydrogeological data for the foundation design and analysis of the proposed Conawapa generating station in northern Manitoba. Three-dimensional geological and hydrogeological models have been developed to consolidate and improve the designer's ability to understand all of the information, and to assist in developing engineering alternatives which will improve the overall confidence of the design. The tools are also being leveraged for use in environmental studies. This paper provided an overview of the Conawapa site and 3-dimensional modeling goals. It described the geology and hydrogeology of the Conawapa site as well as the bedrock structure and Karst development. The paper also presented the central concepts of 3-dimensional modeling studies, including the flow of information from database to modeling software platforms. The construction of the Conawapa geological model was also presented, with particular reference to an overview of the MVS software; mesh design; and model buildup logic. The construction of the Conawapa hydrogeological model was discussed in terms of the finite element code FEFLOW software; conceptual model design; and initial observations of Conawapa groundwater flow modeling. It was concluded that recent advancement and application of 3-dimensional geological visualization software to engineering and environmental projects, including at the future Conawapa site using MVS and FEFLOW, have shown that complicated geological data can be organized, displayed, and analysed in a systematic way, to improve site visualization, understanding, and data relationships. 19 refs., 9 figs.

  5. FY 1998 annual report on the survey on overseas geological structures. Project for exchanging engineers (coal mining technology area) (Vietnam); 1998 nendo kaigai chishitsu kozo nado chosaa. Gijutsusha koryu jigyo (tanko gijutsu bun'ya) (Vietnam)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The project for exchanging engineers has been implemented, in order to improve production and managemental techniques of coal mining engineers in the Asia-Pacific region, promote smooth and efficient projects for surveying overseas geological structures, and facilitate stable supply of overseas coal to Japan. The FY 1998 project was concentrated on Vietnam, to which Japanese coal mining engineers were sent, and from which production management engineers were invited to Japan as trainees. The Japanese engineers sent to Vietnam educated the underground coal mining techniques. The Vietnamese management engineers invited were trained for, e.g., production management techniques (e.g., those for workplaces and organizations) in the Japanese mines, administrative management techniques, and techniques to improve safety and productivity in the mines. Coal Energy Center and Taiheiyo Mining's Kushiro Mine provided training facilities. (NEDO)

  6. Safety and sensitivity analyses of a generic geologic disposal system for high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1994-11-01

    This report describes safety and sensitivity analyses of a generic geologic disposal system for HLW, using a GSRW code and an automated sensitivity analysis methodology based on the Differential Algebra. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. The results of sensitivity analyses indicate that parameters related to a homogeneous rock surrounding a disposal facility have higher sensitivities to the output analyzed here than those of a fractured zone and engineered barriers. The sensitivity analysis methodology provides technical information which might be bases for the optimization of design of the disposal facility. Safety analyses were performed on the reference disposal system which involve HLW in amounts corresponding to 16,000 MTU of spent fuels. The individual dose equivalent due to the exposure pathway ingesting drinking water was calculated using both the conservative and realistic values of geochemical parameters. In both cases, the committed dose equivalent evaluated here is the order of 10 -7 Sv, and thus geologic disposal of HLW may be feasible if the disposal conditions assumed here remain unchanged throughout the periods assessed here. (author)

  7. Microbes in deep geological systems and their possible influence on radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    West, J M; McKinley, I G; Chapman, N A [Institute of Geological Sciences, Harwell (UK). Environmental Protection Unit

    1982-09-01

    Although the fact is often overlooked, proposed nuclear waste repositories in geological formations would exist in an environment quite capable of sustaining microbial life which could considerably affect containment of radionuclides. In this paper a brief review of biological tolerance of extreme environments is presented with particular reference to studies of the microbiology of deep geological formations. The possible influence of such organisms on the integrity of a waste repository and subsequent transport of radionuclides to the surface is discussed.

  8. Natural and active chemical remediation of toxic metals and radionuclides in the aquatic environment

    International Nuclear Information System (INIS)

    McPherson, G.; Pintauro, P.; O'Connor, S.; Zhang, J.; Gonzales, R.; Flowers, G.

    1993-01-01

    The focus of this research is the non-biological, chemical remediation of toxic heavy metals and radionuclides in aquatic environments. This Tulane/Xavier group includes researchers from Chemistry, Chemical Engineering, and Geology. Active methods using novel zeolites and ion exchange membranes are currently being evaluated for use in removing heavy metals from natural waters. In addition, field and laboratory studies of metal ion exchange reactions and competitive, heavy metal adsorption on clay substrates are underway to determine sediment metal sequestering capacity. A summary of progress to date and future work is presented

  9. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane

    KAUST Repository

    Jeong, Sanghyun; Cho, Kyungjin; Jeong, Dawoon; Lee, Seockheon; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan

    2017-01-01

    Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors

  10. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    Science.gov (United States)

    Zhu, Yong-Guan; Rosen, Barry P

    2009-04-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization.

  11. The geology of selected peat-forming environments in temperate and tropical latitudes

    Science.gov (United States)

    Cameron, C.C.; Palmer, C.A.; Esterle, J.S.

    1990-01-01

    We studied peat in several geologic and climatic settings: (1) a glaciated terrain in cold-temperate Maine and Minnesota, U.S.A.; (2) an island in a temperate maritime climate in the Atlantic Ocean off the coast of Maine, U.S.A., where sea level is rising rapidly and changing the environment of peat accumulation; (3) swamps along the warm-temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often, thus creating sites for accumulation; and (4) in a tropical climate along the coast of Sarawak, Malaysia, and the delta of the Batang Hari River, Sumatra, Indonesia (Figs. 1 and 2). With the exception of the deposits on the Atlantic and Gulf Coastal Plains, most of the deposits described are domed bogs in which peat accumulation continued above the surface of the surrounding soil. The bogs of the U.S. Atlantic and Gulf Coastal Plains have almost level surfaces. All domed bogs are not entirely ombrotrophic (watered only from precipitation); multidomed bogs that rise from irregular or hilly surfaces may be crossed by streams that supply water to the bogs. The geologic processes or organic sedimentation, namely terrestrialization and paludification, are similar in all peat deposits considered here. Differences in geomorphology affecting the quantity and that quality of peat that has ash contents of less than 25%, which are desirable for commercial purposes, depend chiefly on: (1) high humidity, which is favorable to luxuriant growth of peat-forming vegetation; (2) a depositional setting that permits extensive accumulation relatively free from inorganic contamination from sea water and streams and from dust and volcanic ash; and (3) a stable regional water table that controls the rate of decomposition under aerobic conditions and protects the deposit against the ravages of fire. Differences in peat textures are due to the type of vegetation and to the degree of decomposition. The rate of decomposition is largely the result of the amount of oxidation

  12. Modelling and prediction of radionuclide migration from shallow, subgrade nuclear waste facilities in arid environments

    International Nuclear Information System (INIS)

    Smith, A.; Ward, A.; Geldenhuis, S.

    1986-01-01

    Over the past fifteen years, prodigious efforts and significant advances have been made in methods of prediction of the migration rate of dissolved species in aqueous systems. Despite such work, there remain formidable obstacles in prediction of solute transport in the unsaturated zone over the long time periods necessarily related to the radionuclide bearing wastes. The objective of this paper is to consider the methods, issues and problems with the use of predictive solute transport models for radionuclide migration from nuclear waste disposal in arid environments, if and when engineering containment of the waste fails. Having considered the ability for long term solute prediction for a number of geological environments, the advantages of a disposal environment in which the solute transport process is diffusion controlled will be described

  13. An Investigation of an Open-Source Software Development Environment in a Software Engineering Graduate Course

    Science.gov (United States)

    Ge, Xun; Huang, Kun; Dong, Yifei

    2010-01-01

    A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…

  14. Prediction of long-term crustal movement for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasaki, Takeshi; Morikawa, Seiji; Tabei, Kazuto; Koide, Hitoshi; Tashiro, Toshiharu

    2000-01-01

    Long-term stability of the geological environment is essential for the safe geological disposal of radioactive waste, for which it is necessary to predict the crustal movement during an assessment period. As a case study, a numerical analysis method for the prediction of crustal movement in Japan is proposed. A three-dimensional elastic analysis by FEM for the geological block structure of the Kinki region and the Awaji-Rokko area is presented. Stability analysis for a disposal cavern is also investigated. (author)

  15. Wave Propagation in Jointed Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  16. Quaternary Geologic Map of the Regina 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Fullerton, David S.; Christiansen, Earl A.; Schreiner, Bryan T.; Colton, Roger B.; Clayton, Lee; Bush, Charles A.; Fullerton, David S.

    2007-01-01

    For scientific purposes, the map differentiates Quaternary surficial deposits and materials on the basis of clast lithology or composition, matrix texture or particle size, structure, genesis, stratigraphic relations, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the 'Description of Map Units'. Deposits of some constructional landforms, such as end moraines, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, fluvial, and lacustrine deposits that are mapped may be terraced. Differentiation of sequences of fluvial and glaciofluvial deposits at this scale is not possible. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use planning, or land-management projects can be derived and from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.

