WorldWideScience

Sample records for entangled network strands

  1. Entangled network and quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, Nasser, E-mail: Nmetwally@gmail.com [Math. Dept., Faculty of Science, South Valley University, Aswan (Egypt); Math. Dept., College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2011-11-21

    A theoretical scheme is introduced to generate entangled network via Dzyaloshinskii–Moriya (DM) interaction. The dynamics of entanglement between different nodes, which is generated by direct or indirect interaction, is investigated. It is shown that, the direction of (DM) interaction and the locations of the nodes have a sensational effect on the degree of entanglement. The minimum entanglement generated between all the nodes is quantified. The upper and lower bounds of the entanglement depend on the direction of DM interaction, and the repetition of the behavior depends on the strength of DM. The generated entangled nodes are used as quantum channel to perform quantum teleportation, where it is shown that the fidelity of teleporting unknown information between the network members depends on the locations of the members.

  2. Sea Turtle Stranding Network Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Turtle Stranding and Salvage Network (STSSN) was formally established in 1980 to collect information on and document the stranding of marine turtles along...

  3. Entanglement distribution in quantum networks

    International Nuclear Information System (INIS)

    Perseguers, Sebastien

    2010-01-01

    This Thesis contributes to the theory of entanglement distribution in quantum networks, analyzing the generation of long-distance entanglement in particular. We consider that neighboring stations share one partially entangled pair of qubits, which emphasizes the difficulty of creating remote entanglement in realistic settings. The task is then to design local quantum operations at the stations, such that the entanglement present in the links of the whole network gets concentrated between few parties only, regardless of their spatial arrangement. First, we study quantum networks with a two-dimensional lattice structure, where quantum connections between the stations (nodes) are described by non-maximally entangled pure states (links). We show that the generation of a perfectly entangled pair of qubits over an arbitrarily long distance is possible if the initial entanglement of the links is larger than a threshold. This critical value highly depends on the geometry of the lattice, in particular on the connectivity of the nodes, and is related to a classical percolation problem. We then develop a genuine quantum strategy based on multipartite entanglement, improving both the threshold and the success probability of the generation of long-distance entanglement. Second, we consider a mixed-state definition of the connections of the quantum networks. This formalism is well-adapted for a more realistic description of systems in which noise (random errors) inevitably occurs. New techniques are required to create remote entanglement in this setting, and we show how to locally extract and globally process some error syndromes in order to create useful long-distance quantum correlations. Finally, we turn to networks that have a complex topology, which is the case for most real-world communication networks such as the Internet for instance. Besides many other characteristics, these systems have in common the small-world feature, stating that any two nodes are separated by a

  4. Entanglement distribution in quantum networks

    Energy Technology Data Exchange (ETDEWEB)

    Perseguers, Sebastien

    2010-04-15

    This Thesis contributes to the theory of entanglement distribution in quantum networks, analyzing the generation of long-distance entanglement in particular. We consider that neighboring stations share one partially entangled pair of qubits, which emphasizes the difficulty of creating remote entanglement in realistic settings. The task is then to design local quantum operations at the stations, such that the entanglement present in the links of the whole network gets concentrated between few parties only, regardless of their spatial arrangement. First, we study quantum networks with a two-dimensional lattice structure, where quantum connections between the stations (nodes) are described by non-maximally entangled pure states (links). We show that the generation of a perfectly entangled pair of qubits over an arbitrarily long distance is possible if the initial entanglement of the links is larger than a threshold. This critical value highly depends on the geometry of the lattice, in particular on the connectivity of the nodes, and is related to a classical percolation problem. We then develop a genuine quantum strategy based on multipartite entanglement, improving both the threshold and the success probability of the generation of long-distance entanglement. Second, we consider a mixed-state definition of the connections of the quantum networks. This formalism is well-adapted for a more realistic description of systems in which noise (random errors) inevitably occurs. New techniques are required to create remote entanglement in this setting, and we show how to locally extract and globally process some error syndromes in order to create useful long-distance quantum correlations. Finally, we turn to networks that have a complex topology, which is the case for most real-world communication networks such as the Internet for instance. Besides many other characteristics, these systems have in common the small-world feature, stating that any two nodes are separated by a

  5. Entanglement effects in model polymer networks

    Science.gov (United States)

    Everaers, R.; Kremer, K.

    The influence of topological constraints on the local dynamics in cross-linked polymer melts and their contribution to the elastic properties of rubber elastic systems are a long standing problem in statistical mechanics. Polymer networks with diamond lattice connectivity (Everaers and Kremer 1995, Everaers and Kremer 1996a) are idealized model systems which isolate the effect of topology conservation from other sources of quenched disorder. We study their behavior in molecular dynamics simulations under elongational strain. In our analysis we compare the measured, purely entropic shear moduli G to the predictions of statistical mechanical models of rubber elasticity, making extensive use of the microscopic structural and topological information available in computer simulations. We find (Everaers and Kremer 1995) that the classical models of rubber elasticity underestimate the true change in entropy in a deformed network significantly, because they neglect the tension along the contour of the strands which cannot relax due to entanglements (Everaers and Kremer (in preparation)). This contribution and the fluctuations in strained systems seem to be well described by the constrained mode model (Everaers 1998) which allows to treat the crossover from classical rubber elasticity to the tube model for polymer networks with increasing strand length within one transparant formalism. While this is important for the description of the effects we try to do a first quantitative step towards their explanation by topological considerations. We show (Everaers and Kremer 1996a) that for the comparatively short strand lengths of our diamond networks the topology contribution to the shear modulus is proportional to the density of entangled mesh pairs with non-zero Gauss linking number. Moreover, the prefactor can be estimated consistently within a rather simple model developed by Vologodskii et al. and by Graessley and Pearson, which is based on the definition of an entropic

  6. Entanglement-Gradient Routing for Quantum Networks.

    Science.gov (United States)

    Gyongyosi, Laszlo; Imre, Sandor

    2017-10-27

    We define the entanglement-gradient routing scheme for quantum repeater networks. The routing framework fuses the fundamentals of swarm intelligence and quantum Shannon theory. Swarm intelligence provides nature-inspired solutions for problem solving. Motivated by models of social insect behavior, the routing is performed using parallel threads to determine the shortest path via the entanglement gradient coefficient, which describes the feasibility of the entangled links and paths of the network. The routing metrics are derived from the characteristics of entanglement transmission and relevant measures of entanglement distribution in quantum networks. The method allows a moderate complexity decentralized routing in quantum repeater networks. The results can be applied in experimental quantum networking, future quantum Internet, and long-distance quantum communications.

  7. Quantum Entanglement in Neural Network States

    Directory of Open Access Journals (Sweden)

    Dong-Ling Deng

    2017-05-01

    Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our

  8. Quantum-entanglement storage and extraction in quantum network node

    Science.gov (United States)

    Shan, Zhuoyu; Zhang, Yong

    Quantum computing and quantum communication have become the most popular research topic. Nitrogen-vacancy (NV) centers in diamond have been shown the great advantage of implementing quantum information processing. The generation of entanglement between NV centers represents a fundamental prerequisite for all quantum information technologies. In this paper, we propose a scheme to realize the high-fidelity storage and extraction of quantum entanglement information based on the NV centers at room temperature. We store the entangled information of a pair of entangled photons in the Bell state into the nuclear spins of two NV centers, which can make these two NV centers entangled. And then we illuminate how to extract the entangled information from NV centers to prepare on-demand entangled states for optical quantum information processing. The strategy of engineering entanglement demonstrated here maybe pave the way towards a NV center-based quantum network.

  9. Communication via an entangled coherent quantum network

    Energy Technology Data Exchange (ETDEWEB)

    El Allati, A; Hassouni, Y [Faculte des Sciences, Departement de Physique, Laboratoire de Physique Theorique URAC 13, Universite Mohammed V Agdal Rabat, Avenue Ibn Battouta, B.P. 1014, Rabat (Morocco); Metwally, N, E-mail: Nmetwally@gmail.com [Mathematics Department, College of Science, University of Bahrain, PO Box 32038 (Bahrain)

    2011-06-01

    A quantum network (QN) is constructed via maximum entangled coherent states. The possibility of using this network to achieve quantum communication between multi-participants is investigated. We showed that the probability of the successful teleportation of an unknown state depends on the size of the used network. As the number of participants increases, the success probability does not depend on the intensity of the field. Implementing a quantum teleportation protocol via a noisy QN is discussed. The unknown state can be teleported perfectly with small values of the field intensity and larger values of the noise strength. The success probability of this suggested protocol increases abruptly for larger values of the noise strength and gradually for small values. For small-size QNs, the fidelity of the teleported state decreases smoothly, whereas it decreases abruptly for larger-sized networks.

  10. Endocrine responses to diverse stressors of capture, entanglement and stranding in leatherback turtles (Dermochelys coriacea)

    Science.gov (United States)

    Hunt, Kathleen E.; Innis, Charles J.; Merigo, Constance; Rolland, Rosalind M.

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) are exposed to many anthropogenic stressors, yet almost no data on stress physiology exist for this species. As a first step toward understanding the physiological responses of leatherback turtles to stress, and with the particular goal of assessment of the effect of capture, we quantified corticosterone (an adrenal stress hormone) and thyroxine (a regulator of metabolic rate, often inhibited by chronic stress) in 17 healthy leatherback turtles captured at sea for scientific study, with comparisons to 15 ‘distressed’ leatherbacks that were found entangled in fishing gear (n = 8), confined in a weir net (n = 1) or stranded on shore (n = 6). Distressed leatherbacks had significantly elevated corticosterone (mean ± SEM 10.05 ± 1.72 ng/ml, median 8.38 ng/ml) and free thyroxine (mean 0.86 ± 0.37 pg/ml, median 0.08 pg/ml) compared with healthy leatherbacks sampled immediately before release (after ∼40 min of handling; corticosterone, mean 4.97 ± 0.62 ng/ml, median 5.21 ng/ml; and free thyroxine, mean 0.05 ± 0.05 pg/ml, median 0.00 pg/ml). The elevated thyroxine in distressed turtles compared with healthy turtles might indicate an energetic burden of entanglement and stranding. Six of the healthy leatherbacks were sampled twice, at ∼25 and ∼50 min after the time of first disturbance. In all six individuals, corticosterone was higher in the later sample (earlier sample, mean 2.74 ± 0.88 ng/ml, median 2.61 ng/ml; later sample, mean 5.43 ± 1.29 ng/ml, median 5.38 ng/ml), indicating that capture and handling elicit an adrenal stress response in this species. However, the corticosterone elevation after capture appeared relatively mild compared with the corticosterone concentrations of the entangled and stranded turtles. The findings suggest that capture and handling using the protocols described (e.g. capture duration <1 h) might represent only a mild stressor, whereas entanglement and stranding might represent

  11. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    Science.gov (United States)

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Distributed wireless quantum communication networks with partially entangled pairs

    International Nuclear Information System (INIS)

    Yu Xu-Tao; Zhang Zai-Chen; Xu Jin

    2014-01-01

    Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible. (general)

  13. Quantum communication network utilizing quadripartite entangled states of optical field

    International Nuclear Information System (INIS)

    Shen Heng; Su Xiaolong; Jia Xiaojun; Xie Changde

    2009-01-01

    We propose two types of quantum dense coding communication networks with optical continuous variables, in which a quadripartite entangled state of the optical field with totally three-party correlations of quadrature amplitudes is utilized. In the networks, the exchange of information between any two participants can be manipulated by one or two of the remaining participants. The channel capacities for a variety of communication protocols are numerically calculated. Due to the fact that the quadripartite entangled states applied in the communication systems have been successfully prepared already in the laboratory, the proposed schemes are experimentally accessible at present.

  14. Entanglement entropy from tensor network states for stabilizer codes

    Science.gov (United States)

    He, Huan; Zheng, Yunqin; Bernevig, B. Andrei; Regnault, Nicolas

    2018-03-01

    In this paper, we present the construction of tensor network states (TNS) for some of the degenerate ground states of three-dimensional (3D) stabilizer codes. We then use the TNS formalism to obtain the entanglement spectrum and entropy of these ground states for some special cuts. In particular, we work out examples of the 3D toric code, the X-cube model, and the Haah code. The latter two models belong to the category of "fracton" models proposed recently, while the first one belongs to the conventional topological phases. We mention the cases for which the entanglement entropy and spectrum can be calculated exactly: For these, the constructed TNS is a singular value decomposition (SVD) of the ground states with respect to particular entanglement cuts. Apart from the area law, the entanglement entropies also have constant and linear corrections for the fracton models, while the entanglement entropies for the toric code models only have constant corrections. For the cuts we consider, the entanglement spectra of these three models are completely flat. We also conjecture that the negative linear correction to the area law is a signature of extensive ground-state degeneracy. Moreover, the transfer matrices of these TNSs can be constructed. We show that the transfer matrices are projectors whose eigenvalues are either 1 or 0. The number of nonzero eigenvalues is tightly related to the ground-state degeneracy.

  15. Robust quantum network architectures and topologies for entanglement distribution

    Science.gov (United States)

    Das, Siddhartha; Khatri, Sumeet; Dowling, Jonathan P.

    2018-01-01

    Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.

  16. Efficient multiuser quantum cryptography network based on entanglement.

    Science.gov (United States)

    Xue, Peng; Wang, Kunkun; Wang, Xiaoping

    2017-04-04

    We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.

  17. Continuous variable multipartite entanglement and optical implementations of quantum communication networks

    International Nuclear Information System (INIS)

    Lian Yimin; Xie Changde; Peng Kunchi

    2007-01-01

    A variety of optical quantum information networks based on the multipartite entanglement of amplitude and phase quadratures of an electromagnetic field have been proposed and experimentally realized in recent years. The multipartite entanglement of optical continuous variables provides flexible and reliable quantum resources for developing unconditional quantum information networks. In this paper, we review the generation schemes of the multipartite entangled states of optical continuous quantum variables and some applications in the quantum communication networks with emphasis on the experimental implementations

  18. Prior entanglement between senders enables perfect quantum network coding with modification

    International Nuclear Information System (INIS)

    Hayashi, Masahito

    2007-01-01

    We find a protocol transmitting two quantum states crossly in the butterfly network only with prior entanglement between two senders. This protocol requires only one qubit transmission or two classical bits (cbits) transmission in each channel in the butterfly network. It is also proved that it is impossible without prior entanglement. More precisely, an upper bound of average fidelity is given in the butterfly network when prior entanglement is not allowed. The presented result concerns only the butterfly network, but our techniques can be applied to a more general graph

  19. Generalizing entanglement

    Science.gov (United States)

    Jia, Ding

    2017-12-01

    The expected indefinite causal structure in quantum gravity poses a challenge to the notion of entanglement: If two parties are in an indefinite causal relation of being causally connected and not, can they still be entangled? If so, how does one measure the amount of entanglement? We propose to generalize the notions of entanglement and entanglement measure to address these questions. Importantly, the generalization opens the path to study quantum entanglement of states, channels, networks, and processes with definite or indefinite causal structure in a unified fashion, e.g., we show that the entanglement distillation capacity of a state, the quantum communication capacity of a channel, and the entanglement generation capacity of a network or a process are different manifestations of one and the same entanglement measure.

  20. Topological network entanglement as order parameter for the emergence of geometry

    International Nuclear Information System (INIS)

    Diamantini, M Cristina; Trugenberger, Carlo A

    2017-01-01

    We show that, in discrete models of quantum gravity, emergent geometric space can be viewed as the entanglement pattern in a mixed quantum state of the ‘universe’, characterized by a universal topological network entanglement. As a concrete example we analyze the recently proposed model in which geometry emerges due to the condensation of 4-cycles in random regular bipartite graphs, driven by the combinatorial Ollivier–Ricci curvature. Using this model we show that the emergence of geometric order decreases the entanglement entropy of random configurations. The lowest geometric entanglement entropy is realized in four dimensions. (paper)

  1. Entanglement distribution in star network based on spin chain in diamond

    Science.gov (United States)

    Zhu, Yuan-Ming; Ma, Lei

    2018-06-01

    After star network of spins was proposed, generating entanglement directly through spin interactions between distant parties became possible. We propose an architecture which involves coupled spin chains based on nitrogen-vacancy centers and nitrogen defect spins to expand star network. The numerical analysis shows that the maximally achievable entanglement Em exponentially decays with the length of spin chains M and spin noise. The entanglement capability of this configuration under the effect of disorder and spin loss is also studied. Moreover, it is shown that with this kind of architecture, star network of spins is feasible in measurement of magnetic-field gradient.

  2. Entanglement swapping with independent sources over an optical-fiber network

    Science.gov (United States)

    Sun, Qi-Chao; Mao, Ya-Li; Jiang, Yang-Fan; Zhao, Qi; Chen, Si-Jing; Zhang, Wei; Zhang, Wei-Jun; Jiang, Xiao; Chen, Teng-Yun; You, Li-Xing; Li, Li; Huang, Yi-Dong; Chen, Xian-Feng; Wang, Zhen; Ma, Xiongfeng; Zhang, Qiang; Pan, Jian-Wei

    2017-03-01

    Establishing entanglement between two remote systems by the method of entanglement swapping is an essential step for a long-distance quantum network. Here we report a field-test entanglement swapping experiment with two independent telecommunication band entangled photon-pair sources over an optical fiber network in Hefei. The two sources are located at two nodes that are 12.5 km apart and the Bell-state measurement is performed at a third location which is connected to the two source nodes with 14.7-km and 10.6-km optical fibers, respectively. The observed average visibility is 79.9 ±4.8 % , which is sufficient for the violation of Bell inequalities. Furthermore, with the swapped entanglement, we demonstrate a source-independent quantum key distribution, which is also immune to any detection attacks at the measurement site.

  3. Response to defects in multipartite and bipartite entanglement of isotropic quantum spin networks

    Science.gov (United States)

    Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal

    2018-05-01

    Quantum networks are an integral component in performing efficient computation and communication tasks that are not accessible using classical systems. A key aspect in designing an effective and scalable quantum network is generating entanglement between its nodes, which is robust against defects in the network. We consider an isotropic quantum network of spin-1/2 particles with a finite fraction of defects, where the corresponding wave function of the network is rotationally invariant under the action of local unitaries. By using quantum information-theoretic concepts like strong subadditivity of von Neumann entropy and approximate quantum telecloning, we prove analytically that in the presence of defects, caused by loss of a finite fraction of spins, the network, composed of a fixed numbers of lattice sites, sustains genuine multisite entanglement and at the same time may exhibit finite moderate-range bipartite entanglement, in contrast to the network with no defects.

  4. Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks

    Science.gov (United States)

    Armstrong, Seiji; Wang, Meng; Teh, Run Yan; Gong, Qihuang; He, Qiongyi; Janousek, Jiri; Bachor, Hans-Albert; Reid, Margaret D.; Lam, Ping Koy

    2015-02-01

    Einstein, Podolsky and Rosen (EPR) pointed out in their famous paradox that two quantum-entangled particles can have perfectly correlated positions and momenta. Such correlations give evidence for the nonlocality of quantum mechanics and form the basis for quantum cryptography and teleportation. EPR steering is the nonlocality associated with the EPR paradox and has traditionally been investigated between only two parties. Using optical networks and efficient detection, we present experimental observations of multiparty EPR steering and of the genuine entanglement of three intense optical beams. We entangle the quadrature phase amplitudes of distinct fields, in analogy to the position-momentum entanglement of the original paradox. Our experiments complement tests of quantum mechanics that have entangled small systems or have demonstrated tripartite inseparability. Our methods establish principles for the development of multiparty quantum communication protocols with asymmetric observers, and can be extended to qubits, whether photonic, atomic, superconducting, or otherwise.

  5. Nonlinear microrheology and molecular imaging to map microscale deformations of entangled DNA networks

    Science.gov (United States)

    Wu, Tsai-Chin; Anderson, Rae

    We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.

  6. Quantum communication for satellite-to-ground networks with partially entangled states

    International Nuclear Information System (INIS)

    Chen Na; Quan Dong-Xiao; Pei Chang-Xing; Yang-Hong

    2015-01-01

    To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. (paper)

  7. Entanglement entropy in the quantum networks of a coupled quantum harmonic oscillator

    International Nuclear Information System (INIS)

    Jafarizadeh, M A; Nami, S; Eghbalifam, F

    2015-01-01

    We investigate the entanglement of the ground state in the quantum networks that their nodes are considered as quantum harmonic oscillators. To this aim, the Schmidt numbers and entanglement entropy between two arbitrary partitions of a network are calculated.In partitioning an arbitrary graph into two parts there are some nodes in each part which are not connected to the nodes of the other part. So, these nodes of each part can be in distinct subsets. Therefore, the graph is separated into four subsets. The nodes of the first and last subsets are those which are not connected to the nodes of the other part. In theorem 1, by using the generalized Schur complement method in these four subsets, we prove that all the graphs whose connections between the two alternative subsets are complete, have the same entropy. A large number of graphs satisfy this theorem. Then the entanglement entropy in the limit of the large coupling and large size of the system is investigated in these graphs. Also, the asymptotic behaviors of the Schmidt numbers and entanglement entropy in the limit of infinite coupling are shown.One important quantity about partitioning is the conductance of the graph. The conductance of the graph is considered in various graphs. In these graphs we compare the conductance of the graph and the entanglement entropy. (paper)

  8. Rheological Predictions of Network Systems Swollen with Entangled Solvent

    Science.gov (United States)

    2014-04-01

    represent binary entanglements and the crosses represent cross-links. Both of which are fixed in space for Green– Kubo calculations or moved affinely for...Two types of calculations can be performed, equilibrium (or Green– Kubo ) calculations in which the rate of deformation tensor21,22 is set to zero and the...autocorrelation function of stress at equilibrium is followed; or flow calculations in which a specific flow field is applied and the stress as a

  9. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    International Nuclear Information System (INIS)

    Metwally, N

    2014-01-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol. (paper)

  10. A versatile source of polarization entangled photons for quantum network applications

    International Nuclear Information System (INIS)

    Kaiser, Florian; Issautier, Amandine; Ngah, Lutfi A; Alibart, Olivier; Martin, Anthony; Tanzilli, Sébastien

    2013-01-01

    We report a versatile and practical approach for the generation of high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photons at a telecom wavelength associated with an advanced energy-time to polarization transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulation of single-photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 80 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters. (letter)

  11. A fully automated entanglement-based quantum cryptography system for telecom fiber networks

    International Nuclear Information System (INIS)

    Treiber, Alexander; Ferrini, Daniele; Huebel, Hannes; Zeilinger, Anton; Poppe, Andreas; Loruenser, Thomas; Querasser, Edwin; Matyus, Thomas; Hentschel, Michael

    2009-01-01

    We present in this paper a quantum key distribution (QKD) system based on polarization entanglement for use in telecom fibers. A QKD exchange up to 50 km was demonstrated in the laboratory with a secure key rate of 550 bits s -1 . The system is compact and portable with a fully automated start-up, and stabilization modules for polarization, synchronization and photon coupling allow hands-off operation. Stable and reliable key exchange in a deployed optical fiber of 16 km length was demonstrated. In this fiber network, we achieved over 2 weeks an automatic key generation with an average key rate of 2000 bits s -1 without manual intervention. During this period, the system had an average entanglement visibility of 93%, highlighting the technical level and stability achieved for entanglement-based quantum cryptography.

  12. Entanglement branching operator

    Science.gov (United States)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  13. Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks.

    Science.gov (United States)

    Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai

    2017-09-29

    The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51  μs.

  14. Remote entanglement distribution

    International Nuclear Information System (INIS)

    Sanders, B.C.; Gour, G.; Meyer, D.A.

    2005-01-01

    Full text: Shared bipartite entanglement is a crucial shared resource for many quantum information tasks such as teleportation, entanglement swapping, and remote state preparation. In general different nodes of a quantum network share an entanglement resource, such as ebits, that are consumed during the task. In practice, generating entangled states is expensive, but here we establish a protocol by which a quantum network requires only a single supplier of entanglement to all nodes who, by judicious measurements and classical communication, provides the nodes with a unique pair wise entangled state independent of the measurement outcome. Furthermore, we extend this result to a chain of suppliers and nodes, which enables an operational interpretation of concurrence. In the special case that the supplier shares bipartite states with two nodes, and such states are pure and maximally entangled, our protocol corresponds to entanglement swapping. However, in the practical case that initial shared entanglement between suppliers and nodes involves partially entangled or mixed states, we show that general local operations and classical communication by all parties (suppliers and nodes) yields distributions of entangled states between nodes. In general a distribution of bipartite entangled states between any two nodes will include states that do not have the same entanglement; thus we name this general process remote entanglement distribution. In our terminology entanglement swapping with partially entangled states is a particular class of remote entanglement distribution protocols. Here we identify which distributions of states that can or cannot be created by remote entanglement distribution. In particular we prove a powerful theorem that establishes an upper bound on the entanglement of formation that can be produced between two qubit nodes. We extend this result to the case of a linear chain of parties that play the roles of suppliers and nodes; this extension provides

  15. A practical introduction to tensor networks: Matrix product states and projected entangled pair states

    Energy Technology Data Exchange (ETDEWEB)

    Orús, Román, E-mail: roman.orus@uni-mainz.de

    2014-10-15

    This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems are also discussed. - Highlights: • A practical introduction to selected aspects of tensor network methods is presented. • We provide analytical examples of MPS and 2d PEPS. • We provide basic aspects on several numerical methods for MPS and 2d PEPS. • We discuss a number of applications of tensor network methods from a broad perspective.

  16. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types.

    Science.gov (United States)

    Dáttilo, Wesley; Lara-Rodríguez, Nubia; Jordano, Pedro; Guimarães, Paulo R; Thompson, John N; Marquis, Robert J; Medeiros, Lucas P; Ortiz-Pulido, Raul; Marcos-García, Maria A; Rico-Gray, Victor

    2016-11-30

    Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization. © 2016 The Author(s).

  17. Plasmid-derived DNA Strand Displacement Gates for Implementing Chemical Reaction Networks.

    Science.gov (United States)

    Chen, Yuan-Jyue; Rao, Sundipta D; Seelig, Georg

    2015-11-25

    DNA nanotechnology requires large amounts of highly pure DNA as an engineering material. Plasmid DNA could meet this need since it is replicated with high fidelity, is readily amplified through bacterial culture and can be stored indefinitely in the form of bacterial glycerol stocks. However, the double-stranded nature of plasmid DNA has so far hindered its efficient use for construction of DNA nanostructures or devices that typically contain single-stranded or branched domains. In recent work, it was found that nicked double stranded DNA (ndsDNA) strand displacement gates could be sourced from plasmid DNA. The following is a protocol that details how these ndsDNA gates can be efficiently encoded in plasmids and can be derived from the plasmids through a small number of enzymatic processing steps. Also given is a protocol for testing ndsDNA gates using fluorescence kinetics measurements. NdsDNA gates can be used to implement arbitrary chemical reaction networks (CRNs) and thus provide a pathway towards the use of the CRN formalism as a prescriptive molecular programming language. To demonstrate this technology, a multi-step reaction cascade with catalytic kinetics is constructed. Further it is shown that plasmid-derived components perform better than identical components assembled from synthetic DNA.

  18. Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network

    International Nuclear Information System (INIS)

    Grudka, Andrzej; Horodecki, Pawel

    2010-01-01

    We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since the effects are especially visible at high noise they suggest that quantum information effects may be particularly helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative borderline between superadditivities of bipartite and multipartite systems.

  19. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    Directory of Open Access Journals (Sweden)

    Altaisky Mikhail V.

    2016-01-01

    Full Text Available We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  20. Experimental Entanglement Distribution by Separable States

    Science.gov (United States)

    Vollmer, Christina E.; Schulze, Daniela; Eberle, Tobias; Händchen, Vitus; Fiurášek, Jaromír; Schnabel, Roman

    2013-12-01

    Distribution of entanglement between macroscopically separated parties is crucial for future quantum information networks. Surprisingly, it has been theoretically shown that two distant systems can be entangled by sending a third system that is not entangled with either of them. Here, we experimentally distribute entanglement and successfully prove that our transmitted light beam is indeed not entangled with the parties’ local systems. Our work demonstrates an unexpected variant of entanglement distribution and improves the understanding necessary to engineer multipartite quantum networks.

  1. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    Science.gov (United States)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  2. A quantum logic network for implementing optimal symmetric universal and phase-covariant telecloning of a bipartite entangled state

    International Nuclear Information System (INIS)

    Meng Fanyu; Zhu Aidong

    2008-01-01

    A quantum logic network to implement quantum telecloning is presented in this paper. The network includes two parts: the first part is used to create the telecloning channel and the second part to teleport the state. It can be used not only to implement universal telecloning for a bipartite entangled state which is completely unknown, but also to implement the phase-covariant telecloning for one that is partially known. Furthermore, the network can also be used to construct a tele-triplicator. It can easily be implemented in experiment because only single- and two-qubit operations are used in the network.

  3. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    Science.gov (United States)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  4. Device-independent entanglement certification of all entangled states

    OpenAIRE

    Bowles, Joseph; Šupić, Ivan; Cavalcanti, Daniel; Acín, Antonio

    2018-01-01

    We present a method to certify the entanglement of all bipartite entangled quantum states in a device-independent way. This is achieved by placing the state in a quantum network and constructing a correlation inequality based on an entanglement witness for the state. Our method is device-independent, in the sense that entanglement can be certified from the observed statistics alone, under minimal assumptions on the underlying physics. Conceptually, our results borrow ideas from the field of s...

  5. Entanglement detection

    Energy Technology Data Exchange (ETDEWEB)

    Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Technikerstrasse 21A, A-6020 Innsbruck (Austria); Institut fuer theoretische Physik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)], E-mail: otfried.guehne@uibk.ac.at; Toth, Geza [Department of Theoretical Physics, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Ikerbasque-Basque Foundation for Science, Alameda Urquijo 36, E-48011 Bilbao (Spain); ICFO-Institute of Photonic Sciences, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2009-04-15

    How can one prove that a given quantum state is entangled? In this paper we review different methods that have been proposed for entanglement detection. We first explain the basic elements of entanglement theory for two or more particles and then entanglement verification procedures such as Bell inequalities, entanglement witnesses, the determination of nonlinear properties of a quantum state via measurements on several copies, and spin squeezing inequalities. An emphasis is given to the theory and application of entanglement witnesses. We also discuss several experiments, where some of the presented methods have been implemented.

  6. Experimental distribution of entanglement with separable carriers

    Science.gov (United States)

    Fedrizzi, Alessandro; Zuppardo, Margherita; Gillett, Geoff; Broome, Matthew; de Almeida, Marcelo; Paternostro, Mauro; White, Andrew; Paterek, Tomasz

    2014-03-01

    Quantum networks will allow us to overcome distance limitations in quantum communication, and to share quantum computing tasks between remote quantum processors. The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without directly being communicated between nodes. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here we report an experiment in which two communicating parties who share three initially separable photonic qubits are entangled by exchange of a carrier photon that is not entangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement over noisy environments.

  7. Modular entanglement.

    Science.gov (United States)

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-04

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  8. Entangled entanglement: A construction procedure

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Gabriele, E-mail: Gabriele.Uchida@univie.ac.at [University of Vienna, Faculty of Computer Science, Währinger Strasse 29, 1090 Vienna (Austria); Bertlmann, Reinhold A., E-mail: Reinhold.Bertlmann@univie.ac.at [University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna (Austria); Hiesmayr, Beatrix C., E-mail: Beatrix.Hiesmayr@univie.ac.at [University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna (Austria)

    2015-10-30

    The familiar Greenberger–Horne–Zeilinger (GHZ) states can be rewritten by entangling the Bell states for two qubits with a third qubit state, which is dubbed entangled entanglement. We show that in a constructive way we obtain all eight independent GHZ states that form the simplex of entangled entanglement, the magic simplex. The construction procedure allows a generalization to higher dimensions both, in the degrees of freedom (considering qudits) as well as in the number of particles (considering n-partite states). Such bases of GHZ-type states exhibit a cyclic geometry, a Merry Go Round, that is relevant for experimental and quantum information theoretic applications.

  9. Emergence of Symmetries from Entanglement

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  10. Orientational cross correlations between entangled branch polymers in primitive chain network simulations

    Science.gov (United States)

    Masubuchi, Yuichi; Pandey, Ankita; Amamoto, Yoshifumi; Uneyama, Takashi

    2017-11-01

    Although it has not been frequently discussed, contributions of the orientational cross-correlation (OCC) between entangled polymers are not negligible in the relaxation modulus. In the present study, OCC contributions were investigated for 4- and 6-arm star-branched and H-branched polymers by means of multi-chain slip-link simulations. Owing to the molecular-level description of the simulation, the segment orientation was traced separately for each molecule as well as each subchain composing the molecules. Then, the OCC was calculated between different molecules and different subchains. The results revealed that the amount of OCC between different molecules is virtually identical to that of linear polymers regardless of the branching structure. The OCC between constituent subchains of the same molecule is significantly smaller than the OCC between different molecules, although its intensity and time-dependent behavior depend on the branching structure as well as the molecular weight. These results lend support to the single-chain models given that the OCC effects are embedded into the stress-optical coefficient, which is independent of the branching structure.

  11. Entanglement replication in driven dissipative many-body systems.

    Science.gov (United States)

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

  12. Cryptanalysis and improvement of quantum secure communication network protocol with entangled photons for mobile communications

    International Nuclear Information System (INIS)

    Gao, Gan

    2014-01-01

    Recently, a communication protocol called controlled bidirectional quantum secret direct communication for mobile networks was proposed by Chou et al (2014 Mobile Netw. Appl. 19 121). We study the security of the proposed communication protocol and find that it is not secure. The controller, Telecom Company, may eavesdrop secret messages from mobile devices without being detected. Finally, we give a possible improvement of the communication protocol. (paper)

  13. The entanglement evolution between two entangled atoms

    Indian Academy of Sciences (India)

    ... entanglement between the two atoms changes periodically and undergoes the entanglement sudden death (ESD) and sudden birth at some time. The entanglement properties between the field and the atom insidethe cavity are dependent on the photon number. Most interestingly, the entanglement between the field and ...

  14. Southeast US Historical Marine Mammal Stranding Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data on marine mammal strandings are collected by the Southeast Marine Mammal Stranding Network. Basic data on the location, species identification, animal...

  15. Studying entanglement-assisted entanglement transformation

    International Nuclear Information System (INIS)

    Hsu Liyi

    2004-01-01

    In this paper, we study catalysis of entanglement transformations for n-level pure entangled states. We propose an algorithm of finding the required catalystic entanglement. We introduce several examples by way of demonstration. We evaluate the lower and upper bound of the required inequalities for deciding whether there are m-level appropriate catalyst states for entanglement transformations for two n-level pure entangled states

  16. Entanglement dynamics in quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, T.S.

    2007-03-29

    This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more

  17. Entanglement dynamics in quantum information theory

    International Nuclear Information System (INIS)

    Cubitt, T.S.

    2007-01-01

    This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more abstract results, the entanglement and

  18. Rescuing policy in tourism network research

    DEFF Research Database (Denmark)

    Dredge, Dianne

    2018-01-01

    Networks provide a powerful lens to understand complex relational entanglements that are transforming social, economic and political life. Through a discussion of the various streams of network research in tourism, this paper argues that policy matters run across and throughout these strands....... Rather than arguing for increased interest in tourism policy network research as a separate subfield, the paper argues for deeper theoretical engagement with the policy dimension in tourism network research. Researchers adopting a network ontology could gain considerable insights and open up new lines...

  19. The entanglement evolution between two entangled atoms

    Indian Academy of Sciences (India)

    Entanglement is an important resource for quantum information processing. [1–3] and also one of the most important nonclassical properties in quantum theory. ... consideration, which consists of two entangled two-level atoms A and B with ...

  20. Charcterization of multipartite entanglement

    International Nuclear Information System (INIS)

    Chong, Bo

    2006-01-01

    In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle τ (T) to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle τ (T) from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)

  1. Charcterization of multipartite entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Bo

    2006-06-23

    In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle {tau}{sup (T)} to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle {tau}{sup (T)} from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)

  2. Typical entanglement

    Science.gov (United States)

    Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio

    2013-05-01

    Let a pure state | ψ> be chosen randomly in an NM-dimensional Hilbert space, and consider the reduced density matrix ρ A of an N-dimensional subsystem. The bipartite entanglement properties of | ψ> are encoded in the spectrum of ρ A . By means of a saddle point method and using a "Coulomb gas" model for the eigenvalues, we obtain the typical spectrum of reduced density matrices. We consider the cases of an unbiased ensemble of pure states and of a fixed value of the purity. We finally obtain the eigenvalue distribution by using a statistical mechanics approach based on the introduction of a partition function.