  17. Geological problems in radioactive waste isolation - second worldwide review

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996

  18. Geological problems in radioactive waste isolation - second worldwide review

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A. [ed.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  19. Sorption heat engines: simple inanimate negative entropy generators

    OpenAIRE

    Muller, Anthonie W. J.; Schulze-Makuch, Dirk

    2005-01-01

    The name 'sorption heat engines' is proposed for simple negative entropy generators that are driven by thermal cycling and work on alternating adsorption and desorption. These generators are in general not explicitly recognized as heat engines. Their mechanism is applicable to the fields of engineering, physics, chemistry, geology, and biology, in particular the origin of life. Four kinds of sorption heat engines are distinguished depending on the occurrence of changes in the adsorbent or ads...

  20. The main sources of pollution of the aquatic environment in Hellas

    Science.gov (United States)

    Koumantakis, J.; Dimitrakopoulos, D.; Markantonis, K.; Grigorakou, E.; Vassiliou, E.

    2003-04-01

    The research team of the laboratory of Engineering Geology &Hydrogeology of NTUA and P.P.C. have carried out several research projects since 1990. The conclusions of these projects for the main sources of pollution of the aquatic environment in Hellas are the following: Human activities : a) Urban and industrial wastes (solid and liquids) are disposed or discharged to the surface or groundwater bodies causing degradation of their quality (case studies of Athens Basin, Lavrio region, Atalanti plain), b) intensive use of pesticides and fertilizers for agriculture, through the process of percolation or leaching causes the deterioration of aquifers and surface water (case studies of Plolemais Basin, Korinth region, Elassona Basin, Atalanti plain, Thrapsana Basin Iraklio), c) current exploitations and old or abandoned mining sites, disturb the aquatic environment and create new hydraulic connections between clean and polluted aquifers or the sea (case studies of Lavrio region, Ptolemais Basin, Megalopoli Basin), d) over-pumping of aquifers mainly for irrigation but also in some cases for dewatering of mines, results in continues drawdown of the groundwater level and intrusion of sea (case studies of Korinth region, Athens basin, Naxos island, Nea Peramos Kavala, Marathon, Argolida Field, Atalanti plain, Achaia region, Stratoni area Chalkidiki, Gouves Iraklio). Geological Environment: a) extensive karstification of limestones that spread up all over the Greek region (33%) causes the intrusion of the sea far into the land (case studies of Lavrio region, Kefalonia island, Hymettus mountain), b) the chemical composition of the geological formations through the process of ion exchange and solubility pollute the groundwater resources (case studies of Vegoritis Basin, Katsika Chalkidiki, Florina region). The proposed measures to face these problems are : - the orthological management of the water resources - the artificial recharge of the aquifers, - proper waste management

  1. Combined NLCG/SBI magnetotelluric data inversion for recognition of complex geological structures

    International Nuclear Information System (INIS)

    Michal Stefaniuk

    2009-01-01

    Complete text of publication follows. Geological interpretation of magnetotelluric data is a subject of some misunderstandings. Simplified geometrically and well contrasted in resistivity models do not response for real geological environment. The aim of outstripping magnetotelluric works widely made in Polish Outer Carpathians, is general structural and lithological recognising of geological environment and distinguishing of areas where oil prospection will be projected. The geological medium is formed by sedimentary formations, strongly deformed and containing relatively thin layers with essentially differentiated parameters, overlying rather flat, high resistivity basement. Application of simplified strongly contrasted interpretation model with fluently changing parameters gives frequently results not corresponding with geological reality. Presented analysis is based on surveys located in marginal zone of Carpathianst in the area relatively well recognised, where interpreted structural and lithologic model rather well reflects real geological medium. Then, it was used as reference model for obtained results of MT data inversion. Magnetotelluric continuous profiling located along reflection seismic profile, between two deep boreholes was made. Set of results of computations allows to evaluate of effectiveness of used procedures and suggest optimum way of dealing. First stage of data interpretation was based on 1D and EMAP inversion. The section was then applied as starting model for 2D NLCG inversion. Results of this method give rather generalized resistivity distribution well reflecting structure of flysch cover but not adequate for the basement. This models was applied as starting models for SBI inversion constrained by borehole data. Results of SBI procedure well reflects relatively flat complexes of the basement, but are rather unrealistic for folded flysch cover. The another NLCG inversion was computed with stabilised model of basement obtained from SBI

  2. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  3. Long-term environmental impacts of geologic repositories

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1983-05-01

    This paper summarizes a study of the long-term environmental impacts of geologic repositories for radioactive wastes. Conceptual repositories in basalt, granite, salt, and tuff were considered. Site-specific hydrological and geochemical parameters were used wherever possible, supplemented with generic parameters when necessary. Radiation doses to future maximally exposed individuals who use the contaminated groundwater and surface water were calculated and compared with a performance criterion of 10 -4 Sv/yr for radiation exposures from probable events. The major contributors to geologic isolation are the absence of groundwater if the repository is in natural salt, the slow dissolution of key radioelements as limited by solubility and by diffusion and convection in groundwater, long water travel times from the waste to the environment, and sorption retardation in the media surrounding the repository. In addition, dilution by surface water can considerably reduce the radiation exposures that result from the small fraction of the waste radioactivity that may ultimately reach the environment. Estimates of environmental impacts are made both for unreprocessed spent fuel and for reprocessing wastes. Accelerated dissolution of waste exposed to groundwater during the period of repository heating is also considered. This study of environmental impacts is a portion of a more comprehensive study of geologic waste disposal carried out by the Waste Isolation System Panel of the US National Research Council

  4. Study on the Geological Structure around KURT Using a Deep Borehole Investigation

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2010-01-01

    To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area

  5. State Geological Institute of Dionyz Stur. Annual report 2006

    International Nuclear Information System (INIS)

    2007-01-01

    In this main part of the Report following activities carried out by the State Geological Institute of Dionyz Stur (SGUDS) in 2006 year are presented: (1) Identification of institute; (2) Mission and vision; (3) SGUDS contract with the Ministry of Environment of the Slovak Republic and its implementation; (4) Activities and products of the SGUDS and their costs; (5) Budget of the SGUDS; (6) Personnel action; (7) Objectives and review their performance; (8) Evaluation and analysis of developments of the SGUDS in 2006; (9) The main users of outputs of the SGUDS; Annex 1: Tasks in 2005; Annex 2: Partial monitoring system - geological factors; Annex 3: Evaluation of the activities of the Department of Informatics of the SGUDS under the contract between the Ministry of Environment of the Slovak Republic and the SGUDS.

  6. Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting

    Science.gov (United States)

    Moorhead, Althea V.

    2017-01-01

    The meteoroid environment is often divided conceptually into meteor showers plus a sporadic background component. The sporadic complex poses the bulk of the risk to spacecraft, but showers can produce significant short-term enhancements of the meteoroid flux. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. Both MEM and the forecast are used by multiple manned spaceflight projects in their meteoroid risk evaluation, and both tools are being revised to incorporate recent meteor velocity, density, and timing measurements. MEM describes the sporadic meteoroid complex and calculates the flux, speed, and directionality of the meteoroid environment relative to a user-supplied spacecraft trajectory, taking the spacecraft's motion into account. MEM is valid in the inner solar system and offers near-Earth and cis-lunar environments. While the current version of MEM offers a nominal meteoroid environment corresponding to a single meteoroid bulk density, the next version of MEMR3 will offer both flux uncertainties and a density distribution in addition to a revised near-Earth environment. We have updated the near-Earth meteor speed distribution and have made the first determination of uncertainty in this distribution. We have also derived a meteor density distribution from the work of Kikwaya et al. (2011). The annual meteor shower forecast takes the form of a report and data tables that can be used in conjunction with an existing MEM assessment. Fluxes are typically quoted to a constant limiting kinetic energy in order to comport with commonly used ballistic limit equations. For the 2017 annual forecast, the MEO substantially revised the list of showers and their characteristics using 14 years of meteor flux measurements from the Canadian Meteor Orbit Radar (CMOR). Defunct or insignificant showers were removed and the temporal profiles of many showers

  7. Adaptive dynamics on an environmental gradient that changes over a geological time-scale.

    Science.gov (United States)

    Fortelius, Mikael; Geritz, Stefan; Gyllenberg, Mats; Toivonen, Jaakko

    2015-07-07

    The standard adaptive dynamics framework assumes two timescales, i.e. fast population dynamics and slow evolutionary dynamics. We further assume a third timescale, which is even slower than the evolutionary timescale. We call this the geological timescale and we assume that slow climatic change occurs within this timescale. We study the evolution of our model population over this very slow geological timescale with bifurcation plots of the standard adaptive dynamics framework. The bifurcation parameter being varied describes the abiotic environment that changes over the geological timescale. We construct evolutionary trees over the geological timescale and observe both gradual phenotypic evolution and punctuated branching events. We concur with the established notion that branching of a monomorphic population on an environmental gradient only happens when the gradient is not too shallow and not too steep. However, we show that evolution within the habitat can produce polymorphic populations that inhabit steep gradients. What is necessary is that the environmental gradient at some point in time is such that the initial branching of the monomorphic population can occur. We also find that phenotypes adapted to environments in the middle of the existing environmental range are more likely to branch than phenotypes adapted to extreme environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Geological factors of disposal site selection for low-and intermediate-level solid radwastes in China

    International Nuclear Information System (INIS)

    Chen Zhangru

    1993-01-01

    For disposal of low- and intermediate-level solid radioactive wastes, shallow-ground disposal can provide adequate isolation of waste from human for a fairly long period of time. The objective of disposal site selection is to ensure that the natural properties of the site together with the engineered barrier site shall provide adequate isolation of radionuclides from the human beings and environment, so the whole disposal system can keep the radiological impact within an acceptable level. Since the early 1980's, complying with the national standards and the expert's conception as well as the related IAEA Criteria, geological selection of disposal sites for low-and intermediate-level solid radwastes has been carried out in East China, South China, Northwest China and Southwest China separately. Finally, 5 candidate sites were recommended to the CNNC

  9. Constructing a Geology Ontology Using a Relational Database

    Science.gov (United States)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances

  10. Engineering Competencies in International Development Co-operation - the Case of Capacity Development in Environment (CDE)

    DEFF Research Database (Denmark)

    Wangel, Arne

    2001-01-01

    The focus of the paper is the need for engineers to develop new competencies, when they are involved in international development cooperation. Drawing on the case of the Post-RIO strategy of capacity development in environment in developing countries, the paper reviews a recent response...... of such courses, which give emphasis to local views on institutional development and policy change. engineers from industrialised countries have a long tradition of working in the third world: building infrastructure to facilitate exports of raw materials during colonial times; implementing development aid...... on the transfer of managerial models across cultures, on how to develop inter-cultural competence in management, and on the significance of differences in engineering and industrial culture. Second, the concepts of dynamic assimilation and local learning processes and their implications for the practicing...

  11. Outstanding diversity of heritage features in large geological bodies: The Gachsaran Formation in southwest Iran

    Science.gov (United States)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-09-01

    The ideas of geological heritage and geological diversity have become very popular in the modern science. These are usually applied to geological domains or countries, provinces, districts, etc. Additionally, it appears to be sensible to assess heritage value of geological bodies. The review of the available knowledge and the field investigation of the Gachsaran Formation (lower Miocene) in southwest Iran permit to assign its features and the relevant phenomena to as much as 10 geological heritage types, namely stratigraphical, sedimentary, palaeontological, palaeogeographical, geomorphological, hydrogeological, engineering, structural, economical, and geohistorical types. The outstanding diversity of the features of this formation determines its high heritage value and the national rank. The geological heritage of the Gachsaran Formation is important to scientists, educators, and tourists. The Papoon and Abolhaiat sections of this formation are potential geological heritage sites, although these do not represent all above-mentioned types. The large territory, where the Gachsaran Formation outcrop, has a significant geoconservation and geotourism potential, and further inventory of geosites on this territory is necessary. Similar studies of geological bodies in North Africa and the Middle East can facilitate better understanding of the geological heritage of this vast territory.

  12. Outreach to Inspire Girls in Geology: A Recipe for Success (Invited)

    Science.gov (United States)

    Kekelis, L.

    2010-12-01

    Geology and engineering careers can seem very abstract to a young girl, especially to a girl who has no role model in technical fields. Many girls want to make the world a better place but don’t see how their interests connect with geology or engineering. Role models and field trips to worksites are instrumental in encouraging girls to consider careers in geoscience and engineering. The opportunities to see real-world applications of technology and meet with role models who work in technical fields are extremely impactful and can have a strong influence on a girl’s career path. Together we need to do a better job of communicating what geoscience and engineering have to offer girls and what girls have to offer these fields. This presentation will provide practical tips to help combat stereotypes, 2) share resources for outreach at one-day special events, summer camps, visits to the classroom and field trips to corporate sites and college campuses, and 3) highlight strategies for groups to work collaboratively in outreach. This presentation will help those currently involved in outreach who want to improve on existing efforts, along with those who have never done outreach and are interested in getting started. Techbridge will share a “recipe for success” for planning and hosting role model visits to the classroom and field trips. A case study of outreach by Chevron with Techbridge girls will be shared including the pre-event planning that made this event a success. Activities that make geology fun and friendly to girls and tips for dispelling stereotypes about careers in geology and engineering will also be shared. Participants will be invited to ask questions and share on topics of interest, such as “Challenges with outreach,” “How to get involved without burning out,” and “How to show your manager or organization that outreach is worth the effort.” We will also promote a candid discussion of the challenges that can arise along with way and how

  13. China organic-rich shale geologic features and special shale gas production issues

    Directory of Open Access Journals (Sweden)

    Yiwen Ju

    2014-06-01

    Full Text Available The depositional environment of organic-rich shale and the related tectonic evolution in China are rather different from those in North America. In China, organic-rich shale is not only deposited in marine environment, but also in non-marine environment: marine-continental transitional environment and lacustrine environment. Through analyzing large amount of outcrops and well cores, the geologic features of organic-rich shale, including mineral composition, organic matter richness and type, and lithology stratigraphy, were analyzed, indicating very special characteristics. Meanwhile, the more complex and active tectonic movements in China lead to strong deformation and erosion of organic-rich shale, well-development of fractures and faults, and higher thermal maturity and serious heterogeneity. Co-existence of shale gas, tight sand gas, and coal bed methane (CBM proposes a new topic: whether it is possible to co-produce these gases to reduce cost. Based on the geologic features, the primary production issues of shale gas in China were discussed with suggestions.

  14. Geological aspects of the high level waste and spent fuel disposal programme in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Matej, Gedeon; Milos, Kovacik; Jozef, Hok [Geological Survey of Slovak Republic, Bratislava (Slovakia)

    2001-07-01

    An autonomous programme for development of a deep geological high level waste and spent fuel disposal began in 1996. One of the most important parts in the programme is siting of the future deep seated disposal. Geological conditions in Slovakia are complex due to the Alpine type tectonics that formed the geological environment during Tertiary. Prospective areas include both crystalline complexes (tonalites, granites, granodiorites) and Neogene (Miocene) argillaceous complexes. (author)

  15. On selection of geological medium for disposal of high-level radwaste

    International Nuclear Information System (INIS)

    Min Maozhong

    1991-01-01

    The present paper briefly reviews the suitability of some rocks as geological disposal repositories of high-level radwaste (HLW). The suitable rocks for geological ogi disposal of HLW are rock salt (salt diapir, bedded salt), granite, argillaceous rocks, tuff, basalt, gabbro, diabase, anhydrite, marine sedimentary rocks etc., especially, rock salt, granite, and argillaceous rocks. The data of principal hydraulic properties, mechanical-physical properties for various rocks in typical environment which might be considered for disposal purposes are also given in this paper. These data give a reference to China's geological disposal of HLW in the future

  16. Near-Surface Engineered Environmental Barrier Integrity

    International Nuclear Information System (INIS)

    Piet, S.J.; Breckenridge, R.P.

    2002-01-01

    The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R and D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combine s selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo-transpiration, capillary, and grout-based barriers will be examined

  17. Geology and mineral potential of Ethiopia: a note on geology and mineral map of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Tadesse, S.; Milesi, J.P.; Deschamps, Y. [University of Addis Ababa, Addis Ababa (Ethiopia). Dept. for Geology & Geophysics

    2003-05-01

    This work presents a geoscientific map and database for geology, mineral and energy resources of Ethiopia in a digital form at a scale of 1 : 2,000,000, compiled from several sources. The final result of the work has been recorded on CD-ROM in GIS format. Metallic resources (precious, rare, base and ferrous-ferroalloy metals) are widely related to the metamorphic meta-volcano-sedimentary belts and associated intrusives belonging to various terranes of the Arabian-Nubian Shield, accreted during the East and West Gondwana collision (Neoproterozoic, 900-500 Ma). Industrial minerals and rock resources occur in more diversified geological environments, including the Proterozoic basement rocks, the Late Paleozoic to Mesozoic sediments and recent (Cenozoic) volcanics and associated sediments. Energy resources (oil, coal, geothermal resources) are restricted to Phanerozoic basin sediments and Cenozoic volcanism and rifting areas.

  18. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  19. Elements of earthquake engineering and structural dynamics. 2. ed.

    International Nuclear Information System (INIS)

    Filiatrault, A.

    2002-01-01

    This book is written for practising engineers, senior undergraduate and junior structural-engineering students, and university educators. Its main goal is to provide basic knowledge to structural engineers who have no previous knowledge about earthquake engineering and structural dynamics. Earthquake engineering is a multidisciplinary science. This book is not limited to structural analysis and design. The basics of other relevant topics (such as geology, seismology, and geotechnical engineering) are also covered to ensure that structural engineers can interact efficiently with other specialists during a construction project in a seismic zone

  20. Managing geological uncertainty in CO2-EOR reservoir assessments

    Science.gov (United States)

    Welkenhuysen, Kris; Piessens, Kris

    2014-05-01

    Recently the European Parliament has agreed that an atlas for the storage potential of CO2 is of high importance to have a successful commercial introduction of CCS (CO2 capture and geological storage) technology in Europe. CO2-enhanced oil recovery (CO2-EOR) is often proposed as a promising business case for CCS, and likely has a high potential in the North Sea region. Traditional economic assessments for CO2-EOR largely neglect the geological reality of reservoir uncertainties because these are difficult to introduce realistically in such calculations. There is indeed a gap between the outcome of a reservoir simulation and the input values for e.g. cost-benefit evaluations, especially where it concerns uncertainty. The approach outlined here is to turn the procedure around, and to start from which geological data is typically (or minimally) requested for an economic assessment. Thereafter it is evaluated how this data can realistically be provided by geologists and reservoir engineers. For the storage of CO2 these parameters are total and yearly CO2 injection capacity, and containment or potential on leakage. Specifically for the EOR operation, two additional parameters can be defined: the EOR ratio, or the ratio of recovered oil over injected CO2, and the CO2 recycling ratio of CO2 that is reproduced after breakthrough at the production well. A critical but typically estimated parameter for CO2-EOR projects is the EOR ratio, taken in this brief outline as an example. The EOR ratio depends mainly on local geology (e.g. injection per well), field design (e.g. number of wells), and time. Costs related to engineering can be estimated fairly good, given some uncertainty range. The problem is usually to reliably estimate the geological parameters that define the EOR ratio. Reliable data is only available from (onshore) CO2-EOR projects in the US. Published studies for the North Sea generally refer to these data in a simplified form, without uncertainty ranges, and are

  1. Executive control systems in the engineering design environment. M.S. Thesis

    Science.gov (United States)

    Hurst, P. W.