  3. Brownian entanglement

    International Nuclear Information System (INIS)

    Allahverdyan, A.E.; Khrennikov, A.; Nieuwenhuizen, Th.M.

    2005-01-01

    For two classical Brownian particles an analog of continuous-variable quantum entanglement is presented: The common probability distribution of the two coordinates and the corresponding coarse-grained velocities cannot always be prepared via mixing of any factorized distributions referring to the two particles separately. This is possible for particles which have interacted in the past, but do not interact at present. Three factors are crucial for the effect: (1) separation of time scales of coordinate and momentum which motivates the definition of coarse-grained velocities; (2) the resulting uncertainty relations between the coordinate of the Brownian particle and the change of its coarse-grained velocity; (3) the fact that the coarse-grained velocity, though pertaining to a single Brownian particle, is defined on a common context of two particles. The Brownian entanglement is a consequence of a coarse-grained description and disappears for a finer resolution of the Brownian motion. Analogies with the quantum situation are discussed, as well as possibilities of experimental realization of the effect in examples of macroscopic Brownian motion

  4. Quantum entanglement

    International Nuclear Information System (INIS)

    Hadjiivanov, L.; Todorov, I.

    2015-01-01

    Expository paper providing a historical survey of the gradual transformation of the 'philosophical discussions' between Bohr, Einstein and Schrödinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schrödinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminating with the work of Alain Aspect) it was Feynman who made public the idea of a quantum computer based on the observed effect

  5. A robust network of double-strand break repair pathways governs genome integrity during C. elegans development.

    NARCIS (Netherlands)

    Pontier, D.B.; Tijsterman, M.

    2009-01-01

    To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs). Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ)

  6. Entanglement of purification: from spin chains to holography

    Science.gov (United States)

    Nguyen, Phuc; Devakul, Trithep; Halbasch, Matthew G.; Zaletel, Michael P.; Swingle, Brian

    2018-01-01

    Purification is a powerful technique in quantum physics whereby a mixed quantum state is extended to a pure state on a larger system. This process is not unique, and in systems composed of many degrees of freedom, one natural purification is the one with minimal entanglement. Here we study the entropy of the minimally entangled purification, called the entanglement of purification, in three model systems: an Ising spin chain, conformal field theories holographically dual to Einstein gravity, and random stabilizer tensor networks. We conjecture values for the entanglement of purification in all these models, and we support our conjectures with a variety of numerical and analytical results. We find that such minimally entangled purifications have a number of applications, from enhancing entanglement-based tensor network methods for describing mixed states to elucidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT correspondence.

  7. Renormalizing Entanglement Distillation

    Science.gov (United States)

    Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens

    2016-01-01

    Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.

  8. Teleportation of entanglement over 143 km.

    Science.gov (United States)

    Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton

    2015-11-17

    As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.

  9. Entanglement without nonlocality

    International Nuclear Information System (INIS)

    Hewitt-Horsman, C.; Vedral, V.

    2007-01-01

    We consider the characterization of entanglement from the perspective of a Heisenberg formalism. We derive a two-party generalized separability criterion, and from this describe a physical understanding of entanglement. We find that entanglement may be considered as fundamentally a local effect, and therefore as a separate computational resource from nonlocality. We show how entanglement differs from correlation physically, and explore the implications of this concept of entanglement for the notion of classicality. We find that this understanding of entanglement extends naturally to multipartite cases

  10. Continuous-variable entanglement distillation of non-Gaussian mixed states

    DEFF Research Database (Denmark)

    Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel

    2010-01-01

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network...

  11. Equivalence between entanglement and the optimal fidelity of continuous variable teleportation.

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-10-07

    We devise the optimal form of Gaussian resource states enabling continuous-variable teleportation with maximal fidelity. We show that a nonclassical optimal fidelity of N-user teleportation networks is necessary and sufficient for N-party entangled Gaussian resources, yielding an estimator of multipartite entanglement. The entanglement of teleportation is equivalent to the entanglement of formation in a two-user protocol, and to the localizable entanglement in a multiuser one. Finally, we show that the continuous-variable tangle, quantifying entanglement sharing in three-mode Gaussian states, is defined operationally in terms of the optimal fidelity of a tripartite teleportation network.

  12. Machine learning spatial geometry from entanglement features

    Science.gov (United States)

    You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang

    2018-02-01

    Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).

  13. Controlling bi-partite entanglement in multi-qubit systems

    International Nuclear Information System (INIS)

    Plesch, Martin; Novotny, Jaroslav; Dzurakova, Zuzana; Buzek, VladimIr

    2004-01-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N 2 ) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits

  14. Controlling bi-partite entanglement in multi-qubit systems

    Science.gov (United States)

    Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír

    2004-02-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.

  15. Optimal use of multipartite entanglement for continuous variable teleportation

    International Nuclear Information System (INIS)

    Adesso, G.; Illuminati, F.

    2005-01-01

    Full text: In this work we discuss how continuous variable teleportation takes advantage of the quadrature entanglement in different ways, depending on the preparation of the entangled state. For a given amount of the entanglement resource, we describe the best production scheme for a two-mode Gaussian state, which enables quantum teleportation with optimal fidelity. We extend this study to multiparty entangled Gaussian states and define an operative measure of multipartite entanglement related to the optimal fidelity in a quantum teleportation network experiment. This optimal fidelity is shown to be equivalent to the entanglement of formation for the standard two-user protocol, and to the multipartite localizable entanglement for the multiuser protocol. (author)

  16. Channel capacities versus entanglement measures in multiparty quantum states

    International Nuclear Information System (INIS)

    Sen, Aditi; Sen, Ujjwal

    2010-01-01

    For quantum states of two subsystems, highly entangled states have a higher capacity of transmitting classical as well as quantum information, and vice versa. We show that this is no more the case in general: Quantum capacities of multiaccess channels, motivated by communication in quantum networks, do not have any relation with genuine multiparty entanglement measures. Importantly, the statement is demonstrated for arbitrary multipartite entanglement measures. Along with revealing the structural richness of multiaccess channels, this gives us a tool to classify multiparty quantum states from the perspective of its usefulness in quantum networks, which cannot be visualized by any genuine multiparty entanglement measure.

  17. Experimental entanglement of 25 individually accessible atomic quantum interfaces.

    Science.gov (United States)

    Pu, Yunfei; Wu, Yukai; Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng; Duan, Luming

    2018-04-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing.

  18. Entangled Organizations

    DEFF Research Database (Denmark)

    Strand, Anete Mikkala Camille

    the model opened the possibility for reworking the binary. The offset of the becoming of the revised model for cooperation was taken from a quantum approach to organizational development and change coined as ‘Organizational scenography’ as part of the methodology of Material Storytelling (Strand 2012). Here...... to embrace other dis/ability care facilities and dis/ability care workers/professionals nearby as well as the neighborhood of the village of citizens surrounding these facilities. Thus reworking previously upheld cuts between areas of responsibility of the Municipality/relatives and of Municipality...... for the employees and thereby support the bringing about of a cultural transformation. A changed relationality indeed brought about though reworking the binary dis/able. From the standpoint of a diffractive methodology (Barad 2007) the paper accounts for this project by being organized in four parts that together...

  19. Deterministically entangling multiple remote quantum memories inside an optical cavity

    Science.gov (United States)

    Yan, Zhihui; Liu, Yanhong; Yan, Jieli; Jia, Xiaojun

    2018-01-01

    Quantum memory for the nonclassical state of light and entanglement among multiple remote quantum nodes hold promise for a large-scale quantum network, however, continuous-variable (CV) memory efficiency and entangled degree are limited due to imperfect implementation. Here we propose a scheme to deterministically entangle multiple distant atomic ensembles based on CV cavity-enhanced quantum memory. The memory efficiency can be improved with the help of cavity-enhanced electromagnetically induced transparency dynamics. A high degree of entanglement among multiple atomic ensembles can be obtained by mapping the quantum state from multiple entangled optical modes into a collection of atomic spin waves inside optical cavities. Besides being of interest in terms of unconditional entanglement among multiple macroscopic objects, our scheme paves the way towards the practical application of quantum networks.

  20. Heralded entanglement of two remote atoms

    Science.gov (United States)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  1. Southeast Region Level A Marine Mammal Stranding Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data on marine mammal strandings are collected by the Southeast Marine Mammal Stranding Network. Basic data on the location, species identification, animal...

  2. Quantum key distribution with an entangled light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J. [Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  3. Majorana entanglement bridge

    Science.gov (United States)

    Plugge, Stephan; Zazunov, Alex; Sodano, Pasquale; Egger, Reinhold

    2015-06-01

    We study the concurrence of entanglement between two quantum dots in contact to Majorana bound states on a floating superconducting island. The distance between the Majorana states, the charging energy of the island, and the average island charge are shown to be decisive parameters for the efficiency of entanglement generation. We find that long-range entanglement with basically distance-independent concurrence is possible over wide parameter regions, where the proposed setup realizes a "Majorana entanglement bridge." We also study the time-dependent concurrence obtained after one of the tunnel couplings is suddenly switched on, which reveals the time scales for generating entanglement. Accurate analytical expressions for the concurrence are derived both for the static and the time-dependent cases. Our results indicate that entanglement formation in interacting Majorana devices can be fully understood in terms of an interplay of elastic cotunneling (also referred to as "teleportation") and crossed Andreev reflection processes.

  4. Implementation of bright six-partite entanglement by coupled intracavity sum frequency generation

    Science.gov (United States)

    Wang, Junfeng; Liu, Le; Liu, Yuzhu; Zhang, Yanan; Wu, Hongyan; Gong, Chengxuan; Zhang, Ruofan; Zhang, Houyuan; Fan, JingYu

    2018-04-01

    Bright six-partite continuous-variable (CV) entanglement generated by the coupled intracavity sum frequency generation is investigated. The entanglement characteristics of reflected pump fields and the output sum frequency fields are discussed theoretically in symmetric and asymmetric cases by applying van Loock and Furusawa criteria for multipartite CV entanglement. Such compact tunable multipartite CV entanglement, generated from an experimentally feasible coupled system, could be used in integrated quantum communication and networks.

  5. Geometric multipartite entanglement measures

    International Nuclear Information System (INIS)

    Paz-Silva, Gerardo A.; Reina, John H.

    2007-01-01

    Within the framework of constructions for quantifying entanglement, we build a natural scenario for the assembly of multipartite entanglement measures based on Hopf bundle-like mappings obtained through Clifford algebra representations. Then, given the non-factorizability of an arbitrary two-qubit density matrix, we give an alternate quantity that allows the construction of two types of entanglement measures based on their arithmetical and geometrical averages over all pairs of qubits in a register of size N, and thus fully characterize its degree and type of entanglement. We find that such an arithmetical average is both additive and strongly super additive

  6. Remarks on entanglement swapping

    International Nuclear Information System (INIS)

    Song, Daegene

    2004-01-01

    In two partially entangled states, entanglement swapping by Bell measurement will yield the weaker entanglement of the two. This scheme is optimal because the average entanglement cannot increase under local operation and classical communication. However, for more than two states, this scheme does not always yield the weakest link. We consider projective measurements other than Bell-type measurement and show, numerically, that while Bell measurement may not be unique, it is indeed optimal among these projective measurements. We also discuss the non-uniqueness of Bell measurements. (letter to the editor)

  7. Quantum teleportation and multi-photon entanglement

    International Nuclear Information System (INIS)

    Pan, J.-W.

    1999-08-01

    The present thesis is the result of theoretical and experimental work on the physics of multiparticle interference. The theoretical results show that a quantum network with simple quantum logic gates and a handful of qubits enables one to control and manipulate quantum entanglement. Because of the present absence of quantum gate for two independently produced photons, in the mean time we also present a practical way to generate and identify multiparticle entangled state. The experimental work has thoroughly developed the necessary techniques to study novel multiparticle interference phenomena. By making use of the pulsed source for polarization entangled photon pairs, in this thesis we report for the first time the experimental realization of quantum teleportation, of entanglement swapping and of production of these-particle entanglement. Using the three-particle entanglement source, here we also present the first experimental realization of a test of local realism without inequalities. The methods developed in these experiments are of great significance both for exploring the field of quantum information and for future experiments on the fundamental tests of quantum mechanics. (author)

  8. Molecular network considerations in the deformation of glassy polymers

    International Nuclear Information System (INIS)

    Henkee, C.S.

    1985-01-01

    Thin films of polystyrene (PS) are crosslinked with electron irradiation and are strained in tension until regions of local plastic deformation, either crazes or plane stress deformation zones (DZ's), have grown. The behavior of the PS glass is consistent with its being a network of molecular strands of total density nu = nu/sub x/ + nu/sub e/, where nu/sub e/ is the entangled strand density, and nu/sub x/ is the density of crosslinked strands. When nu is less than 4 x 10 25 m -3 only crazes are observed. As nu increases from 4 x 10 25 to 8 x 10 -5 m -3 , only shear DZ's are observed. The local extension ratio, lambda, in the crazes and DZ's correlate well with lambda/sub max/, the maximum extension ratio of a strand in a network of density nu computed using the Porod-Kratky model. Crosslinking to still higher crosslink densities, e.g. nu = 14nu/sub e/, results in cracks that propagate in a catastrophic manner at low applied strains. An optimum nu thus exists, one not too high to suppress local shear ductility but high enough to suppress crazes which can act as crack nucleation sites. Comparison of the results in crosslinked PS with those in other linear, but entangled polymer systems implies that chain scission is the major mechanism by which strands in the entanglement network are removed in forming fibril surfaces. Craze suppression by increasing nu is due to the extra energy required to break more main chain bonds to form these surfaces

  9. Maximally multipartite entangled states

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio

    2008-06-01

    We introduce the notion of maximally multipartite entangled states of n qubits as a generalization of the bipartite case. These pure states have a bipartite entanglement that does not depend on the bipartition and is maximal for all possible bipartitions. They are solutions of a minimization problem. Examples for small n are investigated, both analytically and numerically.

  10. Multi-photon entanglements

    International Nuclear Information System (INIS)

    Daniell, M.L.

    2000-09-01

    The motivation of this thesis was to create higher-order entanglements. The first experimental observation of a four-photon entanglement was presented in the experiment of this thesis. And the visibility of this entanglement was 0.79+-0.06, which is sufficient to make claims of the nonlocality of quantum mechanics. This therefore lays a foundation for experiments showing the nonlocality of teleportation, and the purification of entanglement. The work of this thesis brings together a lot of earlier work done by the Zeilinger Group, and lays a foundation for future experiments. Earlier experiments such as teleportation together with entanglement swapping, which are 'complete teleportation' in as much as the state teleported is entirely undefined, can be combined and re-done with this four-photon entanglement. This result would be the first demonstration of complete, nonlocal teleportation. Also this experiment can be slightly modified and used to perform the first experimental quantum purification of entanglement, which is of vital importance to the fields of quantum information, and also is interesting for fundamental experiments on entanglement. Another direct application of this experiment is to perform the first 'event-ready' testing of Bell's Inequality. Here the four-photon entanglement can be used as a source of entangled photons, whereby the photons have no common source. This would enable an even more stringent testing of Bells theorem. Finally this experiment can be used for the demonstration and investigation of many practical, directly applicable quantum information schemes. For instance quantum cryptography, error correction, and computing. (author)

  11. Entanglement negativity in the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Sugumi [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); Shock, Jonathan P. [Laboratory for Quantum Gravity and Strings and Astrophysics, Cosmology and Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Soda, Jiro, E-mail: sugumi.kanno@ehu.es, E-mail: jonathan.shock@uct.ac.za, E-mail: jiro@phys.sci.kobe-u.ac.jp [Department of Physics, Kobe University, Kobe 657-8501 (Japan)

    2015-03-01

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.

  12. Entanglement negativity in the multiverse

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro

    2015-01-01

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse

  13. Entanglement negativity in the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Sugumi [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao (Spain); Laboratory for Quantum Gravity & Strings and Astrophysics, Cosmology & Gravity Center, Department of Mathematics & Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Shock, Jonathan P. [Laboratory for Quantum Gravity & Strings and Astrophysics, Cosmology & Gravity Center, Department of Mathematics & Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); National Institute for Theoretical Physics, Private Bag X1, Matieland, 7602 (South Africa); Soda, Jiro [Department of Physics, Kobe University, Kobe 657-8501 (Japan)

    2015-03-10

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.

  14. Mutual preservation of entanglement

    International Nuclear Information System (INIS)

    Veitia, Andrzej; Jing, Jun; Yu, Ting; Wong, Chee Wei

    2012-01-01

    We study a generalized double Jaynes–Cummings (JC) model where two entangled pairs of two-level atoms interact indirectly. We show that there exist initial states of the qubit system so that two entangled pairs are available at all times. In particular, the minimum entanglement in the pairs as a function of the initial state is studied. Finally, we extend our findings to a model consisting of multi-mode atom–cavity interactions. We use a non-Markovian quantum state diffusion (QSD) equation to obtain the steady-state density matrix for the qubits. We show that the multi-mode model also displays dynamical preservation of entanglement. -- Highlights: ► Entanglement dynamics is studied in a generalized double Jaynes–Cummings model. ► We show that for certain initial states, the atoms remain entangled at all times. ► We extend the results to the case of multi-mode atom–cavity interactions. ► The model suggest that indirect interaction may help to preserve entanglement.

  15. Classifying quantum entanglement through topological links

    Science.gov (United States)

    Quinta, Gonçalo M.; André, Rui

    2018-04-01

    We propose an alternative classification scheme for quantum entanglement based on topological links. This is done by identifying a nonrigid ring to a particle, attributing the act of cutting and removing a ring to the operation of tracing out the particle, and associating linked rings to entangled particles. This analogy naturally leads us to a classification of multipartite quantum entanglement based on all possible distinct links for a given number of rings. To determine all different possibilities, we develop a formalism that associates any link to a polynomial, with each polynomial thereby defining a distinct equivalence class. To demonstrate the use of this classification scheme, we choose qubit quantum states as our example of physical system. A possible procedure to obtain qubit states from the polynomials is also introduced, providing an example state for each link class. We apply the formalism for the quantum systems of three and four qubits and demonstrate the potential of these tools in a context of qubit networks.

  16. Remote quantum entanglement between two micromechanical oscillators.

    Science.gov (United States)

    Riedinger, Ralf; Wallucks, Andreas; Marinković, Igor; Löschnauer, Clemens; Aspelmeyer, Markus; Hong, Sungkun; Gröblacher, Simon

    2018-04-01

    Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks 1 . Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm 2,3 and cold atomic vapours 4,5 , individual atoms 6 and ions 7,8 , and defects in solid-state systems 9-11 . Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres . The entangled quantum state is distributed by an optical field at a designed wavelength near 1,550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.

  17. Narrowband polarization entangled telecom photon pair source

    OpenAIRE

    Kaiser , Florian; Issautier , Amandine; Alibart , Olivier; Martin , Anthony; Tanzilli , Sébastien

    2011-01-01

    Contributed Talk; International audience; During the last decade, quantum entanglement has paved the way out to of the lab modern applications such as quantum computation and communication. Today, small scale quantum networks exist already, but they are limited to a few 100 km distance, due to intrinsic fiber transmission losses and non perfect detectors. These networks are typically established using photon pair sources based on spontaneous parametric down conversion (SPDC). Widely used enta...

  18. Schrodinger's catapult II: entanglement between stationary and flying fields

    Science.gov (United States)

    Pfaff, W.; Axline, C.; Burkhart, L.; Vool, U.; Reinhold, P.; Frunzio, L.; Jiang, L.; Devoret, M.; Schoelkopf, R.

    Entanglement between nodes is an elementary resource in a quantum network. An important step towards its realization is entanglement between stationary and flying states. Here we experimentally demonstrate entanglement generation between a long-lived cavity memory and traveling mode in circuit QED. A large on/off ratio and fast control over a parametric mixing process allow us to realize conversion with tunable magnitude and duration between standing and flying mode. In the case of half-conversion, we observe correlations between the standing and flying state that confirm the generation of entangled states. We show this for both single-photon and multi-photon states, paving the way for error-correctable remote entanglement. Our system could serve as an essential component in a modular architecture for error-protected quantum information processing.

  19. Multiple-copy entanglement transformation and entanglement catalysis

    International Nuclear Information System (INIS)

    Duan Runyao; Feng Yuan; Li Xin; Ying Mingsheng

    2005-01-01

    We prove that any multiple-copy entanglement transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A 65, 052315 (2002)] can be implemented by a suitable entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)]. Furthermore, we show that the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones. Most interestingly, we show that an arbitrarily large number of copies of state should be considered in multiple-copy entanglement transformations

  20. Holographic Entanglement Entropy

    CERN Document Server

    Rangamani, Mukund

    2016-01-01

    We review the developments in the past decade on holographic entanglement entropy, a subject that has garnered much attention owing to its potential to teach us about the emergence of spacetime in holography. We provide an introduction to the concept of entanglement entropy in quantum field theories, review the holographic proposals for computing the same, providing some justification for where these proposals arise from in the first two parts. The final part addresses recent developments linking entanglement and geometry. We provide an overview of the various arguments and technical developments that teach us how to use field theory entanglement to detect geometry. Our discussion is by design eclectic; we have chosen to focus on developments that appear to us most promising for further insights into the holographic map. This is a preliminary draft of a few chapters of a book which will appear sometime in the near future, to be published by Springer. The book in addition contains a discussion of application o...

  1. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  2. Entanglement in neutrino oscillations

    International Nuclear Information System (INIS)

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Blasone, M.

    2009-01-01

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  3. Witnessing entanglement by proxy

    International Nuclear Information System (INIS)

    Bäuml, Stefan; Bruß, Dagmar; Kampermann, Hermann; Huber, Marcus; Winter, Andreas

    2016-01-01

    Entanglement is a ubiquitous feature of low temperature systems and believed to be highly relevant for the dynamics of condensed matter properties and quantum computation even at higher temperatures. The experimental certification of this paradigmatic quantum effect in macroscopic high temperature systems is constrained by the limited access to the quantum state of the system. In this paper we show how macroscopic observables beyond the mean energy of the system can be exploited as proxy witnesses for entanglement detection. Using linear and semi-definite relaxations we show that all previous approaches to this problem can be outperformed by our proxies, i.e. entanglement can be certified at higher temperatures without access to any local observable. For an efficient computation of proxy witnesses one can resort to a generalised grand canonical ensemble, enabling entanglement certification even in complex systems with macroscopic particle numbers. (paper)

  4. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    keeps the files in it private but still lets each client P_i recover his own data by interacting with S; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of c as this will imply that none of the clients can......Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation...

  5. Transplanckian entanglement entropy

    International Nuclear Information System (INIS)

    Chang, Darwin; Chu, C.-S.; Lin Fengli

    2004-01-01

    The entanglement entropy of the event horizon is known to be plagued by the UV divergence due to the infinitely blue-shifted near horizon modes. In this Letter we calculate the entanglement entropy using the transplanckian dispersion relation, which has been proposed to model the quantum gravity effects. We show that, very generally, the entropy is rendered UV finite due to the suppression of high energy modes effected by the transplanckian dispersion relation

  6. Multipartite entanglement and firewalls

    Science.gov (United States)

    Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas

    2017-03-01

    Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully (AMPS) have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a "firewall" inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as "monogamy" plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. Using the multipartite entanglement measure called negativity, we identify an example which could change the AMPS accounting of quantum entanglement and perhaps eliminate the need for a firewall. Specifically, we constructed a toy model for black hole decay which has different entanglement behavior than that assumed by AMPS. We discuss the additional steps that would be needed to bring lessons from our toy model to our understanding of realistic black holes.

  7. The stranding anomaly as population indicator

    DEFF Research Database (Denmark)

    Peltier, Helene; Baagøe, Hans J.; Camphuysen, Kees C. J.

    2013-01-01

    Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistica...... surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna....... credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform...

  8. Entanglement-continuous unitary transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Serkan; Orus, Roman [Institute of Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2016-07-01

    In this talk we present a new algorithm for quantum many-body systems using continuous unitary transformations (CUT) and tensor networks (TNs). With TNs we are able to approximate the solution to the flow equations that lie at the heart of continuous unitary transformations. We call this method Entanglement-Continuous Unitary Transformations (eCUT). It allows us to compute expectation values of local observables as well as tensor network representations of ground states and low-energy excited states. An implementation of the method is shown for 1d systems using matrix product operators. We show preliminary results for the 1d transverse-field Ising model to demonstrate the feasibility of the method.

  9. Propagation of spatially entangled qudits through free space

    International Nuclear Information System (INIS)

    Lima, G.; Neves, Leonardo; Santos, Ivan F.; Padua, S.; Aguirre Gomez, J. G.; Saavedra, C.

    2006-01-01

    We show the propagation of entangled states of high-dimensional quantum systems. The qudits states were generated using the transverse correlation of the twin photons produced by spontaneous parametric down-conversion. Their free-space distribution was performed at the laboratory scale and the propagated states maintained a high fidelity with their original form. The use of entangled qudits allow an increase in the quantity of information that can be transmitted and may also guarantee more privacy for communicating parties. Therefore, studies about propagating entangled states of qudits are important for the effort of building quantum communication networks

  10. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles.

    Science.gov (United States)

    Yan, Zhihui; Wu, Liang; Jia, Xiaojun; Liu, Yanhong; Deng, Ruijie; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2017-09-28

    It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.

  11. Entanglement diversion and quantum teleportation of entangled coherent states

    Institute of Scientific and Technical Information of China (English)

    Cai Xin-Hua; Guo Jie-Rong; Nie Jian-Jun; Jia Jin-Ping

    2006-01-01

    The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented.In these proposals,the entanglement between two coherent states,|α〉and |-α〉,with the same amplitude but a phase difference of π is utilized as a quantum channel.The processes of the entanglement diversion and the teleportation are achieved by using the 5050 symmetric beam splitters,the phase shifters and the photodetectors with the help of classical information.

  12. Deterministically swapping frequency-bin entanglement from photon-photon to atom-photon hybrid systems

    Science.gov (United States)

    Ou, Bao-Quan; Liu, Chang; Sun, Yuan; Chen, Ping-Xing

    2018-02-01

    Inspired by the recent developments of the research on the atom-photon quantum interface and energy-time entanglement between single-photon pulses, we are motivated to study the deterministic protocol for the frequency-bin entanglement of the atom-photon hybrid system, which is analogous to the frequency-bin entanglement between single-photon pulses. We show that such entanglement arises naturally in considering the interaction between a frequency-bin entangled single-photon pulse pair and a single atom coupled to an optical cavity, via straightforward atom-photon phase gate operations. Its anticipated properties and preliminary examples of its potential application in quantum networking are also demonstrated. Moreover, we construct a specific quantum entanglement witness tool to detect such extended frequency-bin entanglement from a reasonably general set of separable states, and prove its capability theoretically. We focus on the energy-time considerations throughout the analysis.

  13. Manipulating continuous variable photonic entanglement

    International Nuclear Information System (INIS)

    Plenio, M.B.

    2005-01-01

    I will review our work on photonic entanglement in the continuous variable regime including both Gaussian and non-Gaussian states. The feasibility and efficiency of various entanglement purification protocols are discussed this context. (author)

  14. Cosmological quantum entanglement

    International Nuclear Information System (INIS)

    Martín-Martínez, Eduardo; Menicucci, Nicolas C

    2012-01-01

    We review recent literature on the connection between quantum entanglement and cosmology, with an emphasis on the context of expanding universes. We discuss recent theoretical results reporting on the production of entanglement in quantum fields due to the expansion of the underlying spacetime. We explore how these results are affected by the statistics of the field (bosonic or fermionic), the type of expansion (de Sitter or asymptotically stationary), and the coupling to spacetime curvature (conformal or minimal). We then consider the extraction of entanglement from a quantum field by coupling to local detectors and how this procedure can be used to distinguish curvature from heating by their entanglement signature. We review the role played by quantum fluctuations in the early universe in nucleating the formation of galaxies and other cosmic structures through their conversion into classical density anisotropies during and after inflation. We report on current literature attempting to account for this transition in a rigorous way and discuss the importance of entanglement and decoherence in this process. We conclude with some prospects for further theoretical and experimental research in this area. These include extensions of current theoretical efforts, possible future observational pursuits, and experimental analogues that emulate these cosmic effects in a laboratory setting. (paper)

  15. Optimization of entanglement witnesses

    Science.gov (United States)

    Lewenstein, M.; Kraus, B.; Cirac, J. I.; Horodecki, P.

    2000-11-01

    An entanglement witness (EW) is an operator that allows the detection of entangled states. We give necessary and sufficient conditions for such operators to be optimal, i.e., to detect entangled states in an optimal way. We show how to optimize general EW, and then we particularize our results to the nondecomposable ones; the latter are those that can detect positive partial transpose entangled states (PPTES's). We also present a method to systematically construct and optimize this last class of operators based on the existence of ``edge'' PPTES's, i.e., states that violate the range separability criterion [Phys. Lett. A 232, 333 (1997)] in an extreme manner. This method also permits a systematic construction of nondecomposable positive maps (PM's). Our results lead to a sufficient condition for entanglement in terms of nondecomposable EW's and PM's. Finally, we illustrate our results by constructing optimal EW acting on H=C2⊗C4. The corresponding PM's constitute examples of PM's with minimal ``qubit'' domains, or-equivalently-minimal Hermitian conjugate codomains.

  16. Multipartite entanglement in neutrino oscillations

    International Nuclear Information System (INIS)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2009-01-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  17. Multipartite entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  18. Universal entanglement transformations without communication

    International Nuclear Information System (INIS)

    Dam, Wim van; Hayden, Patrick

    2003-01-01

    We show that in the presence of finite catalysts, any pure bipartite entangled state can be converted into any other, to unlimited accuracy, without the use of any communication, quantum or classical. We call this process embezzling entanglement because it involves removing a small amount of entanglement from the catalyst in a physically unnoticeable way

  19. Quantum Statistics and Entanglement Problems

    OpenAIRE

    Trainor, L. E. H.; Lumsden, Charles J.

    2002-01-01

    Interpretations of quantum measurement theory have been plagued by two questions, one concerning the role of observer consciousness and the other the entanglement phenomenon arising from the superposition of quantum states. We emphasize here the remarkable role of quantum statistics in describing the entanglement problem correctly and discuss the relationship to issues arising from current discussions of intelligent observers in entangled, decohering quantum worlds.

  20. Deriving covariant holographic entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Lewkowycz, Aitor [Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Rangamani, Mukund [Center for Quantum Mathematics and Physics (QMAP), Department of Physics, University of California, Davis, CA 95616 (United States)

    2016-11-07

    We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.

  1. Images in quantum entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, G J [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom)

    2009-08-28

    A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction {psi}{sub O} plus a portion of its own inverse image. Bell states can be defined in this way: {psi}= 1/{radical}2 ({psi}{sub O}{+-}{psi}{sub I} ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle {nu}{sub 123} entanglement, two-particle entanglements {nu}{sub 12}, {nu}{sub 13}, {nu}{sub 23} and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters {nu}{sub 12}, {nu}{sub 13}, {nu}{sub 23}, {nu}{sub 123} and {phi}{sub 123} are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function ({alpha}{sub 1}, {beta}{sub 1}), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.

  2. Images in quantum entanglement

    International Nuclear Information System (INIS)

    Bowden, G J

    2009-01-01

    A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction Ψ O plus a portion of its own inverse image. Bell states can be defined in this way: Ψ= 1/√2 (Ψ O ±Ψ I ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν 123 entanglement, two-particle entanglements ν 12 , ν 13 , ν 23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν 12 , ν 13 , ν 23 , ν 123 and φ 123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α 1 , β 1 ), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.

  3. Multipartite entanglement and frustration

    International Nuclear Information System (INIS)

    Facchi, P; Florio, G; Pascazio, S; Marzolino, U; Parisi, G

    2010-01-01

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  4. Multipartite entanglement and frustration

    Science.gov (United States)

    Facchi, P.; Florio, G.; Marzolino, U.; Parisi, G.; Pascazio, S.

    2010-02-01

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  5. Multipartite entanglement and frustration

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, P [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); Florio, G; Pascazio, S [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Marzolino, U [Dipartimento di Fisica, Universita di Trieste, and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34014 Trieste (Italy); Parisi, G [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, Centre for Statistical Mechanics and Complexity (SMC), CNR-INFM, and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185 Roma (Italy)], E-mail: paolo.facchi@ba.infn.it

    2010-02-15

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  6. Entanglement in miscible blends

    Science.gov (United States)

    Watanabe, Hiroshi

    2010-03-01

    The entanglement length Le of polymer chains (corresponding to the entanglement molecular weight Me) is not an intrinsic material parameter but changes with the interaction with surrounding chains. For miscible blends of cis-polyisoprene (PI) and poly(tert-butyl styrene) (PtBS), changes of Le on blending was examined. It turned out that the Le averaged over the number fractions of the Kuhn segments of the components (PI and PtBS) satisfactorily describes the viscoelastic behavior of pseudo-monodisperse blends in which the terminal relaxation time is the same for PI and PtBS.

  7. Wormholes and entanglement

    International Nuclear Information System (INIS)

    John C Baez; Vicary, Jamie

    2014-01-01

    Maldacena and Susskind have proposed a correspondence between wormholes and entanglement, dubbed ER=EPR. We study this in the context of three-dimensional topological quantum field theory (TQFT), where we show that the formation of a wormhole is the same process as creating a particle–antiparticle pair. A key feature of the ER=EPR proposal is that certain apparently entangled degrees of freedom turn out to be the same. We name this phenomenon ‘fake entanglement’, and show how it arises in our TQFT model. (paper)

  8. Multi-particle entanglement via two-party entanglement

    Science.gov (United States)

    Brassard, Gilles; Mor, Tal

    2001-09-01

    Entanglement between n particles is a generalization of the entanglement between two particles, and a state is considered entangled if it cannot be written as a mixture of tensor products of the n particles' states. We present the key notion of semi-separability, used to investigate n-particle entanglement by looking at two-party entanglement between its various subsystems. We provide necessary conditions for n-particle separability (that is, sufficient conditions for n-particle entanglement). We also provide necessary and sufficient conditions in the case of pure states. By surprising examples, we show that such conditions are not sufficient for separability in the case of mixed states, suggesting entanglement of a strange type.

  9. Efficient entanglement purification for polarization logic Bell state with the photonic Faraday rotation

    OpenAIRE

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Logic-qubit entanglement is a promising resource in quantum information processing, especially in future large-scale quantum networks. In the paper, we put forward an efficient entanglement purification protocol (EPP) for nonlocal mixed logic entangled states with the bit-flip error in the logic qubits of the logic Bell state, resorting to the photon-atom interaction in low-quality (Q) cavity and atomic state measurement. Different from existing EPPs, this protocol can also purify the logic p...

  10. Correcting quantum errors with entanglement.

    Science.gov (United States)

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  11. Entanglement in the Bogoliubov vacuum

    DEFF Research Database (Denmark)

    Poulsen, Uffe Vestergaard; Meyer, T.; Lewenstein, M.

    2005-01-01

    We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work in one- and two-dimensional lattices and study the entanglement between two groups of sites as a function...... of the geometry of the configuration and the strength of the interactions. As our measure of entanglement we use the logarithmic negativity, supplemented by an algorithmic check for bound entanglement where appropiate. The short-range entanglement is found to grow approximately linearly with the group sizes...

  12. Photon Entanglement Through Brain Tissue.

    Science.gov (United States)

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  13. Experimental test of entangled histories

    Science.gov (United States)

    Cotler, Jordan; Duan, Lu-Ming; Hou, Pan-Yu; Wilczek, Frank; Xu, Da; Yin, Zhang-Qi; Zu, Chong

    2017-12-01

    Entangled histories arise when a system partially decoheres in such a way that its past cannot be described by a sequence of states, but rather a superposition of sequences of states. Such entangled histories have not been previously observed. We propose and demonstrate the first experimental scheme to create entangled history states of the Greenberger-Horne-Zeilinger (GHZ) type. In our experiment, the polarization states of a single photon at three different times are prepared as a GHZ entangled history state. We define a GHZ functional which attains a maximum value 1 on the ideal GHZ entangled history state and is bounded above by 1 / 16 for any three-time history state lacking tripartite entanglement. We have measured the GHZ functional on a state we have prepared experimentally, yielding a value of 0 . 656 ± 0 . 005, clearly demonstrating the contribution of entangled histories.

  14. Neutrino flavor entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo [Dipartimento di Fisica, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno (Italy); Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2013-04-15

    Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears.

  15. Neutrino flavor entanglement

    International Nuclear Information System (INIS)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2013-01-01

    Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears

  16. Facets of tripartite entanglement

    Indian Academy of Sciences (India)

    Quantum mechanical correlations between results of measurments on entangled ..... It is interesting that motivation underpinning Einstein locality is not the relativistic re- quirement of no faster-than-light signalling but rather a consideration related .... of the relevant studies see, for instance, D Home, Conceptual foundations.

  17. Multipartite entangled quantum states: Transformation, Entanglement monotones and Application

    Science.gov (United States)

    Cui, Wei

    Entanglement is one of the fundamental features of quantum information science. Though bipartite entanglement has been analyzed thoroughly in theory and shown to be an important resource in quantum computation and communication protocols, the theory of entanglement shared between more than two parties, which is called multipartite entanglement, is still not complete. Specifically, the classification of multipartite entanglement and the transformation property between different multipartite states by local operators and classical communications (LOCC) are two fundamental questions in the theory of multipartite entanglement. In this thesis, we present results related to the LOCC transformation between multipartite entangled states. Firstly, we investigate the bounds on the LOCC transformation probability between multipartite states, especially the GHZ class states. By analyzing the involvement of 3-tangle and other entanglement measures under weak two-outcome measurement, we derive explicit upper and lower bound on the transformation probability between GHZ class states. After that, we also analyze the transformation between N-party W type states, which is a special class of multipartite entangled states that has an explicit unique expression and a set of analytical entanglement monotones. We present a necessary and sufficient condition for a known upper bound of transformation probability between two N-party W type states to be achieved. We also further investigate a novel entanglement transformation protocol, the random distillation, which transforms multipartite entanglement into bipartite entanglement ii shared by a non-deterministic pair of parties. We find upper bounds for the random distillation protocol for general N-party W type states and find the condition for the upper bounds to be achieved. What is surprising is that the upper bounds correspond to entanglement monotones that can be increased by Separable Operators (SEP), which gives the first set of

  18. Generating continuous variable optical quantum states and entanglement

    International Nuclear Information System (INIS)

    Lam, P.K.; Bowen, W.P.; Schnabel, R.; Treps, N.; Buchler, B.C.; Bachor, H.-A.; Ralph, T.C.

    2002-01-01

    Full text: Quantum information research has recently been shown to have many applications in the field of communication and information processing. Quantum states and entanglement play a central role to almost all quantum information protocols, and form the basic building blocks for larger quantum information networks. We present an overview of the research activities at the quantum optics group at the ANU relating to this area. In particular, we demonstrate technology to suppress the noise on a coherent laser beam to below that of even vacuum. This quantum state of light is called 'squeezed light'. We show experimentally that by mixing two squeezed beams on a beam splitter, a pair of Einstein-Podolsky-Rosen (EPR) entangled beams can be created. This kind of entanglement exhibits below shot noise correlations between both the phase and amplitude quandratures of two beams. Our experimental results show conclusively that our entangled beams demonstrate the famous EPR paradox

  19. Strong Einstein-Podolsky-Rosen steering with unconditional entangled states

    Science.gov (United States)

    Steinlechner, Sebastian; Bauchrowitz, Jöran; Eberle, Tobias; Schnabel, Roman

    2013-02-01

    In 1935 Schrödinger introduced the terms entanglement and steering in the context of the famous gedanken experiment discussed by Einstein, Podolsky, and Rosen (EPR). Here, we report on a sixfold increase of the observed EPR-steering effect with regard to previous experiments, as quantified by the Reid criterion. We achieved an unprecedented low conditional variance product of about 0.04<1, where 1 is the upper bound below which steering is demonstrated. The steering effect was observed on an unconditional two-mode-squeezed entangled state that contained a total vacuum state contribution of less than 8%, including detection imperfections. Together with the achieved high interference contrast between the entangled state and a bright coherent laser field, our state is compatible with efficient applications in high-power laser interferometers and fiber-based networks for entanglement distribution.

  20. Stranded Specimen Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Mammal and Turtle Division collects data about individual cetaceans and sea turtles that come ashore, or strand on the beach. The date and location of...

  1. Alaska Beluga Strandings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NMFS is mandated by the Marine Mammal Protection Act (MMPA) to collect reports of marine mammal stranding events. This particular catalogue item is specific to the...

  2. Geometric entanglement in topologically ordered states

    International Nuclear Information System (INIS)

    Orús, Román; Wei, Tzu-Chieh; Buerschaper, Oliver; Nest, Maarten Van den

    2014-01-01

    Here we investigate the connection between topological order and the geometric entanglement, as measured by the logarithm of the overlap between a given state and its closest product state of blocks. We do this for a variety of topologically ordered systems such as the toric code, double semion, colour code and quantum double models. As happens for the entanglement entropy, we find that for sufficiently large block sizes the geometric entanglement is, up to possible sub-leading corrections, the sum of two contributions: a bulk contribution obeying a boundary law times the number of blocks and a contribution quantifying the underlying pattern of long-range entanglement of the topologically ordered state. This topological contribution is also present in the case of single-spin blocks in most cases, and constitutes an alternative characterization of topological order for these quantum states based on a multipartite entanglement measure. In particular, we see that the topological term for the two-dimensional colour code is twice as much as the one for the toric code, in accordance with recent renormalization group arguments (Bombin et al 2012 New J. Phys. 14 073048). Motivated by these results, we also derive a general formalism to obtain upper- and lower-bounds to the geometric entanglement of states with a non-Abelian group symmetry, and which we explicitly use to analyse quantum double models. Furthermore, we also provide an analysis of the robustness of the topological contribution in terms of renormalization and perturbation theory arguments, as well as a numerical estimation for small systems. Some of the results in this paper rely on the ability to disentangle single sites from the quantum state, which is always possible for the systems that we consider. Additionally we relate our results to the behaviour of the relative entropy of entanglement in topologically ordered systems, and discuss a number of numerical approaches based on tensor networks that could be

  3. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template.

    Science.gov (United States)

    Yuan, Quan; McHenry, Charles S

    2009-11-13

    In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.

  4. Probabilistic Teleportation of the Three-Particle Entangled State viaEntanglement Swapping

    Institute of Scientific and Technical Information of China (English)

    路洪

    2001-01-01

    A scheme of teleportation of a three-particle entangled state via entanglement swapping is proposed. It is shown that if a two-particle entangled state and a three-particle entangled state (both are not maximum entangled states) are used as quantum channels, probabilistic teleportation of the three-particle entangled state can be realized.

  5. Entanglement reactivation in separable environments

    International Nuclear Information System (INIS)

    Pirandola, Stefano

    2013-01-01

    Combining two entanglement-breaking channels into a correlated-noise environment restores the distribution of entanglement. Surprisingly, this reactivation can be induced by the injection of separable correlations from the composite environment. In any dimension (finite or infinite), we can construct classically correlated ‘twirling’ environments which are entanglement-breaking in the transmission of single systems but entanglement-preserving when two systems are transmitted. Here entanglement is simply preserved by the existence of decoherence-free subspaces. Remarkably, even when such subspaces do not exist, a fraction of the input entanglement can still be distributed. This is found in separable Gaussian environments, where distillable entanglement is able to survive the two-mode transmission, despite being broken in any single-mode transmission by the strong thermal noise. In the Gaussian setting, entanglement restoration is a threshold process, occurring only after a critical amount of correlations has been injected. Such findings suggest new perspectives for distributing entanglement in realistic environments with extreme decoherence, identifying separable correlations and classical memory effects as physical resources for ‘breaking entanglement-breaking’. (paper)

  6. Observation of Entanglement of a Single Photon with a Trapped Atom

    International Nuclear Information System (INIS)

    Volz, Juergen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald

    2006-01-01

    We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment

  7. Entanglement percolation on a quantum internet with scale-free and clustering characters

    International Nuclear Information System (INIS)

    Wu Liang; Zhu Shiqun

    2011-01-01

    The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.

  8. Entanglement percolation on a quantum internet with scale-free and clustering characters

    Energy Technology Data Exchange (ETDEWEB)

    Wu Liang; Zhu Shiqun [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China)

    2011-11-15

    The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.

  9. Braiding transformation, entanglement swapping, and Berry phase in entanglement space

    International Nuclear Information System (INIS)

    Chen Jingling; Ge Molin; Xue Kang

    2007-01-01

    We show that braiding transformation is a natural approach to describe quantum entanglement by using the unitary braiding operators to realize entanglement swapping and generate the Greenberger-Horne-Zeilinger states as well as the linear cluster states. A Hamiltonian is constructed from the unitary R i,i+1 (θ,φ) matrix, where φ=ωt is time-dependent while θ is time-independent. This in turn allows us to investigate the Berry phase in the entanglement space

  10. The entanglement purification for entangled multi-particle states

    CERN Document Server

    Ye, Liu; Guo Guang Can

    2002-01-01

    We present two purification schemes for nonmaximally entangled states. We first show that two parties, Alice and Bob, start with shared less-entangled three-particle states to probabilistically produce a three-particle Greenberger-Horne-Zeilinger state by Bell state measurements and positive operator valued measure (POVM) or a unitary transformation. Then, by a straightforward generalization of the schemes, the purification of a multi-particle entangled state can be realized. 25 Refs. --- 35 --- AN

  11. Photonic simulation of entanglement growth and engineering after a spin chain quench.

    Science.gov (United States)

    Pitsios, Ioannis; Banchi, Leonardo; Rab, Adil S; Bentivegna, Marco; Caprara, Debora; Crespi, Andrea; Spagnolo, Nicolò; Bose, Sougato; Mataloni, Paolo; Osellame, Roberto; Sciarrino, Fabio

    2017-11-17

    The time evolution of quantum many-body systems is one of the most important processes for benchmarking quantum simulators. The most curious feature of such dynamics is the growth of quantum entanglement to an amount proportional to the system size (volume law) even when interactions are local. This phenomenon has great ramifications for fundamental aspects, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum networking). Here we use an integrated photonic chip with a circuit-based approach to simulate the dynamics of a spin chain and maximise the entanglement generation. The resulting entanglement is certified by constructing a second chip, which measures the entanglement between multiple distant pairs of simulated spins, as well as the block entanglement entropy. This is the first photonic simulation and optimisation of the extensive growth of entanglement in a spin chain, and opens up the use of photonic circuits for optimising quantum devices.

  12. Entanglement between two interacting CFTs and generalized holographic entanglement entropy

    International Nuclear Information System (INIS)

    Mollabashi, Ali; Shiba, Noburo; Takayanagi, Tadashi

    2014-01-01

    In this paper we discuss behaviors of entanglement entropy between two interacting CFTs and its holographic interpretation using the AdS/CFT correspondence. We explicitly perform analytical calculations of entanglement entropy between two free scalar field theories which are interacting with each other in both static and time-dependent ways. We also conjecture a holographic calculation of entanglement entropy between two interacting N=4 super Yang-Mills theories by introducing a minimal surface in the S 5 direction, instead of the AdS 5 direction. This offers a possible generalization of holographic entanglement entropy

  13. Entanglement and quantum teleportation via decohered tripartite entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, N., E-mail: nmohamed31@gmail.com

    2014-12-15

    The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.

  14. Quantum entanglement via nilpotent polynomials

    International Nuclear Information System (INIS)

    Mandilara, Aikaterini; Akulin, Vladimir M.; Smilga, Andrei V.; Viola, Lorenza

    2006-01-01

    We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed

  15. Hyperspherical entanglement entropy

    International Nuclear Information System (INIS)

    Dowker, J S

    2010-01-01

    The coefficient of the log term in the entanglement entropy associated with hyperspherical surfaces in flat spacetime is shown to equal the conformal anomaly by conformally transforming Euclideanized spacetime to a sphere and using already existing formulae for the relevant heat-kernel coefficients after cyclic factoring. The result follows from the fact that the conformal anomaly on this lune has an extremum at the ordinary sphere limit. A proof is given. Agreement with a recent evaluation of the coefficient is found.

  16. Hyperspherical entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Dowker, J S, E-mail: dowker@man.ac.u [Theory Group, School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2010-11-05

    The coefficient of the log term in the entanglement entropy associated with hyperspherical surfaces in flat spacetime is shown to equal the conformal anomaly by conformally transforming Euclideanized spacetime to a sphere and using already existing formulae for the relevant heat-kernel coefficients after cyclic factoring. The result follows from the fact that the conformal anomaly on this lune has an extremum at the ordinary sphere limit. A proof is given. Agreement with a recent evaluation of the coefficient is found.

  17. Inter-Universal Quantum Entanglement

    Science.gov (United States)

    Robles-Pérez, S. J.; González-Díaz, P. F.

    2015-01-01

    The boundary conditions to be imposed on the quantum state of the whole multiverse could be such that the universes would be created in entangled pairs. Then, interuniversal entanglement would provide us with a vacuum energy for each single universe that might be fitted with observational data, making testable not only the multiverse proposal but also the boundary conditions of the multiverse. Furthermore, the second law of the entanglement thermodynamics would enhance the expansion of the single universes.

  18. Global entanglement in multiparticle systems

    International Nuclear Information System (INIS)

    Meyer, David A.; Wallach, Nolan R.

    2002-01-01

    We define a polynomial measure of multiparticle entanglement which is scalable, i.e., which applies to any number of spin-(1/2) particles. By evaluating it for three particle states, for eigenstates of the one dimensional Heisenberg antiferromagnet and on quantum error correcting code subspaces, we illustrate the extent to which it quantifies global entanglement. We also apply it to track the evolution of entanglement during a quantum computation

  19. Gravity as Quantum Entanglement Force

    OpenAIRE

    Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai

    2010-01-01

    We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new in...

  20. Error exponents for entanglement concentration

    International Nuclear Information System (INIS)

    Hayashi, Masahito; Koashi, Masato; Matsumoto, Keiji; Morikoshi, Fumiaki; Winter, Andreas

    2003-01-01

    Consider entanglement concentration schemes that convert n identical copies of a pure state into a maximally entangled state of a desired size with success probability being close to one in the asymptotic limit. We give the distillable entanglement, the number of Bell pairs distilled per copy, as a function of an error exponent, which represents the rate of decrease in failure probability as n tends to infinity. The formula fills the gap between the least upper bound of distillable entanglement in probabilistic concentration, which is the well-known entropy of entanglement, and the maximum attained in deterministic concentration. The method of types in information theory enables the detailed analysis of the distillable entanglement in terms of the error rate. In addition to the probabilistic argument, we consider another type of entanglement concentration scheme, where the initial state is deterministically transformed into a (possibly mixed) final state whose fidelity to a maximally entangled state of a desired size converges to one in the asymptotic limit. We show that the same formula as in the probabilistic argument is valid for the argument on fidelity by replacing the success probability with the fidelity. Furthermore, we also discuss entanglement yield when optimal success probability or optimal fidelity converges to zero in the asymptotic limit (strong converse), and give the explicit formulae for those cases

  1. Entanglement in a parametric converter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su-Yong; Qamar, Shahid; Lee, Hai-Woong; Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)], E-mail: shahid_qamar@pieas.edu.pk, E-mail: zubairy@physics.tamu.edu

    2008-07-28

    In this paper, we consider a parametric converter as a source of entangled radiation. We examine recently derived conditions (Hillery and Zubairy 2006 Phys. Rev. Lett. 96 050503, Duan et al 2000 Phys. Rev. Lett. 84 2722) for determining when the two output modes in a parametric converter are entangled. We show that for different initial field states, the two criteria give different conditions that ensure that the output states are entangled. We also present an input-output calculation for the entanglement of the output field.

  2. Multi-Photon Entanglement and Quantum Teleportation

    National Research Council Canada - National Science Library

    Shih, Yanhua

    1999-01-01

    The project 'Multi-Photon Entanglement and Quantum Teleportation' concerns a series of experimental and theoretical investigations on multi-photon entangled states and the applications, for example...

  3. Partial recovery of entanglement in bipartite-entanglement transformations

    International Nuclear Information System (INIS)

    Bandyopadhyay, Somshubhro; Roychowdhury, Vwani; Vatan, Farrokh

    2002-01-01

    Any deterministic bipartite-entanglement transformation involving finite copies of pure states and carried out using local operations and classical communication (LOCC) results in a net loss of entanglement. We show that for almost all such transformations, partial recovery of lost entanglement is achievable by using 2x2 auxiliary entangled states, no matter how large the dimensions of the parent states are. For the rest of the special cases of deterministic LOCC transformations, we show that the dimension of the auxiliary entangled state depends on the presence of equalities in the majorization relations of the parent states. We show that genuine recovery is still possible using auxiliary states in dimensions less than that of the parent states for all patterns of majorization relations except only one special case

  4. Multi-user distribution of polarization entangled photon pairs

    Energy Technology Data Exchange (ETDEWEB)

    Trapateau, J.; Orieux, A.; Diamanti, E.; Zaquine, I., E-mail: isabelle.zaquine@telecom-paristech.fr [LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013 Paris (France); Ghalbouni, J. [Applied Physics Laboratory, Faculty of Sciences 2, Lebanese University, Campus Fanar, BP 90656 Jdeidet (Lebanon)

    2015-10-14

    We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.

  5. Statistical mechanics of multipartite entanglement

    Science.gov (United States)

    Facchi, P.; Florio, G.; Marzolino, U.; Parisi, G.; Pascazio, S.

    2009-02-01

    We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over all balanced bipartitions. We search for those (maximally multipartite entangled) states whose purity is minimum for all bipartitions and recast this optimization problem into a problem of statistical mechanics.

  6. Statistical mechanics of multipartite entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, P [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); Florio, G; Pascazio, S [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Marzolino, U [Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 34014 Trieste (Italy); Parisi, G [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185 Roma, Italy, Centre for Statistical Mechanics and Complexity (SMC), CNR-INFM, 00185 Roma (Italy)

    2009-02-06

    We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over all balanced bipartitions. We search for those (maximally multipartite entangled) states whose purity is minimum for all bipartitions and recast this optimization problem into a problem of statistical mechanics.

  7. Statistical mechanics of multipartite entanglement

    International Nuclear Information System (INIS)

    Facchi, P; Florio, G; Pascazio, S; Marzolino, U; Parisi, G

    2009-01-01

    We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over all balanced bipartitions. We search for those (maximally multipartite entangled) states whose purity is minimum for all bipartitions and recast this optimization problem into a problem of statistical mechanics

  8. Entanglement transfer between bipartite systems

    International Nuclear Information System (INIS)

    Bougouffa, Smail; Ficek, Zbigniew

    2012-01-01

    The problem of a controlled transfer of an entanglement initially encoded into two two-level atoms that are successively sent through two single-mode cavities is investigated. The atoms and the cavity modes form a four-qubit system and we demonstrate the conditions under which the initial entanglement encoded into the atoms can be completely transferred to other pairs of qubits. We find that in the case of non-zero detuning between the atomic transition frequencies and the cavity mode frequencies, no complete transfer of the initial entanglement is possible to any of the other pairs of qubits. In the case of exact resonance and equal coupling strengths of the atoms to the cavity modes, an initial maximally entangled state of the atoms can be completely transferred to the cavity modes. Complete transfer of the entanglement is restricted to the cavity modes, with transfer to the other pairs being limited to 50%. We find that complete transfer of an initial entanglement to other pairs of qubits may take place if the initial state is not the maximally entangled state and the atoms couple to the cavity modes with unequal strengths. Depending on the ratio between the coupling strengths, optimal entanglement can be created between the atoms and one of the cavity modes.

  9. Generic entangling through quantum indistinguishability

    Indian Academy of Sciences (India)

    quantum systems (methods such as entanglement swapping [5] fall in this ... continued till the particles anti-bunch, in which case they are entangled. 2. .... in the context of the scattering of ballistic electrons from a magnetic impurity in a semi-.

  10. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control of t...

  11. Strand SPA & Konverentsikeskus

    Index Scriptorium Estoniae

    2008-01-01

    Strand SPA & Konverentsikeskus on Pärnu suurim äri- ja konverentsiklientidele suunatud hotell, mis klientide seas on hinnatud just selle kompleksuse tõttu, kuna kõik, mida külaline vajab ja soovib, on olemas ühe katuse all

  12. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  13. Entanglement entropy and duality

    Energy Technology Data Exchange (ETDEWEB)

    Radičević, Ðorđe [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States)

    2016-11-22

    Using the algebraic approach to entanglement entropy, we study several dual pairs of lattice theories and show how the entropy is completely preserved across each duality. Our main result is that a maximal algebra of observables in a region typically dualizes to a non-maximal algebra in a dual region. In particular, we show how the usual notion of tracing out external degrees of freedom dualizes to a tracing out coupled to an additional summation over superselection sectors. We briefly comment on possible extensions of our results to more intricate dualities, including holographic ones.

  14. High dimensional entanglement

    CSIR Research Space (South Africa)

    Mc

    2012-07-01

    Full Text Available stream_source_info McLaren_2012.pdf.txt stream_content_type text/plain stream_size 2190 Content-Encoding ISO-8859-1 stream_name McLaren_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 High dimensional... entanglement M. McLAREN1,2, F.S. ROUX1 & A. FORBES1,2,3 1. CSIR National Laser Centre, PO Box 395, Pretoria 0001 2. School of Physics, University of the Stellenbosch, Private Bag X1, 7602, Matieland 3. School of Physics, University of Kwazulu...

  15. Spacetime equals entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasunori [Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, Kashiwa 277-8583 (Japan); Salzetta, Nico, E-mail: nsalzetta@berkeley.edu [Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sanches, Fabio; Weinberg, Sean J. [Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-10

    We study the Hilbert space structure of classical spacetimes under the assumption that entanglement in holographic theories determines semiclassical geometry. We show that this simple assumption has profound implications; for example, a superposition of classical spacetimes may lead to another classical spacetime. Despite its unconventional nature, this picture admits the standard interpretation of superpositions of well-defined semiclassical spacetimes in the limit that the number of holographic degrees of freedom becomes large. We illustrate these ideas using a model for the holographic theory of cosmological spacetimes.

  16. Offshore Earthquakes Do Not Influence Marine Mammal Stranding Risk on the Washington and Oregon Coasts

    Science.gov (United States)

    Grant, Rachel A.; Savirina, Anna

    2018-01-01

    Simple Summary Marine mammals stranding on coastal beaches is not unusual. However, there appears to be no single cause for this, with several causes being probable, such as starvation, contact with humans (for example boat strike or entanglement with fishing gear), disease, and parasitism. We evaluated marine mammal stranding off the Washington and Oregon coasts and looked at offshore earthquakes as a possible contributing factor. Our analysis showed that offshore earthquakes did not make marine mammals more likely to strand. We also analysed a subset of data from the north of Washington State and found that non-adult animals made up a large proportion of stranded animals, and for dead animals the commonest cause of death was disease, traumatic injury, or starvation. Abstract The causes of marine mammals stranding on coastal beaches are not well understood, but may relate to topography, currents, wind, water temperature, disease, toxic algal blooms, and anthropogenic activity. Offshore earthquakes are a source of intense sound and disturbance and could be a contributing factor to stranding probability. We tested the hypothesis that the probability of marine mammal stranding events on the coasts of Washington and Oregon, USA is increased by the occurrence of offshore earthquakes in the nearby Cascadia subduction zone. The analysis carried out here indicated that earthquakes are at most, a very minor predictor of either single, or large (six or more animals) stranding events, at least for the study period and location. We also tested whether earthquakes inhibit stranding and again, there was no link. Although we did not find a substantial association of earthquakes with strandings in this study, it is likely that there are many factors influencing stranding of marine mammals and a single cause is unlikely to be responsible. Analysis of a subset of data for which detailed descriptions were available showed that most live stranded animals were pups, calves, or

  17. Continuous-variable entanglement distillation of non-Gaussian mixed states

    International Nuclear Information System (INIS)

    Dong Ruifang; Lassen, Mikael; Heersink, Joel; Marquardt, Christoph; Leuchs, Gerd; Filip, Radim; Andersen, Ulrik L.

    2010-01-01

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.

  18. Entanglement negativity in the critical Ising chain

    International Nuclear Information System (INIS)

    Calabrese, Pasquale; Tagliacozzo, Luca; Tonni, Erik

    2013-01-01

    We study the scaling of the traces of the integer powers of the partially transposed reduced density matrix Tr(ρ A T 2 ) n and of the entanglement negativity for two spin blocks as a function of their length and separation in the critical Ising chain. For two adjacent blocks, we show that tensor network calculations agree with universal conformal field theory (CFT) predictions. In the case of two disjoint blocks the CFT predictions are recovered only after taking into account the finite size corrections induced by the finite length of the blocks. (paper)

  19. Entanglements in Conjugated Polymers

    Science.gov (United States)

    Xie, Renxuan; Lee, Youngmin; Aplan, Melissa; Caggiano, Nick; Gomez, Enrique; Colby, Ralph

    Conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly-((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT), are widely used as hole and electron transport materials in a variety of electronic devices. However, fundamental knowledge regarding chain entanglements and nematic-to-isotropic transition is still lacking and are crucial to maximize charge transport properties. A systematic melt rheology study on P3HT with various molecular weights and regio regularities was performed. We find that the entanglement molecular weight Me is 5.0 kg/mol for regiorandom P3HT, but the apparent Me for regioregular P3HT is significantly higher. The difference is postulated to arise from the presence of a nematic phase only in regioregular P3HT. Analogously, PFTBT shows a clear rheological signature of the nematic-to-isotropic transition as a reversible sharp transition at 278 C. Shearing of this nematic phase leads to anisotropic crystalline order in PFTBT. We postulate that aligning the microstructure will impact charge transport and thereby advance the field of conducting polymers. National Science Foundation.

  20. Experimental entanglement distillation of mesoscopic quantum states

    DEFF Research Database (Denmark)

    Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel

    2008-01-01

    channel, the distribution of loss-intolerant entangled states is inevitably afflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less...... entangled states, can be used(4-14). Here we report on the distillation of deterministically prepared light pulses entangled in continuous variables that have undergone non-Gaussian noise. The entangled light pulses(15-17) are sent through a lossy channel, where the transmission is varying in time similarly...

  1. Einstein-Podolsky-Rosen-steering swapping between two Gaussian multipartite entangled states

    Science.gov (United States)

    Wang, Meihong; Qin, Zhongzhong; Wang, Yu; Su, Xiaolong

    2017-08-01

    Multipartite Einstein-Podolsky-Rosen (EPR) steering is a useful quantum resource for quantum communication in quantum networks. It has potential applications in secure quantum communication, such as one-sided device-independent quantum key distribution and quantum secret sharing. By distributing optical modes of a multipartite entangled state to space-separated quantum nodes, a local quantum network can be established. Based on the existing multipartite EPR steering in a local quantum network, secure quantum communication protocol can be accomplished. In this manuscript, we present swapping schemes for EPR steering between two space-separated Gaussian multipartite entangled states, which can be used to connect two space-separated quantum networks. Two swapping schemes, including the swapping between a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state and an EPR entangled state and that between two tripartite GHZ entangled states, are analyzed. Various types of EPR steering are presented after the swapping of two space-separated independent multipartite entanglement states without direct interaction, which can be used to implement quantum communication between two quantum networks. The presented schemes provide technical reference for more complicated quantum networks with EPR steering.

  2. Squashed entanglement in infinite dimensions

    International Nuclear Information System (INIS)

    Shirokov, M. E.

    2016-01-01

    We analyse two possible definitions of the squashed entanglement in an infinite-dimensional bipartite system: direct translation of the finite-dimensional definition and its universal extension. It is shown that the both definitions produce the same lower semicontinuous entanglement measure possessing all basis properties of the squashed entanglement on the set of states having at least one finite marginal entropy. It is also shown that the second definition gives an adequate lower semicontinuous extension of this measure to all states of the infinite-dimensional bipartite system. A general condition relating continuity of the squashed entanglement to continuity of the quantum mutual information is proved and its corollaries are considered. Continuity bound for the squashed entanglement under the energy constraint on one subsystem is obtained by using the tight continuity bound for quantum conditional mutual information (proved in the Appendix by using Winter’s technique). It is shown that the same continuity bound is valid for the entanglement of formation. As a result the asymptotic continuity of the both entanglement measures under the energy constraint on one subsystem is proved.

  3. Graphical Classification of Entangled Qutrits

    Directory of Open Access Journals (Sweden)

    Kentaro Honda

    2012-10-01

    Full Text Available A multipartite quantum state is entangled if it is not separable. Quantum entanglement plays a fundamental role in many applications of quantum information theory, such as quantum teleportation. Stochastic local quantum operations and classical communication (SLOCC cannot essentially change quantum entanglement without destroying it. Therefore, entanglement can be classified by dividing quantum states into equivalence classes, where two states are equivalent if each can be converted into the other by SLOCC. Properties of this classification, especially in the case of non two-dimensional quantum systems, have not been well studied. Graphical representation is sometimes used to clarify the nature and structural features of entangled states. SLOCC equivalence of quantum bits (qubits has been described graphically via a connection between tripartite entangled qubit states and commutative Frobenius algebras (CFAs in monoidal categories. In this paper, we extend this method to qutrits, i.e., systems that have three basis states. We examine the correspondence between CFAs and tripartite entangled qutrits. Using the symmetry property, which is required by the definition of a CFA, we find that there are only three equivalence classes that correspond to CFAs. We represent qutrits graphically, using the connection to CFAs. We derive equations that characterize the three equivalence classes. Moreover, we show that any qutrit can be represented as a composite of three graphs that correspond to the three classes.

  4. Entanglement in a Dimerized Antiferromagnetic Heisenberg Chain

    OpenAIRE

    Hao, Xiang; Zhu, Shiqun

    2008-01-01

    The entanglement properties in an antiferromagnetic dimerized Heisenberg spin-1/2 chain are investigated. The entanglement gap, which is the difference between the ground-state energy and the minimal energy that any separable state can attain, is calculated to detect the entanglement. It is found that the entanglement gap can be increased by varying the alternation parameter. Through thermal energy, the witness of the entanglement can determine a characteristic temperature below that an entan...

  5. Local cloning of entangled states

    International Nuclear Information System (INIS)

    Gheorghiu, Vlad; Yu Li; Cohen, Scott M.

    2010-01-01

    We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.

  6. Zero modes and entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Yasaman K. [Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)

    2017-04-26

    Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.

  7. Slow Images and Entangled Photons

    International Nuclear Information System (INIS)

    Swordy, Simon

    2007-01-01

    I will discuss some recent experiments using slow light and entangled photons. We recently showed that it was possible to map a two dimensional image onto very low light level signals, slow them down in a hot atomic vapor while preserving the amplitude and phase of the images. If time remains, I will discuss some of our recent work with time-energy entangled photons for quantum cryptography. We were able to show that we could have a measurable state space of over 1000 states for a single pair of entangled photons in fiber.

  8. Teleportation of Squeezed Entangled State

    Institute of Scientific and Technical Information of China (English)

    HU Li-Yun; ZHOU Nan-Run

    2007-01-01

    Based on the coherent entangled state |α, x> we introduce the squeezed entangled state (SES). Then we propose a teleportation protocol for the SES by using Einstein-Podolsky-Rosen entangled state |η>as a quantum channel.The calculation is greatly simplified by virtue of the Schmidt decompositions of both |α, x>and |η>. Any bipartite states that can be expanded in terms of |α, x>may be teleported in this way due to the completeness of |α, x>.

  9. Bound entanglement and local realism

    International Nuclear Information System (INIS)

    Kaszlikowski, Dagomir; Zukowski, Marek; Gnacinski, Piotr

    2002-01-01

    We show using a numerical approach, which gives necessary and sufficient conditions for the existence of local realism, that the bound entangled state presented in Bennett et al. [Phys. Rev. Lett. 82, 5385 (1999)] admits a local and realistic description. We also find the lowest possible amount of some appropriate entangled state that must be ad-mixed to the bound entangled state so that the resulting density operator has no local and realistic description and as such can be useful in quantum communication and quantum computation

  10. Approximating local observables on projected entangled pair states

    Science.gov (United States)

    Schwarz, M.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states are for good reasons believed to capture ground states of gapped local Hamiltonians arising in the condensed matter context, states which are in turn expected to satisfy an entanglement area law. However, the computational hardness of contracting projected entangled pair states in two- and higher-dimensional systems is often seen as a significant obstacle when devising higher-dimensional variants of the density-matrix renormalization group method. In this work, we show that for those projected entangled pair states that are expected to provide good approximations of such ground states of local Hamiltonians, one can compute local expectation values in quasipolynomial time. We therefore provide a complexity-theoretic justification of why state-of-the-art numerical tools work so well in practice. We finally turn to the computation of local expectation values on quantum computers, providing a meaningful application for a small-scale quantum computer.

  11. Simple method of generating and distributing frequency-entangled qudits

    Science.gov (United States)

    Jin, Rui-Bo; Shimizu, Ryosuke; Fujiwara, Mikio; Takeoka, Masahiro; Wakabayashi, Ryota; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Gerrits, Thomas; Sasaki, Masahide

    2016-11-01

    High-dimensional, frequency-entangled photonic quantum bits (qudits for d-dimension) are promising resources for quantum information processing in an optical fiber network and can also be used to improve channel capacity and security for quantum communication. However, up to now, it is still challenging to prepare high-dimensional frequency-entangled qudits in experiments, due to technical limitations. Here we propose and experimentally implement a novel method for a simple generation of frequency-entangled qudts with d\\gt 10 without the use of any spectral filters or cavities. The generated state is distributed over 15 km in total length. This scheme combines the technique of spectral engineering of biphotons generated by spontaneous parametric down-conversion and the technique of spectrally resolved Hong-Ou-Mandel interference. Our frequency-entangled qudits will enable quantum cryptographic experiments with enhanced performances. This distribution of distinct entangled frequency modes may also be useful for improved metrology, quantum remote synchronization, as well as for fundamental test of stronger violation of local realism.

  12. Percolation of secret correlations in a network

    OpenAIRE

    Leverrier, Anthony; García-Patrón, Raúl

    2011-01-01

    In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks, more precisely the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a...

  13. Percolation of secret correlations in a network

    Energy Technology Data Exchange (ETDEWEB)

    Leverrier, Anthony; Garcia-Patron, Raul [ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels (Barcelona) (Spain); Research Laboratory of Electronics, MIT, Cambridge, MA 02139 (United States) and Max-Planck Institut fur Quantenoptik, Hans-Kopfermann Str. 1, D-85748 Garching (Germany)

    2011-09-15

    In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.

  14. Percolation of secret correlations in a network

    International Nuclear Information System (INIS)

    Leverrier, Anthony; Garcia-Patron, Raul

    2011-01-01

    In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.

  15. Gaussian entanglement revisited

    Science.gov (United States)

    Lami, Ludovico; Serafini, Alessio; Adesso, Gerardo

    2018-02-01

    We present a novel approach to the separability problem for Gaussian quantum states of bosonic continuous variable systems. We derive a simplified necessary and sufficient separability criterion for arbitrary Gaussian states of m versus n modes, which relies on convex optimisation over marginal covariance matrices on one subsystem only. We further revisit the currently known results stating the equivalence between separability and positive partial transposition (PPT) for specific classes of Gaussian states. Using techniques based on matrix analysis, such as Schur complements and matrix means, we then provide a unified treatment and compact proofs of all these results. In particular, we recover the PPT-separability equivalence for: (i) Gaussian states of 1 versus n modes; and (ii) isotropic Gaussian states. In passing, we also retrieve (iii) the recently established equivalence between separability of a Gaussian state and and its complete Gaussian extendability. Our techniques are then applied to progress beyond the state of the art. We prove that: (iv) Gaussian states that are invariant under partial transposition are necessarily separable; (v) the PPT criterion is necessary and sufficient for separability for Gaussian states of m versus n modes that are symmetric under the exchange of any two modes belonging to one of the parties; and (vi) Gaussian states which remain PPT under passive optical operations can not be entangled by them either. This is not a foregone conclusion per se (since Gaussian bound entangled states do exist) and settles a question that had been left unanswered in the existing literature on the subject. This paper, enjoyable by both the quantum optics and the matrix analysis communities, overall delivers technical and conceptual advances which are likely to be useful for further applications in continuous variable quantum information theory, beyond the separability problem.