    1985-01-01

    An executive control system (ECS) is a software structure for unifying various applications codes into a comprehensive system. It provides a library of applications, a uniform access method through a cental user interface, and a data management facility. A survey of twenty-four executive control systems designed to unify various CAD/CAE applications for use in diverse engineering design environments within government and industry was conducted. The goals of this research were to establish system requirements to survey state-of-the-art architectural design approaches, and to provide an overview of the historical evolution of these systems. Foundations for design are presented and include environmental settings, system requirements, major architectural components, and a system classification scheme based on knowledge of the supported engineering domain(s). An overview of the design approaches used in developing the major architectural components of an ECS is presented with examples taken from the surveyed systems. Attention is drawn to four major areas of ECS development: interdisciplinary usage; standardization; knowledge utilization; and computer science technology transfer.

  2. World resources and the development of the earth's surface

    International Nuclear Information System (INIS)

    Sasaki, A.; Ishihara, S.; Seki, Y.

    1985-01-01

    This text is an examination of economic (or ore) geology, and engineering geology. Using case studies of Japan and continental North America, this work presents a geological and geochemical summary of ore-forming processes along with discussions of basic principles and approaches to modern engineering geology. Emphasizes the relationship between fossil fuel resources and the evolution of the Earth's crust. Contents - WORLD RESOURCES. The Geochemistry of Metallogenesis. The Geochemistry of Fossil Fuel Deposit. Global Evolution and the Formation of Mineral Deposits. The Development of Continents and Island Arcs and the Formation of Mineral Deposits. DEVELOPMENT OF THE EARTH'S SURFACE. Development of the Earth's Surface and Engineering Geology. Engineering Geology Methods. Features of the Ground and Bedrock in Japan. Engineering Geology - A Case Study. Geology and the Environment - Case Studies. INDEX. Principal World-Wide Metal Deposits (inside front cover). Principal World-Wide Coal, Petroleum and Uranium Deposits (inside back cover)

  3. Quaternary Geologic Map of the Lake Nipigon 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Sado, Edward V.; Fullerton, David S.; Farrand, William R.; Edited and Integrated by Fullerton, David S.

    1994-01-01

    The Quaternary Geologic Map of the Lake Nipigon 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the University of Michigan, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the map unit descriptions. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of

  4. Parameterizing sub-surface drainage with geology to improve modeling streamflow responses to climate in data limited environments

    Directory of Open Access Journals (Sweden)

    C. L. Tague

    2013-01-01

    Full Text Available Hydrologic models are one of the core tools used to project how water resources may change under a warming climate. These models are typically applied over a range of scales, from headwater streams to higher order rivers, and for a variety of purposes, such as evaluating changes to aquatic habitat or reservoir operation. Most hydrologic models require streamflow data to calibrate subsurface drainage parameters. In many cases, long-term gage records may not be available for calibration, particularly when assessments are focused on low-order stream reaches. Consequently, hydrologic modeling of climate change impacts is often performed in the absence of sufficient data to fully parameterize these hydrologic models. In this paper, we assess a geologic-based strategy for assigning drainage parameters. We examine the performance of this modeling strategy for the McKenzie River watershed in the US Oregon Cascades, a region where previous work has demonstrated sharp contrasts in hydrology based primarily on geological differences between the High and Western Cascades. Based on calibration and verification using existing streamflow data, we demonstrate that: (1 a set of streams ranging from 1st to 3rd order within the Western Cascade geologic region can share the same drainage parameter set, while (2 streams from the High Cascade geologic region require a different parameter set. Further, we show that a watershed comprised of a mixture of High and Western Cascade geologies can be modeled without additional calibration by transferring parameters from these distinctive High and Western Cascade end-member parameter sets. More generally, we show that by defining a set of end-member parameters that reflect different geologic classes, we can more efficiently apply a hydrologic model over a geologically complex landscape and resolve geo-climatic differences in how different watersheds are likely to respond to simple warming scenarios.

  5. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sassani, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-26

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included in the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.

  6. Near Field Environment Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Wagner

    2000-11-14

    Waste emplacement and activities associated with construction of a repository system potentially will change environmental conditions within the repository system. These environmental changes principally result from heat generated by the decay of the radioactive waste, which elevates temperatures within the repository system. Elevated temperatures affect distribution of water, increase kinetic rates of geochemical processes, and cause stresses to change in magnitude and orientation from the stresses resulting from the overlying rock and from underground construction activities. The recognition of this evolving environment has been reflected in activities, studies and discussions generally associated with what has been termed the Near-Field Environment (NFE). The NFE interacts directly with waste packages and engineered barriers as well as potentially changing the fluid composition and flow conditions within the mountain. As such, the NFE defines the environment for assessing the performance of a potential Monitored Geologic Repository at Yucca Mountain, Nevada. The NFe evolves over time, and therefore is not amenable to direct characterization or measurement in the ambient system. Analysis or assessment of the NFE must rely upon projections based on tests and models that encompass the long-term processes of the evolution of this environment. This NFE Process Model Report (PMR) describes the analyses and modeling based on current understanding of the evolution of the near-field within the rock mass extending outward from the drift wall.

  7. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    International Nuclear Information System (INIS)

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre

    2013-01-01

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance for the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)

  8. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    Energy Technology Data Exchange (ETDEWEB)

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre [Andra, 1-7 rue Jean Monnet, 92298 Chatenay Malabry (France)

    2013-07-01

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance for the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)

  9. Changes in engineering-geological conditions in the foundation of the Bratsk hydroelectric powerplant dam during 15 years of operation

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, G K; Savinskaya, M K; Tizdel, R R; Sotnikova, N P

    1978-04-01

    Field observations of the rock foundation beneath the Bratsk Hydropower Dam have been conducted continuously and carefully, beginning during the period of construction. The dam is a concrete gravity dam with expanded seams, 125 m in height and 924 m in length. The head is 106 m. The dam was constructed in 42 column sections which were subsequently cemented together. The anchor of the dam is up to 15 m deep. Two rows of drainage wells 30 m deep and 3 m apart were drilled into the foundation beneath the dam. The observations indicate that the status of the foundation and the stability of the channel and left bank earth dam are quite satisfactory. The changes in engineering and geological conditions that are unavoidable upon construction of a large dam have apparently been completed, and the new conditions in the foundation of the dam have stabilized. The drainage devices are operating normally. However, observations should be continued at full volume.

  10. Study on high-level waste geological disposal metadata model

    International Nuclear Information System (INIS)

    Ding Xiaobin; Wang Changhong; Zhu Hehua; Li Xiaojun

    2008-01-01

    This paper expatiated the concept of metadata and its researches within china and abroad, then explain why start the study on the metadata model of high-level nuclear waste deep geological disposal project. As reference to GML, the author first set up DML under the framework of digital underground space engineering. Based on DML, a standardized metadata employed in high-level nuclear waste deep geological disposal project is presented. Then, a Metadata Model with the utilization of internet is put forward. With the standardized data and CSW services, this model may solve the problem in the data sharing and exchanging of different data form A metadata editor is build up in order to search and maintain metadata based on this model. (authors)

  11. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    Science.gov (United States)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion

  12. Using social media to facilitate knowledge transfer in complex engineering environments: a primer for educators

    Science.gov (United States)

    Murphy, Glen; Salomone, Sonia

    2013-03-01

    While highly cohesive groups are potentially advantageous they are also often correlated with the emergence of knowledge and information silos based around those same functional or occupational clusters. Consequently, an essential challenge for engineering organisations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. This paper acts as a primer for those seeking to gain an understanding of the design, functionality and utility of a suite of software tools generically termed social media technologies in the context of optimising the management of tacit engineering knowledge. Underpinned by knowledge management theory and using detailed case examples, this paper explores how social media technologies achieve such goals, allowing for the transfer of knowledge by tapping into the tacit and explicit knowledge of disparate groups in complex engineering environments.

  13. Utilizing an Artificial Outcrop to Scaffold Learning Between Laboratory and Field Experiences in a College-Level Introductory Geology Course

    Science.gov (United States)

    Wilson, Meredith

    Geologic field trips are among the most beneficial learning experiences for students as they engage the topic of geology, but they are also difficult environments to maximize learning. This action research study explored one facet of the problems associated with teaching geology in the field by attempting to improve the transition of undergraduate students from a traditional laboratory setting to an authentic field environment. Utilizing an artificial outcrop, called the GeoScene, during an introductory college-level non-majors geology course, the transition was studied. The GeoScene was utilized in this study as an intermediary between laboratory and authentic field based experiences, allowing students to apply traditional laboratory learning in an outdoor environment. The GeoScene represented a faux field environment; outside, more complex and tangible than a laboratory, but also simplified geologically and located safely within the confines of an educational setting. This exploratory study employed a mixed-methods action research design. The action research design allowed for systematic inquiry by the teacher/researcher into how the students learned. The mixed-methods approach garnered several types of qualitative and quantitative data to explore phenomena and support conclusions. Several types of data were collected and analyzed, including: visual recordings of the intervention, interviews, analytic memos, student reflections, field practical exams, and a pre/post knowledge and skills survey, to determine whether the intervention affected student comprehension and interpretation of geologic phenomena in an authentic field environment, and if so, how. Students enrolled in two different sections of the same laboratory course, sharing a common lecture, participated in laboratory exercises implementing experiential learning and constructivist pedagogies that focused on learning the basic geological skills necessary for work in a field environment. These laboratory

  14. Geologic studies in Alaska by the U.S. Geological Survey, 1992

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Till, Alison B.

    1993-01-01

    This collection of 19 papers continues the annual series of U.S. Geological Survey reports on the geology of Alaska. The contributions, which include full-length Articles and shorter Geologic Notes, cover a broad range of topics including dune formation, stratigraphy, paleontology, isotopic dating, mineral resources, and tectonics. Articles, grouped under four regional headings, span nearly the entire State from the North Slope to southwestern, south-central, and southeastern Alaska (fig. 1).In the section on northern Alaska, Galloway and Carter use new data on dune morphology and radiocarbon ages from the western Arctic Coastal Plain to develop a late Holocene chronology of multiple episodes of dune stabilization and reactivation for the region. Their study has important implications for climatic changes in northern Alaska during the past 4,000 years. In two papers, Dumoulin and her coauthors describe lithofacies and conodont faunas of Carboniferous strata in the western Brooks Range, discuss depositional environments, and propose possible correlations and source areas for some of the strata. Schenk and Bird propose a preliminary division of the Lower Cretaceous stratigraphic section in the central part of the North Slope into depositional sequences. Aleinikoff and others present new U-Pb data for zircons from metaigneous rocks from the central Brooks Range. Karl and Mull, reacting to a proposal regarding terrane nomenclature for northern Alaska that was published in last year's Alaskan Studies Bulletin, provide a historical perspective of the evolution of terminology for tectonic units in the Brooks Range and present their own recommendations.

  15. The geography, geology and mining history of Rum Jungle

    International Nuclear Information System (INIS)

    Lowson, R.T.

    1975-01-01

    The geology and geography of the Rum Jungle region are described. A description is given of the effect on the environment of mining operations such as ore processing, effluent disposal and the leaching of stockpiles and overburden heaps. (author)

  16. Interface management for the Mined Geologic Disposal System

    International Nuclear Information System (INIS)

    Ashlock, K.J.

    1998-03-01

    The purpose of this paper is to present the interface management process that is to be used for Mined Geologic Disposal System (MGDS) development. As part of the systems engineering and integration performed on the Yucca Mountain Project (YMP), interface management is critical in the development of the potential MGDS. The application of interface management on the YMP directly addresses integration between physical elements of the MGDS and the organizations responsible for their development

  17. Anthropogenic radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  18. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  19. A new classification of geological resources

    International Nuclear Information System (INIS)

    Mata Perello, Josep M; Mata Lleonart, Roger; Vintro Sanchez, Carla

    2011-01-01

    The traditional definition of the geological resource term excludes all those elements or processes of the physical environment that show a scientific, didactic, or cultural interest, but do not offer, in principle, an economic potential. The so called cultural geo-resources have traditionally not been included within a classification that puts them in the same hierarchical and semantic ranking than the rest of the resources, and there has been no attempt to define a classification of these resources under a more didactic and modern perspective. Hence, in order to catalogue all those geological elements that show a cultural, patrimonial, scientific, or didactic interest as a resource, this paper proposes a new classification in which geo-resources stand in the same hierarchical and semantic ranking than the rest of the resources traditionally catalogued as such.

  20. Engineering the development of optical fiber sensors for adverse environments

    International Nuclear Information System (INIS)

    Hastings, M.C.

    1994-01-01

    During the last decade, many optical fiber sensors have been developed for particular applications in harsh environments with limited success. Off-the-shelf optical fiber sensors and measurement systems are not available, partly because they have not been engineered to meet tough environmental requirements necessary for applications outside the laboratory. Moreover, no generalized computer-aided tools exist to help advance their development, design, and use. Computer-aided design tools currently being developed are described in this paper. Structural finite element analyses have been coupled with optoelastic analyses of both all-fiber interferometers and serial microbend sensors for distributed measurement of various physical quantities. The combined analyses have been parameterized and implemented on personal computers and work stations for use as design/development tools that can be used to determine the performance of different sensor configurations in various environments. Potentially, these computer-aided tools could be used for failure diagnosis and redesign of existing optical fiber sensors. Performances predicted by the computer simulations are verified with experimental data and numerical analyses from the literature. The long-term goal is to develop user-friendly software packages for both sensor manufacturers and end users

  1. Fracture analysis for engineering geological utilization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H I; Choi, P Y; Hong, S H; Chi, K H; Kim, J Y; Lee, S R; Lee, S G; Park, D W; Han, J G [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The problem of geological hazards (earthquakes) and water or thermal resources urges us to understand the regional tectonic setting or recent tectonics. The Uisong Subbasin is located in one of the seismicity zones in Korea. Because the reactivity of the Gaeum Fault System is an important problem focussing on these faults, we studied their whole extension and timing of faulting in terms of tectonics. Fault tectonic analysis is so effective as to easily reconstruct the tectonic sequence and each stress state at each site, eventually in a region. One can get insights for faulting timing in terms of the restored tectonic sequence, and discriminating the active faults or the faults active in the last (present) tectonics. Examining the filling materials in tension gashes, one can get raw knowledge regarding the thermal states at each site. For this study, we first analyzed the topographic textures (lineament, drainage and circular structures) on the relief map produced based on the topographic maps of 1:100,000 scale. Through investigations of susceptible area along the faults, their existence and movement modes were studied, and we can get information about movement history and whole extension of the faults belonging to the WNW-ESE trending Gaeum Fault System. In order to reconstruct the tectonic sequence, we measured fault slip data, tension gashes and dikes, from which fault populations were classified and stress (and thermal) states were determined. Seven compressional tectonic events and six extensional events were reconstructed. Because coaxial events partially coexisted, we bundled these events in one, finally we get seven tectonic events. Determining the types of minerals filling the tension gashes, we suggested the possibility of investigation of geothermal resources with less efforts. (author). 162 refs., 14 tabs., 51 figs.

  2. Visualized materials of information on HLW geological disposal for promotion of public understanding

    International Nuclear Information System (INIS)

    Shobu, Nobuhiro; Yoshikawa, Hideki; Kashiwazaki, Hiroshi

    2003-03-01

    Japan Nuclear Cycle Development Institute (JNC) has a few thousands of short term visitors to Geological Isolation Basic Research Facility of Tokai works in every year. From the viewpoint of promotion of the visitor's understanding and also smooth communication between researchers and visitors, the explanation of the technical information on geological disposal should be carried out in more easily understandable methods, as well as conventional tour to the engineering-scale test facility (ENTRY). The images of repository operation, output data of technical calculations regarding geological disposal were visualized. We can use them practically as one of the useful explanation tools to support visitor's understanding. The visualized materials are attached to this report with the DVD-R media, furthermore, background information of each visualized materials was documented. (author)

  3. Symposium on 'Geographical and geological influences on nutrition': Factors controlling the distribution of selenium in the environment and their impact on health and nutrition.

    Science.gov (United States)

    Johnson, Christopher C; Fordyce, Fiona M; Rayman, Margaret P

    2010-02-01

    Se is essential to human and animal health but can be toxic in excess. An interest in its geochemistry has developed alongside a greater understanding of its function in a number of health conditions. Geology exerts a strong control on the Se status of the surface environment; low-Se rock-types (0.05-0.09 mg Se/kg) make up the majority of rocks occurring at the Earth's surface, which in turn account for the generally low levels of Se in most soils. However, there are exceptions such as associations with sulfide mineralisation and in some types of sedimentary rocks (e.g. black shales) in which contents of Se can be much higher. Baseline geochemical data now enable a comparison to be made between environmental and human Se status, although a direct link is only likely to be seen if the population is dependent on the local environment for sustenance. This situation is demonstrated with an example from the work of the British Geological Survey in the Se-deficiency belt of China. The recent fall in the daily dietary Se intake in the UK is discussed in the context of human Se status and declining use of North American wheat in bread making. Generally, US wheat has ten times more Se than UK wheat, attributed to the fact that soils from the wheat-growing belt of America are more enriched in Se to a similar order of magnitude. In agriculture effective biofortification of crops with Se-rich fertilisers must be demonstrably safe to the environment and monitored appropriately and baseline geochemical data will enable this process to be done with confidence.