  16. Entangled Bessel-Gaussian beams

    CSIR Research Space (South Africa)

    McLaren, M

    2012-10-01

    Full Text Available by performing a Bell-type experiment and showing a violation of the Clauser-Horne-Shimony-Holt inequality. In addition, we use quantum state tomography to indicate higher-dimensional entanglement in terms of BG modes....

  17. Gaussian entanglement distribution via satellite

    Science.gov (United States)

    Hosseinidehaj, Nedasadat; Malaney, Robert

    2015-02-01

    In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.

  18. Continuous-Variable Entanglement Swapping

    Directory of Open Access Journals (Sweden)

    Kevin Marshall

    2015-05-01

    Full Text Available We present a very brief overview of entanglement swapping as it relates to continuous-variable quantum information. The technical background required is discussed and the natural link to quantum teleportation is established before discussing the nature of Gaussian entanglement swapping. The limitations of Gaussian swapping are introduced, along with the general applications of swapping in the context of to quantum communication and entanglement distribution. In light of this, we briefly summarize a collection of entanglement swapping schemes which incorporate a non-Gaussian ingredient and the benefits of such schemes are noted. Finally, we motivate the need to further study and develop such schemes by highlighting requirements of a continuous-variable repeater.

  19. Quantum entanglement and quantum teleportation

    International Nuclear Information System (INIS)

    Shih, Y.H.

    2001-01-01

    One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)

  20. Entanglement scaling in lattice systems

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, K M R [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Cramer, M [QOLS, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Eisert, J [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom)

    2007-05-15

    We review some recent rigorous results on scaling laws of entanglement properties in quantum many body systems. More specifically, we study the entanglement of a region with its surrounding and determine its scaling behaviour with its size for systems in the ground and thermal states of bosonic and fermionic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for non-critical systems in arbitrary spatial dimensions. The entanglement scaling in the field limit exhibits a peculiar difference between fermionic and bosonic systems. In one-spatial dimension a logarithmic divergence is recovered for both bosonic and fermionic systems. In two spatial dimensions in the setting of half-spaces however we observe strict area scaling for bosonic systems and a multiplicative logarithmic correction to such an area scaling in fermionic systems. Similar questions may be posed and answered in classical systems.

  1. Transverse correlations in multiphoton entanglement

    International Nuclear Information System (INIS)

    Wen Jianming; Rubin, Morton H.; Shih Yanhua

    2007-01-01

    We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case

  2. Estimating localizable entanglement from witnesses

    OpenAIRE

    Amaro, David; Müller, Markus; Pal, Amit Kumar

    2018-01-01

    Computing localizable entanglement for noisy many-particle quantum states is difficult due to the optimization over all possible sets of local projection measurements. Therefore, it is crucial to develop lower bounds, which can provide useful information about the behaviour of localizable entanglement, and which can be determined by measuring a limited number of operators, or by performing least number of measurements on the state, preferably without performing a full state tomography. In thi...

  3. Minimal tomography with entanglement witnesses

    OpenAIRE

    Zhu, Huangjun; Teo, Yong Siah; Englert, Berthold-Georg

    2009-01-01

    We introduce informationally complete measurements whose outcomes are entanglement witnesses and so answer the question of how many witnesses need to be measured to decide whether an arbitrary state is entangled or not: as many as the dimension of the state space. The optimized witness-based measurement can provide exponential improvement with respect to witness efficiency in high-dimensional Hilbert spaces, at the price of a reduction in the tomographic efficiency. We describe a systematic c...

  4. Entanglement as a signature of quantum chaos.

    Science.gov (United States)

    Wang, Xiaoguang; Ghose, Shohini; Sanders, Barry C; Hu, Bambi

    2004-01-01

    We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.

  5. Pseudo-entanglement evaluated in noninertial frames

    International Nuclear Information System (INIS)

    Mehri-Dehnavi, Hossein; Mirza, Behrouz; Mohammadzadeh, Hosein; Rahimi, Robabeh

    2011-01-01

    Research highlights: → We study pseudo-entanglement in noninertial frames. → We examine different measures of entanglement and nonclassical correlation for the state. → We find the threshold for entanglement is changed in noninertial frames. → We also describe the behavior of local unitary classes of states in noninertial frames. - Abstract: We study quantum discord, in addition to entanglement, of bipartite pseudo-entanglement in noninertial frames. It is shown that the entanglement degrades from its maximum value in a stationary frame to a minimum value in an infinite accelerating frame. There is a critical region found in which, for particular cases, entanglement of states vanishes for certain accelerations. The quantum discord of pseudo-entanglement decreases by increasing the acceleration. Also, for a physically inaccessible region, entanglement and nonclassical correlation are evaluated and shown to match the corresponding values of the physically accessible region for an infinite acceleration.

  6. Mixtures of maximally entangled pure states

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com

    2016-09-15

    We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.

  7. Compact 6 dB Two-Color Continuous Variable Entangled Source Based on a Single Ring Optical Resonator

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2018-02-01

    Full Text Available Continuous-variable entangled optical beams at the degenerate wavelength of 0.8 μm or 1.5 μm have been investigated extensively, but separately. The two-color entangled states of these two useful wavelengths, with sufficiently high degrees of entanglement, still lag behind. In this work, we analyze the various limiting factors that affect the entanglement degree. On the basis of this, we successfully achieve 6 dB of two-color quadrature entangled light beams by improving the escape efficiency of the nondegenerate optical amplifier, the stability of the phase-locking servo system, and the detection efficiency. Our entangled source is constructed only from a single ring optical resonator, and thus is highly compact, which is suitable for applications in long-distance quantum communication networks.

  8. Quantum entanglement of identical particles

    International Nuclear Information System (INIS)

    Shi Yu

    2003-01-01

    We consider entanglement in a system with a fixed number of identical particles. Since any operation should be symmetrized over all the identical particles and there is the precondition that the spatial wave functions overlap, the meaning of identical-particle entanglement is fundamentally different from that of distinguishable particles. The identical-particle counterpart of the Schmidt basis is shown to be the single-particle basis in which the one-particle reduced density matrix is diagonal. But it does not play a special role in the issue of entanglement, which depends on the single-particle basis chosen. The nonfactorization due to (anti)symmetrization is naturally excluded by using the (anti)symmetrized basis or, equivalently, the particle number representation. The natural degrees of freedom in quantifying the identical-particle entanglement in a chosen single-particle basis are occupation numbers of different single-particle basis states. The entanglement between effectively distinguishable spins is shown to be a special case of the occupation-number entanglement

  9. Thermodynamic entanglement of magnonic condensates

    Science.gov (United States)

    Yuan, H. Y.; Yung, Man-Hong

    2018-02-01

    Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a central role in most of the quantum information processing tasks. Here we theoretically study the entanglement properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation for a future investigation of the magnon BEC in terms of quantum entanglement.

  10. Multipartite geometric entanglement in finite size XY model

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.

  11. Stranded costs and exit fees

    International Nuclear Information System (INIS)

    2002-01-01

    The New Brunswick Market Design Committee has been directed to examine the issue of stranded costs since it is a major component of restructuring within the electricity sector. When regulated monopolies are faced with competition, they could find that some of their embedded costs cannot be recovered. These costs are referred to as stranded costs. Common sources include large capital investments in uneconomic plants or expensive power purchase contracts or fuel supply contracts. In general, stranded costs do not include gains or losses associated with normal business risks experienced by regulated utilities. This report presents recommendations for mitigation of stranded costs, valuation methodologies and cost-recovery mechanisms. It also presents a summary of experience with stranded costs in other jurisdictions such as California, Rhode Island, Pennsylvania and Ontario. Stranded costs are often recovered through an obligatory charge on all customers, particularly in jurisdictions where retail competition exists. In the New Brunswick market, however, the only customers who can create stranded costs are those eligible to choose their own suppliers. It is argued that since most customers will not have a choice of electricity suppliers, they cannot generate stranded costs and therefore, should not have to pay costs stranded by others. A method to quantify stranded costs is presented, along with a review of transmission-related stranded costs in New Brunswick. Expansion of self-generation in New Brunswick could strand transmission assets. Currently, self-generators only contribute a small amount to fixed charges of the transmission system. However, under new recommended tariffs, the amount could increase. It is likely that the net amount of stranded transmission costs will not be large. 2 refs., 1 fig

  12. Generalized Remote Preparation of Arbitrary m-qubit Entangled States via Genuine Entanglements

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-03-01

    Full Text Available Herein, we present a feasible, general protocol for quantum communication within a network via generalized remote preparation of an arbitrary m-qubit entangled state designed with genuine tripartite Greenberger–Horne–Zeilinger-type entangled resources. During the implementations, we construct novel collective unitary operations; these operations are tasked with performing the necessary phase transfers during remote state preparations. We have distilled our implementation methods into a five-step procedure, which can be used to faithfully recover the desired state during transfer. Compared to previous existing schemes, our methodology features a greatly increased success probability. After the consumption of auxiliary qubits and the performance of collective unitary operations, the probability of successful state transfer is increased four-fold and eight-fold for arbitrary two- and three-qubit entanglements when compared to other methods within the literature, respectively. We conclude this paper with a discussion of the presented scheme for state preparation, including: success probabilities, reducibility and generalizability.

  13. Optimal simulation of a perfect entangler

    International Nuclear Information System (INIS)

    Yu Nengkun; Duan Runyao; Ying Mingsheng

    2010-01-01

    A 2 x 2 unitary operation is called a perfect entangler if it can generate a maximally entangled state from some unentangled input. We study the following question: How many runs of a given two-qubit entangling unitary operation are required to simulate some perfect entangler with one-qubit unitary operations as free resources? We completely solve this problem by presenting an analytical formula for the optimal number of runs of the entangling operation. Our result reveals an entanglement strength of two-qubit unitary operations.

  14. Minimal Entanglement Witness from Electrical Current Correlations.

    Science.gov (United States)

    Brange, F; Malkoc, O; Samuelsson, P

    2017-01-20

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  15. Optimal entanglement witnesses for qubits and qutrits

    Science.gov (United States)

    Bertlmann, Reinhold A.; Durstberger, Katharina; Hiesmayr, Beatrix C.; Krammer, Philipp

    2005-11-01

    We study the connection between the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states) and entanglement witness in terms of a generalized Bell inequality which distinguishes between entangled and separable states. A method for checking the nearest separable state to a given entangled one is presented. We illustrate the general results by considering isotropic states, in particular two-qubit and two-qutrit states—and their generalizations to arbitrary dimensions—where we calculate the optimal entanglement witnesses explicitly.

  16. Optimal entanglement witnesses for qubits and qutrits

    International Nuclear Information System (INIS)

    Bertlmann, Reinhold A.; Durstberger, Katharina; Hiesmayr, Beatrix C.; Krammer, Philipp

    2005-01-01

    We study the connection between the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states) and entanglement witness in terms of a generalized Bell inequality which distinguishes between entangled and separable states. A method for checking the nearest separable state to a given entangled one is presented. We illustrate the general results by considering isotropic states, in particular two-qubit and two-qutrit states--and their generalizations to arbitrary dimensions--where we calculate the optimal entanglement witnesses explicitly

  17. Minimal Entanglement Witness from Electrical Current Correlations

    Science.gov (United States)

    Brange, F.; Malkoc, O.; Samuelsson, P.

    2017-01-01

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  18. Detecting quantum entanglement. Entanglement witnesses and uncertainty relations

    International Nuclear Information System (INIS)

    Guehne, O.

    2004-01-01

    This thesis deals with methods of the detection of entanglement. After recalling some facts and definitions concerning entanglement and separability, we investigate two methods of the detection of entanglement. In the first part of this thesis we consider so-called entanglement witnesses, mainly in view of the detection of multipartite entanglement. Entanglement witnesses are observables for which a negative expectation value indicates entanglement. We first present a simple method to construct these witnesses. Since witnesses are nonlocal observables, they are not easy to measure in a real experiment. However, as we will show, one can circumvent this problem by decomposing the witness into several local observables which can be measured separately. We calculate the local decompositions for several interesting witnesses for two, three and four qubits. Local decompositions can be optimized in the number of measurement settings which are needed for an experimental implementation. We present a method to prove that a given local decomposition is optimal and discuss with this the optimality of our decompositions. Then we present another method of designing witnesses which are by construction measurable with local measurements. Finally, we shortly report on experiments where some of the witnesses derived in this part have been used to detect three- and four-partite entanglement of polarized photons. The second part of this thesis deals with separability criteria which are written in terms of uncertainty relations. There are two different formulations of uncertainty relations since one can measure the uncertainty of an observable by its variance as well as by entropic quantities. We show that both formulations are useful tools for the derivation of separability criteria for finite-dimensional systems and investigate the resulting criteria. Our results in this part exhibit also some more fundamental properties of entanglement: We show how known separability criteria for

  19. Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case.

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2007-10-12

    We demonstrate the existence of general constraints on distributed quantum correlations, which impose a trade-off on bipartite and multipartite entanglement at once. For all N-mode Gaussian states under permutation invariance, we establish exactly a monogamy inequality, stronger than the traditional one, that by recursion defines a proper measure of genuine N-partite entanglement. Strong monogamy holds as well for subsystems of arbitrary size, and the emerging multipartite entanglement measure is found to be scale invariant. We unveil its operational connection with the optimal fidelity of continuous variable teleportation networks.

  20. Entangled states in quantum mechanics

    Science.gov (United States)

    Ruža, Jānis

    2010-01-01

    In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.

  1. Quantum logic networks for probabilistic teleportation

    Institute of Scientific and Technical Information of China (English)

    刘金明; 张永生; 等

    2003-01-01

    By eans of the primitive operations consisting of single-qubit gates.two-qubit controlled-not gates,Von Neuman measurement and classically controlled operations.,we construct efficient quantum logic networks for implementing probabilistic teleportation of a single qubit,a two-particle entangled state,and an N-particle entanglement.Based on the quantum networks,we show that after the partially entangled states are concentrated into maximal entanglement,the above three kinds of probabilistic teleportation are the same as the standard teleportation using the corresponding maximally entangled states as the quantum channels.

  2. Entangled spin chain

    Science.gov (United States)

    Salberger, Olof; Korepin, Vladimir

    We introduce a new model of interacting spin 1/2. It describes interactions of three nearest neighbors. The Hamiltonian can be expressed in terms of Fredkin gates. The Fredkin gate (also known as the controlled swap gate) is a computational circuit suitable for reversible computing. Our construction generalizes the model presented by Peter Shor and Ramis Movassagh to half-integer spins. Our model can be solved by means of Catalan combinatorics in the form of random walks on the upper half plane of a square lattice (Dyck walks). Each Dyck path can be mapped on a wave function of spins. The ground state is an equally weighted superposition of Dyck walks (instead of Motzkin walks). We can also express it as a matrix product state. We further construct a model of interacting spins 3/2 and greater half-integer spins. The models with higher spins require coloring of Dyck walks. We construct a SU(k) symmetric model (where k is the number of colors). The leading term of the entanglement entropy is then proportional to the square root of the length of the lattice (like in the Shor-Movassagh model). The gap closes as a high power of the length of the lattice [5, 11].

  3. Teleportation of N-particle entangled W state via entanglement swapping

    Institute of Scientific and Technical Information of China (English)

    Zhan You-Bang

    2004-01-01

    A scheme for teleporting an unknown N-particle entangled W state is proposed via entanglement swapping. In this scheme, N maximally entangled particle pairs are used as quantum channel. As a special case, the teleportation of an unknown four-particle entangled W state is studied.

  4. Protecting single-photon entanglement with practical entanglement source

    Science.gov (United States)

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  5. Pulsed NMR studies of crosslinking and entanglements in high molecular weight linear polydimethylsiloxanes

    International Nuclear Information System (INIS)

    Folland, R.; Charlesby, A.

    1977-01-01

    Pulsed NMR studies of proton spin relaxation are used to investigate both radiation-induced cross linking and entanglements in three high molecular weight linear polydimethylsiloxanes (Msub(w) = 26,000, 63,000 and 110,000). Particular emphasis is placed on the spin-spin relaxation since this is determined by the slower relative translational motions of the polymer chains and hence profoundly affected by the presence of intermolecular couplings such as crosslinks or entanglements. The spin-lattice relaxation times, T 1 , are determined by the fast anisotropic chain rotations and are rather insensitive to such intermolecular couplings. The spin-spin relaxation in these materials is represented by a double exponential decay involving two time constants, Tsub(2S) and Tsub(2L). The shorter component, Tsub(2S), is attributed to network material, which may be either of a dynamic form arising from temporary entanglements or of a permanent nature due to crosslinks. The concentration of entanglements depends on the initial molecular weight of the sample whereas the concentration of crosslinks is a function of the radiation dose. The longer component, Tsub(2L), is attributed to the non-network molecules. On the time scale of the NMR measurements the entanglements are shown to act in the same way as crosslinks. The variation of the relative proportions of network and non-network material with dose is shown to be accounted for by using standard gelation theory when allowance is made for the initial effective crosslink density due to entanglements. The analysis provides a value for the average molecular weight per entanglement point of 27,000 +- 1000 which is consistent with the critical molecular weight for entanglements of 29,000. The dependences of Tsub(2S) and Tsub(2L) on dose and molecular weight are also discussed in terms of the molecular motion. (author)

  6. From entanglement witness to generalized Catalan numbers

    Science.gov (United States)

    Cohen, E.; Hansen, T.; Itzhaki, N.

    2016-07-01

    Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one.

  7. Separability criteria for genuine multiparticle entanglement

    NARCIS (Netherlands)

    Guhne, O.; Seevinck, M.P.|info:eu-repo/dai/nl/304847399

    2010-01-01

    We present a method to derive separability criteria for different classes of multiparticle entanglement, especially genuine multiparticle entanglement. The resulting criteria are necessary and sufficient for certain families of states. This, for example, completely solves the problem of classifying

  8. Separability Criteria for Genuine Multiparticle Entanglement

    NARCIS (Netherlands)

    Guehne, O.; Seevinck, M.P.

    2010-01-01

    We present a method to derive separability criteria for different classes of multiparticle entanglement, especially genuine multiparticle entanglement. The resulting criteria are necessary and sufficient for certain families of states. This, for example, completely solves the problem of classifying

  9. HMSRP Hawaiian Monk Seal Entanglement data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains records of all entanglements of Hawaiian monk seals in marine debris. The data set comprises records of seals entangled by derelict fishing...

  10. Relay entanglement and clusters of correlated spins

    Science.gov (United States)

    Doronin, S. I.; Zenchuk, A. I.

    2018-06-01

    Considering a spin-1/2 chain, we suppose that the entanglement passes from a given pair of particles to another one, thus establishing the relay transfer of entanglement along the chain. Therefore, we introduce the relay entanglement as a sum of all pairwise entanglements in a spin chain. For more detailed studying the effects of remote pairwise entanglements, we use the partial sums collecting entanglements between the spins separated by up to a certain number of nodes. The problem of entangled cluster formation is considered, and the geometric mean entanglement is introduced as a characteristic of quantum correlations in a cluster. Generally, the lifetime of a cluster decreases with an increase in its size.

  11. Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms

    International Nuclear Information System (INIS)

    Liu Tang-Kun; Zhang Kang-Long; Tao Yu; Shan Chuan-Jia; Liu Ji-Bing

    2016-01-01

    The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1. (paper)

  12. Quantum entanglement and special relativity

    International Nuclear Information System (INIS)

    Nishikawa, Yoshihisa

    2008-01-01

    Quantum entanglement was suggested by Einstein to indicate that quantum mechanics was incomplete. However, against Einstein's expectation, the phenomenon due to quantum entanglement has been verified by experiments. Recently, in quantum information theory, it has been also treated as a resource for quantum teleportation and so on. In around 2000, it is recognized that quantum correlations between two particles of one pair state in an entangled spin-state are affected by the non-trivial effect due to the successive Lorentz transformation. This relativistic effect is called the Wigner rotation. The Wigner rotation has to been taken into account when we observe spin-correlation of moving particles in a different coordinate frame. In this paper, first, we explain quantum entanglement and its modification due to the Wigner rotation. After that, we introduce an extended model instead of one pair state model. In the extended model, quantum entanglement state is prepared as a superposition state of various pair states. We have computed the von Neumann entropy and the Shannon entropy to see the global behavior of variation for the spin correlation due to the relativistic effect. We also discuss distinguishability between the two particles of the pair. (author)

  13. Quantum walks with entangled coins

    International Nuclear Information System (INIS)

    Venegas-Andraca, S E; Ball, J L; Burnett, K; Bose, S

    2005-01-01

    We present a mathematical formalism for the description of un- restricted quantum walks with entangled coins and one walker. The numerical behaviour of such walks is examined when using a Bell state as the initial coin state, with two different coin operators, two different shift operators, and one walker. We compare and contrast the performance of these quantum walks with that of a classical random walk consisting of one walker and two maximally correlated coins as well as quantum walks with coins sharing different degrees of entanglement. We illustrate that the behaviour of our walk with entangled coins can be very different in comparison to the usual quantum walk with a single coin. We also demonstrate that simply by changing the shift operator, we can generate widely different distributions. We also compare the behaviour of quantum walks with maximally entangled coins with that of quantum walks with non-entangled coins. Finally, we show that the use of different shift operators on two and three qubit coins leads to different position probability distributions in one- and two-dimensional graphs

  14. Communication cost of entanglement transformations

    International Nuclear Information System (INIS)

    Hayden, Patrick; Winter, Andreas

    2003-01-01

    We study the amount of communication needed for two parties to transform some given joint pure state into another one, either exactly or with some fidelity. Specifically, we present a method to lower bound this communication cost even when the amount of entanglement does not increase. Moreover, the bound applies even if the initial state is supplemented with unlimited entanglement in the form of EPR (Einstein-Podolsky-Rosen) pairs and the communication is allowed to be quantum mechanical. We then apply the method to the determination of the communication cost of asymptotic entanglement concentration and dilution. While concentration is known to require no communication whatsoever, the best known protocol for dilution, discovered by H.-K. Lo and S. Popescu [Phys. Rev. Lett. 83, 1459 (1999)], requires exchange of a number of bits that is of the order of the square root of the number of EPR pairs. Here we prove a matching lower bound of the same asymptotic order, demonstrating the optimality of the Lo-Popescu protocol up to a constant factor and establishing the existence of a fundamental asymmetry between the concentration and dilution tasks. We also discuss states for which the minimal communication cost is proportional to their entanglement, such as the states recently introduced in the context of 'embezzling entanglement' (W. van Dam and P. Hayden, e-print quant-ph/0201041)

  15. Entanglement in mutually unbiased bases

    Energy Technology Data Exchange (ETDEWEB)

    Wiesniak, M; Zeilinger, A [Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Paterek, T, E-mail: tomasz.paterek@nus.edu.sg [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore)

    2011-05-15

    One of the essential features of quantum mechanics is that most pairs of observables cannot be measured simultaneously. This phenomenon manifests itself most strongly when observables are related to mutually unbiased bases. In this paper, we shed some light on the connection between mutually unbiased bases and another essential feature of quantum mechanics, quantum entanglement. It is shown that a complete set of mutually unbiased bases of a bipartite system contains a fixed amount of entanglement, independent of the choice of the set. This has implications for entanglement distribution among the states of a complete set. In prime-squared dimensions we present an explicit experiment-friendly construction of a complete set with a particularly simple entanglement distribution. Finally, we describe the basic properties of mutually unbiased bases composed of product states only. The constructions are illustrated with explicit examples in low dimensions. We believe that the properties of entanglement in mutually unbiased bases may be one of the ingredients to be taken into account to settle the question of the existence of complete sets. We also expect that they will be relevant to applications of bases in the experimental realization of quantum protocols in higher-dimensional Hilbert spaces.

  16. Energy entanglement relation for quantum energy teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, Masahiro, E-mail: hotta@tuhep.phys.tohoku.ac.j [Department of Physics, Faculty of Science, Tohoku University, Sendai 980-8578 (Japan)

    2010-07-26

    Protocols of quantum energy teleportation (QET), while retaining causality and local energy conservation, enable the transportation of energy from a subsystem of a many-body quantum system to a distant subsystem by local operations and classical communication through ground-state entanglement. We prove two energy-entanglement inequalities for a minimal QET model. These relations help us to gain a profound understanding of entanglement itself as a physical resource by relating entanglement to energy as an evident physical resource.

  17. Minimal Entanglement Witness From Electrical Current Correlations

    OpenAIRE

    Brange, F.; Malkoc, O.; Samuelsson, P.

    2016-01-01

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and non-collinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be ...

  18. Entangling mobility and interactions in social media.

    Science.gov (United States)

    Grabowicz, Przemyslaw A; Ramasco, José J; Gonçalves, Bruno; Eguíluz, Víctor M

    2014-01-01

    Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someone's location from their friends' locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite) is used for validation. Our model reproduces various topological and physical properties of the networks not captured by models uncoupling mobility and social interactions such as: i) the total size of the connected components, ii) the distance distribution between connected users, iii) the dependence of the reciprocity on the distance, iv) the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by a simplified version of our model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.

  19. Entangling mobility and interactions in social media.

    Directory of Open Access Journals (Sweden)

    Przemyslaw A Grabowicz

    Full Text Available Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someone's location from their friends' locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite is used for validation. Our model reproduces various topological and physical properties of the networks not captured by models uncoupling mobility and social interactions such as: i the total size of the connected components, ii the distance distribution between connected users, iii the dependence of the reciprocity on the distance, iv the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by a simplified version of our model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.

  20. The minimal entanglement of bipartite decompositions as a witness of strong entanglement in a quantum system

    OpenAIRE

    Zenchuk, A. I.

    2010-01-01

    We {characterize the multipartite entanglement in a quantum system by the quantity} which vanishes if only the quantum system may be decomposed into two weakly entangled subsystems, unlike measures of multipartite entanglement introduced before. We refer to this {quantity} as the minimal entanglement of bipartite decompositions (MEBD). Big MEBD means that the system may not be decomposed into two weakly entangled subsystems. MEBD allows one to define, for instance, whether the given quantum s...

  1. Entropy-driven phase transitions of entanglement

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio; Yuasa, Kazuya

    2013-05-01

    We study the behavior of bipartite entanglement at fixed von Neumann entropy. We look at the distribution of the entanglement spectrum, that is, the eigenvalues of the reduced density matrix of a quantum system in a pure state. We report the presence of two continuous phase transitions, characterized by different entanglement spectra, which are deformations of classical eigenvalue distributions.

  2. Maximally Entangled Multipartite States: A Brief Survey

    International Nuclear Information System (INIS)

    Enríquez, M; Wintrowicz, I; Życzkowski, K

    2016-01-01

    The problem of identifying maximally entangled quantum states of a composite quantum systems is analyzed. We review some states of multipartite systems distinguished with respect to certain measures of quantum entanglement. Numerical results obtained for 4-qubit pure states illustrate the fact that the notion of maximally entangled state depends on the measure used. (paper)

  3. Quantum entanglement and quantum computational algorithms

    Indian Academy of Sciences (India)

    Abstract. The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped ...

  4. Universal distortion-free entanglement concentration

    International Nuclear Information System (INIS)

    Matsumoto, Keiji; Hayashi, Masahito

    2007-01-01

    We propose a new protocol of universal entanglement concentration, which converts many copies of an unknown pure state to an exact maximally entangled state. The yield of the protocol, which is outputted as a classical information, is probabilistic, and achieves the entropy rate with high probability, just as nonuniversal entanglement concentration protocols do

  5. Quantum teleportation of entangled squeezed vacuum states

    Institute of Scientific and Technical Information of China (English)

    蔡新华

    2003-01-01

    An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.

  6. Structural entanglements in protein complexes

    Science.gov (United States)

    Zhao, Yani; Chwastyk, Mateusz; Cieplak, Marek

    2017-06-01

    We consider multi-chain protein native structures and propose a criterion that determines whether two chains in the system are entangled or not. The criterion is based on the behavior observed by pulling at both termini of each chain simultaneously in the two chains. We have identified about 900 entangled systems in the Protein Data Bank and provided a more detailed analysis for several of them. We argue that entanglement enhances the thermodynamic stability of the system but it may have other functions: burying the hydrophobic residues at the interface and increasing the DNA or RNA binding area. We also study the folding and stretching properties of the knotted dimeric proteins MJ0366, YibK, and bacteriophytochrome. These proteins have been studied theoretically in their monomeric versions so far. The dimers are seen to separate on stretching through the tensile mechanism and the characteristic unraveling force depends on the pulling direction.

  7. Entanglement in open quantum systems

    International Nuclear Information System (INIS)

    Isar, A.

    2007-01-01

    In the framework of the theory of open systems based on quantum dynamical semigroups, we solve the master equation for two independent bosonic oscillators interacting with an environment in the asymptotic long-time regime. We give a description of the continuous-variable entanglement in terms of the covariance matrix of the quantum states of the considered system for an arbitrary Gaussian input state. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems immersed in a common environment and evolving under a Markovian, completely positive dynamics become asymptotically entangled for certain environments, so that their non-local quantum correlations exist in the long-time regime. (author) Key words: quantum information theory, open systems, quantum entanglement, inseparable states

  8. Global entanglement in XXZ chains

    International Nuclear Information System (INIS)

    Canosa, N.; Rossignoli, R.

    2006-01-01

    We examine the thermal entanglement of XXZ-type Heisenberg chains in the presence of a uniform magnetic field along the z axes through the evaluation of the negativity associated with bipartitions of the whole system and subsystems. Limit temperatures for nonzero global negativities are shown to depend on the asymmetry Δ, but not on the uniform field, and can be much higher than those limiting pairwise entanglement. It is also shown that global bipartite entanglement may exist for T>0 even for Δ≥1, i.e., when the system is fully aligned (and hence separable) at T=0, and that the bipartition leading to the highest limit temperature depends on Δ

  9. Measuring coherence with entanglement concurrence

    Science.gov (United States)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-07-01

    Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.

  10. Berry phase in entangled systems

    International Nuclear Information System (INIS)

    Bertlmann, R.A.; Hasegawa, Y.; Hiesmayr, B.C.; Durstberger, C.

    2005-01-01

    Full text: The influence of the geometric phase, in particular the Berry phase, on an entangled spin-1/2 system is studied. We discuss in detail the case, where the geometric phase is generated only by one part of the Hilbert space. We are able to cancel the effects of the dynamical phase by using the 'spin-echo' method. We analyze how the Berry phase affects the Bell angles and the maximal violation of a CHSH-Bell inequality. Furthermore, we suggest an experimental realization of our setup within neutron interferometry. It is possible to create entanglement between different degrees of freedom (spin and spatial degree of freedom) for a single neutron. The influence of the geometrical phase on the entangled neutron state is tested experimentally which is work in progress. (author)

  11. Quantum Entanglements: Selected Papers

    International Nuclear Information System (INIS)

    Giannetto, E

    2005-01-01

    This book is a sort of tribute to Rob Clifton (1964-2002), Associate Professor of Philosophy and Associate Director of the Center for Philosophy of Science at the University of Pittsburgh, philosopher of physics and editor of the journal Studies in the History and Philosophy of Modern Physics, who tragically died of cancer. It contains fourteen papers by Clifton, for the most part written in collaboration with other authors (Jeffrey Bub (2), Sheldon Goldstein, Michael Dickson, Hans Halvorson (6), Adrian Kent (2)), published between 1995 and 2002. The choice of papers made by the editors is very impressive. They concern the foundations of quantum mechanics and quantum field theory. Among the issues discussed are the modal interpretations of quantum mechanics, the problems of hidden variables theories, non-locality, Bell's inequality, the Einstein-Podolsky-Rosen paradox, Lorentz invariance, de-coherence, non-contextuality, complementarity, entanglement and quantum information. A consequence of such investigations is that non-separability is a more complex issue than violation of Bell's inequality. Apart from the perspective one can follow-whether one agrees or not with Clifton-these papers are effective contributions to an understanding of the problems involved in the foundations of quantum mechanics. The most interesting parts, in my opinion, are related to the extension of the discussion of foundational problems to quantum field theory: on the algebraic approach, and on the twin concepts of particle and vacuum. Non-locality appears to be 'worse' in relativistic quantum field theory than in non-relativistic quantum mechanics. All the papers deal with relevant epistemological and even historical aspects of quantum mechanics interpretations, but all the issues are discussed from a technical, logical and mathematical approach. A complete bibliography of Clifton's papers is given at the end of the volume. (book review)

  12. Entanglement evolution for quantum trajectories

    International Nuclear Information System (INIS)

    Vogelsberger, S; Spehner, D

    2011-01-01

    Entanglement is a key resource in quantum information. It can be destroyed or sometimes created by interactions with a reservoir. In recent years, much attention has been devoted to the phenomena of entanglement sudden death and sudden birth, i.e., the sudden disappearance or revival of entanglement at finite times resulting from a coupling of the quantum system to its environment. We investigate the evolution of the entanglement of noninteracting qubits coupled to reservoirs under monitoring of the reservoirs by means of continuous measurements. Because of these measurements, the qubits remain at all times in a pure state, which evolves randomly. To each measurement result (or 'realization') corresponds a quantum trajectory in the Hilbert space of the qubits. We show that for two qubits coupled to independent baths subjected to local measurements, the average of the qubits' concurrence over all quantum trajectories is either constant or decays exponentially. The corresponding decay rate depends on the measurement scheme only. This result contrasts with the entanglement sudden death phenomenon exhibited by the qubits' density matrix in the absence of measurements. Our analysis applies to arbitrary quantum jump dynamics (photon counting) as well as to quantum state diffusion (homodyne or heterodyne detections) in the Markov limit. We discuss the best measurement schemes to protect the entanglement of the qubits. We also analyze the case of two qubits coupled to a common bath. Then, the average concurrence can vanish at discrete times and may coincide with the concurrence of the density matrix. The results explained in this article have been presented during the 'Fifth International Workshop DICE2010' by the first author and have been the subject of a prior publication.

  13. Bosonic behavior of entangled fermions

    DEFF Research Database (Denmark)

    C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus

    2012-01-01

    Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...

  14. Deterministic chaos in entangled eigenstates

    Science.gov (United States)

    Schlegel, K. G.; Förster, S.

    2008-05-01

    We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.

  15. Deterministic chaos in entangled eigenstates

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, K.G. [Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany)], E-mail: guenter.schlegel@arcor.de; Foerster, S. [Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany)

    2008-05-12

    We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.

  16. Deterministic chaos in entangled eigenstates

    International Nuclear Information System (INIS)

    Schlegel, K.G.; Foerster, S.

    2008-01-01

    We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator

  17. Quantum entanglement: theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, N.

    2007-10-10

    This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum

  18. Quantum entanglement: theory and applications

    International Nuclear Information System (INIS)

    Schuch, N.

    2007-01-01

    This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum

  19. Benchmarks and statistics of entanglement dynamics

    International Nuclear Information System (INIS)

    Tiersch, Markus

    2009-01-01

    In the present thesis we investigate how the quantum entanglement of multicomponent systems evolves under realistic conditions. More specifically, we focus on open quantum systems coupled to the (uncontrolled) degrees of freedom of an environment. We identify key quantities that describe the entanglement dynamics, and provide efficient tools for its calculation. For quantum systems of high dimension, entanglement dynamics can be characterized with high precision. In the first part of this work, we derive evolution equations for entanglement. These formulas determine the entanglement after a given time in terms of a product of two distinct quantities: the initial amount of entanglement and a factor that merely contains the parameters that characterize the dynamics. The latter is given by the entanglement evolution of an initially maximally entangled state. A maximally entangled state thus benchmarks the dynamics, and hence allows for the immediate calculation or - under more general conditions - estimation of the change in entanglement. Thereafter, a statistical analysis supports that the derived (in-)equalities describe the entanglement dynamics of the majority of weakly mixed and thus experimentally highly relevant states with high precision. The second part of this work approaches entanglement dynamics from a topological perspective. This allows for a quantitative description with a minimum amount of assumptions about Hilbert space (sub-)structure and environment coupling. In particular, we investigate the limit of increasing system size and density of states, i.e. the macroscopic limit. In this limit, a universal behaviour of entanglement emerges following a ''reference trajectory'', similar to the central role of the entanglement dynamics of a maximally entangled state found in the first part of the present work. (orig.)

  20. Benchmarks and statistics of entanglement dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tiersch, Markus

    2009-09-04

    In the present thesis we investigate how the quantum entanglement of multicomponent systems evolves under realistic conditions. More specifically, we focus on open quantum systems coupled to the (uncontrolled) degrees of freedom of an environment. We identify key quantities that describe the entanglement dynamics, and provide efficient tools for its calculation. For quantum systems of high dimension, entanglement dynamics can be characterized with high precision. In the first part of this work, we derive evolution equations for entanglement. These formulas determine the entanglement after a given time in terms of a product of two distinct quantities: the initial amount of entanglement and a factor that merely contains the parameters that characterize the dynamics. The latter is given by the entanglement evolution of an initially maximally entangled state. A maximally entangled state thus benchmarks the dynamics, and hence allows for the immediate calculation or - under more general conditions - estimation of the change in entanglement. Thereafter, a statistical analysis supports that the derived (in-)equalities describe the entanglement dynamics of the majority of weakly mixed and thus experimentally highly relevant states with high precision. The second part of this work approaches entanglement dynamics from a topological perspective. This allows for a quantitative description with a minimum amount of assumptions about Hilbert space (sub-)structure and environment coupling. In particular, we investigate the limit of increasing system size and density of states, i.e. the macroscopic limit. In this limit, a universal behaviour of entanglement emerges following a ''reference trajectory'', similar to the central role of the entanglement dynamics of a maximally entangled state found in the first part of the present work. (orig.)

  1. Chain networking revealed by molecular dynamics simulation

    Science.gov (United States)

    Zheng, Yexin; Tsige, Mesfin; Wang, Shi-Qing

    Based on Kremer-Grest model for entangled polymer melts, we demonstrate how the response of a polymer glass depends critically on the chain length. After quenching two melts of very different chain lengths (350 beads per chain and 30 beads per chain) into deeply glassy states, we subject them to uniaxial extension. Our MD simulations show that the glass of long chains undergoes stable necking after yielding whereas the system of short chains is unable to neck and breaks up after strain localization. During ductile extension of the polymer glass made of long chain significant chain tension builds up in the load-bearing strands (LBSs). Further analysis is expected to reveal evidence of activation of the primary structure during post-yield extension. These results lend support to the recent molecular model 1 and are the simulations to demonstrate the role of chain networking. This work is supported, in part, by a NSF Grant (DMR-EAGER-1444859)

  2. Transverse entanglement migration in Hilbert space

    International Nuclear Information System (INIS)

    Chan, K. W.; Torres, J. P.; Eberly, J. H.

    2007-01-01

    We show that, although the amount of mutual entanglement of photons propagating in free space is fixed, the type of correlations between the photons that determine the entanglement can dramatically change during propagation. We show that this amounts to a migration of entanglement in Hilbert space, rather than real space. For the case of spontaneous parametric down-conversion, the migration of entanglement in transverse coordinates takes place from modulus to phase of the biphoton state and back again. We propose an experiment to observe this migration in Hilbert space and to determine the full entanglement

  3. Characterization of two-qubit perfect entanglers

    International Nuclear Information System (INIS)

    Rezakhani, A.T.

    2004-01-01

    Here we consider perfect entanglers from another perspective. It is shown that there are some special perfect entanglers which can maximally entangle a full product basis. We explicitly construct a one-parameter family of such entanglers together with the proper product basis that they maximally entangle. This special family of perfect entanglers contains some well-known operators such as controlled-NOT (CNOT) and double-CNOT, but not √(SWAP). In addition, it is shown that all perfect entanglers with entangling power equal to the maximal value (2/9) are also special perfect entanglers. It is proved that the one-parameter family is the only possible set of special perfect entanglers. Also we provide an analytic way to implement any arbitrary two-qubit gate, given a proper special perfect entangler supplemented with single-qubit gates. Such gates are shown to provide a minimum universal gate construction in that just two of them are necessary and sufficient in implementation of a generic two-qubit gate

  4. Continuous variable polarization entanglement, experiment and analysis

    International Nuclear Information System (INIS)

    Bowen, Warwick P; Treps, Nicolas; Schnabel, Roman; Ralph, Timothy C; Lam, Ping Koy

    2003-01-01

    We generate and characterize continuous variable polarization entanglement between two optical beams. We first produce quadrature entanglement, and by performing local operations we transform it into a polarization basis. We extend two entanglement criteria, the inseparability criteria proposed by Duan et al (2000 Phys. Rev. Lett. 84 2722) and the Einstein-Podolsky-Rosen (EPR) paradox criteria proposed by Reid and Drummond (1988 Phys. Rev. Lett. 60 2731), to Stokes operators; and use them to characterize the entanglement. Our results for the EPR paradox criteria are visualized in terms of uncertainty balls on the Poincare sphere. We demonstrate theoretically that using two quadrature entangled pairs it is possible to entangle three orthogonal Stokes operators between a pair of beams, although with a bound √3 times more stringent than for the quadrature entanglement

  5. Continuous variable polarization entanglement, experiment and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, Warwick P [Department of Physics, Faculty of Science, Australian National University, ACT 0200 (Australia); Treps, Nicolas [Department of Physics, Faculty of Science, Australian National University, ACT 0200 (Australia); Schnabel, Roman [Department of Physics, Faculty of Science, Australian National University, ACT 0200 (Australia); Ralph, Timothy C [Department of Physics, Centre for Quantum Computer Technology, University of Queensland, St Lucia, QLD 4072 (Australia); Lam, Ping Koy [Department of Physics, Faculty of Science, Australian National University, ACT 0200 (Australia)

    2003-08-01

    We generate and characterize continuous variable polarization entanglement between two optical beams. We first produce quadrature entanglement, and by performing local operations we transform it into a polarization basis. We extend two entanglement criteria, the inseparability criteria proposed by Duan et al (2000 Phys. Rev. Lett. 84 2722) and the Einstein-Podolsky-Rosen (EPR) paradox criteria proposed by Reid and Drummond (1988 Phys. Rev. Lett. 60 2731), to Stokes operators; and use them to characterize the entanglement. Our results for the EPR paradox criteria are visualized in terms of uncertainty balls on the Poincare sphere. We demonstrate theoretically that using two quadrature entangled pairs it is possible to entangle three orthogonal Stokes operators between a pair of beams, although with a bound {radical}3 times more stringent than for the quadrature entanglement.

  6. Entanglement and decoherence in high energy physics

    International Nuclear Information System (INIS)

    Bertlmann, R.

    2005-01-01

    Full text: The phenomenon of entanglement occurs in very heavy quantum systems of particle physics. We find analogies but also differences to the entangled spin-1/2 or photon systems. In particular we discuss the features of entangled 'strangeness', the K-meson system, where a Bell inequality exists which has a remarkable connection to CP (charge conjugation and parity) and its violation. Stability of entangled quantum states is studied by allowing the system to interact with an environment. We consider possible decoherence of entangled 'beauty', the B-meson system, produced at the particle colliders at very high energies (10 GeV). Finally, we discuss a criterion for detecting entangled/separable states, a generalized Bell inequality and entanglement witness. We illustrate its geometric features by the two-spin example Alice and Bob. (author)

  7. Entanglement in Gaussian matrix-product states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Ericsson, Marie

    2006-01-01

    Gaussian matrix-product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of a harmonic chain. Replacing the projections by associated Gaussian states, the building blocks, we show that the entanglement range in translationally invariant Gaussian matrix-product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix-product states can possess unlimited, long-range entanglement even with minimum number of ancillary bonds (M=1). Finally we discuss how these states can be experimentally engineered from N copies of a three-mode building block and N two-mode finitely squeezed states

  8. Classical-driving-assisted entanglement dynamics control

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying-Jie, E-mail: yingjiezhang@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Han, Wei [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Xia, Yun-Jie, E-mail: yjxia@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing, 100190 (China)

    2017-04-15

    We propose a scheme of controlling entanglement dynamics of a quantum system by applying the external classical driving field for two atoms separately located in a single-mode photon cavity. It is shown that, with a judicious choice of the classical-driving strength and the atom–photon detuning, the effective atom–photon interaction Hamiltonian can be switched from Jaynes–Cummings model to anti-Jaynes–Cummings model. By tuning the controllable atom–photon interaction induced by the classical field, we illustrate that the evolution trajectory of the Bell-like entanglement states can be manipulated from entanglement-sudden-death to no-entanglement-sudden-death, from no-entanglement-invariant to entanglement-invariant. Furthermore, the robustness of the initial Bell-like entanglement can be improved by the classical driving field in the leaky cavities. This classical-driving-assisted architecture can be easily extensible to multi-atom quantum system for scalability.

  9. Optimal Entanglement Witnesses for Qubits and Qutrits

    International Nuclear Information System (INIS)

    Bertlmann, R.A.; Durstberger, K.; Hiesmayr, B.C.; Krammer, P.

    2005-01-01

    Full text: We give a review of the connection between an optimal entanglement witness and the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states): a generalized Bell inequality is derived within the concept of entanglement witnesses, in the sense that a violation of the inequality detects entanglement and not non-locality liKEX usual Bell inequalities do. It can be seen that the maximal violation equals the Hilbert-Schmidt measure. Furthermore, since finding the nearest separable state to a given entangled state is rather difficult, a method for checking an estimated nearest separable state is presented. This is illustrated with isotropic qubit and qutrit states; the Hilbert-Schmidt measure, the optimal entanglement witness and the maximal violation of the GBI are calculated for those cases. Possible generalizations for arbitrary dimensions are discussed. (author)

  10. Bessel-Gaussian entanglement; presentation

    CSIR Research Space (South Africa)

    Mclaren, M

    2013-07-01

    Full Text Available mode Hologram Page 9 Violation of Bell’s inequality demonstrates entanglement © CSIR 2013 www.csir.co.za P ro b ab il it y Classical Quantum mechanical M. McLaren et al.,2012, Opt. Express, 20, 23589 Page 10 Comparison...

  11. Basic logic and quantum entanglement

    International Nuclear Information System (INIS)

    Zizzi, P A

    2007-01-01

    As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing

  12. Basic logic and quantum entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Zizzi, P A [Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova (Italy)

    2007-05-15

    As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing.

  13. Transitivity of an entangled choice

    International Nuclear Information System (INIS)

    Makowski, Marcin; Piotrowski, Edward W

    2011-01-01

    We describe a quantum model of a simple choice game (constructed upon the entangled state of two qubits), which involves the fundamental problem of transitive-intransitive preferences. We compare attainability of optimal intransitive strategies in both classical and quantum models with the use of geometrical interpretation.

  14. Entangling light in high dimensions

    NARCIS (Netherlands)

    Pors, Jan Bardeus

    2011-01-01

    Quantum entanglement is a fundamental trait of quantum mechanics that causes the information about the properties of two (or more) objects to be inextricably linked. When a measurement on one of the objects is performed, the state of the other object is immediately altered, even when these objects

  15. Computational complexity in entanglement transformations

    Science.gov (United States)

    Chitambar, Eric A.

    In physics, systems having three parts are typically much more difficult to analyze than those having just two. Even in classical mechanics, predicting the motion of three interacting celestial bodies remains an insurmountable challenge while the analogous two-body problem has an elementary solution. It is as if just by adding a third party, a fundamental change occurs in the structure of the problem that renders it unsolvable. In this thesis, we demonstrate how such an effect is likewise present in the theory of quantum entanglement. In fact, the complexity differences between two-party and three-party entanglement become quite conspicuous when comparing the difficulty in deciding what state changes are possible for these systems when no additional entanglement is consumed in the transformation process. We examine this entanglement transformation question and its variants in the language of computational complexity theory, a powerful subject that formalizes the concept of problem difficulty. Since deciding feasibility of a specified bipartite transformation is relatively easy, this task belongs to the complexity class P. On the other hand, for tripartite systems, we find the problem to be NP-Hard, meaning that its solution is at least as hard as the solution to some of the most difficult problems humans have encountered. One can then rigorously defend the assertion that a fundamental complexity difference exists between bipartite and tripartite entanglement since unlike the former, the full range of forms realizable by the latter is incalculable (assuming P≠NP). However, similar to the three-body celestial problem, when one examines a special subclass of the problem---invertible transformations on systems having at least one qubit subsystem---we prove that the problem can be solved efficiently. As a hybrid of the two questions, we find that the question of tripartite to bipartite transformations can be solved by an efficient randomized algorithm. Our results are

  16. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton

    2014-07-30

    Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.

  17. Displacement-enhanced entanglement distillation of single-mode-squeezed entangled states

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2013-01-01

    It has been shown that entanglement distillation of Gaussian entangled states by means of local photon subtraction can be improved by local Gaussian transformations. Here we show that a similar effect can be expected for the distillation of an asymmetric Gaussian entangled state that is produced...... by a single squeezed beam. We show that for low initial entanglement, our largely simplified protocol generates more entanglement than previous proposed protocols. Furthermore, we show that the distillation scheme also works efficiently on decohered entangled states as well as with a practical photon...

  18. Radiobiology of DNA strand breakage

    International Nuclear Information System (INIS)

    Johansen, I.

    1975-01-01

    The yield of single-strand breaks in lambda DNA within lysogenic host bacteria was measured after exposure to 4-MeV electrons (50 msec) and rapid transfer (45 msec) to alkaline detergent. In nitrogen anoxia the yield was 1.2 x 10 -12 DNA single-strand breaks per rad per dalton, and under full oxygenation the yield increased to 5 x 10 -12 breaks per rad per dalton. A search for the presence of fast repair mechanisms failed to demonstrate the presence of any mechanism for repair of strand breaks operating within a fraction of a second. Strand breaks produced in the presence of oxygen were repaired in 30--40 sec, while breaks produced under anoxia were rejoined even slower. A functional product from the polAl gene was needed for the rejoining of the broken molecules. Intermediate levels of DNA strand breakage seen at low concentrations of oxygen are dependent on the concentration of cellular sulfhydryl compounds, suggesting that in strand breakage oxygen and hydrogen donors compete for reactions with radiation-induced transients in the DNA. Intercomparisons of data on radiation-induced lethality of cells and single-strand breaks in episomal DNA allow the distinction between two classes of radiation-induced radicals, R 1 and R 2 , with different chemical properties; R 1 reacts readily with oxygen and N-oxyls under formation of potentially lethal products. The reactivity of oxygen in this reaction is 30--40 times higher than that of TMPN. R 2 reacts 16 times more readily than R 1 with oxygen under formation of single-strand breaks in the DNA. R 2 does not react with N-oxyls

  19. Local copying of orthogonal entangled quantum states

    International Nuclear Information System (INIS)

    Anselmi, Fabio; Chefles, Anthony; Plenio, Martin B

    2004-01-01

    In classical information theory one can, in principle, produce a perfect copy of any input state. In quantum information theory, the no cloning theorem prohibits exact copying of non-orthogonal states. Moreover, if we wish to copy multiparticle entangled states and can perform only local operations and classical communication (LOCC), then further restrictions apply. We investigate the problem of copying orthogonal, entangled quantum states with an entangled blank state under the restriction to LOCC. Throughout, the subsystems have finite dimension D. We show that if all of the states to be copied are non-maximally entangled, then novel LOCC copying procedures based on entanglement catalysis are possible. We then study in detail the LOCC copying problem where both the blank state and at least one of the states to be copied are maximally entangled. For this to be possible, we find that all the states to be copied must be maximally entangled. We obtain a necessary and sufficient condition for LOCC copying under these conditions. For two orthogonal, maximally entangled states, we provide the general solution to this condition. We use it to show that for D = 2, 3, any pair of orthogonal, maximally entangled states can be locally copied using a maximally entangled blank state. However, we also show that for any D which is not prime, one can construct pairs of such states for which this is impossible

  20. Towards Long-Distance Atom-Photon Entanglement

    International Nuclear Information System (INIS)

    Rosenfeld, W.; Hocke, F.; Henkel, F.; Krug, M.; Volz, J.; Weber, M.; Weinfurter, H.

    2008-01-01

    We report the observation of entanglement between a single trapped atom and a single photon at remote locations. The degree of coherence of the entangled atom-photon pair is verified via appropriate local correlation measurements, after communicating the photon via an optical fiber link of 300 m length to a receiver 3.5 m apart. In addition, we measured the temporal evolution of the atomic density matrix after projecting the atom via a state measurement of the photon onto several well-defined spin states. We find that the state of the single atom dephases on a time scale of 150 μs, which represents an important step towards long-distance quantum networking with individual neutral atoms

  1. Entanglement rules for holographic Fermi surfaces

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury

    2016-08-01

    Full Text Available In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  2. Entanglement between two spatially separated atomic modes

    Science.gov (United States)

    Lange, Karsten; Peise, Jan; Lücke, Bernd; Kruse, Ilka; Vitagliano, Giuseppe; Apellaniz, Iagoba; Kleinmann, Matthias; Tóth, Géza; Klempt, Carsten

    2018-04-01

    Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.

  3. Entanglement rules for holographic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, Dibakar, E-mail: dibakarphys@gmail.com

    2016-08-15

    In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  4. Entanglement criteria for microscopic-macroscopic systems

    International Nuclear Information System (INIS)

    Spagnolo, Nicolo; Vitelli, Chiara; Sciarrino, Fabio; De Martini, Francesco

    2010-01-01

    We discuss the conclusions that can be drawn on a recent experimental micro-macro entanglement test [De Martini, Sciarrino, and Vitelli, Phys. Rev. Lett. 100, 253601 (2008)]. The system under investigation is generated through optical parametric amplification of one photon belonging to an entangled pair. The adopted entanglement criterion makes it possible to infer the presence of entanglement before losses that occur on the macrostate under a specific assumption. In particular, an a priori knowledge of the system that generates the micro-macro pair is necessary to exclude a class of separable states that can reproduce the obtained experimental results. Finally, we discuss the feasibility of a micro-macro ''genuine'' entanglement test on the analyzed system by considering different strategies, which show that in principle a fraction ε, proportional to the number of photons that survive the lossy process, of the original entanglement persists in any loss regime.

  5. Entangled photons and quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zhensheng, E-mail: yuanzs@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Bao Xiaohui [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Lu Chaoyang; Zhang Jun; Peng Chengzhi [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Pan Jianwei, E-mail: pan@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany)

    2010-12-15

    This article reviews the progress of quantum communication that utilizes photonic entanglement. We start with a survey of various methods for generating entangled photons, followed by an introduction of the theoretical principles and the experimental implementations of quantum key distribution. We then move on to a discussion of more involved quantum communication protocols including quantum dense coding, teleportation and quantum communication complexity. After that, we review the progress in free-space quantum communication, decoherence-free subspace, and quantum repeater protocols which are essential ingredients for long-distance quantum communication. Practical realizations of quantum repeaters, which require an interface between photons and quantum memories, are discussed briefly. Finally, we draw concluding remarks considering the technical challenges, and put forward an outlook on further developments of this field.

  6. Quantum steganography using prior entanglement

    International Nuclear Information System (INIS)

    Mihara, Takashi

    2015-01-01

    Steganography is the hiding of secret information within innocent-looking information (e.g., text, audio, image, video, etc.). A quantum version of steganography is a method based on quantum physics. In this paper, we propose quantum steganography by combining quantum error-correcting codes with prior entanglement. In many steganographic techniques, embedding secret messages in error-correcting codes may cause damage to them if the embedded part is corrupted. However, our proposed steganography can separately create secret messages and the content of cover messages. The intrinsic form of the cover message does not have to be modified for embedding secret messages. - Highlights: • Our steganography combines quantum error-correcting codes with prior entanglement. • Our steganography can separately create secret messages and the content of cover messages. • Errors in cover messages do not have affect the recovery of secret messages. • We embed a secret message in the Steane code as an example of our steganography

  7. Quantum steganography using prior entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Mihara, Takashi, E-mail: mihara@toyo.jp

    2015-06-05

    Steganography is the hiding of secret information within innocent-looking information (e.g., text, audio, image, video, etc.). A quantum version of steganography is a method based on quantum physics. In this paper, we propose quantum steganography by combining quantum error-correcting codes with prior entanglement. In many steganographic techniques, embedding secret messages in error-correcting codes may cause damage to them if the embedded part is corrupted. However, our proposed steganography can separately create secret messages and the content of cover messages. The intrinsic form of the cover message does not have to be modified for embedding secret messages. - Highlights: • Our steganography combines quantum error-correcting codes with prior entanglement. • Our steganography can separately create secret messages and the content of cover messages. • Errors in cover messages do not have affect the recovery of secret messages. • We embed a secret message in the Steane code as an example of our steganography.

  8. Experimental quantum computing without entanglement.

    Science.gov (United States)

    Lanyon, B P; Barbieri, M; Almeida, M P; White, A G

    2008-11-14

    Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

  9. Entangled photons and quantum communication

    International Nuclear Information System (INIS)

    Yuan Zhensheng; Bao Xiaohui; Lu Chaoyang; Zhang Jun; Peng Chengzhi; Pan Jianwei

    2010-01-01

    This article reviews the progress of quantum communication that utilizes photonic entanglement. We start with a survey of various methods for generating entangled photons, followed by an introduction of the theoretical principles and the experimental implementations of quantum key distribution. We then move on to a discussion of more involved quantum communication protocols including quantum dense coding, teleportation and quantum communication complexity. After that, we review the progress in free-space quantum communication, decoherence-free subspace, and quantum repeater protocols which are essential ingredients for long-distance quantum communication. Practical realizations of quantum repeaters, which require an interface between photons and quantum memories, are discussed briefly. Finally, we draw concluding remarks considering the technical challenges, and put forward an outlook on further developments of this field.

  10. Quantum entanglement at negative temperature

    International Nuclear Information System (INIS)

    Furman, G B; Meerovich, V M; Sokolovsky, V L

    2013-01-01

    An isolated spin system that is in internal thermodynamic equilibrium and that has an upper limit to its allowed energy states can possess a negative temperature. We calculate the thermodynamic characteristics and the concurrence in this system over the entire range of positive and negative temperatures. Our calculation was performed for different real structures, which can be used in experiments. It is found that the temperature dependence of the concurrence is substantially asymmetrical similarly to other thermodynamic characteristics. At a negative temperature the maximum concurrence and the absolute temperature of the entanglement appearance are significantly larger than those at a positive temperature. The concurrence can be characterized by two dimensionless parameters: the ratio between the Zeeman and dipolar energies and the ratio of the thermal and dipolar energies. It was shown that for all considered structures the dimensionless temperatures of the transition between entanglement and separability of the first and second spins are independent of spin structure and the number of spins. (paper)

  11. Increasing Entanglement between Gaussian States by Coherent Photon Subtraction

    DEFF Research Database (Denmark)

    Ourjoumtsev, Alexei; Dantan, Aurelien Romain; Tualle Brouri, Rosa

    2007-01-01

    We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states...

  12. Quantify entanglement by concurrence hierarchy

    OpenAIRE

    Fan, Heng; Matsumoto, Keiji; Imai, Hiroshi

    2002-01-01

    We define the concurrence hierarchy as d-1 independent invariants under local unitary transformations in d-level quantum system. The first one is the original concurrence defined by Wootters et al in 2-level quantum system and generalized to d-level pure quantum states case. We propose to use this concurrence hierarchy as measurement of entanglement. This measurement does not increase under local quantum operations and classical communication.

  13. Entanglement, holography and causal diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Jan de [Institute of Physics, Universiteit van Amsterdam,Science Park 904, 1090 GL Amsterdam (Netherlands); Haehl, Felix M. [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Heller, Michal P.; Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2016-08-29

    We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  14. Entanglement and inhibited quantum evolution

    International Nuclear Information System (INIS)

    Toschek, P E; Balzer, Chr; Hannemann, Th; Wunderlich, Ch; Neuhauser, W

    2003-01-01

    The evolution of a quantum system is impeded by the system's state being observed. A test on an ensemble neither proves the causal nexus nor discloses the nature of the inhibition. Two recent experiments that make use of sequential optical or microwave-optical double resonance on an individual trapped ion disprove a dynamical effect of back action by meter or environment. They rather indicate the ionic states involved in the evolution being entangled with the potentially recorded bivalued scattered-light signal

  15. Deterministic quantum state transfer and remote entanglement using microwave photons.

    Science.gov (United States)

    Kurpiers, P; Magnard, P; Walter, T; Royer, B; Pechal, M; Heinsoo, J; Salathé, Y; Akin, A; Storz, S; Besse, J-C; Gasparinetti, S; Blais, A; Wallraff, A

    2018-06-01

    Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels 1 . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation 2 . Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits 3 constitute a universal quantum node 4 that is capable of sending, receiving, storing and processing quantum information 5-8 . Our implementation is based on an all-microwave cavity-assisted Raman process 9 , which entangles or transfers the qubit state of a transmon-type artificial atom 10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.

  16. Spin entanglement, decoherence and Bohm's EPR paradox

    OpenAIRE

    Cavalcanti, E. G.; Drummond, P. D.; Bachor, H. A.; Reid, M. D.

    2007-01-01

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with cu...

  17. Gaussian maximally multipartite-entangled states

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio

    2009-12-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7 .

  18. Gaussian maximally multipartite-entangled states

    International Nuclear Information System (INIS)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Lupo, Cosmo; Mancini, Stefano

    2009-01-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7.

  19. Variation of entanglement entropy in scattering process

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shigenori, E-mail: sigenori@hanyang.ac.kr [Research Institute for Natural Science, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, I.Y., E-mail: inyongpark05@gmail.com [Department of Applied Mathematics, Philander Smith College, Little Rock, AR 72223 (United States); Sin, Sang-Jin, E-mail: sjsin@hanyang.ac.kr [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-09

    In a scattering process, the final state is determined by an initial state and an S-matrix. We focus on two-particle scattering processes and consider the entanglement between these particles. For two types initial states, i.e., an unentangled state and an entangled one, we calculate perturbatively the change of entanglement entropy from the initial state to the final one. Then we show a few examples in a field theory and in quantum mechanics.

  20. Hybrid Long-Distance Entanglement Distribution Protocol

    DEFF Research Database (Denmark)

    Brask, J.B.; Rigas, I.; Polzik, E.S.

    2010-01-01

    We propose a hybrid (continuous-discrete variable) quantum repeater protocol for long-distance entanglement distribution. Starting from states created by single-photon detection, we show how entangled coherent state superpositions can be generated by means of homodyne detection. We show that near......-deterministic entanglement swapping with such states is possible using only linear optics and homodyne detectors, and we evaluate the performance of our protocol combining these elements....

  1. Controllable entanglement sudden birth of Heisenberg spins

    International Nuclear Information System (INIS)

    Zheng Qiang; Zhi Qijun; Zhang Xiaoping; Ren Zhongzhou

    2011-01-01

    We investigate the Entanglement Sudden Birth (ESB) of two Heisenberg spins A and B. The third controller, qutrit C is introduced, which only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the DM interaction is necessary to induce the Entanglement Sudden Birth of the system qubits A and B, and the initial states of the system qubits and the qutrit C are also important to control its Entanglement Sudden Birth. (authors)

  2. Experimental generation of complex noisy photonic entanglement

    International Nuclear Information System (INIS)

    Dobek, K; Banaszek, K; Karpiński, M; Demkowicz-Dobrzański, R; Horodecki, P

    2013-01-01

    We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy. (paper)

  3. Quantum dialogue using non-maximally entangled states based on entanglement swapping

    International Nuclear Information System (INIS)

    Xia Yan; Song Jie; Song Heshan

    2007-01-01

    We present a secure quantum dialogue protocol using non-maximally entangled two-particle states via entanglement swapping at first, and then discuss the requirements for a real quantum dialogue. Within the present version two authorized users can exchange their faithful secret messages securely and simultaneously based on the method of entanglement purification

  4. Time evolution of the Wigner function in the entangled-state representation

    International Nuclear Information System (INIS)

    Fan Hongyi

    2002-01-01

    For quantum-mechanical entangled states we introduce the entangled Wigner operator in the entangled-state representation. We derive the time evolution equation of the entangled Wigner operator . The trace product rule for entangled Wigner functions is also obtained

  5. Entanglement dynamics in random media

    Science.gov (United States)

    Menezes, G.; Svaiter, N. F.; Zarro, C. A. D.

    2017-12-01

    We study how the entanglement dynamics between two-level atoms is impacted by random fluctuations of the light cone. In our model the two-atom system is envisaged as an open system coupled with an electromagnetic field in the vacuum state. We employ the quantum master equation in the Born-Markov approximation in order to describe the completely positive time evolution of the atomic system. We restrict our investigations to the situation in which the atoms are coupled individually to two spatially separated cavities, one of which displays the emergence of light-cone fluctuations. In such a disordered cavity, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that disorder has the effect of slowing down the entanglement decay. We conjecture that in a strong-disorder environment the mean life of entangled states can be enhanced in such a way as to almost completely suppress quantum nonlocal decoherence.

  6. Minimal tomography with entanglement witnesses

    International Nuclear Information System (INIS)

    Zhu Huangjun; Teo Yong Siah; Englert, Berthold-Georg

    2010-01-01

    We introduce informationally complete measurements whose outcomes are entanglement witnesses and so answer the question of how many witnesses need to be measured to decide whether an arbitrary state is entangled or not: as many as the dimension of the state space. The witnesses can be measured successively; if all of them give an inconclusive result, one exploits their tomographic completeness for a reconstruction of the quantum state and can then determine its entanglement properties by data processing. There are witnesses that are optimal for this purpose. The optimized witness-based measurement can provide exponential improvement with respect to witness efficiency in high-dimensional Hilbert spaces, at the price of a reduction in the tomographic efficiency. We describe a systematic construction and illustrate the matter with the example of two qubits. For the case of two polarization qubits of photons, we show how existing technology can be used to implement the optimized witnesses in a very efficient way. Owing to the details of the implementation, which actually measures the eigenstate basis of the witness rather than solely determining the expectation value of the witness, one does not need to measure more than six witnesses in this example of a 16-dimensional state space.

  7. Minimal tomography with entanglement witnesses

    Science.gov (United States)

    Zhu, Huangjun; Teo, Yong Siah; Englert, Berthold-Georg

    2010-05-01

    We introduce informationally complete measurements whose outcomes are entanglement witnesses and so answer the question of how many witnesses need to be measured to decide whether an arbitrary state is entangled or not: as many as the dimension of the state space. The witnesses can be measured successively; if all of them give an inconclusive result, one exploits their tomographic completeness for a reconstruction of the quantum state and can then determine its entanglement properties by data processing. There are witnesses that are optimal for this purpose. The optimized witness-based measurement can provide exponential improvement with respect to witness efficiency in high-dimensional Hilbert spaces, at the price of a reduction in the tomographic efficiency. We describe a systematic construction and illustrate the matter with the example of two qubits. For the case of two polarization qubits of photons, we show how existing technology can be used to implement the optimized witnesses in a very efficient way. Owing to the details of the implementation, which actually measures the eigenstate basis of the witness rather than solely determining the expectation value of the witness, one does not need to measure more than six witnesses in this example of a 16-dimensional state space.

  8. Modelling Toehold-Mediated RNA Strand Displacement

    OpenAIRE

    Šulc, Petr; Ouldridge, Thomas E.; Romano, Flavio; Doye, Jonathan P.K.; Louis, Ard A.

    2015-01-01

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperat...

  9. Entanglement Swapping in the Presence of White and Color Noise

    Science.gov (United States)

    Dotsenko, Ivan S.; Korobka, R.

    2018-02-01

    The influence of white and color noise on the outcome of the entanglement swapping process is investigated in a four-qubit system. Critical degree of noise in initial state, that could destroy entanglement in a result state is presented. The entanglement characteristics, such as concurrence, tangle, etc. are compared. Results could be helpful for experiments regarding entanglement swapping as conditions for initial quantum entangled states, to obtain entangled result state.

  10. Fair Exchange in Strand Spaces

    Directory of Open Access Journals (Sweden)

    Joshua D. Guttman

    2009-10-01

    Full Text Available Many cryptographic protocols are intended to coordinate state changes among principals. Exchange protocols coordinate delivery of new values to the participants, e.g. additions to the set of values they possess. An exchange protocol is fair if it ensures that delivery of new values is balanced: If one participant obtains a new possession via the protocol, then all other participants will, too. Fair exchange requires progress assumptions, unlike some other protocol properties. The strand space model is a framework for design and verification of cryptographic protocols. A strand is a local behavior of a single principal in a single session of a protocol. A bundle is a partially ordered global execution built from protocol strands and adversary activities. The strand space model needs two additions for fair exchange protocols. First, we regard the state as a multiset of facts, and we allow strands to cause changes in this state via multiset rewriting. Second, progress assumptions stipulate that some channels are resilient-and guaranteed to deliver messages-and some principals are assumed not to stop at certain critical steps. This method leads to proofs of correctness that cleanly separate protocol properties, such as authentication and confidentiality, from invariants governing state evolution. G. Wang's recent fair exchange protocol illustrates the approach.

  11. Entanglement property in matrix product spin systems

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2012-01-01

    We study the entanglement property in matrix product spin-ring systems systemically by von Neumann entropy. We find that: (i) the Hilbert space dimension of one spin determines the upper limit of the maximal value of the entanglement entropy of one spin, while for multiparticle entanglement entropy, the upper limit of the maximal value depends on the dimension of the representation matrices. Based on the theory, we can realize the maximum of the entanglement entropy of any spin block by choosing the appropriate control parameter values. (ii) When the entanglement entropy of one spin takes its maximal value, the entanglement entropy of an asymptotically large spin block, i.e. the renormalization group fixed point, is not likely to take its maximal value, and so only the entanglement entropy S n of a spin block that varies with size n can fully characterize the spin-ring entanglement feature. Finally, we give the entanglement dynamics, i.e. the Hamiltonian of the matrix product system. (author)

  12. Quantum communication using a multiqubit entangled channel

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, Shohini, E-mail: sghose@wlu.ca [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario (Canada); Institute for Quantum Computing, University of Waterloo, Ontario (Canada); Hamel, Angele [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario (Canada)

    2015-12-31

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  13. Entanglement polygon inequality in qubit systems

    Science.gov (United States)

    Qian, Xiao-Feng; Alonso, Miguel A.; Eberly, J. H.

    2018-06-01

    We prove a set of tight entanglement inequalities for arbitrary N-qubit pure states. By focusing on all bi-partite marginal entanglements between each single qubit and its remaining partners, we show that the inequalities provide an upper bound for each marginal entanglement, while the known monogamy relation establishes the lower bound. The restrictions and sharing properties associated with the inequalities are further analyzed with a geometric polytope approach, and examples of three-qubit GHZ-class and W-class entangled states are presented to illustrate the results.

  14. Entanglement Equilibrium and the Einstein Equation.

    Science.gov (United States)

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  15. Quantum networks based on spins in diamond

    International Nuclear Information System (INIS)

    Ronald Hanson

    2014-01-01

    Entanglement of spatially separated objects is one of the most intriguing phenomena that can occur in physics. Besides being of fundamental interest, entanglement is also a valuable resource in quantum information technology enabling secure quantum communication networks and distributed quantum computing. Here we present our most recent results towards the realization of scalable quantum networks with solid-state qubits. (author)

  16. On entanglement spreading from holography

    Energy Technology Data Exchange (ETDEWEB)

    Mezei, Márk [Princeton Center for Theoretical Science, Princeton University,Princeton, NJ 08544 (United States)

    2017-05-11

    A global quench is an interesting setting where we can study thermalization of subsystems in a pure state. We investigate entanglement entropy (EE) growth in global quenches in holographic field theories and relate some of its aspects to quantities characterizing chaos. More specifically we obtain four key results: We prove holographic bounds on the entanglement velocity v{sub E} and the butterfly effect speed v{sub B} that arises in the study of chaos. We obtain the EE as a function of time for large spherical entangling surfaces analytically. We show that the EE is insensitive to the details of the initial state or quench protocol. In a thermofield double state we determine analytically the two-sided mutual information between two large concentric spheres separated in time. We derive a bound on the rate of growth of EE for arbitrary shapes, and develop an expansion for EE at early times. In a companion paper https://arxiv.org/abs/1608.05101, these results are put in the broader context of EE growth in chaotic systems: we relate EE growth to the chaotic spreading of operators, derive bounds on EE at a given time, and compare the holographic results to spin chain numerics and toy models. In this paper, we perform holographic calculations that provide the basis of arguments presented in that paper. We prove holographic bounds on the entanglement velocity v{sub E} and the butterfly effect speed v{sub B} that arises in the study of chaos. We obtain the EE as a function of time for large spherical entangling surfaces analytically. We show that the EE is insensitive to the details of the initial state or quench protocol. In a thermofield double state we determine analytically the two-sided mutual information between two large concentric spheres separated in time. We derive a bound on the rate of growth of EE for arbitrary shapes, and develop an expansion for EE at early times.