  4. Review of behavior of plutonium in soils and other geologic materials

    International Nuclear Information System (INIS)

    Nishita, H.

    1979-10-01

    Available information on the physical and chemical reactions of Pu in soils and other geologic materials is reviewed. The primary intent of this review was to bring together information that may be helpful in assessing the movement and biological availability of Pu in terrestrial environment. The review is divided into two general categories, e.g., studies of chemical reactions of Pu in aqueous solutions and studies of Pu reactions in the more complex systems of soils and other geologic materials. The latter category is further divided into studies of Pu in materials that were freshly contaminated in the laboratory and of Pu in materials that had been contaminated in natural environments and had resided there for varying numbers of years. After the discussion of physical and chemical reactions of Pu, several reported examples of the actual movement of Pu in terrestrial environments are given

  5. Displays for promotion of public understanding of geological repository concept and the spatial scale

    International Nuclear Information System (INIS)

    Shobu, Nobuhiro; Kashiwazaki, Hiroshi

    2003-05-01

    Japan Nuclear Cycle Development Institutes (JNC) has a few thousands of short term visitors to Geological Isolation Basic Research Facility of Tokai works in every year. From the viewpoint of promotion of the visitor's understanding and also smooth communication between researchers and visitors, the explanation of the technical information on geological disposal should be carried out in more easily understandable methods, as well as conventional tour to the engineering-scale test facility (ENTRY). This paper reports on the background information and the appearance of displays, which were installed at ENTRY, to promote public understanding of geological repository concept and the spatial scale. They have been practically used as one of the explanation tools to support visitor's understanding. (author)

  6. 3D Virtual Itinerary for Education Using Google Earth as a Tool for the Recovery of the Geological Heritage of Natural Areas: Application in the “Las Batuecas Valley” Nature Park (Salamanca, Spain

    Directory of Open Access Journals (Sweden)

    Antonio Miguel Martínez-Graña

    2014-11-01

    Full Text Available The objective of this study is to develop a methodology that enhances the value and position of the geological heritage of any natural area in the world using a 3D virtual itinerary. Field applications of this geological itinerary enable students to participate actively in teaching and learning theoretical concepts in the earth sciences and engineering. The educational resources, which include a virtual itinerary, a flight simulator, a field notebook with questionnaires, videos, and an augmented reality developed with Google Earth, provide a familiar and effective learning environment that can be implemented by students daily using new technologies (smartphones, tablets, and iPods and can leverage the power of computer games to achieve the objectives of a specific curriculum. The implementation of geological content in an interactive, educational game has been employed in compulsory levels of secondary education, high school, and college in Batuecas Valley. The geomatic applications are free as they can be accessed from existing computer labs.

  7. Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

  8. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Science.gov (United States)

    2010-01-01

    ... closure. (a) The geologic repository must include multiple barriers, consisting of both natural barriers... in combination with natural barriers, radiological exposures to the reasonably maximally exposed... engineered barrier system must be designed so that, working in combination with natural barriers, releases of...

  9. Setting waste isolation times into a geological context: some experience with natural analogues in public information

    International Nuclear Information System (INIS)

    Fritschi, Markus

    2008-01-01

    The concept of geological repositories: Permanent protection of humans and the environment by long-term passive isolation of the radioactive materials from the environment. Permanent means until radioactivity has decayed to insignificant levels (Many tens of thousands of years up to one million years into the future). Human experience with timescales: - Personal: Some 10 years, maybe up to 2 to (3) generations; - 'Rapid' (normally experienced as slow) and relevant changes with regard to personal well-being during this time span; - 100 years of European history; - Human History up to 5,000 years: but relevant to experience? So there is a complete mismatch of personal experience with the question addressed in the safety case. Understandable explanation of a geological repository: - Why is a geological repository necessary? - Why are geological repositories safe? - How can one be sure, what happens in 100,000 years? Radioactive waste must be disposed of in a way to ensure permanent protection of humans and the environment (Swiss Nuclear Energy Law). A Containment is thus necessary. Today's containment (storage) needs maintenance, but how about stability of society? How about the future development on the surface where we live? Passive safety is based on multiple barrier system: passive containment without the need of maintenance in a geological environment. Requirements on the host rock and the geosphere: Sound science and expertise is available for all the components. The need for translation: What pictures do you use to explain the functioning of a geological repository over long time scales? Pictures, Symbols, 'Analogues' must be adapted to the specific situation in a country. So whatever may happen on the surface over the next one million years: Time stands still in the underground

  10. Quaternary Geologic Map of the Lake of the Woods 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Sado, Edward V.; Fullerton, David S.; Goebel, Joseph E.; Ringrose, Susan M.; Edited and Integrated by Fullerton, David S.

    1995-01-01

    The Quaternary Geologic Map of the Lake of the Woods 4 deg x 6 deg Quadrangle, United States and Canada, was mapped as part of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420, NM-15). The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the Minnesota Geological Survey, the Manitoba Department of Energy and Mines, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and

  11. Neural Networks Technique, Lithofacies Classifications and Analysis and Depositional Environment Interpretation for 3-D Reservoir Geological Modeling and Exploration Studies (X Example)

    International Nuclear Information System (INIS)

    Iloghalu, E.; Chin, A.; Ebong, U.

    2003-01-01

    The value of borehole geology in Petroleum Exploration and Production cannot be over-emphasized. Reservoir characterization in mature fields and indeed mature basins requires high-resolution and high precision tools to determine the Stratigraphy and sedimentology of the areas of interest. The aim of reservoir studies is usually to determine the heterogeneity and the internal architecture of the reservoirs and the resulting model is simulated to derive the reservoir engineering properties, which impacts on quality decisions for optimal exploitation of the hydrocarbon in place. The point issues or challenges usually encountered in reservoir studies and management are baffles, barriers to flow, thief zones and other uncertainties that come about due to inadequate understanding of the sedimentology of the reservoirs in question. (Issues like preferential flow direction which significantly impact on secondary recovery and affect the costs). Recent advancements in borehole geology image and dips data helps to effectively itemize these uncertainties, and significantly reduce them to the barrest minimum. This work shows processed and interpreted image and dips data from a field, integrated with other petrophysical data and then incorporated into a field-wide study in the X-field. This was done using the most recent technological advancements in logging tools and in interpretation processes. The achievements include cost saving, higher precision results and reduced time or interpretation

  12. Association of engineering geologists 32nd annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the 32nd Annual Meeting of the Association of Engineering Geologists. Included are the following articles: Engineering geology---a tool in petroleum exploration ventures font, The soil headspace survey method as an indicator of soil and groundwater contamination by petroleum products, Determination of compressive strength of coal for pillar design hirt

  13. Submarine geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Hollister, C.D.; Corliss, B.H.; Anderson, D.R.

    1980-01-01

    Site suitability characteristics of submarine geological formations for the disposal of radioactive wastes include the distribution coefficient of the host medium, permeability, viscoelastic nature of the sediments, influence of organic material on remobilization, and effects of thermal stress. The submarine geological formation that appears to best satisfy these criteria is abyssal ''red'' clay. Regions in the ocean that have coarse-grained deposits, high or variable thermal conductivity, high organic carbon content, and sediment thickness of less than 50 m are not being considered at this time. The optimum geological environment should be tranquil and have environmental predictability over a minimum of 10 5 years. Site selection activities for the North Atlantic and North Pacific are reviewed and future activities which include international cooperation are discussed. A paleoenvironmental model for Cenozoic sedimentation in the central North Pacific is presented based on studies of a long core from the Mid-Plate Gyre MPG-1 area, and is an example of the type of study that will be carried out in other seabed study areas. The data show that the MPG-1 region has been an area of slow, continuous accumulation during the past 65 million years. (author)

  14. Migration of radionuclide through two-layered geologic media

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Takagi, Ikuji; Nakai, Kunihiro; Higashi, Kunio

    1984-01-01

    For the safety assessment of geologic disposal of high-level radioactive wastes, an analytical solution was obtained for one-dimensional migration of radionuclide through two-layered geologic media without dispersion. By applying it to geologic media composed of granite and soil layers, the effect of interlayer boundary on the discharge profile of radionuclides in decay chains into biological environment is examined. The time-space profiles of radionuclides in the vicinity of interlayer boundary are much complicated as shown in the results of calculation. Those profiles in case that the groundwater flows through granite followed by soil are quite different from those in case that the groundwater flows through soil followed by granite. Each of complicated dependence of profiles on time and space can be physically explained. The characteristic profiles in the vicinity of interlayer boundary have not been discussed previously. Recently, numerical computer codes has been developed to apply to much more realistic geologic situations. However, the numerical accuracies of the codes are necessary to be confirmed. This is achieved by comparing computational results with results from analytical solutions. The analytical solution presented will serve as a bench-mark for numerical accuracy. (author)

  15. Proposals of geological sites for L/ILW and HLW repositories. Geological background. Text volume

    International Nuclear Information System (INIS)