  17. The stranding anomaly as population indicator: the case of Harbour Porpoise

    NARCIS (Netherlands)

    Peltier, H.; Baagøe, H.J.; Camphuysen, K.C.J.; Czeck, R.; Dabin, W.; Daniel, P.; Deaville, R.; Haelters, J.; Jauniaux, T.; Jensen, L.F.; Jepson, P.D.; Keijl, G.O.; Siebert, U.; Van Canneyt, O.; Ridoux, V.

    2013-01-01

    Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical

  18. Multi-photon entanglement and applications in quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Christian I.T.

    2008-05-30

    In this thesis, two new linear optics networks are introduced and their application for several quantum information tasks is presented. Spontaneous parametric down conversion, is used in different configurations to provide the input states for the networks. The first network is a new design of a controlled phase gate which is particularly interesting for applications in multi-photon experiments as it constitutes an improvement of former realizations with respect to stability and reliability. This is explicitly demonstrated by employing the gate in four-photon experiments. In this context, a teleportation and entanglement swapping protocol is performed in which all four Bell states are distinguished by means of the phase gate. A similar type of measurement applied to the subsystem parts of two copies of a quantum state, allows further the direct estimation of the state's entanglement in terms of its concurrence. Finally, starting from two Bell states, the controlled phase gate is applied for the observation of a four photon cluster state. The analysis of the results focuses on measurement based quantum computation, the main usage of cluster states. The second network, fed with the second order emission of non-collinear type ii spontaneous parametric down conversion, constitutes a tunable source of a whole family of states. Up to now the observation of one particular state required one individually tailored setup. With the network introduced here many different states can be obtained within the same arrangement by tuning a single, easily accessible experimental parameter. These states exhibit many useful properties and play a central role in several applications of quantum information. Here, they are used for the solution of a four-player quantum Minority game. It is shown that, by employing four-qubit entanglement, the quantum version of the game clearly outperforms its classical counterpart. Experimental data obtained with both networks are utilized to

  19. Multi-photon entanglement and applications in quantum information

    International Nuclear Information System (INIS)

    Schmid, Christian I.T.

    2008-01-01

    In this thesis, two new linear optics networks are introduced and their application for several quantum information tasks is presented. Spontaneous parametric down conversion, is used in different configurations to provide the input states for the networks. The first network is a new design of a controlled phase gate which is particularly interesting for applications in multi-photon experiments as it constitutes an improvement of former realizations with respect to stability and reliability. This is explicitly demonstrated by employing the gate in four-photon experiments. In this context, a teleportation and entanglement swapping protocol is performed in which all four Bell states are distinguished by means of the phase gate. A similar type of measurement applied to the subsystem parts of two copies of a quantum state, allows further the direct estimation of the state's entanglement in terms of its concurrence. Finally, starting from two Bell states, the controlled phase gate is applied for the observation of a four photon cluster state. The analysis of the results focuses on measurement based quantum computation, the main usage of cluster states. The second network, fed with the second order emission of non-collinear type ii spontaneous parametric down conversion, constitutes a tunable source of a whole family of states. Up to now the observation of one particular state required one individually tailored setup. With the network introduced here many different states can be obtained within the same arrangement by tuning a single, easily accessible experimental parameter. These states exhibit many useful properties and play a central role in several applications of quantum information. Here, they are used for the solution of a four-player quantum Minority game. It is shown that, by employing four-qubit entanglement, the quantum version of the game clearly outperforms its classical counterpart. Experimental data obtained with both networks are utilized to demonstrate

  20. Theoretical analysis of an ideal noiseless linear amplifier for Einstein–Podolsky–Rosen entanglement distillation

    International Nuclear Information System (INIS)

    Bernu, J; Armstrong, S; Symul, T; Lam, P K; Ralph, T C

    2014-01-01

    We study the operational regime of a noiseless linear amplifier (NLA) based on quantum scissors that can nondeterministically amplify the one photon component of a quantum state with weak excitation. It has been shown that an arbitrarily large quantum state can be amplified by first splitting it into weak excitation states using a network of beamsplitters. The output states of the network can then be coherently recombined. In this paper, we analyse the performance of such a device for distilling entanglement after transmission through a lossy quantum channel, and look at two measures to determine the efficacy of the NLA. The measures used are the amount of entanglement achievable and the final purity of the output amplified entangled state. We study the performances of both a single and a two-element NLA for amplifying weakly excited states. Practically, we show that it may be advantageous to work with a limited number of stages. (paper)

  1. Heralded entangling quantum gate via cavity-assisted photon scattering

    Science.gov (United States)

    Borges, Halyne S.; Rossatto, Daniel Z.; Luiz, Fabrício S.; Villas-Boas, Celso J.

    2018-01-01

    We theoretically investigate the generation of heralded entanglement between two identical atoms via cavity-assisted photon scattering in two different configurations, namely, either both atoms confined in the same cavity or trapped into locally separated ones. Our protocols are given by a very simple and elegant single-step process, the key mechanism of which is a controlled-phase-flip gate implemented by impinging a single photon on single-sided cavities. In particular, when the atoms are localized in remote cavities, we introduce a single-step parallel quantum circuit instead of the serial process extensively adopted in the literature. We also show that such parallel circuit can be straightforwardly applied to entangle two macroscopic clouds of atoms. Both protocols proposed here predict a high entanglement degree with a success probability close to unity for state-of-the-art parameters. Among other applications, our proposal and its extension to multiple atom-cavity systems step toward a suitable route for quantum networking, in particular for quantum state transfer, quantum teleportation, and nonlocal quantum memory.

  2. Two particle entanglement and its geometric duals

    Energy Technology Data Exchange (ETDEWEB)

    Wasay, Muhammad Abdul [University of Agriculture, Department of Physics, Faisalabad (Pakistan); Quaid-i-Azam University Campus, National Centre for Physics, Islamabad (Pakistan); Bashir, Asma [University of Agriculture, Department of Physics, Faisalabad (Pakistan)

    2017-12-15

    We show that for a system of two entangled particles, there is a dual description to the particle equations in terms of classical theory of conformally stretched spacetime. We also connect these entangled particle equations with Finsler geometry. We show that this duality translates strongly coupled quantum equations in the pilot-wave limit to weakly coupled geometric equations. (orig.)

  3. Generating stationary entangled states in superconducting qubits

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Yuxi; Li Chunwen; Tarn, T.-J.; Nori, Franco

    2009-01-01

    When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity F max between the stationary entangled state, ρ ∞ , and the maximally entangled state, ρ m , can be about 2/3≅max(tr(ρ ∞ ρ m ))=F max , corresponding to a maximum stationary concurrence, C max , of about 1/3≅C(ρ ∞ )=C max . This is significant because the quantum entanglement of the two-qubit system can be produced and kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and show how the entanglement of these two-qubit circuits can be optimized by varying experimentally controllable parameters.

  4. Rank-dependant factorization of entanglement evolution

    International Nuclear Information System (INIS)

    Siomau, Michael

    2016-01-01

    Highlights: • In some cases the complex entanglement evolution can be factorized on simple terms. • We suggest factorization equations for multiqubit entanglement evolution. • The factorization is solely defined by the rank of the final state density matrices. • The factorization is independent on the local noisy channels and initial pure states. - Abstract: The description of the entanglement evolution of a complex quantum system can be significantly simplified due to the symmetries of the initial state and the quantum channels, which simultaneously affect parts of the system. Using concurrence as the entanglement measure, we study the entanglement evolution of few qubit systems, when each of the qubits is affected by a local unital channel independently on the others. We found that for low-rank density matrices of the final quantum state, such complex entanglement dynamics can be completely described by a combination of independent factors representing the evolution of entanglement of the initial state, when just one of the qubits is affected by a local channel. We suggest necessary conditions for the rank of the density matrices to represent the entanglement evolution through the factors. Our finding is supported with analytical examples and numerical simulations.

  5. On entanglement in neutrino mixing and oscillations

    International Nuclear Information System (INIS)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2010-01-01

    We report on recent results about entanglement in the context of particle mixing and oscillations. We study in detail single-particle entanglement arising in two-flavor neutrino mixing. The analysis is performed first in the context of Quantum Mechanics, and then for the case of Quantum Field Theory.

  6. On entanglement in neutrino mixing and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2010-06-01

    We report on recent results about entanglement in the context of particle mixing and oscillations. We study in detail single-particle entanglement arising in two-flavor neutrino mixing. The analysis is performed first in the context of Quantum Mechanics, and then for the case of Quantum Field Theory.

  7. Two particle entanglement and its geometric duals

    International Nuclear Information System (INIS)

    Wasay, Muhammad Abdul; Bashir, Asma

    2017-01-01

    We show that for a system of two entangled particles, there is a dual description to the particle equations in terms of classical theory of conformally stretched spacetime. We also connect these entangled particle equations with Finsler geometry. We show that this duality translates strongly coupled quantum equations in the pilot-wave limit to weakly coupled geometric equations. (orig.)

  8. Entangled spins and ghost-spins

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2017-09-01

    Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  9. Entangled Light Emission From a Diode

    International Nuclear Information System (INIS)

    Stevenson, R. M.; Shields, A. J.; Salter, C. L.; Farrer, I.; Nicoll, C. A.; Ritchie, D. A.

    2011-01-01

    Electrically-driven entangled photon generation is demonstrated for the first time using a single semiconductor quantum dot embedded in a light emitting diode structure. The entanglement fidelity is shown to be of sufficient quality for applications such as quantum key distribution.

  10. Continuous variable tripartite entanglement from twin nonlinearities

    International Nuclear Information System (INIS)

    Olsen, M K; Bradley, A S

    2006-01-01

    In this work, we analyse and compare the continuous variable tripartite entanglement available from the use of two concurrent or cascaded χ (2) nonlinearities. We examine both idealized travelling-wave models and more experimentally realistic intracavity models, showing that tripartite entangled outputs are readily producible. These may be a useful resource for applications such as quantum cryptography and teleportation

  11. Quantum entanglement in polarization and space

    NARCIS (Netherlands)

    Lee, Peter Sing Kin

    2006-01-01

    One of the most intriguing concepts of quantum mechanics is quantum entanglement. Two physical systems are said to be entangled with respect to a certain variable, if their individual outcomes of the variable are undetermined before measurement, but strictly correlated. Measurement of the variable

  12. Quantum entanglement and quantum computational algorithms

    Indian Academy of Sciences (India)

    We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped onto a classical optical scheme. It is only for three and more input bits that the DJ algorithm requires the implementation of entangling transformations and in these cases it is impossible to implement ...

  13. Multiparticle entanglement under the influence of decoherence

    NARCIS (Netherlands)

    Gühne, O.; Bodoky, F.; Blaauboer, M.

    2008-01-01

    We present a method to determine the decay of multiparticle quantum correlations as quantified by the geometric measure of entanglement under the influence of decoherence. With this, we compare the robustness of entanglement in Greenberger-Horne-Zeilinger (GHZ), cluster, W, and Dicke states of four

  14. Holographic entanglement entropy in Lovelock gravities

    NARCIS (Netherlands)

    de Boer, J.; Kulaxizi, M.; Parnachev, A.

    2011-01-01

    We study entanglement entropies of simply connected surfaces in field theories dual to Lovelock gravities. We consider Gauss-Bonnet and cubic Lovelock gravities in detail. In the conformal case the logarithmic terms in the entanglement entropy are governed by the conformal anomalies of the CFT; we

  15. Entanglement, holography and causal diamonds

    Science.gov (United States)

    de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.

    2016-08-01

    We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  16. The stranding anomaly as population indicator: the case of harbour porpoise Phocoena phocoena in North-Western Europe.

    Directory of Open Access Journals (Sweden)

    Helene Peltier

    Full Text Available Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform in space and constant in time. We used a drift model to map stranding probabilities and predict stranding patterns of cetacean carcasses under H0 across the North Sea, the Channel and the Bay of Biscay, for the period 1990-2009. As the most common cetacean occurring in this area, we chose the harbour porpoise Phocoena phocoena for our modelling. The difference between these strandings expected under H0 and observed strandings is defined as the stranding anomaly. It constituted the stranding data series corrected for drift conditions. Seasonal decomposition of stranding anomaly suggested that drift conditions did not explain observed seasonal variations of porpoise strandings. Long-term stranding anomalies increased first in the southern North Sea, the Channel and Bay of Biscay coasts, and finally the eastern North Sea. The hypothesis of changes in porpoise distribution was consistent with local visual surveys, mostly SCANS surveys (1994 and 2005. This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna.

  17. Entanglement verification with detection efficiency mismatch

    Science.gov (United States)

    Zhang, Yanbao; Lütkenhaus, Norbert

    Entanglement is a necessary condition for secure quantum key distribution (QKD). When there is an efficiency mismatch between various detectors used in the QKD system, it is still an open problem how to verify entanglement. Here we present a method to address this problem, given that the detection efficiency mismatch is characterized and known. The method works without assuming an upper bound on the number of photons going to each threshold detector. Our results suggest that the efficiency mismatch affects the ability to verify entanglement: the larger the efficiency mismatch is, the smaller the set of entangled states that can be verified becomes. When there is no mismatch, our method can verify entanglement even if the method based on squashing maps [PRL 101, 093601 (2008)] fails.

  18. Optimized entanglement witnesses for Dicke states

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Marcel; Guehne, Otfried [Naturwissenschaftlich-Technische Fakultaet, Universitaet Siegen, Department Physik, Walter-Flex-Strasse 3, D-57068 Siegen (Germany)

    2013-07-01

    Quantum entanglement is an important resource for applications in quantum information processing like quantum teleportation and cryptography. Moreover, the number of particles that can be entangled experimentally using polarized photons or ion traps has been significantly enlarged. Therefore, criteria to decide the question whether a given multi-particle state is entangled or not have to be improved. Our approach to this problem uses the notion of PPT mixtures which form an approximation to the set of bi-separable states. With this method, entanglement witnesses can be obtained in a natural manner via linear semi-definite programming. In our contribution, we will present analytical results for entanglement witnesses for Dicke states. This allows to overcome the limitations of convex optimization.

  19. Entanglement, Bell inequality and all that

    Energy Technology Data Exchange (ETDEWEB)

    Narnhofer, Heide; Thirring, Walter [Fakultaet fuer Physik, Universitaet Wien, Boltzmanngasse 5, A-1090 Wien (Austria)

    2012-09-15

    We start from the geometrical observation that a finite set of pure states correspond to some points on a sphere and their convex span cannot be the whole set of states. If we call the left over entangled we can pursue this picture from the simplest case of a two dimensional Hilbert space to the usual Alice-and-Bob game of entangled states and then move to bigger systems and finely to quantum field theory where almost everything is entangled. On the way we encounter more or less known old friends up from the shell structure of states to the monogamy of squashed entanglement. We study how entanglement can be concentrated on a small slice and how it depends on the particular factorization of the Hilbert space.

  20. Entanglement, Bell inequality and all that

    International Nuclear Information System (INIS)

    Narnhofer, Heide; Thirring, Walter

    2012-01-01

    We start from the geometrical observation that a finite set of pure states correspond to some points on a sphere and their convex span cannot be the whole set of states. If we call the left over entangled we can pursue this picture from the simplest case of a two dimensional Hilbert space to the usual Alice-and-Bob game of entangled states and then move to bigger systems and finely to quantum field theory where almost everything is entangled. On the way we encounter more or less known old friends up from the shell structure of states to the monogamy of squashed entanglement. We study how entanglement can be concentrated on a small slice and how it depends on the particular factorization of the Hilbert space.

  1. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  2. Multipartite entanglement detection with nonsymmetric probing

    DEFF Research Database (Denmark)

    Dellantonio, Luca; Das, Sumanta; Appel, Jürgen

    2017-01-01

    We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify th...... the degree of entanglement of a quantum state in the spin system. Finally, we apply our method for entanglement verification to existing experimental data, and use it to prove the existence of tripartite entanglement in a spin-squeezed atomic ensemble.......We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify...

  3. Entanglement temperature with Gauss–Bonnet term

    Directory of Open Access Journals (Sweden)

    Shesansu Sekhar Pal

    2015-09-01

    Full Text Available We compute the entanglement temperature using the first law-like of thermodynamics, ΔE=TentΔSEE, up to Gauss–Bonnet term in the Jacobson–Myers entropy functional in any arbitrary spacetime dimension. The computation is done when the entangling region is the geometry of a slab. We also show that such a Gauss–Bonnet term, which becomes a total derivative, when the co-dimension two hypersurface is four dimensional, does not contribute to the finite term in the entanglement entropy. We observe that the Weyl-squared term does not contribute to the entanglement entropy. It is important to note that the calculations are performed when the entangling region is very small and the energy is calculated using the normal Hamiltonian.

  4. Entanglement entropy in top-down models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Peter A.R.; Taylor, Marika [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom)

    2016-08-26

    We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.

  5. Entanglement entropy in top-down models

    International Nuclear Information System (INIS)

    Jones, Peter A.R.; Taylor, Marika

    2016-01-01

    We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.

  6. Superadditivity of distillable entanglement from quantum teleportation

    Science.gov (United States)

    Bandyopadhyay, Somshubhro; Roychowdhury, Vwani

    2005-12-01

    We show that the phenomenon of superadditivity of distillable entanglement observed in multipartite quantum systems results from the consideration of states created during the execution of the standard end-to-end quantum teleportation protocol [and a few additional local operations and classical communication (LOCC) steps] on a linear chain of singlets. Some of these intermediate states are tensor products of bound entangled (BE) states, and hence, by construction possess distillable entanglement, which can be unlocked by simply completing the rest of the LOCC operations required by the underlying teleportation protocol. We use this systematic approach to construct both new and known examples of superactivation of bound entanglement, and examples of activation of BE states using other BE states. A surprising outcome is the construction of noiseless quantum relay channels with no distillable entanglement between any two parties, except for that between the two end nodes.

  7. Superadditivity of distillable entanglement from quantum teleportation

    International Nuclear Information System (INIS)

    Bandyopadhyay, Somshubhro; Roychowdhury, Vwani

    2005-01-01

    We show that the phenomenon of superadditivity of distillable entanglement observed in multipartite quantum systems results from the consideration of states created during the execution of the standard end-to-end quantum teleportation protocol [and a few additional local operations and classical communication (LOCC) steps] on a linear chain of singlets. Some of these intermediate states are tensor products of bound entangled (BE) states, and hence, by construction possess distillable entanglement, which can be unlocked by simply completing the rest of the LOCC operations required by the underlying teleportation protocol. We use this systematic approach to construct both new and known examples of superactivation of bound entanglement, and examples of activation of BE states using other BE states. A surprising outcome is the construction of noiseless quantum relay channels with no distillable entanglement between any two parties, except for that between the two end nodes

  8. Deterministic dense coding with partially entangled states

    Science.gov (United States)

    Mozes, Shay; Oppenheim, Jonathan; Reznik, Benni

    2005-01-01

    The utilization of a d -level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d . In general, we numerically find that the maximal alphabet size is any integer in the range [d,d2] with the possible exception of d2-1 . We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.

  9. Quantum entanglement of high angular momenta.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  10. Real-time imaging of quantum entanglement.

    Science.gov (United States)

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  11. Entanglement fidelity of quantum memories

    International Nuclear Information System (INIS)

    Surmacz, K.; Nunn, J.; Waldermann, F. C.; Wang, Z.; Walmsley, I. A.; Jaksch, D.

    2006-01-01

    We introduce a figure of merit for a quantum memory which measures the preservation of entanglement between a qubit stored in and retrieved from the memory and an auxiliary qubit. We consider a general quantum memory system consisting of a medium of two level absorbers, with the qubit to be stored encoded in a single photon. We derive an analytic expression for our figure of merit taking into account Gaussian fluctuations in the Hamiltonian parameters, which, for example, model inhomogeneous broadening and storage time dephasing. Finally we specialize to the case of an atomic quantum memory where fluctuations arise predominantly from Doppler broadening and motional dephasing

  12. Entanglement entropy of excited states

    International Nuclear Information System (INIS)

    Alba, Vincenzo; Fagotti, Maurizio; Calabrese, Pasquale

    2009-01-01

    We study the entanglement entropy of a block of contiguous spins in excited states of spin chains. We consider the XY model in a transverse field and the XXZ Heisenberg spin chain. For the latter, we developed a numerical application of the algebraic Bethe ansatz. We find two main classes of states with logarithmic and extensive behavior in the dimension of the block, characterized by the properties of excitations of the state. This behavior can be related to the locality properties of the Hamiltonian having a given state as the ground state. We also provide several details of the finite size scaling

  13. Secret sharing via quantum entanglement

    International Nuclear Information System (INIS)

    Hillery, M.; Buzek, V.

    1999-01-01

    Secret sharing is a procedure for splitting a message into several parts so that no single part is sufficient to read the message, but the entire set is. This procedure can be implemented using either GHZ states or two-particle entangled states. In the quantum case the presence of an eavesdropper will introduce errors so that her presence can be detected. We also discuss how quantum information can be split into parts so that the message can be reconstructed from a sufficiently large subset of the parts. (Authors)

  14. Entanglement and inhibited quantum evolution

    Energy Technology Data Exchange (ETDEWEB)

    Toschek, P E; Balzer, Chr; Hannemann, Th; Wunderlich, Ch; Neuhauser, W [Universitaet Hamburg, Institut fuer Laser-Physik, Jungiusstrasse 9, D-20355 Hamburg (Germany)

    2003-03-14

    The evolution of a quantum system is impeded by the system's state being observed. A test on an ensemble neither proves the causal nexus nor discloses the nature of the inhibition. Two recent experiments that make use of sequential optical or microwave-optical double resonance on an individual trapped ion disprove a dynamical effect of back action by meter or environment. They rather indicate the ionic states involved in the evolution being entangled with the potentially recorded bivalued scattered-light signal.

  15. Quantum Entanglement Growth under Random Unitary Dynamics

    Science.gov (United States)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  16. Entanglement quantification by local unitary operations

    Energy Technology Data Exchange (ETDEWEB)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-07-15

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  17. Quantum key distribution with entangled photon sources

    International Nuclear Information System (INIS)

    Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.

    2007-01-01

    A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses

  18. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  19. Entanglement quantification by local unitary operations

    International Nuclear Information System (INIS)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F.; Adesso, G.; Davies, G. B.

    2011-01-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  20. Gain maximization in a probabilistic entanglement protocol

    Science.gov (United States)

    di Lorenzo, Antonio; Esteves de Queiroz, Johnny Hebert

    Entanglement is a resource. We can therefore define gain as a monotonic function of entanglement G (E) . If a pair with entanglement E is produced with probability P, the net gain is N = PG (E) - (1 - P) C , where C is the cost of a failed attempt. We study a protocol where a pair of quantum systems is produced in a maximally entangled state ρm with probability Pm, while it is produced in a partially entangled state ρp with the complementary probability 1 -Pm . We mix a fraction w of the partially entangled pairs with the maximally entangled ones, i.e. we take the state to be ρ = (ρm + wUlocρpUloc+) / (1 + w) , where Uloc is an appropriate unitary local operation designed to maximize the entanglement of ρ. This procedure on one hand reduces the entanglement E, and hence the gain, but on the other hand it increases the probability of success to P =Pm + w (1 -Pm) , therefore the net gain N may increase. There may be hence, a priori, an optimal value for w, the fraction of failed attempts that we mix in. We show that, in the hypothesis of a linear gain G (E) = E , even assuming a vanishing cost C -> 0 , the net gain N is increasing with w, therefore the best strategy is to always mix the partially entangled states. Work supported by CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, proc. 311288/2014-6, and by FAPEMIG, Fundação de Amparo à Pesquisa de Minas Gerais, proc. IC-FAPEMIG2016-0269 and PPM-00607-16.

  1. Strand Plasticity Governs Fatigue in Colloidal Gels

    Science.gov (United States)

    van Doorn, Jan Maarten; Verweij, Joanne E.; Sprakel, Joris; van der Gucht, Jasper

    2018-05-01

    The repeated loading of a solid leads to microstructural damage that ultimately results in catastrophic material failure. While posing a major threat to the stability of virtually all materials, the microscopic origins of fatigue, especially for soft solids, remain elusive. Here we explore fatigue in colloidal gels as prototypical inhomogeneous soft solids by combining experiments and computer simulations. Our results reveal how mechanical loading leads to irreversible strand stretching, which builds slack into the network that softens the solid at small strains and causes strain hardening at larger deformations. We thus find that microscopic plasticity governs fatigue at much larger scales. This gives rise to a new picture of fatigue in soft thermal solids and calls for new theoretical descriptions of soft gel mechanics in which local plasticity is taken into account.

  2. Entanglement fidelity of the standard quantum teleportation channel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang; Ye, Ming-Yong, E-mail: myye@fjnu.edu.cn; Lin, Xiu-Min

    2013-09-16

    We consider the standard quantum teleportation protocol where a general bipartite state is used as entanglement resource. We use the entanglement fidelity to describe how well the standard quantum teleportation channel transmits quantum entanglement and give a simple expression for the entanglement fidelity when it is averaged on all input states.

  3. Probabilistic Teleportation of a Four-Particle Entangled State

    Institute of Scientific and Technical Information of China (English)

    ZHAN You-Bang; FU Hao; DONG Zheng-Chao

    2005-01-01

    A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs of particles are nonmaximally entangled, the teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations.

  4. Controlled mutual quantum entity authentication using entanglement swapping

    International Nuclear Information System (INIS)

    Kang, Min-Sung; Hong, Chang-Ho; Heo, Jino; Lim, Jong-In; Yang, Hyung-Jin

    2015-01-01

    In this paper, we suggest a controlled mutual quantum entity authentication protocol by which two users mutually certify each other on a quantum network using a sequence of Greenberger–Horne–Zeilinger (GHZ)-like states. Unlike existing unidirectional quantum entity authentication, our protocol enables mutual quantum entity authentication utilizing entanglement swapping; moreover, it allows the managing trusted center (TC) or trusted third party (TTP) to effectively control the certification of two users using the nature of the GHZ-like state. We will also analyze the security of the protocol and quantum channel. (paper)

  5. Quantum entanglement of baby universes

    International Nuclear Information System (INIS)

    Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi

    2007-01-01

    We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight

  6. Quantum entanglement of baby universes

    International Nuclear Information System (INIS)

    Essman, Eric P.; Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi

    2006-01-01

    We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight

  7. Linearity of holographic entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Almheiri, Ahmed [Stanford Institute for Theoretical Physics, Department of Physics,Stanford University, Stanford, CA 94305 (United States); Dong, Xi [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Swingle, Brian [Stanford Institute for Theoretical Physics, Department of Physics,Stanford University, Stanford, CA 94305 (United States)

    2017-02-14

    We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certain such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of ‘entropy operators’ in general systems with a large number of degrees of freedom.

  8. Quantum Entanglement: Separability, Measure, Fidelity of Teleportation, and Distillation

    Directory of Open Access Journals (Sweden)

    Ming Li

    2010-01-01

    Full Text Available Quantum entanglement plays crucial roles in quantum information processing. Quantum entangled states have become the key ingredient in the rapidly expanding field of quantum information science. Although the nonclassical nature of entanglement has been recognized for many years, considerable efforts have been taken to understand and characterize its properties recently. In this review, we introduce some recent results in the theory of quantum entanglement. In particular separability criteria based on the Bloch representation, covariance matrix, normal form and entanglement witness, lower bounds, subadditivity property of concurrence and tangle, fully entangled fraction related to the optimal fidelity of quantum teleportation, and entanglement distillation will be discussed in detail.

  9. Cloning the entanglement of a pair of quantum bits

    International Nuclear Information System (INIS)

    Lamoureux, Louis-Philippe; Navez, Patrick; Cerf, Nicolas J.; Fiurasek, Jaromir

    2004-01-01

    It is shown that any quantum operation that perfectly clones the entanglement of all maximally entangled qubit pairs cannot preserve separability. This 'entanglement no-cloning' principle naturally suggests that some approximate cloning of entanglement is nevertheless allowed by quantum mechanics. We investigate a separability-preserving optimal cloning machine that duplicates all maximally entangled states of two qubits, resulting in 0.285 bits of entanglement per clone, while a local cloning machine only yields 0.060 bits of entanglement per clone

  10. Residual entanglement and sudden death: A direct connection

    International Nuclear Information System (INIS)

    Oliveira, J.G.G. de; Peixoto de Faria, J.G.; Nemes, M.C.

    2011-01-01

    We explore the results of [V. Coffman, et al., Phys. Rev. A 61 (2000) 052306] derived for general tripartite states in a dynamical context. We study a class of physically motivated tripartite systems. We show that whenever entanglement sudden death occurs in one of the partitions residual entanglement will appear. For fourpartite systems however, the appearance of residual entanglement is not conditioned by sudden death of entanglement. We can only say that if sudden death of entanglement occurs in some partition there will certainly be residual entanglement. -- Highlights: ► For tripartite systems we show there exists residual entanglement if sudden death occurs. ► For fourpartite systems, the residual entanglement is not conditioned by sudden death. ► If sudden death of entanglement occurs there will certainly be residual entanglement.

  11. Gauge field entanglement in Kitaev's honeycomb model

    Science.gov (United States)

    Dóra, Balázs; Moessner, Roderich

    2018-01-01

    A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.

  12. Cosmological perturbations in the entangled inflationary universe

    Science.gov (United States)

    Robles-Pérez, Salvador J.

    2018-03-01

    In this paper, the model of a multiverse made up of universes that are created in entangled pairs that conserve the total momentum conjugated to the scale factor is presented. For the background spacetime, assumed is a Friedmann-Robertson-Walker metric with a scalar field with mass m minimally coupled to gravity. For the fields that propagate in the entangled spacetimes, the perturbations of the spacetime and the scalar field, whose quantum states become entangled too, are considered. They turn out to be in a quasithermal state, and the corresponding thermodynamical magnitudes are computed. Three observables are expected to be caused by the creation of the universes in entangled pairs: a modification of the Friedmann equation because of the entanglement of the spacetimes, a modification of the effective value of the potential of the scalar field by the backreaction of the perturbation modes, and a modification of the spectrum of fluctuations because the thermal distribution is induced by the entanglement of the partner universes. The later would be a distinctive feature of the creation of universes in entangled pairs.

  13. The geometry of entanglement and Grover's algorithm

    International Nuclear Information System (INIS)

    Iwai, Toshihiro; Hayashi, Naoki; Mizobe, Kimitake

    2008-01-01

    A measure of entanglement with respect to a bipartite partition of n-qubit has been defined and studied from the viewpoint of Riemannian geometry (Iwai 2007 J. Phys. A: Math. Theor. 40 12161). This paper has two aims. One is to study further the geometry of entanglement, and the other is to investigate Grover's search algorithms, both the original and the fixed-point ones, in reference with entanglement. As the distance between the maximally entangled states and the separable states is known already in the previous paper, this paper determines the set of maximally entangled states nearest to a typical separable state which is used as an initial state in Grover's search algorithms, and to find geodesic segments which realize the above-mentioned distance. As for Grover's algorithms, it is already known that while the initial and the target states are separable, the algorithms generate sequences of entangled states. This fact is confirmed also in the entanglement measure proposed in the previous paper, and then a split Grover algorithm is proposed which generates sequences of separable states only with respect to the bipartite partition

  14. Developments in entanglement theory and applications to relevant physical systems

    OpenAIRE

    Lamata Manuel, Lucas

    2007-01-01

    This Thesis is devoted to the analysis of entanglement in relevant physical systems. Entanglement is the conducting theme of this research, though I do not dedicate to a single topic, but consider a wide scope of physical situations. I have followed mainly three lines of research for this Thesis, with a series of different works each, which are, Entanglement and Relativistic Quantum Theory, Continuous-variable entanglement, and Multipartite entanglement.

  15. Dynamics of pairwise entanglement between two Tavis-Cummings atoms

    International Nuclear Information System (INIS)

    Guo Jinliang; Song Heshan

    2008-01-01

    We investigate the time evolution of pairwise entanglement between two Tavis-Cummings atoms for various entangled initial states, including pure and mixed states. We find that the phenomenon of entanglement sudden death behaviors is distinct in the evolution of entanglement for different initial states. What deserves mentioning here is that the initial portion of the excited state in the initial state is responsible for the sudden death of entanglement, and the degree of this effect also depends on the initial states

  16. Entanglement witnesses arising from exposed positive linear maps

    OpenAIRE

    Ha, Kil-Chan; Kye, Seung-Hyeok

    2011-01-01

    We consider entanglement witnesses arising from positive linear maps which generate exposed extremal rays. We show that every entanglement can be detected by one of these witnesses, and this witness detects a unique set of entanglement among those. Therefore, they provide a minimal set of witnesses to detect all entanglement in a sense. Furthermore, if those maps are indecomposable then they detect large classes of entanglement with positive partial transposes which have nonempty relative int...

  17. Entanglement quantification by local unitary operations

    Science.gov (United States)

    Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-07-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  18. Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities

    International Nuclear Information System (INIS)

    Wang Chuan; Zhang Yong; Jin Guangsheng

    2011-01-01

    We present an entanglement purification protocol and an entanglement concentration protocol for electron-spin entangled states, resorting to quantum-dot spin and optical-microcavity-coupled systems. The parity-check gates (PCGs) constructed by the cavity-spin-coupling system provide a different method for the entanglement purification of electron-spin entangled states. This protocol can efficiently purify an electron ensemble in a mixed entangled state. The PCGs can also concentrate electron-spin pairs in less-entangled pure states efficiently. The proposed methods are more flexible as only single-photon detection and single-electron detection are needed.

  19. Spin-orbit-path hybrid Greenberger-Horne-Zeilinger entanglement and open-destination teleportation with multiple degrees of freedom

    International Nuclear Information System (INIS)

    Chen Lixiang; She Weilong

    2011-01-01

    We propose a scheme to generate hybrid Greenberger-Horne-Zeilinger (GHZ) entanglement where multiple photons are entangled in different degrees of freedom of spin, orbital angular momentum (OAM), and path (linear momentum). The generation involves mapping the preliminary OAM entanglement of photon pairs onto their spin-orbit and spin-path degrees of freedom, respectively. Based on the hybrid GHZ entanglement, we demonstrate an open-destination teleportation with multiples degrees of freedom, via which a spin state of a single photon is teleported onto a superposition of multiple photons with the postselection technique and the original information could be read out at any photon in individual spin, OAM, or the linear-momentum state. Our scheme holds promise for asymmetric optical quantum network.

  20. Evolution of entanglement under echo dynamics

    International Nuclear Information System (INIS)

    Prosen, Tomaz; Znidaric, Marko; Seligman, Thomas H.

    2003-01-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model

  1. Detecting Kondo Entanglement by Electron Conductance

    Science.gov (United States)

    Yoo, Gwangsu; Lee, S.-S. B.; Sim, H.-S.

    2018-04-01

    Quantum entanglement between an impurity spin and electrons nearby is a key property of the single-channel Kondo effects. We show that the entanglement can be detected by measuring electron conductance through a double quantum dot in an orbital Kondo regime. We derive a relation between the entanglement and the conductance, when the SU(2) spin symmetry of the regime is weakly broken. The relation reflects the universal form of many-body states near the Kondo fixed point. Using it, the spatial distribution of the entanglement—hence, the Kondo cloud—can be detected, with breaking of the symmetry spatially nonuniformly by electrical means.

  2. Scattering effect on entanglement propagation in RCFTs

    Energy Technology Data Exchange (ETDEWEB)

    Numasawa, Tokiro [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan); Kavli Institute for Theoretical Physics, University of California Santa Barbara,Santa Barbara, CA, 93106 (United States)

    2016-12-14

    In this paper we discuss the scattering effect on entanglement propagation in RCFTs. In our setup, we consider the time evolution of excited states created by the insertion of many local operators. Our results show that because of the finiteness of quantum dimension, entanglement is not changed after the scattering in RCFTs. In this mean, entanglement is conserved after the scattering event in RCFTs, which reflects the integrability of the system. Our results are also consistent with the free quasiparticle picture after the global quenches.

  3. Quantum entanglement and fixed-point bifurcations

    International Nuclear Information System (INIS)

    Hines, Andrew P.; McKenzie, Ross H.; Milburn, G.J.

    2005-01-01

    How does the classical phase-space structure for a composite system relate to the entanglement characteristics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the corresponding quantum state--the ground state--achieves its maximum amount of entanglement near the critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a bifurcation

  4. Task-oriented maximally entangled states

    International Nuclear Information System (INIS)

    Agrawal, Pankaj; Pradhan, B

    2010-01-01

    We introduce the notion of a task-oriented maximally entangled state (TMES). This notion depends on the task for which a quantum state is used as the resource. TMESs are the states that can be used to carry out the task maximally. This concept may be more useful than that of a general maximally entangled state in the case of a multipartite system. We illustrate this idea by giving an operational definition of maximally entangled states on the basis of communication tasks of teleportation and superdense coding. We also give examples and a procedure to obtain such TMESs for n-qubit systems.

  5. Teleportation of Multi-qudit Entangled States

    Institute of Scientific and Technical Information of China (English)

    ZHAN Xiao-Gui; LI Hong-Mei; ZENG Hao-Sheng

    2006-01-01

    @@ We propose a method to realize the teleportation of an unknown entangled state that consists of many qudits through a partially entangled-qudit quantum channel with the help of 2 log2 d-bit classical communication. The operations used in the teleportation process include a generalized Bell-state measurement and a series of singlequdit π-measurements performed by Alice, a series of generalized qudit-Pauli gates and two-level unitary gates,as well as a qubit measurement performed by Bob. For a maximally entangled quantum channel, the successful probability of the teleportation becomes unit.

  6. Experimental Measurement-Device-Independent Entanglement Detection

    Science.gov (United States)

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-02-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

  7. Entanglement detection in hybrid optomechanical systems

    International Nuclear Information System (INIS)

    De Chiara, Gabriele; Paternostro, Mauro; Palma, G. Massimo

    2011-01-01

    We study a device formed by a Bose-Einstein condensate (BEC) coupled to the field of a cavity with a moving end mirror and find a working point such that the mirror-light entanglement is reproduced by the BEC-light quantum correlations. This provides an experimentally viable tool for inferring mirror-light entanglement with only a limited set of assumptions. We prove the existence of tripartite entanglement in the hybrid device, persisting up to temperatures of a few milli-Kelvin, and discuss a scheme to detect it.

  8. Multipartite Entanglement Detection with Minimal Effort

    Science.gov (United States)

    Knips, Lukas; Schwemmer, Christian; Klein, Nico; Wieśniak, Marcin; Weinfurter, Harald

    2016-11-01

    Certifying entanglement of a multipartite state is generally considered a demanding task. Since an N qubit state is parametrized by 4N-1 real numbers, one might naively expect that the measurement effort of generic entanglement detection also scales exponentially with N . Here, we introduce a general scheme to construct efficient witnesses requiring a constant number of measurements independent of the number of qubits for states like, e.g., Greenberger-Horne-Zeilinger states, cluster states, and Dicke states. For four qubits, we apply this novel method to experimental realizations of the aforementioned states and prove genuine four-partite entanglement with two measurement settings only.

  9. Entanglement entropy with a time-dependent Hamiltonian

    Science.gov (United States)

    Sivaramakrishnan, Allic

    2018-03-01

    The time evolution of entanglement tracks how information propagates in interacting quantum systems. We study entanglement entropy in CFT2 with a time-dependent Hamiltonian. We perturb by operators with time-dependent source functions and use the replica trick to calculate higher-order corrections to entanglement entropy. At first order, we compute the correction due to a metric perturbation in AdS3/CFT2 and find agreement on both sides of the duality. Past first order, we find evidence of a universal structure of entanglement propagation to all orders. The central feature is that interactions entangle unentangled excitations. Entanglement propagates according to "entanglement diagrams," proposed structures that are motivated by accessory spacetime diagrams for real-time perturbation theory. To illustrate the mechanisms involved, we compute higher-order corrections to free fermion entanglement entropy. We identify an unentangled operator, one which does not change the entanglement entropy to any order. Then, we introduce an interaction and find it changes entanglement entropy by entangling the unentangled excitations. The entanglement propagates in line with our conjecture. We compute several entanglement diagrams. We provide tools to simplify the computation of loop entanglement diagrams, which probe UV effects in entanglement propagation in CFT and holography.

  10. Generation of bright quadricolor continuous-variable entanglement by four-wave-mixing process

    International Nuclear Information System (INIS)

    Yu, Y. B.; Sheng, J. T.; Xiao, M.

    2011-01-01

    We propose an experimentally feasible scheme to produce bright quadricolor continuous-variable (CV) entanglement by a four-wave mixing process (FWM) with four-level atoms inside the optical ring cavities operating above threshold. The Stokes and anti-Stokes beams are generated via the pump beam (tuned close to one atomic transition) and the coupling beam (tuned to the resonance of another atomic transition), respectively. The quadruply resonant and narrowed linewidth of the cavity fields with different frequencies are achieved and quadricolor CV entanglement among the four cavity fields is demonstrated according to the criterion proposed by van Loock and Furusawa [Phys. Rev. A 67, 052315 (2003)]. This scheme provides a way to generate bright quadricolor CV entanglement and will be significant for applications in quantum information processing and quantum networks.

  11. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement

    International Nuclear Information System (INIS)

    Deng Fuguo; Zhou Hongyu; Li Chunyan; Wang Yan; Li Yansong

    2005-01-01

    We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1 agents, via the control of the others in a network. It will be shown that the outcomes in the cases that n is odd or is even are different in principle as the receiver has to perform a controlled-NOT operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubit approaches the maximal value

  12. Tensor Renormalization of Quantum Many-Body Systems Using Projected Entangled Simplex States

    Directory of Open Access Journals (Sweden)

    Z. Y. Xie

    2014-02-01

    Full Text Available We propose a new class of tensor-network states, which we name projected entangled simplex states (PESS, for studying the ground-state properties of quantum lattice models. These states extend the pair-correlation basis of projected entangled pair states to a simplex. PESS are exact representations of the simplex solid states, and they provide an efficient trial wave function that satisfies the area law of entanglement entropy. We introduce a simple update method for evaluating the PESS wave function based on imaginary-time evolution and the higher-order singular-value decomposition of tensors. By applying this method to the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice, we obtain accurate and systematic results for the ground-state energy, which approach the lowest upper bounds yet estimated for this quantity.

  13. Long-distance free-space distribution of quantum entanglement over Vienna

    International Nuclear Information System (INIS)

    Lindenthal, M.; Resch, K.; Blauensteiner, B.; Boehm, H.; Fedrizzi, A.; Kurtsiefer, C.; Poppe, A.; Schmitt-Manderbach, T.; Taraba, M.; Ursin, R.; Walther, P.; Weier, H.; Weinfurter, H.; Zeilinger, A.

    2005-01-01

    Full text: We have established a real-world free-space quantum channel over 7.8 km and demonstrate the distribution of entangled photons. The transmitter is placed at an observatory and the receiver on the 46th floor of an office skyscraper in Vienna, Austria. Using locally recorded time stamps and a public internet channel, coincident counts from correlated photons are demonstrated to violate a Bell inequality by 14 standard deviations. This confirms the high quality of the shared entanglement. In this experiment the horizontal freespace distance is chosen, so that the attenuation the light undergoes corresponds approximately to the attenuation from space to earth. This work is an encouraging step towards satellite-based distribution of quantum entanglement and future intra-city quantum networks. (author)

  14. Practical single-photon-assisted remote state preparation with non-maximally entanglement

    Science.gov (United States)

    Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2016-08-01

    Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.

  15. Creation of quantum entanglement with two separate diamond nitrogen vacancy centers coupled to a photonic molecule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Siping [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics and Electronic Engineering, Hubei University of Arts and Science, Xiangyang 441053 (China); Yu, Rong, E-mail: rong-yu2013@163.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Jiahua, E-mail: huajia-li@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Wu, Ying [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-12-28

    We explore the entanglement generation and the corresponding dynamics between two separate nitrogen-vacancy (NV) centers in diamond nanocrystal coupled to a photonic molecule consisting of a pair of coupled photonic crystal (PC) cavities. By calculating the entanglement concurrence with readily available experimental parameters, it is found that the entanglement degree strongly depends on the cavity-cavity hopping strength and the NV-center-cavity detuning. High concurrence peak and long-lived entanglement plateau can be achieved by properly adjusting practical system parameters. Meanwhile, we also discuss the influence of the coupling strength between the NV centers and the cavity modes on the behavior of the concurrence. Such a PC-NV system can be employed for quantum entanglement generation and represents a building block for an integrated nanophotonic network in a solid-state cavity quantum electrodynamics platform. In addition, the present theory can also be applied to other similar systems, such as two single quantum emitters positioned close to a microtoroidal resonator with the whispering-gallery-mode fields propagating inside the resonator.

  16. Entropic Entanglement: Information Prison Break

    Directory of Open Access Journals (Sweden)

    Alexander Y. Yosifov

    2017-01-01

    Full Text Available We argue that certain nonviolent local quantum field theory (LQFT modification considered at the global horizon (r=2M of a static spherically symmetric black hole can lead to adiabatic leakage of quantum information in the form of Hawking particles. The source of the modification is (i smooth at r=2M and (ii rapidly vanishing at r≫2M. Furthermore, we restore the unitary evolution by introducing extra quanta which departs slightly from the generic Hawking emission without changing the experience of an infalling observer (no drama. Also, we suggest that a possible interpretation of the Bekenstein-Hawking bound as entanglement entropy may yield a nonsingular dynamical horizon behavior described by black hole thermodynamics. Hence, by treating gravity as a field theory and considering its coupling to the matter fields in the Minkowski vacuum, we derive the conjectured fluctuations of the background geometry of a black hole.

  17. On the entanglement entropy for gauge theories

    International Nuclear Information System (INIS)

    Ghosh, Sudip; Soni, Ronak M; Trivedi, Sandip P.

    2015-01-01

    We propose a definition for the entanglement entropy of a gauge theory on a spatial lattice. Our definition applies to any subset of links in the lattice, and is valid for both Abelian and Non-Abelian gauge theories. For ℤ_N and U(1) theories, without matter, our definition agrees with a particular case of the definition given by Casini, Huerta and Rosabal. We also argue that in general, both for Abelian and Non-Abelian theories, our definition agrees with the entanglement entropy calculated using a definition of the replica trick. Our definition, however, does not agree with some standard ways to measure entanglement, like the number of Bell pairs which can be produced by entanglement distillation.

  18. From quantum entanglement to mirror neuron

    International Nuclear Information System (INIS)

    Zak, Michail

    2007-01-01

    It is proposed that two fundamental phenomena: quantum entanglement in physics, and mirror neuron in biopsychology, can be described by using the same mathematical formalism, namely, the feedback from the Liouville equation to equation of motion

  19. Entanglement-assisted quantum feedback control

    Science.gov (United States)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  20. Entanglement entropy from the holographic stress tensor

    International Nuclear Information System (INIS)

    Bhattacharyya, Arpan; Sinha, Aninda

    2013-01-01

    We consider entanglement entropy in the context of gauge/gravity duality for conformal field theories in even dimensions. The holographic prescription due to Ryu and Takayanagi (RT) leads to an equation describing how the entangling surface extends into the bulk geometry. We show that setting to zero, the time–time component of the Brown–York stress tensor evaluated on the co-dimension 1 entangling surface, leads to the same equation. By considering a spherical entangling surface as an example, we observe that the Euclidean action methods in AdS/CFT will lead to the RT area functional arising as a counterterm needed to regularize the stress tensor. We present arguments leading to a justification for the minimal area prescription. (paper)

  1. Spin entanglement, decoherence and Bohm's EPR paradox.

    Science.gov (United States)

    Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D

    2009-10-12

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

  2. Entangled biphoton source - property and preparation

    International Nuclear Information System (INIS)

    Shih, Yanhua

    2003-01-01

    One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. Even though there are still questions regarding the fundamental issues of quantum theory, quantum entanglement has started to play important roles in practical engineering applications such as quantum information processing, quantum metrology, quantum imaging and quantum lithography. Two-photon states have been the most popular entangled states in fundamental and applied research. Using spontaneous parametric down conversion as an example, this review introduces the concept of biphoton wavepacket and emphasizes the very different physics associated with the entangled two-photon system (pure state) and with the 'individual' subsystems (statistical mixture). Experimental approaches for Bell state preparation, pumped by continuous wave and ultrashort pulse are discussed

  3. Revisiting entanglement entropy of lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Lu, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University,220 Handan Lu, Shanghai 200433 (China); Wan, Yidun [Perimeter Institute for Theoretical Physics,31 Caroline Street, Waterloo, ON N2L 2Y5 (Canada)

    2015-04-22

    It is realized recently that the entanglement entropy in gauge theories is ambiguous because the Hilbert space cannot be expressed as a simple direct product of Hilbert spaces defined on the two regions; different ways of dividing the Hilbert spaces near the boundary leads to significantly different result, to the extreme that it could annihilate the otherwise finite topological entanglement entropy between two regions altogether. In this article, we first show that the topological entanglement entropy in the Kitaev model http://dx.doi.org/10.1016/S0003-4916(02)00018-0 which is not a true gauge theory, is free of ambiguity. Then, we give a physical interpretation, from the perspectives of what can be measured in an experiment, to the purported ambiguity of true gauge theories, where the topological entanglement arises as redundancy in counting the degrees of freedom along the boundary separating two regions. We generalize these discussions to non-Abelian gauge theories.

  4. Persistent entanglement in the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Everitt, M J [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Clark, T D [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Stiffell, P B [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Ralph, J F [Department of Electrical and Electronic Engineering, Liverpool University, Brownlow Hill, Liverpool L69 3GJ (United Kingdom); Bulsara, A R [Space and Naval Warfare Systems Center, Code 2363, 53560 Hull Street, San Diego, CA 92152-5001 (United States); Harland, C J [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom)

    2005-02-01

    The apparent difficulty in recovering classical nonlinear dynamics and chaos from standard quantum mechanics has been the subject of a great deal of interest over the last 20 years. For open quantum systems-those coupled to a dissipative environment and/or a measurement device-it has been demonstrated that chaotic-like behaviour can be recovered in the appropriate classical limit. In this paper, we investigate the entanglement generated between two nonlinear oscillators, coupled to each other and to their environment. Entanglement-the inability to factorize coupled quantum systems into their constituent parts-is one of the defining features of quantum mechanics. Indeed, it underpins many of the recent developments in quantum technologies. Here, we show that the entanglement characteristics of two 'classical' states (chaotic and periodic solutions) differ significantly in the classical limit. In particular, we show that significant levels of entanglement are preserved only in the chaotic-like solutions.

  5. Criticality and entanglement in random quantum systems

    International Nuclear Information System (INIS)

    Refael, G; Moore, J E

    2009-01-01

    We review studies of entanglement entropy in systems with quenched randomness, concentrating on universal behavior at strongly random quantum critical points. The disorder-averaged entanglement entropy provides insight into the quantum criticality of these systems and an understanding of their relationship to non-random ('pure') quantum criticality. The entanglement near many such critical points in one dimension shows a logarithmic divergence in subsystem size, similar to that in the pure case but with a different universal coefficient. Such universal coefficients are examples of universal critical amplitudes in a random system. Possible measurements are reviewed along with the one-particle entanglement scaling at certain Anderson localization transitions. We also comment briefly on higher dimensions and challenges for the future.

  6. Converting multilevel nonclassicality into genuine multipartite entanglement

    Science.gov (United States)

    Regula, Bartosz; Piani, Marco; Cianciaruso, Marco; Bromley, Thomas R.; Streltsov, Alexander; Adesso, Gerardo

    2018-03-01

    Characterizing genuine quantum resources and determining operational rules for their manipulation are crucial steps to appraise possibilities and limitations of quantum technologies. Two such key resources are nonclassicality, manifested as quantum superposition between reference states of a single system, and entanglement, capturing quantum correlations among two or more subsystems. Here we present a general formalism for the conversion of nonclassicality into multipartite entanglement, showing that a faithful reversible transformation between the two resources is always possible within a precise resource-theoretic framework. Specializing to quantum coherence between the levels of a quantum system as an instance of nonclassicality, we introduce explicit protocols for such a mapping. We further show that the conversion relates multilevel coherence and multipartite entanglement not only qualitatively, but also quantitatively, restricting the amount of entanglement achievable in the process and in particular yielding an equality between the two resources when quantified by fidelity-based geometric measures.

  7. Orbital-angular-momentum entanglement in turbulence

    CSIR Research Space (South Africa)

    Hamadou Ibrahim, A

    2013-06-01

    Full Text Available The turbulence-induced decay of orbital-angular-momentum (OAM) entanglement between two photons is investigated numerically and experimentally. To compare our resultswith previouswork,we simulate the turbulent atmosphere with a single phase screen...

  8. Entanglement degradation in depolarizing light scattering

    International Nuclear Information System (INIS)

    Aiello, A.; Woerdman, J.P.

    2005-01-01

    Full text: In the classical regime, when a beam of light is scattered by a medium, it may emerge partially or completely depolarized depending on the optical properties of the medium. Correspondingly, in the quantum regime, when an entangled two-photon pair is scattered, the classical depolarization may result in an entanglement degradation. Here, relations between photon scattering, entanglement and multi-mode detection are investigated. We establish a general framework in which one- and two-photon elastic scattering processes can be discussed, and we focus on the study of the intrinsic entanglement degradation caused by a multi-mode detection. We show that any multi-mode scattered state cannot maximally violate the Bell-CHSH inequality because of the momentum spread. The results presented here have general validity and can be applied to both deterministic and random scattering processes. (author)

  9. Projected entangled pair states: status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, Frank [Universitaet Wien (Austria)

    2008-07-01

    We report on the progress made to extend the density matrix renormalization group to higher dimensions, discuss the underlying theory of projected entangled pair states (PEPS) and illustrate its potential on the hand of a few examples.

  10. Quantum Entanglement and Reduced Density Matrices

    Science.gov (United States)

    Purwanto, Agus; Sukamto, Heru; Yuwana, Lila

    2018-05-01

    We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.

  11. Testing for entanglement with periodic coarse graining

    Science.gov (United States)

    Tasca, D. S.; Rudnicki, Łukasz; Aspden, R. S.; Padgett, M. J.; Souto Ribeiro, P. H.; Walborn, S. P.

    2018-04-01

    Continuous-variable systems find valuable applications in quantum information processing. To deal with an infinite-dimensional Hilbert space, one in general has to handle large numbers of discretized measurements in tasks such as entanglement detection. Here we employ the continuous transverse spatial variables of photon pairs to experimentally demonstrate entanglement criteria based on a periodic structure of coarse-grained measurements. The periodization of the measurements allows an efficient evaluation of entanglement using spatial masks acting as mode analyzers over the entire transverse field distribution of the photons and without the need to reconstruct the probability densities of the conjugate continuous variables. Our experimental results demonstrate the utility of the derived criteria with a success rate in entanglement detection of ˜60 % relative to 7344 studied cases.

  12. Entangled biphoton source - property and preparation

    CERN Document Server

    Shih, Y

    2003-01-01

    One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. Even though there are still questions regarding the fundamental issues of quantum theory, quantum entanglement has started to play important roles in practical engineering applications such as quantum information processing, quantum metrology, quantum imaging and quantum lithography. Two-photon states have been the most popular entangled states in fundamental and applied research. Using spontaneous parametric down conversion as an example, this review introduces the concept of biphoton wavepacket and emphasizes the very different physics associated with the entangled two-photon system (pure state) and with the 'individual' subsystems (statistical mixture). Experimental approaches for Bell state preparation, pumped by continuous wave and ultrashort pulse are discussed.

  13. Classical statistical mechanics approach to multipartite entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, P [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); Florio, G; Pascazio, S [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Marzolino, U [Dipartimento di Fisica, Universita di Trieste, and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34014 Trieste (Italy); Parisi, G [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, Centre for Statistical Mechanics and Complexity (SMC), CNR-INFM (Italy)

    2010-06-04

    We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over balanced bipartitions. We search for maximally multipartite entangled states, whose average purity is minimal, and recast this optimization problem into a problem of statistical mechanics, by introducing a cost function, a fictitious temperature and a partition function. By investigating the high-temperature expansion, we obtain the first three moments of the distribution. We find that the problem exhibits frustration.

  14. Classical statistical mechanics approach to multipartite entanglement

    Science.gov (United States)

    Facchi, P.; Florio, G.; Marzolino, U.; Parisi, G.; Pascazio, S.

    2010-06-01

    We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over balanced bipartitions. We search for maximally multipartite entangled states, whose average purity is minimal, and recast this optimization problem into a problem of statistical mechanics, by introducing a cost function, a fictitious temperature and a partition function. By investigating the high-temperature expansion, we obtain the first three moments of the distribution. We find that the problem exhibits frustration.

  15. Classical statistical mechanics approach to multipartite entanglement

    International Nuclear Information System (INIS)

    Facchi, P; Florio, G; Pascazio, S; Marzolino, U; Parisi, G

    2010-01-01

    We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over balanced bipartitions. We search for maximally multipartite entangled states, whose average purity is minimal, and recast this optimization problem into a problem of statistical mechanics, by introducing a cost function, a fictitious temperature and a partition function. By investigating the high-temperature expansion, we obtain the first three moments of the distribution. We find that the problem exhibits frustration.

  16. Entanglement detection via tighter local uncertainty relations

    International Nuclear Information System (INIS)

    Zhang Chengjie; Zhang Yongsheng; Guo Guangcan; Nha, Hyunchul

    2010-01-01

    We propose an entanglement criterion based on local uncertainty relations (LURs) in a stronger form than the original LUR criterion introduced by Hofmann and Takeuchi [H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003)]. Using arbitrarily chosen operators (A k ) and (B k ) of subsystems A and B, the tighter LUR criterion, which may be used not only for discrete variables but also for continuous variables, can detect more entangled states than the original criterion.

  17. Monogamy inequality for distributed gaussian entanglement.

    Science.gov (United States)

    Hiroshima, Tohya; Adesso, Gerardo; Illuminati, Fabrizio

    2007-02-02

    We show that for all n-mode Gaussian states of continuous variable systems, the entanglement shared among n parties exhibits the fundamental monogamy property. The monogamy inequality is proven by introducing the Gaussian tangle, an entanglement monotone under Gaussian local operations and classical communication, which is defined in terms of the squared negativity in complete analogy with the case of n-qubit systems. Our results elucidate the structure of quantum correlations in many-body harmonic lattice systems.

  18. Multipartite secret key distillation and bound entanglement

    International Nuclear Information System (INIS)

    Augusiak, Remigiusz; Horodecki, Pawel

    2009-01-01

    Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted Greenberger-Horne-Zeilinger (GHZ) structure and nonzero distillable cryptographic key. We quantitatively estimate the key from below with the help of the privacy squeezing technique.

  19. Entanglement in mesoscopic structures: Role of projection

    OpenAIRE

    Beenakker, C.W.J.; Lebedev, A.V.; Blatter, G.; Lesovik, G.B.

    2004-01-01

    We present a theoretical analysis of the appearance of entanglement in non-interacting mesoscopic structures. Our setup involves two oppositely polarized sources injecting electrons of opposite spin into the two incoming leads. The mixing of these polarized streams in an ideal four-channel beam splitter produces two outgoing streams with particular tunable correlations. A Bell inequality test involving cross-correlated spin-currents in opposite leads signals the presence of spin-entanglement ...

  20. Multipartite electronic entanglement purification with charge detection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Yubo [Department of Physics, Tsinghua University, Beijing 100084 (China); Deng, Fu-Guo [Department of Physics, Beijing Normal University, Beijing 100875 (China); Long Guilu, E-mail: gllong@tsinghua.edu.c [Department of Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory for Atomic and Molecular NanoSciences, Tsinghua University, Beijing 100084 (China); Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 (China)

    2011-01-17

    We present a multipartite entanglement purification scheme in a Greenberger-Horne-Zeilinger state for electrons based on their spins and their charges. This scheme works for purification with two steps, i.e., bit-flip error correction and phase-flip error correction. By repeating these two steps, the parties in quantum communication can get some high-fidelity multipartite entangled electronic systems.

  1. Quantum Blockchain using entanglement in time

    OpenAIRE

    Rajan, Del; Visser, Matt

    2018-01-01

    A conceptual design for a quantum blockchain is proposed. Our method involves encoding the blockchain into a temporal GHZ (Greenberger-Horne-Zeilinger) state of photons that do not simultaneously coexist. It is shown that the entanglement in time, as opposed to an entanglement in space, provides the crucial quantum advantage. All the subcomponents of this system have already been shown to be experimentally realized. Perhaps more shockingly, our encoding procedure can be interpreted as non-cla...

  2. Detection of entanglement with few local measurements

    International Nuclear Information System (INIS)

    Guehne, O.; Hyllus, P.; Bruss, D.; Lewenstein, M.; Sanpera, A.; Ekert, A.; Macchiavello, C.

    2002-01-01

    We introduce a general method for the experimental detection of entanglement by performing only few local measurements, assuming some prior knowledge of the density matrix. The idea is based on the minimal decomposition of witness operators into a pseudomixture of local operators. We discuss an experimentally relevant case of two qubits, and show an example how bound entanglement can be detected with few local measurements

  3. Detection of entanglement with few local measurements

    OpenAIRE

    Guehne, O.; Hyllus, P.; Bruss, D.; Ekert, A.; Lewenstein, M.; Macchiavello, C.; Sanpera, A.

    2002-01-01

    We introduce a general method for the experimental detection of entanglement by performing only few local measurements, assuming some prior knowledge of the density matrix. The idea is based on the minimal decomposition of witness operators into a pseudo-mixture of local operators. We discuss an experimentally relevant case of two qubits, and show an example how bound entanglement can be detected with few local measurements.

  4. Detection of entanglement with few local measurements

    Science.gov (United States)

    Gühne, O.; Hyllus, P.; Bruß, D.; Ekert, A.; Lewenstein, M.; Macchiavello, C.; Sanpera, A.

    2002-12-01

    We introduce a general method for the experimental detection of entanglement by performing only few local measurements, assuming some prior knowledge of the density matrix. The idea is based on the minimal decomposition of witness operators into a pseudomixture of local operators. We discuss an experimentally relevant case of two qubits, and show an example how bound entanglement can be detected with few local measurements.

  5. Effects of dipole—dipole interaction on entanglement transfer

    International Nuclear Information System (INIS)

    Guo Hong; Xiong Hengna

    2008-01-01

    A system consisting of two different atoms interacting with a two-mode vacuum, where each atom is resonant only with one cavity mode, is considered. The effects of dipole—dipole (dd) interaction between two atoms on the atom-atom entanglement and mode-mode entanglement are investigated. For a weak dd interaction, when the atoms are initially separable, the entanglement between them can be induced by the dd interaction, and the entanglement transfer between the atoms and the modes occurs efficiently; when the atoms are initially entangled, the entanglement transfer is almost not influenced by the dd interaction. However, for a strong dd interaction, it is difficult to transfer the entanglement from the atoms to the modes, but the atom-atom entanglement can be maintained when the atoms are initially entangled

  6. Searching for highly entangled multi-qubit states

    International Nuclear Information System (INIS)

    Brown, Iain D K; Stepney, Susan; Sudbery, Anthony; Braunstein, Samuel L

    2005-01-01

    We present a simple numerical optimization procedure to search for highly entangled states of 2, 3, 4 and 5 qubits. We develop a computationally tractable entanglement measure based on the negative partial transpose criterion, which can be applied to quantum systems of an arbitrary number of qubits. The search algorithm attempts to optimize this entanglement cost function to find the maximal entanglement in a quantum system. We present highly entangled 4-qubit and 5-qubit states discovered by this search. We show that the 4-qubit state is not quite as entangled, according to two separate measures, as the conjectured maximally entangled Higuchi-Sudbery state. Using this measure, these states are more highly entangled than the 4-qubit and 5-qubit GHZ states. We also present a conjecture about the NPT measure, inspired by some of our numerical results, that the single-qubit reduced states of maximally entangled states are all totally mixed

  7. Fiber transport of spatially entangled photons

    Science.gov (United States)

    Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.

    2012-03-01

    High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.

  8. Remarks on entanglement entropy in string theory

    Science.gov (United States)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  9. Bipartite entanglement in continuous variable cluster states

    Energy Technology Data Exchange (ETDEWEB)

    Cable, Hugo; Browne, Daniel E, E-mail: cqthvc@nus.edu.s, E-mail: d.browne@ucl.ac.u [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2010-11-15

    A study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous variable (CV) quantum computing is presented in this paper. The central aim is to compare mathematically idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations that are experimentally accessible. Adopting widely used definitions, we first review the key concepts, by analysing a process of teleportation along a CV quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest et al (2006 Phys. Rev. Lett. 97 150504), adapting their definition to the CV context. Finally, we consider the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of CV analogues for measurement-based quantum computation.

  10. Multiple quantum spin dynamics of entanglement

    International Nuclear Information System (INIS)

    Doronin, Serge I.

    2003-01-01

    The dynamics of entanglement is investigated on the basis of exactly solvable models of multiple quantum (MQ) NMR spin dynamics. It is shown that the time evolution of MQ coherences of systems of coupled nuclear spins in solids is directly connected with dynamics of the quantum entanglement. We studied analytically the dynamics of entangled states for two- and three-spin systems coupled by the dipole-dipole interaction. In this case the dynamics of the quantum entanglement is uniquely determined by the time evolution of MQ coherences of the second order. The real part of the density matrix describing MQ dynamics in solids is responsible for MQ coherences of the zeroth order while its imaginary part is responsible for the second order. Thus, one can conclude that the dynamics of the entanglement is connected with transitions from the real part of the density matrix to the imaginary one, and vice versa. A pure state which generalizes the Greenberger-Horne-Zeilinger (GHZ) and W states is found. Different measures of the entanglement of this state are analyzed for tripartite systems

  11. Entangled photons from single atoms and molecules

    Science.gov (United States)

    Nordén, Bengt

    2018-05-01

    The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.

  12. Interuniversal entanglement in a cyclic multiverse

    Science.gov (United States)

    Robles-Pérez, Salvador; Balcerzak, Adam; Dąbrowski, Mariusz P.; Krämer, Manuel

    2017-04-01

    We study scenarios of parallel cyclic multiverses which allow for a different evolution of the physical constants, while having the same geometry. These universes are classically disconnected, but quantum-mechanically entangled. Applying the thermodynamics of entanglement, we calculate the temperature and the entropy of entanglement. It emerges that the entropy of entanglement is large at big bang and big crunch singularities of the parallel universes as well as at the maxima of the expansion of these universes. The latter seems to confirm earlier studies that quantum effects are strong at turning points of the evolution of the universe performed in the context of the timeless nature of the Wheeler-DeWitt equation and decoherence. On the other hand, the entropy of entanglement at big rip singularities is going to zero despite its presumably quantum nature. This may be an effect of total dissociation of the universe structures into infinitely separated patches violating the null energy condition. However, the temperature of entanglement is large/infinite at every classically singular point and at maximum expansion and seems to be a better measure of quantumness.

  13. First law of entanglement rates from holography

    Science.gov (United States)

    O'Bannon, Andy; Probst, Jonas; Rodgers, Ronnie; Uhlemann, Christoph F.

    2017-09-01

    For a perturbation of the state of a conformal field theory (CFT), the response of the entanglement entropy is governed by the so-called "first law" of entanglement entropy, in which the change in entanglement entropy is proportional to the change in energy. Whether such a first law holds for other types of perturbations, such as a change to the CFT Lagrangian, remains an open question. We use holography to study the evolution in time t of entanglement entropy for a CFT driven by a t -linear source for a conserved U (1 ) current or marginal scalar operator. We find that although the usual first law of entanglement entropy may be violated, a first law for the rates of change of entanglement entropy and energy still holds. More generally, we prove that this first law for rates holds in holography for any asymptotically (d +1 )-dimensional anti-de Sitter metric perturbation whose t dependence first appears at order zd in the Fefferman-Graham expansion about the boundary at z =0 .

  14. Entanglement entropy and nonabelian gauge symmetry

    International Nuclear Information System (INIS)

    Donnelly, William

    2014-01-01

    Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang–Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity. (paper)

  15. Generalized Entanglement Entropies of Quantum Designs

    Science.gov (United States)

    Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun

    2018-03-01

    The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.

  16. Discussion of entanglement entropy in quantum gravity

    International Nuclear Information System (INIS)

    Ma, Chen-Te

    2018-01-01

    We study entanglement entropy in gravity theory with quantum effects. A simplest model is a two dimensional Einstein gravity theory. We use an n-sheet manifold to obtain an area term of entanglement entropy by summing over all background fields. Based on AdS/CFT correspondence, strongly coupled conformal field theory is expected to describe perturbative quantum gravity theory. An ultraviolet complete quantum gravity theory should not depend on a choice of an entangling surface. To analysis the problem explicitly, we analyze two dimensional conformal field theory. We find that a coefficient of a universal term of entanglement entropy is independent of a choice of an entangling surface in two dimensional conformal field theory for one interval to show a tentative evidence. Finally, we discuss that translational invariance in a quantum system at zero temperature, size goes to infinity and no mass scales, except for cut-off, possibly be a necessary condition in quantum gravity theory by ruing out a volume law of entanglement entropy. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Entanglement in a simple quantum phase transition

    International Nuclear Information System (INIS)

    Osborne, Tobias J.; Nielsen, Michael A.

    2002-01-01

    What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example of such a system is the one-dimensional infinite-lattice anisotropic XY model. This model is exactly solvable using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising model, a special case of the XY model, which exhibits a quantum phase transition. It is found that the next-nearest-neighbor entanglement (though not the nearest-neighbor entanglement) is a maximum at the critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a transition in the behavior of the entanglement between a single site and the remainder of the lattice

  18. Mode entanglement of Gaussian fermionic states

    Science.gov (United States)

    Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.

    2018-04-01

    We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.

  19. The Photograph as Network

    DEFF Research Database (Denmark)

    Wiegand, Frauke Katharina

    2017-01-01

    Inspired by actor-network theory (ANT), this article develops a theoretical framework to grasp the dynamic visual work of memory. It introduces three sensitizing concepts of actor-network methodology, namely entanglement, relationality and traceability, and operationalizes them in a methodological...

  20. Hybrid entanglement concentration assisted with single coherent state

    International Nuclear Information System (INIS)

    Guo Rui; Zhou Lan; Sheng Yu-Bo; Gu Shi-Pu; Wang Xing-Fu

    2016-01-01

    Hybrid entangled state (HES) is a new type of entanglement, which combines the advantages of an entangled polarization state and an entangled coherent state. HES is widely discussed in the applications of quantum communication and computation. In this paper, we propose three entanglement concentration protocols (ECPs) for Bell-type HES, W-type HES, and cluster-type HES, respectively. After performing these ECPs, we can obtain the maximally entangled HES with some success probability. All the ECPs exploit the single coherent state to complete the concentration. These protocols are based on the linear optics, which are feasible in future experiments. (paper)

  1. Entanglement-assisted quantum MDS codes constructed from negacyclic codes

    Science.gov (United States)

    Chen, Jianzhang; Huang, Yuanyuan; Feng, Chunhui; Chen, Riqing

    2017-12-01

    Recently, entanglement-assisted quantum codes have been constructed from cyclic codes by some scholars. However, how to determine the number of shared pairs required to construct entanglement-assisted quantum codes is not an easy work. In this paper, we propose a decomposition of the defining set of negacyclic codes. Based on this method, four families of entanglement-assisted quantum codes constructed in this paper satisfy the entanglement-assisted quantum Singleton bound, where the minimum distance satisfies q+1 ≤ d≤ n+2/2. Furthermore, we construct two families of entanglement-assisted quantum codes with maximal entanglement.

  2. Dynamics of Quantum Entanglement in Reservoir with Memory Effects

    International Nuclear Information System (INIS)

    Hao Xiang; Sha Jinqiao; Sun Jian; Zhu Shiqun

    2012-01-01

    The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects. The completely positive reduced dynamical map can be constructed in the Kraus representation. Quantum entanglement decays more slowly in the non-Markovian environment. The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel. It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants. (general)

  3. Detecting faked continuous-variable entanglement using one-sided device-independent entanglement witnesses

    Science.gov (United States)

    Opanchuk, B.; Arnaud, L.; Reid, M. D.