    2008-01-01

    On April 2008, the Swiss Federal Council approved the conceptual part of the Sectoral Plan for Deep Geological Repositories. The Plan sets out the details of the site selection procedure for geological repositories for low- and intermediate-level waste (L/ILW) and high-level waste (HLW). It specifies that selection of geological siting regions and sites for repositories in Switzerland will be conducted in three stages, the first one (the subject of this report) being the definition of geological siting regions within which the repository projects will be elaborated in more detail in the later stages of the Sectoral Plan. The geoscientific background is based on the one hand on an evaluation of the geological investigations previously carried out by Nagra on deep geological disposal of HLW and L/ILW in Switzerland (investigation programmes in the crystalline basement and Opalinus Clay in Northern Switzerland, investigations of L/ILW sites in the Alps, research in rock laboratories in crystalline rock and clay); on the other hand, new geoscientific studies have also been carried out in connection with the site selection process. Formulation of the siting proposals is conducted in five steps: A) In a first step, the waste inventory is allocated to the L/ILW and HLW repositories; B) The second step involves defining the barrier and safety concepts for the two repositories. With a view to evaluating the geological siting possibilities, quantitative and qualitative guidelines and requirements on the geology are derived on the basis of these concepts. These relate to the time period to be considered, the space requirements for the repository, the properties of the host rock (depth, thickness, lateral extent, hydraulic conductivity), long-term stability, reliability of geological findings and engineering suitability; C) In the third step, the large-scale geological-tectonic situation is assessed and large-scale areas that remain under consideration are defined. For the L

  16. Geology for a changing world 2010-2020-Implementing the U.S. Geological Survey science strategy

    Science.gov (United States)

    Gundersen, Linda C.S.; Belnap, Jayne; Goldhaber, Martin; Goldstein, Arthur; Haeussler, Peter J.; Ingebritsen, S.E.; Jones, John W.; Plumlee, Geoffrey S.; Thieler, E. Robert; Thompson, Robert S.; Back, Judith M.

    2011-01-01

    This report describes a science strategy for the geologic activities of the U.S. Geological Survey (USGS) for the years 2010-2020. It presents six goals with accompanying strategic actions and products that implement the science directions of USGS Circular 1309, 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017.' These six goals focus on providing the geologic underpinning needed to wisely use our natural resources, understand and mitigate hazards and environmental change, and understand the relationship between humans and the environment. The goals emphasize the critical role of the USGS in providing long-term research, monitoring, and assessments for the Nation and the world. Further, they describe measures that must be undertaken to ensure geologic expertise and knowledge for the future. The natural science issues facing today's world are complex and cut across many scientific disciplines. The Earth is a system in which atmosphere, oceans, land, and life are all connected. Rocks and soils contain the answers to important questions about the origin of energy and mineral resources, the evolution of life, climate change, natural hazards, ecosystem structures and functions, and the movements of nutrients and toxicants. The science of geology has the power to help us understand the processes that link the physical and biological world so that we can model and forecast changes in the system. Ensuring the success of this strategy will require integration of geological knowledge with the other natural sciences and extensive collaboration across USGS science centers and with partners in Federal, State, and local agencies, academia, industry, nongovernmental organizations and, most importantly, the American public. The first four goals of this report describe the scientific issues facing society in the next 10 years and the actions and products needed to respond to these issues. The final two goals focus on the expertise and

  17. Using EVT for Geological Anomaly Design and Its Application in Identifying Anomalies in Mining Areas

    Directory of Open Access Journals (Sweden)

    Feilong Qin

    2016-01-01

    Full Text Available A geological anomaly is the basis of mineral deposit prediction. Through the study of the knowledge and characteristics of geological anomalies, the category of extreme value theory (EVT to which a geological anomaly belongs can be determined. Associating the principle of the EVT and ensuring the methods of the shape parameter and scale parameter for the generalized Pareto distribution (GPD, the methods to select the threshold of the GPD can be studied. This paper designs a new algorithm called the EVT model of geological anomaly. These study data on Cu and Au originate from 26 exploration lines of the Jiguanzui Cu-Au mining area in Hubei, China. The proposed EVT model of the geological anomaly is applied to identify anomalies in the Jiguanzui Cu-Au mining area. The results show that the model can effectively identify the geological anomaly region of Cu and Au. The anomaly region of Cu and Au is consistent with the range of ore bodies of actual engineering exploration. Therefore, the EVT model of the geological anomaly can effectively identify anomalies, and it has a high indicating function with respect to ore prospecting.

  18. Siting regions for deep geological repositories. Why just here?; Standortgebiete fuer geologische Tiefenlager. Warum gerade hier?

    Energy Technology Data Exchange (ETDEWEB)

    Rieser, A

    2009-09-15

    This report helps to the popularization of the Nagra works accomplished for the management and disposal of the radioactive wastes in Switzerland. The programme for management and disposal of the radioactive wastes are extensively determined by regulations. Protection of mankind and environment is the primary objective. The basic storage process is considered as having been solved. The question addressed in the report is where the facility has to be built; the site selection procedure includes five steps: 1) according to their type the wastes have to be allocated to two different repositories: for low- and intermediate-level wastes (L/ILW), and for high-level and alpha-toxic wastes (HLW); 2) the safety concept for both repositories and the requirements on the geology have to be determined; 3) large suitable geological-tectonic zones must be found where repositories could be built; 4) in these geological zones a suitable host rock has to be identified; 5) the most important spatial geological conditions of the host rock (minimum depth with respect to surface erosion, maximum depth in terms of engineering requirements, lateral extent) have to be identified. Based on these criteria, three suitable siting regions for a HLW repository were found in the North of Switzerland. The preferred host rock is Opalinus clay because of its very low permeability; it is therefore an excellent barrier against nuclide transport. In the three proposed siting regions, Opalinus clay is present in sufficient volumes at a suitable depth. For a L/ILW repository six different possible siting regions were identified, five in Northern Switzerland and one in Central Switzerland. In the three siting regions found for a possible HLW repository, it would also be possible to built a combined repository for both HLW and L/ILW wastes.

  19. Metagenomes Reveal Global Distribution of Bacterial Steroid Catabolism in Natural, Engineered, and Host Environments

    Directory of Open Access Journals (Sweden)

    Johannes Holert

    2018-01-01

    Full Text Available Steroids are abundant growth substrates for bacteria in natural, engineered, and host-associated environments. This study analyzed the distribution of the aerobic 9,10-seco steroid degradation pathway in 346 publically available metagenomes from diverse environments. Our results show that steroid-degrading bacteria are globally distributed and prevalent in particular environments, such as wastewater treatment plants, soil, plant rhizospheres, and the marine environment, including marine sponges. Genomic signature-based sequence binning recovered 45 metagenome-assembled genomes containing a majority of 9,10-seco pathway genes. Only Actinobacteria and Proteobacteria were identified as steroid degraders, but we identified several alpha- and gammaproteobacterial lineages not previously known to degrade steroids. Actino- and proteobacterial steroid degraders coexisted in wastewater, while soil and rhizosphere samples contained mostly actinobacterial ones. Actinobacterial steroid degraders were found in deep ocean samples, while mostly alpha- and gammaproteobacterial ones were found in other marine samples, including sponges. Isolation of steroid-degrading bacteria from sponges confirmed their presence. Phylogenetic analysis of key steroid degradation proteins suggested their biochemical novelty in genomes from sponges and other environments. This study shows that the ecological significance as well as taxonomic and biochemical diversity of bacterial steroid degradation has so far been largely underestimated, especially in the marine environment.

  20. A New Concept for a Business Ethics Program and the Development of a Monitoring Method for the Engineering Ethics Environment of a Corporation

    Science.gov (United States)

    Okita, Yuji; Hayase, Kenichi; Oba, Kyoko; Fudano, Jun

    For most modern corporations, engineering is an essential element. While the public increasingly demands social responsibility in business activities, the importance of the interweaving relationship between business ethics and engineering ethics has been recognized. In this paper, firstly the change in the business environment is overviewed. Then, a new concept for designing and implementing a business ethics program, named the EAB (Ethics Across the Business) approach, is proposed. The EAB approach is highly adaptable for engineering-oriented corporations in their business ethics program activities because it derives from a process approach which has been much used by many companies to perform such activities as quality assurance and environment management. Finally, a newly developed method to monitor employee consciousness in terms of engineering ethics is introduced together with trial results.

  1. Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, S.

    1993-03-01

    The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO[sub 2] flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

  2. Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, S.

    1993-03-01

    The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO{sub 2} flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

  3. 40 CFR 91.115 - Certification procedure-determining engine power and engine families.

    Science.gov (United States)

    2010-07-01

    ... engine power and engine families. 91.115 Section 91.115 Protection of Environment ENVIRONMENTAL... engine power and engine families. (a) Engine power must be calculated using SAE J1228. This procedure has... engine families as specified by paragraph (c) of this section, comprised of engines expected to have...

  4. Waste isolation in geologic formations in the USA

    International Nuclear Information System (INIS)

    Zerby, C.D.; McClain, W.C.