    2014-06-01

    We demonstrate the principle of one-sided device-independent continuous-variable (CV) quantum information. In situations of no trust, we show by enactment how the use of standard CV entanglement criteria can mislead Charlie into thinking that Alice and Bob share entanglement, when the data are actually generated classically using a local-hidden-variable theory based on the Wigner function. We distinguish between criteria that demonstrate CV entanglement, and criteria that demonstrate the CV Einstein-Podolsky-Rosen (EPR) steering paradox. We show that the latter, but not the former, are necessarily one-sided device-independent entanglement witnesses, and can be used by Charlie to signify genuine EPR entanglement, if he trusts only Alice. A monogamy result for the EPR steering paradox confirms the security of the shared amplitude values in that case.

  4. Efficient multipartite entanglement purification with the entanglement link from a subspace

    Energy Technology Data Exchange (ETDEWEB)

    Deng Fuguo [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Conventional University, Beijing 100875 (China)

    2011-11-15

    We present an efficient multipartite entanglement purification protocol (MEPP) for N-photon systems in a Greenberger-Horne-Zeilinger state with parity-check detectors. It contains two parts. One is the conventional MEPP with which the parties can obtain a high-fidelity N-photon ensemble directly, similar to the MEPP with controlled-not gates. The other is our recycling MEPP in which the entanglement link is used to produce some N-photon entangled systems from entangled N{sup '}-photon subsystems (2{<=}N{sup '}entangled N{sup '}-photon subsystems are obtained efficiently by measuring the photons with potential bit-flip errors. With these two parts, the present MEPP has a higher efficiency than all other conventional MEPPs.

  5. Scheme for entanglement concentration of unknown atomic entangled states by interference of polarized photons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Yeon, Kyu-Hwang, E-mail: hfwang@ybu.edu.c, E-mail: szhang@ybu.edu.c [Department of Physics and BK21 Program for Device Physics, College of Natural Science, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of)

    2010-12-14

    Based on the interference effect of polarized photons, we propose a practical scheme for entanglement concentration of unknown atomic entangled states. In the scheme, two {lambda}{lambda}-type atoms belonging to different entangled pairs are individually trapped in two spatially separated cavities. By the subsequent detection of the polarized photons leaking out of the separate optical cavities, Alice and Bob as two distant parties can probabilistically extract one maximally entangled four-atom Greenberger-Horne-Zeilinger (GHZ) state from two identical partially entangled Einstein-Podolsky-Rosen (EPR) pairs. We also discuss the influence of cavity decay on the success probability of the scheme. The scheme is feasible and within the reach of current experimental technology.

  6. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    Science.gov (United States)

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  7. Modular architectures for quantum networks

    Science.gov (United States)

    Pirker, A.; Wallnöfer, J.; Dür, W.

    2018-05-01

    We consider the problem of generating multipartite entangled states in a quantum network upon request. We follow a top-down approach, where the required entanglement is initially present in the network in form of network states shared between network devices, and then manipulated in such a way that the desired target state is generated. This minimizes generation times, and allows for network structures that are in principle independent of physical links. We present a modular and flexible architecture, where a multi-layer network consists of devices of varying complexity, including quantum network routers, switches and clients, that share certain resource states. We concentrate on the generation of graph states among clients, which are resources for numerous distributed quantum tasks. We assume minimal functionality for clients, i.e. they do not participate in the complex and distributed generation process of the target state. We present architectures based on shared multipartite entangled Greenberger–Horne–Zeilinger states of different size, and fully connected decorated graph states, respectively. We compare the features of these architectures to an approach that is based on bipartite entanglement, and identify advantages of the multipartite approach in terms of memory requirements and complexity of state manipulation. The architectures can handle parallel requests, and are designed in such a way that the network state can be dynamically extended if new clients or devices join the network. For generation or dynamical extension of the network states, we propose a quantum network configuration protocol, where entanglement purification is used to establish high fidelity states. The latter also allows one to show that the entanglement generated among clients is private, i.e. the network is secure.

  8. Becomings: Narrative Entanglements and Microsociology

    Directory of Open Access Journals (Sweden)

    Maria Tamboukou

    2015-01-01

    Full Text Available In this article, I look back in an art/research experiment of convening an exhibition of women artists and inviting them to a round-table discussion in the context of a sociological conference. The artists who took part in this event had been previously interviewed for a feminist research project, entitled "In the Fold Between Life and Art, a Genealogy of Women Artists". The conference exhibition gave the artists the opportunity to appear to an academic audience and present their work while the round-table discussion created a forum for a narrative event where all women were invited to recount stories of becoming an artist. In looking at this event I want to explore questions around the possibilities and limitations of narratives in microsociological inquiries. In following trails of ARENDT's theorisation of stories, I explore connections and tensions between social, political and cultural entanglements in narrative research. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1501193

  9. Influence of parameters entanglement on the quantum algorithms

    Directory of Open Access Journals (Sweden)

    Alexey V. Kasarkin

    2012-05-01

    Full Text Available The article we consider the influence of parameters entanglement on the quantum algorithms, in particular influence of partial entanglement for quantum teleportation. The simulation results presented in chart form.

  10. Entanglement dynamics of a pure bipartite system in dissipative environments

    Energy Technology Data Exchange (ETDEWEB)

    Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2008-10-28

    We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.

  11. Entanglement dynamics of a pure bipartite system in dissipative environments

    International Nuclear Information System (INIS)

    Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M

    2008-01-01

    We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.

  12. Effect of Bound Entanglement on the Convertibility of Pure States

    International Nuclear Information System (INIS)

    Ishizaka, Satoshi

    2004-01-01

    I show that bound entanglement strongly influences the quantum entanglement processing of pure states: If N distant parties share appropriate bound entangled states with positive partial transpose, all N-partite pure entangled states become inter-convertible by stochastic local operations and classical communication (SLOCC) at the single copy level. This implies that the Schmidt rank of a bipartite pure entangled state can be increased, and that two incomparable tripartite entanglement of the GHZ and W type can be inter-converted by the assistance of bound entanglement. Further, I propose the simplest experimental scheme for the demonstration of the corresponding bound-entanglement-assisted SLOCC. This scheme does not need quantum gates and is feasible for the current experimental technology of linear optics

  13. Proposed Entanglement Swapping in Continuous Variable Systems via Braiding

    International Nuclear Information System (INIS)

    Su Hongyi; Chen Jingling; Deng Dongling; Wu Chunfeng

    2010-01-01

    We study entanglement swapping in continuous variable systems by using braiding transformations. It is found that entanglement swapping in two-mode squeezed vacuum states and squeezed coherent states can be realized based on the braiding operators. (general)

  14. Multipartite entangled states in particle mixing

    International Nuclear Information System (INIS)

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F.

    2008-01-01

    In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.

  15. Breakdown of entanglement during the teleportation

    International Nuclear Information System (INIS)

    Wang Jinfeng; Wang Yuming; Li Xueqian

    2005-01-01

    The teleportation may become an important means for remote distance communications in the future, and the mechanism is based on entanglement of quantum states. But the entanglement is fragile. As the state is disturbed by the environment the entanglement may be broken down. In this work, authors choose the electron-positron pair in an entangled state of spin 0 as an example to investigate the rate of breaking down of the entanglement by the Compton scattering with the background radiation photons or Bremsstrahlung with strong magnetic fields of some astronomical objects which the electron or positron passes by. Since the spin projection of single electron (positron) is not physically measurable and the electron beams cannot keep its shape for long because of the Coulomb repulsion among the charged particles in the beam, the only way is to shoot one electron-positron pair each time and continuously repeat the processes. With all the restraints this study has only pedagogic meaning, but may shed light on further studies where other information messages are chosen. (authors)

  16. Entanglement transitions induced by large deviations

    Science.gov (United States)

    Bhosale, Udaysinh T.

    2017-12-01

    The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B , is computed analytically using a Coulomb gas method. It is shown that this probability, for large N , goes as exp[-β N2Φ (ζ ) ] , where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ (ζ ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A , using the properties of the density matrix's partial transpose ρ12Γ. The density of states of ρ12Γ is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ . Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.

  17. Quantum entanglement and geometry of determinantal varieties

    International Nuclear Information System (INIS)

    Chen Hao

    2006-01-01

    Quantum entanglement was first recognized as a feature of quantum mechanics in the famous paper of Einstein, Podolsky, and Rosen. Recently it has been realized that quantum entanglement is a key ingredient in quantum computation, quantum communication, and quantum cryptography. In this paper, we introduce algebraic sets, which are determinantal varieties in the complex projective spaces or the products of complex projective spaces, for the mixed states on bipartite or multipartite quantum systems as their invariants under local unitary transformations. These invariants are naturally arised from the physical consideration of measuring mixed states by separable pure states. Our construction has applications in the following important topics in quantum information theory: (1) separability criterion, it is proved that the algebraic sets must be a union of the linear subspaces if the mixed states are separable; (2) simulation of Hamiltonians, it is proved that the simulation of semipositive Hamiltonians of the same rank implies the projective isomorphisms of the corresponding algebraic sets; (3) construction of bound entangled mixed states, examples of the entangled mixed states which are invariant under partial transpositions (thus PPT bound entanglement) are constructed systematically from our new separability criterion

  18. [Discussion on quantum entanglement theory and acupuncture].

    Science.gov (United States)

    Wang, Jun; Wu, Bin; Chen, Sheng

    2017-11-12

    The quantum entanglement is a new discovery of modern physics and has drawn a widely attention in the world. After learning the quantum entanglement, the authors have found that many characteristics of quantum are reflected in TCM, acupuncture theory and clinical practice. For example, the quantum entanglement phenomenon is mutually verified with the holism, yinyang doctrine, the theory of primary, secondary, root and knot in TCM, etc. It can be applied to interpret the clinical situations which is difficult to be explained in clinical practice, such as the instant effect of acupuncture, multi-point stimulation in one disorder and the points with specific effects. On the basis of the discovery above, the quantum entanglement theory achieved the mutual treatment among the relatives in acupuncture clinical practice and the therapeutic effects were significant. The results suggest that the coupling relationship in quantum entanglement presents between the diseases and the acupoints in the direct relative. The authors believe that the discovery in this study contributes to the exploration on the approaches to the acupuncture treatment in clinical practice and enrich the ideas on the disease prevention.

  19. Cavity QED experiments, entanglement and quantum measurement

    International Nuclear Information System (INIS)

    Brune, M.

    2001-01-01

    This course is devoted to the physics of entanglement in microwave CQED (cavity quantum electrodynamics) experiments. The heart of this system is a microwave photon trap, made of superconducting mirrors, which stores a few-photon field in a small volume of space for times as long as milliseconds. This field interacts with circular Rydberg atoms injected one by one into the cavity. Section 2 is devoted to the description of the strong coupling regime in Rydberg atom CQED. The tools of the experiment are briefly presented at the beginning of this section as well as the main characteristics of the strong coupling regime. We then show in section 3 how to use the strong interaction with a single photon to perform a non-destructive detection of a single photon with a single atom as a meter. In section 4, we show that the achieved QND (quantum non-demolition) measurement process corresponds to the operation of a quantum phase gate. It allows, in principle, to prepare arbitrary atom + field entangled states. Various methods will be presented for preparing entangled states such as a two atom EPR (Einstein Podolsky Rosen) pair as well as a GHZ triplet. Entanglement involving more and more complex systems will then be investigated in section 5 where the preparation of a ''Schroedinger cat state'' of the cavity field is presented. We especially address in this last section the problem of entanglement between the system and the meter which occurs during any quantum measurement process

  20. Applications of quantum entanglement in space

    International Nuclear Information System (INIS)

    Ursin, R.; Aspelmeyer, M.; Jennewein, T.; Zeilinger, A.

    2005-01-01

    Full text: Quantum entanglement is at the heart of quantum physics. At the same time it is the basis for novel quantum communication schemes, such as quantum cryptography over long distances. Bringing quantum entanglement to the space environment will open a new range of fundamental physics experiments, and will provide unique opportunities for quantum communication applications over long distances. We proposed tests of quantum communication in space, whereby an entangled photon Source is placed onboard the ISS, and two entangled photons are transmitted via a simultaneous down link and received at two distant ground stations. Furthermore, performing a series of consecutive single down links with separate ground stations will enable a test of establishing quantum cryptography even on a global scale. This Space-QUEST proposal was submitted within ESA's OA-2004 and was rated as 'outstanding' because of both, a novel and imaginative scientific content and for technological applications of quantum cryptography respectively. We intend to explore the possibilities to send, receive and manipulate single entangled photon pairs using telescopes, reflectors and high-power lasers over a distance of some tens of kilometers up to 100 kilometers experimentally. A distance of approx. 10 kilometer would already correspond to one atmospheric equivalent and would thus imply the feasibility of installing a ground to satellite link. We are already collaborating with European Space Agency ESA, to investigate and outline the accommodation of a quantum communication terminal in existing optical terminals for satellite communication. (author)

  1. Initial conditions and entanglement sudden death

    International Nuclear Information System (INIS)

    Qian, Xiao-Feng; Eberly, J.H.

    2012-01-01

    We report results bearing on the behavior of non-local decoherence and its potential for being managed or even controlled. The decoherence process known as entanglement sudden death (ESD) can drive prepared entanglement to zero at the same time that local coherences and fidelity remain non-zero. For a generic ESD-susceptible Bell superposition state, we provide rules restricting the occurrence and timing of ESD, amounting to management tools over a continuous variation of initial conditions. These depend on only three parameters: initial purity, entanglement and excitation. Knowledge or control of initial phases is not needed. -- Highlights: ► We study the possibility of managing disentanglement through initial conditions. ► The initial parameters are the amount of entanglement, excitation, and purity. ► Entanglement sudden death (ESD) free and ESD susceptible phases are identified. ► ESD onset time is also presented in the ESD susceptible phase. ► Our results may guide experiments to prepare ESD free or delayed ESD states.

  2. General entanglement-assisted transformation for bipartite pure quantum states

    Science.gov (United States)

    Song, Wei; Huang, Yan; Nai-LeLiu; Chen, Zeng-Bing

    2007-01-01

    We introduce the general catalysts for pure entanglement transformations under local operations and classical communications in such a way that we disregard the profit and loss of entanglement of the catalysts per se. As such, the possibilities of pure entanglement transformations are greatly expanded. We also design an efficient algorithm to detect whether a k × k general catalyst exists for a given entanglement transformation. This algorithm can also be exploited to witness the existence of standard catalysts.

  3. A Criterion to Identify Maximally Entangled Four-Qubit State

    International Nuclear Information System (INIS)

    Zha Xinwei; Song Haiyang; Feng Feng

    2011-01-01

    Paolo Facchi, et al. [Phys. Rev. A 77 (2008) 060304(R)] presented a maximally multipartite entangled state (MMES). Here, we give a criterion for the identification of maximally entangled four-qubit states. Using this criterion, we not only identify some existing maximally entangled four-qubit states in the literature, but also find several new maximally entangled four-qubit states as well. (general)

  4. Entanglement of identical particles and the detection process

    DEFF Research Database (Denmark)

    Tichy, Malte C.; de Melo, Fernando; Kus, Marek

    2013-01-01

    We introduce detector-level entanglement, a unified entanglement concept for identical particles that takes into account the possible deletion of many-particle which-way information through the detection process. The concept implies a measure for the effective indistinguishability of the particles...... statistical behavior depends on their initial entanglement. Our results show that entanglement cannot be attributed to a state of identical particles alone, but that the detection process has to be incorporated in the analysis....

  5. Entanglement entropy of two disjoint intervals in c = 1 theories

    International Nuclear Information System (INIS)

    Alba, Vincenzo; Tagliacozzo, Luca; Calabrese, Pasquale

    2011-01-01

    We study the scaling of the Rényi entanglement entropy of two disjoint blocks of critical lattice models described by conformal field theories with central charge c = 1. We provide the analytic conformal field theory result for the second order Rényi entropy for a free boson compactified on an orbifold describing the scaling limit of the Ashkin–Teller (AT) model on the self-dual line. We have checked this prediction in cluster Monte Carlo simulations of the classical two-dimensional AT model. We have also performed extensive numerical simulations of the anisotropic Heisenberg quantum spin chain with tree tensor network techniques that allowed us to obtain the reduced density matrices of disjoint blocks of the spin chain and to check the correctness of the predictions for Rényi and entanglement entropies from conformal field theory. In order to match these predictions, we have extrapolated the numerical results by properly taking into account the corrections induced by the finite length of the blocks on the leading scaling behavior

  6. Tractable Quantification of Entanglement for Multipartite Pure States

    International Nuclear Information System (INIS)

    Nian-Quan, Jiang; Yu-Jian, Wang; Yi-Zhuang, Zheng; Gen-Chang, Cai

    2008-01-01

    We present kth-order entanglement measure and global kth-order entanglement measure for multipartite pure states, and extend Bennett's measure of partial entropy for bipartite pure states to a multipartite case. These measures are computable and can effectively classify and quantify the entanglement of multipartite pure states. (general)

  7. Probability-density-function characterization of multipartite entanglement

    International Nuclear Information System (INIS)

    Facchi, P.; Florio, G.; Pascazio, S.

    2006-01-01

    We propose a method to characterize and quantify multipartite entanglement for pure states. The method hinges upon the study of the probability density function of bipartite entanglement and is tested on an ensemble of qubits in a variety of situations. This characterization is also compared to several measures of multipartite entanglement

  8. Determination of continuous variable entanglement by purity measurements.

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-02-27

    We classify the entanglement of two-mode Gaussian states according to their degree of total and partial mixedness. We derive exact bounds that determine maximally and minimally entangled states for fixed global and marginal purities. This characterization allows for an experimentally reliable estimate of continuous variable entanglement based on measurements of purity.

  9. An entanglement concentration protocol for cluster states using ...

    Indian Academy of Sciences (India)

    It may be noted that these protocols are not the only approaches of gener- ating maximally entangled states. There are several other protocols such as entanglement purification [8–12], quantum entanglement distillation [13,14], etc., to this effect. The history of ECP starts in the work of Bennett et al [8] in 1996 in which he ...

  10. Drivers and annual estimates of marine wildlife entanglement rates

    NARCIS (Netherlands)

    McIntosh, R.R.; Kirkwood, Roger; Sutherland, D.R.; Dann, Peter

    2015-01-01

    Methods of calculating wildlife entanglement rates are not standardised between studies and often ignore the influence of observer effort, confounding comparisons. From 1997-2013 we identified 359 entangled Australian fur seals at Seal Rocks, south-eastern Australia. Most entanglement materials

  11. Distillable entanglement in d circle times d dimensions

    NARCIS (Netherlands)

    Hamieh, S; Zaraket, H

    2003-01-01

    Distillable entanglement (E-d) is one of the acceptable measures of entanglement of mixed states. On the basis of discrimination through local operation and classical communication, this letter gives E-d for two classes of orthogonal multipartite maximally entangled states.

  12. Teleportation of a three-particle entangled W state

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We have investigated the problem of teleporting a three-particle entangled W state and we propose a scheme based on entanglement swapping to complete the teleportation. We also put forward a scheme for the teleportation of a general W state by using nonmaximally entangled quantum channels. The probability of success of the latter scheme is obtained.

  13. Teleportation of Two-Particle Entangled State via Cluster State

    Institute of Scientific and Technical Information of China (English)

    LI Da-Chuang; CAO Zhuo-Liang

    2007-01-01

    In this paper,two schemes for teleporting an unknown two-particle entangled state from the sender (Alice)to the receiver (Bob) via a four-particle entangled cluster state are proposed.In these two schemes,the unknown twoparticle entangled state can be teleported perfectly.The successful probabilities and fidelities of the schemes can reach unity.

  14. Probabilistic Teleportation of an Arbitrary n-Particle Entangled State

    Institute of Scientific and Technical Information of China (English)

    XI Yong-Jun; FANG Jian-Xing; ZHU Shi-Qun; GUO Zhan-Ying

    2005-01-01

    A scheme for teleporting an arbitrary n-particle entangled state via n pairs of non-maximally entangled states is proposed. The probability of successful teleportation is determined only by the smaller coefficients of the partially entangled pairs. The method is very easy to be realized.

  15. Entanglement between particle partitions in itinerant many-particle states

    NARCIS (Netherlands)

    Haque, M.; Zozulya, O.S.; Schoutens, K.

    2009-01-01

    We review 'particle-partitioning entanglement' for itinerant many-particle systems. This is defined as the entanglement between two subsets of particles making up the system. We identify generic features and mechanisms of particle entanglement that are valid over whole classes of itinerant quantum

  16. Three methods to distill multipartite entanglement over bipartite noisy channels

    International Nuclear Information System (INIS)

    Lee, Soojoon; Park, Jungjoon

    2008-01-01

    We first assume that there are only bipartite noisy qubit channels in a given multipartite system, and present three methods to distill the general Greenberger-Horne-Zeilinger state. By investigating the methods, we show that multipartite entanglement distillation by bipartite entanglement distillation has higher yield than ones in the previous multipartite entanglement distillations

  17. Sub-Ensemble Monitoring of DNA Strand Displacement Using Multiparameter Single-Molecule FRET.

    Science.gov (United States)

    Baltierra-Jasso, Laura E; Morten, Michael J; Magennis, Steven W

    2018-03-05

    Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here, we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constant of 10 m -1  s -1 . We also followed the displacement from a DNA three-way junction (3WJ) by ssDNA. The presence of three internal mismatched bases in the middle of the invading strand did not prevent displacement from the 3WJ, but reduced the second-order rate constant by about 50 %. We attribute strand exchange in the dsDNA and 3WJ to a zero-toehold pathway from the blunt-ended duplex arms. The single-molecule approach demonstrated here will be useful for studying complex DNA networks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Holographic entanglement entropy of surface defects

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos [Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States)

    2016-04-12

    We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena http://dx.doi.org/10.1007/JHEP05(2014)025 to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.

  19. Probing renormalization group flows using entanglement entropy

    International Nuclear Information System (INIS)

    Liu, Hong; Mezei, Márk

    2014-01-01

    In this paper we continue the study of renormalized entanglement entropy introduced in http://dx.doi.org/10.1007/JHEP04(2013)162. In particular, we investigate its behavior near an IR fixed point using holographic duality. We develop techniques which, for any static holographic geometry, enable us to extract the large radius expansion of the entanglement entropy for a spherical region. We show that for both a sphere and a strip, the approach of the renormalized entanglement entropy to the IR fixed point value contains a contribution that depends on the whole RG trajectory. Such a contribution is dominant, when the leading irrelevant operator is sufficiently irrelevant. For a spherical region such terms can be anticipated from a geometric expansion, while for a strip whether these terms have geometric origins remains to be seen

  20. Holographic entanglement entropy of surface defects

    International Nuclear Information System (INIS)

    Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos

    2016-01-01

    We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena http://dx.doi.org/10.1007/JHEP05(2014)025 to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.

  1. Spin Entanglement Witness for Quantum Gravity.

    Science.gov (United States)

    Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W; Ulbricht, Hendrik; Toroš, Marko; Paternostro, Mauro; Geraci, Andrew A; Barker, Peter F; Kim, M S; Milburn, Gerard

    2017-12-15

    Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.

  2. A new approach to entangling neutral atoms.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deutsch, Ivan H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Grant W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Our team has developed a new approach to entangling neutral atoms with a Rydberg-dressed interaction. Entangling neutral atoms is an essential key of quantum technologies such as quantum computation, many-body quantum simulation, and high-precision atomic sensors . The demonstrated Rydberg-dressed protocol involves adiabatically imposing a light shift on the ground state by coupling an excited Rydberg state with a tuned laser field. Using this technique, we have demonstrated a strong and tunable dipole - dipole interaction between two individually trapped atoms with energy shifts of order 1 MHz, which has been challenging to achieve in other protocols . During this program, we experimentally demonstrated Bell-state entanglement and the isomorphism to the Jaynes - Cumming model of a Rydberg-dressed two-atom system. Our theoretical calculations of a CPHASE quantum logic gate and arbitrary Dicke state quantum control in this system encourage further work.

  3. Holographic entanglement in a noncommutative gauge theory

    International Nuclear Information System (INIS)

    Fischler, Willy; Kundu, Arnab; Kundu, Sandipan

    2014-01-01

    In this article we investigate aspects of entanglement entropy and mutual information in a large-N strongly coupled noncommutative gauge theory, both at zero and at finite temperature. Using the gauge-gravity duality and the Ryu-Takayanagi (RT) prescription, we adopt a scheme for defining spatial regions on such noncommutative geometries and subsequently compute the corresponding entanglement entropy. We observe that for regions which do not lie entirely in the noncommutative plane, the RT-prescription yields sensible results. In order to make sense of the divergence structure of the corresponding entanglement entropy, it is essential to introduce an additional cut-off in the theory. For regions which lie entirely in the noncommutative plane, the corresponding minimal area surfaces can only be defined at this cut-off and they have distinctly peculiar properties

  4. Calibration robust entanglement detection beyond Bell inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Moroder, Tobias [Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, Technikerstrasse 21A, A-6020 Innsbruck (Austria); Gittsovich, Oleg [Department of Physics and Astronomy, Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, N2L 3G1 Waterloo, Ontario (Canada)

    2012-07-01

    In its vast majority entanglement verification is examined either in the complete characterized or totally device independent scenario. The assumptions imposed by these extreme cases are often either too weak or strong for real experiments. Here we investigate this detection task for the intermediate regime where partial knowledge of the measured observables is known, considering cases like orthogonal, sharp or only dimension bounded measurements. We show that for all these assumptions it is not necessary to violate a corresponding Bell inequality in order to detect entanglement. We derive strong detection criteria that can be directly evaluated for experimental data and which are robust against large classes of calibration errors. The conditions are even capable of detecting bound entanglement under the sole assumption of dimension bounded measurements.

  5. Entanglement generation secure against general attacks

    Science.gov (United States)

    Pirker, Alexander; Dunjko, Vedran; Dür, Wolfgang; Briegel, Hans J.

    2017-11-01

    We present a security proof for establishing private entanglement by means of recurrence-type entanglement distillation protocols over noisy quantum channels. We consider protocols where the local devices are imperfect, and show that nonetheless a confidential quantum channel can be established, and used to e.g. perform distributed quantum computation in a secure manner. While our results are not fully device independent (which we argue to be unachievable in settings with quantum outputs), our proof holds for arbitrary channel noise and noisy local operations, and even in the case where the eavesdropper learns the noise. Our approach relies on non-trivial properties of distillation protocols which are used in conjunction with de-Finetti and post-selection-type techniques to reduce a general quantum attack in a non-asymptotic scenario to an i.i.d. setting. As a side result, we also provide entanglement distillation protocols for non-i.i.d. input states.

  6. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade

    DEFF Research Database (Denmark)

    Saffman, Mark; Mølmer, Klaus

    2009-01-01

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On t....... On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.......We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles...

  7. Anderson localization and momentum-space entanglement

    International Nuclear Information System (INIS)

    Andrade, Eric C; Steudtner, Mark; Vojta, Matthias

    2014-01-01

    We consider Anderson localization and the associated metal–insulator transition for non-interacting fermions in D = 1, 2 space dimensions in the presence of spatially correlated on-site random potentials. To assess the nature of the wave function, we follow a recent proposal to study momentum-space entanglement. For a D = 1 model with long-range disorder correlations, both the entanglement spectrum and the entanglement entropy allow us to clearly distinguish between extended and localized states based upon a single realization of disorder. However, for other models, including the D = 2 case with long-range correlated disorder, we find that the method is not similarly successful. We analyze the reasons for its failure, concluding that the much desired generalization to higher dimensions may be problematic. (paper)

  8. A heralded two-qutrit entangled state

    International Nuclear Information System (INIS)

    Joo, Jaewoo; Sanders, Barry C; Rudolph, Terry

    2009-01-01

    We propose a scheme for building a heralded two-qutrit entangled state from polarized photons. An optical circuit is presented to build the maximally entangled two-qutrit state from two heralded Bell pairs and ideal threshold detectors. Several schemes are discussed for constructing the two Bell pairs. We also show how one can produce an unbalanced two-qutrit state that could be of general purpose use in some protocols. In terms of the applications of the maximally entangled qutrit state, we mainly focus on how to use the state to demonstrate a violation of the Collins-Gisin-Linden-Massar-Popescu inequality under the restriction of measurements which can be performed using linear optical elements and photon counting. Other possible applications of the state, such as for higher dimensional quantum cryptography, teleportation and generation of heralded two-qudit states, are also briefly discussed.

  9. Entanglement enhances security in quantum communication

    International Nuclear Information System (INIS)

    Demkowicz-Dobrzanski, Rafal; Sen, Aditi; Sen, Ujjwal; Lewenstein, Maciej

    2009-01-01

    Secret sharing is a protocol in which a 'boss' wants to send a classical message secretly to two 'subordinates', such that none of the subordinates is able to know the message alone, while they can find it if they cooperate. Quantum mechanics is known to allow for such a possibility. We analyze tolerable quantum bit error rates in such secret sharing protocols in the physically relevant case when the eavesdropping is local with respect to the two channels of information transfer from the boss to the two subordinates. We find that using entangled encoding states is advantageous to legitimate users of the protocol. We therefore find that entanglement is useful for secure quantum communication. We also find that bound entangled states with positive partial transpose are not useful as a local eavesdropping resource. Moreover, we provide a criterion for security in secret sharing--a parallel of the Csiszar-Koerner criterion in single-receiver classical cryptography.

  10. Modelling toehold-mediated RNA strand displacement.

    Science.gov (United States)

    Šulc, Petr; Ouldridge, Thomas E; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2015-03-10

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5' end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Entanglement entropy and the colored Jones polynomial

    Science.gov (United States)

    Balasubramanian, Vijay; DeCross, Matthew; Fliss, Jackson; Kar, Arjun; Leigh, Robert G.; Parrikar, Onkar

    2018-05-01

    We study the multi-party entanglement structure of states in Chern-Simons theory created by performing the path integral on 3-manifolds with linked torus boundaries, called link complements. For gauge group SU(2), the wavefunctions of these states (in a particular basis) are the colored Jones polynomials of the corresponding links. We first review the case of U(1) Chern-Simons theory where these are stabilizer states, a fact we use to re-derive an explicit formula for the entanglement entropy across a general link bipartition. We then present the following results for SU(2) Chern-Simons theory: (i) The entanglement entropy for a bipartition of a link gives a lower bound on the genus of surfaces in the ambient S 3 separating the two sublinks. (ii) All torus links (namely, links which can be drawn on the surface of a torus) have a GHZ-like entanglement structure — i.e., partial traces leave a separable state. By contrast, through explicit computation, we test in many examples that hyperbolic links (namely, links whose complements admit hyperbolic structures) have W-like entanglement — i.e., partial traces leave a non-separable state. (iii) Finally, we consider hyperbolic links in the complexified SL(2,C) Chern-Simons theory, which is closely related to 3d Einstein gravity with a negative cosmological constant. In the limit of small Newton constant, we discuss how the entanglement structure is controlled by the Neumann-Zagier potential on the moduli space of hyperbolic structures on the link complement.

  12. Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels.

    Science.gov (United States)

    Takeoka, Masahiro; Seshadreesan, Kaushik P; Wilde, Mark M

    2017-10-13

    We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.

  13. Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels

    Science.gov (United States)

    Takeoka, Masahiro; Seshadreesan, Kaushik P.; Wilde, Mark M.

    2017-10-01

    We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.

  14. Entanglement dynamics of J-aggregate systems

    Energy Technology Data Exchange (ETDEWEB)

    Thilagam, A, E-mail: Thilagam.Lohe@unisa.edu.au [Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, South Australia 5095 (Australia)

    2011-04-01

    The entanglement dynamics of one-dimensional J-aggregate systems are examined using entanglement measures such as the von Neumann entropy and Wootters concurrence. The effect of dispersion and resonance terms associated with the exciton-phonon interaction are analyzed using Green's function formalism. A probability propagator term, derived using the Markovian approximation, presents J-aggregate systems as potential channels for large scale energy propagation for a select range of parameters. We highlight the role of a critical number of coherently coupled monomer sites and two-exciton states in determining superradiance in J-aggregate systems.

  15. Cord entanglement in monoamniotic twin pregnancies

    DEFF Research Database (Denmark)

    Lyndrup, J; Schouenborg, Lars Øland

    1987-01-01

    Monoamniotic twin pregnancy involves a heavy risk of fatal umbilical cord entanglement. Two cases are reported. In the first case, both twins were found dead in the 36th week, and the monoamnionicity was recognized at birth. In the second case, the monoamnionicity was discovered during an ultraso...... an ultrasound examination, and cord entanglement was suspected in the 35th week on the basis of a non-stress test (NST) with variable decelerations. Cesarean section was performed and two healthy children were delivered....

  16. Holographic entanglement entropy and cyclic cosmology

    Science.gov (United States)

    Frampton, Paul H.

    2018-06-01

    We discuss a cyclic cosmology in which the visible universe, or introverse, is all that is accessible to an observer while the extroverse represents the total spacetime originating from the time when the dark energy began to dominate. It is argued that entanglement entropy of the introverse is the more appropriate quantity to render infinitely cyclic, rather than the entropy of the total universe. Since vanishing entanglement entropy implies disconnected spacetimes, at the turnaround when the introverse entropy is zero the disconnected extroverse can be jettisoned with impunity.

  17. Holography and Entanglement in Flat Spacetime

    International Nuclear Information System (INIS)

    Li Wei; Takayanagi, Tadashi

    2011-01-01

    We propose a holographic correspondence of the flat spacetime based on the behavior of the entanglement entropy and the correlation functions. The holographic dual theory turns out to be highly nonlocal. We argue that after most part of the space is traced out, the reduced density matrix gives the maximal entropy and the correlation functions become trivial. We present a toy model for this holographic dual using a nonlocal scalar field theory that reproduces the same property of the entanglement entropy. Our conjecture is consistent with the entropy of Schwarzschild black holes in asymptotically flat spacetimes.

  18. Entanglement in the XY spin chain

    International Nuclear Information System (INIS)

    Its, A R; Jin, B-Q; Korepin, V E

    2005-01-01

    We consider the entanglement in the ground state of the XY model of an infinite chain. Following Bennett, Bernstein, Popescu and Schumacher, we use the entropy of a sub-system as a measure of entanglement. Vidal, Latorre, Rico and Kitaev have conjectured that the von Neumann entropy of a large block of neighbouring spins approaches a constant as the size of the block increases. We evaluate this limiting entropy as a function of anisotropy and transverse magnetic field. We use the methods based on the integrable Fredholm operators and the Riemann-Hilbert approach. It is shown how the entropy becomes singular at the phase transition points

  19. Entanglement for multipartite systems of indistinguishable particles

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Janusz [Polish Academy of Sciences, Institute of Mathematics, Sniadeckich 8, PO Box 21, 00-956 Warsaw (Poland); Kus, Marek [Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warszawa (Poland); Marmo, Giuseppe, E-mail: jagrab@impan.pl, E-mail: marek.kus@cft.edu.pl, E-mail: marmo@na.infn.it [Dipartimento di Scienze Fisiche, Universita ' Federico II' di Napoli and Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte Sant Angelo, Via Cintia, I-80126 Napoli (Italy)

    2011-04-29

    We analyze the concept of entanglement for a multipartite system with bosonic and fermionic constituents and its generalization to systems with arbitrary parastatistics. We use the representation theory of symmetry groups to formulate a unified approach to this problem in terms of simple tensors with an appropriate symmetry. For an arbitrary parastatistics, we define the S-rank generalizing the notion of the Schmidt rank. The S-rank, defined for all types of tensors, serves for distinguishing entanglement of pure states. In addition, for Bose and Fermi statistics, we construct an analog of the Jamiolkowski isomorphism.

  20. Distance Ranging Based on Quantum Entanglement

    International Nuclear Information System (INIS)

    Xiao Jun-Jun; Han Xiao-Chun; Zeng Gui-Hua; Fang Chen; Zhao Jian-Kang

    2013-01-01

    In the quantum metrology, applications of quantum techniques based on entanglement bring in some better performances than conventional approaches. We experimentally investigate an application of entanglement in accurate ranging based on the second-order coherence in the time domain. By a fitting algorithm in the data processing, the optimization results show a precision of ±200 μm at a distance of 1043.3m. In addition, the influence of jamming noise on the ranging scheme is studied. With some different fitting parameters, the result shows that the proposed scheme has a powerful anti-jamming capability for white noise