    1976-01-01

    The ERDA program for the establishment of terminal storage facilities for commercial radioactive wastes in deep geologic formations was recently reorganized as the National Waste Terminal Storage (NWTS) program. General plans for implementing this expanded program call for geologic investigations and feasibility confirmation studies at multiple geographic locations, leading to pilot plant construction and operation with possible future conversion into a Federal Repository. The pilot plant operations will be experimental facilities having limited capacity to store actual waste in a readily retrievable configuration. The first two pilot plants are planned to start operations simultaneously in the mid-1980's. Geologic investigations are now in progress or planned in study areas of the interior basins of the Gulf Coast Salt Dome Province, in the Salina Salt basin and in the Paradox Basin in an effort to identify acceptable locations for these initial facilities. Subsequent pilot plants will be located in other formations. Preliminary geologic evaluations have been initiated in the Paleozoic shales and limestones, Triassic shale basins along the east coast, Mesozoic shales of the Gulf Coast and northern high plains and certain crystalline igneous rocks. Most of the required engineering testing of disposal in salt formations has been completed in previous programs. However, the establishment of pilot plants in the other rock types will require a sequence of in situ testing designed to develop the information necessary to both demonstrate the feasibility of waste disposal in that particular formation and provide the data for facility designs

  5. The role of geology in the evaluation of waste disposal sites

    International Nuclear Information System (INIS)

    Ogunsanwo, O.; Mands, E.

    1999-01-01

    The construction of waste disposal sites demonstrates the awareness of the need to protect the environment against pollution. The site are constructed on foundations of soils and rocks. Photo geological studies, geophysical investigations and geological field mapping are indispensable in the selection of suitable sites. Most of the construction materials (in the case of landfills) are of geologic origin and their suitability can only be ascertained after some geological assessments. Furthermore, the hydrogeological conditions within the adjoining terrains and the flow of leachates from and within the wastes must be monitored so as to prevent pollution (radiation, in the case of radioactive wastes, can be monitored with the aid of geochemistry). Several models/systems are available for the hydrogeological/geochemical evaluation of waste disposal sites. The selection of the site and the construction materials as well as the hydrogeological/ /geochemical studies are very critical as the performance of the disposal site depends solely on these aspects. These aspects are basically within the realms of geology. It is thus obvious that geology plays a leading role in the evaluation of waste disposal sites right from the site selection stage until the site is done with

  6. Development of Web-Based Learning Environment Model to Enhance Cognitive Skills for Undergraduate Students in the Field of Electrical Engineering

    Science.gov (United States)

    Lakonpol, Thongmee; Ruangsuwan, Chaiyot; Terdtoon, Pradit

    2015-01-01

    This research aimed to develop a web-based learning environment model for enhancing cognitive skills of undergraduate students in the field of electrical engineering. The research is divided into 4 phases: 1) investigating the current status and requirements of web-based learning environment models. 2) developing a web-based learning environment…

  7. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  8. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 & 2

    Science.gov (United States)

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  9. Backfill barriers: the use of engineered barriers based on geologic materials to assure isolation of radioactive wastes in a repository

    International Nuclear Information System (INIS)

    Apps, J.A.; Cook, N.G.W.

    1981-06-01

    A preliminary assessment is made to show that canisters fabricated of nickel-iron alloys, and surrounded by a suitable backfill, may produce an engineered barrier where the canister material is thermodynamically stable with respect to its environment. As similar conditions exist in nature, the performance of such systems as barriers to isolate radionuclides can be predicted over very long periods, of the order of 10 6 years

  10. High-Quality Learning Environments for Engineering Design: Using Tablet PCs and Guidelines from Research on How People Learn

    OpenAIRE

    Enrique Palou; Lourdes Gazca; Juan Antonio Díaz García; José Andrés Rojas Lobato; Luis Geraldo Guerrero Ojeda; José Francisco Tamborero Arnal; María Teresa Jiménez Munguía; Aurelio López-Malo; Juan Manuel Garibay

    2012-01-01

    A team of several faculty members and graduate students at Universidad de las Amricas Puebla is improving engineering design teaching and learning by creating richer learning environments that promote an interactive classroom while integrating formative assessment into classroom practices by means of Tablet PCs and associated technologies. Learning environments that are knowledge-, learner-, community-, and assessment-centered as highlighted by the How People Learn framework, have been devel...

  11. Geological evolution of clay sediments: the petroleum exploration vision

    International Nuclear Information System (INIS)

    Schneider, F.

    2004-01-01

    The radioactive waste isolation capacity assessment for a clay sediment host rock is link: (1) to the understanding of their present state properties and 3-D repartition (from basin evolution, including sedimentary and diagenetic process); and (2) to the prediction of their future evolution during the next million years. For petroleum exploration, basin modelling aims at reconstructing the accumulation of hydrocarbons at basin scale, and at geological timescale, taking into account the effects of kinematics displacements, sedimentation, erosion, compaction, temperatures history, overpressures and fluids flows (water and hydrocarbons). Furthermore, explorationists wish to address overpressure reconstruction in order to estimate the risks of drilling. Clay sediments are of interest for petroleum exploration because source rocks and seal are generally composed of them. Nevertheless, in spite of their occurrence in nature their evolution at geological timescale is not well understood. And, most of the knowledge has been achieved by those working in the realms of soils mechanics and civil engineering until the present geological investigations for long term radioactive waste repositories. Application of this knowledge to clay sediment is considered to be valid within the first hundreds of meters at the top of the sedimentary pile, according to a repository depth. This paper is dedicated to the sedimentary rocks behaviour at geological timescale. This behaviour is characterised by: (1) the deposition of the sediment; (2) the loading path at geological timescale; (3) the constitutive law which includes the consolidation process and the rupture criteria; and (4) the parameters evolution related to consolidation. (author)

  12. The Role of Geologic Mapping in NASA PDSI Planning

    Science.gov (United States)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop

  13. Preserving the Near-Earth Space Environment with Green Engineering and Operations

    Science.gov (United States)

    Johnson, Nicholas L.

    2009-01-01

    Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.

  14. USB environment measurements based on full-scale static engine ground tests

    Science.gov (United States)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.

  15. The Use of Engineering Design Concept for Computer Programming Course: A Model of Blended Learning Environment

    Science.gov (United States)

    Tritrakan, Kasame; Kidrakarn, Pachoen; Asanok, Manit

    2016-01-01

    The aim of this research is to develop a learning model which blends factors from learning environment and engineering design concept for learning in computer programming course. The usage of the model was also analyzed. This study presents the design, implementation, and evaluation of the model. The research methodology is divided into three…

  16. Geohydrologic-engineering geology evaluation of the Selma Group in western Alabama and northeast Mississippi for possible radioactive waste disposal

    International Nuclear Information System (INIS)

    Gonzales, S.

    1975-06-01

    The following topics are discussed: regional stratigraphy, lithologic characteristic-chalk sequences, structural geology settting, earthquakes and historical seismicity, regional geomorphology, recovery of geological resources, and groundwater hydrology

  17. Implementing quality/productivity improvement initiatives in an engineering environment

    Science.gov (United States)

    Ruda, R. R.

    1985-01-01

    Quality/Productivity Improvement (QPI) initiatives in the engineering environment at McDonnell Douglas-Houston include several different, distinct activities, each having its own application, yet all targeted toward one common goal - making continuous improvement a way of life. The chief executive and the next two levels of management demonstrate their commitment to QPI with hands-on involvement in several activities. Each is a member of a QPI Council which consists of six panels - Participative Management, Communications, Training, Performance/Productivity, Human Resources Management and Strategic Management. In addition, each manager conducts Workplace Visits and Bosstalks, to enhance communications with employees and to provide a forum for the identification of problems - both real and perceived. Quality Circles and Project Teams are well established within McConnel Douglas as useful and desirable employee involvement teams. The continued growth of voluntary membership in the circles program is strong evidence of the employee interest and management support that have developed within the organization.

  18. Quantitative geological modeling based on probabilistic integration of geological and geophysical data

    DEFF Research Database (Denmark)

    Gulbrandsen, Mats Lundh

    In order to obtain an adequate geological model of any kind, proper integration of geophysical data, borehole logs and geological expert knowledge is important. Geophysical data provide indirect information about geology, borehole logs provide sparse point wise direct information about geology...... entitled Smart Interpretation is developed. This semi-automatic method learns the relation between a set of data attributes extracted from deterministically inverted airborne electromagnetic data and a set of interpretations of a geological layer that is manually picked by a geological expert...

  19. Radioactive waste and its impact on the environment; Les dechets nucleaires: quel impact sur l'environnement?

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, B. [Institut de Radioprotection et de Surete Nucleaire en Detachement a Cogema, Dir. de la Recherche et du Developpement, 78 - Velizy (France)

    2002-07-01

    What impact will radioactive waste have on the environment and mankind ultimately? If category B waste and all or some of category C waste is disposed of in a deep geological facility, after an interim storage period which presents its own risks, scientists can now predict that its worst case impact will be minimal and localized. While they cannot strictly demonstrate the safety of disposal over the time scales in question, they can nevertheless vouch for sound, well-engineered design. They can furnish a whole host of convergent evidence to demonstrate that they really have thought of all the events that could affect radioactive packages disposed of in a given environment, separated from the biosphere by barriers with well-defined properties. (author)

  20. Geologic and operational summary, COST No. 1 well, Georges Bank area, North Atlantic OCS

    Science.gov (United States)

    Amato, Roger V.; Bebout, John W.

    1980-01-01

    The first Continental Offshore Stratigraphic Test (COST) well on the U.S. North Atlantic Outer Continental Shelf (OCS) was drilled by Ocean Production Company between April 6 and July 26, 1976, and designated the COST No. G-l. Geological and engineering data obtained from this deep well in the Georges Bank Basin were used by the 31 participating companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for Lease Sale 42 held on December 18, 1979.